WO2015093485A1 - 光架橋形成によって19fケミカルシフトの変化を生じさせる方法 - Google Patents
光架橋形成によって19fケミカルシフトの変化を生じさせる方法 Download PDFInfo
- Publication number
- WO2015093485A1 WO2015093485A1 PCT/JP2014/083278 JP2014083278W WO2015093485A1 WO 2015093485 A1 WO2015093485 A1 WO 2015093485A1 JP 2014083278 W JP2014083278 W JP 2014083278W WO 2015093485 A1 WO2015093485 A1 WO 2015093485A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- photocrosslinking
- nucleic acid
- photoresponsive
- fluorine
- Prior art date
Links
- 0 CC(CO*)(C(*)=C1*)OC1(C)[n](c1ccccc1c1c2)c1ccc2C(*)=C(C)* Chemical compound CC(CO*)(C(*)=C1*)OC1(C)[n](c1ccccc1c1c2)c1ccc2C(*)=C(C)* 0.000 description 2
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
- G01N24/088—Assessment or manipulation of a chemical or biochemical reaction, e.g. verification whether a chemical reaction occurred or whether a ligand binds to a receptor in drug screening or assessing reaction kinetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
Definitions
- the present invention relates to a nuclear magnetic resonance method in which photocrosslinking is formed between a photoresponsive base having a photocrosslinkable vinyl structure and a fluorine-containing modified pyrimidine base capable of photocrosslinking before and after photocrosslinking. To a change in 19 F chemical shift detectable by.
- Nucleic acid base sequence detection is a basic technique used in all fields of biotechnology.
- a basic technique that is particularly useful for detection of nucleotide sequences by complementation of nucleic acids and that can be used in all fields of biotechnology is a nucleic acid crosslinking technique.
- a photoresponsive base As a photocrosslinking technique for nucleic acids, a photoresponsive base has been developed and a patent application has been filed by the inventor's research group (Patent Document 1). According to this technique, a nucleic acid having a desired base sequence can be detected with high sensitivity by, for example, formation of a duplex by complementation and subsequent photocrosslinking. For this detection, for example, means such as a fluorescent label and a chromogenic enzyme label are appropriately used. However, these means are not necessarily suitable for in vivo measurement.
- a nuclear magnetic resonance method such as NMR or MRI.
- the atoms (molecules) that are the targets of the nuclear magnetic resonance method are mainly 1 H, which is derived from the fact that a large amount of water is present in the living body and high strength is obtained.
- 19 F fluorine 19
- Fluorine 19 has been studied as another atom to be a target of the nuclear magnetic resonance method. Fluorine 19 has a natural abundance ratio of almost 100% and is hardly present in the living body.
- an object of the present invention is to provide a highly sensitive detection means suitable for in vivo measurement for detecting photocrosslinking formed by a photoresponsive base.
- the present inventor has substituted 19 F (19 fluorine atoms) at the 5-position of the pyrimidine ring of a base of thymine (T) or uracil (U) that can be photocrosslinked to a photoresponsive base. It was found that when a fluorine-containing modified pyrimidine base substituted on a group was used to form a photocrosslink by photoirradiation with a photoresponsive base, a significant 19 F chemical shift change occurred. Reached.
- the present invention includes the following (1) to (1).
- (1) The 5-position of the pyrimidine ring of the base of thymine (T) or uracil (U) that can be photocrosslinked to a photoresponsive base having a photocrosslinkable vinyl structure is substituted with an R group (provided that the R group is a fluorine atom) , A C1-C4 fluoroalkyl group in which one or more hydrogen atoms are replaced by fluorine atoms, Or Monocyclic, bicyclic or tricyclic substituted with one or more hydrogen atoms by fluorine atoms or C1-C4 fluoroalkyl groups in which one or more hydrogen atoms are replaced by fluorine atoms A fluoroaryl group)
- a fluorine-containing modified pyrimidine base substituted with A photo-crosslinking is formed between a photo-responsive base having a photo-crosslinkable vinyl structure and a fluorine-containing modified pyrimidine base capable of photo-crosslinking, and
- the fluorine-containing modified pyrimidine base is The following formula (I): (However, in the formula (I), R is a fluorine atom, A C1-C4 fluoroalkyl group in which one or more hydrogen atoms are replaced by fluorine atoms, or Monocyclic, bicyclic or tricyclic substituted with one or more hydrogen atoms by fluorine atoms or C1-C4 fluoroalkyl groups in which one or more hydrogen atoms are replaced by fluorine atoms A fluoroaryl group, R1 represents a phosphate group formed integrally with O bonded to R1 in the formula (I); R2 represents a hydroxyl group, R3 is hydrogen or a hydroxyl group) Is a base portion of a modified pyrimidine nucleotide represented by: Photocrosslinking The fluorine-containing modified pyrimidine base in the photocrosslinkable nucleic acid into which the modified pyr
- a photoresponsive base having a photocrosslinkable vinyl structure is The following formula (II): (In the formula (II), R11 is a cyano group, an amide group, a carboxyl group, a C2-C7 alkoxycarbonyl group, or hydrogen; R12 and R13 are each independently a cyano group, an amide group, a carboxyl group, a C2-C7 alkoxycarbonyl group, or hydrogen; R1 represents a phosphate group formed integrally with O bonded to R1 in the formula (I); R2 represents a hydroxyl group, R3 is hydrogen or a hydroxyl group) Is a base portion of the photoresponsive modified nucleotide represented by: Photocrosslinking The photoresponsive base in a photoresponsive nucleic acid into which the photoresponsive modified nucleotide is introduced by phosphodiester linkage; and The method according to (2), which is a photocrosslinking formed with a fluorine-containing modified pyrimidine base in a photocrosslinkable
- a C1-C4 fluoroalkyl group is -C n H 2n + 1-m F m (Where n is an integer from 1 to 4, m is an integer from 1 and 2n + 1-m is an integer from 0 to 0)
- the method according to any one of (1) to (3), wherein (5) A C1-C4 fluoroalkyl group is The method according to any one of (1) to (3), which is —CF 3 , —CH 2 —CF 3 , or —C (CF 3 ) 3 .
- a monocyclic, bicyclic or tricyclic fluoroaryl group is (1) to (1) in which one or more hydrogen atoms are a fluorophenyl group or a fluoronaphthyl group substituted with a fluorine atom, —CF 3 , —CH 2 —CF 3 , or —C (CF 3 ) 3 The method according to any one of 3).
- a monocyclic, bicyclic or tricyclic fluoroaryl group is The method according to any one of (1) to (3), which is a 3,5-bis (trifluoromethyl) phenyl group.
- the present invention includes the following (11) to (11).
- (11) A method for producing a photocrosslink in which a change in 19 F chemical shift detectable by a nuclear magnetic resonance method is caused by the method according to any one of (7) to (7).
- (12) A method for producing a photocrosslinked nucleic acid that has a change in 19 F chemical shift detectable by a nuclear magnetic resonance method by the method according to any one of (7) to (7).
- (13) (1) A method for detecting a photocrosslink formed by the method according to any one of (7) by a change in 19 F chemical shift in a nuclear magnetic resonance method.
- Photocrosslinking The method according to any one of (3) to (7), wherein the method is photocrosslinking formed so as to be photocrosslinkable by forming a duplex between the photoresponsive nucleic acid and the photocrosslinkable nucleic acid.
- the method is photocrosslinking formed so as to be photocrosslinkable by forming a duplex between the photoresponsive nucleic acid and the photocrosslinkable nucleic acid.
- the present invention includes the following (21) to (21).
- (21) The following formula (I): (However, in the formula (I), R is a fluorine atom, A C1-C4 fluoroalkyl group in which one or more hydrogen atoms are replaced by fluorine atoms, or Monocyclic, bicyclic or tricyclic substituted with one or more hydrogen atoms by fluorine atoms or C1-C4 fluoroalkyl groups in which one or more hydrogen atoms are replaced by fluorine atoms A fluoroaryl group, R1 represents a phosphate group formed integrally with O bonded to R1 in the formula (I); R2 represents a hydroxyl group, R3 is hydrogen or a hydroxyl group)
- the photocrosslinking formation detection agent which consists of a photocrosslinkable nucleic acid in which the modified pyrimidine nucleotide represented by this formula is introduced by phosphodiester bonding.
- a C1-C4 fluoroalkyl group is -C n H 2n + 1-m F m (Where n is an integer from 1 to 4, m is an integer from 1 and 2n + 1-m is an integer from 0 to 0)
- a C1-C4 fluoroalkyl group is The photocrosslinking formation detection agent according to any one of (21) to (23), which is —CF 3 , —CH 2 —CF 3 , or —C (CF 3 ) 3 .
- a monocyclic, bicyclic or tricyclic fluoroaryl group is (21) to (21) in which one or more hydrogen atoms are a fluorophenyl group or a fluoronaphthyl group substituted with a fluorine atom, —CF 3 , —CH 2 —CF 3 , or —C (CF 3 ) 3
- a monocyclic, bicyclic or tricyclic fluoroaryl group is The photocrosslinking formation detection agent according to any one of (21) to (24), which is a 3,5-bis (trifluoromethyl) phenyl group.
- the present invention includes the following (31) to (31).
- (31) A photocrosslinkable nucleic acid obtained by introducing a modified pyrimidine nucleotide represented by the formula (I) through a phosphodiester bond;
- a method for producing a photocrosslinked nucleic acid A photocrosslinkable nucleic acid obtained by introducing a modified pyrimidine nucleotide represented by the formula (I) through a phosphodiester bond.
- the formation of a photocrosslink by a photoresponsive base can be detected by 19 F chemical shift by a nuclear magnetic resonance method.
- This detection by nuclear magnetic resonance is particularly suitable for in-vivo three-dimensional imaging, and is also particularly suitable for taking snapshots at a certain point in time, so that a desired response using a photoresponsive nucleic acid can be obtained. It is intended to realize a new medically valuable application in which detection of complementary nucleic acid sequences is performed using in-vivo three-dimensional real-time snapshot images.
- FIG. 1 is a diagram showing a modified PAGE result comparing the photoreactivity of T and TFT .
- Figure 2 is a graph showing comparison of photoreactive a (B) of HPLC analysis of the cross-linking reaction of CNV K and TF T (A), and ODN2 (T) and ODN3 (TF T).
- FIG. 3 is a diagram illustrating a change in chemical shift associated with photocrosslinking.
- FIG. 4 is a graph showing the correlation between the ratio of the peak shifted by NMR and the photocrosslinking rate determined from the amount of decrease in peak by HPLC.
- FIG. 5 is a diagram showing a modified PAGE result in which cleavage by 312 nm light irradiation was confirmed.
- FIG. 6 is a diagram showing the results of reversible F-NMR chemical shift changes associated with the photocrosslinking reaction.
- FIG. 7 is an explanatory diagram showing sensing of potassium ions by a thrombin aptamer.
- FIG. 8 is a diagram showing changes in NMR peaks due to the addition of potassium ions.
- the 5-position of the pyrimidine ring of a thymine (T) or uracil (U) base capable of photocrosslinking to a photoresponsive base having a photocrosslinkable vinyl structure is substituted with an R group (provided that The R group is a fluorine-containing modified pyrimidine base substituted with a fluorine atom or a C1-C4 fluoroalkyl group in which one or more hydrogen atoms are substituted with a fluorine atom.
- the photoresponsive base having a structure and a fluorine-containing modified pyrimidine base capable of photocrosslinking are subjected to photocrosslinking, and a 19 F chemical shift detectable by a nuclear magnetic resonance method in comparison before and after the photocrosslinking is formed. Changes can be made.
- the fluorine-containing modified pyrimidine base of the present invention has the following formula (I): (However, in the formula (I), R is a fluorine atom, A C1-C4 fluoroalkyl group in which one or more hydrogen atoms are replaced by fluorine atoms, or Monocyclic, bicyclic or tricyclic substituted with one or more hydrogen atoms by fluorine atoms or C1-C4 fluoroalkyl groups in which one or more hydrogen atoms are replaced by fluorine atoms A fluoroaryl group, R1 represents a phosphate group formed integrally with O bonded to R1 in the formula (I); R2 represents a hydroxyl group, R3 is hydrogen or a hydroxyl group) Is a base moiety of a modified pyrimidine nucleotide represented by the following formula (III): (However, in the formula (III), R is a fluorine atom,
- a C1-C4 fluoroalkyl group in which one or more hydrogen atoms are substituted with a fluorine atom can be used as the R group.
- this fluoroalkyl group for example, the following formula: -C n H 2n + 1-m F m (Where n is an integer from 1 to 4, m is an integer from 1 and 2n + 1-m is an integer from 0 to 0) It is group represented by these.
- fluoroalkyl group examples include —CF 3 , —CH 2 —CF 3 , and —C (CF 3 ) 3. Particularly preferred is —CF 3 or —C (CF 3 ) 3 .
- R group one or more hydrogen atoms are substituted with a fluorine atom, or a C1-C4 fluoroalkyl group in which one or more hydrogen atoms are substituted with a fluorine atom
- Monocyclic, bicyclic or tricyclic fluoroaryl groups can be used.
- the fluoroaryl group include a fluorophenyl group or fluoronaphthyl in which one or more hydrogen atoms are substituted with a fluorine atom, —CF 3 , —CH 2 —CF 3 , or —C (CF 3 ) 3.
- Groups can be used.
- 3,5-bis (trifluoromethyl) phenyl group (However, the dotted line in the above structural formula represents the position of the free radical) Can be used.
- [Photoresponsive base] As the photoresponsive base having a photocrosslinkable vinyl structure, the following formula (II): (In the formula (II), R11 is a cyano group, an amide group, a carboxyl group, a C2-C7 alkoxycarbonyl group, or hydrogen; R12 and R13 are each independently a cyano group, an amide group, a carboxyl group, a C2-C7 alkoxycarbonyl group, or hydrogen; R1 represents a phosphate group formed integrally with O bonded to R1 in the formula (I); R2 represents a hydroxyl group, R3 is hydrogen or a hydroxyl group)
- Patent Document 1 International Publication No. 2009/066447.
- R11 in formula (II) is a cyano group, an amide group, a carboxyl group, an alkoxycarbonyl group, or hydrogen, preferably a cyano group, an amide group, a carboxyl group, an alkoxycarbonyl group, or Hydrogen, and more preferably a cyano group, an amide group, a carboxyl group, or an alkoxycarbonyl group.
- the alkoxycarbonyl group is preferably C2 to C7, more preferably C2 to C6, more preferably C2 to C5, more preferably C2 to C4, still more preferably C2 to C3, and particularly preferably C2. it can.
- R12 and R13 in formula (II) are each independently a cyano group, an amide group, a carboxyl group, an alkoxycarbonyl group, or hydrogen, preferably a cyano group, an amide group, a carboxyl group.
- the alkoxycarbonyl group is preferably C2 to C7, more preferably C2 to C6, more preferably C2 to C5, more preferably C2 to C4, still more preferably C2 to C3, and particularly preferably C2. it can.
- Photocrosslinking can be formed between the photoresponsive base having the photocrosslinkable vinyl structure and the fluorine-containing modified pyrimidine base. That is, the fluorine-containing modified pyrimidine base and the photoresponsive modified nucleotide in a photocrosslinkable nucleic acid into which the modified pyrimidine nucleotide has been introduced by phosphodiester linkage are introduced by phosphodiester linkage.
- a photocrosslink can be formed between the photoresponsive base in the photoresponsive nucleic acid. According to the present invention, this structural change can be detected as a change in 19 F chemical shift by the nuclear magnetic resonance method.
- the photocrosslinking between the photoresponsive base and the fluorine-containing modified pyrimidine base is performed by complementation of the base sequence containing the photoresponsive base and the base sequence containing the fluorine-containing modified pyrimidine base prior to light irradiation.
- the photocrosslinking reaction is arranged so as to be able to proceed, and by receiving light irradiation in that state, the photoreaction suitably proceeds to form.
- conditions for duplex formation conditions and means known to those skilled in the art can be used as conditions and means for nucleic acid duplex formation.
- the base sequence containing the photoresponsive base in the base sequence of the photoresponsive nucleic acid containing the photoresponsive base is a complementary base sequence.
- the photoresponsive base sequence and the complementary base sequence are complementary so that a double-stranded region can be formed, provided that they are complementary to the photoresponsive base.
- the base since the artificial base having a vinylcarbazole structure does not form a complementary hydrogen bond, various bases can be selected without particular limitation.
- the photoresponsive nucleic acid containing a photoresponsive base and the photocrosslinkable nucleic acid containing a fluorine-containing modified pyrimidine base may be the same nucleic acid molecule, in which case the photoresponsive Self-crosslinking can be formed by taking a double-stranded structure in the self molecule by a base sequence containing a functional base and a base sequence containing a fluorine-containing modified pyrimidine base, and this structural change is determined by nuclear magnetic resonance. It can be detected as a change in 19 F chemical shift.
- the photoreaction for photocrosslinking conventionally known photocrosslinking formation conditions for the photoresponsive base can be used.
- the light irradiated for photocrosslinking is preferably light having a wavelength of generally 350 to 380 nm, preferably 360 to 370 nm, more preferably 366 nm, particularly preferably a single wavelength laser of 366 nm.
- the light irradiation time may be several seconds, for example, 1 to 9 seconds, 1 to 7 seconds, 1 to 5 seconds, or 1 to 3 seconds. it can.
- various conditions can be widely used also about a solvent etc. including use of aqueous solution, a buffer solution, physiological pH, and salt concentration.
- photocrosslinks are reversible. That is, after photocrosslinking by light irradiation, photocleavage can be further performed by light irradiation.
- the light irradiated for photocleavage for example, light including a wavelength in the range of 330 to 370 nm can be used, for example, a single wavelength laser beam of 366 nm can be used, or, for example, Light including a wavelength in the range of 300 to 330 nm can be used, for example, light having a wavelength of 312 nm can be used.
- ⁇ ppm in this case is 0.15 ppm
- the change in 19 F chemical shift of this application is 50 times or more.
- the change of 19 F chemical shift of this application is 2.0 ppm or more, 3.0 ppm or more, 4.0 ppm or more, 5.0 ppm or more, 6.0 ppm or more, 7.0 ppm or more, 8.0 ppm or more, for example, 50 ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less, 15 ppm or less.
- FIG. 1 is a diagram showing a modified PAGE result comparing the photoreactivity of T and TFT .
- lane M 10DNA ladder marker
- lanes 1-5 If the target base is T, then Lane 6 to 10: if the target base is CN T, respectively the light irradiation time 0 s (seconds), 0. 1s, 0.5s, 1s, 2s.
- FIG. 2 (A) is an HPLC analysis of the cross-linking reaction between CNV K and TFT .
- the horizontal axis represents retention time (minutes), and shows charts for light irradiation times of 0 s (seconds), 0.1 s, 0.5 s, 1 s, 2 s, and 5 s.
- FIG. 2 (B) is a comparison of the photoreactive of ODN2 (T) and ODN3 (TF T).
- the horizontal axis represents the light irradiation time (seconds), and the vertical axis represents the photocrosslinking rate (%).
- the upper curve of the graph represents the case where the target base is T
- the lower curve of the graph represents the case where the target base is TFT .
- Photo-crosslinking reaction results TF T and CNV K in HPLC analysis lower than T, that photocrosslinking reaction proceeds was confirmed in 1 of a rate of about 4 minutes.
- FIG. 3 is a diagram illustrating a change in chemical shift associated with photocrosslinking.
- FIG. 3A shows the change in 19 F-NMR spectrum with the light irradiation time. The chart is shown for each of the light irradiation times of 0 s (seconds), 1 s, 2 s, 5 s, 10 s, and 20 s.
- FIG. 3B shows an HPLC chart corresponding to each NMR sample. The horizontal axis represents retention time (minutes), and shows charts for light irradiation times of 0 s (seconds), 1 s, 2 s, 5 s, 10 s, and 20 s.
- the peak of fluorine can be confirmed around -63.2 ppm.
- a peak around ⁇ 71.2 ppm appears.
- the peak around -63.2 ppm disappears and only the peak at -71.2 ppm is obtained.
- HPLC HPLC
- FIG. 4 is a graph showing the correlation between the ratio of the peak shifted by NMR and the photocrosslinking rate determined from the amount of decrease in peak by HPLC. From the fact that the photocrosslinking rates determined from the NMR analysis and the HPLC analysis are consistent, the change in chemical shift that can be confirmed is considered to be due to the change in the environment around CF 3 due to photocrosslinking.
- FIG. 5 is a diagram showing a modified PAGE result in which cleavage by 312 nm light irradiation was confirmed. Result of modified PAGE, by light irradiation 312nm in the heating conditions, cleavage of the photocrosslinking of TF T and CNV K was confirmed. Although the cleaving speed is a little slower than T, the gel results confirmed that the cleaving was performed by light irradiation for 30 minutes.
- FIG. 6 is a diagram showing the results of reversible F-NMR chemical shift changes associated with the photocrosslinking reaction. It was confirmed that the chemical shift was changed to -71.2 ppm by irradiation with light of 366 nm at 4 ° C. and changed to -63.2 ppm by irradiation with light of 312 nm at 60 ° C. Furthermore, the chemical shift was changed to ⁇ 71.2 ppm by irradiation with light of 366 nm at 4 ° C. From these results, it was shown that the chemical shift can be reversibly manipulated by irradiation with light at 366 nm and 312 nm, and imaging can be performed using this.
- Nucleic acids have not only a normal B-type double helix, but also a higher-order structure formed under conditions where a specific sequence exists. They can also be used as aptamers of small molecules. Conformation for structural changes greatly compared to conventional double helix, experiments were conducted thought that is capable of imaging by chemical shift with TF T.
- the targeting is an array that has been reported as a thrombin aptamer, an experiment was conducted using sequence ODN4 obtained by replacing T in TF T. It takes a G-quadruplex structure in the presence of potassium ions. This change will be described with reference to FIG.
- FIG. 7 is an explanatory diagram showing sensing of potassium ions by a thrombin aptamer. 20 ⁇ M ODN was measured by 19F-NMR in 10 mM Tris-HCl. The internal standard was 10 ⁇ M TFA, 10% D 2 O. The NMR measurement results are shown in FIG.
- FIG. 8 is a diagram showing changes in NMR peaks due to the addition of potassium ions.
- a peak was confirmed at -63.1 ppm before adding potassium ions. This is a peak in a single-stranded state.
- 50 mM of KCl was added, a new peak was confirmed at -64.0 ppm. This peak is considered to be a peak derived from G-quadruplex only in the presence of potassium ions.
- the concentration of KCl is sufficiently increased, all ODNs form a G-quadruplex structure and only have a peak of ⁇ 64.0 ppm. From this result, sensing of potassium ions by introducing TF T to the aptamer sequence can be read from a change in the chemical shift.
- Sensing structures according to the chemical shift with TF T is a technique for realizing a sensing potassium ions, it does not involve photocrosslinking.
- This technique can be grasped as the following invention (1).
- a modified pyrimidine nucleotide represented by formula I is introduced into a nucleic acid aptamer and used to bind the nucleic acid aptamer and a ligand, resulting in a 19 F chemical shift detectable by nuclear magnetic resonance in comparison before and after binding. How to make.
- the nucleic acid aptamer has an aptamer sequence capable of binding potassium ions and a modified pyrimidine nucleotide represented by formula I in the sequence, The method according to any one of (1) to (2), wherein the ligand is potassium ion.
- the method according to (3) which is a method for detecting potassium ions by 19 F chemical shift in a nuclear magnetic resonance method.
- the formation of a photocrosslink by a photoresponsive base can be detected by 19 F chemical shift by a nuclear magnetic resonance method.
- the present invention is industrially useful.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- High Energy & Nuclear Physics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Radiology & Medical Imaging (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
光架橋性のビニル構造を有する光応答性塩基に対して光架橋可能なチミン(T)又はウラシル(U)の塩基の、ピリミジン環の5位を、R基(ただし、R基は、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基である)に置換したフッ素含有修飾ピリミジン塩基を使用することによって、光架橋性のビニル構造を有する光応答性塩基と、光架橋可能なフッ素含有修飾ピリミジン塩基との間に光架橋を形成させて、光架橋形成の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じさせる方法によって、 光応答性塩基によって形成される光架橋を検出するための、生体内での計測に適した、高感度な検出手段を提供する。
Description
本発明は、光架橋性のビニル構造を有する光応答性塩基と、光架橋可能なフッ素含有修飾ピリミジン塩基との間に光架橋を形成させて、光架橋形成の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じさせる方法に関する。
核酸の塩基配列の検出は、生命工学のあらゆる分野で使用される基本的な技術である。核酸の相補性による塩基配列の検出に特に有用であり、生命工学のあらゆる分野で使用可能な基本的な技術に、核酸の架橋技術がある。
核酸の光架橋技術として、本発明者の研究グループによって、光応答性塩基が開発され、特許出願が行われている(特許文献1)。この技術によれば、例えば、相補性による二重鎖の形成とそれに続く光架橋によって、所望の塩基配列の核酸を高感度に検出することができる。この検出には、例えば、蛍光標識、発色酵素標識などの手段が、適宜使用される。しかし、これらの手段は、生体内での計測には、必ずしも適したものではない。
生体内の様々な情報を得る手段の一つとして、NMR、MRIなど、核磁気共鳴法を用いたイメージング技術が挙げられる。核磁気共鳴法のターゲットとなる原子(分子)は主に1Hであり、水が生体内に多く存在し高い強度が得られることに由来する。核磁気共鳴法のターゲットとなるその他の原子としては、19F(フッ素19)が研究されている。フッ素19は天然存在比がほぼ100%であること、生体内にほとんど存在しないことなどが、利点として挙げられる。
したがって、本発明の目的は、光応答性塩基によって形成される光架橋を検出するための、生体内での計測に適した、高感度な検出手段を、提供することにある。
本発明者は、鋭意研究の結果、光応答性塩基に対して光架橋可能なチミン(T)又はウラシル(U)の塩基の、ピリミジン環の5位を、19F(フッ素19原子)含有置換基に置換したフッ素含有修飾ピリミジン塩基を使用して、光応答性塩基との光架橋を光照射によって光架橋を形成させると、顕著な19Fケミカルシフトの変化が生じることを見いだして、本発明に到達した。
19Fをターゲットとした核磁気共鳴法は、従来から研究されていたが、イメージング可能なほどに十分なケミカルシフトの変化を得ることは困難であったところ、本発明者は、上記フッ素含有修飾ピリミジン塩基を使用すると、これが通常のT又はUと同様に光架橋可能であること、そして、光架橋の結果として、大きな19Fケミカルシフトの変化を生じさせることを見いだして、本発明に到達したものである。
したがって、本発明は、次の(1)~にある。
(1)
光架橋性のビニル構造を有する光応答性塩基に対して光架橋可能なチミン(T)又はウラシル(U)の塩基の、ピリミジン環の5位を、R基
(ただし、R基は、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、
又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基である)
に置換したフッ素含有修飾ピリミジン塩基を使用することによって、
光架橋性のビニル構造を有する光応答性塩基と、光架橋可能なフッ素含有修飾ピリミジン塩基との間に光架橋を形成させて、光架橋形成の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じさせる方法。
(2)
フッ素含有修飾ピリミジン塩基が、
次の式(I):
(ただし、式(I)において、
Rは、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される修飾ピリミジンヌクレオチドの塩基部分であり、
光架橋が、
上記修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸中の、上記フッ素含有修飾ピリミジン塩基と、
光架橋性のビニル構造を有する光応答性塩基との間に形成される光架橋である、(1)に記載の方法。
(3)
光架橋性のビニル構造を有する光応答性塩基が、
次の式(II):
(ただし、式(II)中、R11は、シアノ基、アミド基、カルボキシル基、C2~C7のアルコキシカルボニル基、又は水素であり、
R12及びR13は、それぞれ独立に、シアノ基、アミド基、カルボキシル基、C2~C7のアルコキシカルボニル基、又は水素であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される光応答性修飾ヌクレオチドの塩基部分であり、
光架橋が、
上記光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸中の、上記光応答性塩基と、
被光架橋性核酸中のフッ素含有修飾ピリミジン塩基との間に形成される光架橋である、(2)に記載の方法。
(4)
C1~C4のフルオロアルキル基が、
-CnH2n+1-mFm
(ただし、nは1以上4以下の整数、mは1以上の整数、2n+1-mは0以上の整数である)
である、(1)~(3)のいずれかに記載の方法。
(5)
C1~C4のフルオロアルキル基が、
-CF3、-CH2-CF3、又は-C(CF3)3である、(1)~(3)のいずれかに記載の方法。
(6)
単環式、二環式又は三環式のフルオロアリール基が、
1個以上の水素原子が、フッ素原子、-CF3、-CH2-CF3、又は-C(CF3)3で置換された、フルオロフェニル基又はフルオロナフチル基である、(1)~(3)のいずれかに記載の方法。
(7)
単環式、二環式又は三環式のフルオロアリール基が、
3,5-ビス(トリフルオロメチル)フェニル基である、(1)~(3)のいずれかに記載の方法。
(1)
光架橋性のビニル構造を有する光応答性塩基に対して光架橋可能なチミン(T)又はウラシル(U)の塩基の、ピリミジン環の5位を、R基
(ただし、R基は、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、
又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基である)
に置換したフッ素含有修飾ピリミジン塩基を使用することによって、
光架橋性のビニル構造を有する光応答性塩基と、光架橋可能なフッ素含有修飾ピリミジン塩基との間に光架橋を形成させて、光架橋形成の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じさせる方法。
(2)
フッ素含有修飾ピリミジン塩基が、
次の式(I):
Rは、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される修飾ピリミジンヌクレオチドの塩基部分であり、
光架橋が、
上記修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸中の、上記フッ素含有修飾ピリミジン塩基と、
光架橋性のビニル構造を有する光応答性塩基との間に形成される光架橋である、(1)に記載の方法。
(3)
光架橋性のビニル構造を有する光応答性塩基が、
次の式(II):
R12及びR13は、それぞれ独立に、シアノ基、アミド基、カルボキシル基、C2~C7のアルコキシカルボニル基、又は水素であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される光応答性修飾ヌクレオチドの塩基部分であり、
光架橋が、
上記光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸中の、上記光応答性塩基と、
被光架橋性核酸中のフッ素含有修飾ピリミジン塩基との間に形成される光架橋である、(2)に記載の方法。
(4)
C1~C4のフルオロアルキル基が、
-CnH2n+1-mFm
(ただし、nは1以上4以下の整数、mは1以上の整数、2n+1-mは0以上の整数である)
である、(1)~(3)のいずれかに記載の方法。
(5)
C1~C4のフルオロアルキル基が、
-CF3、-CH2-CF3、又は-C(CF3)3である、(1)~(3)のいずれかに記載の方法。
(6)
単環式、二環式又は三環式のフルオロアリール基が、
1個以上の水素原子が、フッ素原子、-CF3、-CH2-CF3、又は-C(CF3)3で置換された、フルオロフェニル基又はフルオロナフチル基である、(1)~(3)のいずれかに記載の方法。
(7)
単環式、二環式又は三環式のフルオロアリール基が、
3,5-ビス(トリフルオロメチル)フェニル基である、(1)~(3)のいずれかに記載の方法。
さらに、本発明は、次の(11)~にある。
(11)
(1)~(7)のいずれかに記載の方法によって、核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じた、光架橋を製造する方法。
(12)
(1)~(7)のいずれかに記載の方法によって、核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じた、光架橋された核酸を製造する方法。
(13)
(1)~(7)のいずれかに記載の方法によって形成された光架橋を、核磁気共鳴法における19Fケミカルシフトの変化によって、検出する方法。
(14)
光架橋が、
光応答性核酸と被光架橋性核酸との間の二重鎖形成によって、光架橋可能に配置されて形成された光架橋である、(3)~(7)のいずれかに記載の方法。
(15)
(14)に記載の方法によって形成された光架橋を、核磁気共鳴法における19Fケミカルシフトの変化によって検出することによって、
光応答性核酸と被光架橋性核酸との間の二重鎖形成を検出する方法。
(11)
(1)~(7)のいずれかに記載の方法によって、核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じた、光架橋を製造する方法。
(12)
(1)~(7)のいずれかに記載の方法によって、核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じた、光架橋された核酸を製造する方法。
(13)
(1)~(7)のいずれかに記載の方法によって形成された光架橋を、核磁気共鳴法における19Fケミカルシフトの変化によって、検出する方法。
(14)
光架橋が、
光応答性核酸と被光架橋性核酸との間の二重鎖形成によって、光架橋可能に配置されて形成された光架橋である、(3)~(7)のいずれかに記載の方法。
(15)
(14)に記載の方法によって形成された光架橋を、核磁気共鳴法における19Fケミカルシフトの変化によって検出することによって、
光応答性核酸と被光架橋性核酸との間の二重鎖形成を検出する方法。
さらに、本発明は、次の(21)~にある。
(21)
次の式(I):
(ただし、式(I)において、
Rは、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸からなる、光架橋形成検出剤。
(22)
光架橋形成の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じさせる、(21)に記載の光架橋形成検出剤。
(23)
C1~C4のフルオロアルキル基が、
-CnH2n+1-mFm
(ただし、nは1以上4以下の整数、mは1以上の整数、2n+1-mは0以上の整数である)
である、(21)~(22)のいずれかに記載の光架橋形成検出剤。
(24)
C1~C4のフルオロアルキル基が、
-CF3、-CH2-CF3、又は-C(CF3)3である、(21)~(23)のいずれかに記載の光架橋形成検出剤。
(25)
単環式、二環式又は三環式のフルオロアリール基が、
1個以上の水素原子が、フッ素原子、-CF3、-CH2-CF3、又は-C(CF3)3で置換された、フルオロフェニル基又はフルオロナフチル基である、(21)~(24)のいずれかに記載の光架橋形成検出剤。
(26)
単環式、二環式又は三環式のフルオロアリール基が、
3,5-ビス(トリフルオロメチル)フェニル基である、(21)~(24)のいずれかに記載の光架橋形成検出剤。
(21)
次の式(I):
Rは、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸からなる、光架橋形成検出剤。
(22)
光架橋形成の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じさせる、(21)に記載の光架橋形成検出剤。
(23)
C1~C4のフルオロアルキル基が、
-CnH2n+1-mFm
(ただし、nは1以上4以下の整数、mは1以上の整数、2n+1-mは0以上の整数である)
である、(21)~(22)のいずれかに記載の光架橋形成検出剤。
(24)
C1~C4のフルオロアルキル基が、
-CF3、-CH2-CF3、又は-C(CF3)3である、(21)~(23)のいずれかに記載の光架橋形成検出剤。
(25)
単環式、二環式又は三環式のフルオロアリール基が、
1個以上の水素原子が、フッ素原子、-CF3、-CH2-CF3、又は-C(CF3)3で置換された、フルオロフェニル基又はフルオロナフチル基である、(21)~(24)のいずれかに記載の光架橋形成検出剤。
(26)
単環式、二環式又は三環式のフルオロアリール基が、
3,5-ビス(トリフルオロメチル)フェニル基である、(21)~(24)のいずれかに記載の光架橋形成検出剤。
さらに、本発明は、次の(31)~にある。
(31)
式(I)で表される修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸と、
式(II)で表される光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸とを、
ハイブリダイズさせる工程、
ハイブリダイズさせた被光架橋性核酸と光応答性核酸に、光照射する工程、
を含む、光架橋された核酸を製造する方法。
(32)
(31)に記載の方法によって製造された、
式(I)で表される修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸と、
式(II)で表される光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸とが、
光架橋されてなる、光架橋された核酸。
(31)
式(I)で表される修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸と、
式(II)で表される光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸とを、
ハイブリダイズさせる工程、
ハイブリダイズさせた被光架橋性核酸と光応答性核酸に、光照射する工程、
を含む、光架橋された核酸を製造する方法。
(32)
(31)に記載の方法によって製造された、
式(I)で表される修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸と、
式(II)で表される光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸とが、
光架橋されてなる、光架橋された核酸。
本発明によれば、光応答性塩基による光架橋の形成を、核磁気共鳴法による19Fケミカルシフトによって、検出することができる。この核磁気共鳴法による検出は、生体内の三次元イメージングに特に適しており、時間的にある時点のスナップショットを撮影することにも特に適しているので、光応答性核酸を使用した所望の相補的核酸配列の検出を、生体内の三次元リアルタイムスナップショット映像によって行うという、医療的に価値の高い新しい応用を実現するものである。
具体的な実施の形態をあげて、以下に本発明を詳細に説明する。本発明は、以下にあげる具体的な実施の形態に限定されるものではない。
[光架橋形成によるケミカルシフトの変化]
本発明によれば、光架橋性のビニル構造を有する光応答性塩基に対して光架橋可能なチミン(T)又はウラシル(U)の塩基の、ピリミジン環の5位を、R基(ただし、R基は、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基である)に置換したフッ素含有修飾ピリミジン塩基を使用することによって、光架橋性のビニル構造を有する光応答性塩基と、光架橋可能なフッ素含有修飾ピリミジン塩基との間に光架橋を形成させて、光架橋形成の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じさせることができる。
本発明によれば、光架橋性のビニル構造を有する光応答性塩基に対して光架橋可能なチミン(T)又はウラシル(U)の塩基の、ピリミジン環の5位を、R基(ただし、R基は、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基である)に置換したフッ素含有修飾ピリミジン塩基を使用することによって、光架橋性のビニル構造を有する光応答性塩基と、光架橋可能なフッ素含有修飾ピリミジン塩基との間に光架橋を形成させて、光架橋形成の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じさせることができる。
[フッ素含有修飾ピリミジン塩基]
本発明のフッ素含有修飾ピリミジン塩基は、次の式(I):
(ただし、式(I)において、
Rは、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される修飾ピリミジンヌクレオチドの塩基部分であり、次の式(III):
(ただし、式(III)において、
Rは、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基である)
で表されるチミン誘導体である。
本発明のフッ素含有修飾ピリミジン塩基は、次の式(I):
Rは、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される修飾ピリミジンヌクレオチドの塩基部分であり、次の式(III):
Rは、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基である)
で表されるチミン誘導体である。
[フルオロアルキル基]
好適な実施の態様において、上記R基として、1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基を使用することができる。このフルオロアルキル基としては、例えば、次の式:
-CnH2n+1-mFm
(ただし、nは1以上4以下の整数、mは1以上の整数、2n+1-mは0以上の整数である)
で表される基である。
好適な実施の態様において、上記R基として、1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基を使用することができる。このフルオロアルキル基としては、例えば、次の式:
-CnH2n+1-mFm
(ただし、nは1以上4以下の整数、mは1以上の整数、2n+1-mは0以上の整数である)
で表される基である。
好ましいフルオロアルキル基としては、例えば、-CF3、-CH2-CF3、-C(CF3)3を挙げることができ、特に-CF3、又は-C(CF3)3が好ましい。
[フルオロアリール基]
好適な実施の態様において、上記R基として、1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基を使用することができる。このフルオロアリール基としては、例えば、1個以上の水素原子が、フッ素原子、-CF3、-CH2-CF3、又は-C(CF3)3で置換された、フルオロフェニル基又はフルオロナフチル基を使用することができる。
好適な実施の態様において、上記R基として、1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基を使用することができる。このフルオロアリール基としては、例えば、1個以上の水素原子が、フッ素原子、-CF3、-CH2-CF3、又は-C(CF3)3で置換された、フルオロフェニル基又はフルオロナフチル基を使用することができる。
[光応答性塩基]
光架橋性のビニル構造を有する光応答性塩基としては、次の式(II):
(ただし、式(II)中、R11は、シアノ基、アミド基、カルボキシル基、C2~C7のアルコキシカルボニル基、又は水素であり、
R12及びR13は、それぞれ独立に、シアノ基、アミド基、カルボキシル基、C2~C7のアルコキシカルボニル基、又は水素であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される光応答性修飾ヌクレオチドの塩基部分を挙げることができ、このビニルカルバゾール構造を有する人工塩基は、特許文献1(国際公開第2009/066447号)に開示されているものである。
光架橋性のビニル構造を有する光応答性塩基としては、次の式(II):
R12及びR13は、それぞれ独立に、シアノ基、アミド基、カルボキシル基、C2~C7のアルコキシカルボニル基、又は水素であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される光応答性修飾ヌクレオチドの塩基部分を挙げることができ、このビニルカルバゾール構造を有する人工塩基は、特許文献1(国際公開第2009/066447号)に開示されているものである。
好適な実施の態様において、式(II)のR11は、シアノ基、アミド基、カルボキシル基、アルコキシカルボニル基、又は水素であり、好ましくは、シアノ基、アミド基、カルボキシル基、アルコキシカルボニル基、又は水素であり、さらに好ましくは、シアノ基、アミド基、カルボキシル基、又はアルコキシカルボニル基である。アルコキシカルボニル基は、好ましくはC2~C7、さらに好ましくはC2~C6、さらに好ましくはC2~C5、さらに好ましくはC2~C4、さらに好ましくはC2~C3、特に好ましくはC2のものを使用することができる。
好適な実施の態様において、式(II)のR12及びR13は、それぞれ独立に、シアノ基、アミド基、カルボキシル基、アルコキシカルボニル基、又は水素であり、好ましくは、シアノ基、アミド基、カルボキシル基、アルコキシカルボニル基、又は水素であり、さらに好ましくは、シアノ基、アミド基、カルボキシル基、又はアルコキシカルボニル基である。アルコキシカルボニル基は、好ましくはC2~C7、さらに好ましくはC2~C6、さらに好ましくはC2~C5、さらに好ましくはC2~C4、さらに好ましくはC2~C3、特に好ましくはC2のものを使用することができる。
[光架橋の形成]
上記の光架橋性のビニル構造を有する光応答性塩基と、フッ素含有修飾ピリミジン塩基との間には、光架橋を形成することができる。すなわち、上記修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸中の、上記フッ素含有修飾ピリミジン塩基と、上記光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸中の、上記光応答性塩基との間には、光架橋を形成することができる。本発明によれば、この構造変化を核磁気共鳴法による19Fケミカルシフトの変化として検出することができる。
上記の光架橋性のビニル構造を有する光応答性塩基と、フッ素含有修飾ピリミジン塩基との間には、光架橋を形成することができる。すなわち、上記修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸中の、上記フッ素含有修飾ピリミジン塩基と、上記光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸中の、上記光応答性塩基との間には、光架橋を形成することができる。本発明によれば、この構造変化を核磁気共鳴法による19Fケミカルシフトの変化として検出することができる。
[光架橋形成のための二重鎖形成]
光応答性塩基と、フッ素含有修飾ピリミジン塩基との間の光架橋は、光照射に先立って、光応答性塩基を含む塩基配列と、フッ素含有修飾ピリミジン塩基を含む塩基配列とが、その相補性によって二重鎖を形成して、光架橋反応が進行可能に配置されて、その状態で光照射を受けることによって、光反応が好適に進行して、形成される。二重鎖形成の条件としては、核酸の二重鎖形成の条件及び手段として、当業者に公知の条件及び手段を使用することができる。そこで、好適な実施の態様において、光応答性塩基を含む光応答性核酸の塩基配列中の光応答性塩基を含む塩基配列に対して、フッ素含有修飾ピリミジン塩基を含む被光架橋性核酸中の塩基配列は、相補的な塩基配列である。好適な実施の態様において、光応答性塩基配列と、相補的塩基配列とは、二重鎖の領域を形成できるよう相補性を有しており、ただし、光応答性塩基と相補的位置にある塩基については、ビニルカルバゾール構造を有する人工塩基が相補的な水素結合を形成しない構造であることから、特に制限なく、種々の塩基を選択することができる。
光応答性塩基と、フッ素含有修飾ピリミジン塩基との間の光架橋は、光照射に先立って、光応答性塩基を含む塩基配列と、フッ素含有修飾ピリミジン塩基を含む塩基配列とが、その相補性によって二重鎖を形成して、光架橋反応が進行可能に配置されて、その状態で光照射を受けることによって、光反応が好適に進行して、形成される。二重鎖形成の条件としては、核酸の二重鎖形成の条件及び手段として、当業者に公知の条件及び手段を使用することができる。そこで、好適な実施の態様において、光応答性塩基を含む光応答性核酸の塩基配列中の光応答性塩基を含む塩基配列に対して、フッ素含有修飾ピリミジン塩基を含む被光架橋性核酸中の塩基配列は、相補的な塩基配列である。好適な実施の態様において、光応答性塩基配列と、相補的塩基配列とは、二重鎖の領域を形成できるよう相補性を有しており、ただし、光応答性塩基と相補的位置にある塩基については、ビニルカルバゾール構造を有する人工塩基が相補的な水素結合を形成しない構造であることから、特に制限なく、種々の塩基を選択することができる。
好適な実施の対応において、光応答性塩基を含む光応答性核酸と、フッ素含有修飾ピリミジン塩基を含む被光架橋性核酸とが、同じ核酸分子であってもよく、この場合には、光応答性塩基を含む塩基配列とフッ素含有修飾ピリミジン塩基を含む塩基配列とによって、自己の分子中に二重鎖構造をとって、自己架橋を形成させることができ、この構造変化を核磁気共鳴法による19Fケミカルシフトの変化として検出することができる。
[光反応の条件]
光架橋のための光反応には、上記光応答性塩基について従来から知られている光架橋形成の条件を使用することができる。例えば、光架橋のために照射される光は、一般に350~380nmの範囲、好ましくは360~370nmの範囲、さらに好ましくは366nmの波長を含む光が好ましく、特に好ましくは、366nmの単波長のレーザー光である。光照射時間は、数秒間、例えば、1~9秒間、1~7秒間、1~5秒間、又は1~3秒間の時間の光照射によって、光反応を進行させて光架橋を形成することができる。そして、光反応であることから、溶媒等についても、水溶液、緩衝液、生理的pHや塩濃度の使用を含めて、種々の条件を広く使用することができる。
光架橋のための光反応には、上記光応答性塩基について従来から知られている光架橋形成の条件を使用することができる。例えば、光架橋のために照射される光は、一般に350~380nmの範囲、好ましくは360~370nmの範囲、さらに好ましくは366nmの波長を含む光が好ましく、特に好ましくは、366nmの単波長のレーザー光である。光照射時間は、数秒間、例えば、1~9秒間、1~7秒間、1~5秒間、又は1~3秒間の時間の光照射によって、光反応を進行させて光架橋を形成することができる。そして、光反応であることから、溶媒等についても、水溶液、緩衝液、生理的pHや塩濃度の使用を含めて、種々の条件を広く使用することができる。
また、上記の光架橋の形成は、可逆的なものである。すなわち、光照射によって光架橋した後に、さらに光照射によって光開裂をすることができる。光開裂のために照射される光は、例えば、330~370nmの範囲の波長を含む光を使用することができ、例えば、366nmの単波長のレーザー光を使用することができ、あるいは、例えば、300~330nmの範囲の波長を含む光を使用することができ、例えば、312nmの波長の光を使用することができる。
[19Fケミカルシフト]
光架橋によって生じた19Fケミカルシフトの変化は、核磁気共鳴法によって検出することができる。このために使用可能な手段、条件、装置等としては、公知の手段、条件、装置等を使用することができる。本発明によって生じる19Fケミカルシフトの変化は、従来技術による各種プローブでの19Fケミカルシフトの変化よりも、大きなものであるために、本発明は、高感度の19Fケミカルシフトイメージングを可能にするものとなっている。例えば、カリウムイオンを中心としてGuanine Quadruplex(グアニン四重鎖構造)として知られるDNAの高次構造をとらせることによって、DNAに結合させた19Fのケミカルシフトの変化を研究した報告があるが、従来のプローブによれば、この場合のΔppmは、0.15ppmとされており、本願の19Fケミカルシフトの変化はこの50倍以上にあたる。本願の19Fケミカルシフトの変化は、例えば、2.0ppm以上、3.0ppm以上、4.0ppm以上、5.0ppm以上、6.0ppm以上、7.0ppm以上、8.0ppm以上であり、例えば、50ppm以下、40ppm以下、30ppm以下、20ppm以下、15ppm以下である。
光架橋によって生じた19Fケミカルシフトの変化は、核磁気共鳴法によって検出することができる。このために使用可能な手段、条件、装置等としては、公知の手段、条件、装置等を使用することができる。本発明によって生じる19Fケミカルシフトの変化は、従来技術による各種プローブでの19Fケミカルシフトの変化よりも、大きなものであるために、本発明は、高感度の19Fケミカルシフトイメージングを可能にするものとなっている。例えば、カリウムイオンを中心としてGuanine Quadruplex(グアニン四重鎖構造)として知られるDNAの高次構造をとらせることによって、DNAに結合させた19Fのケミカルシフトの変化を研究した報告があるが、従来のプローブによれば、この場合のΔppmは、0.15ppmとされており、本願の19Fケミカルシフトの変化はこの50倍以上にあたる。本願の19Fケミカルシフトの変化は、例えば、2.0ppm以上、3.0ppm以上、4.0ppm以上、5.0ppm以上、6.0ppm以上、7.0ppm以上、8.0ppm以上であり、例えば、50ppm以下、40ppm以下、30ppm以下、20ppm以下、15ppm以下である。
[19Fケミカルシフトの可逆性]
上記光架橋の形成は、可逆的なものであり、この可逆的な光架橋の形成に伴って、19Fケミカルシフトもまた、可逆的に変化する。したがって、19Fケミカルシフトの変化による光架橋の検出と、これを利用した二重鎖形成の検出は、その可逆性を利用して、同じプローブ分子(被光架橋性核酸)によって、繰り返し行うことができる。
上記光架橋の形成は、可逆的なものであり、この可逆的な光架橋の形成に伴って、19Fケミカルシフトもまた、可逆的に変化する。したがって、19Fケミカルシフトの変化による光架橋の検出と、これを利用した二重鎖形成の検出は、その可逆性を利用して、同じプローブ分子(被光架橋性核酸)によって、繰り返し行うことができる。
実施例をあげて、以下に本発明を詳細に説明する。本発明は、以下にあげる実施例に限定されるものではない。
[CNVK含有ODNとTFT含有ODNの合成]
研究室で合成した光応答性人工核酸3-cyanovinylcarbazole nucleotide(CNVK)のアミダイト体、Trifluorothymidine(TFT)(5-trifluoromethyl-2’-deoxyuridine)のアミダイト体をアセトニトリルで100mMに調整し、ABI3400にてODNを合成した。合成したODN配列は下記表1に示す。合成後、CNVK含有ODNは28%アンモニア水を用いて55℃で8時間脱保護を行った。TFT含有ODNは50mM K2CO3 メタノール溶液を用いて室温で4時間脱保護を行った。その後、HPLCにて精製を行い、質量分析により目的配列であることを確認した。
研究室で合成した光応答性人工核酸3-cyanovinylcarbazole nucleotide(CNVK)のアミダイト体、Trifluorothymidine(TFT)(5-trifluoromethyl-2’-deoxyuridine)のアミダイト体をアセトニトリルで100mMに調整し、ABI3400にてODNを合成した。合成したODN配列は下記表1に示す。合成後、CNVK含有ODNは28%アンモニア水を用いて55℃で8時間脱保護を行った。TFT含有ODNは50mM K2CO3 メタノール溶液を用いて室温で4時間脱保護を行った。その後、HPLCにて精製を行い、質量分析により目的配列であることを確認した。
[CNVKとCNTの光反応性の解析]
20μM ODN1と20μM ODN2もしくは20μM ODN3をbuffer(100mM NaCl、50mM カコジル酸ナトリウム)中で90℃で5分間加熱した後、ゆっくり4℃までアニーリングを行った。その後、UV-LED照射機を用い、366nmのUV照射を4℃で行い、光照射による光架橋体の確認を変性PAGEにより解析した。この結果を図1に示す。
20μM ODN1と20μM ODN2もしくは20μM ODN3をbuffer(100mM NaCl、50mM カコジル酸ナトリウム)中で90℃で5分間加熱した後、ゆっくり4℃までアニーリングを行った。その後、UV-LED照射機を用い、366nmのUV照射を4℃で行い、光照射による光架橋体の確認を変性PAGEにより解析した。この結果を図1に示す。
図1は、TとTFTの光反応性を比較した変性PAGE結果を示す図である。図1において、レーンM:10DNAラダーマーカー、レーン1~5:ターゲット塩基がTの場合、レーン6~10:ターゲット塩基がCNTの場合であり、光照射時間はそれぞれ0s(秒)、0.1s、0.5s、1s、2sである。
ターゲット塩基がTの場合には、1秒の光照射で原料となる9merのバンドがほぼ消失している。一方、ターゲットがTFTの場合には2秒の光照射で原料のバンドが消失していた。この結果よりTFTはCNVKとの光架橋反応が、ほぼTと同様に進行することがわかった。質量分析の結果からもODN1とODN3の架橋体のピークが得られている。
[TFTとCNVKの光架橋反応速度の解析]
次にTFTとCNVKの光架橋反応がどれくらいの速度で進行するのかをHPLC解析より求めた。この結果を、図2に示す。
次にTFTとCNVKの光架橋反応がどれくらいの速度で進行するのかをHPLC解析より求めた。この結果を、図2に示す。
図2の(A)は、CNVKとTFTのクロスリンク反応のHPLC解析である。横軸はリテンション時間(分)を表し、光照射時間0s(秒)、0.1s、0.5s、1s、2s、5sのそれぞれについてのチャートを示している。図2の(B)はODN2(T)とODN3(TFT)の光反応性の比較である。横軸は光照射時間(秒)を表し、縦軸は光架橋率(%)を表す。グラフの上側の曲線がターゲット塩基がTの場合を表し、グラフの下側の曲線がターゲット塩基がTFTの場合を表す。
HPLC解析の結果TFTとCNVKの光架橋反応はTよりも遅く、約4分の1の速度で光架橋反応が進行していることが確認された。
[19F-NMR測定]
次に光架橋前後での19F-NMR測定を行い、光架橋による[2+2]光環化反応に伴うCF3基の周辺環境の変化によるケミカルシフトの変化の確認を行った。
19F-NMR測定は20μM ODNを100mM NaCl、50mM Cacodylate buffer中で測定を行った。内部標準として10μM TFA、10% D2Oとした。光照射時間を延ばしていき、その変化をNMRとHPLCにより解析した。この結果を、図3に示す。
次に光架橋前後での19F-NMR測定を行い、光架橋による[2+2]光環化反応に伴うCF3基の周辺環境の変化によるケミカルシフトの変化の確認を行った。
19F-NMR測定は20μM ODNを100mM NaCl、50mM Cacodylate buffer中で測定を行った。内部標準として10μM TFA、10% D2Oとした。光照射時間を延ばしていき、その変化をNMRとHPLCにより解析した。この結果を、図3に示す。
図3は、光架橋に伴うケミカルシフトの変化を表す図である。図3の(A)は、光照射時間による19F-NMRスペクトルの変化を表す。光照射時間0s(秒)、1s、2s、5s、10s、20sのそれぞれについてのチャートを示している。図3の(B)は、各NMRサンプルに対応したHPLCチャートを表す。横軸はリテンション時間(分)を表し、光照射時間0s(秒)、1s、2s、5s、10s、20sのそれぞれについてのチャートを示している。
まず、光架橋を行っていないサンプルではフッ素のピークが-63.2ppm付近に確認できる。その状態から光照射時間を延ばしていくに従って-71.2ppm付近のピークが現れる。最終的には-63.2ppm付近のピークが消え、-71.2ppmのピークのみになる。この変化をHPLCで解析するとTFT含有のピークが減少し、クロスリンク体のピークが増加していることが確認された。NMRでのシフトしたピークの割合とHPLCでのTFT含有ODNの減少率から求めた光架橋率をプロットしたところ、図4の様になった。
図4は、NMRのシフトしたピークの割合とHPLCでのピークの減少量から求めた光架橋率の相関を示すグラフである。NMR解析、HPLC解析から求めた光架橋率が一致していることより、確認できているケミカルシフトの変化は光架橋によるCF3周辺の環境が変化したためだと考えられる。
[光照射による開裂(変性PAGE)]
次に312nmの光照射による開裂実験を行った。312nmの各光照射時間でサンプリングし、変性PAGEによる解析を行った。この結果を、次の図5に示す。
次に312nmの光照射による開裂実験を行った。312nmの各光照射時間でサンプリングし、変性PAGEによる解析を行った。この結果を、次の図5に示す。
図5は、312nmの光照射による開裂を確認した変性PAGE結果を示す図である。変性PAGEの結果、加熱条件下での312nmの光照射によって、TFTとCNVKの光架橋体の開裂が確認された。Tと比較すると開裂のスピードは少し遅いものの、ゲル結果から、30分の光照射で開裂していることが確認された。
[光照射による開裂(19F-NMR測定)]
CNVKとTFTの光架橋もTの場合と同様に366nmで架橋、312nmで開裂という操作が可能であるため、それを19F-NMRのケミカルシフトにより読み取ることが可能かどうかを19F-NMRにより確認した。この結果を、次の図6に示す。
CNVKとTFTの光架橋もTの場合と同様に366nmで架橋、312nmで開裂という操作が可能であるため、それを19F-NMRのケミカルシフトにより読み取ることが可能かどうかを19F-NMRにより確認した。この結果を、次の図6に示す。
図6は、光架橋反応に伴う可逆的なF-NMRケミカルシフトの変化の結果を示す図である。
4℃で366nmの光照射によりケミカルシフトは-71.2ppmに変化し、60℃で312nmの光照射により-63.2ppmに変化していることが確認できた。さらに4℃で366nmの光照射によりケミカルシフトは-71.2ppmに変化した。これらの結果より、366nmと312nmの光照射によりケミカルシフトの変化が可逆的に操作可能であること、これを利用してイメージングが可能であることが示された。
4℃で366nmの光照射によりケミカルシフトは-71.2ppmに変化し、60℃で312nmの光照射により-63.2ppmに変化していることが確認できた。さらに4℃で366nmの光照射によりケミカルシフトは-71.2ppmに変化した。これらの結果より、366nmと312nmの光照射によりケミカルシフトの変化が可逆的に操作可能であること、これを利用してイメージングが可能であることが示された。
[TFTを用いたケミカルシフトによる構造のセンシング技術]
核酸には通常のB型の二重螺旋だけでなく、特定の配列が存在する条件下での形成する高次構造が存在する。それらは小分子のアプタマーなどとしても利用可能である。高次構造は通常の二重螺旋と比較して構造が大きく変化するために、TFTを用いたケミカルシフトによるイメージングが可能ではないかと考え実験を行った。
核酸には通常のB型の二重螺旋だけでなく、特定の配列が存在する条件下での形成する高次構造が存在する。それらは小分子のアプタマーなどとしても利用可能である。高次構造は通常の二重螺旋と比較して構造が大きく変化するために、TFTを用いたケミカルシフトによるイメージングが可能ではないかと考え実験を行った。
ターゲットとしたのはトロンビンアプタマーとして報告されている配列であり、TをTFTに置換した配列ODN4を用いて実験を行った。カリウムイオン存在下でG-quadruplex構造を取るというものである。この変化を、次の図7で説明する。
図7は、トロンビンアプタマーによるカリウムイオンのセンシングを示す説明図である。20μM ODNを10mM Tris-HCl中で19F-NMRで測定を行った。内部標準として10μM TFA、10%D2Oとした。NMR測定結果を図8に示す。
図8は、カリウムイオンの添加によるNMRピークの変化を示す図である。19-NMR測定の結果、カリウムイオンを加える前では、-63.1ppmにピークが確認できた。これが1本鎖状態のピークである。次にKClを50mM加えた際に-64.0ppmに新たなピークが確認できた。このピークがカリウムイオン存在下でのみとるG-quadruplex由来のピークだと考えられる。最終的にKClの濃度を十分に挙げるとすべてのODNがG-quadruplex構造を形成し、-64.0ppmのピークのみとなる。この結果から、TFTをアプタマー配列に導入することによってカリウムイオンのセンシングがケミカルシフトの変化から読み取ることが可能である。
TFTを用いたケミカルシフトによる構造のセンシング技術は、カリウムイオンのセンシングを実現する技術であり、光架橋を伴うものではない。この技術は、次の(1)以下のような発明として、把握することができる。
(1)
核酸アプタマーに、式Iで表される修飾ピリミジンヌクレオチドを導入して使用し、核酸アプタマーとリガンドとを結合させて、結合の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトを生じさせる方法。
(2)
核酸アプタマーに、式Iで表される修飾ピリミジンヌクレオチドを導入して使用し、核酸アプタマーとリガンドとの結合を、核磁気共鳴法における19Fケミカルシフトによって検出する方法。
(3)
核酸アプタマーが、カリウムイオン結合可能なアプタマー配列と、式Iで表される修飾ピリミジンヌクレオチドを配列中に有し、
リガンドがカリウムイオンである、(1)~(2)のいずれかに記載の方法。
(4)
核磁気共鳴法における19Fケミカルシフトによって、カリウムイオンを検出する方法である、(3)に記載の方法。
(5)
式(I)で表される修飾ピリミジンヌクレオチドが導入された核酸アプタマー。
(6)
式(I)で表される修飾ピリミジンヌクレオチドが核酸アプタマーに導入されてなる、アプタマーリガンド検出剤。
(7)
式(I)で表される修飾ピリミジンヌクレオチドが、カリウムイオン結合可能なアプタマー配列を有する核酸アプタマーに導入されてなる、カリウムイオン検出剤。
(1)
核酸アプタマーに、式Iで表される修飾ピリミジンヌクレオチドを導入して使用し、核酸アプタマーとリガンドとを結合させて、結合の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトを生じさせる方法。
(2)
核酸アプタマーに、式Iで表される修飾ピリミジンヌクレオチドを導入して使用し、核酸アプタマーとリガンドとの結合を、核磁気共鳴法における19Fケミカルシフトによって検出する方法。
(3)
核酸アプタマーが、カリウムイオン結合可能なアプタマー配列と、式Iで表される修飾ピリミジンヌクレオチドを配列中に有し、
リガンドがカリウムイオンである、(1)~(2)のいずれかに記載の方法。
(4)
核磁気共鳴法における19Fケミカルシフトによって、カリウムイオンを検出する方法である、(3)に記載の方法。
(5)
式(I)で表される修飾ピリミジンヌクレオチドが導入された核酸アプタマー。
(6)
式(I)で表される修飾ピリミジンヌクレオチドが核酸アプタマーに導入されてなる、アプタマーリガンド検出剤。
(7)
式(I)で表される修飾ピリミジンヌクレオチドが、カリウムイオン結合可能なアプタマー配列を有する核酸アプタマーに導入されてなる、カリウムイオン検出剤。
本発明によれば、光応答性塩基による光架橋の形成を、核磁気共鳴法による19Fケミカルシフトによって、検出することができる。本発明は産業上有用な発明である。
Claims (15)
- 光架橋性のビニル構造を有する光応答性塩基に対して光架橋可能なチミン(T)又はウラシル(U)の塩基の、ピリミジン環の5位を、R基
(ただし、R基は、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、
又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基である)
に置換したフッ素含有修飾ピリミジン塩基を使用することによって、
光架橋性のビニル構造を有する光応答性塩基と、光架橋可能なフッ素含有修飾ピリミジン塩基との間に光架橋を形成させて、光架橋形成の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じさせる方法。 - フッ素含有修飾ピリミジン塩基が、
次の式(I):
Rは、フッ素原子、
1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、又は、
1個以上の水素原子が、フッ素原子、又は1個以上の水素原子がフッ素原子で置換されたC1~C4のフルオロアルキル基、で置換された、単環式、二環式又は三環式のフルオロアリール基であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される修飾ピリミジンヌクレオチドの塩基部分であり、
光架橋が、
上記修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸中の、上記フッ素含有修飾ピリミジン塩基と、
光架橋性のビニル構造を有する光応答性塩基との間に形成される光架橋である、請求項1に記載の方法。 - 光架橋性のビニル構造を有する光応答性塩基が、
次の式(II):
R12及びR13は、それぞれ独立に、シアノ基、アミド基、カルボキシル基、C2~C7のアルコキシカルボニル基、又は水素であり、
R1は、式(I)でR1に結合しているOと一体となって形成されたリン酸基を表し、
R2は、水酸基を表し、
R3は、水素又は水酸基である)
で表される光応答性修飾ヌクレオチドの塩基部分であり、
光架橋が、
上記光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸中の、上記光応答性塩基と、
被光架橋性核酸中のフッ素含有修飾ピリミジン塩基との間に形成される光架橋である、請求項2に記載の方法。 - C1~C4のフルオロアルキル基が、
-CnH2n+1-mFm
(ただし、nは1以上4以下の整数、mは1以上の整数、2n+1-mは0以上の整数である)
である、請求項1~3のいずれかに記載の方法。 - C1~C4のフルオロアルキル基が、
-CF3、-CH2-CF3、又は-C(CF3)3である、請求項1~3のいずれかに記載の方法。 - 単環式、二環式又は三環式のフルオロアリール基が、
1個以上の水素原子が、フッ素原子、-CF3、-CH2-CF3、又は-C(CF3)3で置換された、フルオロフェニル基又はフルオロナフチル基である、請求項1~3のいずれかに記載の方法。 - 単環式、二環式又は三環式のフルオロアリール基が、
3,5-ビス(トリフルオロメチル)フェニル基である、請求項1~3のいずれかに記載の方法。 - 請求項1~7のいずれかに記載の方法によって、核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じた、光架橋を製造する方法。
- 請求項1~7のいずれかに記載の方法によって形成された光架橋を、核磁気共鳴法における19Fケミカルシフトの変化によって、検出する方法。
- 光架橋が、
光応答性核酸と被光架橋性核酸との間の二重鎖形成によって、光架橋可能に配置されて形成された光架橋である、請求項3~7のいずれかに記載の方法。 - 請求項10に記載の方法によって形成された光架橋を、核磁気共鳴法における19Fケミカルシフトの変化によって検出することによって、
光応答性核酸と被光架橋性核酸との間の二重鎖形成を検出する方法。 - 光架橋形成の前後の比較において核磁気共鳴法によって検出可能な19Fケミカルシフトの変化を生じさせる、請求項12に記載の光架橋形成検出剤。
- 式(I)で表される修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸と、
式(II)で表される光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸とを、
ハイブリダイズさせる工程、
ハイブリダイズさせた被光架橋性核酸と光応答性核酸に、光照射する工程、
を含む、光架橋された核酸を製造する方法。 - 請求項14に記載の方法によって製造された、
式(I)で表される修飾ピリミジンヌクレオチドがリン酸ジエステル結合して導入されてなる被光架橋性核酸と、
式(II)で表される光応答性修飾ヌクレオチドがリン酸ジエステル結合して導入されてなる光応答性核酸とが、
光架橋されてなる、光架橋された核酸。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015553556A JP6472141B2 (ja) | 2013-12-16 | 2014-12-16 | 光架橋形成によって19fケミカルシフトの変化を生じさせる方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-259334 | 2013-12-16 | ||
JP2013259334 | 2013-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093485A1 true WO2015093485A1 (ja) | 2015-06-25 |
Family
ID=53402830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083278 WO2015093485A1 (ja) | 2013-12-16 | 2014-12-16 | 光架橋形成によって19fケミカルシフトの変化を生じさせる方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6472141B2 (ja) |
WO (1) | WO2015093485A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020125269A (ja) * | 2019-02-05 | 2020-08-20 | 国立大学法人北陸先端科学技術大学院大学 | 二本鎖形成によって19fケミカルシフトの変化を生じさせる方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009066447A1 (ja) * | 2007-11-19 | 2009-05-28 | Japan Advanced Institute Of Science And Technology | 光クロスリンク能を有する光応答性人工ヌクレオチド |
-
2014
- 2014-12-16 WO PCT/JP2014/083278 patent/WO2015093485A1/ja active Application Filing
- 2014-12-16 JP JP2015553556A patent/JP6472141B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009066447A1 (ja) * | 2007-11-19 | 2009-05-28 | Japan Advanced Institute Of Science And Technology | 光クロスリンク能を有する光応答性人工ヌクレオチド |
Non-Patent Citations (3)
Title |
---|
FUJIMOTO, K. ET AL.: "Details of the ultrafast DNA photo-cross-linking reaction of 3- cyanovinylcarbazole nucleoside: cis-trans isomeric effect and the application for SNP- based genotyping", J AM CHEM SOC., vol. 135, October 2013 (2013-10-01), pages 16161 - 16167 * |
GMEINER, WH. ET AL.: "Synthesis, annealing properties, fluorine-19 NMR characterization, and detection limits of a trifluorothymidine- labeled antisense oligodeoxyribonucleotide 21 mer", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 56, 1991, pages 3602 - 3608 * |
TAKUYA TSUDA ET AL.: "Trifluoromethyl Ki o Donyu shita DNA no Gosei to 19F-NMR Spectrum ni yoru DNA Kozo Henka no Tsuiseki", CSJ: THE CHEMICAL SOCIETY OF JAPAN DAI 92 SHUNKI NENKAI (2012) KOEN YOKOSHU, vol. III, 2012, pages 829, 2D7 - 31 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020125269A (ja) * | 2019-02-05 | 2020-08-20 | 国立大学法人北陸先端科学技術大学院大学 | 二本鎖形成によって19fケミカルシフトの変化を生じさせる方法 |
JP7345156B2 (ja) | 2019-02-05 | 2023-09-15 | 国立大学法人北陸先端科学技術大学院大学 | 二本鎖形成によって19fケミカルシフトの変化を生じさせる方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6472141B2 (ja) | 2019-02-20 |
JPWO2015093485A1 (ja) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2706222C (en) | Light-responsive artificial nucleotide having photo-crosslinking ability | |
AU2019403077B2 (en) | 3' protected nucleotides | |
Ranjan et al. | Aminoglycoside binding to Oxytricha nova telomeric DNA | |
Ehrenschwender et al. | 4, 4-Difluoro-4-bora-3a, 4a-diaza-s-indacene as a Bright Fluorescent Label for DNA | |
Shevelev et al. | A versatile approach to attachment of triarylmethyl labels to DNA for nanoscale structural EPR studies at physiological temperatures | |
JP6312729B2 (ja) | 光クロスリンク能を有する光応答性ヌクレオチドアナログ | |
Granqvist et al. | 4′-C-[(4-Trifluoromethyl-1 H-1, 2, 3-triazol-1-yl) methyl] thymidine as a Sensitive 19F NMR Sensor for the Detection of Oligonucleotide Secondary Structures | |
Cho et al. | Probing the Conformational Heterogeneity of the Acetylaminofluorene-Modified 2 ‘-Deoxyguanosine and DNA by 19F NMR Spectroscopy | |
Alenaizan et al. | X-ray fiber diffraction and computational analyses of stacked hexads in supramolecular polymers: insight into self-assembly in water by prospective prebiotic nucleobases | |
CN110914278B (zh) | 在可见光区能进行光交联的光响应性核苷酸类似物 | |
JP6472141B2 (ja) | 光架橋形成によって19fケミカルシフトの変化を生じさせる方法 | |
JP5360647B2 (ja) | 蛍光発生分子 | |
RU2699522C2 (ru) | Способ ферментативного получения модифицированных ДНК для создания реагентов, специфично связывающихся с гидрофобными участками высокомолекулярных органических соединений | |
JP2015006150A (ja) | 鎖交換された二重鎖オリゴヌクレオチドの製造方法 | |
JP7345156B2 (ja) | 二本鎖形成によって19fケミカルシフトの変化を生じさせる方法 | |
Lebedev et al. | Preactivated carboxyl linker for the rapid conjugation of alkylamines to oligonucleotides on solid support | |
CN103159801B (zh) | N-二茂铁基-n′-芳基脲化合物及其应用 | |
JP2021020883A (ja) | 光応答性ヌクレオチドアナログ | |
Sandholt | Nitroxide-derived pyrimidines for noncovalent spin-labeling of nucleic acids | |
Burns | Functionalised DNA-introducing and applying a versatile porphyrin molecular ruler | |
Jaakkola et al. | Solid‐Phase Oligonucleotide Labeling with DOTA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14871750 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015553556 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14871750 Country of ref document: EP Kind code of ref document: A1 |