WO2015097879A1 - Linear motion device - Google Patents

Linear motion device Download PDF

Info

Publication number
WO2015097879A1
WO2015097879A1 PCT/JP2013/085157 JP2013085157W WO2015097879A1 WO 2015097879 A1 WO2015097879 A1 WO 2015097879A1 JP 2013085157 W JP2013085157 W JP 2013085157W WO 2015097879 A1 WO2015097879 A1 WO 2015097879A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
linear motion
cooling
control
abnormality
Prior art date
Application number
PCT/JP2013/085157
Other languages
French (fr)
Japanese (ja)
Inventor
田中 克明
正明 菅野
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2015554458A priority Critical patent/JP6302488B2/en
Priority to PCT/JP2013/085157 priority patent/WO2015097879A1/en
Publication of WO2015097879A1 publication Critical patent/WO2015097879A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive

Definitions

  • the technology disclosed herein relates to a linear motion device having a linear motor, and more particularly to a linear motion device in which a plurality of cooling means are provided on a mover of the linear motor.
  • Linear motion devices having linear motors are widely used in production devices such as electronic component mounting machines (also called chip mounters) and other devices.
  • a plurality of cooling fans (or other cooling means) are provided on the mover of the linear motor.
  • the plurality of cooling fans mainly cool the electromagnetic coils provided in the mover.
  • the electromagnetic coil may overheat and burn out.
  • One measure for preventing this is to immediately stop the operation of the linear motion device when an abnormality occurs in the cooling fan.
  • the production apparatus may stop in the middle of a series of production operations. In this case, there arises a problem that a semi-finished product that is in the middle of production is wasted or subsequent recovery work becomes troublesome.
  • Japanese Patent Application Laid-Open No. 2002-16387 describes a cooling device used for an electronic component mounting machine.
  • This cooling device has a plurality of cooling fans, and is configured to increase the rotation speed of other cooling fans when an abnormality occurs in one cooling fan.
  • Such a cooling device can also be employed in a linear motion device, whereby it is considered that the operation of the linear motion device can be continued even when a failure occurs in the cooling fan.
  • This specification discloses a novel and useful linear motion apparatus in order to provide a technique for solving or at least reducing the above-described problems.
  • a control index used for controlling the mover is movable. Change so that the calorific value of the child is reduced. Thereby, even when an abnormality occurs in some or all of the plurality of cooling units, the operation of the mover can be continued while suppressing overheating of the mover.
  • typical examples of the control index of the mover include the maximum acceleration, maximum deceleration, and maximum speed of the mover of the mover.
  • This linear motion device detects whether each of a linear motor having a stator and a mover, a plurality of cooling means provided on the mover of the linear motor, and a plurality of cooling devices is normal.
  • the control means changes the control index when the detection means detects an abnormality of at least one cooling means.
  • the control index is preferably changed so that the amount of heat generated in the mover is reduced.
  • the maximum acceleration, the maximum deceleration, and the maximum speed of the mover is changed to be small as the control index.
  • the amount of heat generated by the mover increases in accordance with the maximum acceleration, maximum deceleration, and maximum speed of the mover. Therefore, when an abnormality occurs in one or more cooling means, the overheating of the mover is effectively reduced by reducing at least one (preferably all) of the maximum acceleration, maximum deceleration and maximum speed. Can be prevented.
  • FIG. 1 is a plan view schematically showing a linear motion device according to an embodiment.
  • FIG. 2 is an elevational view schematically showing the linear motion device of the embodiment.
  • FIG. 3 is a block diagram illustrating an electrical configuration of the linear motion device according to the embodiment.
  • FIG. 4 shows an example of the control index stored in the memory of the servo controller.
  • FIG. 5 shows an example of the reference data stored in the memory of the servo controller.
  • the control unit changes the control index of the mover when the detection unit detects an abnormality in the first predetermined number or more of the cooling units.
  • the first predetermined number may be 1, 2, or more, and may be determined according to the cooling capacity of each cooling means, for example.
  • control unit stops the operation of the mover when the detection unit detects an abnormality with respect to the second predetermined number or more of cooling units larger than the first predetermined number.
  • the control unit stops the operation of the mover when the detection unit detects an abnormality with respect to the second predetermined number or more of cooling units larger than the first predetermined number.
  • the control unit may change the control index of the mover when the detection unit detects an abnormality with respect to one or more specific cooling devices.
  • a configuration is effective when a plurality of cooling means have different cooling capacities.
  • a plurality of cooling means includes a main cooling means having a relatively large cooling capacity and a secondary cooling means having a relatively small cooling capacity, if the main cooling means has an abnormality, the plurality of cooling means The overall cooling capacity by means is greatly reduced. In such a case, it is preferable that the control means changes the control index in order to prevent the mover from being overheated.
  • the control unit includes a storage unit that stores reference data that describes whether or not the control index needs to be changed for each combination of normality and abnormality of the plurality of cooling units.
  • the control means preferably changes the control index of the mover based on the detection result by the detection means and the reference data stored in the storage means. According to such a configuration, it is possible to appropriately change the control index of the mover in accordance with the state of abnormality occurring in the plurality of cooling means.
  • the linear motion device further includes display means.
  • the display means preferably displays the cooling means in which an abnormality has occurred based on the detection result by the detection means.
  • the display means preferably displays that when the control means changes the control index.
  • each of the plurality of cooling means is preferably a blower having a cooling fan.
  • the cooling means is not limited to the blower, and for example, cooling water may be circulated.
  • the detection unit detects the number of rotations of the cooling fan per unit time (in other words, the rotation speed or the rotation frequency, hereinafter simply referred to as the number of rotations) for each of the plurality of cooling units. It is preferable to have a sensor. According to such a configuration, the detection means can determine whether or not the cooling means is abnormal based on the rotational speed detected by the sensor.
  • the linear motion device 10 according to the embodiment will be described with reference to the drawings.
  • the linear motion device 10 of the present embodiment can be employed as an actuator in a production device such as an electronic component mounting machine (also referred to as a chip mounter) or other devices.
  • a production device such as an electronic component mounting machine (also referred to as a chip mounter) or other devices.
  • the linear motion device 10 includes a linear motor 12 having a stator 20 and a mover 30, and is a linear motion device driven by the linear motor 12.
  • the stator 20 of the linear motor 12 extends linearly along the moving path of the mover 30.
  • the stator 20 is provided with a plurality of permanent magnets 22.
  • the plurality of permanent magnets 22 are arranged in series along the longitudinal direction of the stator 20.
  • the stator 20 may be curved along the longitudinal direction.
  • the mover 30 of the linear motor 12 is supported so as to be movable along the longitudinal direction of the stator 20.
  • the mover 30 is provided with an electromagnetic coil 32, a temperature sensor 34, and a position sensor 36.
  • An alternating current is applied to the electromagnetic coil 32, whereby the mover 30 moves along the stator 20.
  • the temperature sensor 34 detects the temperature of the electromagnetic coil 32.
  • the temperature sensor 34 in a present Example is not specifically limited, It is a thermistor. Since the electromagnetic coil 32 generates heat when energized, the temperature of the electromagnetic coil 32 is monitored by the temperature sensor 34 in order to prevent the electromagnetic coil 32 from overheating.
  • the position sensor 36 detects the position of the mover 30 with respect to the stator 20.
  • the position sensor 36 in the present embodiment is not particularly limited, but is a linear scale.
  • the linear motion device 10 includes a plurality of cooling devices 41 to 44.
  • the plurality of cooling devices 41 to 44 are provided in the mover 30 and cool the mover 30 (in particular, the electromagnetic coil 32).
  • the number of the plurality of cooling devices 41 to 44 is not particularly limited.
  • this embodiment includes four cooling devices 41 to 44 including a first cooling device 41, a second cooling device 42, a third cooling device 43, and a fourth cooling device 44.
  • Each of the cooling devices 41 to 44 is a blower having a cooling fan 40.
  • the 1st and 2nd cooling devices 41 and 42 ventilate from the inside of mover 30 to the outside
  • the 3rd and 4th cooling devices 43 and 44 ventilate from the outside of mover 30 to the inside. .
  • the first to fourth cooling devices 41 to 44 are provided with first to fourth abnormality sensors 51 to 54 (see FIG. 3).
  • the first abnormality sensor 51 is a sensor for detecting whether or not the first blower 41 is normal.
  • the second to fourth abnormality sensors 52 to 54 are sensors for detecting whether or not the second to fourth cooling devices 42 to 44 are normal.
  • the specific configuration of the abnormality sensors 51 to 54 is not particularly limited.
  • the abnormality sensors 51 to 54 in the present embodiment are rotation speed sensors that detect the rotation speed of the cooling fan 40.
  • the linear motion device 10 includes a control unit 60.
  • the control unit 60 controls the operation of the linear motion device 10.
  • the control unit 60 is electrically connected to the mover 30 of the linear motor 12 via the electric cable 70.
  • the control unit 60 includes a servo controller 62 and a servo amplifier 66.
  • the servo controller 62 and the servo amplifier 66 are an example of a control unit that controls the operation of the mover 30.
  • the servo amplifier 66 is connected to the position sensor 36.
  • the servo controller 62 calculates the target movement of the mover 30 based on a command from the outside and teaches it to the servo amplifier 66.
  • the servo amplifier 66 controls the mover 30 based on the target movement of the mover 30 taught from the servo controller 62 and the position of the mover 30 detected by the position sensor 36.
  • the servo amplifier 66 controls the magnitude and direction of the current supplied to the electromagnetic coil 32 based on the deviation between the target motion of the mover 30 and the actual motion.
  • the servo controller 62 has a memory 64.
  • the memory 64 stores various data used for controlling the mover 30.
  • the memory 64 stores a control index for the mover 30.
  • the control index of the mover 30 is an index used in the control of the mover 30, for example, the maximum acceleration, the maximum speed, and the maximum deceleration of the mover 30.
  • the servo controller 62 and the servo amplifier 66 control the operation of the mover 30 according to the control index stored in the memory 64.
  • the acceleration, speed, and deceleration when the mover 30 moves are limited to each maximum value or less stored in the memory 64, and thereby, for example, overheating of the mover 30 (particularly, the electromagnetic coil 32) is prevented. Is prevented.
  • the memory 64 stores a plurality of sets of control indexes including a set of control indexes for the normal mode and a set of control indexes for the heat control mode.
  • the control unit 60 includes an abnormality detection unit 68.
  • the abnormality detection unit 68 is connected to the first to fourth abnormality sensors 51 to 54, and based on the output signals from the first to fourth abnormality sensors 51 to 54, the first to fourth cooling devices 41 to 44 are connected. Whether or not is normal is detected.
  • the output signals of the first to fourth abnormality sensors 51 to 54 indicate the rotation speeds of the cooling fans 40 in the first to fourth cooling devices 41 to 44, respectively.
  • the abnormality detection unit 68 determines that an abnormality has occurred in the first to fourth cooling devices 41 to 44 when the rotational speed indicated by the output signals of the first to fourth abnormality sensors 51 to 54 has decreased below a predetermined value. to decide.
  • the abnormality detection unit 68 is connected to the servo controller 62, and the determination result by the abnormality detection unit 68 is taught to the servo controller 62.
  • the servo controller 62 shifts from the normal mode to the heat control mode and switches the control index to be used when an abnormality occurs in one of the first to fourth cooling devices 41 to 44.
  • FIG. 4 shows an example of a control index for the normal mode (maximum acceleration, maximum speed, and maximum deceleration) and a control index for the heat control mode. As shown in FIG. 4, the maximum acceleration A2 for the heat control mode is smaller than the maximum acceleration A1 for the normal mode. Similarly, the maximum speed V2 and the maximum deceleration D2 for the heat control mode are smaller than the maximum speed V1 and the maximum deceleration D1 for the normal mode, respectively.
  • the heat generation of the mover 30 can be suppressed compared to the control in the normal mode.
  • the linear motion device 10 can continue its operation while preventing the mover 30 from being overheated.
  • not all of the maximum acceleration, the maximum speed, and the maximum deceleration, but at least one of them may be changed.
  • the servo controller 62 immediately stops the operation of the mover 30 when abnormality occurs in two or more of the first to fourth cooling devices 41 to 44.
  • the cooling capacity is insufficient with only the remaining cooling devices 41 to 44 even in the heat control mode.
  • the abnormality detection unit 68 is also connected to the temperature sensor 34, and determines that the temperature of the mover 30 is abnormal when the temperature detected by the temperature sensor 34 exceeds a predetermined value. This determination result is also taught to the servo controller 62. The servo controller 62 immediately stops the operation of the mover 30 even when the temperature of the mover 30 is abnormal.
  • the control unit 60 includes a display unit 69.
  • the display unit 69 is not particularly limited, the display unit 69 includes a liquid crystal display panel.
  • the display unit 69 is connected to the abnormality detection unit 68 and displays the cooling devices 41 to 44 in which an abnormality has occurred. As a result, the operator can easily repair or replace the cooling devices 41 to 44 in which an abnormality has occurred.
  • the display unit 69 is also connected to the servo controller 62. When the servo controller 62 shifts from the normal mode to the heat control mode (that is, when the control index is changed), the display unit 69 displays that effect. Thereby, the worker can quickly recognize that the operation of the linear motion device 10 is restricted.
  • the linear motion device 10 shifts to the heat control mode in which the heat generation amount of the mover 30 is small when an abnormality occurs in a part of the plurality of cooling devices 41 to 44.
  • the operation of the mover 30 can be continued.
  • the linear motion device 10 of this embodiment ensures that the mover 30 is overheated by immediately stopping the operation of the mover 30 when an abnormality occurs in many of the cooling devices 41 to 44. Can be prevented.
  • the normal mode when the servo controller 62 detects an abnormality in the first predetermined number or more of the cooling devices 41 to 44, the normal mode may be shifted to the heat control mode. Similarly, the operation of the mover 30 may be stopped when the servo controller 62 detects an abnormality with respect to the second predetermined number or more of the cooling devices 41 to 44 larger than the first predetermined number.
  • the first predetermined number is not limited to one and may be two or more.
  • the second predetermined number is not limited to two and may be three or more.
  • the memory 64 of the servo controller 62 may store reference data as shown in FIG.
  • the reference data shown in FIG. 5 describes whether or not the control mode needs to be changed (that is, whether or not the control index needs to be changed) for each combination of normality and abnormality of the plurality of cooling devices 41 to 44.
  • the servo controller 62 may perform a transition from the normal mode to the heat control mode (that is, change of the control index) based on the determination result by the abnormality detection unit 68 and the reference data. According to such a configuration, the servo controller 62 shifts from the normal mode to the heat control mode (ie, the control index) when the abnormality detection unit 68 detects an abnormality in the specific one or more cooling devices 41 to 44. Change).
  • linear motion device 12 linear motor 20: stator 22: permanent magnet 30: mover 32: electromagnetic coil 34: temperature sensor 36: position sensor 40: cooling fans 41 to 44: first to fourth cooling devices 51 to 54: first to fourth abnormality sensors 60: control unit 62: servo controller 64: memory 66: servo amplifier 68: abnormality detection unit 69: display unit 70: electric cable

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)

Abstract

A linear motion device is provided with: a linear motor having a stator and a mover; cooling means provided to the mover of the linear motor; a detection means for detecting whether each of the cooling means is normal or not; and a control means for controlling the operation of the mover of the linear motor according to a predetermined control index. The control means is configured so as to change the control index when the detection means detects the abnormality of at least one of the cooling means.

Description

直動装置Linear motion device
 ここで開示する技術は、リニアモータを有する直動装置に関し、特に、リニアモータの可動子に複数の冷却手段が設けられた直動装置に関する。 The technology disclosed herein relates to a linear motion device having a linear motor, and more particularly to a linear motion device in which a plurality of cooling means are provided on a mover of the linear motor.
 リニアモータを有する直動装置が、電子部品装着機(チップマウンタとも称される)といった生産装置や、その他の装置に広く採用されている。この種の直動装置では、リニアモータの可動子に、複数の冷却ファン(又は他の冷却手段)が設けられている。複数の冷却ファンは、主に、可動子に設けられた電磁コイルを冷却する。 Linear motion devices having linear motors are widely used in production devices such as electronic component mounting machines (also called chip mounters) and other devices. In this type of linear motion device, a plurality of cooling fans (or other cooling means) are provided on the mover of the linear motor. The plurality of cooling fans mainly cool the electromagnetic coils provided in the mover.
 上記した直動装置において、冷却ファンが故障すると、電磁コイルが過熱して焼損するおそれがある。それを防止する一つの方策として、冷却ファンに異常が生じたときは、直動装置の動作を直ちに中止することが考えられる。しかしながら、例えば電子部品装着機といった生産装置において、直動装置の動作を直ちに中止してしまうと、生産装置が一連の生産動作の途中で停止することがある。この場合、生産途中であった半製品が無駄になったり、その後の復旧作業が面倒になるといった問題が生じる。 In the linear motion device described above, if the cooling fan fails, the electromagnetic coil may overheat and burn out. One measure for preventing this is to immediately stop the operation of the linear motion device when an abnormality occurs in the cooling fan. However, in a production apparatus such as an electronic component mounting machine, if the operation of the linear motion apparatus is stopped immediately, the production apparatus may stop in the middle of a series of production operations. In this case, there arises a problem that a semi-finished product that is in the middle of production is wasted or subsequent recovery work becomes troublesome.
 上記の問題に関連して、特開2002-16387号公報には、電子部品装着機に用いられる冷却装置が記載されている。この冷却装置は、複数の冷却ファンを有しており、一つの冷却ファンに異常が生じた時に、他の冷却ファンの回転速度を高めるように構成されている。このような冷却装置は、直動装置においても採用することができ、それによって、冷却ファンに故障が生じたときでも、直動装置の動作を継続できると考えられる。 In relation to the above problem, Japanese Patent Application Laid-Open No. 2002-16387 describes a cooling device used for an electronic component mounting machine. This cooling device has a plurality of cooling fans, and is configured to increase the rotation speed of other cooling fans when an abnormality occurs in one cooling fan. Such a cooling device can also be employed in a linear motion device, whereby it is considered that the operation of the linear motion device can be continued even when a failure occurs in the cooling fan.
 しかしながら、直動装置の多くは、本来的に、冷却ファンの回転速度を制御する手段を有していない。そのため、特開2002-16387号公報に記載された技術を採用するためには、冷却ファンの回転速度を制御するための構成を新たに設ける必要があり、例えば、直動装置の生産コストを増大させるといった新たな問題が生じる。 However, many linear motion devices do not inherently have a means for controlling the rotational speed of the cooling fan. For this reason, in order to employ the technique described in Japanese Patent Laid-Open No. 2002-16387, it is necessary to newly provide a configuration for controlling the rotational speed of the cooling fan, which increases the production cost of the linear motion device, for example. A new problem arises.
 本明細書は、上記した問題を解決又は少なくとも低減する技術を提供するために、新規で有用な直動装置を開示する。 This specification discloses a novel and useful linear motion apparatus in order to provide a technique for solving or at least reducing the above-described problems.
 本明細書で開示する技術では、複数の冷却手段の各々が正常であるのか否かを監視し、少なくとも一つの冷却手段に異常が生じたときは、可動子の制御に用いる制御指標を、可動子の発熱量が減少するように変更する。それにより、複数の冷却手段の一部又は全部に異常が生じたときでも、可動子の過熱を抑制しながら、可動子の動作を継続することができる。ここで、可動子の制御指標の典型例としては、例えば、可動子の可動子の最大加速度、最大減速度及び最高速度が挙げられる。 In the technology disclosed in this specification, whether or not each of the plurality of cooling means is normal is monitored, and when an abnormality occurs in at least one cooling means, a control index used for controlling the mover is movable. Change so that the calorific value of the child is reduced. Thereby, even when an abnormality occurs in some or all of the plurality of cooling units, the operation of the mover can be continued while suppressing overheating of the mover. Here, typical examples of the control index of the mover include the maximum acceleration, maximum deceleration, and maximum speed of the mover of the mover.
 上記した本技術に基づいて、新規で有用な直動装置が開示される。この直動装置は、固定子及び可動子を有するリニアモータと、リニアモータの可動子に設けられた複数の冷却手段と、複数の冷却装置のそれぞれについて、正常であるのか否かを検出する検出手段と、リニアモータの可動子の動作を所定の制御指標に応じて制御する制御手段とを備える。この制御手段は、検出手段が少なくとも一つの冷却手段の異常を検出したときに、前記制御指標を変更する。この場合、当該制御指標は、可動子における発熱量が減少するように、変更されることが好ましい。 Based on this technology described above, a new and useful linear motion device is disclosed. This linear motion device detects whether each of a linear motor having a stator and a mover, a plurality of cooling means provided on the mover of the linear motor, and a plurality of cooling devices is normal. Means and control means for controlling the operation of the mover of the linear motor in accordance with a predetermined control index. The control means changes the control index when the detection means detects an abnormality of at least one cooling means. In this case, the control index is preferably changed so that the amount of heat generated in the mover is reduced.
 本技術の一実施形態では、前記制御指標として、可動子の最大加速度、最大減速度及び最高速度のなかの少なくとも一つを、小さくなるように変更することが好ましい。リニアモータでは、可動子の最大加速度、最大減速度及び最高速度の大きさに応じて、可動子における発熱量(特に、電磁コイルによる発熱量)は増大する。そのことから、一又は複数の冷却手段に異常が生じたときは、最大加速度、最大減速度及び最高速度のなかの少なくとも一つ(好ましくは全部)を小さくすることによって、可動子の過熱を効果的に防止することができる。 In one embodiment of the present technology, it is preferable that at least one of the maximum acceleration, the maximum deceleration, and the maximum speed of the mover is changed to be small as the control index. In the linear motor, the amount of heat generated by the mover (particularly, the amount of heat generated by the electromagnetic coil) increases in accordance with the maximum acceleration, maximum deceleration, and maximum speed of the mover. Therefore, when an abnormality occurs in one or more cooling means, the overheating of the mover is effectively reduced by reducing at least one (preferably all) of the maximum acceleration, maximum deceleration and maximum speed. Can be prevented.
図1は、実施例の直動装置を模式的に示す平面図である。FIG. 1 is a plan view schematically showing a linear motion device according to an embodiment. 図2は、実施例の直動装置を模式的に示す立面図である。FIG. 2 is an elevational view schematically showing the linear motion device of the embodiment. 図3は、実施例の直動装置の電気的な構成を示すブロック図である。FIG. 3 is a block diagram illustrating an electrical configuration of the linear motion device according to the embodiment. 図4は、サーボコントローラのメモリに記憶された制御指標の一例を示す。FIG. 4 shows an example of the control index stored in the memory of the servo controller. 図5は、サーボコントローラのメモリに記憶された基準データの一例を示す。FIG. 5 shows an example of the reference data stored in the memory of the servo controller.
 本技術の一実施形態において、制御手段は、検出手段が第1所定数以上の冷却手段について異常を検出したときに、可動子の制御指標を変更することが好ましい。ここで、第1所定数は、1、2、又はそれ以上の数であってもよく、例えば、各々の冷却手段の冷却能力に応じて定めるとよい。 In one embodiment of the present technology, it is preferable that the control unit changes the control index of the mover when the detection unit detects an abnormality in the first predetermined number or more of the cooling units. Here, the first predetermined number may be 1, 2, or more, and may be determined according to the cooling capacity of each cooling means, for example.
 本技術の一実施形態において、制御手段は、検出手段が前記第1所定数よりも大きい第2所定数以上の冷却手段について異常を検出したときに、前記可動子の動作を中止することが好ましい。このような構成によると、多くの冷却手段に異常が生じて、可動子の冷却能力が大幅に低下したときは、可動子の動作を中止することによって、可動子の過熱を確実に避けることができる。 In one embodiment of the present technology, it is preferable that the control unit stops the operation of the mover when the detection unit detects an abnormality with respect to the second predetermined number or more of cooling units larger than the first predetermined number. . According to such a configuration, when abnormalities occur in many cooling means and the cooling capacity of the mover is greatly reduced, it is possible to reliably avoid overheating of the mover by stopping the operation of the mover. it can.
 本技術の一実施形態において、制御手段は、検出手段が特定の一又は複数の冷却装置について異常を検出したときに、可動子の制御指標を変更してもよい。このような構成は、複数の冷却手段が異なる冷却能力を有する場合に有効である。例えば、複数の冷却手段が、冷却能力が比較的に大きい主たる冷却手段と、冷却能力が比較的に小さい従たる冷却手段を含む場合に、主たる冷却手段に異常が生じたときは、複数の冷却手段による全体の冷却能力が大幅に減少する。このような場合に、制御手段は、可動子の過熱を防止するために、制御指標を変更することが好ましい。 In one embodiment of the present technology, the control unit may change the control index of the mover when the detection unit detects an abnormality with respect to one or more specific cooling devices. Such a configuration is effective when a plurality of cooling means have different cooling capacities. For example, when a plurality of cooling means includes a main cooling means having a relatively large cooling capacity and a secondary cooling means having a relatively small cooling capacity, if the main cooling means has an abnormality, the plurality of cooling means The overall cooling capacity by means is greatly reduced. In such a case, it is preferable that the control means changes the control index in order to prevent the mover from being overheated.
 本技術の一実施形態において、制御手段は、前記複数の冷却手段の正常と異常の組み合わせ毎に、制御指標の変更の要否を記述する基準データを記憶する記憶手段を有することが好ましい。この場合、制御手段は、検出手段による検出結果と、記憶手段に記憶された基準データに基づいて、可動子の制御指標を変更することが好ましい。このような構成によると、複数の冷却手段に生じた異常の態様に応じて、可動子の制御指標を適切に変更することができる。 In one embodiment of the present technology, it is preferable that the control unit includes a storage unit that stores reference data that describes whether or not the control index needs to be changed for each combination of normality and abnormality of the plurality of cooling units. In this case, the control means preferably changes the control index of the mover based on the detection result by the detection means and the reference data stored in the storage means. According to such a configuration, it is possible to appropriately change the control index of the mover in accordance with the state of abnormality occurring in the plurality of cooling means.
 本技術の一実施形態において、直動装置は、表示手段をさらに備えることが好ましい。この場合、表示手段は、検出手段による検出結果に基づいて、異常が生じた冷却手段を表示することが好ましい。あるいは、表示手段は、制御手段が制御指標を変更したときに、その旨を表示することが好ましい。 In one embodiment of the present technology, it is preferable that the linear motion device further includes display means. In this case, the display means preferably displays the cooling means in which an abnormality has occurred based on the detection result by the detection means. Alternatively, the display means preferably displays that when the control means changes the control index.
 本技術の一実施形態において、複数の冷却手段の各々は、冷却ファンを有する送風機であることが好ましい。但し、冷却手段は、送風機に限定されず、例えば、冷却水を循環させるものであってもよい。 In one embodiment of the present technology, each of the plurality of cooling means is preferably a blower having a cooling fan. However, the cooling means is not limited to the blower, and for example, cooling water may be circulated.
 上記した実施形態では、検出手段が、複数の冷却手段のそれぞれについて、冷却ファンの単位時間あたりの回転数(言い換えると、回転速度又は回転周波数である。以下では、単に回転数という)を検出するセンサを有することが好ましい。このような構成によると、検出手段は、センサによって検出した回転数に基づいて、冷却手段が異常であるのか否かを決定することができる。 In the above-described embodiment, the detection unit detects the number of rotations of the cooling fan per unit time (in other words, the rotation speed or the rotation frequency, hereinafter simply referred to as the number of rotations) for each of the plurality of cooling units. It is preferable to have a sensor. According to such a configuration, the detection means can determine whether or not the cooling means is abnormal based on the rotational speed detected by the sensor.
 図面を参照して、実施例の直動装置10について説明する。本実施例の直動装置10は、電子部品装着機(チップマウンタとも称される)といった生産装置や、その他の装置において、アクチュエータとして採用することができる。図1、図2に示すように、直動装置10は、固定子20及び可動子30を有するリニアモータ12を備えており、リニアモータ12によって駆動される直動装置である。 The linear motion device 10 according to the embodiment will be described with reference to the drawings. The linear motion device 10 of the present embodiment can be employed as an actuator in a production device such as an electronic component mounting machine (also referred to as a chip mounter) or other devices. As shown in FIGS. 1 and 2, the linear motion device 10 includes a linear motor 12 having a stator 20 and a mover 30, and is a linear motion device driven by the linear motor 12.
 リニアモータ12の固定子20は、可動子30の移動経路に沿って、直線状に伸びている。固定子20には、複数の永久磁石22が設けられている。複数の永久磁石22は、固定子20の長手方向に沿って、一連に配置されている。なお、固定子20は、長手方向に沿って湾曲するものであってもよい。 The stator 20 of the linear motor 12 extends linearly along the moving path of the mover 30. The stator 20 is provided with a plurality of permanent magnets 22. The plurality of permanent magnets 22 are arranged in series along the longitudinal direction of the stator 20. The stator 20 may be curved along the longitudinal direction.
 リニアモータ12の可動子30は、固定子20の長手方向に沿って、移動可能に支持されている。可動子30には、電磁コイル32と、温度センサ34と、位置センサ36が設けられている。電磁コイル32には交流電流が通電され、それにより、可動子30が固定子20に沿って移動する。温度センサ34は、電磁コイル32の温度を検出する。本実施例における温度センサ34は、特に限定されないが、サーミスタである。電磁コイル32は、通電することによって発熱するので、電磁コイル32の過熱を防止するために、温度センサ34によって電磁コイル32の温度が監視される。位置センサ36は、固定子20に対する可動子30の位置を検出する。本実施例における位置センサ36は、特に限定されないが、リニアスケールである。 The mover 30 of the linear motor 12 is supported so as to be movable along the longitudinal direction of the stator 20. The mover 30 is provided with an electromagnetic coil 32, a temperature sensor 34, and a position sensor 36. An alternating current is applied to the electromagnetic coil 32, whereby the mover 30 moves along the stator 20. The temperature sensor 34 detects the temperature of the electromagnetic coil 32. Although the temperature sensor 34 in a present Example is not specifically limited, It is a thermistor. Since the electromagnetic coil 32 generates heat when energized, the temperature of the electromagnetic coil 32 is monitored by the temperature sensor 34 in order to prevent the electromagnetic coil 32 from overheating. The position sensor 36 detects the position of the mover 30 with respect to the stator 20. The position sensor 36 in the present embodiment is not particularly limited, but is a linear scale.
 直動装置10は、複数の冷却装置41~44を備えている。複数の冷却装置41~44は、可動子30に設けられており、可動子30(特に、電磁コイル32)を冷却する。複数の冷却装置41~44の数は特に限定されない。一例ではあるが、本実施例は、第1冷却装置41と、第2冷却装置42と、第3冷却装置43と、第4冷却装置44とを含む4つの冷却装置41~44を備えている。各々の冷却装置41~44は、冷却ファン40を有する送風機である。一例ではあるが、第1及び第2冷却装置41、42は、可動子30の内部から外部へ送風し、第3及び第4冷却装置43、44は、可動子30の外部から内部へ送風する。 The linear motion device 10 includes a plurality of cooling devices 41 to 44. The plurality of cooling devices 41 to 44 are provided in the mover 30 and cool the mover 30 (in particular, the electromagnetic coil 32). The number of the plurality of cooling devices 41 to 44 is not particularly limited. As an example, this embodiment includes four cooling devices 41 to 44 including a first cooling device 41, a second cooling device 42, a third cooling device 43, and a fourth cooling device 44. . Each of the cooling devices 41 to 44 is a blower having a cooling fan 40. Although it is an example, the 1st and 2nd cooling devices 41 and 42 ventilate from the inside of mover 30 to the outside, and the 3rd and 4th cooling devices 43 and 44 ventilate from the outside of mover 30 to the inside. .
 図1、図2では図示されないが、第1~第4冷却装置41~44には、第1~第4異常センサ51~54が設けられている(図3参照)。第1異常センサ51は、第1送風機41が正常であるのか否かを検出するためのセンサである。同様に、第2~第4異常センサ52~54は、第2~第4冷却装置42~44が正常であるのか否かを検出するためのセンサである。異常センサ51~54の具体的な構成は特に限定されない。一例であるが、本実施例における異常センサ51~54は、冷却ファン40の回転数を検出する回転数センサである。 Although not shown in FIGS. 1 and 2, the first to fourth cooling devices 41 to 44 are provided with first to fourth abnormality sensors 51 to 54 (see FIG. 3). The first abnormality sensor 51 is a sensor for detecting whether or not the first blower 41 is normal. Similarly, the second to fourth abnormality sensors 52 to 54 are sensors for detecting whether or not the second to fourth cooling devices 42 to 44 are normal. The specific configuration of the abnormality sensors 51 to 54 is not particularly limited. As an example, the abnormality sensors 51 to 54 in the present embodiment are rotation speed sensors that detect the rotation speed of the cooling fan 40.
 直動装置10は、制御ユニット60を備えている。制御ユニット60は、直動装置10の動作を制御する。制御ユニット60は、電気ケーブル70を介して、リニアモータ12の可動子30と電気的に接続されている。 The linear motion device 10 includes a control unit 60. The control unit 60 controls the operation of the linear motion device 10. The control unit 60 is electrically connected to the mover 30 of the linear motor 12 via the electric cable 70.
 図3を参照して、直動装置10の電気的な構成について説明する。図3に示すように、制御ユニット60は、サーボコントローラ62とサーボアンプ66とを備えている。サーボコントローラ62とサーボアンプ66は、可動子30の動作を制御する制御手段の一例である。サーボアンプ66は、位置センサ36と接続されている。サーボコントローラ62は、外部からの指令に基づいて、可動子30の目標とする運動を計算し、サーボアンプ66へ教示する。サーボアンプ66は、サーボコントローラ62から教示された可動子30の目標とする運動と、位置センサ36によって検出された可動子30の位置とに基づいて、可動子30を制御する。具体的には、サーボアンプ66は、可動子30の目標とする運動と実際の運動との偏差に基づいて、電磁コイル32に通電する電流の大きさ及び向きを制御する。 The electrical configuration of the linear motion device 10 will be described with reference to FIG. As shown in FIG. 3, the control unit 60 includes a servo controller 62 and a servo amplifier 66. The servo controller 62 and the servo amplifier 66 are an example of a control unit that controls the operation of the mover 30. The servo amplifier 66 is connected to the position sensor 36. The servo controller 62 calculates the target movement of the mover 30 based on a command from the outside and teaches it to the servo amplifier 66. The servo amplifier 66 controls the mover 30 based on the target movement of the mover 30 taught from the servo controller 62 and the position of the mover 30 detected by the position sensor 36. Specifically, the servo amplifier 66 controls the magnitude and direction of the current supplied to the electromagnetic coil 32 based on the deviation between the target motion of the mover 30 and the actual motion.
 サーボコントローラ62は、メモリ64を有している。メモリ64は、可動子30の制御に用いられる各種のデータが記憶されている。例えばメモリ64には、可動子30の制御指標が記憶されている。可動子30の制御指標とは、可動子30の制御において使用される指標であり、例えば、可動子30の最大加速度、最高速度及び最大減速度である。サーボコントローラ62及びサーボアンプ66は、メモリ64に記憶された制御指標に応じて、可動子30の動作を制御する。それにより、可動子30が移動するときの加速度、速度及び減速度は、メモリ64に記憶された各々の最大値以下に制限され、それによって、例えば可動子30(特に電磁コイル32)の過熱が防止される。詳しくは後述するが、メモリ64は、通常モード用の一組の制御指標と、制熱モード用の一組の制御指標とを含む、複数組の制御指標を記憶している。 The servo controller 62 has a memory 64. The memory 64 stores various data used for controlling the mover 30. For example, the memory 64 stores a control index for the mover 30. The control index of the mover 30 is an index used in the control of the mover 30, for example, the maximum acceleration, the maximum speed, and the maximum deceleration of the mover 30. The servo controller 62 and the servo amplifier 66 control the operation of the mover 30 according to the control index stored in the memory 64. Thereby, the acceleration, speed, and deceleration when the mover 30 moves are limited to each maximum value or less stored in the memory 64, and thereby, for example, overheating of the mover 30 (particularly, the electromagnetic coil 32) is prevented. Is prevented. As will be described in detail later, the memory 64 stores a plurality of sets of control indexes including a set of control indexes for the normal mode and a set of control indexes for the heat control mode.
 制御ユニット60は、異常検出部68を備えている。異常検出部68は、第1~第4異常センサ51~54に接続されており、第1~第4異常センサ51~54からの出力信号に基づいて、第1~第4冷却装置41~44が正常であるのか否かをそれぞれ検出する。本実施例では、第1~第4異常センサ51~54の出力信号が、第1~第4冷却装置41~44における冷却ファン40の回転数をそれぞれ示す。従って、異常検出部68は、第1~第4異常センサ51~54の出力信号が示す回転数が所定値を下回ったときに、第1~第4冷却装置41~44に異常が生じたとそれぞれ判断する。異常検出部68は、サーボコントローラ62に接続されており、異常検出部68による判断結果は、サーボコントローラ62へ教示される。 The control unit 60 includes an abnormality detection unit 68. The abnormality detection unit 68 is connected to the first to fourth abnormality sensors 51 to 54, and based on the output signals from the first to fourth abnormality sensors 51 to 54, the first to fourth cooling devices 41 to 44 are connected. Whether or not is normal is detected. In the present embodiment, the output signals of the first to fourth abnormality sensors 51 to 54 indicate the rotation speeds of the cooling fans 40 in the first to fourth cooling devices 41 to 44, respectively. Accordingly, the abnormality detection unit 68 determines that an abnormality has occurred in the first to fourth cooling devices 41 to 44 when the rotational speed indicated by the output signals of the first to fourth abnormality sensors 51 to 54 has decreased below a predetermined value. to decide. The abnormality detection unit 68 is connected to the servo controller 62, and the determination result by the abnormality detection unit 68 is taught to the servo controller 62.
 サーボコントローラ62は、第1~第4冷却装置41~44の一つに異常が生じたときに、通常モードから制熱モードへ移行し、使用する制御指標を切り替える。図4は、通常モード用の制御指標(最大加速度、最高速度及び最大減速度)と、制熱モード用の制御指標の一例を示している。図4に示すように、制熱モード用の最大加速度A2は、通常モード用の最大加速度A1よりも小さい。同様に、制熱モード用の最高速度V2及び最大減速度D2は、通常モード用の最高速度V1及び最大減速度D1よりもそれぞれ小さい。従って、制熱モードによる制御では、通常モードによる制御よりも、可動子30の発熱を抑制することができる。それにより、第1~第4冷却装置41~44の一つに異常が生じたときでも、可動子30の過熱を防止しつつ、直動装置10はその動作を継続することができる。なお、通常モードから制熱モードへの移行において、最大加速度、最高速度及び最大減速度の全てではなく、それらの少なくとも一つを小さくするように変更してもよい。 The servo controller 62 shifts from the normal mode to the heat control mode and switches the control index to be used when an abnormality occurs in one of the first to fourth cooling devices 41 to 44. FIG. 4 shows an example of a control index for the normal mode (maximum acceleration, maximum speed, and maximum deceleration) and a control index for the heat control mode. As shown in FIG. 4, the maximum acceleration A2 for the heat control mode is smaller than the maximum acceleration A1 for the normal mode. Similarly, the maximum speed V2 and the maximum deceleration D2 for the heat control mode are smaller than the maximum speed V1 and the maximum deceleration D1 for the normal mode, respectively. Therefore, in the control in the heat control mode, the heat generation of the mover 30 can be suppressed compared to the control in the normal mode. Thus, even when an abnormality occurs in one of the first to fourth cooling devices 41 to 44, the linear motion device 10 can continue its operation while preventing the mover 30 from being overheated. In the transition from the normal mode to the heat control mode, not all of the maximum acceleration, the maximum speed, and the maximum deceleration, but at least one of them may be changed.
 一方、サーボコントローラ62は、第1~第4冷却装置41~44の二以上に異常が生じたときは、可動子30の運転を直ちに中止する。このような場合は、制熱モードによる制御であっても、残りの冷却装置41~44だけでは冷却能力が不足するためである。但し、第1~第4冷却装置41~44の二以上に異常が生じたときでも、冷却能力が足りるようなときは、必ずしも制熱モードへ移行する必要はない。 On the other hand, the servo controller 62 immediately stops the operation of the mover 30 when abnormality occurs in two or more of the first to fourth cooling devices 41 to 44. In such a case, the cooling capacity is insufficient with only the remaining cooling devices 41 to 44 even in the heat control mode. However, even when abnormality occurs in two or more of the first to fourth cooling devices 41 to 44, it is not always necessary to shift to the heat control mode when the cooling capacity is sufficient.
 異常検出部68は、温度センサ34にも接続されており、温度センサ34によって検出された温度が所定値を上回るときは、可動子30の温度が異常であると判断する。この判断結果についても、サーボコントローラ62へ教示される。サーボコントローラ62は、可動子30の温度が異常であるときも、可動子30の運転を直ちに中止する。 The abnormality detection unit 68 is also connected to the temperature sensor 34, and determines that the temperature of the mover 30 is abnormal when the temperature detected by the temperature sensor 34 exceeds a predetermined value. This determination result is also taught to the servo controller 62. The servo controller 62 immediately stops the operation of the mover 30 even when the temperature of the mover 30 is abnormal.
 制御ユニット60は、表示部69を備えている。表示部69は、特に限定されないが、液晶表示パネルを有する。表示部69は、異常検出部68に接続されており、異常が生じた冷却装置41~44を表示する。それにより、作業者は、異常が生じた冷却装置41~44の修理又は交換を容易に行うことができる。また、表示部69は、サーボコントローラ62にも接続されており、サーボコントローラ62が通常モードから制熱モードへ移行したとき(即ち、御指標を変更したとき)に、その旨を表示する。それにより、作業者は、直動装置10の動作が制限されていることを、速やかに認知することができる。 The control unit 60 includes a display unit 69. Although the display unit 69 is not particularly limited, the display unit 69 includes a liquid crystal display panel. The display unit 69 is connected to the abnormality detection unit 68 and displays the cooling devices 41 to 44 in which an abnormality has occurred. As a result, the operator can easily repair or replace the cooling devices 41 to 44 in which an abnormality has occurred. The display unit 69 is also connected to the servo controller 62. When the servo controller 62 shifts from the normal mode to the heat control mode (that is, when the control index is changed), the display unit 69 displays that effect. Thereby, the worker can quickly recognize that the operation of the linear motion device 10 is restricted.
 以上のように、本実施例の直動装置10は、複数の冷却装置41~44の一部に異常が生じたときに、可動子30の発熱量が少ない制熱モードへ移行することによって、可動子30の動作を継続することができる。加えて、本実施例の直動装置10は、複数の冷却装置41~44の多くに異常が生じたときは、可動子30の動作を直ちに中止することによって、可動子30の過熱を確実に防止することができる。 As described above, the linear motion device 10 according to the present embodiment shifts to the heat control mode in which the heat generation amount of the mover 30 is small when an abnormality occurs in a part of the plurality of cooling devices 41 to 44. The operation of the mover 30 can be continued. In addition, the linear motion device 10 of this embodiment ensures that the mover 30 is overheated by immediately stopping the operation of the mover 30 when an abnormality occurs in many of the cooling devices 41 to 44. Can be prevented.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 本技術の他の一実施形態では、サーボコントローラ62が、第1所定数以上の冷却装置41~44について異常を検出したときに、通常モードから制熱モードへ移行するものであってもよい。同様に、サーボコントローラ62が、第1所定数よりも大きい第2所定数以上の冷却装置41~44について異常を検出したときに、可動子30の運転を中止するものであってもよい。この場合、第1所定数は、一つに限られず、二つ以上であってもよい。同様に、第2所定数は、二つに限られず、三つ以上であってもよい。 In another embodiment of the present technology, when the servo controller 62 detects an abnormality in the first predetermined number or more of the cooling devices 41 to 44, the normal mode may be shifted to the heat control mode. Similarly, the operation of the mover 30 may be stopped when the servo controller 62 detects an abnormality with respect to the second predetermined number or more of the cooling devices 41 to 44 larger than the first predetermined number. In this case, the first predetermined number is not limited to one and may be two or more. Similarly, the second predetermined number is not limited to two and may be three or more.
 本技術の他の一実施形態では、サーボコントローラ62のメモリ64が、図5に示すような基準データを記憶するものであってもよい。図5に示す基準データは、複数の冷却装置41~44の正常と異常の組み合わせ毎に、制御モードの変更の要否(即ち、制御指標の変更の要否)を記述している。そして、サーボコントローラ62は、異常検出部68による判断結果と当該基準データとに基づいて、通常モードから制熱モードへの移行(即ち、制御指標の変更)を行うものであってもよい。このような構成によると、サーボコントローラ62は、異常検出部68が特定の一又は複数の冷却装置41~44について異常を検出したときに、通常モードから制熱モードへの移行(即ち、制御指標の変更)を行うことができる。 In another embodiment of the present technology, the memory 64 of the servo controller 62 may store reference data as shown in FIG. The reference data shown in FIG. 5 describes whether or not the control mode needs to be changed (that is, whether or not the control index needs to be changed) for each combination of normality and abnormality of the plurality of cooling devices 41 to 44. The servo controller 62 may perform a transition from the normal mode to the heat control mode (that is, change of the control index) based on the determination result by the abnormality detection unit 68 and the reference data. According to such a configuration, the servo controller 62 shifts from the normal mode to the heat control mode (ie, the control index) when the abnormality detection unit 68 detects an abnormality in the specific one or more cooling devices 41 to 44. Change).
 本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項に記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in the present specification or drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.
10:直動装置
12:リニアモータ
20:固定子
22:永久磁石
30:可動子
32:電磁コイル
34:温度センサ
36:位置センサ
40:冷却ファン
41~44:第1~第4冷却装置
51~54:第1~第4異常センサ
60:制御ユニット
62:サーボコントローラ
64:メモリ
66:サーボアンプ
68:異常検出部
69:表示部
70:電気ケーブル
10: linear motion device 12: linear motor 20: stator 22: permanent magnet 30: mover 32: electromagnetic coil 34: temperature sensor 36: position sensor 40: cooling fans 41 to 44: first to fourth cooling devices 51 to 54: first to fourth abnormality sensors 60: control unit 62: servo controller 64: memory 66: servo amplifier 68: abnormality detection unit 69: display unit 70: electric cable

Claims (11)

  1.  直動装置であって、
     固定子及び可動子を有するリニアモータと、
     前記リニアモータの可動子に設けられた複数の冷却手段と、
     前記複数の冷却手段のそれぞれについて、正常であるのか否かを検出する検出手段と、
     前記リニアモータの可動子の動作を所定の制御指標に応じて制御する制御手段と、
     を備え、
     前記制御手段は、前記検出手段が少なくとも一つの冷却手段の異常を検出したときに、前記制御指標を変更する、
     直動装置。
    A linear motion device,
    A linear motor having a stator and a mover;
    A plurality of cooling means provided on the mover of the linear motor;
    Detecting means for detecting whether each of the plurality of cooling means is normal;
    Control means for controlling the operation of the mover of the linear motor according to a predetermined control index;
    With
    The control means changes the control index when the detection means detects an abnormality of at least one cooling means.
    Linear motion device.
  2.  前記制御手段は、前記制御指標として、前記可動子の最大加速度、最高速度及び最大減速度のなかの少なくとも一つを、小さくなるように変更する、請求項1に記載の直動装置。 The linear motion apparatus according to claim 1, wherein the control means changes, as the control index, at least one of a maximum acceleration, a maximum speed, and a maximum deceleration of the mover to be small.
  3.  前記制御手段は、前記制御指標として、前記可動子の最大加速度、最高速度及び最大減速度の全てを、小さくなるように変更する、請求項1に記載の直動装置。 The linear motion apparatus according to claim 1, wherein the control means changes all of the maximum acceleration, the maximum speed, and the maximum deceleration of the mover to be small as the control index.
  4.  前記制御手段は、前記検出手段が第1所定数以上の冷却手段について異常を検出したときに、前記可動子の制御指標を変更する、請求項1から3のいずれか一項に記載の直動装置。 The linear motion according to any one of claims 1 to 3, wherein the control means changes a control index of the mover when the detection means detects an abnormality in the first predetermined number or more of cooling means. apparatus.
  5.  前記制御手段は、前記検出手段が前記第1所定数よりも大きい第2所定数以上の冷却手段について異常を検出したときに、前記可動子の動作を禁止する、請求項4に記載の直動装置。 5. The linear motion according to claim 4, wherein the control unit prohibits the operation of the mover when the detection unit detects an abnormality in a second predetermined number or more of cooling units greater than the first predetermined number. apparatus.
  6.  前記制御手段は、前記検出手段が特定の一又は複数の冷却手段について異常を検出したときに、前記可動子の制御指標を変更する、請求項1から3のいずれか一項に記載の直動装置。 The linear motion according to any one of claims 1 to 3, wherein the control unit changes a control index of the mover when the detection unit detects an abnormality with respect to one or more specific cooling units. apparatus.
  7.  前記制御手段は、前記複数の冷却手段の正常と異常の組み合わせ毎に、前記制御指標の変更の要否を記述する基準データを記憶する記憶手段を有し、前記検出手段による検出結果と、前記基準データに基づいて、前記可動子の制御指標を変更する、請求項6に記載の直動装置。 The control means includes storage means for storing reference data describing whether or not the control index needs to be changed for each combination of normality and abnormality of the plurality of cooling means, and the detection result by the detection means, The linear motion apparatus according to claim 6, wherein a control index of the mover is changed based on reference data.
  8.  前記検出手段による検出結果に基づいて、異常が生じている冷却手段を表示する表示手段をさらに備える、請求項1から7のいずれか一項に記載の直動装置。 The linear motion device according to any one of claims 1 to 7, further comprising display means for displaying a cooling means in which an abnormality has occurred based on a detection result by the detection means.
  9.  前記制御手段が前記制御指標を変更したときに、その旨を表示する表示手段をさらに備える、請求項1から8のいずれか一項に記載の直動装置。 The linear motion device according to any one of claims 1 to 8, further comprising display means for displaying when the control means changes the control index.
  10.  前記複数の冷却手段の各々は、冷却ファンを有する送風機である、請求項1から9のいずれか一項に記載の直動装置。 The linear motion device according to any one of claims 1 to 9, wherein each of the plurality of cooling means is a blower having a cooling fan.
  11.  前記検出手段は、前記複数の冷却手段のそれぞれについて、前記冷却ファンの単位時間あたりの回転数を検出するセンサを有する、請求項10に記載の直動装置。
     
    The linear motion device according to claim 10, wherein the detection unit includes a sensor that detects the number of rotations of the cooling fan per unit time for each of the plurality of cooling units.
PCT/JP2013/085157 2013-12-27 2013-12-27 Linear motion device WO2015097879A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015554458A JP6302488B2 (en) 2013-12-27 2013-12-27 Linear motion device
PCT/JP2013/085157 WO2015097879A1 (en) 2013-12-27 2013-12-27 Linear motion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085157 WO2015097879A1 (en) 2013-12-27 2013-12-27 Linear motion device

Publications (1)

Publication Number Publication Date
WO2015097879A1 true WO2015097879A1 (en) 2015-07-02

Family

ID=53477809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085157 WO2015097879A1 (en) 2013-12-27 2013-12-27 Linear motion device

Country Status (2)

Country Link
JP (1) JP6302488B2 (en)
WO (1) WO2015097879A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164675A (en) * 1989-11-24 1991-07-16 Fujitsu Ltd Controlling method for system under abnormal state of cooling fan
JPH0389998U (en) * 1989-12-28 1991-09-12
JP2005006450A (en) * 2003-06-13 2005-01-06 Yaskawa Electric Corp Parameter change history display method of motor controller
JP2005039890A (en) * 2003-07-15 2005-02-10 Toshiba Mitsubishi-Electric Industrial System Corp Ac motor driving device
JP2007089245A (en) * 2005-09-20 2007-04-05 Yaskawa Electric Corp Flat servo motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164675A (en) * 1989-11-24 1991-07-16 Fujitsu Ltd Controlling method for system under abnormal state of cooling fan
JPH0389998U (en) * 1989-12-28 1991-09-12
JP2005006450A (en) * 2003-06-13 2005-01-06 Yaskawa Electric Corp Parameter change history display method of motor controller
JP2005039890A (en) * 2003-07-15 2005-02-10 Toshiba Mitsubishi-Electric Industrial System Corp Ac motor driving device
JP2007089245A (en) * 2005-09-20 2007-04-05 Yaskawa Electric Corp Flat servo motor

Also Published As

Publication number Publication date
JPWO2015097879A1 (en) 2017-03-23
JP6302488B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
US20100039055A1 (en) Temperature control of motor
JP5319798B2 (en) Motor control device that limits torque command according to input current or power
US10921800B2 (en) Motor control device
US10958205B2 (en) Motor control device
JP6302488B2 (en) Linear motion device
JP5081633B2 (en) Motor control device
JP5442245B2 (en) Overload protection method and apparatus for common converter, and multi-axis motor drive system
JP6558854B2 (en) Cooling fan control device
JP2011130583A (en) Motor unit and electric power steering device
WO2016174867A1 (en) Motor overload protection method
JP6299644B2 (en) Electric motor control device
JP5947646B2 (en) Motor control device
JP6251582B2 (en) Method and apparatus for determining appropriateness of motor, and robot apparatus
JP2008118771A (en) Emergency stop device of mobile
JP7136090B2 (en) Motor drive device and electric power steering device
WO2015098154A1 (en) Power conversion device and power conversion device control method
JP6758460B1 (en) Rotating electric device and electric power steering device
JP2019503163A (en) Vacuum pump drive with star-delta switching
JP4195981B2 (en) Motor drive device
JP2016007113A (en) Drive unit of compressor
JP5995688B2 (en) Actuator control device
JP5582442B2 (en) Motor drive control device, motor drive control method, and motor using the same
KR102099356B1 (en) Dual motor and control system thereof
JP2022015109A (en) Motor drive device
JP2017060306A (en) Control method for motor driven by inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900366

Country of ref document: EP

Kind code of ref document: A1