WO2015096097A1 - 时钟同步方法、装置及rrn - Google Patents

时钟同步方法、装置及rrn Download PDF

Info

Publication number
WO2015096097A1
WO2015096097A1 PCT/CN2013/090575 CN2013090575W WO2015096097A1 WO 2015096097 A1 WO2015096097 A1 WO 2015096097A1 CN 2013090575 W CN2013090575 W CN 2013090575W WO 2015096097 A1 WO2015096097 A1 WO 2015096097A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
rrn
frequency
network node
local clock
Prior art date
Application number
PCT/CN2013/090575
Other languages
English (en)
French (fr)
Inventor
郭峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380003170.9A priority Critical patent/CN104982078A/zh
Priority to PCT/CN2013/090575 priority patent/WO2015096097A1/zh
Publication of WO2015096097A1 publication Critical patent/WO2015096097A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to the field of communications, and in particular, to a clock synchronization method and apparatus, and an eRelay Remote Node (RNN).
  • RNN eRelay Remote Node
  • the eRelay solution can be used to improve network capacity.
  • the eRelay solution is The network capacity is increased by deploying base stations (BSs) and RRNs, thereby improving network load capacity.
  • the clock server encapsulates the local clock information into a precision measurement protocol (IEEE 1588V2) message of the network measurement and control system, and the BS transmits the IEEE 1588 V2 message.
  • IEEE 1588V2 precision measurement protocol
  • the RRN sends the IEEE 1588V2 message to the lower-level network node, and the lower-level network node maintains time synchronization and frequency synchronization with the clock server based on the IEEE 1588V2 message.
  • the clock server is far away from the lower-level network node, the IEEE 1588 V2 packet transmission path is long and the delay is increased, which causes the clock synchronization of the clock server and the lower-level network node to be reduced. Summary of the invention
  • the embodiment of the present application can effectively reduce the delay and improve the accuracy of clock synchronization by providing a clock synchronization method, device and RRN.
  • a clock synchronization method comprising: performing time synchronization between an RRN and a BS;
  • the RRN sends the time synchronization synchronized local clock information to a lower-level network node of the RRN, so that the lower-level network node keeps clock synchronization with the RRN based on the received local clock information.
  • the clock synchronization includes time synchronization and/or frequency synchronization.
  • the RRN sends the local clock information after the time synchronization to the lower-level network node of the RRN, where the method includes: The RRN encodes the local clock information, where the local clock information includes a primary clock frequency, and sends the encoded local clock information to the lower-level network node, so that the lower-level network node is based on the encoded The local clock information is synchronized with the RRN hold frequency.
  • the local clock information includes a primary clock frequency
  • the RRN sends local clock information after time synchronization to the RRN.
  • the lower-level network node the method includes: the RRN encapsulating the absolute value of the primary clock frequency into a frequency synchronization packet; and sending the frequency synchronization packet to the lower-level network node, so that the lower-level network node is based on The frequency synchronization message is synchronized with the RRN frequency.
  • the RRN sends the local clock information that is time-synchronized to the lower-level network node of the RRN, specifically: The RRN encapsulates the local clock information into a clock synchronization packet, where the local clock information includes a primary clock frequency and a reference time, and sends the clock synchronization packet to the lower-level network node, so that the lower-level network The node maintains frequency synchronization and time synchronization with the RRN based on the clock synchronization message.
  • a clock synchronization apparatus comprising:
  • a receiving unit configured to receive time synchronization information sent by the BS
  • a time synchronization unit configured to receive the time synchronization information sent by the receiving unit, and perform time synchronization between the device and the BS according to the time synchronization information to obtain local clock information after time synchronization;
  • a sending unit configured to receive the local clock information sent by the time synchronization unit, and send the local clock information to a lower-level network node of the device, so that the lower-level network node base
  • the received local clock information is clocked in synchronization with the device.
  • the clock synchronization includes time synchronization and/or frequency synchronization.
  • the apparatus further includes an encoding unit, configured to: before the sending unit sends the local clock information, The clock information is encoded, where the local clock information includes a primary clock frequency, and the sending unit is configured to send the encoded local clock information to the lower-level network node, so that the lower-level network node is based on The encoded local clock information is synchronized with the device frequency.
  • the local clock information includes a main clock frequency
  • the device further includes a frequency encapsulating unit, and the frequency encapsulating unit is configured to And before the transmitting unit sends the local clock information, the absolute value of the main clock frequency is encapsulated into a frequency synchronization file;
  • the sending unit is specifically configured to send the frequency synchronization message to the lower-level network node. And causing the lower-level network node to maintain frequency synchronization with the device based on the frequency synchronization message.
  • the apparatus further includes a clock encapsulating unit, configured to: before the sending unit sends the local clock information, The local clock information is encapsulated into a clock synchronization packet, where the local clock information includes a primary clock frequency and a reference time, and the sending unit is configured to send the clock synchronization packet to the lower-level network node, so that The subordinate network node maintains frequency synchronization and time synchronization with the device based on the clock synchronization message.
  • a clock encapsulating unit configured to: before the sending unit sends the local clock information, The local clock information is encapsulated into a clock synchronization packet, where the local clock information includes a primary clock frequency and a reference time, and the sending unit is configured to send the clock synchronization packet to the lower-level network node, so that The subordinate network node maintains frequency synchronization and time synchronization with the device based on the clock synchronization message.
  • an RRN is provided, where the RRN includes:
  • a receiver configured to receive time synchronization information sent by the BS
  • a processor configured to time synchronize the RRN with the BS according to the time synchronization information, to obtain local clock information after time synchronization;
  • a transmitter configured to send the local clock information to a lower-level network node of the RRN, so that the lower-level network node keeps a clock with the RRN based on the received local clock information Step.
  • the clock synchronization includes time synchronization and/or frequency synchronization.
  • the processor is configured to perform the local clock information before the sending, by the sender, the local clock information Encoding, wherein the local clock information includes a primary clock frequency; the transmitter is configured to send the encoded local clock information to the lower-level network node, so that the lower-level network node is based on the encoded
  • the local clock information is synchronized with the RRN frequency.
  • the processor is configured to: before the sending, by the sending, the local clock information, the local clock information
  • the absolute value of the primary clock frequency is encapsulated into a frequency synchronization message; the transmitter is specifically synchronized with the RRN based on the frequency synchronization message.
  • the processor is configured to encapsulate the local clock information before the sending, by the sender, the local clock information And generating a clock synchronization message, where the local clock information includes a primary clock frequency and a base point, so that the lower-level network node maintains frequency synchronization and time synchronization with the RRN based on the clock synchronization message.
  • the RRN and the BS perform time synchronization.
  • the RRN directly transmits clock information to the lower-level network node, so that the distance of the clock information transmission is changed. Short, the transmission delay is reduced; in addition, the RRN sends the time-synchronized local clock information to the lower-level network node of the RRN, so that the lower-level network node keeps clock synchronization with the RRN based on the local clock information, so when the delay is reduced, The accuracy of clock synchronization is improved.
  • FIG. 1 is a flowchart of a method for clock synchronization in an embodiment of the present invention
  • FIG. 2 is a system architecture diagram of an RRN, an eRelay BS, and a lower-level network node according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of a clock synchronization apparatus according to an embodiment of the present invention
  • FIG. 4 is a structural diagram of an RRN according to an embodiment of the present invention. detailed description
  • time synchronization between the RRN and the BS is performed, and the prior art
  • the RRN directly transmits the clock information to the lower-level network node, so that the distance of the clock information transmission is shortened and the transmission delay is reduced.
  • the RRN sends the local clock information after the time synchronization.
  • the lower-level network node of the RRN is caused to make the lower-level network node keep clock synchronization with the RRN based on the local clock information, so that the accuracy of clock synchronization is improved when the delay is lowered.
  • the embodiment of the invention provides a clock synchronization method. As shown in FIG. 1, the specific processing procedure of the method is as follows:
  • Step S101 Perform time synchronization between the relay remote node RRN and the base station BS.
  • Step S102 The RRN sends the local clock information after the time synchronization to the lower-level network node of the RRN, so that the lower-level network node keeps clock synchronization with the RRN based on the received local clock information.
  • step S101 time synchronization is performed between the RRN and the BS.
  • the RRN completes time synchronization with the BS through a pilot channel and a synchronization channel of an air interface (air interface), and the RRN receives a PN code sent by the BS on a pilot channel (Pseudo- Noise Code), and receiving the BS to transmit on the synchronization channel
  • the time synchronization data based on the PN code and the time synchronization data, causes the RRN to perform time synchronization with the BS, and after performing time synchronization, the RRN may further determine local clock information of the RRN.
  • the BS may be represented by an eRelay BS, that is, the BS in the embodiment of the present application may also be represented by an eRelay BS, and the following BSs are represented by an eRelay BS.
  • performing phase synchronization to implement time synchronization that is, after performing time synchronization between the RRN and the eRelay BS, the RRN and the The frequency of the eRelay BS is also synchronous.
  • step S102 is performed, in which the RRN sends the time-synchronized local clock information to the subordinate network node of the RRN, so that the subordinate network node is based on the received local clock information. Keeping clock synchronization with the RRN.
  • the local clock information includes at least a clock frequency, and the clock frequency is, for example, 122.88 MHz, 500 MHz, or the like, and may further include a clock phase, for example, 2, 5, 10 microseconds ( ⁇ ⁇ ), and the like.
  • the RRN encodes the local clock information, where the local clock information includes a primary clock frequency, and the encoded local clock information is sent to the lower-level network node, so that The subordinate network node maintains frequency synchronization with the RRN based on the encoded local clock information.
  • the RRN encodes the local clock information at a physical layer, and then transmits the encoded local clock information to the lower-level network node by using a physical link, so that The subordinate network node decodes the encoded local clock information, and keeps the RRN and the lower-level network node in frequency synchronization according to the decoding information.
  • the lower-level network node may be an electronic device such as another eRelay BS, a server, a personal computer, a small cell, or the like different from the eRelay BS, and the RRN shall be configured with an Ethernet interface of the node, and then pass through the The Ethernet physical layer chip of the lower-level network node is connected according to The received modulation code stream recovers the original Ethernet message and the line clock, and according to the line clock, the local clock of the lower-level network and the clock of the RRN can be kept synchronized.
  • RRN1 performs time synchronization with the eRelay BS through the air interface. After performing time synchronization, the RRN1 can determine the first clock information of the RRN1, and the first clock information includes, for example, a main clock frequency of 122.88 MHz. And the RR1 encodes the first clock information at the physical layer, obtains the encoded first clock information, and transmits the encoded first clock information to the small cell through a physical link in a serial transmission manner. -1, small cell-1 receives the serial data bit stream transmitted by RR1, extracts and tracks the first clock information of RRN1 by decoding the serial data bit stream, so that small cell-1 remains with RRN1 according to the decoding information. Frequency synchronization.
  • the RRN2 performs time synchronization with the eRelay BS through the air interface. After performing time synchronization, the RRN2 can determine the second clock information of the RRN2, where the second clock information includes, for example, a primary clock frequency of 500 MHz, and the RR2 is in physical
  • the layer encodes the second clock information, obtains the encoded second clock information, and transmits the encoded second clock information to the small cell-2 through a physical link in a serial transmission manner, small
  • the cell-2 receives the serial data bit stream transmitted by the RR2, and extracts and tracks the second clock information of the RRN2 by decoding the serial data bit stream, so that the small cell-2 can maintain frequency synchronization with the RRN2 according to the decoding information.
  • the local clock information includes a primary clock frequency
  • the RRN sends the local clock information after the time synchronization to the lower-level network node of the RRN, specifically: the RRN sends the primary clock frequency
  • the absolute value is encapsulated into a frequency synchronization "3" message; the frequency synchronization message is sent to the lower level network node, so that the lower level network node maintains frequency synchronization with the RRN based on the frequency synchronization message.
  • the RRN first extracts a main clock frequency in the local clock information, and encapsulates an absolute value of the main clock frequency into a frequency synchronization message, and the following level network node can receive And the frequency synchronization message, the main clock frequency in the frequency synchronization message is extracted, and the lower-level network node maintains frequency synchronization with the RRN based on the main clock frequency.
  • RRN1 performs time synchronization with the eRelay BS through the air interface. After performing time synchronization, the RRN1 can determine the first clock information of the RRN1, and then extract the first main clock frequency from the first clock information.
  • the first master clock frequency is, for example, 122.88 MHz, and the absolute value of the first master clock frequency is encapsulated into a first frequency synchronization message, and the first frequency synchronization message is transmitted to the physical link.
  • Small cell-1 so that the small cell-1 can receive the first frequency synchronization message, and extract the first main clock frequency in the first frequency synchronization message, based on the first main clock frequency. , keeping small cell-1 and RRN1 in frequency synchronization.
  • the RRN2 performs time synchronization with the eRelay BS through the air interface, after performing time synchronization and after, the RRN2 can determine the second clock information of the RRN2, and then extract the second main clock frequency from the second clock information, where the The second master clock frequency is, for example, 500 MHz, and the absolute value of the second master clock frequency is encapsulated into a second frequency synchronization message, and the second frequency synchronization message is transmitted to the small cell-2 through the physical link. So that the small cell-2 can receive the second frequency synchronization message, and extract the second main clock frequency in the second frequency synchronization message, based on the second main clock frequency, so that the small cell- 2 keeps the frequency synchronized with RRN2.
  • the second master clock frequency is, for example, 500 MHz
  • the absolute value of the second master clock frequency is encapsulated into a second frequency synchronization message
  • the second frequency synchronization message is transmitted to the small cell-2 through the physical link. So that the small cell-2 can receive the second frequency synchron
  • the RRN sends the local clock information after the time synchronization to the lower-level network node of the RRN
  • the method includes: the RRN encapsulating the local clock information into a clock synchronization packet, where The local clock information includes a primary clock frequency and a reference time; the clock synchronization message is sent to the lower-level network node, so that the lower-level network node maintains frequency synchronization with the RRN based on the clock synchronization Time synchronization.
  • the main clock frequency is, for example, 122.88 MHz, 500 MHz, 280 MHz, etc.
  • the reference time can be represented by a time stamp.
  • the RRN encapsulates the local clock information based on the asymmetric delay dynamic compensation (IEEE 1588V2) protocol, obtains a 1588V2 clock file, and sends the 1588V2 clock message to the a lower-level network node, such that the lower-level network node maintains frequency synchronization and time synchronization with the RRN based on the 1588V2 clock.
  • IEEE 1588V2 asymmetric delay dynamic compensation
  • time synchronization is performed, that is, time between the RRN and the lower-level network node is characterized.
  • the RRN and the frequency of the lower-level network node are also synchronized, such that the lower-level network node keeps time synchronization with the RRN based on the 1588V2 clock message.
  • the RRN periodically issues a 1588 V2 clock message, and the 1588 V2 clock message has precise timestamp information, so that the lower-level network node sends the 1588 V2 clock message according to the RRN.
  • Timestamp information calculating a time delay of the RRN to a line of the lower-level network node, and a time difference between the RRN and the lower-level network node, and adjusting the lower-level network node by using the time delay and the time difference
  • the local time is such that the lower-level network node maintains a frequency and phase consistent with the RRN time, thereby causing the RRN to maintain time synchronization with the lower-level network node.
  • the RRN1 performs time synchronization with the eRelay BS through the air interface. After the time synchronization is performed, the RRN1 can determine the first clock information of the RRN1, and periodically release the 1588V2 to the small cell-1 according to the first clock information.
  • the clock packet which in turn causes the small cell-1 to calculate the time delay of the RRN1 to small cell-1 line and the time difference between the RRN1 and the small cell-1 according to the timestamp information in the 1588V2 clock message issued by the RRN1, and use the time difference of the RRN1 to the small cell-1.
  • the time delay and the time difference adjust the local time of the small cell-1, so that the small cell-1 maintains the frequency and phase consistent with the RRN1 time, so that the RRN1 and the small cell-1 remain time synchronized.
  • RRN2 performs time synchronization and frequency synchronization between the air interface and the eRelay BS. After time synchronization and frequency synchronization, the RRN2 can determine the second clock information of the RRN2, and periodically, according to the second clock information, to the small cell- 2, the 1958V2 clock packet is released, and the small cell-2 calculates the time delay of the RRN2 to small cell-2 line and the time difference of the RRN2 to the small cell-2 according to the timestamp information in the 1588V2 clock packet issued by the RRN2. And adjusting the local time of the small cell-2 by using the time delay and the time difference, so that the small cell-2 maintains a frequency and phase consistent with the RRN2 time, so that the RRN2 and the small cell-2 are time synchronized.
  • a clock server may be set in the eRelay BS, so that the RRN is in the air interface and the e R e i a y BS performs time synchronization, increasing the RRN and the eRelay BS
  • the time synchronization accuracy is such that the local clock information of the RRN is more accurate, so that when the RRN and the lower-level network node are performing a clock step, the accuracy of synchronizing the clock between the RRN and the lower-level network is also improved.
  • the RRN and the lower-level network node may be deployed at the same site, so that the distance between the RRN and the lower-level network node is relatively short, and the transmission delay is small, so that the frequency synchronization accuracy is higher.
  • the RRN and the lower-level network node generally adopt a direct connection scheme, and there is no intermediate forwarding device, and there is no network modification problem, which simplifies the steps.
  • the RRN and the eRelay BS perform time synchronization.
  • the RRN directly transmits clock information to the lower-level network node, so that the clock information is transmitted. Shortening, the transmission delay is reduced; in addition, the RRN sends the time-synchronized local clock information to the lower-level network node of the RRN, so that the lower-level network node keeps clock synchronization with the RRN based on the local clock information, and therefore, when the delay is reduced The accuracy of clock synchronization is improved.
  • the RRN and the eRelay BS are transparent transmission clock information
  • the RRN and the eRelay BS are transmitted through the air interface, so that the clock information needs to be transmitted through the air interface, and the reliability and stability are affected by the wireless environment. Larger, the quality of the radio bearer network is too strong. If the quality of service (QoS) of the air interface is not guaranteed, the frequency synchronization effect will be very poor, and the RRN in the embodiment of the present application passes through the air interface.
  • QoS quality of service
  • the technical method of the present application can further improve the clock synchronization by transmitting clock information through the wired medium. Precision.
  • the embodiment of the present application further provides a clock synchronization device.
  • the device includes:
  • the receiving unit 301 is configured to receive time synchronization information sent by the BS.
  • the time synchronization unit 302 is configured to receive the time synchronization information sent by the receiving unit 301, and perform time synchronization between the device and the BS according to the time synchronization information to obtain local clock information after time synchronization;
  • the sending unit 303 is configured to receive the local clock information sent by the time synchronization unit 302, and send the local clock information to a lower-level network node of the apparatus, so that the lower-level network node is based on the received local clock.
  • the information is kept in clock synchronization with the device.
  • the BS may be represented by an eRelay BS, that is, the BS in the embodiment of the present application may also be represented by an eRelay BS, and the following BSs are represented by an eRelay BS.
  • the receiving unit 301 is configured to receive a PN code that is sent by the eRelay BS on a pilot channel, and receive time synchronization data that is sent by the eRelay BS on a synchronization channel, based on the PN code and the Time synchronizing data, causing the device and the eRelay BS to perform time synchronization, and after performing time synchronization, the device may further determine local clock information of the device, where the time synchronization information includes the PN code and The time synchronization data.
  • performing phase synchronization to implement time synchronization that is, after performing time synchronization between the device and the eRelay BS, the device and the The frequency of the eRelay BS is also synchronous.
  • the clock synchronization includes time synchronization and/or frequency synchronization.
  • the device further includes an encoding unit 304, configured to encode the local clock information before the sending unit 303 sends the local clock information, where the local clock information includes a main clock frequency; 303.
  • the method is specifically configured to send the encoded local clock information to the lower-level network node, so that the lower-level network node keeps frequency synchronization with the device based on the encoded local clock information.
  • the encoding unit 304 is specifically configured to: encode the local clock information at a physical layer, and then transmit the encoded local clock information to the lower-level network node by using a physical link, so that the lower-level network
  • the node maintains the frequency synchronization of the apparatus with the lower-level network node according to the decoding information by decoding the encoded local clock information.
  • the local clock information includes a main clock frequency
  • the device further includes a frequency encapsulating unit 305, configured to encapsulate an absolute value of the main clock frequency into a frequency before the sending unit 303 sends the local clock information.
  • the sending unit 303 is configured to send the frequency synchronization message to the lower-level network node, so that the lower-level network node keeps frequency synchronization with the device based on the frequency synchronization message.
  • the frequency encapsulating unit 305 is specifically configured to extract a main clock frequency in the local clock information, and encapsulate an absolute value of the main clock frequency into a frequency synchronization text, and simultaneously report the frequency through a physical link. Transmitting to the lower-level network node, so that the lower-level network node can receive the frequency synchronization message, and extract the main clock frequency in the frequency synchronization message, based on the main clock frequency, The lower level network node maintains frequency synchronization with the device.
  • the device further includes a clock encapsulating unit 306, configured to encapsulate the local clock information into a clock synchronization message before the sending unit 303 sends the local clock information, where the local clock information includes a main
  • the sending unit 303 is configured to send the clock synchronization message to the lower-level network node, so that the lower-level network node maintains frequency synchronization with the device based on the clock synchronization message. Time synchronization.
  • the main clock frequency is, for example, 122.88 MHz, 500 MHz, 280 MHz, etc.
  • the reference time can be represented by a time stamp.
  • the clock encapsulating unit 306 is configured to encapsulate the local clock information by using an IEEE 1588 V2 protocol, obtain a 1588 V2 clock file, and send the 1588 V2 clock file to the lower-level network node, so that the lower-level network node Frequency synchronization and time synchronization are maintained with the device based on the 1588 V2 clock message.
  • the RRN and the eRelay BS perform time synchronization.
  • the RRN directly transmits clock information to the lower-level network node, so that the clock information is transmitted. Shortening, the transmission delay is reduced; in addition, the RRN sends the time-synchronized local clock information to the lower-level network node of the RRN, so that the lower-level network node keeps clock synchronization with the RRN based on the local clock information, and therefore, when the delay is reduced The accuracy of clock synchronization is improved.
  • the RRN and the eRelay BS are transparent transmission clock information
  • the RRN and the eRelay BS are transmitted through the air interface, so that the clock information needs to be transmitted through the air interface, and the reliability and stability are affected by the wireless environment. If the QoS is not guaranteed, the frequency synchronization effect may be very poor.
  • the RRN performs clock synchronization with the e R e i a y BS through the air interface.
  • the RRN transmits the local clock information to the lower-level network node through the physical link, so that the RRN and the clock information are transmitted through a physical link, and the physical link belongs to a wired medium, and the clock information is When the transmission is performed on the wired medium, the stability is higher and the reliability is higher. Compared with the prior art, the technical method of the present application can further improve the accuracy of the clock synchronization by transmitting clock information through the wired medium.
  • the embodiment of the present application further provides an RRN.
  • the RRN includes:
  • the receiver 401 is configured to receive time synchronization information sent by the BS.
  • the processor 402 is configured to perform time synchronization between the RRN and the eRelay BS according to the time synchronization information, to obtain local clock information after time synchronization;
  • the transmitter 403 is configured to send the local clock information to a lower-level network node of the RRN, so that the lower-level network node keeps clock synchronization with the RRN based on the received local clock information.
  • the receiver 401 is, for example, an electronic device such as a WIFI module or an antenna.
  • the processor 402 is, for example, a separate processing chip, and may be integrated into the processor in the RRN.
  • the transmitter 403 is, for example, an electronic device such as a WIFI module or an antenna.
  • the BS may be represented by an eRelay BS, that is, the BS in the embodiment of the present application may also be represented by an eRelay BS, and the following BSs are represented by an eRelay BS.
  • the receiver 401 is configured to receive a PN code sent by the eRelay BS on a pilot channel, and receive time synchronization data sent by the eRelay BS on a synchronization channel, based on the PN code and the Time synchronization data, the device and the eRelay BS are time-synchronized, and after performing time synchronization, the device may further determine local clock information of the device, where The time synchronization information includes the PN code and the time synchronization data.
  • performing phase synchronization to implement time synchronization that is, after performing time synchronization between the device and the eRelay BS, the device and the The frequency of the eRelay BS is also synchronous.
  • the clock synchronization includes time synchronization and/or frequency synchronization.
  • the processor 402 is configured to encode the local clock information before the transmitter 403 sends the local clock information, where the local clock information includes a main clock frequency, and the transmitter 403 is specifically configured to: Transmitting the encoded local clock information to the subordinate network node, so that the subordinate network node maintains frequency synchronization with the RRN based on the encoded local clock information.
  • the processor 402 is specifically configured to encode the local clock information at a physical layer, and then transmit the encoded local clock information to the lower-level network node by using a physical link, so that the lower-level network The node maintains the frequency synchronization of the RRN with the lower-level network node according to the decoding information by decoding the encoded local clock information.
  • the processor 402 is configured to encapsulate the absolute value of the main clock frequency in the local clock information into a frequency synchronization message before the transmitter 403 sends the local clock information, so that the lower-level network node Maintaining frequency synchronization with the RRN based on the frequency synchronization message.
  • the processor 402 is specifically configured to extract a main clock frequency in the local clock information, and encapsulate an absolute value of the main clock frequency into a frequency synchronization message, and synchronize the frequency by using a physical link. Transmitting to the lower-level network node, so that the lower-level network node can receive the frequency synchronization message, and extract the main clock frequency in the frequency synchronization message, based on the main clock frequency, The lower level network node maintains frequency synchronization with the RRN.
  • the processor 402 is configured to package the local clock information into a clock synchronization message before the transmitter 403 sends the local clock information, where the local clock information includes a main clock frequency and a reference time; And causing the lower-level network node to maintain frequency synchronization and time synchronization with the RRN based on the clock synchronization message.
  • the main clock frequency is, for example, 122.88 MHz, 500 MHz, 280 MHz, etc.
  • the reference time can be represented by a time stamp.
  • the processor 402 is configured to encapsulate the local clock information by using the IEEE 1588 V2 protocol, obtain a 1588 V2 clock message, and send the 1588 V2 clock message to the lower-level network node, so that the lower level
  • the network node maintains frequency synchronization and time synchronization with the RRN based on the 1588V2 clock message.
  • the RRN and the eRelay BS perform time synchronization.
  • the RRN directly transmits clock information to the lower-level network node, so that the clock information is transmitted. Shortening, the transmission delay is reduced; in addition, the RRN sends the time-synchronized local clock information to the lower-level network node of the RRN, so that the lower-level network node keeps clock synchronization with the RRN based on the local clock information, and therefore, when the delay is reduced The accuracy of clock synchronization is improved.
  • the RRN and the eRelay BS are transparent transmission clock information
  • the RRN and the eRelay BS are transmitted through the air interface, so that the clock information needs to be transmitted through the air interface, and the reliability and stability are affected by the wireless environment. If the QoS is not guaranteed, the frequency synchronization effect may be very poor.
  • the RRN performs clock synchronization with the e R e i a y BS through the air interface.
  • the RRN transmits the local clock information to the lower-level network node through the physical link, so that the RRN and the clock information are transmitted through a physical link, and the physical link belongs to a wired medium, and the clock information is When the transmission is performed on the wired medium, the stability is higher and the reliability is higher. Compared with the prior art, the technical method of the present application can further improve the accuracy of the clock synchronization by transmitting clock information through the wired medium.
  • embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention is applicable to one or more computer-usable storage media (including but not limited to disks) having computer usable program code embodied therein. A form of computer program product embodied on a memory, CD-ROM, optical storage, or the like.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明实施例公开了一种时钟同步方法、装置及RRN,中继远程节点RRN与基站eRelay BS之间进行时间同步;所述RRN将进行时间同步后的本地时钟信息发送给所述RRN的下级网络节点,以使所述下级网络节点基于接收到的所述本地时钟信息与所述RRN保持时钟同步。

Description

时钟同步方法、 装置及 RRN
技术领域 本发明涉及通信领域, 具体涉及一种时钟同步方法、 装置及中继远程节 点 ( eRelay Remote Node 简称 RRN)。 背景技术
随着智能终端的普及和移动宽带业务的丰富, 网络流量不断递增, 使得 对网络负荷能力的要求也越来越高, 可以通过 eRelay解决方案来提升网络容 量, 具体地, 所述 eRelay解决方案是通过部署基站(base station, 简称 BS )和 RRN来提升网络容量, 进而提高网络负荷能力。
但是, 现有 eRelay解决方案在实现时钟同步时, 时钟服务器将本地时钟信 息封装成网络测量和控制系统的精密时钟同步协议标准(IEEE 1588V2 )报文 传输给 BS, BS将 IEEE 1588 V2报文传输至 RRN, RRN再将 IEEE 1588V2报文发 送给下级网络节点, 下级网络节点基于 IEEE 1588V2报文与时钟服务器保持时 间同步和频率同步。 但由于时钟服务器与下级网络节点距离较远, IEEE 1588 V2报文传输路径较长, 时延增大, 导致时钟服务器与下级网络节点的时 钟同步的精度降低。 发明内容
本申请实施例通过提供一种时钟同步方法、 装置及 RRN, 能够有效降低 时延, 并提高时钟同步的精度。
根据本发明的第一方面, 提供了一种时钟同步方法, 所述方法包括: RRN与 BS之间进行时间同步;
所述 RRN将进行时间同步后的本地时钟信息发送给所述 RRN的下级网 络节点, 以使所述下级网络节点基于接收到的所述本地时钟信息与所述 RRN 保持时钟同步。 结合第一方面, 在第一种可能的实现方式中, 所述时钟同步包括时间同 步和 /或频率同步。
结合第一方面或第一种可能的实现方式, 在第二种可能的实现方式中, 所述 RRN将进行时间同步后的本地时钟信息发送给所述 RRN的下级网络节 点, 具体包括: 所述 RRN将所述本地时钟信息进行编码, 其中, 所述本地时 钟信息包括主时钟频率; 将编码后的所述本地时钟信息发送给所述下级网络 节点 , 以使得所述下级网络节点基于编码后的所述本地时钟信息与所述 RRN 保持频率同步。
结合第一方面或第一种可能的实现方式, 在第三种可能的实现方式中, 所述本地时钟信息包括主时钟频率, 所述 RRN将进行时间同步后的本地时钟 信息发送给所述 RRN的下级网络节点, 具体包括: 所述 RRN将所述主时钟 频率的绝对值封装成频率同步报文; 将所述频率同步报文发送给所述下级网 络节点 , 以使得所述下级网络节点基于所述频率同步报文与所述 RRN保持频 率同步。
结合第一方面或第一种可能的实现方式, 在第四种可能的实现方式中, 所述 RRN将进行时间同步后的本地时钟信息发送给所述 RRN的下级网络节 点, 具体包括: 所述 RRN将所述本地时钟信息封装成时钟同步报文, 其中, 所述本地时钟信息包括主时钟频率和基准时间; 将所述时钟同步报文发送给 所述下级网络节点, 以使得所述下级网络节点基于所述时钟同步报文与所述 RRN保持频率同步和时间同步。
根据第二方面, 提供了一种时钟同步装置, 所述装置包括:
接收单元, 用于接收 BS发送的时间同步信息;
时间同步单元, 用于接收所述接收单元发送的所述时间同步信息, 根据 所述时间同步信息, 将所述装置与所述 BS进行时间同步, 获得进行时间同步 后的本地时钟信息;
发送单元, 用于接收所述时间同步单元发送的所述本地时钟信息, 将所 述本地时钟信息发送给所述装置的下级网络节点, 以使所述下级网络节点基 于接收到的所述本地时钟信息与所述装置保持时钟同步。
结合第二方面, 在第一种可能的实现方式中, 所述时钟同步包括时间同 步和 /或频率同步。
结合第二方面或第一种可能的实现方式, 在第二种可能的实现方式中, 所述装置还包括编码单元, 用于在所述发送单元发送所述本地时钟信息之前, 将所述本地时钟信息进行编码, 其中, 所述本地时钟信息包括主时钟频率; 所述发送单元, 具体用于将编码后的所述本地时钟信息发送给所述下级网络 节点 , 以使得所述下级网络节点基于编码后的所述本地时钟信息与所述装置 保持频率同步。
结合第二方面或第一种可能的实现方式, 在第三种可能的实现方式中, 所述本地时钟信息包括主时钟频率, 所述装置还包括频率封装单元; 所述频 率封装单元, 用于在所述发送单元发送所述本地时钟信息之前, 将所述主时 钟频率的绝对值封装成频率同步 文; 所述发送单元, 具体用于将所述频率 同步报文发送给所述下级网络节点, 以使得所述下级网络节点基于所述频率 同步报文与所述装置保持频率同步。
结合第二方面或第一种可能的实现方式, 在第四种可能的实现方式中, 所述装置还包括时钟封装单元, 用于在所述发送单元发送所述本地时钟信息 之前, 将所述本地时钟信息封装成时钟同步报文, 其中, 所述本地时钟信息 包括主时钟频率和基准时间; 所述发送单元, 具体用于将所述时钟同步报文 发送给所述下级网络节点, 以使得所述下级网络节点基于所述时钟同步报文 与所述装置保持频率同步和时间同步。
根据第三方面, 提供了一种 RRN, 所述 RRN包括:
接收器, 用于接收 BS发送的时间同步信息;
处理器, 用于根据所述时间同步信息, 将所述 RRN与所述 BS进行时间 同步, 获得进行时间同步后的本地时钟信息;
发送器, 用于将所述本地时钟信息发送给所述 RRN的下级网络节点, 以 使所述下级网络节点基于接收到的所述本地时钟信息与所述 RRN保持时钟同 步。
结合第三方面, 在第一种可能的实现方式中, 所述时钟同步包括时间同 步和 /或频率同步。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述处理器, 用于在所述发送器发送所述本地时钟信息之前, 将所述本地时 钟信息进行编码, 其中, 所述本地时钟信息包括主时钟频率; 所述发送器, 具体用于将编码后的所述本地时钟信息发送给所述下级网络节点, 以使得所 述下级网络节点基于编码后的所述本地时钟信息与所述 RRN保持频率同步。
结合第三方面或第一种可能的实现方式, 在第三种可能的实现方式中, 所述处理器, 用于在所述发送器发送所述本地时钟信息之前, 将所述本地时 钟信息中的主时钟频率的绝对值封装成频率同步报文; 所述发送器, 具体用 基于所述频率同步报文与所述 RRN保持频率同步。
结合第三方面或第一种可能的实现方式, 在第四种可能的实现方式中, 所述处理器, 用于在所述发送器发送所述本地时钟信息之前, 将所述本地时 钟信息封装成时钟同步报文, 其中, 所述本地时钟信息包括主时钟频率和基 点, 以使得所述下级网络节点基于所述时钟同步报文与所述 RRN保持频率同 步和时间同步。
本发明有益效果如下:
本发明实施例中, RRN与 BS之间进行时间同步, 与现有技术中 RRN仅 用于透传时钟信息相比, RRN直接传输时钟信息给所述下级网络节点, 使得 时钟信息传输的距离变短, 传输时延降低; 此外, RRN将时间同步后的本地 时钟信息发送给所述 RRN的下级网络节点, 使得下级网络节点基于本地时钟 信息来与 RRN保持时钟同步, 因此, 当时延降低时, 时钟同步的精度得以提 高。 附图说明
图 1为本发明实施例中时钟同步方法的方法流程图;
图 2为本发明实施例中 RRN、 eRelay BS和下级网络节点的系统架构图; 图 3为本发明实施例中时钟同步装置的结构图;
图 4为本发明实施例中 RRN的结构图。 具体实施方式
针对现有的 eRelay解决方案在实现时钟同步时, 存在时延大, 时钟同步 的精度低的技术问题, 本发明实施例这里提出的技术方案中 RRN与 BS之间 进行时间同步,与现有技术中 RRN仅用于透传时钟信息相比, RRN直接传输 时钟信息给所述下级网络节点, 使得时钟信息传输的距离变短, 传输时延降 低; 此外, RRN将时间同步后的本地时钟信息发送给所述 RRN的下级网络节 点, 使得下级网络节点基于本地时钟信息来与 RRN保持时钟同步, 因此, 当 时延降低时, 时钟同步的精度得以提高。
下面结合各个附图对本发明实施例技术方案的主要实现原理、 具体实施 方式及其对应能够达到的有益效果进行详细地阐述。
本发明实施例提出了一种时钟同步方法, 如图 1 所示, 该方法具体处理 过程如下:
步骤 S101 : 中继远程节点 RRN与基站 BS之间进行时间同步;
步骤 S102:所述 RRN将进行时间同步后的本地时钟信息发送给所述 RRN 的下级网络节点, 以使所述下级网络节点基于接收到的所述本地时钟信息与 所述 RRN保持时钟同步。
其中, 在步骤 S101中, RRN与 BS之间进行时间同步。
在具体实施过程中, 所述 RRN通过空中接口 (空口) 的导频信道和同 步信道与所述 BS完成时间同步, 所述 RRN接收所述 BS在导频信道的上发 送的 PN码(Pseudo-Noise Code ), 以及接收所述 BS在同步信道的上发送的 时间同步数据, 基于所述 PN码和所述时间同步数据, 使得所述 RRN和所述 BS进行时间同步, 所述 RRN在进行时间同步后, 进而可以确定所述 RRN的 本地时钟信息。
具体的, 在 eRelay解决方案中所述 BS可以用 eRelay BS表示, 即使得本 申请实施例中的所述 BS也可以用 eRelay BS表示,下面的 BS均用 eRelay BS 表示。
具体的, 所述 RRN与所述 eRelay BS之间进行频率同步之后, 再进行相 位同步才能实现时间同步, 即表征所述 RRN与所述 eRelay BS之间进行时间 同步之后, 所述 RRN与所述 eRelay BS的频率也是同步的。
接下来执行步骤 S 102 ,在该步骤中,所述 RRN将进行时间同步后的本地 时钟信息发送给所述 RRN的下级网络节点, 以使所述下级网络节点基于接收 到的所述本地时钟信息与所述 RRN保持时钟同步。
其中, 所述本地时钟信息至少包括时钟频率, 所述时钟频率例如是 122.88MHz, 500MHz等,还可以包括时钟相位,所述时钟相位例如是是 2、 5、 10微秒(μδ )等。
在具体实施过程中, 所述 RRN将所述本地时钟信息进行编码, 其中, 所 述本地时钟信息包括主时钟频率, 将编码后的所述本地时钟信息发送给所述 下级网络节点, 以使得所述下级网络节点基于编码后的所述本地时钟信息与 所述 RRN保持频率同步。
具体来讲, 在执行步骤 S101之后, 所述 RRN在物理层对所述本地时钟 信息进行编码, 然后将编码后的所述本地时钟信息通过物理链路传输至所述 下级网络节点, 以使得所述下级网络节点通过对编码后的所述本地时钟信息 进行解码, 根据解码信息使得 RRN与所述下级网络节点保持频率同步。
具体的, 所述下级网络节点可以为与所述 eRelay BS不同的其它 eRelay BS、 服务器、 个人计算机、 小基站(small cell )等电子设备, 所述 RRN将编 节点的以太网接口, 然后通过所述下级网络节点的以太网物理层芯片根据接 收到的调制码流恢复出原始的以太网报文和线路时钟, 根据所述线路时钟, 从而可以使得所述下级网络的本地时钟和所述 RRN的时钟保持频率同步。
例如, 参见图 2 , RRN1通过空口与 eRelay BS之间进行时间同步, 在进 行时间同步之后, RRN1能够确定 RRN1的第一时钟信息,所述第一时钟信息 例如包含的主时钟频率为 122.88MHz, 以及 RR1在物理层对所述第一时钟信 息进行编码, 获得编码后的所述第一时钟信息, 并将编码后的所述第一时钟 信息以串行传输方式通过物理链路传输给 small cell-1 , small cell-1接收到 RR1 传输的串行数据码流, 通过解码所述串行数据码流提取和跟踪 RRN1的所述 第一时钟信息, 使得 small cell-1根据解码信息与 RRN1保持频率同步。
其中, RRN2通过空口与 eRelay BS之间进行时间同步, 在进行时间同 步之后, RRN2能够确定 RRN2的第二时钟信息, 所述第二时钟信息例如包含 的主时钟频率为 500 MHz,以及 RR2在物理层对所述第二时钟信息进行编码, 获得编码后的所述第二时钟信息, 并将编码后的所述第二时钟信息以串行传 输方式通过物理链路传输给 small cell-2 , small cell-2接收到 RR2传输的串行 数据码流, 通过解码所述串行数据码流提取和跟踪 RRN2的所述第二时钟信 息, 使得 small cell-2根据解码信息能够与 RRN2保持频率同步。
在具体实施过程中, 所述本地时钟信息包括主时钟频率, 所述 RRN将进 行时间同步后的本地时钟信息发送给所述 RRN的下级网络节点, 具体包括: 所述 RRN将所述主时钟频率的绝对值封装成频率同步"¾文; 将所述频率同步 报文发送给所述下级网络节点, 以使得所述下级网络节点基于所述频率同步 报文与所述 RRN保持频率同步。
具体来讲, 在执行步骤 S101之后, 所述 RRN首先提取所述本地时钟信 息中的主时钟频率, 并将所述主时钟频率的绝对值封装成频率同步 4艮文, 以 下级网络节点能够接收到所述频率同步报文, 提取所述频率同步报文中的所 述主时钟频率, 基于所述主时钟频率, 所述下级网络节点与所述 RRN保持频 率同步。 例如, 参见图 2 , RRN1通过空口与 eRelay BS之间进行时间同步, 在进 行时间同步之后, RRN1能够确定 RRN1的第一时钟信息, 然后从所述第一时 钟信息提取第一主时钟频率, 所述第一主时钟频率例如为 122.88MHz, 并将 所述第一主时钟频率的绝对值封装成第一频率同步 "^文, 以及以及通过物理 链路将所述第一频率同步报文传输至 small cell-1 , 以使得 small cell- 1能够接 收到所述第一频率同步报文, 提取所述第一频率同步报文中的所述第一主时 钟频率,基于所述第一主时钟频率, 使得 small cell-1与 RRN1保持频率同步。
进一步的, RRN2通过空口与 eRelay BS之间进行时间同步, 在进行时间 同步和之后, RRN2能够确定 RRN2的第二时钟信息, 然后从所述第二时钟信 息提取第二主时钟频率, 所述第二主时钟频率例如为 500MHz, 并将所述第二 主时钟频率的绝对值封装成第二频率同步报文, 以及通过物理链路将所述第 二频率同步报文传输至 small cell-2, 以使得 small cell-2能够接收到所述第二 频率同步报文, 提取所述第二频率同步报文中的所述第二主时钟频率, 基于 所述第二主时钟频率, 使得 small cell-2与 RRN2保持频率同步。
在具体实施过程中, 所述 RRN将进行时间同步后的本地时钟信息发送给 所述 RRN的下级网络节点, 具体包括: 所述 RRN将所述本地时钟信息封装 成时钟同步报文, 其中, 所述本地时钟信息包括主时钟频率和基准时间; 将 所述时钟同步报文发送给所述下级网络节点, 以使得所述下级网络节点基于 所述时钟同步 ^艮文与所述 RRN保持频率同步和时间同步。
其中, 所述主时钟频率例如是 122.88MHz, 500 MHz, 280 MHz等, 进 一步的, 所述基准时间可以用时间戳进行表示。
具体来讲, 在执行步骤 S101之后, 所述 RRN基于不对称延时动态补偿 (IEEE 1588V2)协议来封装所述本地时钟信息, 获得 1588V2时钟 文, 并将 所述 1588V2时钟报文发送至所述下级网络节点,以使得所述下级网络节点基 于所述 1588V2时钟 ^艮文与所述 RRN保持频率同步和时间同步。
由于所述 RRN与所述下级网络节点之间进行频率同步之后, 再进行相位 同步才能实现时间同步, 即表征所述 RRN与所述下级网络节点之间进行时间 同步之后, 所述 RRN与所述下级网络节点的频率也是同步的, 如此, 使得所 述下级网络节点基于所述 1588V2时钟报文与所述 RRN保持时间同步。
具体的, 所述 RRN周期性发布 1588V2时钟 4艮文, 由于所述 1588V2时 钟报文具有精密的时间戳信息, 使得所述下级网络节点根据所述 RRN发来的 所述 1588V2时钟报文中的时间戳信息, 计算出所述 RRN至所述下级网络节 点的线路的时间延迟, 以及所述 RRN至所述下级网络节点的时间差, 并利用 所述时间延迟和所述时间差调整所述下级网络节点的本地时间, 使所述下级 网络节点保持与所述 RRN时间一致的频率与相位, 进而使得所述 RRN与所 述下级网络节点保持时间同步。
例如, 参见图 2 , RRN1通过空口与 eRelay BS之间进行时间同步, 在进 行时间同步之后, RRN1能够确定 RRN1的第一时钟信息,根据所述第一时钟 信息, 周期性向 small cell-1发布 1588V2时钟报文, 进而使得 small cell-1根 据 RRN1发布的 1588V2时钟报文中的时间戳信息,计算出 RRN1至 small cell-1 线路的时间延迟, 以及 RRN1至 small cell-1的时间差, 并利用所述时间延迟 和所述时间差调整 small cell-1的本地时间, 使所述 small cell-1保持与 RRN1 时间一致的频率与相位, 进而使得 RRN1与 small cell-1保持时间同步。
进一步的, RRN2通过空口与 eRelay BS之间进行时间同步和频率同步, 在进行时间同步和频率同步之后, RRN2能够确定 RRN2的第二时钟信息,根 据所述第二时钟信息, 周期性向 small cell-2发布 1588V2时钟报文, 进而使 得 small cell-2根据 RRN2发布的 1588V2时钟报文中的时间戳信息, 计算出 RRN2至 small cell-2线路的时间延迟 , 以及 RRN2至 small cell-2的时间差 , 并利用所述时间延迟和所述时间差调整 small cell-2的本地时间,使所述 small cell-2保持与 RRN2时间一致的频率与相位, 进而使得 RRN2与 small cell-2 保持时间同步。
在另一实施例中, 为了进一步提高所述 RRN与所述 eRelay BS的时间同 步精度, 可以将时钟服务器设置在所述 eRelay BS中, 进而使得所述 RRN在 通过空口与所述 eReiay BS进行时间同步时,提高所述 RRN与所述 eRelay BS 的时间同步精度, 使得所述 RRN的本地时钟信息更准确, 进而使得在所述 RRN与下级网络节点在进行时钟步时,所述 RRN与所述下级网络的时钟同步 的精度也得以提高。
进一步的, 所述 RRN和所述下级网络节点是可以同站址部署的, 进而使 得所述 RRN和所述下级网络节点的距离较近, 传输时延小, 使得频率同步精 度更高。
进一步的, 所述 RRN与所述下级网络节点一般釆用直连的方案, 无中间 转发设备, 不存在网络改造问题, 简化了步骤。
本发明实施例中, RRN与 eRelay BS之间进行时间同步, 与现有技术中 RRN仅用于透传时钟信息相比, RRN直接传输时钟信息给所述下级网络节点, 使得时钟信息传输的距离变短, 传输时延降低; 此外, RRN将时间同步后的 本地时钟信息发送给所述 RRN的下级网络节点, 使得下级网络节点基于本地 时钟信息来与 RRN保持时钟同步, 因此, 当时延降低时, 时钟同步的精度得 以提高。
另外, 现有技术中由于 RRN和 eRelay BS是透传时钟信息, 而所述 RRN 和所述 eRelay BS是通过空口传输的, 使得时钟信息需要通过空口进行传输, 可靠性和稳定性受无线环境影响较大, 对无线承载网络的质量依赖太强, 如 果空口回传的服务质量(Quality of Service, 简称 QoS )无法保证, 则频率同 步效果会非常差, 而本申请实施例中所述 RRN通过空口与所述 eRelay BS进 行时钟同步, 所述 RRN再将所述本地时钟信息通过物理链路传输给下级网络 节点, 使得所述 RRN与时钟信息是通过物理链路进行传输的, 而所述物理链 路属于有线介质, 而时钟信息在有线介质进行传输时, 具有更好稳定性, 可 靠性也更高, 与现有技术相比, 本申请技术方式通过有线介质传输时钟信息, 能够进一步提高时钟同步的精度。
基于与上述方法相同的技术构思, 本申请实施例还提供一种时钟同步装 置, 参见图 3 , 所述装置包括:
接收单元 301 , 用于接收 BS发送的时间同步信息; 时间同步单元 302, 用于接收接收单元 301发送的所述时间同步信息,根 据所述时间同步信息, 将所述装置与所述 BS进行时间同步, 获得进行时间同 步后的本地时钟信息;
发送单元 303 , 用于接收时间同步单元 302发送的所述本地时钟信息, 将 所述本地时钟信息发送给所述装置的下级网络节点, 以使所述下级网络节点 基于接收到的所述本地时钟信息与所述装置保持时钟同步。
具体的, 在 eRelay解决方案中所述 BS可以用 eRelay BS表示, 即使得本 申请实施例中的所述 BS也可以用 eRelay BS表示,下面的 BS均用 eRelay BS 表示。
具体的, 接收单元 301 , 用于接收所述 eRelay BS在导频信道的上发送的 PN码, 以及接收所述 eRelay BS在同步信道的上发送的时间同步数据, 基于 所述 PN码和所述时间同步数据, 使得所述装置和所述 eRelay BS进行时间同 步, 所述装置在进行时间同步后, 进而可以确定所述装置的本地时钟信息, 其中, 所述时间同步信息包括所述 PN码和所述时间同步数据。
具体的, 所述装置与所述 eRelay BS之间进行频率同步之后, 再进行相位 同步才能实现时间同步,即表征所述装置与所述 eRelay BS之间进行时间同步 之后, 所述装置与所述 eRelay BS的频率也是同步的。
较佳的, 所述时钟同步包括时间同步和 /或频率同步。
较佳的, 所述装置还包括编码单元 304, 用于在发送单元 303发送所述本 地时钟信息之前, 将所述本地时钟信息进行编码, 其中, 所述本地时钟信息 包括主时钟频率; 发送单元 303 , 具体用于将编码后的所述本地时钟信息发送 给所述下级网络节点, 以使得所述下级网络节点基于编码后的所述本地时钟 信息与所述装置保持频率同步。
具体的 ,编码单元 304,具体用于在物理层对所述本地时钟信息进行编码, 然后将编码后的所述本地时钟信息通过物理链路传输至所述下级网络节点, 以使得所述下级网络节点通过对编码后的所述本地时钟信息进行解码, 根据 解码信息使得所述装置与所述下级网络节点保持频率同步。 较佳的, 所述本地时钟信息包括主时钟频率, 所述装置还包括频率封装 单元 305, 用于在发送单元 303发送所述本地时钟信息之前, 将所述主时钟频 率的绝对值封装成频率同步报文; 发送单元 303 , 具体用于将所述频率同步报 文发送给所述下级网络节点, 以使得所述下级网络节点基于所述频率同步报 文与所述装置保持频率同步。
具体的, 频率封装单元 305 , 具体用于提取所述本地时钟信息中的主时钟 频率, 并将所述主时钟频率的绝对值封装成频率同步 文, 以及通过物理链 路将所述频率同步报文传输至所述下级网络节点, 以使得所述下级网络节点 能够接收到所述频率同步报文, 提取所述频率同步报文中的所述主时钟频率, 基于所述主时钟频率, 所述下级网络节点与所述装置保持频率同步。
较佳的, 所述装置还包括时钟封装单元 306, 用于在发送单元 303发送所 述本地时钟信息之前, 将所述本地时钟信息封装成时钟同步报文, 其中, 所 述本地时钟信息包括主时钟频率和基准时间; 发送单元 303 , 具体用于将所述 时钟同步报文发送给所述下级网络节点, 以使得所述下级网络节点基于所述 时钟同步报文与所述装置保持频率同步和时间同步。
其中, 所述主时钟频率例如是 122.88MHz, 500 MHz, 280 MHz等, 进 一步的, 所述基准时间可以用时间戳进行表示。
具体的, 时钟封装单元 306,具体用于通过 IEEE 1588V2协议来封装所述 本地时钟信息, 获得 1588V2时钟 文, 并将所述 1588V2时钟 文发送至所 述下级网络节点,以使得所述下级网络节点基于所述 1588V2时钟报文与所述 装置保持频率同步和时间同步。
本发明实施例中, RRN与 eRelay BS之间进行时间同步, 与现有技术中 RRN仅用于透传时钟信息相比, RRN直接传输时钟信息给所述下级网络节点, 使得时钟信息传输的距离变短, 传输时延降低; 此外, RRN将时间同步后的 本地时钟信息发送给所述 RRN的下级网络节点, 使得下级网络节点基于本地 时钟信息来与 RRN保持时钟同步, 因此, 当时延降低时, 时钟同步的精度得 以提高。 另外, 现有技术中由于 RRN和 eRelay BS是透传时钟信息, 而所述 RRN 和所述 eRelay BS是通过空口传输的, 使得时钟信息需要通过空口进行传输, 可靠性和稳定性受无线环境影响较大, 对无线承载网络的质量依赖太强, 如 果 QoS无法保证, 则频率同步效果会非常差, 而本申请实施例中所述 RRN通 过空口与所述 eReiay BS进行时钟同步, 所述 RRN再将所述本地时钟信息通 过物理链路传输给下级网络节点, 使得所述 RRN与时钟信息是通过物理链路 进行传输的, 而所述物理链路属于有线介质, 而时钟信息在有线介质进行传 输时, 具有更好稳定性, 可靠性也更高, 与现有技术相比, 本申请技术方式 通过有线介质传输时钟信息, 能够进一步提高时钟同步的精度。
基于与上述方法相同的技术构思, 本申请实施例还提供一种 RRN, 参见 图 4, 所述 RRN包括:
接收器 401 , 用于接收 BS发送的时间同步信息;
处理器 402,用于根据所述时间同步信息,将所述 RRN与所述 eRelay BS 进行时间同步, 获得进行时间同步后的本地时钟信息;
发送器 403 ,用于将所述本地时钟信息发送给所述 RRN的下级网络节点, 以使所述下级网络节点基于接收到的所述本地时钟信息与所述 RRN保持时钟 同步。
其中, 接收器 401例如是 WIFI模块, 天线等电子设备, 进一步的, 处理 器 402例如是单独的处理芯片, 也可以集成在 RRN中处理器中。
进一步的, 发送器 403例如是 WIFI模块, 天线等电子设备。
具体的, 在 eRelay解决方案中所述 BS可以用 eRelay BS表示, 即使得本 申请实施例中的所述 BS也可以用 eRelay BS表示,下面的 BS均用 eRelay BS 表示。
具体的,接收器 401 ,用于接收所述 eRelay BS在导频信道的上发送的 PN 码, 以及接收所述 eRelay BS在同步信道的上发送的时间同步数据,基于所述 PN码和所述时间同步数据, 使得所述装置和所述 eRelay BS进行时间同步, 所述装置在进行时间同步后, 进而可以确定所述装置的本地时钟信息, 其中, 所述时间同步信息包括所述 PN码和所述时间同步数据。
具体的, 所述装置与所述 eRelay BS之间进行频率同步之后, 再进行相位 同步才能实现时间同步,即表征所述装置与所述 eRelay BS之间进行时间同步 之后, 所述装置与所述 eRelay BS的频率也是同步的。
较佳的, 所述时钟同步包括时间同步和 /或频率同步。
较佳的, 处理器 402, 用于在发送器 403发送所述本地时钟信息之前, 将 所述本地时钟信息进行编码, 其中, 所述本地时钟信息包括主时钟频率; 发送器 403 ,具体用于将编码后的所述本地时钟信息发送给所述下级网络 节点 , 以使得所述下级网络节点基于编码后的所述本地时钟信息与所述 RRN 保持频率同步。
具体的, 处理器 402, 具体用于在物理层对所述本地时钟信息进行编码, 然后将编码后的所述本地时钟信息通过物理链路传输至所述下级网络节点, 以使得所述下级网络节点通过对编码后的所述本地时钟信息进行解码, 根据 解码信息使得 RRN与所述下级网络节点保持频率同步。
较佳的, 处理器 402, 用于在发送器 403发送所述本地时钟信息之前, 将 所述本地时钟信息中的主时钟频率的绝对值封装成频率同步 ^艮文; 使得所述下级网络节点基于所述频率同步报文与所述 RRN保持频率同步。
具体的, 处理器 402, 具体用于提取所述本地时钟信息中的主时钟频率, 并将所述主时钟频率的绝对值封装成频率同步报文, 以及通过物理链路将所 述频率同步报文传输至所述下级网络节点, 以使得所述下级网络节点能够接 收到所述频率同步报文, 提取所述频率同步报文中的所述主时钟频率, 基于 所述主时钟频率, 所述下级网络节点与所述 RRN保持频率同步。
较佳的, 处理器 402, 用于在发送器 403发送所述本地时钟信息之前, 将 所述本地时钟信息封装成时钟同步报文, 其中, 所述本地时钟信息包括主时 钟频率和基准时间; 使得所述下级网络节点基于所述时钟同步报文与所述 RRN保持频率同步和时 间同步。
其中, 所述主时钟频率例如是 122.88MHz, 500 MHz, 280 MHz等, 进 一步的, 所述基准时间可以用时间戳进行表示。
具体的,处理器 402,具体用于通过 IEEE 1588V2协议来封装所述本地时 钟信息, 获得 1588 V2时钟报文, 并将所述 1588V2时钟报文发送至所述下级 网络节点, 以使得所述下级网络节点基于所述 1588V2时钟报文与所述 RRN 保持频率同步和时间同步。
本发明实施例中, RRN与 eRelay BS之间进行时间同步, 与现有技术中 RRN仅用于透传时钟信息相比, RRN直接传输时钟信息给所述下级网络节点, 使得时钟信息传输的距离变短, 传输时延降低; 此外, RRN将时间同步后的 本地时钟信息发送给所述 RRN的下级网络节点, 使得下级网络节点基于本地 时钟信息来与 RRN保持时钟同步, 因此, 当时延降低时, 时钟同步的精度得 以提高。
另外, 现有技术中由于 RRN和 eRelay BS是透传时钟信息, 而所述 RRN 和所述 eRelay BS是通过空口传输的, 使得时钟信息需要通过空口进行传输, 可靠性和稳定性受无线环境影响较大, 对无线承载网络的质量依赖太强, 如 果 QoS无法保证, 则频率同步效果会非常差, 而本申请实施例中所述 RRN通 过空口与所述 eReiay BS进行时钟同步, 所述 RRN再将所述本地时钟信息通 过物理链路传输给下级网络节点, 使得所述 RRN与时钟信息是通过物理链路 进行传输的, 而所述物理链路属于有线介质, 而时钟信息在有线介质进行传 输时, 具有更好稳定性, 可靠性也更高, 与现有技术相比, 本申请技术方式 通过有线介质传输时钟信息, 能够进一步提高时钟同步的精度。
本领域的技术人员应明白,本发明的实施例可提供为方法、装置(设备)、 或计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 装置 (设备)和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 / 或方框图中的每一流程和 /或方框、以及流程图和 /或方框图中的流程和 /或方框 的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处 理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通过计算机 或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种时钟同步方法, 其特征在于, 所述方法包括:
中继远程节点 RRN与基站 BS之间进行时间同步;
所述 RRN将进行时间同步后的本地时钟信息发送给所述 RRN的下级网 络节点, 以使所述下级网络节点基于接收到的所述本地时钟信息与所述 RRN 保持时钟同步。
2、 如权利要求 1所述的方法, 其特征在于, 所述时钟同步包括时间同步 和 /或频率同步。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述 RRN将进行时间 同步后的本地时钟信息发送给所述 RRN的下级网络节点, 具体包括:
所述 RRN将所述本地时钟信息进行编码, 其中, 所述本地时钟信息包括 主时钟频率;
将编码后的所述本地时钟信息发送给所述下级网络节点, 以使得所述下 级网络节点基于编码后的所述本地时钟信息与所述 RRN保持频率同步。
4、 如权利要求 1或 2所述的方法, 其特征在于, 所述本地时钟信息包括 主时钟频率, 所述 RRN将进行时间同步后的本地时钟信息发送给所述 RRN 的下级网络节点, 具体包括:
所述 RRN将所述主时钟频率的绝对值封装成频率同步"¾文;
将所述频率同步报文发送给所述下级网络节点 , 以使得所述下级网络节 点基于所述频率同步报文与所述 RRN保持频率同步。
5、 如权利要求 1或 2所述的方法, 其特征在于, 所述 RRN将进行时间 同步后的本地时钟信息发送给所述 RRN的下级网络节点, 具体包括:
所述 RRN将所述本地时钟信息封装成时钟同步报文, 其中, 所述本地时 钟信息包括主时钟频率和基准时间;
将所述时钟同步报文发送给所述下级网络节点, 以使得所述下级网络节 点基于所述时钟同步报文与所述 RRN保持频率同步和时间同步。
6、 一种时钟同步装置, 其特征在于, 所述装置包括:
接收单元, 用于接收 BS发送的时间同步信息;
时间同步单元, 用于接收所述接收单元发送的所述时间同步信息, 根据 所述时间同步信息, 将所述装置与所述 BS进行时间同步, 获得进行时间同步 后的本地时钟信息;
发送单元, 用于接收所述时间同步单元发送的所述本地时钟信息, 将所 述本地时钟信息发送给所述装置的下级网络节点, 以使所述下级网络节点基 于接收到的所述本地时钟信息与所述装置保持时钟同步。
7、 如权利要求 6所述的装置, 其特征在于, 所述装置还包括编码单元, 用于在所述发送单元发送所述本地时钟信息之前, 将所述本地时钟信息进行 编码, 其中, 所述本地时钟信息包括主时钟频率;
所述发送单元, 具体用于将编码后的所述本地时钟信息发送给所述下级 网络节点, 以使得所述下级网络节点基于编码后的所述本地时钟信息与所述 RRN保持频率同步。
8、 如权利要求 6所述的装置, 其特征在于, 所述本地时钟信息包括主时 钟频率, 所述装置还包括频率封装单元;
所述频率封装单元, 用于在所述发送单元发送所述本地时钟信息之前, 将所述主时钟频率的绝对值封装成频率同步报文; 以使得所述下级网络节点基于所述频率同步报文与所述装置保持频率同步。
9、 如权利要求 6所述的装置, 其特征在于, 所述装置还包括时钟封装单 元;
所述时钟封装单元, 用于在所述发送单元发送所述本地时钟信息之前, 将所述本地时钟信息封装成时钟同步报文, 其中, 所述本地时钟信息包括主 时钟频率和基准时间; 以使得所述下级网络节点基于所述时钟同步报文与所述装置保持频率同步和 时间同步。
10、 一种中继远程节点 RRN, 其特征在于, 所述 RRN包括:
接收器, 用于接收基站 BS发送的同步时间信息;
处理器, 用于根据所述时间同步信息, 将所述 RRN与所述 BS进行时间 同步, 获得进行时间同步后的本地时钟信息;
发送器, 用于将所述本地时钟信息发送给所述 RRN的下级网络节点, 以 使所述下级网络节点基于接收到的所述本地时钟信息与所述 RRN保持时钟同 步。
PCT/CN2013/090575 2013-12-26 2013-12-26 时钟同步方法、装置及rrn WO2015096097A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003170.9A CN104982078A (zh) 2013-12-26 2013-12-26 时钟同步方法、装置及rrn
PCT/CN2013/090575 WO2015096097A1 (zh) 2013-12-26 2013-12-26 时钟同步方法、装置及rrn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090575 WO2015096097A1 (zh) 2013-12-26 2013-12-26 时钟同步方法、装置及rrn

Publications (1)

Publication Number Publication Date
WO2015096097A1 true WO2015096097A1 (zh) 2015-07-02

Family

ID=53477369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090575 WO2015096097A1 (zh) 2013-12-26 2013-12-26 时钟同步方法、装置及rrn

Country Status (2)

Country Link
CN (1) CN104982078A (zh)
WO (1) WO2015096097A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014479A (zh) * 2009-12-31 2011-04-13 大唐移动通信设备有限公司 一种家庭基站HeNB的同步方法、系统和设备
CN102076024A (zh) * 2009-11-24 2011-05-25 华为技术有限公司 基站、网络系统及实现方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378916A (zh) * 2012-04-19 2013-10-30 中兴通讯股份有限公司 一种时钟传输方法、边界时钟及透传时钟

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076024A (zh) * 2009-11-24 2011-05-25 华为技术有限公司 基站、网络系统及实现方法
CN102014479A (zh) * 2009-12-31 2011-04-13 大唐移动通信设备有限公司 一种家庭基站HeNB的同步方法、系统和设备

Also Published As

Publication number Publication date
CN104982078A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
CN111211852B (zh) 同步的方法和装置
CN110291758B (zh) 用于时延监测的方法和设备
WO2020067977A1 (en) Inter-working between a time-sensitive network and a cellular communication network
WO2020107852A1 (zh) 卫星、终端设备、卫星通信系统和卫星通信方法
US8259617B2 (en) Method and system for timely delivery of multimedia content via a femtocell
CN101951312B (zh) 基于e1链路的双向时频同传方法及主从装置
US10652849B2 (en) Using broadcast physical layer for one-way time transfer of universal coordinated time to receivers
US20170064661A1 (en) Base station system, radio device and method
US8169999B2 (en) Method and system for preserving content timing across femtocell interfaces via timestamp insertion
WO2014194517A1 (zh) 一种传输数据的方法及设备
CN102761951B (zh) 时钟同步处理方法、装置以及通信系统
CN104579533B (zh) 调度定时分组以增强电信网络中的时间分布的装置和方法
US10880001B2 (en) System, methods, and devices for distributed physical layer networks
CN102783078A (zh) 通过用于通信系统的通信层和子层之间的交互来进行精确时钟同步的方法和系统
CN103152118B (zh) 一种基带单元和射频单元数据业务同步方法、装置和系统
CN104581923A (zh) 通过无线链路传输精确时间信息的方法
WO2012065334A1 (zh) 在时分复用网络中实现时间同步的方法、设备和系统
WO2014094311A1 (zh) 一种空口同步的方法、设备及系统
CA3104762A1 (en) Synchronization method and apparatus
WO2014117489A1 (zh) 时钟同步方法及设备
WO2022027666A1 (zh) 一种时间同步方法及装置
US10021661B2 (en) Meshed GPS time synchronized network
WO2010102565A1 (zh) 时间同步的方法、装置和系统
CN103731252A (zh) 一种ieee1588单播协商机制改进方法及系统
EP3723327B1 (en) System and method for communication in an industrial environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900164

Country of ref document: EP

Kind code of ref document: A1