WO2015096348A1 - 改善离子注入的方法及执行其的离子注入设备 - Google Patents

改善离子注入的方法及执行其的离子注入设备 Download PDF

Info

Publication number
WO2015096348A1
WO2015096348A1 PCT/CN2014/076949 CN2014076949W WO2015096348A1 WO 2015096348 A1 WO2015096348 A1 WO 2015096348A1 CN 2014076949 W CN2014076949 W CN 2014076949W WO 2015096348 A1 WO2015096348 A1 WO 2015096348A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion implantation
deceleration voltage
deceleration
voltage
unevenness
Prior art date
Application number
PCT/CN2014/076949
Other languages
English (en)
French (fr)
Inventor
田慧
皇甫鲁江
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/422,364 priority Critical patent/US10002799B2/en
Publication of WO2015096348A1 publication Critical patent/WO2015096348A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0475Changing particle velocity decelerating
    • H01J2237/04756Changing particle velocity decelerating with electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24542Beam profile

Definitions

  • the invention belongs to the technical field of ion implantation, and particularly relates to a method for improving ion implantation and an ion implantation apparatus for performing the same. Background technique
  • ion implantation techniques are used to dope display panels, semiconductor wafers, or other workpieces.
  • the doping process is typically performed on a substrate.
  • the diffusion capability of the dielectric shield layer on the substrate can be altered by implanting specific types of ions.
  • the ion implantation process is performed in a batch process, that is, a plurality of substrates are simultaneously injected or injected in batches.
  • a batch process that is, a plurality of substrates are simultaneously injected or injected in batches.
  • An object of the present invention is to solve the problems of stability and uniformity of ion beam of an ion implantation apparatus in the prior art, and therefore the present invention provides a method of improving ion implantation and an ion implantation apparatus for performing the same.
  • the technical solution adopted to solve the technical problem of the present invention is a method for improving ion implantation, comprising the following steps: 51. Detecting beam density and beam distribution unevenness under different deceleration voltages;
  • the step S1 includes the following steps:
  • the initial value of the deceleration voltage is set to Vo, the beam density is po, the beam unevenness is xo, the deceleration voltage is optimized to Vo ⁇ L, the beam density is controlled by p, and the beam non-uniformity is controlled. Less than q;
  • the step S2 includes the following steps:
  • the starting points for optimizing the n deceleration voltages are sorted in order of small unevenness x g from small to large, and sequentially used as a starting point for deceleration voltage optimization;
  • the starting point of each deceleration voltage optimization is evaluated in turn, and the ion implantation process is performed under the deceleration voltage Vi corresponding to the starting point of the i-th deceleration voltage optimization, and the beam unevenness corresponding to the deceleration voltage 1 ⁇ 4 is obtained as Xi, every The predetermined time interval (for example, each time period At) detects and records the corresponding flow distribution unevenness, tests a total of k times, and records the recorded beam distribution unevenness as Xi2 , ... 3 ⁇ 4 ];
  • step S22 is performed, that is, step S22 is performed for the decelerating voltage 1 ⁇ 4 +1 .
  • the p is 5%; and the q is 10%.
  • the m is a natural number greater than or equal to 10.
  • said L Vo /5.
  • the m test points are evenly distributed within an optimized range V 0 ⁇ L of the deceleration voltage.
  • the W is 3%.
  • the k is a natural number greater than or equal to 10.
  • the step S3 comprises ion implantation of at least one substrate at the determined working deceleration voltage.
  • the present invention provides an ion implantation apparatus which performs the above-described method of improving ion implantation.
  • the method for improving ion implantation and the ion implantation device for performing the method for improving ion implantation provided by the present invention adjust the deceleration voltage of the decelerating electrode of the ion implantation device to determine the deceleration voltage of the decelerating electrode, so that the beam current density and the beam current distribution are not
  • the hook degree is within the predetermined control range, thereby ensuring the performance of each substrate in the same batch or between batches.
  • Figure 1 is a flow chart showing an ion beam control method of an ion implantation apparatus in Embodiment 1 of the present invention.
  • Fig. 2 is a flow chart showing the detection of the beam density and the beam distribution unevenness at different deceleration voltages in the first embodiment of the present invention.
  • Fig. 3 is a flow chart for determining the operational deceleration voltage based on the beam current density and the beam current distribution unevenness in Embodiment 1 of the present invention. detailed description
  • the present invention provides a method for improving ion implantation, which can be applied in any type of ion beam implantation, so that the beam density and the beam distribution unevenness are within a predetermined control range to ensure the same batch or different batches.
  • the present invention provides a method of improving ion implantation comprising the following steps:
  • Step S1 detecting beam density and beam distribution unevenness at different deceleration voltages
  • Step S2 determining a working deceleration voltage according to the beam current density and the beam distribution unevenness degree
  • step S3 ion implantation is performed at the determined working deceleration voltage.
  • the step S1 includes the following steps: Step S11, setting an initial value of the parameter
  • control parameters of the ion implantation process are set as follows:
  • the initial value of the deceleration voltage is set to Vo
  • the beam density is po
  • the beam unevenness is Xo
  • the deceleration voltage is optimized to be Vo ⁇ L
  • the beam density is The control error range is p
  • the beam non-uniformity is less than q.
  • the initial value of the deceleration voltage is V. It is the decelerating voltage when the previous process is stable; the beam density p. And beam unevenness x. The beam density and beam unevenness corresponding to the decelerating voltage at the time of the previous process stabilization.
  • V the initial value of the deceleration voltage. This parameter is adjusted nearby to ensure batch stability of the ion implantation process.
  • the process control parameters q, p, L of the ion implantation apparatus are empirically set according to the performance of the ion implantation apparatus and the requirements of the substrate processing.
  • the beam distribution unevenness is less than 10%, that is, q is 10%; and the control error range p of the beam density is 5%.
  • the optimum range of the deceleration voltage is V. ⁇ L is VoiVo /S a
  • Step S12 initially determining the starting point of the deceleration voltage optimization
  • the beam density p g and the beam unevenness x g of the m test points are determined;
  • m is a natural number greater than or equal to 10. The more the test points are selected, the more accurate the optimized deceleration voltage is.
  • the m test points are evenly distributed within the range of Vo ⁇ L of the deceleration voltage, so that a better working deceleration voltage is not easily missed.
  • step S2 specifically includes the following steps:
  • Step S21 screening the starting point of the deceleration voltage optimization
  • the beam density I p g -p will be satisfied.
  • the deceleration voltage of 11 test points with I ⁇ and beam non-uniformity ⁇ ⁇ is used as a starting point set for deceleration voltage optimization; that is, the above m test points are screened to find n sets of starting points for deceleration voltage optimization.
  • the starting points of the optimized n deceleration voltages are sorted according to the beam unevenness x g from small to large, which are sequentially used as starting points for deceleration voltage optimization, and are respectively recorded as (x gl , x g2 x gi x g "). Since the beam is smaller unevenness test points, the better the quality of the ion beam which, thus the target current density and current density satisfy the following conditions set within a certain error range, preferred The deceleration voltage corresponding to the test point where the beam unevenness is small is evaluated, where l ⁇ i ⁇ n.
  • Step S22 pre-work deceleration voltage evaluation
  • the starting point of each deceleration voltage optimization is taken as the pre-work deceleration voltage, and the fluctuation range of the beam unevenness corresponding to each pre-operation deceleration voltage at different time points is used as a criterion for evaluating the pre-work deceleration voltage, thereby determining the Whether the pre-work deceleration voltage is the working deceleration voltage.
  • the pre-work deceleration voltage evaluation is sequentially performed in the order of the starting points optimized for each deceleration voltage, and the pre-operation deceleration voltage corresponding to the minimum beam unevenness x gl determined in step S21 is first evaluated.
  • the evaluation process of each pre-work deceleration voltage 1 ⁇ 4 is: performing an ion implantation process at a deceleration voltage 1 ⁇ 4 corresponding to the starting point of the i-th deceleration voltage optimization, and obtaining a beam corresponding to the deceleration voltage 1 ⁇ 4 in step S12.
  • the flow unevenness is Xi
  • the At test and the phase are recorded every time period.
  • the beam current distribution is not uniform, so that the total test is performed k times, and the recorded beam unevenness is recorded as Xir e [ Xil , Xi2 , . . . X ik ].
  • the k is a natural number greater than or equal to 10, and the more test points, the more sufficient data for optimizing the deceleration voltage.
  • the above parameters can be adjusted according to experience and application scenarios.
  • the length of the time period At and the number k of cycles can be adjusted in combination.
  • Step S23 determining the working deceleration voltage
  • the X ir Xi error ratio (which is IX ir -Xi I / Xi) and a beam current control error limit unevenness comparing W;
  • W is 3%, which requires that the pre-operation deceleration voltage has a small fluctuation range of the corresponding beam unevenness at different time points.
  • W can also be adjusted according to a specific application scenario.
  • step S3 is performed next, that is, ion implantation is performed at the operation deceleration voltage 1 ⁇ 4.
  • step S22 is performed, that is, the starting point for optimizing the next deceleration voltage V i+1 is continued (ie, A pre-work deceleration voltage V i+1 ) is evaluated, and it is determined in step S23 whether the pre-operation deceleration voltage 1+1 is the operation deceleration voltage, and if so, the step S23 of determining the operation deceleration voltage ends, and then step S3 is performed.
  • step S22 that is, the pre-operation deceleration voltage V i+2 is evaluated, and the pre-operation deceleration voltage V i+2 is determined through step S23. Whether it is the working deceleration voltage, this step determines the working deceleration voltage. In this embodiment, the repetitive operation is performed as described above until an operational deceleration voltage is determined.
  • the embodiment of the present invention obtains the working deceleration voltage as the starting point for the optimized deceleration voltage optimization, and sequentially evaluates the pre-operation deceleration voltage according to the order of the uneven distribution of the beam distribution from small to large, that is, If the pre-work deceleration voltage 1 corresponding to the minimum beam unevenness 81 in step S21 passes the step S22 and step S23 are determined as the working deceleration voltage, then step S3 may be performed, that is, ion implantation is performed at the working deceleration voltage; if the minimum beam non-uniformity x g i in step S21 corresponds to the pre-operation deceleration voltage passing step S22 and step S23 are determined as the non-operating deceleration voltage, and then the pre-operation deceleration voltage V 2 corresponding to the second small beam unevenness x g2 is evaluated, and so on, and finally a working deceleration voltage is determined to be 1 ⁇ 4.
  • At least one substrate is ion-implanted at the determined working deceleration voltage.
  • the substrate is 10 pieces, of course, It is also possible to increase or decrease the number of blocks of the substrate as the case may be.
  • the ion implantation of the substrate ensures the uniformity and stability of the ion beam, so as to ensure that the performance of the treated substrate between each batch and different batches is relatively consistent, thereby ensuring that the substrate is made from the substrate.
  • the performance of semiconductor devices remains relatively consistent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种改善离子注入的方法和一种执行该改善离子注入的方法的离子注入设备,属于离子注入技术领域,其可解决现有的离子注入设备离子束的稳定性和均匀性差的问题。改善离子注入的方法包括以下步骤:步骤S1,检测不同减速电压下的束流密度和束流分布不均匀度;步骤S2,根据所述束流密度和束流分布不均匀度确定工作减速电压;以及步骤S3,在确定的工作减速电压下进行离子注入。

Description

改善离子注入的方法及执行其的离子注入设备 技术领域
本发明属于离子注入技术领域, 具体涉及一种改善离子注入 的方法及执行其的离子注入设备。 背景技术
在半导体器件的制造工艺中, 离子注入技术用于对显示面板、 半导体晶片或者其他工件进行掺杂。掺杂过程通常在基板上进行, 为了在基板上达到各种预期结果, 可以通过注入特定类型的离子 来改变基板上的电介盾层的扩散能力。
在实际应用中, 离子注入过程以分批次的方式来进行, 即, 多个基片被同时进行注入或者分批次进行注入。 以这种方式处理 多个或多批基板时, 就要求离子注入设备能持续地产生均匀且稳 定的离子束。
但是常规的离子注入设备在处理大批量基板时, 离子束的稳 定性和均勾性却都是不断变化的, 即, 在处理不同批次的基板时, 离子束的均勾性和稳定性存在很大差异, 这就无法保证每个批次 中以及不同批次之间各处理后的基材性能的一致性, 从而, 离子 注入的稳定性和均勾性成为目前半导体工艺中噬需解决的一个问 题。 在现有的技术中, 为了解决离子注入的稳定性问题, 最常用 的方法是改进设备的结构, 但这种方法成本较高, 且离子注入的 稳定性仍然较低。 发明内容
本发明的目的是解决现有技术中离子注入设备的离子束的稳 定性和均勾性差的问题, 因此本发明提供了一种改善离子注入的 方法及执行其的离子注入设备。
解决本发明技术问题所采用的技术方案是一种改善离子注 入的方法, 包括以下步骤: 51 , 检测不同减速电压下的束流密度和束流分布不均匀度;
52,根据所述束流密度和束流分布不均勾度确定工作减速电 压; 以及
53 , 在确定的工作减速电压下进行离子注入。
优选的是, 所述步骤 S1包括以下步骤:
S11 , 设定参数初始值
设定减速电压的初始值为 Vo, 束流密度为 po、 束流不均匀 度为 xo、 减速电压的优化范围为 Vo±L, 束流密度的控制误差范 围为 p, 束流不均匀度控制小于 q;
S12, 初步确定减速电压优化的出发点
在减速电压的优化范围 Vo±L内取 m个不同的减速电压测试 点, 分别测定该 m个测试点的束流密度 pg和束流不均匀度 xg
优选的是, 所述步骤 S2包括以下步骤:
521 , 筛选减速电压优化的出发点
将满足束流密度 I pg-p。 I < 且束流不均匀度 8 < 的 n个 测试点的减速电压作为减速电压优化的出发点集合;
将 n个减速电压优化的出发点按束流不均勾度 xg由小到大 的顺序进行排序, 并依次作为减速电压优化的出发点;
522, 预工作减速电压评价
对各减速电压优化的出发点依次进行评价, 在与第 i个减速 电压优化的出发点相对应的减速电压 Vi下进行离子注入工艺, 获 得减速电压 ¼所对应的束流不均匀度为 Xi,每隔预定时间间隔(例 如, 每个时间周期 At )检测并记录相应的流分布不均匀度, 共测 试 k次, 并将记录的束流分布不均勾度分别记为 Xi2, ... ¾];
523, 确定工作减速电压
将 xir与 Xi的误差比例值 ( I Xir-Xi I / X; )和束流不均匀度控 制误差上限 W进行比较;
当 xir 均满足( I xir-Xi I / Xi) < W时, 将与该第 i个测试点对 应的减速电压 ¼确定为工作减速电压; 当至少一个 xir满足( I xir-Xi I / xi)≥W时, 则执行 i=i+l , 并 执行步骤 S22, 即, 针对减速电压 ¼+1执行步骤 S22。
优选的是, 所述的 p为 5%; 所述的 q为 10%。
优选的是, 所述的 m为大于等于 10的自然数。
优选的是, 所述的 L=Vo /5。
优选的是, 所述的 m个测试点在减速电压的优化范围 V0±L 内均匀分布。
优选的是, 所述的 W为 3%。
优选的是, 所述的 k为大于等于 10的自然数。
优选的是, 所述步骤 S3包括在所确定的工作减速电压下对 至少一块基材进行离子注入。
此外,本发明还提供了一种执行上述改善离子注入的方法的 离子注入设备。
本发明提供的改善离子注入的方法和执行改善离子注入的方 法的离子注入设备, 通过对离子注入设备减速电极的减速电压进 行调整, 确定减速电极的工作减速电压, 使束流密度和束流分布 不均勾度处于预定的控制范围内, 从而保证了同批次中或批次间 各基板的性能一致。 附图说明
图 1是本发明实施例 1中的离子注入设备的离子束控制方法 的流程图。
图 2是本发明实施例 1中的检测不同减速电压下束流密度和 束流分布不均勾度的流程图。
图 3是本发明实施例 1中的根据所述束流密度和束流分布不 均匀度确定工作减速电压的流程图。 具体实施方式
为使本领域技术人员更好地理解本发明的技术方案, 下面结 合附图和具体实施方式对本发明作进一步详细描述。 本发明提供了一种改善离子注入的方法, 可以在任何类型的 离子束注入中应用, 使束流密度和束流分布不均勾度处于预定的 控制范围, 以保证同批次或不同批次间经过离子注入后的基板的 性能的一致性。
实施例 1
如图 1所示, 本发明提供一种改善离子注入的方法, 包括以 下步骤:
步骤 S1 , 检测不同减速电压下的束流密度和束流分布不均 匀度;
步骤 S2, 根据所述束流密度和束流分布不均勾度确定工作 减速电压; 以及
步骤 S3, 在确定的工作减速电压下进行离子注入。
具体地, 如图 2所示, 所述的步骤 S1具体包括以下步骤: 步骤 S11 , 设定参数初始值
具体地, 如下设定离子注入工艺的控制参数: 设定减速电压 的初始值为 Vo, 束流密度为 po、 束流不均匀度为 Xo、 减速电压 的优化范围为 Vo±L, 束流密度的控制误差范围为 p, 以及束流不 均匀度小于 q。
优选的, 减速电压的初始值 V。为前期工艺稳定时的减速电 压; 束流密度 p。和束流不均匀度 x。为与前期工艺稳定时的减速电 压相对应的束流密度和束流不均匀度。 当操作者认为离子注入工 艺不稳定时,可以在减速电压的初始值 V。附近对该参数进行调整, 以保证离子注入工艺的批次稳定性。
根据离子注入设备的性能、 基材处理的要求经验性地设定离 子注入设备的工艺控制参数 q、 p、 L。 优选的, 束流分布不均匀 度小于 10%, 即 q为 10%; 束流密度的控制误差范围 p为 5%。 优 选的, 减速电压的优化范围 V。±L为 VoiVo /S a
步骤 S12, 初步确定减速电压优化的出发点
在减速电压的优化范围 Vo±L内取 m个不同的减速电压测试 点, 分别测定这 m个测试点的束流密度 pg和束流不均勾度 xg; 优选的, m为大于等于 10的自然数, 测试点选的越多, 则优 化得到的减速电压也就越精确。
优选的, 所述的 m个测试点在减速电压的 Vo±L范围内均匀 分布, 这样不易遗漏较优的工作减速电压。
应当理解的是, 上述只是一种检测特定减速电压下的束流密 度和束流不均勾度的方法, 现有技术中的其它类似方法也是适用 的。
如图 3所示, 所述步骤 S2具体包括以下步骤:
步骤 S21 , 筛选减速电压优化的出发点
将满足束流密度 I pg-p。 I < 且束流不均匀度 § < 的11个测 试点的减速电压作为减速电压优化的出发点集合; 即对上述的 m 个测试点进行筛选, 找出 n个作为减速电压优化的出发点的集合。
然后, 将筛选得到的 n个减速电压优化的出发点按束流不均 匀度 xg由小到大进行排序, 依次作为减速电压优化的出发点, 并 将它们分别记为 (xgl、 xg2 xgi xg„) 。 因为束流不均 匀度越小的测试点, 其离子束的品质越好, 因此在束流密度与设 定的目标束流密度满足在一定误差范围内的条件下, 优先选择与 束流不均勾度小的测试点相对应的减速电压进行评价, 其中 l≤i≤n。
步骤 S22, 预工作减速电压评价
将各减速电压优化的出发点作为预工作减速电压, 并将各预 工作减速电压在不同时间点对应的束流不均匀度的波动范围的大 小作为对预工作减速电压进行评价的标准, 从而确定该预工作减 速电压是否为工作减速电压。
具体地, 按照各减速电压优化的出发点的顺序依次进行预工 作减速电压评价, 首先对步骤 S21中确定的与最小束流不均匀度 xgl对应的预工作减速电压 进行评价。示例的,每个预工作减速 电压 ¼的评价过程为: 在与第 i个减速电压优化的出发点相对应 的减速电压 ¼下进行离子注入工艺, 并在步骤 S12中获得减速电 压 ¼所对应的束流不均匀度为 Xi ,每隔时间周期 At测试并记录相 应的束流分布不均勾度, 这样总共测试 k次, 并将记录的各束流 分布不均匀度分别记为 Xire [Xil, Xi2, . . . Xik]。
优选的, 所述的 k为大于等于 10的自然数, 测试点越多对减 速电压优化的数据越充分。
可以理解的是,上述参数可以根据经验和应用情景进行调整。 例如,时间周期 At的长度和周期的个数 k可以结合起来进行调整。
步骤 S23 , 确定工作减速电压
将 Xir与 Xi的误差比例 (其为 I Xir-Xi I / Xi )和束流不均匀度 控制误差上限 W进行比较;
其中, 优选的, W为 3%, 这要求预工作减速电压在不同时 间点的对应束流不均匀度的波动范围较小, 当然, 也可以根据具 体的应用情景对 W进行调整。
具体地, 当所有 xir 均满足( I xir-Xi I / xi) < W时, 则将该第 i个测试点对应的减速电压 ¼确定为工作减速电压, 从而确定工 作减速电压的步骤 S23结束,接下来执行步骤 S3, 即在工作减速 电压 ¼下进行离子注入。
当至少一个 xir满足( I Xir-Xi I / xi)≥W时, 则执行 i=i+l , 并 执行步骤 S22,即,继续对下一个减速电压 Vi+1优化的出发点(即 下一个预工作减速电压 Vi+1 )进行评价, 并通过步骤 S23判定此 预工作减速电压 1+1是否为工作减速电压, 若是, 则确定工作减 速电压的步骤 S23结束, 并接下来执行步骤 S3, 即在工作减速电 压下 ¼+1进行离子注入; 若不是, 则执行步骤 S22, 即, 对预工 作减速电压 Vi+2进行评价, 并通过步骤 S23确定此预工作减速电 压 Vi+2是否为工作减速电压, 以此步骤确定工作减速电压。 在该 实施例中, 如上所述进行重复操作, 直到确定了一个工作减速电 压为止。
综上所述, 本发明实施例获取工作减速电压是针对筛选出的 减速电压优化的出发点来按照束流分布不均勾度从小到大的顺 序依次对预工作减速电压进行评价的, 也就是说, 若步骤 S21中 的与最小束流不均匀度 81对应的预工作减速电压 1通过步骤 S22和步骤 S23被确定为工作减速电压, 则可进行步骤 S3 , 即在 工作减速电压下 ¼进行离子注入; 若步骤 S21中的最小束流不 均匀度 xgi对应的预工作减速电压 通过步骤 S22和步骤 S23被 确定为非工作减速电压, 则对第二小的束流不均匀度 xg2对应的 预工作减速电压 V2进行评价, 依次类推, 最终确定一个工作减 速电压 ¼。
经过上述的图 3中步骤 S21、 S22、 S23确定了工作减速电压 后, 在所确定的工作减速电压下对至少一块基材进行离子注入, 优选的, 所述的基材为 10块, 当然, 也可以在根据具体情况增加 或减少基材的块数。 基材进行离子注入, 保证了离子束的均勾性和稳定性, 从而保证 每个批次和不同批次之间处理后的基材的性能保持相对一致, 从 而保证由离该基材制作的半导体器件的性能保持相对一致。
可以理解的是, 以上实施方式仅仅是为了说明本发明的原理 而采用的示例性实施方式, 然而本发明并不局限于此。 对于本领 域内的普通技术人员而言, 在不脱离本发明的精神和实质的情况 下, 可以做出各种变型和改进, 这些变型和改进也视为本发明的 保护范围。

Claims

权利要求书
1.一种改善离子注入的方法, 其特征在于, 包括以下步骤: 步骤 S1 , 检测不同减速电压下的束流密度和束流分布不均 匀度;
步骤 S2, 根据所述束流密度和束流分布不均勾度确定工作 减速电压; 以及
步骤 S3 , 在确定的工作减速电压下进行离子注入。
2.如权利要求 1所述的改善离子注入的方法, 其特征在于, 所述步骤 S1包括以下步骤:
步骤 S11 , 设定参数初始值
设定减速电压的初始值为 V。、 束流密度为 p。、 束流不均匀 度为 xo、 减速电压的优化范围为 Vo±L, 束流密度的控制误差范 围为 p, 束流不均匀度小于 q;
步骤 S12 , 初步确定减速电压优化的出发点
在减速电压的优化范围 Vo±L内取 m个不同的减速电压测试 点, 分别测定该 m个测试点的束流密度 pg和束流不均匀度 xg
3.如权利要求 2所述的改善离子注入的方法, 其特征在于, 所述步骤 S2包括以下步骤:
步骤 S21 , 筛选减速电压优化的出发点
将满足束流密度 I pg-p。 I < 且束流不均匀度 8 < 的 n个 测试点的减速电压作为减速电压优化的出发点集合;
将 n个减速电压优化的出发点按束流不均勾度 xg由小到大 的顺序进行排序, 并依次作为减速电压优化的出发点;
步骤 S22 , 预工作减速电压评价
对各减速电压优化的出发点依次进行评价, 在与第 i个减速 电压优化的出发点相对应的减速电压 Vi下进行离子注入工艺, 获 得减速电压 ¼所对应的束流不均匀度为 Xi, 每隔预定时间间隔检 测并记录相应的束流分布不均勾度, 共测试 k次, 并将记录的束 流分布不均匀度分别记为 Xir E [Xil , Xi2, ... xik] ;
步骤 S23 , 确定工作减速电压
将 Xir与 Xi的误差比例值 I Xir-Xi I / Xi和束流不均匀度控制误 差上限 W进行比较;
当 xir 均满足( I xir-Xi I / Xi) < W时, 将与该第 i个测试点对 应的减速电压 ¼确定为工作减速电压; 以及
当至少一个 Xir满足( I Xir-Xi I / Xi)>W时, 则针对减速电压 1+1执行步骤 S22。
4.如权利要求 2或 3所述的改善离子注入的方法, 其特征在 于, 所述的 p为 5%; 所述的 q为 10%。
5.如权利要求 2至 4中任一项所述的改善离子注入的方法, 其特征在于, 所述的 m为大于等于 10的自然数。
6.如权利要求 2至 5中任一项所述的改善离子注入的方法, 其特征在于, 所述的 L=Vo /5。
7.如权利要求 2至 6中任一项所述的改善离子注入的方法, 其特征在于, 所述的 m个测试点在减速电压的优化范围 Vo±L内 均匀分布。
8.如权利要求 3所述的改善离子注入的方法, 其特征在于, 所述的 W为 3%。
9.如权利要求 3所述的改善离子注入的方法, 其特征在于, 所述的 k为大于等于 10的自然数。
10.如权利要求 1至 9中任一项所述的改善离子注入的方法, 其特征在于, 所述步骤 S3包括在所确定的工作减速电压下对至 少一块基材进行离子注入。
11.一种执行根据权利要求 1至 10中任一项所述的改善离子 注入的方法的离子注入设备。
PCT/CN2014/076949 2013-12-23 2014-05-07 改善离子注入的方法及执行其的离子注入设备 WO2015096348A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/422,364 US10002799B2 (en) 2013-12-23 2014-05-07 Ion implantation method and ion implantation apparatus performing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310717393.3 2013-12-23
CN201310717393.3A CN103715073B (zh) 2013-12-23 2013-12-23 改善离子注入的方法

Publications (1)

Publication Number Publication Date
WO2015096348A1 true WO2015096348A1 (zh) 2015-07-02

Family

ID=50407950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076949 WO2015096348A1 (zh) 2013-12-23 2014-05-07 改善离子注入的方法及执行其的离子注入设备

Country Status (3)

Country Link
US (1) US10002799B2 (zh)
CN (1) CN103715073B (zh)
WO (1) WO2015096348A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715073B (zh) 2013-12-23 2016-03-09 京东方科技集团股份有限公司 改善离子注入的方法
US11264205B2 (en) 2019-12-06 2022-03-01 Applied Materials, Inc. Techniques for determining and correcting for expected dose variation during implantation of photoresist-coated substrates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196573A (zh) * 1997-02-06 1998-10-21 日本电气株式会社 可用氢离子改变其阈值电压的场效应晶体管的制造工艺
CN1577746A (zh) * 2003-07-03 2005-02-09 松下电器产业株式会社 用于等离子体掺杂的方法和装置
CN1977352A (zh) * 2004-06-02 2007-06-06 瓦里安半导体设备联合公司 用于差错检测和工艺控制的等离子体离子注入监视系统
CN102117869A (zh) * 2011-01-21 2011-07-06 厦门市三安光电科技有限公司 一种剥离发光二极管衬底的方法
CN103715073A (zh) * 2013-12-23 2014-04-09 京东方科技集团股份有限公司 改善离子注入的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867068A (zh) * 1998-07-14 2006-11-22 联合视频制品公司 交互式电视节目导视系统及其方法
US6242749B1 (en) 1999-01-30 2001-06-05 Yuri Maishev Ion-beam source with uniform distribution of ion-current density on the surface of an object being treated
US6946667B2 (en) * 2000-03-01 2005-09-20 Advanced Ion Beam Technology, Inc. Apparatus to decelerate and control ion beams to improve the total quality of ion implantation
US7547460B2 (en) * 2000-09-15 2009-06-16 Varian Semiconductor Equipment Associates, Inc. Ion implanter optimizer scan waveform retention and recovery
JP5127148B2 (ja) * 2006-03-16 2013-01-23 株式会社日立ハイテクノロジーズ イオンビーム加工装置
US20120126137A1 (en) * 2010-11-19 2012-05-24 Advanced Ion Beam Technology, Inc. Ion implantation method and ion implanter
CN102629553B (zh) * 2011-11-18 2014-07-23 京东方科技集团股份有限公司 离子注入方法
US9870896B2 (en) * 2013-12-06 2018-01-16 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for controlling ion implanter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196573A (zh) * 1997-02-06 1998-10-21 日本电气株式会社 可用氢离子改变其阈值电压的场效应晶体管的制造工艺
CN1577746A (zh) * 2003-07-03 2005-02-09 松下电器产业株式会社 用于等离子体掺杂的方法和装置
CN1977352A (zh) * 2004-06-02 2007-06-06 瓦里安半导体设备联合公司 用于差错检测和工艺控制的等离子体离子注入监视系统
CN102117869A (zh) * 2011-01-21 2011-07-06 厦门市三安光电科技有限公司 一种剥离发光二极管衬底的方法
CN103715073A (zh) * 2013-12-23 2014-04-09 京东方科技集团股份有限公司 改善离子注入的方法

Also Published As

Publication number Publication date
US20160035634A1 (en) 2016-02-04
CN103715073B (zh) 2016-03-09
US10002799B2 (en) 2018-06-19
CN103715073A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5552476B2 (ja) イオンビームの均一チューニングのための方法及びシステム
US10734261B2 (en) Search apparatus and search method
US20070224840A1 (en) Method of Plasma Processing with In-Situ Monitoring and Process Parameter Tuning
US20220083034A1 (en) Intelligent processing tools
CN111508813B (zh) 飞行时间质谱仪的自动校正方法、装置以及存储介质
KR20180065004A (ko) 챔버 매칭 및 모니터링을 위한 방법 및 시스템
CN111719130B (zh) 半导体镀膜设备中的温度调整方法及半导体镀膜设备
JP2006503434A (ja) アニール不均一性を補償するための方法及びシステム
CN117597763A (zh) 用于匹配网络的重复调谐的系统和方法
WO2015096348A1 (zh) 改善离子注入的方法及执行其的离子注入设备
US20230014145A1 (en) Variable loop control feature
Moyne et al. Chamber matching across multiple dimensions utilizing predictive maintenance, equipment health monitoring, virtual metrology and run-to-run control
US20210175048A1 (en) Techniques for determining and correcting for expected dose variation during implantation of photoresist-coated substrates
US7923265B2 (en) Method and system for improving critical dimension proximity control of patterns on a mask or wafer
CN102629553B (zh) 离子注入方法
CN102194652B (zh) 防止晶圆翘曲的方法以及由该方法得到的晶圆
KR20230156429A (ko) 칩 온도 조절 방법
CN116195184A (zh) 用于重复调谐匹配网络的系统和方法
JP2022520337A (ja) 静電チャックのための方法およびツール
CN115621107B (zh) 一种离子注入机束流状态侦测方法、装置、设备及介质
CN117410215B (zh) 机台参数的确定方法、控制方法、控制系统及其装置
Lu et al. Optimal experiment design in poly etch process for performance improvement on different type tool
US20050143035A1 (en) Etching methods to prevent plasma damage to metal oxide semiconductor devices
CN117352424A (zh) 半导体工艺设备及其控制方法和控制装置
Kim et al. Control of plasma equipment by regulating radio frequency impedance matching

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14422364

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/12/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14874287

Country of ref document: EP

Kind code of ref document: A1