WO2015097816A1 - Component supply device - Google Patents

Component supply device Download PDF

Info

Publication number
WO2015097816A1
WO2015097816A1 PCT/JP2013/084900 JP2013084900W WO2015097816A1 WO 2015097816 A1 WO2015097816 A1 WO 2015097816A1 JP 2013084900 W JP2013084900 W JP 2013084900W WO 2015097816 A1 WO2015097816 A1 WO 2015097816A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
bowl
feeder
component supply
vibratory
Prior art date
Application number
PCT/JP2013/084900
Other languages
French (fr)
Japanese (ja)
Inventor
佳成 深田
圭 久松
Original Assignee
株式会社コガネイ
株式会社アートテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コガネイ, 株式会社アートテック filed Critical 株式会社コガネイ
Priority to PCT/JP2013/084900 priority Critical patent/WO2015097816A1/en
Priority to PCT/JP2014/079890 priority patent/WO2015098323A1/en
Priority to JP2015554661A priority patent/JP6373871B2/en
Publication of WO2015097816A1 publication Critical patent/WO2015097816A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/12Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles
    • B65G47/14Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding
    • B65G47/1407Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl
    • B65G47/1414Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl by means of movement of at least the whole wall of the container
    • B65G47/1421Vibratory movement

Definitions

  • the present invention relates to a component supply apparatus using a vibration type part feeder.
  • parts supply devices that transport minute electronic parts such as chip resistors and chip capacitors by using vibratory parts feeders such as vibratory bowl feeders and vibratory linear feeders.
  • vibratory parts feeders such as vibratory bowl feeders and vibratory linear feeders.
  • the present invention has been made in view of the above circumstances, and an object thereof is to make it possible to effectively remove static electricity generated in a component during transportation in a component supply apparatus using a vibration type part feeder. It is.
  • the present invention provides a component supply apparatus that uses a vibration type parts feeder that includes a component storage portion that conveys the components to be accommodated by vibration, and a vibrator that vibrates the component storage portion.
  • the vibration type parts feeder is characterized in that at least a portion where static electricity is generated when parts are conveyed is a non-conductive material.
  • the non-conductor is made of resin.
  • the vibratory parts feeder is a vibratory bowl feeder
  • the entire bowl serving as the component housing portion is made of resin
  • the bowl can be easily manufactured and the manufacturing cost can be reduced.
  • the vibratory parts feeder is a vibratory linear feeder
  • the resinized slag is at least the movement or conveyance of parts, such as only the conveyance path, or the part loading / dropping part. It may be a part where static electricity is generated.
  • FIG. 3 is a cross-sectional end view taken along the line XX of the straight conveyance path of FIG.
  • the controller of the components supply apparatus which concerns on embodiment of this invention.
  • the component supply device PF includes a vibrating bowl feeder 10 and a vibrating linear feeder 20.
  • the vibratory bowl feeder 10 includes a bowl 11 and a vibrator 12.
  • the bowl 11 is given a torsional vibration from the vibrator 12.
  • the bowl 11 has a circular convex bottom surface 14 at the center and a spiral conveyance path 15 that rises with a step from a part of the periphery of the bottom surface 14 to the outer periphery of the bowl 11.
  • the vibrator 12 generates vibration using, for example, an electromagnetic vibrator as a drive source.
  • the vibratory bowl feeder 10 is provided with a static eliminator for removing static electricity generated by component conveyance, for example, an ion generator 30A for blowing ionized air toward the conveyance surface of the bowl 11.
  • a potential sensor 31 for discriminating the potential of the charged component is provided in the bowl 11, and ionized air having a polarity opposite to the discriminated potential is blown from the ion generator 30A to the component.
  • the vibration type linear feeder 20 includes a vibrator 21 and a linear conveyance path 22 attached to the top of the vibrator 21.
  • the vibrator 21 has a fixed base 23.
  • the conveyance path 22 is coupled to the end of the transfer conveyance path 16. By transmitting the vibration of the vibrator 21 to the conveyance path 22, a component (not shown) sent to the vibration type linear feeder 20 via the transfer conveyance path 16 moves on the conveyance path 22.
  • the vibration type linear feeder 20 is also equipped with a static eliminator for removing static electricity generated by parts conveyance, for example, an ion generator 30B for blowing ionized air toward the upper gap 22a of the conveyance path 22 as shown in FIG. Is provided.
  • a static eliminator for removing static electricity generated by parts conveyance
  • an ion generator 30B for blowing ionized air toward the upper gap 22a of the conveyance path 22 as shown in FIG. Is provided.
  • the vibration type linear feeder 20 is also provided with a potential sensor for determining the potential of a component transported through the transport path 22, and ionized air having a polarity opposite to the determined potential is transferred from the ion generator 30B to the transport path. 22 may be sprayed.
  • the operation of the component supply device PF will be described. Parts are put into the bottom surface 14 of the bowl 11. When the bowl 11 is vibrated by the vibrator 12, the components move toward the periphery of the bottom surface 14, enter the conveyance path 15 and are aligned in a line, and are conveyed spirally along the conveyance path 15. .
  • the component enters the conveyance path 22 that is vibrated by the vibration exciter 21 of the vibration type linear feeder 20 through the transfer path 16 from the end 15a of the conveyance path.
  • the parts that have entered the conveyance path 22 are conveyed by the conveyance path 22 and discharged from the tip to a target position.
  • the bowl 11 will be described in detail.
  • the bowl 11 is made by cutting out a non-conductor, for example.
  • the non-conductor is, for example, a synthetic resin material made of resin, such as PET (polyethylene terephthalate), PP (polypropylene), epoxy resin, phenol resin, Teflon resin, and the like.
  • the part moves due to, for example, a collision between the parts. Since the material of the bowl 11 is a non-conductive synthetic resin material, the electric charge charged in the bowl 11 does not move. That is, as shown in FIG. 5B, even if the component moves, the negative charge charged in the bowl 11 does not move but stops there. As a result, compared to the state shown in FIG. 5A, the bowl 11 and the part W attract each other and are not adsorbed, so that the ionized air ia for discharging from the outside is between the charged surface of the bowl 11 and the part W. The charge charged on the component W can be eliminated. Further, the charge charged in the bowl 11 can be removed.
  • the material of the bowl 11 is made of a non-conductive material, and ionizing air for static elimination is sprayed on the bowl 11, so that static electricity generated between the part W and the bowl 11 is effectively removed in the vibration type part feeder. be able to.
  • the potential of the ionized air is small because the potential of the bowl is low. Therefore, it is difficult to remove static electricity.
  • the potential of the bowl surface when charged with static electricity is high, so that the force for attracting ionized air is large. Therefore, it becomes easy to remove static electricity.
  • the vibration frequency of the vibrator 12 depends on the weight of the bowl 11. When the weight of the bowl 11 is light, the vibration frequency becomes high. If the vibration frequency can be increased, parts can be transported more quickly and in fine steps, and transport efficiency can be improved.
  • the weight of the bowl 11 can be reduced by using resin instead of metal. That is, by making the material of the bowl 11 a non-conductive material, it is possible to improve the parts conveyance efficiency.
  • the material of the bottom surface 14a of the bowl 51 can be made non-conductive, and the material of other parts can be made conductive.
  • the material of the bottom part 14a can be made of resin, and the material of other parts can be made of metal.
  • the bottom 14a is shaded to indicate that the material is different from the other parts.
  • the orientation of the parts is detected at a predetermined place on the conveyance path 15 and the parts not facing the correct direction are blown off with air and dropped to the bottom 14 to be re-conveyed. That is, static electricity is likely to be generated at the part where the blown-off component falls. Therefore, as shown in FIG. 7, the material of the portion 14b where the parts blown off by the air supply pipe 31 fall can be made non-conductive, and the material of other portions can be made conductive. In FIG. 7, the part 14b where the parts of the bowl 52 fall is shaded to indicate that the material is different from the other parts.
  • the material of the bowl 11 of the vibration type bowl feeder 10 is a non-conductive material
  • the material of the conveyance path 22 of the vibration type linear feeder 20 may be a non-conductive material.
  • the ionized air is sprayed from above the bowl 11 by the ion generator 30A of FIG. 1 to the parts transported in the bowl 11, but as shown in FIG.
  • An appropriate number of small holes 17 may be provided near the periphery of the bottom surface 14, and ionized air may be blown upward from the lower side of the bowl 11 to the small holes 17.
  • the vibration frequency and strength of the vibrator 12 of the vibratory bowl feeder 10 are set so that the parts to be transported can be transported more efficiently. You can also.
  • a controller 50 50A, 50B having a mode switching unit 40 (40A, 40B) capable of switching the operation mode between the normal mode and the static elimination mode can be provided.
  • the vibrator 12 vibrates at a vibration frequency and intensity (hereinafter referred to as an optimum value) that can more efficiently transport the parts to be transported.
  • the vibration is generated at a vibration frequency and intensity higher by a predetermined value than the optimum value.
  • FIG. 9A shows an example in which the mode switching unit 40A of the controller 50A includes a push button switch 41 for designating the normal mode and a push button switch 42 for designating the static elimination mode.
  • FIG. 9 shows an example in which the mode switching unit 40B of the controller 50B is configured by a panel switch.
  • the mode switching unit 40B has a set of switches for the normal mode and a set of switches for the static elimination mode.
  • One set of switches for the normal mode is a switch 41a for specifying the normal mode, a switch 41b for increasing the supply voltage after specifying the normal mode, and a switch 41c for decreasing the supply voltage after specifying the normal mode.
  • One set of switches for the static elimination mode is a switch 42a for designating the static elimination mode, a switch 42b for increasing the supply voltage after designating the static elimination mode, and a switch 42c for lowering the supply voltage after designating the static elimination mode.
  • the controller 50B includes a display unit 43 that indicates the vibration frequency of the ion generator 30A during operation. By looking at the display unit 43, the mode switching unit 40B can be correctly operated so that the display value becomes the target value.
  • the part conveyance speed is variable in the normal mode, and in the static elimination mode, the part conveyance speed and the amount of ionized air generated per unit time are variable, and appropriate conveyance according to the type and quantity of the parts. Speed and static elimination performance can be realized.
  • FIG. 10 is a diagram showing another example of the vibration type linear feeder.
  • This vibration type linearly moving feeder 20 ′ has two component housing portions 25. Between the component accommodating portions 25, one end portion is connected to one end portion 25b of each component accommodating portion 25, and the conveyance path 26 extends parallel to the other side (right side in FIG. 10). And the component accommodating part 25 and the conveyance path 26 are given the vibration from the vibrator 27 which is supporting these from the lower side.
  • the parts are thrown into the upper surface of the other end 25a of each part accommodating part 25.
  • the thrown-in components are conveyed to one end portion 25b of the component accommodating portion 25 by vibrations applied from the vibrator 27, and are gradually aligned in a row therebetween.
  • the aligned parts are transferred one by one from the one end 25b of the component storage unit 25 to the one end 26a of each conveying path 26, and the other end (the right end in FIG. 4) of the conveying path 26. It is conveyed to.
  • the parts conveyed to the other end of the conveyance path 26 are discharged toward the target position.
  • the vibration type linear feeder 20 ′ at least the end of the component accommodating portion 25, that is, the region where the component falls into the component accommodating portion 25 from the component input pipe, preferably the entire region of the component accommodating portion 25 and / or the conveyance path.
  • Part or all of 26 is made of resin.
  • the vibration type linear feeder 20 ′ can also effectively remove static electricity from moving parts by providing an ion generator and blowing ionized air toward the part accommodating part 25 or the conveyance path 26.
  • the vibration type linearly moving feeder 20 ′ also includes a controller 50 having a mode switching unit 40 that can switch the operation mode to the normal mode and the static elimination mode as illustrated in FIG. 9.
  • the component supply device PF includes the vibrating bowl feeder 10 and the vibrating linear feeder 20.
  • the component feeder PF includes either the vibrating bowl feeder 10 or the vibrating linear feeder 20. It can also be done.

Abstract

In this component supply device, which uses a vibrating part feeder, the component conveyance efficiency is increased by causing the effects of static electricity to not be incurred. In the component supply device, which uses a vibrating part feeder, at least the portions of the vibrating part feeder at which static electricity arises alongside the conveyance of components are caused to be non-conductive.

Description

部品供給装置Parts supply device
 本発明は、振動式パーツフィーダを用いる部品供給装置に関する。 The present invention relates to a component supply apparatus using a vibration type part feeder.
従来の技術Conventional technology
 チップ抵抗やチップコンデンサ等の微小な電子部品等を、振動式ボウルフィーダや振動式直進フィーダ等の振動式パーツフィーダを用いて搬送する部品供給装置が存在する。この部品供給装置で静電気を帯びやすい素材の部品を搬送すると、部品と搬送路との間の摩擦で静電気が発生する。 There are parts supply devices that transport minute electronic parts such as chip resistors and chip capacitors by using vibratory parts feeders such as vibratory bowl feeders and vibratory linear feeders. When a component made of a material that is easily charged with static electricity is transported by this component feeder, static electricity is generated due to friction between the component and the transport path.
 搬送路の搬送面とその搬送面と接触する部品の面との間で静電気が多く発生すると、軽量な部品同士もしくは部品とボウルが搬送中に引き合ったり、反発し合ったりして、部品の整列や搬送に支障を来す。また、部品が静電気を帯電したまま次工程へ供給されると、空気中の塵埃が部品に付着して、部品が組み込まれる電気製品等に欠陥を生じさせることもある。このような部品供給装置における静電気対策として、静電気により部品等に帯電した電荷を中和するために、部品供給装置の上方から部品が搬送される方向に向かって除電用イオンを混入したエアを吹きかけることが提案されている。 When a large amount of static electricity is generated between the conveyance surface of the conveyance path and the surface of the part that comes into contact with the conveyance surface, the lightweight parts or the parts and the bowl are attracted or repelled during conveyance, and the parts are aligned. It interferes with transportation. In addition, when a component is supplied to the next process while being charged with static electricity, dust in the air may adhere to the component and cause a defect in an electrical product or the like in which the component is incorporated. As a countermeasure against static electricity in such a component supply device, in order to neutralize the charge charged to the component or the like due to static electricity, air containing ionization ions is blown from above the component supply device in the direction in which the component is conveyed. It has been proposed.
 また、振動式ボウルフィーダのボウルを金属製とするとともに接地して、ボウルに帯電した静電気を逃がす技術も提案されている(例えば、特許文献1参照)。 Also, a technique has been proposed in which the bowl of the vibratory bowl feeder is made of metal and grounded to release static electricity charged in the bowl (for example, see Patent Document 1).
特開2001―39530号公報JP 2001-39530 A
 しかしながら、ボウルと部品との間に静電気が発生すると、図11の(a)に示すように、ボウルBと部品Wのそれぞれの接触面には、逆極性の電荷が帯電する。ボウルBと部品Wの間のような短い距離において逆極性の電荷が対向すると、プラスとマイナスの電荷がそれぞれ引き合ってボウルBと部品Wが引き合って吸着する。このようにボウルBと部品Wが引き合って吸着すると、外部からの除電用イオン化空気iaがボウルBと部品Wの間に届かなくなり、ボウルBと部品Wに帯電した電荷を除電することができない場合がある。 However, when static electricity is generated between the bowl and the component, charges of opposite polarity are charged on the contact surfaces of the bowl B and the component W as shown in FIG. When charges of opposite polarity are opposed at a short distance such as between the bowl B and the part W, positive and negative charges are attracted and the bowl B and the part W are attracted and attracted. When the bowl B and the part W are attracted and attracted in this way, the ionized air ia for static elimination from the outside does not reach between the bowl B and the part W, and the charges charged in the bowl B and the part W cannot be eliminated. There is.
 このようにボウルBと部品Wが引き合って吸着した状態でも、たとえば部品間の衝突により部品が移動するが、ボウルが金属製であって導電体であるため、電荷が移動するので、図11(b)に示すように、ボウルBに帯電した電荷も部品Wに帯電した電荷に引っ張られて移動する。すなわちボウルBと部品Wが引き合って吸着した状態が維持されるので、部品Wが移動してもボウルBと部品Wに帯電した電荷を除電することができない。このように振動式パーツフィーダにおいて、パーツとボウル間に発生した静電気を効果的に除去することができないことがあった。 Even when the bowl B and the component W are attracted and attracted in this way, the component moves due to, for example, a collision between the components. However, since the bowl is made of metal and is a conductor, the charge moves, so FIG. As shown in b), the electric charge charged in the bowl B is also pulled and moved by the electric charge charged in the component W. That is, since the state in which the bowl B and the component W are attracted to each other is maintained, the charges charged in the bowl B and the component W cannot be removed even if the component W moves. Thus, in the vibration type parts feeder, static electricity generated between the parts and the bowl may not be effectively removed.
 本発明は、上記事情に鑑みてなされたものであり、その目的は、振動式パーツフィーダを用いる部品供給装置において、搬送時に部品に発生する静電気を効果的に除去することができるようにすることである。 The present invention has been made in view of the above circumstances, and an object thereof is to make it possible to effectively remove static electricity generated in a component during transportation in a component supply apparatus using a vibration type part feeder. It is.
 上記目的を達成するため、本発明は、収容する部品を振動により整列させて搬送する部品収容部と、その部品収容部に振動を与える加振器とを有する振動式パーツフィーダを用いる部品供給装置において、前記振動式パーツフィーダは、少なくとも部品搬送に伴って静電気が生じる部分が非導電体とされていることを特徴とする。 In order to achieve the above object, the present invention provides a component supply apparatus that uses a vibration type parts feeder that includes a component storage portion that conveys the components to be accommodated by vibration, and a vibrator that vibrates the component storage portion. The vibration type parts feeder is characterized in that at least a portion where static electricity is generated when parts are conveyed is a non-conductive material.
 非導電体は樹脂製であることが望ましい。振動式パーツフィーダが振動式ボウルフィーダである場合は、部品収容部であるボウル全体を樹脂製にすると、ボウルの製造が容易であり、製造コストの低減が可能である。振動式パーツフィーダが振動式直進フィーダである場合も、振動式直進フィーダの全部を樹脂製にすると、製造が容易である利点がある。しかし、樹脂化 (樹脂製にすること)は、振動式ボウルフィーダ、振動式直進フィーダのいずれの場合も、例えば、搬送路のみ、または部品の投入部や脱落部など、少なくとも部品の移動または搬送に伴って静電気が生じる一部であっても良い。 It is desirable that the non-conductor is made of resin. In the case where the vibratory parts feeder is a vibratory bowl feeder, if the entire bowl serving as the component housing portion is made of resin, the bowl can be easily manufactured and the manufacturing cost can be reduced. Even when the vibratory parts feeder is a vibratory linear feeder, if all of the vibratory linear feeders are made of resin, there is an advantage that manufacture is easy. However, in the case of both the vibratory bowl feeder and the vibratory linear feeder, for example, the resinized slag (made of resin) is at least the movement or conveyance of parts, such as only the conveyance path, or the part loading / dropping part. It may be a part where static electricity is generated.
 さらに、振動式パーツフィーダ内で部品が通過する部分に向けて、除電用イオンを吹きかける除電装置を備えることが望ましい。この場合、帯電した部品の電位を電位センサにより判別し、その電位の逆極性のイオン化空気をその部品に吹きかけることが望ましい。 Furthermore, it is desirable to provide a static elimination device that sprays static elimination ions toward the part through which the parts pass in the vibration type part feeder. In this case, it is desirable to discriminate the potential of the charged component with a potential sensor and to blow ionized air having a polarity opposite to that potential onto the component.
 さらに、通常の振動の強さの運転モードと、それよりも強く振動する除電モードのいずれにも切り替えることができるコントローラを備えることが望ましい。 Furthermore, it is desirable to provide a controller that can be switched between an operation mode of normal vibration strength and a static elimination mode that vibrates more strongly.
 本発明によれば、振動式パーツフィーダを用いる部品供給装置において、搬送時に部品に発生する静電気を効果的に除去することが可能である。 According to the present invention, it is possible to effectively remove static electricity generated in a component during conveyance in a component supply apparatus using a vibration type part feeder.
本発明の実施の形態に係る部品供給装置の斜視図である。It is a perspective view of the components supply apparatus which concerns on embodiment of this invention. 図1の部品供給装置の平面図である。It is a top view of the component supply apparatus of FIG. 図2の部品供給装置の正面図である。It is a front view of the component supply apparatus of FIG. 図3の部品供給装置の右側面図である。It is a right view of the component supply apparatus of FIG. 本発明に係る樹脂製ボウルと部品との間の電荷の状態を示す図である。It is a figure which shows the state of the electric charge between the resin-made bowls and components which concern on this invention. 図2の振動式ボウルフィーダの他の例を示す図である。It is a figure which shows the other example of the vibration type bowl feeder of FIG. 図2の振動式ボウルフィーダのさらに他の例を示す図である。It is a figure which shows the further another example of the vibration type bowl feeder of FIG. 図2の直線搬送路のX-X線断面端面図である。FIG. 3 is a cross-sectional end view taken along the line XX of the straight conveyance path of FIG. 本発明の実施の形態に係る部品供給装置のコントローラの例を示す図である。It is a figure which shows the example of the controller of the components supply apparatus which concerns on embodiment of this invention. 振動式直進フィーダの他の例の平面図である。It is a top view of other examples of a vibration type straight advance feeder. 金属製ボウルと部品との間の電荷の状態を示す図である。It is a figure which shows the state of the electric charge between metal bowls and components.
発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION
 次に、本発明の実施の形態について図面を参照しながら説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
 図1から図4は、本発明の実施の形態に係る部品供給装置PFの構成例を示す図である。この部品供給装置PFは、振動式ボウルフィーダ10と振動式直進フィーダ20とを有する。振動式ボウルフィーダ10は、ボウル11と加振器12を有して構成されている。ボウル11は、加振器12からねじり振動が与えられる。ボウル11は、中央に円形凸面状の底面14と、その底面14の周辺の一部からボウル11の外周辺まで段差をもって上がる螺旋状の搬送路15を有している。加振器12は、たとえば電磁振動器を駆動源として振動を発生する。加振器12の振動がボウル11に伝達されることで、ボウル11内に投入された部品(図示せず)が搬送路15を移動し、搬送路15の終端15aから円弧状の渡り搬送路16を経て振動式直進フィーダ20に送り込まれる。 1 to 4 are diagrams showing a configuration example of a component supply device PF according to an embodiment of the present invention. The component supply device PF includes a vibrating bowl feeder 10 and a vibrating linear feeder 20. The vibratory bowl feeder 10 includes a bowl 11 and a vibrator 12. The bowl 11 is given a torsional vibration from the vibrator 12. The bowl 11 has a circular convex bottom surface 14 at the center and a spiral conveyance path 15 that rises with a step from a part of the periphery of the bottom surface 14 to the outer periphery of the bowl 11. The vibrator 12 generates vibration using, for example, an electromagnetic vibrator as a drive source. When the vibration of the vibrator 12 is transmitted to the bowl 11, parts (not shown) thrown into the bowl 11 move along the conveyance path 15, and an arc-shaped crossing conveyance path from the end 15 a of the conveyance path 15. 16 and fed to the vibratory linear feeder 20.
 振動式ボウルフィーダ10には、部品搬送により発生する静電気を除去するための除電装置、たとえば、ボウル11の搬送面に向けてイオン化空気を吹きかけるイオン発生器30Aが設けられている。そして、ボウル11内に帯電した部品の電位を判別する電位センサ31を設け、その判別した電位の逆極性のイオン化空気をイオン発生器30Aからその部品に吹きかけるようにしてある。 The vibratory bowl feeder 10 is provided with a static eliminator for removing static electricity generated by component conveyance, for example, an ion generator 30A for blowing ionized air toward the conveyance surface of the bowl 11. A potential sensor 31 for discriminating the potential of the charged component is provided in the bowl 11, and ionized air having a polarity opposite to the discriminated potential is blown from the ion generator 30A to the component.
 振動式直進フィーダ20は、加振器21と、その加振器21の上部に取り付けられた直線状の搬送路22とを有して構成されている。加振器21は、固定ベース23を有する。搬送路22は、渡り搬送路16の終端に結合されている。加振器21の振動が搬送路22に伝達することで、渡り搬送路16を経て振動式直進フィーダ20に送り込まれた部品(図示せず)が搬送路22を移動する。 The vibration type linear feeder 20 includes a vibrator 21 and a linear conveyance path 22 attached to the top of the vibrator 21. The vibrator 21 has a fixed base 23. The conveyance path 22 is coupled to the end of the transfer conveyance path 16. By transmitting the vibration of the vibrator 21 to the conveyance path 22, a component (not shown) sent to the vibration type linear feeder 20 via the transfer conveyance path 16 moves on the conveyance path 22.
 振動式直進フィーダ20にも、部品搬送により発生する静電気を除去するための除電装置、たとえば、図8に示すように、搬送路22の上部空隙22aに向けてイオン化空気を吹き付けるイオン発生器30Bが設けられている。図示されていないが、振動式直進フィーダ20においても、搬送路22を搬送される部品の電位を判別する電位センサを設け、その判別した電位の逆極性のイオン化空気をイオン発生器30Bから搬送路22に吹きかけるようにしてもよい。 The vibration type linear feeder 20 is also equipped with a static eliminator for removing static electricity generated by parts conveyance, for example, an ion generator 30B for blowing ionized air toward the upper gap 22a of the conveyance path 22 as shown in FIG. Is provided. Although not shown in the figure, the vibration type linear feeder 20 is also provided with a potential sensor for determining the potential of a component transported through the transport path 22, and ionized air having a polarity opposite to the determined potential is transferred from the ion generator 30B to the transport path. 22 may be sprayed.
 部品供給装置PFの動作について説明する。ボウル11の底面14に部品が投入される。ボウル11が加振器12により振動されると、部品は底面14の周辺に向かって移動し、搬送路15に進入して一列に整列されながら、搬送路15に沿って螺旋状に搬送される。部品は搬送路の終端15aから渡り搬送路16を経て振動式直進フィーダ20の加振器21により振動されている搬送路22に進入する。搬送路22に進入した部品は、その搬送路22により搬送され、先端から目的の位置に排出される。 The operation of the component supply device PF will be described. Parts are put into the bottom surface 14 of the bowl 11. When the bowl 11 is vibrated by the vibrator 12, the components move toward the periphery of the bottom surface 14, enter the conveyance path 15 and are aligned in a line, and are conveyed spirally along the conveyance path 15. . The component enters the conveyance path 22 that is vibrated by the vibration exciter 21 of the vibration type linear feeder 20 through the transfer path 16 from the end 15a of the conveyance path. The parts that have entered the conveyance path 22 are conveyed by the conveyance path 22 and discharged from the tip to a target position.
 ボウル11について詳細に説明する。ボウル11は、たとえば非導電体を切り出して作られている。非導電体は、たとえば、樹脂製の合成樹脂材料であり、たとえば、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、エポキシ樹脂、フェノール樹脂、テフロン樹脂などである。 The bowl 11 will be described in detail. The bowl 11 is made by cutting out a non-conductor, for example. The non-conductor is, for example, a synthetic resin material made of resin, such as PET (polyethylene terephthalate), PP (polypropylene), epoxy resin, phenol resin, Teflon resin, and the like.
 ボウル11の素材を非導電性材料としたことによる効果について説明する。部品がボウル11内に投入されたとき、または搬送路15を搬送されるときに、部品とボウル11との摩擦により静電気が発生する。静電気が発生すると、ボウル11と部品のそれぞれの接触面には、逆極性の電荷が帯電する。図5の(a)の例では、ボウル11の接触面にマイナスの電荷が帯電し、部品Wの接触面にプラスの電荷が帯電する。このようにボウル11と部品Wの間のような短い距離において逆極性の電荷が対向すると、プラスとマイナスの電荷がそれぞれ引き合うことからボウルBと部品Wが引き合って吸着する。その結果、外部からの除電用イオン化空気iaがボウル11と部品Wの間に届かないので、ボウル11と部品Wに帯電した電荷を除電することができない。 The effect of using a non-conductive material for the bowl 11 will be described. When a part is thrown into the bowl 11 or transported through the transport path 15, static electricity is generated due to friction between the part and the bowl 11. When static electricity is generated, charges of opposite polarity are charged on the contact surfaces of the bowl 11 and the parts. In the example of FIG. 5A, a negative charge is charged on the contact surface of the bowl 11, and a positive charge is charged on the contact surface of the component W. In this way, when charges having opposite polarities face each other at a short distance such as between the bowl 11 and the part W, positive and negative charges attract each other, so that the bowl B and the part W attract and attract each other. As a result, since the ionized air ia for static elimination from the outside does not reach between the bowl 11 and the part W, the charges charged in the bowl 11 and the part W cannot be eliminated.
 このようにボウル11と部品Wが引き合って吸着した状態でも、たとえば部品間の衝突により部品が移動する。ボウル11の材質が非導電性の合成樹脂材料であるため、ボウル11に帯電した電荷は移動しない。すなわち図5(b)に示すように、部品が移動してもボウル11に帯電したマイナスの電荷は移動せずにそこに止まる。その結果、図5(a)に示した状態に比べ、ボウル11と部品Wが引き合って吸着しないので、外部からの除電用イオン化空気iaがボウル11と部品Wのそれぞれ帯電した表面との間に届き、部品Wに帯電した電荷を除電することができる。また、ボウル11に帯電した電荷も除電することができる。このようにボウル11の素材を非導電性材料とし、ボウル11に除電用イオン化空気を吹きかけるようにしたので、振動式パーツフィーダにおいて、部品Wとボウル11間に発生した静電気を効果的に除去することができる。 Thus, even when the bowl 11 and the part W are attracted and attracted, the part moves due to, for example, a collision between the parts. Since the material of the bowl 11 is a non-conductive synthetic resin material, the electric charge charged in the bowl 11 does not move. That is, as shown in FIG. 5B, even if the component moves, the negative charge charged in the bowl 11 does not move but stops there. As a result, compared to the state shown in FIG. 5A, the bowl 11 and the part W attract each other and are not adsorbed, so that the ionized air ia for discharging from the outside is between the charged surface of the bowl 11 and the part W. The charge charged on the component W can be eliminated. Further, the charge charged in the bowl 11 can be removed. In this way, the material of the bowl 11 is made of a non-conductive material, and ionizing air for static elimination is sprayed on the bowl 11, so that static electricity generated between the part W and the bowl 11 is effectively removed in the vibration type part feeder. be able to.
 さらに付言すると、金属製ボウルの場合は、ボウルの電位は低いので、イオン化空気を引き寄せる力が小さい。したがって、除電しにくい。それに対して、本発明の樹脂製ボウルの場合には、静電気を帯びたときのボウル表面の電位は高くなるので、イオン化空気を引き寄せる力が大きい。したがって、除電し易くなる。 Furthermore, in addition, in the case of a metal bowl, the potential of the ionized air is small because the potential of the bowl is low. Therefore, it is difficult to remove static electricity. On the other hand, in the case of the resin bowl of the present invention, the potential of the bowl surface when charged with static electricity is high, so that the force for attracting ionized air is large. Therefore, it becomes easy to remove static electricity.
 また、加振器12の振動周波数はボウル11の重さに依存する。ボウル11の重さが軽いと、振動周波数が高くなる。振動周波数を高くすることができれば、より早く、また細かいステップで部品を搬送することができ、搬送効率を向上させることができる。金属製に比べ樹脂製にすることでボウル11の重さを軽くすることができる。すなわちボウル11の素材を非導電性材料とすることで、部品の搬送効率を向上させることもできる。 Also, the vibration frequency of the vibrator 12 depends on the weight of the bowl 11. When the weight of the bowl 11 is light, the vibration frequency becomes high. If the vibration frequency can be increased, parts can be transported more quickly and in fine steps, and transport efficiency can be improved. The weight of the bowl 11 can be reduced by using resin instead of metal. That is, by making the material of the bowl 11 a non-conductive material, it is possible to improve the parts conveyance efficiency.
 以上においては、ボウル11の全体を非導電性材料とした場合を例として説明したが、一部を樹脂化することができる。ボウル11において、搬送時において部品と接触し静電気が発生する部分、具体的には部品の移動に伴って静電気が生じる部分のみを非導電性材料とすることもできる。通常、ボウル11の底部14に落下するように部品が投入される。すなわち底部14において部品との摩擦による静電気が発生しやすい。そこで、図6に示すように、ボウル51の底面14aの部分の材質を非導電性にし、他の部分の材質を導電性とすることができる。たとえば、底部14aの素材を樹脂とし、他の部分の素材を金属とすることができる。なお、図6中、底部14aに影を付けているのは、素材が他の部分と異なることを表すためである。 In the above description, the case where the entire bowl 11 is made of a non-conductive material has been described as an example, but a part of the bowl 11 can be made resin. In the bowl 11, only a portion that comes into contact with a component during transport and generates static electricity, specifically, a portion that generates static electricity as the component moves can be made of a non-conductive material. Usually, the parts are put in such a way that they drop onto the bottom 14 of the bowl 11. That is, static electricity is likely to be generated due to friction with parts at the bottom portion 14. Therefore, as shown in FIG. 6, the material of the bottom surface 14a of the bowl 51 can be made non-conductive, and the material of other parts can be made conductive. For example, the material of the bottom part 14a can be made of resin, and the material of other parts can be made of metal. In FIG. 6, the bottom 14a is shaded to indicate that the material is different from the other parts.
 また、搬送路15の所定の場所において部品の向きを検出し、正しい方向を向いていない部品をエアで吹き飛ばして底部14に落下させて再搬送させる場合がある。すなわち、吹き飛ばされた部品が落下する部分において静電気が発生しやすい。そこで図7に示すように、エア供給パイプ31によって吹き飛ばされた部品が落下する部分14bの素材を非導電性にし、他の部分の材質を導電性にすることができる。図7中、ボウル52の部品が落下する部分14bに影を付けているのは、素材が他の部分と異なることを表すためである。 Also, there is a case in which the orientation of the parts is detected at a predetermined place on the conveyance path 15 and the parts not facing the correct direction are blown off with air and dropped to the bottom 14 to be re-conveyed. That is, static electricity is likely to be generated at the part where the blown-off component falls. Therefore, as shown in FIG. 7, the material of the portion 14b where the parts blown off by the air supply pipe 31 fall can be made non-conductive, and the material of other portions can be made conductive. In FIG. 7, the part 14b where the parts of the bowl 52 fall is shaded to indicate that the material is different from the other parts.
 また、以上においては、振動式ボウルフィーダ10のボウル11の素材を非導電材料とする場合について言及したが、振動式直進フィーダ20の搬送路22の素材を非導電性材料とすることもできる。それにより振動式ボウルフィーダ10の場合と同様に、効果的に静電気を除去することができる。 In the above description, the case where the material of the bowl 11 of the vibration type bowl feeder 10 is a non-conductive material has been described. However, the material of the conveyance path 22 of the vibration type linear feeder 20 may be a non-conductive material. Thereby, the static electricity can be effectively removed as in the case of the vibrating bowl feeder 10.
 また、以上においては、ボウル11内を搬送される部品に対するイオン化空気の吹き付けを、図1のイオン発生器30Aによりボウル11の上方から行うようにしたが、図7に示すように、ボウル11の底面14の周辺近傍に適当な数の小孔17を設け、ボウル11の下側からその小孔17に上向きにイオン化空気を吹き付けるようにしてもよい。 Further, in the above, the ionized air is sprayed from above the bowl 11 by the ion generator 30A of FIG. 1 to the parts transported in the bowl 11, but as shown in FIG. An appropriate number of small holes 17 may be provided near the periphery of the bottom surface 14, and ionized air may be blown upward from the lower side of the bowl 11 to the small holes 17.
 なお、振動式ボウルフィーダ10の加振器12の振動周波数や強度は、搬送する部品をより効率的に搬送できる設定となっているが、一時的に強く振動させて除電しやすいようにすることもできる。たとえば、図9に示すように、運転モードを通常モードと除電モードの間で相互に切り替えることができるモード切替部40(40A、40B)を有するコントローラ50(50A、50B)を備えることができる。通常モードにおいて、加振器12は、搬送する部品をより効率的に搬送できる振動周波数や強度(以下、最適値という)で振動する。除電モードにおいて、最適値より所定の値だけ高い振動周波数や強度で振動する。 The vibration frequency and strength of the vibrator 12 of the vibratory bowl feeder 10 are set so that the parts to be transported can be transported more efficiently. You can also. For example, as shown in FIG. 9, a controller 50 (50A, 50B) having a mode switching unit 40 (40A, 40B) capable of switching the operation mode between the normal mode and the static elimination mode can be provided. In the normal mode, the vibrator 12 vibrates at a vibration frequency and intensity (hereinafter referred to as an optimum value) that can more efficiently transport the parts to be transported. In the static elimination mode, the vibration is generated at a vibration frequency and intensity higher by a predetermined value than the optimum value.
 図9の(A)は、コントローラ50Aのモード切替部40Aが通常モードを指定する押しボタンスイッチ41と、除電モードを指定する押しボタンスイッチ42とで構成されている例を示す。 FIG. 9A shows an example in which the mode switching unit 40A of the controller 50A includes a push button switch 41 for designating the normal mode and a push button switch 42 for designating the static elimination mode.
 図9の(B)は、コントローラ50Bのモード切替部40Bがパネルスイッチで構成されている例を示す。モード切替部40Bは、通常モード用の1組のスイッチと除電モード用の1組のスイッチを有する。通常モード用の1組のスイッチは、通常モードを指定するスイッチ41aと、通常モードを指定した後に供給電圧を上げるスイッチ41bと、通常モードを指定した後に供給電圧を下げるスイッチ41cである。除電モード用の1組のスイッチは、除電モードを指定するスイッチ42aと、除電モードを指定した後に供給電圧を上げるスイッチ42bと、除電モードを指定した後に供給電圧を下げるスイッチ42cである。 (B) of FIG. 9 shows an example in which the mode switching unit 40B of the controller 50B is configured by a panel switch. The mode switching unit 40B has a set of switches for the normal mode and a set of switches for the static elimination mode. One set of switches for the normal mode is a switch 41a for specifying the normal mode, a switch 41b for increasing the supply voltage after specifying the normal mode, and a switch 41c for decreasing the supply voltage after specifying the normal mode. One set of switches for the static elimination mode is a switch 42a for designating the static elimination mode, a switch 42b for increasing the supply voltage after designating the static elimination mode, and a switch 42c for lowering the supply voltage after designating the static elimination mode.
 コントローラ50Bは、運転中のイオン発生器30Aの振動周波数を表す表示部43を有する。この表示部43を見て、その表示値が目標値になるようにモード切替部40Bを正しく操作することができる。 The controller 50B includes a display unit 43 that indicates the vibration frequency of the ion generator 30A during operation. By looking at the display unit 43, the mode switching unit 40B can be correctly operated so that the display value becomes the target value.
 このコントローラ50Bの場合は、通常モードでは部品搬送速度が可変であり、除電モードでは部品搬送速度およびイオン化空気の単位時間当たり発生量が可変であり、部品の種類や数量などに応じて適切な搬送速度と除電性能を実現することができる。 In the case of this controller 50B, the part conveyance speed is variable in the normal mode, and in the static elimination mode, the part conveyance speed and the amount of ionized air generated per unit time are variable, and appropriate conveyance according to the type and quantity of the parts. Speed and static elimination performance can be realized.
 図10は、振動式直進フィーダの他の例を示す図である。この振動式直進フィーダ20’は、2つの部品収容部25を有する。その部品収容部25の間に、それぞれの部品収容部25の一方側端部25bに一端部が連結され、かつ、他方側(図10においては右側)に平行に延びる搬送路26を有する。そして、部品収容部25と搬送路26は、これらを下側から支持している加振器27から振動を与えられる。 FIG. 10 is a diagram showing another example of the vibration type linear feeder. This vibration type linearly moving feeder 20 ′ has two component housing portions 25. Between the component accommodating portions 25, one end portion is connected to one end portion 25b of each component accommodating portion 25, and the conveyance path 26 extends parallel to the other side (right side in FIG. 10). And the component accommodating part 25 and the conveyance path 26 are given the vibration from the vibrator 27 which is supporting these from the lower side.
 各部品収容部25の他方側端部25aの上面に、部品が投入される。投入された部品は、加振器27から与えられる振動により部品収容部25の一方側端部25bまで搬送されるとともに、その間に徐々に一列に整列される。整列された部品は1個ずつ部品収容部25の一方側端部25bからそれぞれの搬送路26の一方側端部26aに乗り移り、搬送路26の他方側端部(図4においては右側端部)まで搬送される。搬送路26の他方側端部まで搬送された部品は、目的位置に向かって排出される。 The parts are thrown into the upper surface of the other end 25a of each part accommodating part 25. The thrown-in components are conveyed to one end portion 25b of the component accommodating portion 25 by vibrations applied from the vibrator 27, and are gradually aligned in a row therebetween. The aligned parts are transferred one by one from the one end 25b of the component storage unit 25 to the one end 26a of each conveying path 26, and the other end (the right end in FIG. 4) of the conveying path 26. It is conveyed to. The parts conveyed to the other end of the conveyance path 26 are discharged toward the target position.
 上記振動式直進フィーダ20’においては、少なくとも部品収容部25の端部、すなわち、部品投入管より部品が部品収容部25に落下する領域、好ましくは、部品収容部25の全域または/および搬送路26の一部または全部を樹脂製としてある。 In the vibration type linear feeder 20 ′, at least the end of the component accommodating portion 25, that is, the region where the component falls into the component accommodating portion 25 from the component input pipe, preferably the entire region of the component accommodating portion 25 and / or the conveyance path. Part or all of 26 is made of resin.
 このような樹脂化により、振動式直進フィーダ20’においては、部品と部品収容部25または搬送路26との接触摩擦により、または部品同士の接触摩擦により静電気が生じても、部品が部品収容部25または搬送路26に静電気力で吸着されることなく、円滑に搬送されることができる。したがって、振動式直進フィーダ20’においても、イオン発生器を設け、部品収容部25または搬送路26に向けてイオン化空気を吹きかけることにより、移動する部品の静電気を効果的に除去することができる。 By virtue of such resinization, in the vibration type linear feeder 20 ′, even if static electricity occurs due to contact friction between the component and the component storage portion 25 or the conveyance path 26, or due to contact friction between the components, the component is stored in the component storage portion. 25 or the transport path 26 can be smoothly transported without being attracted by electrostatic force. Therefore, the vibration type linear feeder 20 ′ can also effectively remove static electricity from moving parts by providing an ion generator and blowing ionized air toward the part accommodating part 25 or the conveyance path 26.
 振動式直進フィーダ20’にも、図9に例示したような、運転モードを通常モードと除電モードに互いに切り替えることができるモード切替部40を有するコントローラ50を備えることが好ましい。 It is preferable that the vibration type linearly moving feeder 20 ′ also includes a controller 50 having a mode switching unit 40 that can switch the operation mode to the normal mode and the static elimination mode as illustrated in FIG. 9.
 なお、以上においては、部品供給装置PFは、振動式ボウルフィーダ10と振動式直進フィーダ20とを有しているとしたが、振動式ボウルフィーダ10および振動式直進フィーダ20のいずれか一方を有するようにすることもできる。 In the above description, the component supply device PF includes the vibrating bowl feeder 10 and the vibrating linear feeder 20. However, the component feeder PF includes either the vibrating bowl feeder 10 or the vibrating linear feeder 20. It can also be done.
 10  振動式ボウルフィーダ
 12  加振器
 13  ボウル
 14  底面 
 15  搬送路
 20,20’ 振動式直進フィーダ
 21  加振器
 22  搬送路
 30A,30B イオン発生器(除電装置)
 31  電位センサ
 
 
 
 
 
10 Vibrating bowl feeder 12 Exciter 13 Bowl 14 Bottom
DESCRIPTION OF SYMBOLS 15 Conveyance path 20,20 'Vibrating linear feeder 21 Exciter 22 Conveyance path 30A, 30B Ion generator (static elimination apparatus)
31 Potential sensor



Claims (7)

  1.  収容する部品を振動により整列させて搬送する部品収容部と、
     その部品収容部に振動を与える加振器と
      を有する振動式パーツフィーダを用いる部品供給装置において、
      前記振動式パーツフィーダは、少なくとも部品搬送に伴って静電気が生じる部分が非導電体とされている
      ことを特徴とする部品供給装置。
    A component storage unit that conveys the components to be accommodated by vibration; and
    In a component supply apparatus using a vibratory part feeder having a vibrator for applying vibration to the component housing part,
    In the vibratory parts feeder, at least a portion where static electricity is generated during component transportation is a non-conductive material.
  2.  請求項1記載の部品供給装置において、
     非導電体は樹脂であることを特徴とする部品供給装置。
    The component supply apparatus according to claim 1,
    The component supply apparatus, wherein the non-conductor is a resin.
  3.  請求項1または2記載の部品供給装置において、
     前記振動式パーツフィーダは振動式ボウルフィーダであり、ボウルの全体または一部の素材が樹脂である部品供給装置。
    In the component supply apparatus according to claim 1 or 2,
    The vibratory part feeder is a vibratory bowl feeder, and the whole or part of the bowl is made of resin.
  4.  請求項1または2記載の部品供給装置において、
     前記振動式パーツフィーダは振動式直進フィーダであり、その振動式直進フィーダの整列部の全部または一部の素材が樹脂である部品供給装置。
    In the component supply apparatus according to claim 1 or 2,
    The vibratory parts feeder is a vibratory linear feeder, and the whole or a part of the alignment unit of the vibratory linear feeder is resin.
  5.  請求項1~4のいずれか1項に記載の部品供給装置において、
     前記振動式パーツフィーダ内で部品が通過する部分に向けて、除電用イオンを吹きかける除電装置を
     さらに有することを特徴とする部品供給装置。
    The component supply apparatus according to any one of claims 1 to 4,
    The component supply device further comprising a static elimination device that sprays ions for static elimination toward a portion through which the component passes in the vibration type part feeder.
  6.  請求項5記載の部品供給装置において、
     帯電した部品の電位を判別する電位センサを設け、
     前記除電装置は前記電位センサが判別した電位の逆極性のイオン化空気をその部品に吹きかける
     ことを特徴とする部品供給装置。
    In the component supply apparatus according to claim 5,
    Provide a potential sensor to determine the potential of charged parts,
    The said static elimination apparatus sprays the ionized air of the reverse polarity of the electric potential which the said electric potential sensor discriminate | deposited on the component.
  7.  請求項1~6のいずれか1項に記載の部品供給装置において、
     通常の振動の強さの運転モードと、それよりも強く振動する除電モードの少なくても2つのモードに切り替えることができるコントローラを備えた部品供給装置。
     
     
    The component supply apparatus according to any one of claims 1 to 6,
    A component supply device including a controller that can switch between an operation mode of normal vibration intensity and a static elimination mode that vibrates more strongly than that at least two modes.

PCT/JP2013/084900 2013-12-26 2013-12-26 Component supply device WO2015097816A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/084900 WO2015097816A1 (en) 2013-12-26 2013-12-26 Component supply device
PCT/JP2014/079890 WO2015098323A1 (en) 2013-12-26 2014-11-11 Component supply device
JP2015554661A JP6373871B2 (en) 2013-12-26 2014-11-11 Parts supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084900 WO2015097816A1 (en) 2013-12-26 2013-12-26 Component supply device

Publications (1)

Publication Number Publication Date
WO2015097816A1 true WO2015097816A1 (en) 2015-07-02

Family

ID=53477752

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/084900 WO2015097816A1 (en) 2013-12-26 2013-12-26 Component supply device
PCT/JP2014/079890 WO2015098323A1 (en) 2013-12-26 2014-11-11 Component supply device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079890 WO2015098323A1 (en) 2013-12-26 2014-11-11 Component supply device

Country Status (2)

Country Link
JP (1) JP6373871B2 (en)
WO (2) WO2015097816A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107055044A (en) * 2017-03-21 2017-08-18 北京领邦智能装备股份公司 Vibration feeding device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651536B (en) * 2019-11-14 2023-11-17 株式会社富士 Bulk feeder and component mounting machine
CN111500984B (en) * 2020-04-22 2022-04-19 广东生波尔光电技术有限公司 Special workpiece coating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152018A (en) * 1989-11-06 1991-06-28 Toshiba Corp Aligning feeding device for ceramic part
JPH0556827U (en) * 1991-06-19 1993-07-27 株式会社産機 Parts feeder
JPH08300698A (en) * 1995-05-08 1996-11-19 Mitsubishi Electric Corp Thermal recording apparatus
JP2002002944A (en) * 2000-04-18 2002-01-09 Ntn Corp Device for supplying minute parts

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725438A (en) * 1993-07-09 1995-01-27 Murata Seiko Kk Parts feeder
US5913428A (en) * 1995-02-16 1999-06-22 Graham; S. Neal Vibratory bowl and associated parts orienting tooling with pivotal top confinement
JP2000226115A (en) * 1999-02-05 2000-08-15 Shinko Electric Co Ltd Part selecting device
JP4734733B2 (en) * 2000-12-12 2011-07-27 シンフォニアテクノロジー株式会社 Vibration parts conveyor
JP2003341825A (en) * 2002-05-28 2003-12-03 Matsushita Electric Works Ltd Parts feeder
JP4458193B2 (en) * 2009-01-05 2010-04-28 パナソニック株式会社 Electronic component mounting equipment
JP5870593B2 (en) * 2011-09-30 2016-03-01 シンフォニアテクノロジー株式会社 Parts feeder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152018A (en) * 1989-11-06 1991-06-28 Toshiba Corp Aligning feeding device for ceramic part
JPH0556827U (en) * 1991-06-19 1993-07-27 株式会社産機 Parts feeder
JPH08300698A (en) * 1995-05-08 1996-11-19 Mitsubishi Electric Corp Thermal recording apparatus
JP2002002944A (en) * 2000-04-18 2002-01-09 Ntn Corp Device for supplying minute parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107055044A (en) * 2017-03-21 2017-08-18 北京领邦智能装备股份公司 Vibration feeding device

Also Published As

Publication number Publication date
JPWO2015098323A1 (en) 2017-03-23
JP6373871B2 (en) 2018-08-15
WO2015098323A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
WO2006090608A1 (en) Vibrating bowl, vibrating bowl feeder, and vacuum deposition apparatus
WO2015097816A1 (en) Component supply device
JP2011133458A (en) Visual inspection device for workpiece, and visual inspection method for workpiece
KR101436449B1 (en) Apparatus and method of inspecting appearance of work
JP2008260594A (en) Part conveying device
JP5463585B2 (en) Parts supply device
JP2000311797A (en) Static eliminator and its method
JP2011131154A (en) Sorting device
JP4734733B2 (en) Vibration parts conveyor
JP6097159B2 (en) Static eliminator for parts feeder
JP2010119911A (en) Electrostatic sorting method and electrostatic sorting apparatus
JP2004025128A (en) Vibration sorter for conductive material and plastic material
JP2009233538A (en) Sorting apparatus and sorting method
JP2005138030A (en) Electrostatic sorting apparatus
JP5050268B2 (en) Sorting device and sorting method
JP5701237B2 (en) Electrostatic sorting device
JP2006323013A (en) Device for separating toner
JP2004049958A (en) Oscillating separator for conductive material and plastic material
JP2017035670A (en) Screening equipment
JP4825226B2 (en) Electrostatic sorting device
JP3391490B2 (en) Powder transfer device
CN214812711U (en) Material conveying mechanism and sorting device
AU2009209037A1 (en) High-tension electrostatic separator lifting electrode
JP2018154414A (en) Sheet supply device
JP2002346433A (en) Method and device for sorting plastic by vibration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP