WO2015098339A1 - Method for manufacturing cross-linked rubber molding - Google Patents

Method for manufacturing cross-linked rubber molding Download PDF

Info

Publication number
WO2015098339A1
WO2015098339A1 PCT/JP2014/080028 JP2014080028W WO2015098339A1 WO 2015098339 A1 WO2015098339 A1 WO 2015098339A1 JP 2014080028 W JP2014080028 W JP 2014080028W WO 2015098339 A1 WO2015098339 A1 WO 2015098339A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
rubber
crosslinking
molding
crosslinked
Prior art date
Application number
PCT/JP2014/080028
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 大住
清華 戸田
Original Assignee
日本バルカー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バルカー工業株式会社 filed Critical 日本バルカー工業株式会社
Publication of WO2015098339A1 publication Critical patent/WO2015098339A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1009Fluorinated polymers, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/243Two or more independent types of crosslinking for one or more polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes
    • C09K2200/062Polyethylene

Definitions

  • the present invention relates to a method for producing a crosslinked rubber molded body represented by a sealing material.
  • an elastomer having a crosslinked structure (hereinafter, also referred to as “crosslinked rubber”) is used as a sealing material such as a gasket and packing used in various applications.
  • a sealing material such as a gasket and packing used in various applications.
  • fluororubber and the like are excellent in heat resistance.
  • JP 2005-113035 A discloses a fluororubber seal material for semiconductor manufacturing equipment.
  • the cross-linked rubber is a rubber that expresses rubber elasticity by causing a cross-linking reaction between molecular chains of a rubber component (elastomer-forming component) using a cross-linking agent or the like to give a cross-linked structure.
  • thermoplastic elastomers there are elastomers called “thermoplastic elastomers” in addition to crosslinked rubber.
  • thermoplastic elastomers include blends of resin and rubber, dynamically cross-linked resin and rubber, block copolymers of resin component and rubber component, etc.
  • the resin component is below the melting point of the resin.
  • Working as a pseudo-crosslinking site the shape is fixed and rubber elasticity is developed.
  • a cross-linking reaction is essential for molding into a predetermined shape, it is not suitable for extrusion molding or injection molding, and it is difficult to continuously produce molded bodies by continuously molding.
  • the cross-linking reaction is irreversible, and even when heated, the shape is irreversible, so even if there is any defect in the shape after molding, The molding process cannot be performed again by reusing the molded material. It has been recognized that it is difficult to improve production efficiency.
  • thermoplastic elastomers are suitable for extrusion molding and injection molding because the resin part melts above the melting point of the resin that composes it, and the shape is fixed below the melting point. Therefore, the molded material can be reused and re-molded.
  • thermoplastic elastomer containing a resin component that is thermally melted is inferior in heat resistance as compared with a crosslinked rubber having a similar structure, and in particular, compression set characteristics showing distortion due to thermal deterioration are greatly inferior.
  • Patent Documents 2 and 3 describe that a radiation-based crosslinking is performed after molding on a fluorine-based thermoplastic elastomer, but it can also be used as a sealing material used in a high-temperature environment by using such radiation crosslinking. The compression set characteristics cannot be improved to a certain extent.
  • thermoplastic elastomer having a fluororesin described in Patent Document 2 as a continuous phase and a cross-linked fluororubber particle as a dispersed phase has a higher hardness and flexibility than a cross-linked rubber when subjected to radiation cross-linking after molding.
  • Patent Document 1 describes that after heat-pressure molding (one type of thermal crosslinking) of the fluororubber composition, a thermal crosslinking treatment and a radiation crosslinking treatment are performed. It does not provide a method for producing a crosslinked rubber molded product that allows reuse of the material after molding.
  • the object of the present invention is to produce a crosslinked rubber molded article that can be continuously molded by melt molding as in the case of using a thermoplastic elastomer, and that the material can be reused in the molding process, and exhibits excellent compression set characteristics. It is to provide a method that can do this.
  • the present invention provides a method for producing a crosslinked rubber molded body shown below.
  • a first crosslinking step in which a rubber composition containing a crosslinkable rubber component is partially crosslinked to obtain a moldable first crosslinked body;
  • a method for producing a crosslinked rubber molded body comprising:
  • crosslinkable rubber component is at least one selected from the group consisting of fluorine rubber and ethylene propylene rubber.
  • the method of the present invention it is possible to produce a crosslinked rubber molded body that can be continuously molded by melt molding and reuse of materials in the molding process, and exhibits excellent compression set characteristics.
  • the obtained crosslinked rubber molded article can be suitably used as a sealing material such as packing or gasket.
  • the method for producing a crosslinked rubber molded body according to the present invention comprises: (1) a first crosslinking step in which a rubber composition containing a crosslinkable rubber component is partially crosslinked to obtain a moldable first crosslinked body; and (2) the first crosslinked body is crosslinked with ionizing radiation. , Including a second crosslinking step for obtaining a second crosslinked body, preferably between the first crosslinking step and the second crosslinking step, (3) It further includes a molding step of molding the first crosslinked body.
  • a first crosslinking step in which a rubber composition containing a crosslinkable rubber component is partially crosslinked to obtain a moldable first crosslinked body
  • the first crosslinked body is crosslinked with ionizing radiation.
  • the rubber composition provided to this process contains a crosslinkable rubber component.
  • the crosslinkable rubber component is not particularly limited as long as it can form an elastomer (crosslinked rubber) having the above-mentioned crosslinked structure by a crosslinking reaction.
  • Specific examples of the crosslinkable rubber component include, for example, ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), nitrile rubber (NBR: acrylonitrile butadiene rubber), hydrogenated nitrile rubber (HNBR; hydrogenated acrylonitrile butadiene rubber).
  • fluoro rubber FKM
  • perfluoroelastomer FFKM
  • EPM ethylene-propylene rubber
  • EPDM ethylene-propylene-diene rubber
  • FKM fluoro rubber
  • FKM perfluoroelastomer
  • EPM ethylene-propylene rubber
  • EPDM ethylene-propylene-diene rubber
  • FKM fluorine rubber
  • EPM ethylene-propylene rubber
  • crosslinkable rubber component only one type may be used, or two or more types may be used in combination.
  • fluororubber examples include, for example, vinylidene fluoride (VDF) -hexafluoropropylene (HFP) polymer; vinylidene fluoride (VDF) -hexafluoropropylene (HFP) -tetrafluoroethylene (TFE).
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • FFKM perfluoroelastomer
  • TFE tetrafluoroethylene
  • PMVE perfluoromethyl vinyl ether
  • the crosslinking system of the crosslinkable rubber component is not particularly limited.
  • a peroxide crosslinking system, a polyamine crosslinking system, and a polyol crosslinking system are ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM) is a peroxide cross-linking system, sulfur cross-linking system, quinoid cross-linking system, and resin cross-linking system, and perfluoroelastomer (FFKM) is a peroxide cross-linking system, bisphenol cross-linking system, triazine cross-linking system, oxazole cross-linking system, imidazole. Examples thereof include a crosslinking system and a thiazole crosslinking system.
  • the crosslinkable rubber component may be cross-linked by any one cross-linking system, or may be cross-linked by two or more cross-linking systems.
  • the peroxide crosslinking agent (radical polymerization initiator) used in the peroxide crosslinking system is, for example, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (example of commercially available product: “Perhexa 25B manufactured by NOF Corporation”.
  • Dicumyl peroxide (example of commercial product: “Parkmill D” manufactured by NOF); 2,4-dichlorobenzoyl peroxide; di-t-butyl peroxide; t-butyl dicumyl peroxide; benzoyl peroxide (commercially available)
  • triallyl isocyanurate (example of commercially available product: “TAIC” manufactured by Nippon Kasei Co., Ltd.); triallyl cyanurate; triallyl formal; triallyl trimellitate; N, N ′
  • examples include compounds (polyfunctional monomers) capable of co-crosslinking with radicals such as -m-phenylenebismaleimide; dipropargyl terephthalate; diallyl phthalate; tetraallyl terephthalamide.
  • the co-crosslinking agent preferably contains triallyl isocyanurate from the viewpoint of reactivity and heat resistance of the obtained crosslinked rubber molded article.
  • the rubber composition used in this step is optionally filled with a filler (reinforcing agent), processing aid, anti-aging agent, antioxidant, vulcanization accelerator, stabilizer, silane coupling agent, flame retardant.
  • a filler forcing agent
  • processing aid include thermoplastic resin, liquid rubber, oil, plasticizer, softener, and tackifier.
  • crosslinkable rubber component when the crosslinkable rubber component is FKM or FFKM, a fluororesin or particles thereof may be contained as a filler, and liquid fluororubber may be contained as a processing aid.
  • crosslinkable rubber component is EPM or EPDM, for example, paraffinic oil can be contained as a processing aid. Only 1 type may be used for said additive and it may use 2 or more types together.
  • liquid fluororubber products are, for example, “DAIEL G-101” manufactured by Daikin Industries, Ltd. and “SIFEL series” (SIFEL 8000 series, etc.) manufactured by Shin-Etsu Chemical Co., Ltd.
  • the rubber composition can also contain a thermoplastic resin or a thermoplastic elastomer.
  • a thermoplastic resin or a thermoplastic elastomer for example, when the crosslinkable rubber component is FKM or FFKM, blending a fluororesin or a fluoroplastic elastomer may be advantageous for moldability. Further, when the crosslinkable rubber component is EPM or EPDM, blending polyethylene or polypropylene may be advantageous for moldability. Only one type of thermoplastic resin or thermoplastic elastomer may be used, or two or more types may be used in combination.
  • the total amount is 300 weights with respect to 100 parts by weight of the crosslinkable rubber component. Part or less, preferably 200 parts by weight or less.
  • fluororesin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene copolymer.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • tetrafluoroethylene-ethylene copolymer examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene copolymer.
  • EFE Polymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE chlorotrifluoroethylene-ethylene copolymer
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • VDF-HFP copolymer a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • VDF-HFP-TFE copolymer a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • a fluororesin may be used individually by 1 type and may use 2 or more types together.
  • the rubber composition is partially cross-linked by any one or more of the cross-linking systems to obtain a moldable first cross-linked body.
  • Partially crosslinked means that the degree of crosslinking is higher than that in an uncrosslinked state, but the crosslinking agent (including a crosslinking aid such as a co-crosslinking agent) is insufficient, and the crosslinking agent (cross-linking such as a co-crosslinking agent).
  • a vulcanization curve of a rubber composition having a horizontal axis as a time and a vertical axis as a torque value is obtained by a curast meter (rheometer, vulcanization / curing characteristic tester).
  • the rubber composition is preferably partially crosslinked so that the maximum torque value MH is 2 to 70% of the maximum torque value MH 0 in the reference system.
  • the maximum torque value MH is more preferably 3 to 40% of MH 0 .
  • the reference system includes a crosslinking agent (including a crosslinking aid such as a co-crosslinking agent) in a sufficient amount, and when a sufficient amount of heat is applied, the maximum degree of crosslinking that can be developed. It refers to a rubber composition that can form a crosslinked product. More specifically, the cross-linked body refers to a cross-linked body in which the degree of cross-linking has progressed to a state where it does not melt even when the cross-linked body is heated to the decomposition temperature of the cross-linked portion in an air atmosphere.
  • a crosslinking agent including a crosslinking aid such as a co-crosslinking agent
  • a sufficient amount of the crosslinking agent in various crosslinking systems and a crosslinking temperature and a crosslinking time for achieving the maximum degree of crosslinking that can be expressed can be selected based on common technical knowledge in the field.
  • the decomposition temperature of the crosslinked portion is, for example, about 200 ° C. in the case of fluorine rubber crosslinked by a peroxide crosslinking system, and about 230 ° C. in the case of fluorine rubber crosslinked by a polyol crosslinking system.
  • the uncrosslinked rubber composition is crosslinked until it can be molded.
  • “Moldable” means that the molding process itself can be performed and the shape after molding can be maintained. If the rubber composition remains uncrosslinked, the fluidity is too high to be molded. On the other hand, if the degree of crosslinking is too high, shaping becomes difficult due to excessive progress of shape fixing by crosslinking, and melting by heat becomes impossible.
  • the cross-linking method in this step may be cross-linking by heat, cross-linking by ionizing radiation, or a combination thereof.
  • cross-linking by heat partial cross-linking is performed by reducing the amount of the cross-linking agent and / or cross-linking auxiliary agent from the above reference system, or by adding an additive that inhibits cross-linking to the rubber composition. Can do.
  • the degree of crosslinking can be controlled by adjusting the blending amount of the crosslinking agent and / or crosslinking aid and the blending amount of the crosslinking inhibitor.
  • crosslinking is performed by irradiation with ionizing radiation, there is a tendency that partial crosslinking occurs even if the irradiation amount is sufficiently large.
  • the degree of crosslinking can be controlled by adjusting the irradiation amount.
  • additives that inhibit crosslinking include 2,2-bis (4-hydroxyphenyl) hexafluoropropane; o-phenylphenol; hydroquinone; 2,4-diphenyl-4-methyl-1-pentene; -Bis (3-amino-4-hydroxyphenyl) hexafluoropropane; amine-ketone antioxidants (eg poly 2,2,4-trimethyl-1,2-dihydroquinoline); aromatic secondary amines Anti-aging agent (for example, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine); Monophenol type anti-aging agent (for example, 2,6-di-t-butyl-4-methylphenol); Bisphenol type Anti-aging agent (for example, 4,4′-thiobis (3-methyl-6-tert-butylphenol); benzimidazole anti-aging agent (eg, If, and 2-mercaptobenzimidazole).
  • amine-ketone antioxidants eg poly 2,2,4-trimethyl-1
  • cross-linking by heat is preferably used from the viewpoint of preventing an increase in manufacturing cost.
  • an electron beam or ⁇ -ray can be used as the ionizing radiation as in the second crosslinking step described later.
  • the manufacturing method of the present invention preferably includes a molding process for molding the first crosslinked body. Since the first crosslinked body is partially crosslinked to the extent that it can be molded, it can be melted by heat, for example, continuous molding using melt molding such as extrusion molding or injection molding is possible. is there. This makes it possible to continuously produce a crosslinked rubber molded body, and thus to reduce manufacturing costs.
  • the first cross-linked body can be melted by heat, there is some problem in the shape after molding, especially when it is not cross-linked by heat due to factors such as lack of cross-linking agent or cross-linking aid.
  • the molded material can be reused by re-melting the molded body and performing the molding process again. Reuse of such materials is also advantageous for reducing manufacturing costs.
  • the melt molding (extrusion molding or injection molding) of the first crosslinked body can be performed in the same manner as a general thermoplastic resin or thermoplastic elastomer.
  • the molding temperature can be, for example, 150 to 320 ° C.
  • Second cross-linking step In this step, the first cross-linked body or the molded body thereof is cross-linked by ionizing radiation to give a degree of cross-linking required as a final product, thereby obtaining a second cross-linked body.
  • ionizing radiation is not particularly limited, electron beams and ⁇ rays can be preferably used.
  • the dose of ionizing radiation is preferably 10 to 500 kGy, more preferably 30 to 200 kGy. When the irradiation dose is less than 10 kGy, a sufficient degree of crosslinking cannot be obtained, and the desired mechanical strength tends to be not obtained. Moreover, when the irradiation amount exceeds 500 kGy, the second crosslinked body may be deteriorated by ionizing radiation.
  • heat treatment may be applied to the second cross-linked body using an oven (electric furnace, vacuum electric furnace) or the like, if necessary.
  • the heat treatment conditions can usually be 100 to 320 ° C. (for example, about 170 to 230 ° C. or about 170 to 200 ° C.).
  • the crosslinked rubber molded body (second crosslinked body) obtained by the production method of the present invention exhibits excellent heat resistance (compression set properties) and has a rubber component as a continuous phase (thermoplastic to the rubber composition). When a resin is blended, a co-continuous phase can be taken.), Having a suitable hardness and excellent flexibility.
  • Example 1 According to the compounding composition shown in Table 1 (the unit of the compounding amount in Table 1 is parts by weight), after kneading predetermined amounts of the crosslinkable rubber component, the crosslinking agent and the co-crosslinking agent with an open roll, the obtained kneading The product was thermally crosslinked at 200 ° C. for 15 minutes to obtain a first crosslinked product (first crosslinking step). Next, the first crosslinked body was extrusion molded at 230 ° C. to obtain a molded body having a sealing material (O-ring) shape (molding process). Extrusion molding (melt molding) into a sealing material shape was easy.
  • Table 1 the unit of the compounding amount in Table 1 is parts by weight
  • a sealing material which is a second crosslinked body (crosslinked rubber molded body) (second crosslinking step).
  • the first cross-linked body exhibited heat melting property, and it was easy to heat melt the molded body and perform molding again.
  • the obtained sealing material exhibited excellent compression set characteristics.
  • Examples 2 to 8> According to the composition shown in Table 1, after kneading a predetermined amount of the crosslinkable rubber component, the thermoplastic elastomer and the fluororesin at 230 ° C. with a kneader, the predetermined amount of the crosslinking agent and the co-crosslinking agent is kneaded into the kneaded product. Got. Using the obtained kneaded material, the 1st bridge
  • thermoplastic elastomer predetermined amounts of thermoplastic elastomer, crosslinking agent and co-crosslinking agent were kneaded.
  • the obtained kneaded product is subjected to press molding at 230 ° C. for 15 minutes to obtain a sealing material (O-ring) shaped molded body, and then irradiated with radiation at an irradiation dose of 80 kGy to obtain a sealing material. Obtained. Since the thermoplastic elastomer is used, the kneaded product can be melt-molded. Also, the molded product can be melted by heat after press molding, and molding can be performed again. It was inferior to the permanent set characteristics.
  • thermoplastic elastomer is extruded at 230 ° C. to obtain a molded material having a sealing material (O-ring) shape, and then irradiated with radiation at a dose of 80 kGy to obtain a sealing material. It was.
  • the thermoplastic elastomer can be melt-molded, and it was possible to heat-mold and re-mold the molded body after extrusion molding, but the obtained sealing material was inferior in compression set characteristics. It was.
  • ⁇ Comparative Example 3> According to the composition shown in Table 1, predetermined amounts of the crosslinkable rubber component, the crosslinking agent, and the co-crosslinking agent were kneaded with an open roll. The obtained kneaded product was subjected to press molding at 170 ° C. for 15 minutes, and then heat treated at 200 ° C. for 4 hours to obtain a sealing material (O-ring). The kneaded product can be melt-molded itself such as extrusion, but the melt-molding conditions are extremely limited due to the occurrence of scorch (a phenomenon in which crosslinking proceeds by heat). When scorching occurs during molding, 1) molding defects such as surface roughness occur during extrusion.
  • scorch a phenomenon in which crosslinking proceeds by heat
  • cross-linked rubber molded body (seal material) after press molding in this comparative example did not melt even when reheated, and it was impossible to re-mold by reusing it.
  • FKM 1 Vinylidene fluoride (VDF) -hexafluoropropylene (HFP) -tetrafluoroethylene (TFE) polymer [“Daiel G912” manufactured by Daikin Industries, Ltd.].
  • FKM 2 Tetrafluoroethylene (TFE) -propylene (Pr) polymer [Aflas 150P manufactured by Asahi Glass Co., Ltd.
  • Thermoplastic Elastomer A fluorinated thermoplastic elastomer that is a block polymer in which a fluororubber part and a fluororesin part are bonded (“Dai-L Thermoplastic T-530” manufactured by Daikin Industries, Ltd.).
  • PVDF polyvinylidene fluoride [“Kureha KF Polymer # 850” manufactured by Kureha Corporation].
  • ETFE Tetrafluoroethylene-ethylene copolymer
  • Neofluon EP610 Tetrafluoroethylene-ethylene copolymer
  • Crosslinker Perhexa 25B (2,5-dimethyl-2,5-di (t-butylperoxy) hexane) [“Perhexa 25B” manufactured by NOF Corporation].
  • Co-crosslinking agent triallyl isocyanurate [“TAIC” manufactured by Nippon Kasei Co., Ltd.].
  • the sealing material of Comparative Example 3 does not melt even when heated to 200 ° C. in an air atmosphere, and the kneaded material (material before press molding) contains a sufficient amount of a crosslinking agent and a co-crosslinking agent. Since sufficient heat is applied for crosslinking, the kneaded product can be regarded as the above-mentioned reference system.
  • the vulcanization curve (200 ° C., 15 minutes) of this reference system and the vulcanization curves (200 ° C., 15 minutes) in the first crosslinking step of Examples 1 to 8 were used with a curast meter (Orientec).
  • the maximum torque value MH 0 in the reference system and the maximum torque value MH of each example were determined. Table 1 shows the maximum torque value MH (%) when the maximum torque value MH 0 is set to 100%.
  • Table 1 shows measured values of compression set of the sealing materials obtained in each of Examples and Comparative Examples.
  • the compression set is the most important evaluation item for evaluating the life (heat resistance) of the rubber seal material.
  • the compression set was measured as follows.
  • Compression set (%) ⁇ (T0 ⁇ T1) / (T0 ⁇ T2) ⁇ ⁇ 100% Calculated based on T0 is the height of the sample before the test, T1 is the height of the sample after being allowed to cool for 30 minutes, and T2 is the thickness (height) of the spacer.

Abstract

Provided is a method for manufacturing cross-linked rubber moldings, the method comprising: a first cross-linking step for partially cross-linking a rubber composition containing cross-linkable rubber components to obtain a moldable first cross-linked product; and a second cross-linking step for cross-linking the first cross-linked product using ionizing radiation to obtain a second cross-linked product. Also including a molding step for molding the first cross-linked product between the first cross-linking step and the second cross-linking step is preferable. Said molding can be extrusion molding, injection molding, etc. The cross-linked rubber molding obtained can be used favorably as, for example, a sealing material.

Description

架橋ゴム成形体の製造方法Method for producing crosslinked rubber molding
 本発明は、シール材に代表される架橋ゴム成形体を製造する方法に関する。 The present invention relates to a method for producing a crosslinked rubber molded body represented by a sealing material.
 一般に、各種用途に用いられているガスケット、パッキン等のシール材には、エラストマーの中でも架橋構造を有するエラストマー(以下、「架橋ゴム」ともいう。)が用いられている。これは、シール材に通常求められる耐熱性に優れるためである。とりわけフッ素ゴム等は耐熱性に優れており、例えば特開2005-113035号公報(特許文献1)には、半導体製造装置用のフッ素ゴムシール材が開示されている。架橋ゴムは、架橋剤等を用いてゴム成分(エラストマー形成成分)の分子鎖間に架橋反応を起こさせ、架橋構造を持たせることによってゴム弾性を発現させたものである。 Generally, an elastomer having a crosslinked structure (hereinafter, also referred to as “crosslinked rubber”) is used as a sealing material such as a gasket and packing used in various applications. This is because the heat resistance usually required for a sealing material is excellent. In particular, fluororubber and the like are excellent in heat resistance. For example, JP 2005-113035 A (Patent Document 1) discloses a fluororubber seal material for semiconductor manufacturing equipment. The cross-linked rubber is a rubber that expresses rubber elasticity by causing a cross-linking reaction between molecular chains of a rubber component (elastomer-forming component) using a cross-linking agent or the like to give a cross-linked structure.
 一方、エラストマーには、架橋ゴムのほかに「熱可塑性エラストマー」と呼ばれるものがある。例えば特開2009-138158号公報(特許文献2)及び特開2002-173543号公報(特許文献3)には、フッ素系熱可塑性エラストマーからなる成形体の製造方法が開示されている。一般に熱可塑性エラストマーには、樹脂とゴムとをブレンドしたもの、樹脂とゴムとを動的架橋したもの、樹脂成分とゴム成分とのブロック共重合体等があり、樹脂の融点未満では樹脂成分が疑似架橋部位的に働いて、形状が固定されるとともにゴム弾性を発現する。 On the other hand, there are elastomers called “thermoplastic elastomers” in addition to crosslinked rubber. For example, Japanese Patent Application Laid-Open No. 2009-138158 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2002-173543 (Patent Document 3) disclose a method for producing a molded body made of a fluorine-based thermoplastic elastomer. In general, thermoplastic elastomers include blends of resin and rubber, dynamically cross-linked resin and rubber, block copolymers of resin component and rubber component, etc. The resin component is below the melting point of the resin. Working as a pseudo-crosslinking site, the shape is fixed and rubber elasticity is developed.
特開2005-113035号公報JP 2005-113035 A 特開2009-138158号公報JP 2009-138158 A 特開2002-173543号公報JP 2002-173543 A
 架橋ゴムからなる成形体の製造には、
 a)所定の形状に成形するためには架橋反応が必須であるため、押出成形や射出成形に適しておらず、連続的に成形を行って成形体を連続生産することが困難である、
 b)一度架橋構造を形成して形状を固定すると、架橋反応は不可逆的であり、加熱しても溶融せず形状も不可逆的であるため、成形後の形状に何らかの不具合があった場合でも、成形後の材料を再利用して再度成形工程を実施することができない、
といった課題があり、生産効率の向上は困難であると認識されてきた。
For the production of a molded body made of crosslinked rubber,
a) Since a cross-linking reaction is essential for molding into a predetermined shape, it is not suitable for extrusion molding or injection molding, and it is difficult to continuously produce molded bodies by continuously molding.
b) Once the cross-linked structure is formed and the shape is fixed, the cross-linking reaction is irreversible, and even when heated, the shape is irreversible, so even if there is any defect in the shape after molding, The molding process cannot be performed again by reusing the molded material.
It has been recognized that it is difficult to improve production efficiency.
 これに対して熱可塑性エラストマーは、これを構成する樹脂の融点以上では樹脂部分が溶融し、融点未満では形状が固定されるため、押出成形や射出成形に適しており、また、可逆的に形状を変えることができるので、成形後の材料を再利用して再成形することもできる。 In contrast, thermoplastic elastomers are suitable for extrusion molding and injection molding because the resin part melts above the melting point of the resin that composes it, and the shape is fixed below the melting point. Therefore, the molded material can be reused and re-molded.
 しかし、熱溶融する樹脂成分を含む熱可塑性エラストマーは、類似する構造の架橋ゴムと比較して耐熱性に劣り、とりわけ熱劣化による歪を示す圧縮永久歪特性は大きく劣る。特許文献2及び3には、フッ素系熱可塑性エラストマーに対し、成形後に放射線架橋を施すことが記載されているが、このような放射線架橋の利用によっても、高温環境下で用いるシール材として使用できる程度に圧縮永久歪特性を改善することはできない。特に、特許文献2に記載されるフッ素樹脂を連続相とし、架橋フッ素ゴム粒子を分散相とする熱可塑性エラストマーは、成形後に放射線架橋を施すと、架橋ゴムに比べて硬度が大きくなり、柔軟性に劣る。 However, a thermoplastic elastomer containing a resin component that is thermally melted is inferior in heat resistance as compared with a crosslinked rubber having a similar structure, and in particular, compression set characteristics showing distortion due to thermal deterioration are greatly inferior. Patent Documents 2 and 3 describe that a radiation-based crosslinking is performed after molding on a fluorine-based thermoplastic elastomer, but it can also be used as a sealing material used in a high-temperature environment by using such radiation crosslinking. The compression set characteristics cannot be improved to a certain extent. In particular, a thermoplastic elastomer having a fluororesin described in Patent Document 2 as a continuous phase and a cross-linked fluororubber particle as a dispersed phase has a higher hardness and flexibility than a cross-linked rubber when subjected to radiation cross-linking after molding. Inferior to
 特許文献1には、フッ素ゴム組成物を加熱加圧成形(1種の熱架橋である。)した後に、熱架橋処理と放射線架橋処理とを施すことが記載されているが、連続成形や、成形後の材料の再利用を可能とする架橋ゴム成形体の製造方法を提供するものではない。 Patent Document 1 describes that after heat-pressure molding (one type of thermal crosslinking) of the fluororubber composition, a thermal crosslinking treatment and a radiation crosslinking treatment are performed. It does not provide a method for producing a crosslinked rubber molded product that allows reuse of the material after molding.
 本発明の目的は、熱可塑性エラストマーを用いる場合と同様に溶融成形による連続成形と成形工程における材料の再利用が可能であって、優れた圧縮永久歪特性を示す架橋ゴム成形体を製造することができる方法を提供することにある。 The object of the present invention is to produce a crosslinked rubber molded article that can be continuously molded by melt molding as in the case of using a thermoplastic elastomer, and that the material can be reused in the molding process, and exhibits excellent compression set characteristics. It is to provide a method that can do this.
 本発明は、以下に示す架橋ゴム成形体の製造方法を提供する。
 [1] 架橋性ゴム成分を含むゴム組成物を部分的に架橋させて、成形可能な第1架橋体を得る第1架橋工程と、
 前記第1架橋体を電離性放射線により架橋させて、第2架橋体を得る第2架橋工程と、
を含む、架橋ゴム成形体の製造方法。
The present invention provides a method for producing a crosslinked rubber molded body shown below.
[1] A first crosslinking step in which a rubber composition containing a crosslinkable rubber component is partially crosslinked to obtain a moldable first crosslinked body;
A second crosslinking step of crosslinking the first crosslinked body with ionizing radiation to obtain a second crosslinked body;
A method for producing a crosslinked rubber molded body, comprising:
 [2] 前記第1架橋工程と前記第2架橋工程との間に、前記第1架橋体を成形する成形工程をさらに含む、[1]に記載の製造方法。 [2] The manufacturing method according to [1], further including a molding step of molding the first crosslinked body between the first crosslinking step and the second crosslinking step.
 [3] 前記第1架橋体を押出成形又は射出成形により成形する、[2]に記載の製造方法。 [3] The manufacturing method according to [2], wherein the first crosslinked body is formed by extrusion molding or injection molding.
 [4] 前記第1架橋工程において前記ゴム組成物を熱によって架橋させる、[1]~[3]のいずれかに記載の製造方法。 [4] The production method according to any one of [1] to [3], wherein the rubber composition is crosslinked by heat in the first crosslinking step.
 [5] 前記架橋性ゴム成分がフッ素ゴム及びエチレンプロピレンゴムからなる群から選択される少なくとも1種である、[1]~[4]のいずれかに記載の製造方法。 [5] The production method according to any one of [1] to [4], wherein the crosslinkable rubber component is at least one selected from the group consisting of fluorine rubber and ethylene propylene rubber.
 [6] 前記架橋ゴム成形体がシール材である、[1]~[5]のいずれかに記載の製造方法。 [6] The manufacturing method according to any one of [1] to [5], wherein the crosslinked rubber molded body is a sealing material.
 [7] 前記ゴム組成物が熱可塑性樹脂及び熱可塑性エラストマーからなる群から選択される少なくとも1種をさらに含む[1]~[6]のいずれかに記載の製造方法。 [7] The production method according to any one of [1] to [6], wherein the rubber composition further includes at least one selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer.
 本発明の方法によれば、溶融成形による連続成形と成形工程における材料の再利用が可能であって、優れた圧縮永久歪特性を示す架橋ゴム成形体を製造することができる。得られる架橋ゴム成形体は、パッキンやガスケットのようなシール材として好適に用いることができる。 According to the method of the present invention, it is possible to produce a crosslinked rubber molded body that can be continuously molded by melt molding and reuse of materials in the molding process, and exhibits excellent compression set characteristics. The obtained crosslinked rubber molded article can be suitably used as a sealing material such as packing or gasket.
 本発明に係る架橋ゴム成形体の製造方法は、
 (1)架橋性ゴム成分を含むゴム組成物を部分的に架橋させて、成形可能な第1架橋体を得る第1架橋工程、及び
 (2)第1架橋体を電離性放射線により架橋させて、第2架橋体を得る第2架橋工程
を含み、好ましくは、第1架橋工程と第2架橋工程との間に、
 (3)第1架橋体を成形する成形工程をさらに含む。以下、実施の形態を示しながら各工程について詳細に説明する。
The method for producing a crosslinked rubber molded body according to the present invention comprises:
(1) a first crosslinking step in which a rubber composition containing a crosslinkable rubber component is partially crosslinked to obtain a moldable first crosslinked body; and (2) the first crosslinked body is crosslinked with ionizing radiation. , Including a second crosslinking step for obtaining a second crosslinked body, preferably between the first crosslinking step and the second crosslinking step,
(3) It further includes a molding step of molding the first crosslinked body. Hereafter, each process is demonstrated in detail, showing embodiment.
 (1)第1架橋工程
 本工程に供されるゴム組成物は、架橋性ゴム成分を含む。架橋性ゴム成分は、架橋反応によって上述の架橋構造を有するエラストマー(架橋ゴム)を形成可能なものである限り特に制限されない。架橋性ゴム成分の具体例は、例えばエチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、ニトリルゴム(NBR;アクリロニトリルブタジエンゴム)、水素添加ニトリルゴム(HNBR;水素添加アクリロニトリルブタジエンゴム)、ブチルゴム(IIR)、フッ素ゴム(FKM)、パーフルオロエラストマー(FFKM)、アクリルゴム、シリコーンゴムを含む。中でも、シール材用のゴムとして良好な特性を兼ね備えていることから、フッ素ゴム(FKM)、パーフルオロエラストマー(FFKM)、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)が好適に用いられ、より好適にはフッ素ゴム(FKM)、エチレン-プロピレンゴム(EPM)が用いられる。架橋性ゴム成分は1種のみを用いてもよいし、2種以上を併用してもよい。
(1) 1st bridge | crosslinking process The rubber composition provided to this process contains a crosslinkable rubber component. The crosslinkable rubber component is not particularly limited as long as it can form an elastomer (crosslinked rubber) having the above-mentioned crosslinked structure by a crosslinking reaction. Specific examples of the crosslinkable rubber component include, for example, ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), nitrile rubber (NBR: acrylonitrile butadiene rubber), hydrogenated nitrile rubber (HNBR; hydrogenated acrylonitrile butadiene rubber). Butyl rubber (IIR), fluoro rubber (FKM), perfluoroelastomer (FFKM), acrylic rubber, and silicone rubber. Of these, fluoro rubber (FKM), perfluoroelastomer (FFKM), ethylene-propylene rubber (EPM), and ethylene-propylene-diene rubber (EPDM) are preferred because they have good properties as rubber for sealing materials. More preferably, fluorine rubber (FKM) or ethylene-propylene rubber (EPM) is used. As the crosslinkable rubber component, only one type may be used, or two or more types may be used in combination.
 フッ素ゴム(FKM)の具体例を挙げれば、例えば、ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)系重合体;ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)-テトラフルオロエチレン(TFE)系重合体;テトラフルオロエチレン(TFE)-プロピレン(Pr)系重合体;ビニリデンフルオライド(VDF)-プロピレン(Pr)-テトラフルオロエチレン(TFE)系重合体;エチレン(E)-テトラフルオロエチレン(TFE)-パーフルオロメチルビニルエーテル(PMVE)系重合体;ビニリデンフルオライド(VDF)-テトラフルオロエチレン(TFE)-パーフルオロメチルビニルエーテル(PMVE)系重合体、ビニリデンフルオライド(VDF)-パーフルオロメチルビニルエーテル(PMVE)系重合体を挙げることができる。 Specific examples of fluororubber (FKM) include, for example, vinylidene fluoride (VDF) -hexafluoropropylene (HFP) polymer; vinylidene fluoride (VDF) -hexafluoropropylene (HFP) -tetrafluoroethylene (TFE). ) Polymer; tetrafluoroethylene (TFE) -propylene (Pr) polymer; vinylidene fluoride (VDF) -propylene (Pr) -tetrafluoroethylene (TFE) polymer; ethylene (E) -tetrafluoroethylene (TFE) -perfluoromethyl vinyl ether (PMVE) polymer; vinylidene fluoride (VDF) -tetrafluoroethylene (TFE) -perfluoromethyl vinyl ether (PMVE) polymer, vinylidene fluoride (VDF) -perful It can be exemplified b methyl vinyl ether (PMVE) polymer.
 パーフルオロエラストマー(FFKM)としては、例えば、テトラフルオロエチレン(TFE)-パーフルオロメチルビニルエーテル(PMVE)系重合体を挙げることができる。 Examples of perfluoroelastomer (FFKM) include tetrafluoroethylene (TFE) -perfluoromethyl vinyl ether (PMVE) -based polymers.
 架橋性ゴム成分の架橋系は特に制限されず、例えばフッ素ゴム(FKM)であればパーオキサイド架橋系、ポリアミン架橋系、ポリオール架橋系が、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)であればパーオキサイド架橋系、硫黄架橋系、キノイド架橋系、樹脂架橋系が、パーフルオロエラストマー(FFKM)であればパーオキサイド架橋系、ビスフェノール架橋系、トリアジン架橋系、オキサゾール架橋系、イミダゾール架橋系、チアゾール架橋系が挙げられる。架橋性ゴム成分は、いずれか1種の架橋系で架橋されてもよいし、2種以上の架橋系で架橋されてもよい。 The crosslinking system of the crosslinkable rubber component is not particularly limited. For example, in the case of fluoro rubber (FKM), a peroxide crosslinking system, a polyamine crosslinking system, and a polyol crosslinking system are ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber ( EPDM) is a peroxide cross-linking system, sulfur cross-linking system, quinoid cross-linking system, and resin cross-linking system, and perfluoroelastomer (FFKM) is a peroxide cross-linking system, bisphenol cross-linking system, triazine cross-linking system, oxazole cross-linking system, imidazole. Examples thereof include a crosslinking system and a thiazole crosslinking system. The crosslinkable rubber component may be cross-linked by any one cross-linking system, or may be cross-linked by two or more cross-linking systems.
 パーオキサイド架橋系で用いるパーオキサイド架橋剤(ラジカル重合開始剤)は、例えば、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(市販品の例:日油製「パーヘキサ25B」);ジクミルペルオキシド(市販品の例:日油製「パークミルD」);2,4-ジクロロベンゾイルパーオキサイド;ジ-t-ブチルパーオキサイド;t-ブチルジクミルパーオキサイド;ベンゾイルペルオキシド(市販品の例:日油製「ナイパーB」);2,5-ジメチル-2,5-(t-ブチルペルオキシ)ヘキシン-3(市販品の例:日油製「パーヘキシン25B」);2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン;α,α’-ビス(t-ブチルペルオキシ-m-イソプロピル)ベンゼン(市販品の例:日油製「パーブチルP」);t-ブチルパーオキシイソプロピルカーボネート;パラクロロベンゾイルパーオキサイド等であることができる。パーオキサイド架橋剤は、1種のみを用いてもよいし、2種以上を併用してもよい。 The peroxide crosslinking agent (radical polymerization initiator) used in the peroxide crosslinking system is, for example, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (example of commercially available product: “Perhexa 25B manufactured by NOF Corporation”. Dicumyl peroxide (example of commercial product: “Parkmill D” manufactured by NOF); 2,4-dichlorobenzoyl peroxide; di-t-butyl peroxide; t-butyl dicumyl peroxide; benzoyl peroxide (commercially available) Example of product: NOIPA “NIPER B”); 2,5-dimethyl-2,5- (t-butylperoxy) hexyne-3 (example of commercial product: NOF “Perhexin 25B”); 2,5 -Dimethyl-2,5-di (benzoylperoxy) hexane; α, α'-bis (t-butylperoxy-m-isopropyl) benzene (example of commercially available product: NOF Corporation) “Perbutyl P”); t-butyl peroxyisopropyl carbonate; parachlorobenzoyl peroxide and the like. Only one peroxide crosslinking agent may be used, or two or more peroxide crosslinking agents may be used in combination.
 パーオキサイド架橋系で用いる共架橋剤としては、トリアリルイソシアヌレート(市販品の例:日本化成社製「TAIC」);トリアリルシアヌレート;トリアリルホルマール;トリアリルトリメリテート;N,N’-m-フェニレンビスマレイミド;ジプロパギルテレフタレート;ジアリルフタレート;テトラアリルテレフタルアミド等のラジカルによる共架橋が可能な化合物(多官能性モノマー)を挙げることができる。共架橋剤は、1種のみを用いてもよいし、2種以上を併用してもよい。上記の中でも、反応性や得られる架橋ゴム成形体の耐熱性の観点から、共架橋剤は、トリアリルイソシアヌレートを含むことが好ましい。 As a co-crosslinking agent used in the peroxide crosslinking system, triallyl isocyanurate (example of commercially available product: “TAIC” manufactured by Nippon Kasei Co., Ltd.); triallyl cyanurate; triallyl formal; triallyl trimellitate; N, N ′ Examples include compounds (polyfunctional monomers) capable of co-crosslinking with radicals such as -m-phenylenebismaleimide; dipropargyl terephthalate; diallyl phthalate; tetraallyl terephthalamide. Only one type of co-crosslinking agent may be used, or two or more types may be used in combination. Among these, the co-crosslinking agent preferably contains triallyl isocyanurate from the viewpoint of reactivity and heat resistance of the obtained crosslinked rubber molded article.
 本工程に供されるゴム組成物は、必要に応じて、充填剤(補強剤)、加工助剤、老化防止剤、酸化防止剤、加硫促進剤、安定剤、シランカップリング剤、難燃剤、滑剤等の添加剤を含むことができる。充填剤の具体例は、カーボンブラック、シリカ、アルミナ、酸化亜鉛、二酸化チタン、クレー、タルク、珪藻土、硫酸バリウム、ケイ酸化合物(ケイ酸塩等)、炭酸カルシウム、炭酸マグネシウム、酸化カルシウム、マイカ、グラファイト、水酸化アルミニウム、樹脂微粒子を含む。加工助剤の具体例は、熱可塑性樹脂、液状ゴム、オイル、可塑剤、軟化剤、粘着付与剤を含む。例えば架橋性ゴム成分がFKMやFFKMである場合、充填剤としてフッ素樹脂又はその粒子を含有してもよく、加工助剤として液状フッ素ゴムを含有してもよい。架橋性ゴム成分がEPMやEPDMである場合、加工助剤として、例えばパラフィン系オイルを含有することができる。上記の添加剤は、1種のみを用いてもよいし、2種以上を併用してもよい。 The rubber composition used in this step is optionally filled with a filler (reinforcing agent), processing aid, anti-aging agent, antioxidant, vulcanization accelerator, stabilizer, silane coupling agent, flame retardant. Additives such as lubricants can be included. Specific examples of fillers include carbon black, silica, alumina, zinc oxide, titanium dioxide, clay, talc, diatomaceous earth, barium sulfate, silicate compounds (silicates, etc.), calcium carbonate, magnesium carbonate, calcium oxide, mica, Includes graphite, aluminum hydroxide, and resin fine particles. Specific examples of the processing aid include thermoplastic resin, liquid rubber, oil, plasticizer, softener, and tackifier. For example, when the crosslinkable rubber component is FKM or FFKM, a fluororesin or particles thereof may be contained as a filler, and liquid fluororubber may be contained as a processing aid. When the crosslinkable rubber component is EPM or EPDM, for example, paraffinic oil can be contained as a processing aid. Only 1 type may be used for said additive and it may use 2 or more types together.
 液状フッ素ゴムの市販品の例を挙げれば、例えば、ダイキン工業社製「ダイエルG-101」、信越化学工業社製「SIFEL シリーズ」(SIFEL 8000シリーズ等)である。 Examples of commercially available liquid fluororubber products are, for example, “DAIEL G-101” manufactured by Daikin Industries, Ltd. and “SIFEL series” (SIFEL 8000 series, etc.) manufactured by Shin-Etsu Chemical Co., Ltd.
 また、後述する成形工程における成形性を向上させるために、ゴム組成物は、熱可塑性樹脂や熱可塑性エラストマーを含有することもできる。例えば架橋性ゴム成分がFKMやFFKMである場合、フッ素樹脂やフッ素系熱可塑性エラストマーを配合すると、成形性に有利なことがある。また、架橋性ゴム成分がEPMやEPDMである場合、ポリエチレンやポリプロピレンを配合すると、成形性に有利なことがある。熱可塑性樹脂や熱可塑性エラストマーは、1種のみを用いてもよいし、2種以上を併用してもよい。ただし、得られる架橋ゴム成形体の耐熱性(圧縮永久歪特性)の観点から、熱可塑性樹脂や熱可塑性エラストマーを配合する場合、その合計量は、架橋性ゴム成分100重量部に対して300重量部以下とすることが好ましく、200重量部以下とすることがより好ましい。 Also, in order to improve the moldability in the molding process described later, the rubber composition can also contain a thermoplastic resin or a thermoplastic elastomer. For example, when the crosslinkable rubber component is FKM or FFKM, blending a fluororesin or a fluoroplastic elastomer may be advantageous for moldability. Further, when the crosslinkable rubber component is EPM or EPDM, blending polyethylene or polypropylene may be advantageous for moldability. Only one type of thermoplastic resin or thermoplastic elastomer may be used, or two or more types may be used in combination. However, from the viewpoint of heat resistance (compression set) of the obtained crosslinked rubber molded product, when a thermoplastic resin or a thermoplastic elastomer is blended, the total amount is 300 weights with respect to 100 parts by weight of the crosslinkable rubber component. Part or less, preferably 200 parts by weight or less.
 フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン-エチレン共重合体(ECTFE)、ポリフッ化ビニリデン(PVDF)、ポリビニルフルオライド(PVF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(VDF-HFP共重合体)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体(VDF-HFP-TFE共重合体)等を用いることができる。フッ素樹脂は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。 Examples of the fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene copolymer. Polymer (ETFE), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), vinylidene fluoride-hexafluoropropylene A polymer (VDF-HFP copolymer), a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer (VDF-HFP-TFE copolymer), or the like can be used. A fluororesin may be used individually by 1 type and may use 2 or more types together.
 本工程では、上記ゴム組成物を上記いずれか1以上の架橋系によって部分的に架橋させて、成形可能な第1架橋体を得る。「部分的に架橋させる」とは、未架橋の状態より架橋度は高いが、架橋剤(共架橋剤のような架橋助剤を含む。)の不足、架橋剤(共架橋剤のような架橋助剤を含む。)の失活、架橋阻害、電離性放射線の線量不足等により、最終製品として必要とされる架橋度には至っていない状態、又は架橋剤(共架橋剤のような架橋助剤を含む。)がゴム組成物中に残存しているにもかかわらず、それ以上熱を加えたり、電離性放射線を照射しても最終製品として必要とされる架橋度には至らない状態をいう。 In this step, the rubber composition is partially cross-linked by any one or more of the cross-linking systems to obtain a moldable first cross-linked body. “Partially crosslinked” means that the degree of crosslinking is higher than that in an uncrosslinked state, but the crosslinking agent (including a crosslinking aid such as a co-crosslinking agent) is insufficient, and the crosslinking agent (cross-linking such as a co-crosslinking agent). In a state where the degree of crosslinking required for the final product is not reached due to deactivation, crosslinking inhibition, ionizing radiation dose deficiency, etc., or a crosslinking agent (a crosslinking aid such as a co-crosslinking agent) )), Although it remains in the rubber composition, it does not reach the degree of crosslinking required for the final product even when further heat is applied or it is irradiated with ionizing radiation. .
 より具体的には、本工程では、キュラストメーター(レオメーター、加硫/硬化特性試験機)により、横軸を時間、縦軸をトルク値とするゴム組成物の加硫曲線を取得したとき、その最大トルク値MHが、参照系における最大トルク値MH0の2~70%となるようにゴム組成物を部分的に架橋させることが好ましい。最大トルク値MHは、より好ましくはMH0の3~40%である。 More specifically, in this step, when a vulcanization curve of a rubber composition having a horizontal axis as a time and a vertical axis as a torque value is obtained by a curast meter (rheometer, vulcanization / curing characteristic tester). The rubber composition is preferably partially crosslinked so that the maximum torque value MH is 2 to 70% of the maximum torque value MH 0 in the reference system. The maximum torque value MH is more preferably 3 to 40% of MH 0 .
 参照系とは、架橋剤(共架橋剤のような架橋助剤を含む。)が十分な量で配合されており、十分な熱が加えられることにより、それが発現し得る最大の架橋度に至っている架橋体を形成できるゴム組成物を指す。当該架橋体とは、より具体的には、空気雰囲気下、架橋体をその架橋部の分解温度まで加熱しても溶融しない状態まで架橋度が進行した架橋体を指す。参照系に関し、各種架橋系における架橋剤の十分量や、発現し得る最大の架橋度を達成するための架橋温度及び架橋時間は、当該分野における技術常識に基づいて選択することができる。上記架橋部の分解温度は、例えばパーオキサイド架橋系により架橋されたフッ素ゴムの場合、約200℃であり、ポリオール架橋系により架橋されたフッ素ゴムの場合、約230℃となる。 The reference system includes a crosslinking agent (including a crosslinking aid such as a co-crosslinking agent) in a sufficient amount, and when a sufficient amount of heat is applied, the maximum degree of crosslinking that can be developed. It refers to a rubber composition that can form a crosslinked product. More specifically, the cross-linked body refers to a cross-linked body in which the degree of cross-linking has progressed to a state where it does not melt even when the cross-linked body is heated to the decomposition temperature of the cross-linked portion in an air atmosphere. Regarding the reference system, a sufficient amount of the crosslinking agent in various crosslinking systems and a crosslinking temperature and a crosslinking time for achieving the maximum degree of crosslinking that can be expressed can be selected based on common technical knowledge in the field. The decomposition temperature of the crosslinked portion is, for example, about 200 ° C. in the case of fluorine rubber crosslinked by a peroxide crosslinking system, and about 230 ° C. in the case of fluorine rubber crosslinked by a polyol crosslinking system.
 また本工程では、未架橋のゴム組成物は、成形可能な状態まで架橋される。「成形可能」とは、成形処理自体が可能であり、かつ成形後の形状を維持することが可能であることをいう。ゴム組成物が未架橋のままであると、流動性が高すぎて成形できない。一方、架橋度が高すぎると、架橋による形状固定が過度に進行していることにより成形が困難となり、熱による溶融も不可能となる。 In this step, the uncrosslinked rubber composition is crosslinked until it can be molded. “Moldable” means that the molding process itself can be performed and the shape after molding can be maintained. If the rubber composition remains uncrosslinked, the fluidity is too high to be molded. On the other hand, if the degree of crosslinking is too high, shaping becomes difficult due to excessive progress of shape fixing by crosslinking, and melting by heat becomes impossible.
 本工程における架橋方法は、熱による架橋であってもよいし、電離性放射線による架橋であってもよいし、それらの併用であってもよい。熱による架橋の場合、架橋剤及び/又は架橋助剤の量を上記参照系よりも少なくしたり、架橋を阻害する添加剤をゴム組成物に配合したりすることによって部分的な架橋を施すことができる。架橋剤及び/又は架橋助剤の配合量や、架橋阻害剤の配合量の調整によって架橋の程度を制御することができる。電離性放射線の照射により架橋を行う場合は、その照射量が十分に大きくても部分的な架橋となる傾向があるが、照射量の調整によって架橋の程度を制御することができる。 The cross-linking method in this step may be cross-linking by heat, cross-linking by ionizing radiation, or a combination thereof. In the case of cross-linking by heat, partial cross-linking is performed by reducing the amount of the cross-linking agent and / or cross-linking auxiliary agent from the above reference system, or by adding an additive that inhibits cross-linking to the rubber composition. Can do. The degree of crosslinking can be controlled by adjusting the blending amount of the crosslinking agent and / or crosslinking aid and the blending amount of the crosslinking inhibitor. When crosslinking is performed by irradiation with ionizing radiation, there is a tendency that partial crosslinking occurs even if the irradiation amount is sufficiently large. However, the degree of crosslinking can be controlled by adjusting the irradiation amount.
 架橋を阻害する添加剤としては、例えば、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン;o-フェニルフェノール;ハイドロキノン;2,4-ジフェニル-4-メチル-1-ペンテン;2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン;アミン-ケトン系老化防止剤(例えば、ポリ2,2,4-トリメチル-1,2-ジヒドロキノリン);芳香族第二級アミン系老化防止剤(例えば、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン);モノフェノール系老化防止剤(例えば、2,6-ジ-t-ブチル-4-メチルフェノール);ビスフェノール系老化防止剤(例えば、4,4’-チオビス(3-メチル-6-t-ブチルフェノール);ベンズイミダゾール系老化防止剤(例えば、2-メルカプトベンズイミダゾール)を挙げることができる。 Examples of additives that inhibit crosslinking include 2,2-bis (4-hydroxyphenyl) hexafluoropropane; o-phenylphenol; hydroquinone; 2,4-diphenyl-4-methyl-1-pentene; -Bis (3-amino-4-hydroxyphenyl) hexafluoropropane; amine-ketone antioxidants (eg poly 2,2,4-trimethyl-1,2-dihydroquinoline); aromatic secondary amines Anti-aging agent (for example, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine); Monophenol type anti-aging agent (for example, 2,6-di-t-butyl-4-methylphenol); Bisphenol type Anti-aging agent (for example, 4,4′-thiobis (3-methyl-6-tert-butylphenol); benzimidazole anti-aging agent (eg, If, and 2-mercaptobenzimidazole).
 本工程における架橋方法には、製造コストの増大を防ぐ観点から、好ましくは熱による架橋が用いられる。 In the cross-linking method in this step, cross-linking by heat is preferably used from the viewpoint of preventing an increase in manufacturing cost.
 電離性放射線によって第1架橋体を得る場合において、電離性放射線としては後述する第2架橋工程と同様に、電子線やγ線を用いることができる。 In the case of obtaining the first crosslinked body by ionizing radiation, an electron beam or γ-ray can be used as the ionizing radiation as in the second crosslinking step described later.
 (2)成形工程
 本発明の製造方法は、第1架橋体を成形する成形工程を含むことが好ましい。第1架橋体は、成形可能な程度に部分的に架橋されたものであるので、熱溶融させることが可能であり、例えば押出成形や射出成形のような溶融成形を用いた連続成形が可能である。これにより、架橋ゴム成形体の連続生産、ひいては製造コストの削減が可能となる。
(2) Molding process The manufacturing method of the present invention preferably includes a molding process for molding the first crosslinked body. Since the first crosslinked body is partially crosslinked to the extent that it can be molded, it can be melted by heat, for example, continuous molding using melt molding such as extrusion molding or injection molding is possible. is there. This makes it possible to continuously produce a crosslinked rubber molded body, and thus to reduce manufacturing costs.
 また本発明の製造方法においては、架橋剤や架橋助剤の不足等の要因により第1架橋体が熱によってもそれ以上架橋しない状態にある場合には、従来の一般的な架橋ゴム成形体の製造方法と異なり、熱による架橋が進行するスコーチが起こりにくいため、この点でも押出成形や射出成形のような溶融成形を用いた連続成形に有利である。 In the production method of the present invention, when the first crosslinked body is not further crosslinked by heat due to a lack of a crosslinking agent or a crosslinking aid, Unlike the manufacturing method, scorch in which cross-linking by heat is unlikely to occur, and this is also advantageous for continuous molding using melt molding such as extrusion molding or injection molding.
 第1架橋体は、熱溶融させることが可能であるため、とりわけ架橋剤や架橋助剤の不足等の要因により熱によってもそれ以上架橋しない状態にある場合、成形後の形状に何らかの不具合があったときに当該成形体を熱溶融し、再度成形工程を実施するなど、成形後の材料を再利用することもできる。このような材料の再利用も製造コストの削減に有利である。 Since the first cross-linked body can be melted by heat, there is some problem in the shape after molding, especially when it is not cross-linked by heat due to factors such as lack of cross-linking agent or cross-linking aid. In this case, the molded material can be reused by re-melting the molded body and performing the molding process again. Reuse of such materials is also advantageous for reducing manufacturing costs.
 第1架橋体の溶融成形(押出成形や射出成形)は、一般的な熱可塑性樹脂や熱可塑性エラストマーと同様にして行うことができる。成形温度は、例えば150~320℃であることができる。 The melt molding (extrusion molding or injection molding) of the first crosslinked body can be performed in the same manner as a general thermoplastic resin or thermoplastic elastomer. The molding temperature can be, for example, 150 to 320 ° C.
 (3)第2架橋工程
 本工程にて第1架橋体又はその成形体は、電離性放射線により架橋され、最終製品として必要とされる架橋度が付与され、第2架橋体が得られる。電離性放射線は特に制限されないが、電子線やγ線を好ましく用いることができる。電離性放射線の照射量は、好ましくは10~500kGyであり、より好ましくは30~200kGyである。照射量が10kGy未満であると、十分な架橋度が得られず、所望する機械的強度が得られない傾向にある。また、照射量が500kGyを超えると、第2架橋体に電離性放射線による劣化が生じるおそれがある。
(3) Second cross-linking step In this step, the first cross-linked body or the molded body thereof is cross-linked by ionizing radiation to give a degree of cross-linking required as a final product, thereby obtaining a second cross-linked body. Although ionizing radiation is not particularly limited, electron beams and γ rays can be preferably used. The dose of ionizing radiation is preferably 10 to 500 kGy, more preferably 30 to 200 kGy. When the irradiation dose is less than 10 kGy, a sufficient degree of crosslinking cannot be obtained, and the desired mechanical strength tends to be not obtained. Moreover, when the irradiation amount exceeds 500 kGy, the second crosslinked body may be deteriorated by ionizing radiation.
 第2架橋工程後、必要に応じて、オーブン(電気炉、真空電気炉)等を用いて第2架橋体に対して熱処理を加えてもよい。熱処理条件は、通常100~320℃(例えば170~230℃程度、又は170~200℃程度)とすることができる。 After the second cross-linking step, heat treatment may be applied to the second cross-linked body using an oven (electric furnace, vacuum electric furnace) or the like, if necessary. The heat treatment conditions can usually be 100 to 320 ° C. (for example, about 170 to 230 ° C. or about 170 to 200 ° C.).
 本発明の製造方法によって得られる架橋ゴム成形体(第2架橋体)は、優れた耐熱性(圧縮永久歪特性)を示すとともに、ゴム成分が連続相となっており(ゴム組成物に熱可塑性樹脂が配合される場合は共連続相を採り得る。)、適度な硬度を有し柔軟性に優れる。 The crosslinked rubber molded body (second crosslinked body) obtained by the production method of the present invention exhibits excellent heat resistance (compression set properties) and has a rubber component as a continuous phase (thermoplastic to the rubber composition). When a resin is blended, a co-continuous phase can be taken.), Having a suitable hardness and excellent flexibility.
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
 <実施例1>
 表1に示される配合組成に従って(表1における配合量の単位は重量部である。)、オープンロールにより架橋性ゴム成分、架橋剤及び共架橋剤の所定量を混練した後、得られた混練物に対し、200℃、15分の条件で熱架橋を施して第1架橋体を得た(第1架橋工程)。次いで、第1架橋体を、230℃で押出成形して、シール材(Oリング)形状の成形体を得た(成形工程)。シール材形状への押出成形(溶融成形)は容易であった。その後、80kGyの照射量で放射線(γ線。以下同様。)を照射して第2架橋体(架橋ゴム成形体)であるシール材(Oリング)を得た(第2架橋工程)。第1架橋体は、熱溶融性を示し、その成形体を熱溶融させ、再度成形を行うことも容易であった。得られたシール材は、優れた圧縮永久歪特性を示した。
<Example 1>
According to the compounding composition shown in Table 1 (the unit of the compounding amount in Table 1 is parts by weight), after kneading predetermined amounts of the crosslinkable rubber component, the crosslinking agent and the co-crosslinking agent with an open roll, the obtained kneading The product was thermally crosslinked at 200 ° C. for 15 minutes to obtain a first crosslinked product (first crosslinking step). Next, the first crosslinked body was extrusion molded at 230 ° C. to obtain a molded body having a sealing material (O-ring) shape (molding process). Extrusion molding (melt molding) into a sealing material shape was easy. Thereafter, radiation (γ rays; the same applies hereinafter) was applied at an irradiation dose of 80 kGy to obtain a sealing material (O-ring) which is a second crosslinked body (crosslinked rubber molded body) (second crosslinking step). The first cross-linked body exhibited heat melting property, and it was easy to heat melt the molded body and perform molding again. The obtained sealing material exhibited excellent compression set characteristics.
 <実施例2~8>
 表1に示される配合組成に従って、ニーダーにより架橋性ゴム成分、熱可塑性エラストマー及びフッ素樹脂の所定量を230℃で混練した後、これに架橋剤及び共架橋剤の所定量を混練して混練物を得た。得られた混練物を用いて、実施例1と同様に第1架橋工程、成形工程、第2架橋工程を行い、シール材を得た。成形工程におけるシール材形状への押出成形(溶融成形)は容易であった。また、第1架橋体は、熱溶融性を示し、その成形体を熱溶融させ、再度成形を行うことも容易であった。得られたシール材は、優れた圧縮永久歪特性を示した。
<Examples 2 to 8>
According to the composition shown in Table 1, after kneading a predetermined amount of the crosslinkable rubber component, the thermoplastic elastomer and the fluororesin at 230 ° C. with a kneader, the predetermined amount of the crosslinking agent and the co-crosslinking agent is kneaded into the kneaded product. Got. Using the obtained kneaded material, the 1st bridge | crosslinking process, the shaping | molding process, and the 2nd bridge | crosslinking process were performed similarly to Example 1, and the sealing material was obtained. Extrusion molding (melt molding) into a sealing material shape in the molding process was easy. In addition, the first crosslinked body exhibited heat melting property, and it was easy to heat-melt the molded body and perform molding again. The obtained sealing material exhibited excellent compression set characteristics.
 <比較例1>
 表1に示される配合組成に従って、熱可塑性エラストマー、架橋剤及び共架橋剤の所定量を混練した。得られた混練物に対し、230℃、15分の条件でプレス成形を施してシール材(Oリング)形状の成形体を得た後、80kGyの照射量で放射線を照射して、シール材を得た。熱可塑性エラストマーを用いているため、上記混練物は溶融成形可能であり、また、プレス成形後に成形体を熱溶融させ、再度成形を行うことも可能であったが、得られたシール材は圧縮永久歪特性に劣るものであった。
<Comparative Example 1>
According to the composition shown in Table 1, predetermined amounts of thermoplastic elastomer, crosslinking agent and co-crosslinking agent were kneaded. The obtained kneaded product is subjected to press molding at 230 ° C. for 15 minutes to obtain a sealing material (O-ring) shaped molded body, and then irradiated with radiation at an irradiation dose of 80 kGy to obtain a sealing material. Obtained. Since the thermoplastic elastomer is used, the kneaded product can be melt-molded. Also, the molded product can be melted by heat after press molding, and molding can be performed again. It was inferior to the permanent set characteristics.
 <比較例2>
 表1に示される配合組成に従って、熱可塑性エラストマーを230℃で押出成形して、シール材(Oリング)形状の成形体を得た後、80kGyの照射量で放射線を照射してシール材を得た。上記熱可塑性エラストマーは溶融成形可能であり、また、押出成形後に成形体を熱溶融させ、再度成形を行うことも可能であったが、得られたシール材は圧縮永久歪特性に劣るものであった。
<Comparative example 2>
According to the composition shown in Table 1, the thermoplastic elastomer is extruded at 230 ° C. to obtain a molded material having a sealing material (O-ring) shape, and then irradiated with radiation at a dose of 80 kGy to obtain a sealing material. It was. The thermoplastic elastomer can be melt-molded, and it was possible to heat-mold and re-mold the molded body after extrusion molding, but the obtained sealing material was inferior in compression set characteristics. It was.
 <比較例3>
 表1に示される配合組成に従って、オープンロールにより架橋性ゴム成分、架橋剤及び共架橋剤の所定量を混練した。得られた混練物に対し、170℃、15分の条件でプレス成形を施した後、200℃、4時間の条件で熱処理を施してシール材(Oリング)を得た。上記混練物は、押出成形のような溶融成形自体は可能であるものの、スコーチ(熱により架橋が進む現象)発生のため、溶融成形条件が極めて限定される。成形中にスコーチが生じると、1)押出時に表面荒れなどの成形不良が生じる、2)金型や押出機内で架橋が進行した場合には成形品の取出しが困難となり、生産停止を余儀なくされる、3)前記2)の場合において、設備の復旧に多大な労力を要し、場合によっては設備(金型や押出機のスクリュー、シリンダー)に損傷が生じる、などの不具合を生じる。
<Comparative Example 3>
According to the composition shown in Table 1, predetermined amounts of the crosslinkable rubber component, the crosslinking agent, and the co-crosslinking agent were kneaded with an open roll. The obtained kneaded product was subjected to press molding at 170 ° C. for 15 minutes, and then heat treated at 200 ° C. for 4 hours to obtain a sealing material (O-ring). The kneaded product can be melt-molded itself such as extrusion, but the melt-molding conditions are extremely limited due to the occurrence of scorch (a phenomenon in which crosslinking proceeds by heat). When scorching occurs during molding, 1) molding defects such as surface roughness occur during extrusion. 2) When crosslinking proceeds in a mold or an extruder, it becomes difficult to take out the molded product, and production must be stopped. 3) In the case of 2), a great deal of labor is required to restore the equipment, and in some cases, the equipment (mold, extruder screw, cylinder) is damaged.
 本比較例におけるプレス成形後の架橋ゴム成形体(シール材)は、再加熱しても熱溶融せず、これを再利用して再度成形を行うことは不可能なものであった。 The cross-linked rubber molded body (seal material) after press molding in this comparative example did not melt even when reheated, and it was impossible to re-mold by reusing it.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例で用いた各配合剤の詳細は次のとおりである。
〔1〕FKM 1:ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)-テトラフルオロエチレン(TFE)系重合体〔ダイキン工業(株)製「ダイエルG912」〕。
〔2〕FKM 2:テトラフルオロエチレン(TFE)-プロピレン(Pr)系重合体〔旭硝子社製「アフラス150P」。
〔3〕熱可塑性エラストマー:フッ素ゴム部分とフッ素樹脂部分が結合したブロック重合体であるフッ素系熱可塑性エラストマー〔ダイキン工業(株)製「ダイエルサーモプラスチックT-530」〕。
〔4〕PVDF:ポリフッ化ビニリデン〔株式会社クレハ製「クレハKFポリマー #850」〕。
〔5〕ETFE:テトラフルオロエチレン-エチレン共重合体〔ダイキン工業(株)製「ネオフロンEP610」〕。
〔6〕架橋剤:パーヘキサ25B(2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン)〔日油製「パーヘキサ25B」〕。
〔7〕共架橋剤:トリアリルイソシアヌレート〔日本化成社製「TAIC」〕。
The details of each compounding agent used in Examples and Comparative Examples are as follows.
[1] FKM 1: Vinylidene fluoride (VDF) -hexafluoropropylene (HFP) -tetrafluoroethylene (TFE) polymer [“Daiel G912” manufactured by Daikin Industries, Ltd.].
[2] FKM 2: Tetrafluoroethylene (TFE) -propylene (Pr) polymer [Aflas 150P manufactured by Asahi Glass Co., Ltd.
[3] Thermoplastic Elastomer: A fluorinated thermoplastic elastomer that is a block polymer in which a fluororubber part and a fluororesin part are bonded (“Dai-L Thermoplastic T-530” manufactured by Daikin Industries, Ltd.).
[4] PVDF: polyvinylidene fluoride [“Kureha KF Polymer # 850” manufactured by Kureha Corporation].
[5] ETFE: Tetrafluoroethylene-ethylene copolymer ["Neofluon EP610" manufactured by Daikin Industries, Ltd.]
[6] Crosslinker: Perhexa 25B (2,5-dimethyl-2,5-di (t-butylperoxy) hexane) [“Perhexa 25B” manufactured by NOF Corporation].
[7] Co-crosslinking agent: triallyl isocyanurate [“TAIC” manufactured by Nippon Kasei Co., Ltd.].
 比較例3のシール材は、空気雰囲気下で200℃まで加熱しても溶融しないものであり、また、混練物(プレス成形前の材料)には架橋剤及び共架橋剤が十分な量で配合されており、架橋のために十分な熱が加えられていることから、当該混練物は、前述の参照系とみなすことができる。この参照系の加硫曲線(200℃、15分)、及び実施例1~8の第1架橋工程における加硫曲線(200℃、15分)をキュラストメーター(オリエンテック社製)を用いて測定し、参照系における最大トルク値MH0及び各実施例の最大トルク値MHを求めた。表1に、最大トルク値MH0を100%としたときの、最大トルク値MH(%)を示す。 The sealing material of Comparative Example 3 does not melt even when heated to 200 ° C. in an air atmosphere, and the kneaded material (material before press molding) contains a sufficient amount of a crosslinking agent and a co-crosslinking agent. Since sufficient heat is applied for crosslinking, the kneaded product can be regarded as the above-mentioned reference system. The vulcanization curve (200 ° C., 15 minutes) of this reference system and the vulcanization curves (200 ° C., 15 minutes) in the first crosslinking step of Examples 1 to 8 were used with a curast meter (Orientec). The maximum torque value MH 0 in the reference system and the maximum torque value MH of each example were determined. Table 1 shows the maximum torque value MH (%) when the maximum torque value MH 0 is set to 100%.
 また、各実施例、比較例で得られたシール材の圧縮永久歪の測定値を表1に示した。圧縮永久歪は、ゴムシール材の寿命(耐熱性)を評価する最も重要な評価項目である。圧縮永久歪は、次のようにして測定した。 In addition, Table 1 shows measured values of compression set of the sealing materials obtained in each of Examples and Comparative Examples. The compression set is the most important evaluation item for evaluating the life (heat resistance) of the rubber seal material. The compression set was measured as follows.
 JIS K 6262に準拠して、試料(AS214 Oリング)を圧縮率25%で鉄板に挟み込み、200℃×72時間の条件で電気炉で加温後、圧縮解放し、30分間放冷後の試料の圧縮永久歪を下記式:
 圧縮永久歪(%)={(T0-T1)/(T0-T2)}×100%
に基づいて算出した。T0は試験前の試料の高さ、T1は30分間放冷後の試料の高さ、T2はスペーサ-の厚み(高さ)である。
In accordance with JIS K 6262, a sample (AS214 O-ring) is sandwiched between iron plates at a compression rate of 25%, heated in an electric furnace at 200 ° C. for 72 hours, compressed and released, and allowed to cool for 30 minutes. The compression set of the following formula:
Compression set (%) = {(T0−T1) / (T0−T2)} × 100%
Calculated based on T0 is the height of the sample before the test, T1 is the height of the sample after being allowed to cool for 30 minutes, and T2 is the thickness (height) of the spacer.

Claims (7)

  1.  架橋性ゴム成分を含むゴム組成物を部分的に架橋させて、成形可能な第1架橋体を得る第1架橋工程と、
     前記第1架橋体を電離性放射線により架橋させて、第2架橋体を得る第2架橋工程と、
    を含む、架橋ゴム成形体の製造方法。
    A first crosslinking step in which a rubber composition containing a crosslinkable rubber component is partially crosslinked to obtain a moldable first crosslinked body;
    A second crosslinking step of crosslinking the first crosslinked body with ionizing radiation to obtain a second crosslinked body;
    A method for producing a crosslinked rubber molded body, comprising:
  2.  前記第1架橋工程と前記第2架橋工程との間に、前記第1架橋体を成形する成形工程をさらに含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, further comprising a molding step of molding the first crosslinked body between the first crosslinking step and the second crosslinking step.
  3.  前記第1架橋体を押出成形又は射出成形により成形する、請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the first crosslinked body is formed by extrusion molding or injection molding.
  4.  前記第1架橋工程において前記ゴム組成物を熱によって架橋させる、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the rubber composition is crosslinked by heat in the first crosslinking step.
  5.  前記架橋性ゴム成分がフッ素ゴム及びエチレンプロピレンゴムからなる群から選択される少なくとも1種である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the crosslinkable rubber component is at least one selected from the group consisting of fluorine rubber and ethylene propylene rubber.
  6.  前記架橋ゴム成形体がシール材である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the crosslinked rubber molded body is a sealing material.
  7.  前記ゴム組成物が熱可塑性樹脂及び熱可塑性エラストマーからなる群から選択される少なくとも1種をさらに含む、請求項1に記載の製造方法。 The production method according to claim 1, wherein the rubber composition further comprises at least one selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer.
PCT/JP2014/080028 2013-12-27 2014-11-13 Method for manufacturing cross-linked rubber molding WO2015098339A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-272611 2013-12-27
JP2013272611A JP6403246B2 (en) 2013-12-27 2013-12-27 Method for producing crosslinked rubber molding

Publications (1)

Publication Number Publication Date
WO2015098339A1 true WO2015098339A1 (en) 2015-07-02

Family

ID=53478215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080028 WO2015098339A1 (en) 2013-12-27 2014-11-13 Method for manufacturing cross-linked rubber molding

Country Status (3)

Country Link
JP (1) JP6403246B2 (en)
TW (1) TW201529647A (en)
WO (1) WO2015098339A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777590B2 (en) * 2017-05-30 2020-10-28 信越ポリマー株式会社 Manufacturing method of extrusion-molded products, manufacturing raw materials for extrusion molding and molding raw materials for extrusion molding
JP6942218B2 (en) * 2017-11-06 2021-09-29 三菱電線工業株式会社 Sealing material
WO2020235565A1 (en) * 2019-05-20 2020-11-26 ダイキン工業株式会社 Fluorine-containing elastomer composition and article
KR20210046577A (en) * 2019-10-15 2021-04-28 가부시키가이샤 메이와 Foam rubber packing manufacturing method, leather packing manufacturing method, foam rubber packing, and leather packing
JP2020128544A (en) * 2020-04-27 2020-08-27 三菱電線工業株式会社 Sealant

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283432A (en) * 1989-04-25 1990-11-20 Hitachi Cable Ltd Thermally shrinkable tube
JPH07205285A (en) * 1994-01-07 1995-08-08 Hitachi Cable Ltd Heat shrinkable tube and production thereof
JPH0931285A (en) * 1995-07-19 1997-02-04 Hitachi Cable Ltd Thermoshrinkable tube and composition therefor
JPH09268245A (en) * 1996-03-29 1997-10-14 Nichias Corp Fluororesin composition, its production and molded product therefrom
JP2003129037A (en) * 2001-10-25 2003-05-08 Nippon Valqua Ind Ltd Thermoplastic elastomer composition for water sliding seal and its use
WO2005047375A1 (en) * 2003-11-17 2005-05-26 Jsr Corporation Molded article of thermoplastic elastomer composition and process for producing the same
JP2008007671A (en) * 2006-06-30 2008-01-17 Sumitomo Electric Fine Polymer Inc Packing, and sealed type battery using the same
JP2008063359A (en) * 2006-09-04 2008-03-21 Nippon Valqua Ind Ltd Sealing material for water sliding, method for producing the same and method for improving hypochlorous acid resistance thereof
WO2009066553A1 (en) * 2007-11-20 2009-05-28 Asahi Glass Company, Limited Crosslinkable fluorine-containing elastomer excellent in crosslinkability, and method for producing the same
JP2009138158A (en) * 2007-12-10 2009-06-25 Daikin Ind Ltd Fluorine containing shaped article and method for manufacturing the same
JP2013056979A (en) * 2011-09-07 2013-03-28 Daikin Industries Ltd Crosslinkable fluororubber composition and fluororubber-molded product
JP2013159661A (en) * 2012-02-02 2013-08-19 Sumitomo Electric Fine Polymer Inc Method for producing optical lens

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030022329A (en) * 2001-05-30 2003-03-15 다이세루 데구사 가부시끼가이샤 Composite Dispersion and Process for Production Thereof
JP2003206379A (en) * 2002-01-15 2003-07-22 Nichias Corp Fluororubber crosslinked molded product and its production method
JP5338094B2 (en) * 2008-03-13 2013-11-13 ダイキン工業株式会社 Flexible heat-resistant coated wire
WO2010029899A1 (en) * 2008-09-09 2010-03-18 ダイキン工業株式会社 Method for producing fluorine rubber crosslinked molded body
JP2013189655A (en) * 2013-07-04 2013-09-26 Asahi Glass Co Ltd Crosslinked rubber article
CN105849180B (en) * 2013-12-27 2018-09-21 日本华尔卡工业株式会社 Fluoro-rubber composite and crosslinking rubber-moulding body and its manufacturing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283432A (en) * 1989-04-25 1990-11-20 Hitachi Cable Ltd Thermally shrinkable tube
JPH07205285A (en) * 1994-01-07 1995-08-08 Hitachi Cable Ltd Heat shrinkable tube and production thereof
JPH0931285A (en) * 1995-07-19 1997-02-04 Hitachi Cable Ltd Thermoshrinkable tube and composition therefor
JPH09268245A (en) * 1996-03-29 1997-10-14 Nichias Corp Fluororesin composition, its production and molded product therefrom
JP2003129037A (en) * 2001-10-25 2003-05-08 Nippon Valqua Ind Ltd Thermoplastic elastomer composition for water sliding seal and its use
WO2005047375A1 (en) * 2003-11-17 2005-05-26 Jsr Corporation Molded article of thermoplastic elastomer composition and process for producing the same
JP2008007671A (en) * 2006-06-30 2008-01-17 Sumitomo Electric Fine Polymer Inc Packing, and sealed type battery using the same
JP2008063359A (en) * 2006-09-04 2008-03-21 Nippon Valqua Ind Ltd Sealing material for water sliding, method for producing the same and method for improving hypochlorous acid resistance thereof
WO2009066553A1 (en) * 2007-11-20 2009-05-28 Asahi Glass Company, Limited Crosslinkable fluorine-containing elastomer excellent in crosslinkability, and method for producing the same
JP2009138158A (en) * 2007-12-10 2009-06-25 Daikin Ind Ltd Fluorine containing shaped article and method for manufacturing the same
JP2013056979A (en) * 2011-09-07 2013-03-28 Daikin Industries Ltd Crosslinkable fluororubber composition and fluororubber-molded product
JP2013159661A (en) * 2012-02-02 2013-08-19 Sumitomo Electric Fine Polymer Inc Method for producing optical lens

Also Published As

Publication number Publication date
TW201529647A (en) 2015-08-01
JP6403246B2 (en) 2018-10-10
JP2015127358A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
JP6134391B2 (en) Seal material and manufacturing method thereof
JP6403246B2 (en) Method for producing crosslinked rubber molding
KR102414274B1 (en) Thermoplastic fluorine resin composition and method for producing cross-linked body
JP6618507B2 (en) Perfluoroelastomer composition and sealing material
TWI735769B (en) Laminated body, its manufacturing method, and gate seal
JP6618506B2 (en) Perfluoroelastomer composition and sealing material
JP4381087B2 (en) Method for producing fluoro rubber sealant
JP2019172897A (en) Uncrosslinked rubber composition and rubber product produced using the same and method for producing the same
JP7155286B2 (en) Elastomer composition and sealing material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873650

Country of ref document: EP

Kind code of ref document: A1