WO2015093451A1 - Filter - Google Patents

Filter Download PDF

Info

Publication number
WO2015093451A1
WO2015093451A1 PCT/JP2014/083173 JP2014083173W WO2015093451A1 WO 2015093451 A1 WO2015093451 A1 WO 2015093451A1 JP 2014083173 W JP2014083173 W JP 2014083173W WO 2015093451 A1 WO2015093451 A1 WO 2015093451A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene polymer
nonwoven fabric
filter
polyethylene
ethylene
Prior art date
Application number
PCT/JP2014/083173
Other languages
French (fr)
Japanese (ja)
Inventor
市川 太郎
邦昭 川辺
武 津田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2015093451A1 publication Critical patent/WO2015093451A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown

Definitions

  • the present invention relates to a filter.
  • melt blown nonwoven fabric (also referred to as “meltblown nonwoven fabric”) is superior in flexibility, uniformity, and denseness because it can be formed from ultrafine fibers compared to a spunbond nonwoven fabric. For this reason, melt blown nonwoven fabrics are singly or laminated with other nonwoven fabrics, filters (liquid filters, gas filters, etc.), hygiene materials, medical materials, agricultural coating materials, earth and wood, building materials, oil adsorption It is used for materials, automobile materials, electronic materials, separators, clothing, packaging materials, and the like.
  • melt blown nonwoven fabric using polypropylene is excellent in high-performance precision filterability, chemical resistance, processability, fine particle rejection, and the like, and can be used for filters and the like (for example, Patent Document 1). reference).
  • a method for obtaining a polyethylene non-woven fabric of fine fibers a method of forming a resin composition containing polyethylene and polyethylene wax by a melt blow method has been proposed (for example, see Patent Document 2).
  • a resin composition containing polyethylene and polyethylene wax is molded by a melt blow method, and the resulting molded product (melt blow nonwoven fabric) is laminated with a spunbond nonwoven fabric composed of a composite fiber formed from polyester and an ethylene polymer.
  • a method has been proposed (see, for example, Patent Document 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-125404 Patent Document 2: International Publication No. 2000/222219 Patent Document 3: International Publication No. 2012/111724
  • the present inventors examined using a polyethylene nonwoven fabric as a filter.
  • the content of additives stabilizers, etc.
  • the filter cannot be improved in performance, that is, a blocking rate against fine particles (hereinafter also referred to as “fine particle blocking rate”), It has been found that the filtration flow rate, or the balance between these, may not be sufficient.
  • Patent Document 2 described above discloses that a melt-blown polyethylene nonwoven fabric having a fiber diameter of 2.8 ⁇ m can be obtained by molding a resin composition containing specific polyethylene and polyethylene wax by a melt-blowing method ( (See Example 2 of Patent Document 2).
  • Patent Document 3 discloses that a melt blown polyethylene nonwoven fabric having a fiber diameter of 3.3 ⁇ m can be obtained.
  • the fine particle blocking rate, the filtration flow rate, or the balance thereof may not be sufficient due to the large fiber diameter. It has been found.
  • the fine particle rejection rate and the filtration flow rate may be in a trade-off relationship. For this reason, from the viewpoint of improving the performance of the filter, it is desirable to improve the balance between the two, rather than significantly improving only one of the fine particle rejection rate and the filtration flow rate and sacrificing the other.
  • an object of the present invention is to provide a filter made of a polyethylene non-woven fabric and having an excellent balance between the fine particle rejection rate and the filtration flow rate.
  • a filter comprising a polyethylene nonwoven fabric obtained by molding an ethylene polymer composition having a weight average molecular weight of 10,000 to 45,000 and a Z average molecular weight of 65,000 or less by a melt blow method.
  • the polyethylene nonwoven fabric has an average fiber diameter of less than 2.8 ⁇ m.
  • the ethylene polymer composition includes an ethylene polymer wax (b) having a weight average molecular weight of 15,000 or less.
  • the ethylene polymer composition is: An ethylene polymer wax (b) having a weight average molecular weight of 15,000 or less; An ethylene polymer (a) having a weight average molecular weight of 10,000 to 45,000 and a value higher than the weight average molecular weight of the ethylene polymer wax (b);
  • ⁇ 6> The filter according to ⁇ 5>, wherein the ethylene polymer (a) has a weight average molecular weight of 20,000 to 45,000.
  • ⁇ 7> The filter according to any one of ⁇ 1> to ⁇ 6>, wherein an average pore diameter measured with a basis weight of 60 g / m 2 is 20 ⁇ m or less.
  • ⁇ 8> The filter according to any one of ⁇ 1> to ⁇ 7>, wherein the air permeability measured at a basis weight of 60 g / m 2 is less than 15 cm 3 / cm 2 / sec.
  • ⁇ 9> The filter according to any one of ⁇ 1> to ⁇ 8>, wherein the blocking rate of polystyrene latex particles having a spherical particle diameter of 3.00 ⁇ m measured at a basis weight of 60 g / m 2 is 10% or more.
  • a filter made of a polyethylene non-woven fabric and having an excellent balance between the fine particle rejection rate and the filtration flow rate.
  • the filter of the present invention is a polyethylene obtained by molding an ethylene polymer composition having a weight average molecular weight (Mw) of 10,000 to 45,000 and a Z average molecular weight (Mz) of 65,000 or less by a melt blow method.
  • Mw weight average molecular weight
  • Mz Z average molecular weight
  • the filter of the present invention is a filter made of a polyethylene non-woven fabric and is excellent in the balance between the fine particle rejection rate and the filtration flow rate.
  • the filter of the present invention is excellent in the balance between the fine particle blocking rate and the filtration flow rate while being a filter made of a polyethylene nonwoven fabric. More specifically, in the filter of the present invention, the Mz of the ethylene-based polymer composition is 65,000 or less, and the polyethylene-based nonwoven fabric is molded by melt-blowing to form a polyethylene nonwoven fabric. The fiber diameter is easily reduced (preferably, the average fiber diameter of the polyethylene nonwoven fabric is easily reduced to less than 2.8 ⁇ m), and as a result, the balance between the fine particle rejection rate and the filtration flow rate is improved.
  • strength of a polyethylene nonwoven fabric improves because Mw of the said ethylene-type polymer composition is 10,000 or more.
  • Mw of the said ethylene-type polymer composition is 45,000 or less, the balance of a fine particle blocking rate and a filtration flow rate improves.
  • the filter of the present invention is a filter made of polyethylene nonwoven fabric, the content of additives (stabilizers and the like) in the resin can be suppressed as compared with a filter made of polypropylene nonwoven fabric. For this reason, according to the filter of this invention, elution of additives (stabilizer etc.) is suppressed.
  • a support structure for supporting the filter may be made of polyethylene resin for the purpose of reducing the eluted components.
  • the filter of the present invention is a filter made of a polyethylene nonwoven fabric, it is superior in heat sealability with a polyethylene filter support structure compared to a filter made of a polypropylene nonwoven fabric.
  • the filter when a filter is used for a living body or a food, the filter may be sterilized with an electron beam.
  • the filter of the present invention is a filter made of a polyethylene nonwoven fabric, so that it is excellent in electron beam sterilization compared to a filter made of a polypropylene nonwoven fabric.
  • excellent in electron beam sterilization means that deterioration, denaturation, odor, and the like are suppressed when electron beam sterilization is performed.
  • the fiber diameter of the polyethylene nonwoven fabric can be reduced (preferably, the average fiber diameter of the polyethylene nonwoven fabric is less than 2.8 ⁇ m), the filter accuracy and the filter uniformity are improved.
  • Z average molecular weight (Mz) in this specification will be described.
  • Mz of the ethylene polymer composition will be mainly described.
  • definition of Mz of each polymer is the same as the definition of Mz of the ethylene polymer composition.
  • Z average molecular weight (Mz) refers to the molecular weight defined by the following formula (1). In general, Mz is considered to have a molecular weight more reflecting a high molecular weight component.
  • Mi represents the molecular weight of the ethylene polymer composition
  • Ni represents the number of moles of the ethylene polymer composition.
  • the ethylene polymer composition and the Z average molecular weight (Mz) of each polymer are values obtained from GPC measurement, and are values measured under the following conditions. More specifically, the Z average molecular weight (Mz) is obtained based on the following conversion method by creating a calibration curve using commercially available monodisperse standard polystyrene. Moreover, in this specification, the weight average molecular weight (Mw) of an ethylene-type polymer composition and each polymer is also the value calculated
  • the ethylene polymer composition in the present invention has a weight average molecular weight (Mw) of 10,000 to 45,000 and a Z average molecular weight (Mz) of 65,000 or less.
  • the Mw of the ethylene polymer composition is preferably 10,000 to 30,000, more preferably 10,000 to 25,000.
  • the Mz of the ethylene polymer composition is preferably 60,000 or less, more preferably 57,000 or less, still more preferably 54,000 or less, and particularly preferably 50,000 or less.
  • the lower limit of the Mz of the ethylene polymer composition is not particularly limited, but the Mz of the ethylene polymer composition is preferably 10,000 or more, more preferably 20,000 or more.
  • the ethylene polymer composition preferably contains an ethylene polymer wax (b).
  • ethylene polymer wax (b) When the ethylene polymer composition contains the ethylene polymer wax (b), it becomes easier to reduce the average fiber diameter of the obtained polyethylene nonwoven fabric, and it is possible to obtain sufficient uniformity as a filter application. It becomes easier.
  • the ethylene polymer composition is not particularly limited as long as it satisfies the aforementioned weight average molecular weight and Z average molecular weight, but in addition to the ethylene polymer wax (b) or in place of the ethylene polymer wax (b).
  • the ethylene polymer (a) may be contained. When the ethylene polymer composition contains the ethylene polymer (a), it becomes easier to spin the resulting polyethylene nonwoven fabric and to obtain sufficient fiber strength.
  • the ethylene-based polymer composition may contain other components other than the above, if necessary, as long as the object of the present invention is not impaired.
  • Other components include ethylene polymer wax (b) and other polymers other than ethylene polymer (a), stabilizers (heat stabilizers, weather stabilizers, etc.), fillers, antistatic agents, hydrophilic Agents, water repellents, nucleating agents, slip agents, antiblocking agents, antifogging agents, lubricants, colorants (dyes, pigments, etc.), natural oils, synthetic oils and the like.
  • the other components that can be included in the ethylene-based polymer composition may be one type or two or more types.
  • the total content of the ethylene polymer wax (b) and the ethylene polymer (a) in the ethylene polymer composition is 80 mass from the viewpoint of more effectively achieving the effects of the present invention. % Or more is preferable, and 90% by mass or more is more preferable.
  • stabilizers include anti-aging agents such as 2,6-di-t-butyl-4-methyl-phenol (BHT); tetrakis [methylene-3- (3,5-di-t-butyl-4- Hydroxyphenyl) propionate] methane, ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propionic acid alkyl ester, 2,2′-oxamide bis [ethyl-3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate], Irganox 1010 (hindered phenol-based antioxidant: trade name), etc .; fatty acid metals such as zinc stearate, calcium stearate, calcium 1,2-hydroxystearate Salt: Glycerol monostearate, glycerin distearate, pentaerythritol monos Areto, pentaerythritol distearate, polyhydric alcohol fatty acid esters such as pentaery
  • Fillers include silica, diatomaceous earth, alumina, titanium oxide, magnesium oxide, pumice powder, pumice balloon, aluminum hydroxide, magnesium hydroxide, basic magnesium carbonate, dolomite, calcium sulfate, potassium titanate, barium sulfate, Examples thereof include calcium sulfite, talc, clay, mica, asbestos, calcium silicate, montmorillonite, pentonite, graphite, aluminum powder, and molybdenum sulfide. A combination of these can also be used as the filler.
  • the ethylene polymer composition contains the ethylene polymer (a) and the ethylene polymer wax (b), when the ethylene polymer composition is produced, for example, the ethylene polymer (a)
  • the ethylene-based polymer wax (b) and the above-mentioned other components as necessary can be mixed using various known methods.
  • the ethylene polymer wax (b) is a polymer having a relatively low molecular weight, that is, a wax-like polymer.
  • the ethylene polymer composition in the present invention preferably contains an ethylene polymer wax (b) having a weight average molecular weight (Mw) of 15,000 or less.
  • the Mw of the ethylene polymer wax (b) is preferably 400 to 15,000, more preferably 400 to 14000, still more preferably 2000 to 13000, and particularly preferably 6000 to 13000.
  • Mw of the ethylene-based polymer wax (b) is 15,000 or less, it is easy to make the fibers of the obtained meltblown nonwoven fabric finer, and the filter performance (fine particle rejection rate, filtration flow rate, or fine particle rejection rate and filtration flow rate Balance, etc. The same shall apply hereinafter).
  • the Mw of the ethylene polymer wax (b) is 400 or more, the strength of the resulting melt-blown nonwoven fabric can be further improved, and the bleed-out over time can be further suppressed.
  • the Z average molecular weight (Mz) of the ethylene polymer wax (b) is not particularly limited as long as the Z average molecular weight (Mz) of the ethylene polymer composition is 65,000 or less.
  • the Mz of the ethylene polymer wax (b) is preferably 700 to 40,000, more preferably 1000 to 30,000.
  • the Mz of the ethylene-based polymer wax (b) is 40,000 or less, it is easy to make the fibers of the obtained melt blown nonwoven fabric finer, and the filter performance can be further improved.
  • the Mz of the ethylene polymer wax (b) is 700 or more, the strength of the resulting melt-blown nonwoven fabric can be further improved, and the bleed-out with time can be further suppressed.
  • the content of the ethylene polymer wax (b) in the ethylene polymer composition is preferably 1% by mass to 100% by mass, more preferably 5% by mass to 100% by mass, and still more preferably 10% by mass. % To 100% by mass, particularly preferably 20% to 80% by mass.
  • the content of the ethylene polymer wax (b) is in the above range, the balance of spinnability, fiber strength, fine particle rejection, and filtration flow rate is excellent.
  • the Mw of the ethylene polymer composition is 45,000 or less and the Mz of the ethylene polymer composition is 65,000 or less. It is preferable to lower the Mw of the ethylene polymer wax (b) so that The Mw of the ethylene polymer wax (b) in this case is preferably 400 or more and less than 15,000, more preferably 1,000 or more and less than 13,000, and particularly preferably 1,000 or more and 8,000. Is less than.
  • the Mw of the ethylene polymer composition is 10,000 or more and the Mz of the ethylene polymer composition is 65,000 or less. It is preferable to increase the Mw of the ethylene polymer wax (b) so that In this case, the Mw of the ethylene polymer wax (b) is preferably 1,000 or more and less than 15,000, more preferably 3,000 or more and less than 15,000, and particularly preferably 5,000 or more and 15 or more. Less than 1,000.
  • the ethylene polymer wax (b) preferably has a softening point measured in accordance with JIS K2207 of more than 90 ° C.
  • the softening point is more preferably 100 ° C. or higher.
  • the upper limit of the softening point is not particularly limited, an example of the upper limit is 145 ° C.
  • the ethylene polymer wax (b) examples include an ethylene homopolymer, a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms, and the like.
  • the ethylene-based polymer composition contains an ethylene-based polymer wax (b) and an ethylene-based polymer (a)
  • the ethylene-based polymer wax (b) is an ethylene homopolymer
  • an ethylene-based polymer composition The kneadability between the polymer wax (b) and the ethylene polymer (a) is excellent, and the spinnability is excellent.
  • the ethylene polymer wax (b) that can be contained in the ethylene polymer composition may be a single type or a mixture of two or more types.
  • the density of the ethylene polymer wax (b) measured according to JIS K6760 is not particularly limited, but is, for example, 0.890 to 0.980 g / cm 3 , preferably 0.910 to 0.980 g / cm 3. 3 , more preferably 0.920 to 0.980 g / cm 3 , and particularly preferably 0.940 to 0.980 g / cm 3 .
  • the ethylene polymer composition contains an ethylene polymer wax (b) and an ethylene polymer (a), and the density of the ethylene polymer wax (b) is 0.890 to 0.980 g / cm 3. In this case, the kneadability between the ethylene polymer wax (b) and the ethylene polymer (a) is excellent, and the spinnability and stability over time are also excellent.
  • the ethylene-based polymer wax (b) may be produced by any of a production method by polymerization of a low molecular weight polymer or a monomer that is usually used, or a production method in which a molecular weight is reduced by heat degradation of a high molecular weight ethylene polymer. What was manufactured by the method may be sufficient and the manufacturing method in particular of ethylene-type polymer wax (b) is not restrict
  • the ethylene polymer wax (b) is: It is preferably produced using a metallocene catalyst.
  • the ethylene polymer wax (b) is preferably produced using a metallocene catalyst.
  • the reason why the fine particle rejection rate and the filtration flow rate of the filter are improved when the ethylene polymer wax (b) produced using the metallocene catalyst is used is not clear, but the ethylene produced using the metallocene catalyst This is probably because the lower molecular weight component is reduced in the system polymer wax (b). That is, in this case, it is considered that the low molecular weight component considered to be easily crystallized among the ethylene polymer compositions is reduced.
  • the fiber when the fiber is solidified when the melt is discharged from the spinneret in the spinning process, and the discharged melt is blown off with a high-speed, high-temperature air stream sprayed from the periphery of the spinneret. It can be considered that the fiber can be effectively drawn because the time of the above can be delayed, and as a result, the fine particle rejection rate and the filtration flow rate can be improved.
  • the Mz of the ethylene polymer wax (b) can be lowered, so that the Mz of the ethylene polymer composition can also be lowered. It is preferable because fiberization becomes easy.
  • the metallocene catalyst is not particularly limited, and examples thereof include those described in JP-A-2007-246832.
  • Suitable metallocene catalysts include, for example, transition metal metallocene compounds selected from Group 4 of the periodic table, organoaluminum oxy compounds, compounds that react with the metallocene compounds to form ion pairs, And an olefin polymerization catalyst comprising at least one compound selected from organic aluminum compounds.
  • the ethylene polymer composition in the present invention may contain an ethylene polymer (a).
  • the Z average molecular weight (Mz) of the ethylene polymer (a) is not particularly limited as long as the Z average molecular weight (Mz) of the ethylene polymer composition is 65,000 or less, preferably 30,000 to 70,000, more preferably 30,000 to 65,000.
  • Mz of the ethylene-based polymer (a) is 70,000 or less, it is easy to make the fibers of the obtained melt-blown nonwoven fabric finer, and the filter performance can be further improved.
  • strength of the melt blown nonwoven fabric obtained as Mz of an ethylene-type polymer (a) is 30,000 or more can be improved more.
  • the weight average molecular weight (Mw) of the ethylene polymer (a) is not particularly limited as long as the weight average molecular weight (Mw) of the ethylene polymer composition is 10,000 to 45,000, but preferably 10,000. 50,000 to 50,000, more preferably 10,000 to 40,000, and further preferably 15,000 to 35,000.
  • Mw of the ethylene-based polymer (a) is 45,000 or less, it is easy to make the fibers of the obtained melt-blown nonwoven fabric finer, and the filter performance can be further improved.
  • strength of the melt blown nonwoven fabric obtained as Mw of an ethylene-type polymer (a) is 10,000 or more can be improved more.
  • the Mw of the ethylene polymer (a) is 10,000. It is preferably 45,000 and higher than the Mw of the ethylene polymer wax (b).
  • the Mw of the ethylene polymer (a) is preferably 20,000 or more, and more preferably 25,000 or more.
  • the upper limit of Mw of the ethylene polymer (a) is preferably 50,000, more preferably 40,000, and further preferably 35,000.
  • the ethylene polymer (a) content in the ethylene polymer composition is such that the ethylene polymer composition has a weight average molecular weight of 10,000 to 45,000 and a Z average molecular weight of 65,000 or less. Although there is no particular limitation as long as it is, it is preferably 0% by mass to 99% by mass.
  • the content of the ethylene polymer (a) is more preferably 0% by mass to 95% by mass, still more preferably 0% by mass to 90% by mass, and further preferably 20% by mass to 80% by mass. When the content of the ethylene polymer (a) is in the above range, the balance of spinnability, fiber strength, fine particle rejection, and filtration flow rate is excellent.
  • the Mw of the ethylene polymer (a) is increased so that the Mw of the ethylene polymer composition is 10,000 or more. It is preferable to do.
  • the content of the ethylene polymer (a) exceeds 70% by mass, the Mw of the ethylene polymer composition is 45,000 or less and the Mz of the ethylene polymer composition is 65,000 or less. Thus, it is preferable to lower Mw and Mz of the ethylene-based polymer.
  • Examples of the ethylene polymer (a) include ethylene homopolymers and copolymers of ethylene and other ⁇ -olefins.
  • the density of the ethylene polymer (a) measured according to JIS K6760 is not particularly limited, but the density is, for example, 0.870 to 0.980 g / cm 3 , preferably 0.900 to 0.00. It is 980 g / cm 3 , more preferably 0.920 to 0.975 g / cm 3 , and particularly preferably 0.940 to 0.970 g / cm 3 .
  • the density of the ethylene-based polymer (a) is 0.870 g / cm 3 or more, durability, heat resistance, strength, and stability over time of the resulting melt-blown nonwoven fabric tend to be further improved.
  • the density of the ethylene polymer (a) is 0.980 g / cm 3 or less, the heat-sealability and flexibility of the resulting melt-blown nonwoven fabric tend to be further improved.
  • the density of the ethylene-based polymer (a) is such that the strand obtained at the time of measuring a melt flow rate (MFR) at 190 ° C. under a load of 2.16 kg is heat-treated at 120 ° C. for 1 hour, and takes 1 hour to room temperature It is a numerical value obtained by measuring with a density gradient tube after slow cooling.
  • MFR melt flow rate
  • the ethylene polymer (a) is preferably a crystalline resin produced and sold under the names of high pressure method low density polyethylene, linear low density polyethylene (LLDPE), medium density polyethylene, high density polyethylene, and the like.
  • ⁇ -olefins copolymerized with ethylene include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1- Examples thereof include ⁇ -olefins having 3 to 20 carbon atoms such as tetradecene, 1-hexadecene, 1-octadecene and 1-eicocene.
  • the ethylene polymer (a) that can be contained in the ethylene polymer composition may be one kind or a mixture of two or more kinds.
  • the melt flow rate (MFR) of the ethylene polymer (a) is not particularly limited as long as it can be mixed with the ethylene polymer wax (b) to produce a melt blown nonwoven fabric.
  • the MFR of the ethylene polymer (a) is preferably 10 to 250 g / 10 minutes, more preferably 20 to 200 g / 10 minutes, and further preferably 50 to 50% from the viewpoint of fine fiber diameter and spinnability. 200 g / 10 min.
  • MFR of the ethylene-based polymer (a) refers to a value measured under conditions of a load of 2.16 kg and 190 ° C. in accordance with ASTM D1238.
  • the ethylene polymer (a) various known production methods, for example, a polymer obtained by a high-pressure method, or a polymer obtained by using a Ziegler catalyst or a metallocene catalyst (for example, a polymer obtained by a medium-low pressure method). Can be used. Among them, from the viewpoint of easily adjusting each of Mw and Mz of the ethylene polymer (a) according to Mw and Mz of the target ethylene polymer composition, the ethylene polymer (a) is: It is preferably produced using a metallocene catalyst.
  • the Mz of the ethylene polymer (a) can be particularly lowered, so that the Mz when the ethylene polymer composition is obtained is also low, and it is easy to make the polyethylene nonwoven fabric finer. This is preferable.
  • the polyethylene nonwoven fabric in the present invention is a nonwoven fabric (melt blown nonwoven fabric) formed by molding the above-described ethylene polymer composition by a melt blow method.
  • the average fiber diameter of the polyethylene nonwoven fabric in the present invention is preferably less than 2.8 ⁇ m. More preferably, it is 2.5 ⁇ m or less. When the average fiber diameter is less than 2.8 ⁇ m, the uniformity of the obtained polyethylene nonwoven fabric becomes better, and the fine particle blocking rate and filtration flow rate when used as a filter are further improved.
  • the said average fiber diameter is 0.5 micrometer or more, for example, Preferably it is 1.0 micrometer or more.
  • the basis weight of the polyethylene nonwoven fabric is preferably 0.5 g / m 2 or more, more preferably 3 to 80 g / m 2 , still more preferably 5 to 60 g / m 2 , and further preferably 6 to 40 g / m 2. 2 .
  • strength improves more that the fabric weight of a polyethylene nonwoven fabric is 0.5 g / m ⁇ 2 > or more. For this reason, for example, post-processing such as lamination becomes easier.
  • the basis weight of the polyethylene nonwoven fabric is 80 g / m 2 or less, fine fibers are more easily obtained.
  • the range of the weight of the polyethylene nonwoven fabric is, for example, 0.5 to It may be 5 g / m 2 , more preferably 0.5 to 3 g / m 2 .
  • the polyethylene nonwoven fabric in the present invention has a maximum pore size measured at a basis weight of 60 g / m 2 , preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 15 ⁇ m or less.
  • the polyethylene nonwoven fabric in the present invention has an average pore diameter measured at a basis weight of 60 g / m 2 , preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the said average pore diameter becomes like this.
  • it is 1 micrometer or more, More preferably, it is 2 micrometers or more.
  • a polyethylene nonwoven fabric satisfying at least one of an average fiber diameter of less than 2.8 ⁇ m and an average pore diameter of 20 ⁇ m or less measured at a basis weight of 60 g / m 2 has a spherical particle diameter of 3 when used in a filter.
  • the blocking rate of 0.000 ⁇ m polystyrene latex is easily 10% or more (more preferably 20% or more, more preferably 25% or more).
  • the filtration flow rate at a filtration pressure of 0.1 MPa is easily set to 0.7 L / min / cm 2 .
  • the polyethylene nonwoven fabric in the present invention preferably has an air permeability measured at a basis weight of 60 g / m 2 of 15 cm 3 / cm 2 / sec or less.
  • the air permeability is preferably 0.1 cm 3 / cm 2 / second or more, and more preferably 1 cm 3 / cm 2 / second or more.
  • the polyethylene nonwoven fabric in the present invention preferably has a blocking rate of polystyrene latex having a spherical particle diameter of 3.00 ⁇ m measured at a basis weight of 60 g / m 2 of 10% or more, more preferably 20% or more, and 25%. It is still more preferable that it is above.
  • the upper limit of the blocking rate may be 100% or less, but is preferably 95% or less from the viewpoint of balance with the filtration flow rate.
  • the polyethylene nonwoven fabric in this invention can be manufactured with the manufacturing method (melt blow method) of a well-known melt blown nonwoven fabric using the said ethylene polymer composition.
  • the melt blow method specifically, for example, an ethylene polymer composition is melt-kneaded with an extruder or the like, and the melt (molten resin) is discharged from a spinneret having a spinning nozzle and around the spinneret.
  • the web (polyethylene non-woven fabric) is manufactured by blowing off with a high-speed and high-temperature air stream sprayed from the substrate and depositing it as a self-adhesive microfiber on the collection belt to a predetermined thickness.
  • the deposited web can be entangled as necessary.
  • the method of entanglement of the deposited web include a method of thermocompression bonding using an embossing roll and a flat roll (metal roll, rubber roll); a method of fusing by ultrasonic waves; and a fiber entanglement using a water jet
  • Various methods such as a method; a method of fusing by hot air through; a method of using a needle punch; Among these, for the purpose of improving the uniformity of the nonwoven fabric and obtaining a uniform filter, a method of thermocompression bonding using a flat roll having a uniform surface or a method of fusing by hot air through is preferable.
  • At least one of a short fiber nonwoven fabric and a long fiber nonwoven fabric such as cotton, cupra, rayon, polyolefin fiber, polyamide fiber, and polyester fiber, is included within the range not hindering the object of the present invention. Furthermore, you may laminate
  • a method of forming a laminate by integrating the polyethylene nonwoven fabric (melt blown nonwoven fabric) and the spunbond nonwoven fabric in the present invention can be selected. Specifically, for example, (A) After forming a melt-blown nonwoven fabric by directly depositing fibers obtained from an ethylene-based polymer composition by a melt-blowing method on a previously obtained spun-bonded nonwoven fabric, the spun-bonded nonwoven fabric and the melt-blown nonwoven fabric are heat embossed, etc.
  • a method of producing a two-layer laminate by fusing (B) a method for forming a melt blown nonwoven fabric by directly depositing fibers obtained from an ethylene polymer composition by a melt blow method on a previously obtained spunbond nonwoven fabric; (C) A method for producing a laminate by superimposing a previously obtained spunbond nonwoven fabric and a separately produced meltblown nonwoven fabric, and fusing both nonwoven fabrics by heating and pressing, etc.
  • B a method for forming a melt blown nonwoven fabric by directly depositing fibers obtained from an ethylene polymer composition by a melt blow method on a previously obtained spunbond nonwoven fabric
  • C A method for producing a laminate by superimposing a previously obtained spunbond nonwoven fabric and a separately produced meltblown nonwoven fabric, and fusing both nonwoven fabrics by heating and pressing, etc.
  • the filter of the present invention comprises the polyethylene nonwoven fabric (melt blown nonwoven fabric).
  • the filter of the present invention may be composed of a single layer of the polyethylene nonwoven fabric, or may be composed of a laminate in which two or more layers of the polyethylene nonwoven fabric are laminated.
  • the laminate may be simply a laminate of two or more layers of the polyethylene nonwoven fabric.
  • the basis weight of the filter of the present invention can be appropriately determined depending on the use of the filter, but is usually in the range of 5 to 200 g / m 2 , preferably 10 to 150 g / m 2 .
  • the filter of this invention you may perform a calendar process using the flat roll which used the metal roll and the rubber roll, for example in order to control a hole diameter small. It is preferable to change the clearance or pressure between the flat rolls as appropriate according to the thickness of the polyethylene nonwoven fabric so that there are no voids between the fibers of the nonwoven fabric. Further, when the heat treatment is performed during the calendering treatment, it is desirable that the roll surface temperature is hot-pressed in the range of 15 ° C. to 70 ° C. lower than the melting point of the fibers of the polyethylene nonwoven fabric. When the roll surface temperature is 15 ° C. or more lower than the melting point of the fibers of the polyethylene nonwoven fabric, the filter performance is further improved.
  • the filter of the present invention is composed of the polyethylene nonwoven fabric, and if necessary, by laminating a nonwoven fabric having a larger fiber diameter than the polyethylene nonwoven fabric (filter), or a nonwoven fabric having a large average pore diameter, to the filter of the present invention, The lifetime of the filter can be extended.
  • a spunbonded nonwoven fabric or a net-like material may be laminated on the filter of the present invention.
  • the average pore diameter, air permeability, and preferable ranges of the blocking rate of polystyrene latex particles having a spherical particle diameter of 3.00 ⁇ m are respectively the average pore diameter, air permeability, and spherical particle diameter of 3 in the aforementioned polyethylene nonwoven fabric. This is the same as the preferable range of the blocking rate of 0.000 ⁇ m polystyrene latex particles.
  • the filter of the present invention is subjected to secondary processing such as gear processing, printing, coating, laminating, heat treatment, shaping processing, water repellent treatment, hydrophilic treatment, etc. within the range not impairing the object of the present invention. There may be.
  • the filter of the present invention Since the filter of the present invention has a thin fiber diameter and excellent uniformity, it can be widely applied as a liquid filter and a gas filter.
  • the filter of the present invention is particularly suitable as a liquid filter.
  • the filter of this invention has favorable heat-sealability with a polyethylene raw material, it can be applied to a filter using a polyethylene filter support structure. Further, since the filter of the present invention can be sterilized with an electron beam, it can be applied to filters for various biological uses and filters for foods.
  • the polyethylene nonwoven fabric in the present invention can be developed for uses described in “Basic knowledge of nonwoven fabric” issued by the Japan Nonwoven Fabric Association, but is excellent in flexibility because it is made finer than conventional polyethylene nonwoven fabric. In addition, it is excellent in uniformity, denseness, and barrier properties. Therefore, it can be suitably used for paper diapers, sanitary napkins, various sanitary materials, clothing, and protective clothing. In addition, since the polyethylene nonwoven fabric in the present invention has good post-processability such as heat sealability, it can be used as a material for easy adhesion, such as automobile interior materials, various backing materials, daily life materials, industrial materials, deoxygenated materials.
  • the polyethylene nonwoven fabric in the present invention is used in gowns, caps, masks, drapes, gauze, lab coats, curtains used in hospitals, etc. It can be particularly suitably used as a material for sheets, sheets, pillow covers, etc.
  • the polyethylene nonwoven fabric in the present invention is made of fine fibers and has sufficient gaps in the nonwoven fabric, it is suitable for oil adsorbents, wipers, sound absorbing materials, heat insulating materials, cushioning materials, surface protective materials, etc. Can be used.
  • Blocking rate (%) [(C0 ⁇ C1) / C0] ⁇ 100 (%)
  • both C0 and C1 were obtained by counting and measuring the number of particles using a precision particle size distribution measuring device (Beckman Coulter Multisizer 3).
  • rejection rate refers to the rejection rate of fine particles. More specifically, it refers to the rejection rate of polystyrene latex particles having a spherical particle diameter of 3.00 ⁇ m measured at a basis weight of 60 g / m 2 .
  • the filtration flow rate (L / min) was adjusted using the above filtration device (TSU-90B manufactured by ADVANTEC) so that the 50 cc test liquid had a basis weight of 60 g / m 2 under a filtration pressure of 0.1 MPa. It was determined by measuring the time when it passed through the filter.
  • the measurement of the air amount (cm 3 / cm 2 / sec) of each test piece is performed in a temperature-controlled room with a temperature of 20 ⁇ 2 ° C. and a humidity of 65 ⁇ 2% as defined in JIS Z8703 (standard state of test place).
  • the fragile type tester was used.
  • the heat seal conditions were a heat seal temperature of 110 ° C., a heat seal pressure of 2 kg / cm 2 , and a heat seal time of 1.0 second.
  • the heat sealability was visually evaluated according to the following evaluation criteria.
  • C Even if heat-sealed, the nonwoven fabric sample and the polyethylene film do not adhere at all, and the heat-sealability is poor.
  • melt resin of the ethylene polymer composition was discharged at 220 ° C. at a rate of 0.1 g / min per single hole, and melt spinning was performed by a melt blow method to obtain a microfiber.
  • the melt blown nonwoven fabric (MB) polyethylene nonwoven fabric having a basis weight of 7.5 g / m 2 was obtained by depositing the microfibers on the collecting surface.
  • the obtained melt blown nonwoven fabric (MB) (polyethylene nonwoven fabric) was used as a filter, and the above-described measurement and evaluation were performed. The results are shown in Table 1.
  • Example 2 the mass ratio of the ethylene copolymer and the ethylene polymer wax and the basis weight of the melt blown nonwoven fabric (MB) (polyethylene nonwoven fabric) were the same as in Example 1, except that the basis weight was as shown in Table 1. The operation was performed. The results are shown in Table 1.
  • MB melt blown nonwoven fabric
  • Example 4 In Example 3, a melt blown nonwoven fabric (polyethylene nonwoven fabric) was obtained in the same manner as in Example 3 except that the mass ratio of the ethylene copolymer and the ethylene polymer wax was changed as shown in Table 1.
  • the obtained melt blown nonwoven fabric (polyethylene nonwoven fabric) was calendered by pressurizing at 5 m / min and 1 MPa with a rubber flat roll and a metal flat roll heated to 60 ° C.
  • the measurement and evaluation mentioned above were performed using the melt blown nonwoven fabric (polyethylene nonwoven fabric) after a calendar process as a filter. The results are shown in Table 1.
  • Example 5 100 parts by mass of an ethylene polymer composition was added to an ethylene polymer wax produced by a Ziegler catalyst as an ethylene polymer wax (b) [product name: High Wax 800P (registered trademark) manufactured by Mitsui Chemicals, Inc. ), Density: 0.973 g / cm 3 , weight average molecular weight (Mw): 12,700, Z average molecular weight (Mz): 25,700]
  • Mw weight average molecular weight
  • Mz Z average molecular weight
  • Example 6 In Example 3, 50 parts by mass of an ethylene copolymer (Evolue H (registered trademark) SP50800P) was mixed with an ethylene copolymer using a metallocene catalyst (manufactured by Asahi Kasei Co., Ltd., product name: Creolex (registered trademark), density: 0.951 g / cm 3 , MFR: 150 g / 10 min] The same operation as in Example 3 was performed except that the content was changed to 50 parts by mass. The results are shown in Table 1.
  • Example 2 60 parts by mass of an ethylene copolymer (Evolue H (registered trademark) SP50800P) was added to an ethylene copolymer by Ziegler catalyst [manufactured by Prime Polymer Co., Ltd., product name: Neozex 50302 (registered trademark), density]. : 0.950 g / cm 3 , MFR: 30 g / 10 min] The operation was performed in the same manner as in Example 2 except that the weight was changed to 60 parts by mass and the basis weight was changed as shown in Table 1. The results are shown in Table 1.
  • Example 3 the melt blown nonwoven fabric was obtained in the same manner as in Example 3 except that 100 parts by mass of the ethylene polymer composition was changed to 100 parts by mass of the ethylene polymer wax (product name Excellex (registered trademark) 40800). Although the strength of the nonwoven fabric was low, the nonwoven fabric could not be collected.
  • Example 6 Example 6 except that 100 parts by mass of the ethylene-based polymer composition was changed to 100 parts by mass of an ethylene copolymer (manufactured by Asahi Kasei Corporation, product name: Creolex (registered trademark)). The same operation was performed. The results are shown in Table 1.
  • Example 4 In Example 1, 100 parts by mass of the ethylene-based polymer composition was changed to 100 parts by mass of a propylene homopolymer (MFR: 25 g / 10 min), the temperature at the time of discharge was changed to 300 ° C., and the basis weight is shown in Table 1. The same operation as in Example 1 was performed except that it was as shown. The results are shown in Table 1. In Table 1, for convenience, the physical property values of the propylene homopolymer are listed in the “ethylene polymer (a)” column and the “ethylene polymer composition” column.
  • an example comprising a polyethylene nonwoven fabric (melt blown nonwoven fabric) formed by melt-blowing an ethylene polymer composition having an Mw of 10,000 to 45,000 and an Mz of 65,000 or less.
  • the filters 1 to 6 were excellent in the balance between the fine particle rejection rate and the filtration flow rate.
  • the filters of Examples 1 to 6 were also excellent in heat sealability and electronic sterilization properties.
  • Comparative Examples 1 and 3 in which Mz of the ethylene-based polymer composition exceeds 65,000, both the fine particle blocking rate decreased.
  • Comparative Example 2 where the Mw of the ethylene polymer composition was less than 10,000, as described above, the strength of the nonwoven fabric was low, and the nonwoven fabric could not be collected.
  • the filtration flow rate was low, and it was inferior to heat seal property and electronic sterilization property.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)

Abstract

 A filter comprising a polyethylene nonwoven, obtained by melt-blow molding an ethylene polymer composition having a weight-average molecular weight of 10,000-45,000, and a Z-average molecular weight of 65,000 or less.

Description

フィルタfilter
 本発明は、フィルタに関する。 The present invention relates to a filter.
 メルトブロー不織布(「メルトブローン不織布」とも呼ばれている)は、スパンボンド不織布に比べて、極細繊維によって形成できることから、柔軟性、均一性、及び緻密性に優れている。このため、メルトブロー不織布は、単独で、又は他の不織布等と積層して、フィルタ(液体用フィルタ、気体用フィルタ等)、衛生材、メディカル材、農業用被覆材、土木材、建材、油吸着材、自動車材、電子材料、セパレータ、衣料、包装材等に用いられている。 Melt blown nonwoven fabric (also referred to as “meltblown nonwoven fabric”) is superior in flexibility, uniformity, and denseness because it can be formed from ultrafine fibers compared to a spunbond nonwoven fabric. For this reason, melt blown nonwoven fabrics are singly or laminated with other nonwoven fabrics, filters (liquid filters, gas filters, etc.), hygiene materials, medical materials, agricultural coating materials, earth and wood, building materials, oil adsorption It is used for materials, automobile materials, electronic materials, separators, clothing, packaging materials, and the like.
 そして、ポリプロピレンを用いたメルトブロー不織布は、高性能精密ろ過性、耐薬品性、加工適性、微粒子の阻止率等に優れることから、フィルタ等に用い得ることが知られている(例えば、特許文献1参照)。
 また、これまでに、細繊維のポリエチレン不織布を得る方法として、ポリエチレンとポリエチレンワックスとを含む樹脂組成物をメルトブロー法で成形する方法が提案されている(例えば、特許文献2参照)。
 また、ポリエチレンとポリエチレンワックスとを含む樹脂組成物をメルトブロー法で成形し、得られた成形物(メルトブロー不織布)を、ポリエステルとエチレン系重合体とから形成される複合繊維からなるスパンボンド不織布と積層する方法が提案されている(例えば、特許文献3参照)。
And it is known that the melt blown nonwoven fabric using polypropylene is excellent in high-performance precision filterability, chemical resistance, processability, fine particle rejection, and the like, and can be used for filters and the like (for example, Patent Document 1). reference).
In addition, as a method for obtaining a polyethylene non-woven fabric of fine fibers, a method of forming a resin composition containing polyethylene and polyethylene wax by a melt blow method has been proposed (for example, see Patent Document 2).
In addition, a resin composition containing polyethylene and polyethylene wax is molded by a melt blow method, and the resulting molded product (melt blow nonwoven fabric) is laminated with a spunbond nonwoven fabric composed of a composite fiber formed from polyester and an ethylene polymer. A method has been proposed (see, for example, Patent Document 3).
 特許文献1:特開2010-125404号公報
 特許文献2:国際公開第2000/22219号
 特許文献3:国際公開第2012/111724号
Patent Document 1: Japanese Patent Application Laid-Open No. 2010-125404 Patent Document 2: International Publication No. 2000/222219 Patent Document 3: International Publication No. 2012/111724
 本発明者等は、ポリエチレン不織布をフィルタとして使用することを検討した。ポリエチレン不織布をフィルタとして使用する場合、ポリプロピレン不織布をフィルタとして使用する場合と比較して、添加剤(安定剤など)の含有量を抑えられることから、フィルタとして使用した際の溶出成分を少なくできる等の利点があると考えられるためである。
 しかし、従来技術では細いポリエチレン繊維が得られにくいために、ポリエチレン製不織布をフィルタとして使用すると、フィルタを高性能化できない場合、即ち、微粒子に対する阻止率(以下、「微粒子阻止率」ともいう)、ろ過流量、又はこれらのバランスが十分でない場合があることが判明した。
The present inventors examined using a polyethylene nonwoven fabric as a filter. When using polyethylene non-woven fabric as a filter, the content of additives (stabilizers, etc.) can be reduced compared to using polypropylene non-woven fabric as a filter. This is because it is considered that there is an advantage.
However, since it is difficult to obtain a thin polyethylene fiber in the prior art, if a polyethylene non-woven fabric is used as a filter, if the filter cannot be improved in performance, that is, a blocking rate against fine particles (hereinafter also referred to as “fine particle blocking rate”), It has been found that the filtration flow rate, or the balance between these, may not be sufficient.
 例えば、前述の特許文献2では、特定のポリエチレンとポリエチレンワックスとを含む樹脂組成物をメルトブロー法で成形することにより、繊維径2.8μmのメルトブローポリエチレン不織布を得ることができることが開示されている(特許文献2の実施例2参照)。また、前述の特許文献3では、繊維径3.3μmのメルトブローポリエチレン不織布を得ることができることが開示されている。
 しかし、本発明者等の検討の結果、これら従来のメルトブローポリエチレン不織布をフィルタとして用いようとした場合、繊維径が太いために、微粒子阻止率、ろ過流量、又はこれらのバランスが十分でない場合があることが判明した。
 ここで、フィルタの性能のうち、微粒子阻止率とろ過流量とはトレードオフの関係となることがある。このため、フィルタの性能を向上させる観点からみると、微粒子阻止率及びろ過流量のいずれか一方のみを著しく向上させて他方を犠牲にすることよりも、両者のバランスを向上させることが望ましい。
For example, Patent Document 2 described above discloses that a melt-blown polyethylene nonwoven fabric having a fiber diameter of 2.8 μm can be obtained by molding a resin composition containing specific polyethylene and polyethylene wax by a melt-blowing method ( (See Example 2 of Patent Document 2). Moreover, the above-mentioned Patent Document 3 discloses that a melt blown polyethylene nonwoven fabric having a fiber diameter of 3.3 μm can be obtained.
However, as a result of studies by the present inventors, when trying to use these conventional melt blown polyethylene nonwoven fabrics as a filter, the fine particle blocking rate, the filtration flow rate, or the balance thereof may not be sufficient due to the large fiber diameter. It has been found.
Here, among the performances of the filter, the fine particle rejection rate and the filtration flow rate may be in a trade-off relationship. For this reason, from the viewpoint of improving the performance of the filter, it is desirable to improve the balance between the two, rather than significantly improving only one of the fine particle rejection rate and the filtration flow rate and sacrificing the other.
 本発明は、上記事情に鑑みてなされたものであり、以下の目的を達成することを課題とする。
 即ち、本発明の目的は、ポリエチレン不織布からなるフィルタであって、微粒子阻止率とろ過流量とのバランスに優れたフィルタを提供することである。
This invention is made | formed in view of the said situation, and makes it a subject to achieve the following objectives.
That is, an object of the present invention is to provide a filter made of a polyethylene non-woven fabric and having an excellent balance between the fine particle rejection rate and the filtration flow rate.
 前記課題を解決するための手段は、以下の通りである。
<1> 重量平均分子量が10,000~45,000でありZ平均分子量が65,000以下であるエチレン系重合体組成物をメルトブロー法により成形してなるポリエチレン不織布からなるフィルタ。
<2> 前記ポリエチレン不織布は、平均繊維径が2.8μm未満である<1>に記載のフィルタ。
<3> 前記エチレン系重合体組成物は、重量平均分子量が15,000以下であるエチレン系重合体ワックス(b)を含む<1>又は<2>に記載のフィルタ。
<4> 前記エチレン系重合体組成物は、重量平均分子量が10,000~45,000であるエチレン系重合体(a)を含む<1>又は<2>に記載のフィルタ。
<5> 前記エチレン系重合体組成物は、
 重量平均分子量が15,000以下であるエチレン系重合体ワックス(b)と、
 重量平均分子量が10,000~45,000であって且つ前記エチレン系重合体ワックス(b)の重量平均分子量よりも高い値であるエチレン系重合体(a)と、
を含む<1>又は<2>に記載のフィルタ。
<6> エチレン系重合体(a)の重量平均分子量が、20,000~45,000である<5>に記載のフィルタ。
<7> 目付60g/mで測定した平均孔径が20μm以下である<1>~<6>のいずれか1項に記載のフィルタ。
<8> 目付60g/mで測定した通気度が15cm/cm/sec未満である<1>~<7>のいずれか1項に記載のフィルタ。
<9> 目付60g/mで測定した球状粒子径3.00μmのポリスチレンラテックス粒子の阻止率が10%以上である<1>~<8>のいずれか1項に記載のフィルタ。
Means for solving the above problems are as follows.
<1> A filter comprising a polyethylene nonwoven fabric obtained by molding an ethylene polymer composition having a weight average molecular weight of 10,000 to 45,000 and a Z average molecular weight of 65,000 or less by a melt blow method.
<2> The filter according to <1>, wherein the polyethylene nonwoven fabric has an average fiber diameter of less than 2.8 μm.
<3> The filter according to <1> or <2>, wherein the ethylene polymer composition includes an ethylene polymer wax (b) having a weight average molecular weight of 15,000 or less.
<4> The filter according to <1> or <2>, wherein the ethylene polymer composition includes an ethylene polymer (a) having a weight average molecular weight of 10,000 to 45,000.
<5> The ethylene polymer composition is:
An ethylene polymer wax (b) having a weight average molecular weight of 15,000 or less;
An ethylene polymer (a) having a weight average molecular weight of 10,000 to 45,000 and a value higher than the weight average molecular weight of the ethylene polymer wax (b);
The filter according to <1> or <2>.
<6> The filter according to <5>, wherein the ethylene polymer (a) has a weight average molecular weight of 20,000 to 45,000.
<7> The filter according to any one of <1> to <6>, wherein an average pore diameter measured with a basis weight of 60 g / m 2 is 20 μm or less.
<8> The filter according to any one of <1> to <7>, wherein the air permeability measured at a basis weight of 60 g / m 2 is less than 15 cm 3 / cm 2 / sec.
<9> The filter according to any one of <1> to <8>, wherein the blocking rate of polystyrene latex particles having a spherical particle diameter of 3.00 μm measured at a basis weight of 60 g / m 2 is 10% or more.
 本発明によれば、ポリエチレン不織布からなるフィルタであって、微粒子阻止率とろ過流量とのバランスに優れたフィルタが提供される。 According to the present invention, there is provided a filter made of a polyethylene non-woven fabric and having an excellent balance between the fine particle rejection rate and the filtration flow rate.
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値それぞれ最小値及び最大値として含む範囲を示す。 In this specification, the numerical range indicated by using “to” indicates a range including the minimum value and the maximum value described before and after “to”, respectively.
 本発明のフィルタは、重量平均分子量(Mw)が10,000~45,000でありZ平均分子量(Mz)が65,000以下であるエチレン系重合体組成物をメルトブロー法により成形してなるポリエチレン不織布からなる。
 本発明のフィルタは、ポリエチレン不織布からなるフィルタであって、微粒子阻止率とろ過流量とのバランスに優れるフィルタである。
The filter of the present invention is a polyethylene obtained by molding an ethylene polymer composition having a weight average molecular weight (Mw) of 10,000 to 45,000 and a Z average molecular weight (Mz) of 65,000 or less by a melt blow method. Made of nonwoven fabric.
The filter of the present invention is a filter made of a polyethylene non-woven fabric and is excellent in the balance between the fine particle rejection rate and the filtration flow rate.
 本発明者等は、ポリエチレン不織布をフィルタとして使用することを検討した。
 しかし、従来技術では細いポリエチレン繊維が得られにくいために、ポリエチレン不織布をフィルタとして使用すると、微粒子阻止率、ろ過流量、又はこれらのバランスが十分でない場合があることが判明した。
 上記従来技術に対し、本発明のフィルタは、ポリエチレン不織布からなるフィルタでありながら、微粒子阻止率とろ過流量とのバランスに優れる。
 より詳細には、本発明のフィルタでは、上記エチレン系重合体組成物のMzが65,000以下であること、及び、上記エチレン系重合体組成物をメルトブロー法によって成形することにより、ポリエチレン不織布の繊維径を細くし易くなり(好ましくは、ポリエチレン不織布の平均繊維径を2.8μm未満とし易くなり)、その結果、微粒子阻止率とろ過流量とのバランスが向上する。
The present inventors examined using a polyethylene nonwoven fabric as a filter.
However, since it is difficult to obtain a thin polyethylene fiber in the prior art, it has been found that when a polyethylene non-woven fabric is used as a filter, the fine particle rejection rate, the filtration flow rate, or the balance thereof may not be sufficient.
In contrast to the above-described conventional technology, the filter of the present invention is excellent in the balance between the fine particle blocking rate and the filtration flow rate while being a filter made of a polyethylene nonwoven fabric.
More specifically, in the filter of the present invention, the Mz of the ethylene-based polymer composition is 65,000 or less, and the polyethylene-based nonwoven fabric is molded by melt-blowing to form a polyethylene nonwoven fabric. The fiber diameter is easily reduced (preferably, the average fiber diameter of the polyethylene nonwoven fabric is easily reduced to less than 2.8 μm), and as a result, the balance between the fine particle rejection rate and the filtration flow rate is improved.
 また、本発明のフィルタでは、上記エチレン系重合体組成物のMwが10,000以上であることにより、ポリエチレン不織布の強度が向上する。
 また、本発明のフィルタでは、上記エチレン系重合体組成物のMwが45,000以下であることにより、微粒子阻止率とろ過流量とのバランスが向上する。
Moreover, in the filter of this invention, the intensity | strength of a polyethylene nonwoven fabric improves because Mw of the said ethylene-type polymer composition is 10,000 or more.
Moreover, in the filter of this invention, when Mw of the said ethylene-type polymer composition is 45,000 or less, the balance of a fine particle blocking rate and a filtration flow rate improves.
 また、本発明のフィルタは、ポリエチレン不織布からなるフィルタであるため、ポリプロピレン不織布からなるフィルタと比較して、樹脂中における添加剤(安定剤等)の含有量を抑えることできる。このため、本発明のフィルタによれば、添加剤(安定剤等)の溶出が抑制される。 Moreover, since the filter of the present invention is a filter made of polyethylene nonwoven fabric, the content of additives (stabilizers and the like) in the resin can be suppressed as compared with a filter made of polypropylene nonwoven fabric. For this reason, according to the filter of this invention, elution of additives (stabilizer etc.) is suppressed.
 また、一般に、溶出成分を少なくする目的で、フィルタを支持するための支持構造体(以下、「フィルタ支持構造体」ともいう)をポリエチレン樹脂で作製する場合がある。
 この点に関し、本発明のフィルタは、ポリエチレン不織布からなるフィルタであるため、ポリプロピレン不織布からなるフィルタと比較して、ポリエチレン製のフィルタ支持構造体とのヒートシール性に優れる。
In general, a support structure for supporting the filter (hereinafter also referred to as “filter support structure”) may be made of polyethylene resin for the purpose of reducing the eluted components.
In this regard, since the filter of the present invention is a filter made of a polyethylene nonwoven fabric, it is superior in heat sealability with a polyethylene filter support structure compared to a filter made of a polypropylene nonwoven fabric.
 また、一般に、フィルタを生体用途や食品用途に用いる場合、フィルタを電子線滅菌処理することがある。
 この電子線滅菌処理に関し、本発明のフィルタは、ポリエチレン不織布からなるフィルタであるため、ポリプロピレン不織布からなるフィルタと比較して、電子線滅菌性に優れる。
 本明細書中において、「電子線滅菌性に優れる」とは、電子線滅菌を行ったときに、劣化、変性、臭い等が抑制されることを意味する。
In general, when a filter is used for a living body or a food, the filter may be sterilized with an electron beam.
With regard to this electron beam sterilization treatment, the filter of the present invention is a filter made of a polyethylene nonwoven fabric, so that it is excellent in electron beam sterilization compared to a filter made of a polypropylene nonwoven fabric.
In this specification, “excellent in electron beam sterilization” means that deterioration, denaturation, odor, and the like are suppressed when electron beam sterilization is performed.
 更に、本発明のフィルタでは、ポリエチレン不織布の繊維径を細くする(好ましくは、ポリエチレン不織布の平均繊維径を2.8μm未満とする)ことができるので、フィルタ精度及びフィルタの均一性が向上する。 Furthermore, in the filter of the present invention, since the fiber diameter of the polyethylene nonwoven fabric can be reduced (preferably, the average fiber diameter of the polyethylene nonwoven fabric is less than 2.8 μm), the filter accuracy and the filter uniformity are improved.
<Z平均分子量(Mz)>
 以下、本明細書中におけるZ平均分子量(Mz)について説明する。
 以下では、エチレン系重合体組成物のMzを中心に説明するが、各重合体のMzの定義等についてもエチレン系重合体組成物のMzの定義等と同様である。
 本明細書中において、Z平均分子量(Mz)は、以下の式(1)で定義される分子量を指す。
 一般に、Mzは、高分子量成分をより反映した分子量と考えられている。
<Z average molecular weight (Mz)>
Hereinafter, the Z average molecular weight (Mz) in this specification will be described.
In the following description, the Mz of the ethylene polymer composition will be mainly described. However, the definition of Mz of each polymer is the same as the definition of Mz of the ethylene polymer composition.
In this specification, Z average molecular weight (Mz) refers to the molecular weight defined by the following formula (1).
In general, Mz is considered to have a molecular weight more reflecting a high molecular weight component.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)中、Miは、エチレン系重合体組成物の分子量を示し、Niは、エチレン系重合体組成物のモル数を示す。 In the formula (1), Mi represents the molecular weight of the ethylene polymer composition, and Ni represents the number of moles of the ethylene polymer composition.
<Z平均分子量(Mz)及び重量平均分子量(Mw)の測定方法>
 本明細書中において、エチレン系重合体組成物及び各重合体のZ平均分子量(Mz)は、GPC測定から求めた値であり、以下の条件で測定した値である。より詳細には、Z平均分子量(Mz)は、市販の単分散標準ポリスチレンを用いて検量線を作成し、下記の換算法に基づいて求める。
 また、本明細書中において、エチレン系重合体組成物及び各重合体の重量平均分子量(Mw)も、GPC測定から求めた値であり、以下の条件で測定した値である。より詳細には、重量平均分子量(Mw)は、市販の単分散標準ポリスチレンを用いて検量線を作成し、下記の換算法に基づいて求める。
<Method for Measuring Z Average Molecular Weight (Mz) and Weight Average Molecular Weight (Mw)>
In the present specification, the ethylene polymer composition and the Z average molecular weight (Mz) of each polymer are values obtained from GPC measurement, and are values measured under the following conditions. More specifically, the Z average molecular weight (Mz) is obtained based on the following conversion method by creating a calibration curve using commercially available monodisperse standard polystyrene.
Moreover, in this specification, the weight average molecular weight (Mw) of an ethylene-type polymer composition and each polymer is also the value calculated | required from GPC measurement, and is the value measured on condition of the following. More specifically, the weight average molecular weight (Mw) is determined based on the following conversion method by creating a calibration curve using commercially available monodisperse standard polystyrene.
-Z平均分子量(Mz)及び重量平均分子量(Mw)の測定条件-
 装置:ゲル浸透クロマトグラフAllianceGPC2000型(Waters社製)
 溶剤:o-ジクロロベンゼン
 カラム:TSKgelカラム(東ソー社製)×4
 流速:1.0mL/分
 試料:0.15mg/mLo-ジクロロベンゼン溶液
 温度:140℃
 分子量換算:PE換算/汎用較正法
-Measurement conditions for Z average molecular weight (Mz) and weight average molecular weight (Mw)-
Apparatus: Gel permeation chromatograph Alliance GPC2000 (manufactured by Waters)
Solvent: o-dichlorobenzene Column: TSKgel column (manufactured by Tosoh Corporation) x 4
Flow rate: 1.0 mL / min Sample: 0.15 mg / mLo-dichlorobenzene solution Temperature: 140 ° C.
Molecular weight conversion: PE conversion / General calibration method
 なお、汎用較正の計算には、以下に示すMark-Houwink粘度式の係数を用いた。
 ポリスチレン(PS)の係数:KPS=1.38×10-4、aPS=0.70
 ポリエチレン(PE)の係数:KPE=5.06×10-4、aPE=0.70
In addition, the coefficient of the Mark-Houwink viscosity formula shown below was used for calculation of general-purpose calibration.
Coefficient of polystyrene (PS): KPS = 1.38 × 10 −4 , aPS = 0.70
Polyethylene (PE) coefficient: KPE = 0.06 × 10 −4 , aPE = 0.70
<エチレン系重合体組成物>
 本発明におけるエチレン系重合体組成物は、重量平均分子量(Mw)が10,000~45,000であり、かつ、Z平均分子量(Mz)が65,000以下である。
 エチレン系重合体組成物のMwは、好ましくは10,000~30,000であり、更に好ましくは10,000~25,000である。
 エチレン系重合体組成物のMzは、好ましくは60,000以下であり、より好ましくは57,000以下であり、さらに好ましくは54,000以下であり、特に好ましくは50,000以下である。
 エチレン系重合体組成物のMzの下限には特に限定はないが、エチレン系重合体組成物のMzは、好ましくは10,000以上であり、より好ましくは20,000以上である。
<Ethylene polymer composition>
The ethylene polymer composition in the present invention has a weight average molecular weight (Mw) of 10,000 to 45,000 and a Z average molecular weight (Mz) of 65,000 or less.
The Mw of the ethylene polymer composition is preferably 10,000 to 30,000, more preferably 10,000 to 25,000.
The Mz of the ethylene polymer composition is preferably 60,000 or less, more preferably 57,000 or less, still more preferably 54,000 or less, and particularly preferably 50,000 or less.
The lower limit of the Mz of the ethylene polymer composition is not particularly limited, but the Mz of the ethylene polymer composition is preferably 10,000 or more, more preferably 20,000 or more.
 エチレン系重合体組成物は、エチレン系重合体ワックス(b)を含むことが好ましい。
 エチレン系重合体組成物がエチレン系重合体ワックス(b)を含むことにより、得られるポリエチレン不織布の平均繊維径を小さくすることがより容易となり、また、フィルタ用途として十分な均一性を得ることがより容易となる。
The ethylene polymer composition preferably contains an ethylene polymer wax (b).
When the ethylene polymer composition contains the ethylene polymer wax (b), it becomes easier to reduce the average fiber diameter of the obtained polyethylene nonwoven fabric, and it is possible to obtain sufficient uniformity as a filter application. It becomes easier.
 エチレン系重合体組成物は、前述の重量平均分子量及びZ平均分子量を満たす限り特に限定されないが、エチレン系重合体ワックス(b)に加えて、または、エチレン系重合体ワックス(b)に代えて、エチレン系重合体(a)を含んでいてもよい。
 エチレン系重合体組成物がエチレン系重合体(a)を含む場合には、得られるポリエチレン不織布の紡糸がより容易となり、かつ、十分な繊維強度を得ることがより容易となる。
The ethylene polymer composition is not particularly limited as long as it satisfies the aforementioned weight average molecular weight and Z average molecular weight, but in addition to the ethylene polymer wax (b) or in place of the ethylene polymer wax (b). The ethylene polymer (a) may be contained.
When the ethylene polymer composition contains the ethylene polymer (a), it becomes easier to spin the resulting polyethylene nonwoven fabric and to obtain sufficient fiber strength.
 エチレン系重合体組成物は、本発明の目的を損なわない範囲で、必要に応じ、上記以外のその他の成分を含んでいてもよい。
 その他の成分としては、エチレン系重合体ワックス(b)及びエチレン系重合体(a)以外のその他の重合体、安定剤(耐熱安定剤、耐候安定剤など)、充填剤、帯電防止剤、親水剤、撥水剤、核剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、着色剤(染料、顔料など)、天然油、合成油等が挙げられる。
 エチレン系重合体組成物がその他の成分を含む場合、エチレン系重合体組成物に含まれ得るその他の成分は、1種のみであっても2種以上であってもよい。
 但し、エチレン系重合体組成物中における、エチレン系重合体ワックス(b)及びエチレン系重合体(a)の総含有量は、本発明の効果がより効果的に奏される観点から、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。
The ethylene-based polymer composition may contain other components other than the above, if necessary, as long as the object of the present invention is not impaired.
Other components include ethylene polymer wax (b) and other polymers other than ethylene polymer (a), stabilizers (heat stabilizers, weather stabilizers, etc.), fillers, antistatic agents, hydrophilic Agents, water repellents, nucleating agents, slip agents, antiblocking agents, antifogging agents, lubricants, colorants (dyes, pigments, etc.), natural oils, synthetic oils and the like.
When the ethylene-based polymer composition includes other components, the other components that can be included in the ethylene-based polymer composition may be one type or two or more types.
However, the total content of the ethylene polymer wax (b) and the ethylene polymer (a) in the ethylene polymer composition is 80 mass from the viewpoint of more effectively achieving the effects of the present invention. % Or more is preferable, and 90% by mass or more is more preferable.
 安定剤としては、例えば、2,6-ジ-t-ブチル-4-メチル-フェノール(BHT)等の老化防止剤;テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸アルキルエステル、2,2’-オキザミドビス[エチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、Irganox 1010(ヒンダードフェノール系酸化防止剤:商品名)等のフェノール系酸化防止剤;ステアリン酸亜鉛、ステアリン酸カルシウム、1,2-ヒドロキシステアリン酸カルシウムなどの脂肪酸金属塩;グリセリンモノステアレート、グリセリンジステアレート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート等の多価アルコール脂肪酸エステル;等が挙げられる。安定剤としては、これらを組み合わせて用いることもできる。 Examples of stabilizers include anti-aging agents such as 2,6-di-t-butyl-4-methyl-phenol (BHT); tetrakis [methylene-3- (3,5-di-t-butyl-4- Hydroxyphenyl) propionate] methane, β- (3,5-di-t-butyl-4-hydroxyphenyl) propionic acid alkyl ester, 2,2′-oxamide bis [ethyl-3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate], Irganox 1010 (hindered phenol-based antioxidant: trade name), etc .; fatty acid metals such as zinc stearate, calcium stearate, calcium 1,2-hydroxystearate Salt: Glycerol monostearate, glycerin distearate, pentaerythritol monos Areto, pentaerythritol distearate, polyhydric alcohol fatty acid esters such as pentaerythritol monostearate; and the like. A combination of these can also be used as the stabilizer.
 充填剤としては、シリカ、ケイ藻土、アルミナ、酸化チタン、酸化マグネシウム、軽石粉、軽石バルーン、水酸化アルミニウム、水酸化マグネシウム、塩基性炭酸マグネシウム、ドロマイト、硫酸カルシウム、チタン酸カリウム、硫酸バリウム、亜硫酸カルシウム、タルク、クレー、マイカ、アスベスト、ケイ酸カルシウム、モンモリロナイト、ペントナイト、グラファイト、アルミニウム粉、硫化モリブデン等が挙げられる。充填剤としては、これらを組み合わせて用いることもできる。 Fillers include silica, diatomaceous earth, alumina, titanium oxide, magnesium oxide, pumice powder, pumice balloon, aluminum hydroxide, magnesium hydroxide, basic magnesium carbonate, dolomite, calcium sulfate, potassium titanate, barium sulfate, Examples thereof include calcium sulfite, talc, clay, mica, asbestos, calcium silicate, montmorillonite, pentonite, graphite, aluminum powder, and molybdenum sulfide. A combination of these can also be used as the filler.
 エチレン系重合体組成物がエチレン系重合体(a)とエチレン系重合体ワックス(b)とを含む場合、エチレン系重合体組成物を製造する際には、例えば、エチレン系重合体(a)と、エチレン系重合体ワックス(b)と、必要に応じ上記その他の成分と、を種々公知の方法を用いて混合することができる。 When the ethylene polymer composition contains the ethylene polymer (a) and the ethylene polymer wax (b), when the ethylene polymer composition is produced, for example, the ethylene polymer (a) The ethylene-based polymer wax (b) and the above-mentioned other components as necessary can be mixed using various known methods.
<エチレン系重合体ワックス(b)>
 エチレン系重合体ワックス(b)は、比較的分子量が低い重合体、すなわち、ワックス状の重合体である。
<Ethylene polymer wax (b)>
The ethylene polymer wax (b) is a polymer having a relatively low molecular weight, that is, a wax-like polymer.
 本発明におけるエチレン系重合体組成物は、重量平均分子量(Mw)が15,000以下であるエチレン系重合体ワックス(b)を含むことが好ましい。エチレン系重合体ワックス(b)のMwは、好ましくは400~15,000であり、より好ましくは400~14000であり、更に好ましくは2000~13000であり、特に好ましくは6000~13000である。
 エチレン系重合体ワックス(b)のMwが15,000以下であると、得られるメルトブロー不織布の繊維をより細くし易く、フィルタ性能(微粒子阻止率、ろ過流量、又は微粒子阻止率とろ過流量とのバランス等。以下同じ。)をより向上させることができる。
 エチレン系重合体ワックス(b)のMwが400以上であると、得られるメルトブロー不織布の強度をより向上させることができ、また、経時的なブリードアウトをより抑制できる。
The ethylene polymer composition in the present invention preferably contains an ethylene polymer wax (b) having a weight average molecular weight (Mw) of 15,000 or less. The Mw of the ethylene polymer wax (b) is preferably 400 to 15,000, more preferably 400 to 14000, still more preferably 2000 to 13000, and particularly preferably 6000 to 13000.
When the Mw of the ethylene-based polymer wax (b) is 15,000 or less, it is easy to make the fibers of the obtained meltblown nonwoven fabric finer, and the filter performance (fine particle rejection rate, filtration flow rate, or fine particle rejection rate and filtration flow rate Balance, etc. The same shall apply hereinafter).
When the Mw of the ethylene polymer wax (b) is 400 or more, the strength of the resulting melt-blown nonwoven fabric can be further improved, and the bleed-out over time can be further suppressed.
 エチレン系重合体ワックス(b)のZ平均分子量(Mz)は、エチレン系重合体組成物のZ平均分子量(Mz)が65,000以下である限り、特に限定はされない。
 エチレン系重合体ワックス(b)のMzは、700~40,000であることが好ましく、1000~30,000であることがより好ましい。
 エチレン系重合体ワックス(b)のMzが40,000以下であると、得られるメルトブロー不織布の繊維をより細くし易く、フィルタ性能をより向上させることができる。
 エチレン系重合体ワックス(b)のMzが700以上であると、得られるメルトブロー不織布の強度をより向上させることができ、また、経時的なブリードアウトをより抑制できる。
The Z average molecular weight (Mz) of the ethylene polymer wax (b) is not particularly limited as long as the Z average molecular weight (Mz) of the ethylene polymer composition is 65,000 or less.
The Mz of the ethylene polymer wax (b) is preferably 700 to 40,000, more preferably 1000 to 30,000.
When the Mz of the ethylene-based polymer wax (b) is 40,000 or less, it is easy to make the fibers of the obtained melt blown nonwoven fabric finer, and the filter performance can be further improved.
When the Mz of the ethylene polymer wax (b) is 700 or more, the strength of the resulting melt-blown nonwoven fabric can be further improved, and the bleed-out with time can be further suppressed.
 エチレン系重合体組成物中におけるエチレン系重合体ワックス(b)の含有率は、1質量%~100質量%であることが好ましく、5質量%~100質量%がより好ましく、更に好ましくは10質量%~100質量%であり、特に好ましくは20質量%~80質量%である。
 エチレン系重合体ワックス(b)の含有率が上記範囲の場合は、紡糸性、繊維強度、微粒子阻止率、及びろ過流量のバランスに優れる。
The content of the ethylene polymer wax (b) in the ethylene polymer composition is preferably 1% by mass to 100% by mass, more preferably 5% by mass to 100% by mass, and still more preferably 10% by mass. % To 100% by mass, particularly preferably 20% to 80% by mass.
When the content of the ethylene polymer wax (b) is in the above range, the balance of spinnability, fiber strength, fine particle rejection, and filtration flow rate is excellent.
 エチレン系重合体ワックス(b)の含有率が30質量%を下回るような場合は、エチレン系重合体組成物のMwが45,000以下となり且つエチレン系重合体組成物のMzが65,000以下となるように、エチレン系重合体ワックス(b)のMwを低めとすることが好ましい。この場合のエチレン系重合体ワックス(b)のMwは、好ましくは400以上15,000未満であり、より好ましくは1,000以上13,000未満であり、特に好ましくは1,000以上8,000未満である。 When the content of the ethylene polymer wax (b) is less than 30% by mass, the Mw of the ethylene polymer composition is 45,000 or less and the Mz of the ethylene polymer composition is 65,000 or less. It is preferable to lower the Mw of the ethylene polymer wax (b) so that The Mw of the ethylene polymer wax (b) in this case is preferably 400 or more and less than 15,000, more preferably 1,000 or more and less than 13,000, and particularly preferably 1,000 or more and 8,000. Is less than.
 エチレン系重合体ワックス(b)の含有率が70質量%を上回るような場合は、エチレン系重合体組成物のMwが10,000以上となり且つエチレン系重合体組成物のMzが65,000以下となるように、エチレン系重合体ワックス(b)のMwを高めとすることが好ましい。この場合のエチレン系重合体ワックス(b)のMwは、好ましくは1,000以上15,000未満であり、より好ましくは3,000以上15,000未満であり、特に好ましくは5,000以上15,000未満である。 When the content of the ethylene polymer wax (b) exceeds 70% by mass, the Mw of the ethylene polymer composition is 10,000 or more and the Mz of the ethylene polymer composition is 65,000 or less. It is preferable to increase the Mw of the ethylene polymer wax (b) so that In this case, the Mw of the ethylene polymer wax (b) is preferably 1,000 or more and less than 15,000, more preferably 3,000 or more and less than 15,000, and particularly preferably 5,000 or more and 15 or more. Less than 1,000.
 エチレン系重合体ワックス(b)は、JIS K2207に従って測定した軟化点が90℃を超えることが好ましい。上記軟化点は、より好ましくは100℃以上である。
 上記軟化点が90℃以上であると、熱処理時や使用時における耐熱安定性をより向上させることができ、結果としてフィルタ性能をより向上させることができる。
 上記軟化点の上限は特に制限されないが、上限として、例えば145℃が挙げられる。
The ethylene polymer wax (b) preferably has a softening point measured in accordance with JIS K2207 of more than 90 ° C. The softening point is more preferably 100 ° C. or higher.
When the softening point is 90 ° C. or higher, the heat resistance stability during heat treatment or use can be further improved, and as a result, the filter performance can be further improved.
Although the upper limit of the softening point is not particularly limited, an example of the upper limit is 145 ° C.
 エチレン系重合体ワックス(b)としては、例えば、エチレンの単独重合体、エチレンと炭素数3~20のα-オレフィンとの共重合体、等が挙げられる。
 エチレン系重合体組成物が、エチレン系重合体ワックス(b)及びエチレン系重合体(a)を含み、かつ、エチレン系重合体ワックス(b)がエチレン単独重合体である場合には、エチレン系重合体ワックス(b)とエチレン系重合体(a)との混練性に優れ、且つ、紡糸性に優れる。
 また、エチレン系重合体組成物に含まれ得るエチレン系重合体ワックス(b)は、一種のみであっても二種以上の混合物であってもよい。
Examples of the ethylene polymer wax (b) include an ethylene homopolymer, a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms, and the like.
When the ethylene-based polymer composition contains an ethylene-based polymer wax (b) and an ethylene-based polymer (a), and the ethylene-based polymer wax (b) is an ethylene homopolymer, an ethylene-based polymer composition The kneadability between the polymer wax (b) and the ethylene polymer (a) is excellent, and the spinnability is excellent.
Further, the ethylene polymer wax (b) that can be contained in the ethylene polymer composition may be a single type or a mixture of two or more types.
 エチレン系重合体ワックス(b)のJIS K6760に従って測定した密度は特に限定されるものではないが、例えば0.890~0.980g/cmであり、好ましくは0.910~0.980g/cmであり、より好ましくは0.920~0.980g/cmであり、特に好ましくは0.940~0.980g/cmである。
 エチレン系重合体組成物が、エチレン系重合体ワックス(b)及びエチレン系重合体(a)を含み、かつ、エチレン系重合体ワックス(b)の密度が0.890~0.980g/cmである場合には、エチレン系重合体ワックス(b)とエチレン系重合体(a)との混練性に優れ、且つ、紡糸性及び経時での安定性に優れる。
The density of the ethylene polymer wax (b) measured according to JIS K6760 is not particularly limited, but is, for example, 0.890 to 0.980 g / cm 3 , preferably 0.910 to 0.980 g / cm 3. 3 , more preferably 0.920 to 0.980 g / cm 3 , and particularly preferably 0.940 to 0.980 g / cm 3 .
The ethylene polymer composition contains an ethylene polymer wax (b) and an ethylene polymer (a), and the density of the ethylene polymer wax (b) is 0.890 to 0.980 g / cm 3. In this case, the kneadability between the ethylene polymer wax (b) and the ethylene polymer (a) is excellent, and the spinnability and stability over time are also excellent.
 エチレン系重合体ワックス(b)は、通常用いられる低分子量重合体若しくは単量体の重合による製造方法、又は高分子量のエチレン系重合体を加熱減成によって分子量を低減させる製造方法等のいずれの方法によって製造されたものでもよく、エチレン系重合体ワックス(b)の製造方法は特に制限されない。 The ethylene-based polymer wax (b) may be produced by any of a production method by polymerization of a low molecular weight polymer or a monomer that is usually used, or a production method in which a molecular weight is reduced by heat degradation of a high molecular weight ethylene polymer. What was manufactured by the method may be sufficient and the manufacturing method in particular of ethylene-type polymer wax (b) is not restrict | limited.
 エチレン系重合体ワックス(b)のMw及びMzの各々を、目的とするエチレン系重合体組成物のMw及びMzに合わせて調整し易い点からみると、エチレン系重合体ワックス(b)は、メタロセン系触媒を用いて製造されたものであることが好ましい。 From the viewpoint of easily adjusting Mw and Mz of the ethylene polymer wax (b) according to Mw and Mz of the target ethylene polymer composition, the ethylene polymer wax (b) is: It is preferably produced using a metallocene catalyst.
 また、フィルタの微粒子阻止率及びろ過流量が向上する傾向となる点からみても、エチレン系重合体ワックス(b)は、メタロセン系触媒を用いて製造されたものであることが好ましい。
 メタロセン系触媒を用いて製造されたエチレン系重合体ワックス(b)を用いた場合にフィルタの微粒子阻止率及びろ過流量が向上する理由は明らかではないが、メタロセン系触媒を用いて製造されたエチレン系重合体ワックス(b)では、より低分子量の成分が低減されるためと考えられる。即ち、この場合には、エチレン系重合体組成物の中でも、より結晶化し易いと考えられる低分子量成分が低減されると考えられる。このため、紡糸工程において溶融物を紡糸口金から吐出し、吐出された溶融物を紡糸口金の周囲から噴射される高速・高温の空気流で吹き飛ばすことによって繊維を得る際に、繊維が固化するまでの時間を遅延化できるため効果的に繊維を延伸でき、結果として微粒子阻止率及びろ過流量を向上できると考えられる。
Further, from the viewpoint of improving the fine particle rejection rate and the filtration flow rate of the filter, the ethylene polymer wax (b) is preferably produced using a metallocene catalyst.
The reason why the fine particle rejection rate and the filtration flow rate of the filter are improved when the ethylene polymer wax (b) produced using the metallocene catalyst is used is not clear, but the ethylene produced using the metallocene catalyst This is probably because the lower molecular weight component is reduced in the system polymer wax (b). That is, in this case, it is considered that the low molecular weight component considered to be easily crystallized among the ethylene polymer compositions is reduced. For this reason, when the fiber is solidified when the melt is discharged from the spinneret in the spinning process, and the discharged melt is blown off with a high-speed, high-temperature air stream sprayed from the periphery of the spinneret. It can be considered that the fiber can be effectively drawn because the time of the above can be delayed, and as a result, the fine particle rejection rate and the filtration flow rate can be improved.
 さらには、メタロセン系触媒を用いると、エチレン系重合体ワックス(b)のMzを低くすることができるため、エチレン系重合体組成物のMzも低くすることができ、これにより、ポリエチレン不織布の細繊維化が容易となるので好ましい。 Furthermore, when a metallocene catalyst is used, the Mz of the ethylene polymer wax (b) can be lowered, so that the Mz of the ethylene polymer composition can also be lowered. It is preferable because fiberization becomes easy.
 なお、メタロセン系触媒は、特に限定されないが、例えば、特開2007-246832に記載されたものなどが挙げられる。
 好適なメタロセン系触媒(オレフィン重合用触媒)としては、例えば、周期表第4族から選ばれる遷移金属のメタロセン化合物と、有機アルミニウムオキシ化合物、前記メタロセン化合物と反応してイオン対を形成する化合物、および有機アルミニウム化合物から選ばれる少なくとも1種以上の化合物と、からなるオレフィン重合用触媒を挙げることができる。
The metallocene catalyst is not particularly limited, and examples thereof include those described in JP-A-2007-246832.
Suitable metallocene catalysts (olefin polymerization catalysts) include, for example, transition metal metallocene compounds selected from Group 4 of the periodic table, organoaluminum oxy compounds, compounds that react with the metallocene compounds to form ion pairs, And an olefin polymerization catalyst comprising at least one compound selected from organic aluminum compounds.
<エチレン系重合体(a)>
 本発明におけるエチレン系重合体組成物は、エチレン系重合体(a)を含んでいてもよい。
 エチレン系重合体(a)のZ平均分子量(Mz)は、エチレン系重合体組成物のZ平均分子量(Mz)が65,000以下である限り、特に限定はされないが、好ましくは30,000~70,000であり、より好ましくは30,000~65,000である。
 エチレン系重合体(a)のMzが70,000以下であると、得られるメルトブロー不織布の繊維をより細くし易く、フィルタ性能をより向上させることができる。
 エチレン系重合体(a)のMzが30,000以上であると、得られるメルトブロー不織布の強度をより向上させることができる。
<Ethylene polymer (a)>
The ethylene polymer composition in the present invention may contain an ethylene polymer (a).
The Z average molecular weight (Mz) of the ethylene polymer (a) is not particularly limited as long as the Z average molecular weight (Mz) of the ethylene polymer composition is 65,000 or less, preferably 30,000 to 70,000, more preferably 30,000 to 65,000.
When the Mz of the ethylene-based polymer (a) is 70,000 or less, it is easy to make the fibers of the obtained melt-blown nonwoven fabric finer, and the filter performance can be further improved.
The intensity | strength of the melt blown nonwoven fabric obtained as Mz of an ethylene-type polymer (a) is 30,000 or more can be improved more.
 エチレン系重合体(a)の重量平均分子量(Mw)は、エチレン系重合体組成物の重量平均分子量(Mw)が10,000~45,000である限り特に限定されないが、好ましくは10,000~50,000であり、より好ましくは10,000~40,000であり、更に好ましくは15,000~35,000である。
 エチレン系重合体(a)のMwが45,000以下であると、得られるメルトブロー不織布の繊維をより細くし易く、フィルタ性能をより向上させることができる。
 エチレン系重合体(a)のMwが10,000以上であると、得られるメルトブロー不織布の強度をより向上させることができる。
The weight average molecular weight (Mw) of the ethylene polymer (a) is not particularly limited as long as the weight average molecular weight (Mw) of the ethylene polymer composition is 10,000 to 45,000, but preferably 10,000. 50,000 to 50,000, more preferably 10,000 to 40,000, and further preferably 15,000 to 35,000.
When the Mw of the ethylene-based polymer (a) is 45,000 or less, it is easy to make the fibers of the obtained melt-blown nonwoven fabric finer, and the filter performance can be further improved.
The intensity | strength of the melt blown nonwoven fabric obtained as Mw of an ethylene-type polymer (a) is 10,000 or more can be improved more.
 エチレン系重合体組成物が、Mw15,000以下のエチレン系重合体ワックス(b)とエチレン系重合体(a)とを含む場合には、エチレン系重合体(a)のMwは、10,000~45,000であってエチレン系重合体ワックス(b)のMwよりも高い値であることが好ましい。また、この場合、エチレン系重合体(a)のMwは、好ましくは20,000以上であり、より好ましくは25,000以上である。また、この場合、エチレン系重合体(a)のMwの上限は、好ましくは50,000であり、更に好ましくは40,000であり、更に好ましくは35,000である。 When the ethylene polymer composition contains an ethylene polymer wax (b) having an Mw of 15,000 or less and the ethylene polymer (a), the Mw of the ethylene polymer (a) is 10,000. It is preferably 45,000 and higher than the Mw of the ethylene polymer wax (b). In this case, the Mw of the ethylene polymer (a) is preferably 20,000 or more, and more preferably 25,000 or more. In this case, the upper limit of Mw of the ethylene polymer (a) is preferably 50,000, more preferably 40,000, and further preferably 35,000.
 エチレン系重合体組成物中におけるエチレン系重合体(a)の含有率は、エチレン系重合体組成物の重量平均分子量が10,000~45,000であり、Z平均分子量が65,000以下である限り特に限定されないが、好ましくは0質量%~99質量%である。
 エチレン系重合体(a)の含有率は、より好ましくは0質量%~95質量%、更に好ましくは0質量%~90質量%であり、更に好ましくは20質量%~80質量%である。
 エチレン系重合体(a)の含有率が上記範囲の場合は、紡糸性、繊維強度、微粒子阻止率、及びろ過流量のバランスに優れる。
The ethylene polymer (a) content in the ethylene polymer composition is such that the ethylene polymer composition has a weight average molecular weight of 10,000 to 45,000 and a Z average molecular weight of 65,000 or less. Although there is no particular limitation as long as it is, it is preferably 0% by mass to 99% by mass.
The content of the ethylene polymer (a) is more preferably 0% by mass to 95% by mass, still more preferably 0% by mass to 90% by mass, and further preferably 20% by mass to 80% by mass.
When the content of the ethylene polymer (a) is in the above range, the balance of spinnability, fiber strength, fine particle rejection, and filtration flow rate is excellent.
 エチレン系重合体(a)の含有率が30質量%を下回るような場合は、エチレン系重合体組成物のMwが10,000以上となるようにエチレン系重合体(a)のMwを高めとすることが好ましい。
 エチレン系重合体(a)の含有率が70質量%を上回るような場合は、エチレン系重合体組成物のMwが45,000以下となり且つエチレン系重合体組成物のMzが65,000以下となるように、エチレン系重合体のMw及びMzを低めとすることが好ましい。
When the content of the ethylene polymer (a) is less than 30% by mass, the Mw of the ethylene polymer (a) is increased so that the Mw of the ethylene polymer composition is 10,000 or more. It is preferable to do.
When the content of the ethylene polymer (a) exceeds 70% by mass, the Mw of the ethylene polymer composition is 45,000 or less and the Mz of the ethylene polymer composition is 65,000 or less. Thus, it is preferable to lower Mw and Mz of the ethylene-based polymer.
 エチレン系重合体(a)としては、エチレンの単独重合体、エチレンと他のα-オレフィンとの共重合体が挙げられる。
 エチレン系重合体(a)のJIS K6760に従って測定した密度は特に限定されるものではないが、上記密度は、例えば0.870~0.980g/cmであり、好ましくは0.900~0.980g/cmであり、より好ましくは0.920~0.975g/cmであり、特に好ましくは0.940~0.970g/cmである。
 エチレン系重合体(a)の密度が0.870g/cm以上であると、得られるメルトブロー不織布の、耐久性、耐熱性、強度、及び経時での安定性がより向上する傾向となる。
 エチレン系重合体(a)の密度が0.980g/cm以下であると、得られるメルトブロー不織布の、ヒートシール性及び柔軟性がより向上する傾向となる。
Examples of the ethylene polymer (a) include ethylene homopolymers and copolymers of ethylene and other α-olefins.
The density of the ethylene polymer (a) measured according to JIS K6760 is not particularly limited, but the density is, for example, 0.870 to 0.980 g / cm 3 , preferably 0.900 to 0.00. It is 980 g / cm 3 , more preferably 0.920 to 0.975 g / cm 3 , and particularly preferably 0.940 to 0.970 g / cm 3 .
When the density of the ethylene-based polymer (a) is 0.870 g / cm 3 or more, durability, heat resistance, strength, and stability over time of the resulting melt-blown nonwoven fabric tend to be further improved.
When the density of the ethylene polymer (a) is 0.980 g / cm 3 or less, the heat-sealability and flexibility of the resulting melt-blown nonwoven fabric tend to be further improved.
 ここで、エチレン系重合体(a)の密度は、190℃における2.16kg荷重でのメルトフローレート(MFR)測定時に得られるストランドを、120℃で1時間熱処理し、1時間かけて室温まで徐冷した後、密度勾配管で測定して得られる数値である。 Here, the density of the ethylene-based polymer (a) is such that the strand obtained at the time of measuring a melt flow rate (MFR) at 190 ° C. under a load of 2.16 kg is heat-treated at 120 ° C. for 1 hour, and takes 1 hour to room temperature It is a numerical value obtained by measuring with a density gradient tube after slow cooling.
 エチレン系重合体(a)としては、高圧法低密度ポリエチレン、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン、高密度ポリエチレンなどの名称で製造・販売されている結晶性の樹脂が好ましい。 The ethylene polymer (a) is preferably a crystalline resin produced and sold under the names of high pressure method low density polyethylene, linear low density polyethylene (LLDPE), medium density polyethylene, high density polyethylene, and the like.
 エチレンと共重合される他のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3~20のα-オレフィン等が挙げられる。
 エチレン系重合体組成物に含まれ得るエチレン系重合体(a)は、一種のみであっても二種以上の混合物であってもよい。
Other α-olefins copolymerized with ethylene include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1- Examples thereof include α-olefins having 3 to 20 carbon atoms such as tetradecene, 1-hexadecene, 1-octadecene and 1-eicocene.
The ethylene polymer (a) that can be contained in the ethylene polymer composition may be one kind or a mixture of two or more kinds.
 エチレン系重合体(a)のメルトフローレート(MFR)は、エチレン系重合体ワックス(b)と混合してメルトブロー不織布を製造し得る限り特に限定はされない。
 エチレン系重合体(a)のMFRは、繊維径の細さや紡糸性の観点から、好ましくは10~250g/10分であり、より好ましくは20~200g/10分であり、さらに好ましくは50~200g/10分である。
 ここで、エチレン系重合体(a)のMFRは、ASTM D1238に準拠し、荷重2.16kg、190℃の条件で測定された値を指す。
The melt flow rate (MFR) of the ethylene polymer (a) is not particularly limited as long as it can be mixed with the ethylene polymer wax (b) to produce a melt blown nonwoven fabric.
The MFR of the ethylene polymer (a) is preferably 10 to 250 g / 10 minutes, more preferably 20 to 200 g / 10 minutes, and further preferably 50 to 50% from the viewpoint of fine fiber diameter and spinnability. 200 g / 10 min.
Here, MFR of the ethylene-based polymer (a) refers to a value measured under conditions of a load of 2.16 kg and 190 ° C. in accordance with ASTM D1238.
 エチレン系重合体(a)としては、種々公知の製造方法、例えば、高圧法によって得られる重合体、又は、チーグラー触媒若しくはメタロセン触媒を用いて得られる重合体(例えば、中低圧法によって得られる重合体)を用い得る。
 中でも、エチレン系重合体(a)のMw及びMzの各々を、目的とするエチレン系重合体組成物のMw及びMzに合わせて調整し易い点からみると、エチレン系重合体(a)は、メタロセン系触媒を用いて製造されることが好ましい。
 メタロセン系触媒を用いた場合、特にエチレン系重合体(a)のMzを低くすることができるため、エチレン系重合体組成物とした際のMzも低くなり、ポリエチレン不織布の細繊維化が容易となるので好ましい。
As the ethylene polymer (a), various known production methods, for example, a polymer obtained by a high-pressure method, or a polymer obtained by using a Ziegler catalyst or a metallocene catalyst (for example, a polymer obtained by a medium-low pressure method). Can be used.
Among them, from the viewpoint of easily adjusting each of Mw and Mz of the ethylene polymer (a) according to Mw and Mz of the target ethylene polymer composition, the ethylene polymer (a) is: It is preferably produced using a metallocene catalyst.
When a metallocene-based catalyst is used, the Mz of the ethylene polymer (a) can be particularly lowered, so that the Mz when the ethylene polymer composition is obtained is also low, and it is easy to make the polyethylene nonwoven fabric finer. This is preferable.
 エチレン系重合体(a)の製造には、従来公知の触媒、例えば特開昭57-63310号公報、特開昭58-83006号公報、特開平3-706号公報、特許3476793号公報、特開平4-218508号公報、特開2003-105022号公報等に記載されているマグネシウム担持型チタン触媒、国際公開第01/53369号パンフレット、国際公開第01/27124号パンフレット、特開平3-193796号公報あるいは特開平02-41303号公報中に記載のメタロセン触媒などを好適に用い得る。 For the production of the ethylene polymer (a), conventionally known catalysts such as JP-A-57-63310, JP-A-58-83006, JP-A-3-706, JP-A-3476793, Magnesium-supported titanium catalyst described in Kaihei 4-218508, JP-A-2003-105022, etc., WO 01/53369, WO 01/27124, JP-A-3-19396 The metallocene catalyst described in JP-A No. 02-41303 or the like can be suitably used.
<ポリエチレン不織布>
 本発明におけるポリエチレン不織布は、前述したエチレン系重合体組成物を、メルトブロー法により成形してなる不織布(メルトブロー不織布)である。
<Polyethylene non-woven fabric>
The polyethylene nonwoven fabric in the present invention is a nonwoven fabric (melt blown nonwoven fabric) formed by molding the above-described ethylene polymer composition by a melt blow method.
 本発明におけるポリエチレン不織布の平均繊維径は2.8μm未満が好ましい。より好ましくは2.5μm以下である。
 平均繊維径が2.8μm未満であると、得られるポリエチレン不織布の均一性がより良好となり、フィルタとしたときの微粒子阻止率及びろ過流量がより向上する。
 ポリエチレン不織布の平均繊維径の下限には特に制限はないが、上記平均繊維径は、例えば0.5μm以上であり、好ましくは1.0μm以上である。
The average fiber diameter of the polyethylene nonwoven fabric in the present invention is preferably less than 2.8 μm. More preferably, it is 2.5 μm or less.
When the average fiber diameter is less than 2.8 μm, the uniformity of the obtained polyethylene nonwoven fabric becomes better, and the fine particle blocking rate and filtration flow rate when used as a filter are further improved.
Although there is no restriction | limiting in particular in the minimum of the average fiber diameter of a polyethylene nonwoven fabric, The said average fiber diameter is 0.5 micrometer or more, for example, Preferably it is 1.0 micrometer or more.
 ポリエチレン不織布の目付は、好ましくは0.5g/m以上であり、より好ましくは3~80g/mであり、更に好ましくは5~60g/mであり、更に好ましくは6~40g/mである。
 ポリエチレン不織布の目付が0.5g/m以上であると、強度がより向上する。このため、例えば、積層等の後処理がより容易となる。
 ポリエチレン不織布の目付が80g/m以下であると、細い繊維がより得られやすい。
The basis weight of the polyethylene nonwoven fabric is preferably 0.5 g / m 2 or more, more preferably 3 to 80 g / m 2 , still more preferably 5 to 60 g / m 2 , and further preferably 6 to 40 g / m 2. 2 .
The intensity | strength improves more that the fabric weight of a polyethylene nonwoven fabric is 0.5 g / m < 2 > or more. For this reason, for example, post-processing such as lamination becomes easier.
When the basis weight of the polyethylene nonwoven fabric is 80 g / m 2 or less, fine fibers are more easily obtained.
 一方、衛生材料用途など、高いバリア性がさほど必要とされず、主に柔軟性やヒートシール性、軽量性が求められる用途に用いる場合は、ポリエチレン不織布の目付の範囲を、例えば0.5~5g/m、より好ましくは0.5~3g/mとすることもできる。 On the other hand, when it is used in applications where high barrier properties are not required, such as hygiene materials, and where flexibility, heat sealability, and lightness are mainly required, the range of the weight of the polyethylene nonwoven fabric is, for example, 0.5 to It may be 5 g / m 2 , more preferably 0.5 to 3 g / m 2 .
 本発明におけるポリエチレン不織布は、目付60g/mで測定した最大孔径が、好ましくは30μm以下であり、より好ましくは20μm以下であり、更に好ましくは15μm以下である。 The polyethylene nonwoven fabric in the present invention has a maximum pore size measured at a basis weight of 60 g / m 2 , preferably 30 μm or less, more preferably 20 μm or less, and further preferably 15 μm or less.
 本発明におけるポリエチレン不織布は、目付60g/mで測定した平均孔径が、好ましくは20μm以下であり、より好ましくは15μm以下であり、更に好ましくは10μm以下である。
 上記平均孔径の下限には特に制限はないが、ろ過流量をより向上させる観点からみると、上記平均孔径は、好ましくは1μm以上であり、より好ましくは2μm以上である。
The polyethylene nonwoven fabric in the present invention has an average pore diameter measured at a basis weight of 60 g / m 2 , preferably 20 μm or less, more preferably 15 μm or less, and further preferably 10 μm or less.
Although there is no restriction | limiting in particular in the minimum of the said average pore diameter, From a viewpoint of improving a filtration flow rate, the said average pore diameter becomes like this. Preferably it is 1 micrometer or more, More preferably, it is 2 micrometers or more.
 平均繊維径が2.8μm未満であること、及び、目付60g/mで測定した平均孔径が20μm以下であることの少なくとも一方を満たすポリエチレン不織布は、フィルタに用いた場合に、球状粒子径3.00μmのポリスチレンラテックスの阻止率を、10%以上(より好ましくは20%以上、更に好ましくは25%以上)とし易い点で好適である。
 更に、上記少なくとも一方を満たすポリエチレン不織布は、フィルタに用いた場合に、
0.1MPaのろ過圧力でのろ過流量を、0.7L/min/cmとし易い点でも好適である。
A polyethylene nonwoven fabric satisfying at least one of an average fiber diameter of less than 2.8 μm and an average pore diameter of 20 μm or less measured at a basis weight of 60 g / m 2 has a spherical particle diameter of 3 when used in a filter. This is preferable in that the blocking rate of 0.000 μm polystyrene latex is easily 10% or more (more preferably 20% or more, more preferably 25% or more).
Furthermore, when the polyethylene nonwoven fabric satisfying at least one of the above is used for a filter,
It is also preferable in that the filtration flow rate at a filtration pressure of 0.1 MPa is easily set to 0.7 L / min / cm 2 .
 本発明におけるポリエチレン不織布は、目付60g/mで測定した通気度が、15cm/cm/秒以下であることが好ましい。通気度が15cm/cm/秒以下の不織布は、極細繊維の分散が均一になり、平均孔径が小さくなりやすい。このため液体フィルタに用いた場合に、微粒子の阻止率が大きくなる傾向がある。
 一方、上記通気度は、0.1cm/cm/秒以上であることが好ましく、1cm/cm/秒以上であることがより好ましい。通気度を0.1cm/cm/秒以上にすることで、液体フィルタに用いた場合に流量が大きくなる。即ち、ろ過を適切な時間に終わらせやすくなる。
The polyethylene nonwoven fabric in the present invention preferably has an air permeability measured at a basis weight of 60 g / m 2 of 15 cm 3 / cm 2 / sec or less. In the nonwoven fabric having an air permeability of 15 cm 3 / cm 2 / sec or less, the dispersion of ultrafine fibers becomes uniform and the average pore diameter tends to be small. For this reason, when used in a liquid filter, there is a tendency that the blocking rate of the fine particles is increased.
On the other hand, the air permeability is preferably 0.1 cm 3 / cm 2 / second or more, and more preferably 1 cm 3 / cm 2 / second or more. By setting the air permeability to 0.1 cm 3 / cm 2 / second or more, the flow rate is increased when used in a liquid filter. That is, it becomes easy to finish filtration at an appropriate time.
 本発明におけるポリエチレン不織布は、目付60g/mで測定した球状粒子径3.00μmのポリスチレンラテックスの阻止率が、10%以上であることが好ましく、20%以上であることがより好ましく、25%以上であることが更に好ましい。
 上記阻止率の上限は、100%以下であり得るが、ろ過流量とのバランスの観点からみると、95%以下であることも好ましい。
The polyethylene nonwoven fabric in the present invention preferably has a blocking rate of polystyrene latex having a spherical particle diameter of 3.00 μm measured at a basis weight of 60 g / m 2 of 10% or more, more preferably 20% or more, and 25%. It is still more preferable that it is above.
The upper limit of the blocking rate may be 100% or less, but is preferably 95% or less from the viewpoint of balance with the filtration flow rate.
<ポリエチレン不織布の製造方法>
 本発明におけるポリエチレン不織布は、前記エチレン系重合体組成物を用いて、公知のメルトブロー不織布の製造方法(メルトブロー法)により製造し得る。
 メルトブロー法として、具体的には、例えば、エチレン系重合体組成物を押出機等で溶融混練し、その溶融物(溶融樹脂)を、紡糸ノズルを有する紡糸口金から吐出するとともに、紡糸口金の周囲から噴射される高速・高温の空気流で吹き飛ばして、捕集ベルト上に自己接着性のマイクロファイバーとして所定の厚さに堆積させてウェブ(ポリエチレン不織布)を製造する方法が挙げられる。
<Method for producing polyethylene nonwoven fabric>
The polyethylene nonwoven fabric in this invention can be manufactured with the manufacturing method (melt blow method) of a well-known melt blown nonwoven fabric using the said ethylene polymer composition.
As the melt blow method, specifically, for example, an ethylene polymer composition is melt-kneaded with an extruder or the like, and the melt (molten resin) is discharged from a spinneret having a spinning nozzle and around the spinneret. The web (polyethylene non-woven fabric) is manufactured by blowing off with a high-speed and high-temperature air stream sprayed from the substrate and depositing it as a self-adhesive microfiber on the collection belt to a predetermined thickness.
 このとき、必要に応じて、堆積したウェブを交絡処理することができる。
 堆積したウェブを交絡処理する方法としては、例えば、エンボスロールやフラットロール(金属ロール、ゴムロール)を用いて熱圧着処理する方法;超音波により融着する方法;ウォータージェットを用いて繊維を交絡させる方法;ホットエアースルーにより融着する方法;ニードルパンチを用いる方法;などの各種の方法が挙げられる。
 中でも、不織布の均一性を向上し均一なフィルタを得る目的で、表面が均一なフラットロールを用いて熱圧着処理する方法、又はホットエアースルーにより融着する方法が好ましい。
At this time, the deposited web can be entangled as necessary.
Examples of the method of entanglement of the deposited web include a method of thermocompression bonding using an embossing roll and a flat roll (metal roll, rubber roll); a method of fusing by ultrasonic waves; and a fiber entanglement using a water jet Various methods such as a method; a method of fusing by hot air through; a method of using a needle punch;
Among these, for the purpose of improving the uniformity of the nonwoven fabric and obtaining a uniform filter, a method of thermocompression bonding using a flat roll having a uniform surface or a method of fusing by hot air through is preferable.
 本発明におけるポリエチレン不織布上には、本発明の目的を妨げない範囲で、木綿、キュプラ、レーヨン、ポリオレフィン系繊維、ポリアミド系繊維、ポリエステル系繊維などの、短繊維不織布及び長繊維不織布の少なくとも一方をさらに積層してもよい。 On the polyethylene nonwoven fabric according to the present invention, at least one of a short fiber nonwoven fabric and a long fiber nonwoven fabric, such as cotton, cupra, rayon, polyolefin fiber, polyamide fiber, and polyester fiber, is included within the range not hindering the object of the present invention. Furthermore, you may laminate | stack.
 例えば、強度を補強するために、本発明におけるポリエチレン不織布(メルトブロー不織布)と、スパンボンド不織布と、を一体化して積層体を形成する方法を選択することもできる。具体的には、例えば、
 (a)予め得られたスパンボンド不織布上に、メルトブロー法によってエチレン系重合体組成物から得られる繊維を直接堆積させることによりメルトブロー不織布を形成した後、スパンボンド不織布とメルトブロー不織布とを熱エンボスなどによって融着させて2層の積層体を製造する方法、
 (b)メルトブロー法によってエチレン系重合体組成物から得られる繊維を、予め得られたスパンボンド不織布の上に直接堆積させてメルトブロー不織布を形成する方法、
 (c)予め得られたスパンボンド不織布と別途製造したメルトブロー不織布とを重ね合わせ、加熱加圧等により両不織布を融着させて積層体を製造する方法、
等を採用することができるが、これら方法に限定されるものではない。
For example, in order to reinforce the strength, a method of forming a laminate by integrating the polyethylene nonwoven fabric (melt blown nonwoven fabric) and the spunbond nonwoven fabric in the present invention can be selected. Specifically, for example,
(A) After forming a melt-blown nonwoven fabric by directly depositing fibers obtained from an ethylene-based polymer composition by a melt-blowing method on a previously obtained spun-bonded nonwoven fabric, the spun-bonded nonwoven fabric and the melt-blown nonwoven fabric are heat embossed, etc. A method of producing a two-layer laminate by fusing
(B) a method for forming a melt blown nonwoven fabric by directly depositing fibers obtained from an ethylene polymer composition by a melt blow method on a previously obtained spunbond nonwoven fabric;
(C) A method for producing a laminate by superimposing a previously obtained spunbond nonwoven fabric and a separately produced meltblown nonwoven fabric, and fusing both nonwoven fabrics by heating and pressing, etc.
However, it is not limited to these methods.
<フィルタ>
 本発明のフィルタは、前記ポリエチレン不織布(メルトブロー不織布)からなる。
 本発明のフィルタは、前記ポリエチレン不織布の単層からなるものであってもよいし、前記ポリエチレン不織布が二層以上積層された積層体からなるものであってもよい。
 上記積層体は、単に、前記ポリエチレン不織布を二層以上重ねたものであってもよい。
 本発明のフィルタの目付は、フィルタの用途により適宜決め得るが、通常、5~200g/m、好ましくは10~150g/mの範囲である。
<Filter>
The filter of the present invention comprises the polyethylene nonwoven fabric (melt blown nonwoven fabric).
The filter of the present invention may be composed of a single layer of the polyethylene nonwoven fabric, or may be composed of a laminate in which two or more layers of the polyethylene nonwoven fabric are laminated.
The laminate may be simply a laminate of two or more layers of the polyethylene nonwoven fabric.
The basis weight of the filter of the present invention can be appropriately determined depending on the use of the filter, but is usually in the range of 5 to 200 g / m 2 , preferably 10 to 150 g / m 2 .
 本発明のフィルタを製造する際には、例えば、孔径を小さく制御するために金属ロールやゴムロールを用いたフラットロールを用いてカレンダー処理を行ってもよい。
 フラットロール間のクリアランスまたは圧力は、ポリエチレン不織布の厚さに応じて、適宜変更して、不織布の繊維間にある空隙がなくならようにすることが好ましい。
 また、カレンダー処理の際に加熱処理を行う場合、ロール表面温度がポリエチレン不織布の繊維の融点より15℃~70℃低い温度の範囲で熱圧接することが望ましい。
 ロール表面温度がポリエチレン不織布の繊維の融点よりも15℃以上低い温度であると、フィルタ性能がより向上する。
When manufacturing the filter of this invention, you may perform a calendar process using the flat roll which used the metal roll and the rubber roll, for example in order to control a hole diameter small.
It is preferable to change the clearance or pressure between the flat rolls as appropriate according to the thickness of the polyethylene nonwoven fabric so that there are no voids between the fibers of the nonwoven fabric.
Further, when the heat treatment is performed during the calendering treatment, it is desirable that the roll surface temperature is hot-pressed in the range of 15 ° C. to 70 ° C. lower than the melting point of the fibers of the polyethylene nonwoven fabric.
When the roll surface temperature is 15 ° C. or more lower than the melting point of the fibers of the polyethylene nonwoven fabric, the filter performance is further improved.
 本発明のフィルタは、前記ポリエチレン不織布からなるが、必要に応じて、本発明のフィルタに対し、前記ポリエチレン不織布(フィルタ)より繊維径が太い不織布、あるいは平均孔径が大きい不織布を積層することにより、フィルタの寿命を長くすることができる。また、フィルタの強度を強めるために、本発明のフィルタに対し、スパンボンド不織布あるいは、網状物を積層してもよい。 The filter of the present invention is composed of the polyethylene nonwoven fabric, and if necessary, by laminating a nonwoven fabric having a larger fiber diameter than the polyethylene nonwoven fabric (filter), or a nonwoven fabric having a large average pore diameter, to the filter of the present invention, The lifetime of the filter can be extended. In order to increase the strength of the filter, a spunbonded nonwoven fabric or a net-like material may be laminated on the filter of the present invention.
 本発明のフィルタにおける、平均孔径、通気度、及び球状粒子径3.00μmのポリスチレンラテックス粒子の阻止率の好ましい範囲は、それぞれ、前述のポリエチレン不織布における、平均孔径、通気度、及び球状粒子径3.00μmのポリスチレンラテックス粒子の阻止率の好ましい範囲と同様である。 In the filter of the present invention, the average pore diameter, air permeability, and preferable ranges of the blocking rate of polystyrene latex particles having a spherical particle diameter of 3.00 μm are respectively the average pore diameter, air permeability, and spherical particle diameter of 3 in the aforementioned polyethylene nonwoven fabric. This is the same as the preferable range of the blocking rate of 0.000 μm polystyrene latex particles.
 また、本発明のフィルタは、本発明の目的を損なわない範囲で、ギア加工、印刷、塗布、ラミネート、熱処理、賦型加工、撥水処理、親水処理などの二次加工が施されたものであってもよい。 Further, the filter of the present invention is subjected to secondary processing such as gear processing, printing, coating, laminating, heat treatment, shaping processing, water repellent treatment, hydrophilic treatment, etc. within the range not impairing the object of the present invention. There may be.
 本発明のフィルタは、繊維径が細く均一性に優れることから、液体用フィルタ、気体用フィルタとして広く適用可能である。本発明のフィルタは、特に、液体用フィルタとして好適である。
 また、本発明のフィルタは、ポリエチレン素材とのヒートシール性が良好であることから、ポリエチレン製のフィルタ支持構造体を用いるフィルタに適用できる。
 また、本発明のフィルタは、電子線滅菌処理が可能であることから、各種生体用途のフィルタ、食品用途のフィルタに適用できる。
Since the filter of the present invention has a thin fiber diameter and excellent uniformity, it can be widely applied as a liquid filter and a gas filter. The filter of the present invention is particularly suitable as a liquid filter.
Moreover, since the filter of this invention has favorable heat-sealability with a polyethylene raw material, it can be applied to a filter using a polyethylene filter support structure.
Further, since the filter of the present invention can be sterilized with an electron beam, it can be applied to filters for various biological uses and filters for foods.
 また、本発明におけるポリエチレン不織布は、日本不織布協会社発行「不織布の基礎知識」に記載された用途に展開可能であるが、従来のポリエチレン不織布に比べ細繊維化されているので、柔軟性に優れるとともに均一性、緻密性、バリア性に優れる。従って、紙おむつ、生理用ナプキン、各種衛生材料、衣料、保護衣に好適に使用できる。
 また、本発明におけるポリエチレン不織布は、ヒートシール性などの後加工性が良好であるため、易接着用素材として使用が可能であり、自動車内装材、各種バッキング材、生活資材、工業資材、脱酸素剤、カイロ、温シップ、マスク、CD(コンパクトディスク)袋、食品包装材、衣服カバーなど、生活資材全般に応用可能である。
 また、ポリエチレン樹脂は滅菌時や殺菌時に照射される電子線やガンマ線にも安定であることから、本発明におけるポリエチレン不織布は、病院などで用いられるガウン、キャップ、マスク、ドレープ、ガーゼ、白衣、カーテン、シーツ、枕カバーなどの素材として特に好適に使用できる。
 さらには、本発明におけるポリエチレン不織布は、細繊維からなり不織布内に空隙が十分に形成されていることから、油吸着材、ワイパー、吸音材、断熱材、緩衝材、表面保護材等に好適に使用できる。
In addition, the polyethylene nonwoven fabric in the present invention can be developed for uses described in “Basic knowledge of nonwoven fabric” issued by the Japan Nonwoven Fabric Association, but is excellent in flexibility because it is made finer than conventional polyethylene nonwoven fabric. In addition, it is excellent in uniformity, denseness, and barrier properties. Therefore, it can be suitably used for paper diapers, sanitary napkins, various sanitary materials, clothing, and protective clothing.
In addition, since the polyethylene nonwoven fabric in the present invention has good post-processability such as heat sealability, it can be used as a material for easy adhesion, such as automobile interior materials, various backing materials, daily life materials, industrial materials, deoxygenated materials. It can be applied to daily life materials such as medicines, warmers, warm ships, masks, CD (compact disc) bags, food packaging materials, and clothing covers.
In addition, since polyethylene resin is stable to electron beams and gamma rays irradiated during sterilization and sterilization, the polyethylene nonwoven fabric in the present invention is used in gowns, caps, masks, drapes, gauze, lab coats, curtains used in hospitals, etc. It can be particularly suitably used as a material for sheets, sheets, pillow covers, etc.
Furthermore, since the polyethylene nonwoven fabric in the present invention is made of fine fibers and has sufficient gaps in the nonwoven fabric, it is suitable for oil adsorbents, wipers, sound absorbing materials, heat insulating materials, cushioning materials, surface protective materials, etc. Can be used.
 以下、実施例に基づいて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 各実施例及び各比較例では、以下の測定及び評価を行った。 In the examples and comparative examples, the following measurements and evaluations were performed.
(1)平均繊維径(μm)の測定
 電子顕微鏡(日立製作所製S-3500N)を用い、倍率1000倍にて、メルトブロー不織布(フィルタ)の写真を撮影した。撮影した写真において、任意に繊維100本を選び、その繊維の幅(直径)を測定した。得られた測定結果の平均を平均繊維径とした。
(1) Measurement of average fiber diameter (μm) Using an electron microscope (S-3500N manufactured by Hitachi, Ltd.), a photograph of a melt blown nonwoven fabric (filter) was taken at a magnification of 1000 times. In the photograph taken, 100 fibers were arbitrarily selected, and the width (diameter) of the fibers was measured. The average of the obtained measurement results was defined as the average fiber diameter.
(2)目付60g/mでの平均孔径(μm)の測定
 メルトブロー不織布(フィルタ)を表1に示す層数にて積層させることにより目付60g/mとなるように調整し、調整後のメルトブロー不織布(フィルタ)から試験片を採取した。
 採取した試験片を、JIS Z8703(試験場所の標準状態)に規定する、温度20±2℃、湿度65±2%の恒温室内でフッ素系不活性液体(3M社製 商品名:フロリナート)に浸漬し、Porous materials,Inc社製のキャピラリー・フロー・ポロメーター(Capillary Flow Porometer)「モデル:CFP-1200AE」を用い、試験片の平均孔径(μm)を測定した。
(2) The average pore size of at basis weight 60 g / m 2 ([mu] m) of measuring melt blown nonwoven fabric (filter) adjusted to basis weight 60 g / m 2 by laminating at the number of layers shown in Table 1, after adjustment Test pieces were collected from the melt blown nonwoven fabric (filter).
The collected specimen is immersed in a fluorine-based inert liquid (trade name: Florinart, manufactured by 3M) in a temperature-controlled room with a temperature of 20 ± 2 ° C. and a humidity of 65 ± 2% as defined in JIS Z8703 (standard condition at the test site). Then, an average pore size (μm) of the test piece was measured using a capillary flow porometer “Model: CFP-1200AE” manufactured by Porous materials, Inc.
(3)目付60g/mでの阻止率(%)及び流量(L/min)の測定
 メルトブロー不織布(フィルタ)を、表1に示す層数にて積層させることにより目付60g/mとなるように調整した。
 また、球状粒子径3.00μmのポリスチレンラテックス粒子(以下、単に「粒子」とする)を60容量%のIPA水溶液に0.01質量%の濃度で分散した試験液を準備した。
 次に、この試験液を、目付60g/mとなるように調整した上記フィルタによってろ過した。このろ過は、ろ過装置(ADVANTEC製TSU-90B)を用い、0.1MPaのろ過圧力のもとで行った。
 ろ過前の試験液(原液)中の粒子の濃度(C0)、及び、ろ過後の試験液(ろ液)中の粒子の濃度(C1)をそれぞれ測定し、次式により、阻止率を求めた。
     阻止率(%)=〔(C0-C1)/C0〕×100(%)
 ここで、C0及びC1は、いずれも精密粒度分布測定装置(ベックマンコールター製マルチサイザー3)を使用し、粒子数をカウント測定することによって求めた。
 また、ここでいう「阻止率」とは、微粒子の阻止率を指し、より詳細には、目付60g/mで測定した球状粒子径3.00μmのポリスチレンラテックス粒子の阻止率を指す。
(3) rejection of at basis weight 60 g / m 2 (percent) and flow rate (L / min) measured melt blown nonwoven fabric (filter), the basis weight 60 g / m 2 by laminating at the number of layers shown in Table 1 Adjusted as follows.
Further, a test liquid was prepared in which polystyrene latex particles having a spherical particle diameter of 3.00 μm (hereinafter simply referred to as “particles”) were dispersed in a 60% by volume IPA aqueous solution at a concentration of 0.01% by mass.
Next, this test solution was filtered through the filter adjusted so as to have a basis weight of 60 g / m 2 . This filtration was performed under a filtration pressure of 0.1 MPa using a filtration device (TSU-90B manufactured by ADVANTEC).
The concentration (C0) of the particles in the test solution (stock solution) before filtration and the concentration (C1) of the particles in the test solution (filtrate) after filtration were measured, respectively, and the rejection rate was obtained by the following equation. .
Blocking rate (%) = [(C0−C1) / C0] × 100 (%)
Here, both C0 and C1 were obtained by counting and measuring the number of particles using a precision particle size distribution measuring device (Beckman Coulter Multisizer 3).
The term “rejection rate” used herein refers to the rejection rate of fine particles. More specifically, it refers to the rejection rate of polystyrene latex particles having a spherical particle diameter of 3.00 μm measured at a basis weight of 60 g / m 2 .
 ろ過流量(L/min)は、上記ろ過装置(ADVANTEC製TSU-90B)を用い、0.1MPaのろ過圧力のもと、50ccの上記試験液が、目付60g/mとなるように調整した上記フィルタを通過したときの時間を測定することによって求めた。 The filtration flow rate (L / min) was adjusted using the above filtration device (TSU-90B manufactured by ADVANTEC) so that the 50 cc test liquid had a basis weight of 60 g / m 2 under a filtration pressure of 0.1 MPa. It was determined by measuring the time when it passed through the filter.
(4)目付60g/mでの通気度(cm/cm/秒)の測定
 メルトブロー不織布(フィルタ)を、表1に示す層数にて積層させることにより目付60g/mとなるように調整した。調整したメルトブロー不織布(フィルタ)から、20cm×20cmの試験片を5枚採取した。
 各試験片を通過する空気量(cm/cm/sec)を、JIS L1096(8.27.1 A法;フラジール形法)に準拠してそれぞれ測定し、5枚の試験片における空気量の平均値を求めた。得られた平均値を、表1中の「通気度(cm/cm/sec)」とした。
 ここで、各試験片の空気量(cm/cm/sec)の測定は、JIS Z8703(試験場所の標準状態)に規定する、温度20±2℃、湿度65±2%の恒温室内で、フラジール形試験機を用いて行った。
(4) air permeability at basis weight 60 g / m 2 a (cm 3 / cm 2 / sec) measured melt blown nonwoven fabric (filter), so as to be basis weight 60 g / m 2 by laminating at the number of layers shown in Table 1 Adjusted. Five test pieces of 20 cm × 20 cm were collected from the adjusted melt blown nonwoven fabric (filter).
The amount of air passing through each test piece (cm 3 / cm 2 / sec) was measured in accordance with JIS L1096 (8.27.1 A method; Frazier type method), and the amount of air in the five test pieces The average value of was obtained. The average value obtained was defined as “air permeability (cm 3 / cm 2 / sec)” in Table 1.
Here, the measurement of the air amount (cm 3 / cm 2 / sec) of each test piece is performed in a temperature-controlled room with a temperature of 20 ± 2 ° C. and a humidity of 65 ± 2% as defined in JIS Z8703 (standard state of test place). The fragile type tester was used.
(5)ヒートシール性の評価
 メルトブロー不織布(フィルタ)から縦10cm×横10cmの不織布試料を1枚切出した。このとき、メルトブロー不織布の流れ方向を、不織布試料の縦方向とした。
 切り出した不織布試料を25μm厚のポリエチレンフィルムと積層し、熱板ヒートシール機にてヒートシールした。この時、上段シールバーとしては、幅5mm、厚さ2mmのシリコーンゴムを貼り付けたものを用い、上段シールバーとしては、幅25mm、厚さ2mmのシリコーンゴムを貼り付けたものを用いた。また、ヒートシール条件は、ヒートシール温度110℃、ヒートシール圧力2kg/cm、及びヒートシール時間1.0秒の条件とした。
 次に、下記評価基準に従ってヒートシール性を目視評価した。
-評価基準-
A:ヒートシールされた不織布試料とポリエチレンフィルムとを剥離する操作を行うと基材破壊が生じ、ヒートシール性に優れる。
B:ヒートシールされた不織布試料とポリエチレンフィルムとを剥離する操作を行っても基材破壊しないが、両者が容易に剥離する。
C:ヒートシールしても不織布試料とポリエチレンフィルムとがまったく接着せず、ヒートシール性に劣る。
(5) Evaluation of heat sealability One piece of nonwoven fabric sample 10 cm long × 10 cm wide was cut out from the melt blown nonwoven fabric (filter). At this time, the flow direction of the melt-blown nonwoven fabric was the longitudinal direction of the nonwoven fabric sample.
The cut-out nonwoven fabric sample was laminated | stacked with the 25-micrometer-thick polyethylene film, and it heat-sealed with the hot plate heat-sealing machine. At this time, as the upper seal bar, a sticker with a silicone rubber having a width of 5 mm and a thickness of 2 mm was used, and as the upper seal bar, a sticker with a silicone rubber having a width of 25 mm and a thickness of 2 mm was used. The heat seal conditions were a heat seal temperature of 110 ° C., a heat seal pressure of 2 kg / cm 2 , and a heat seal time of 1.0 second.
Next, the heat sealability was visually evaluated according to the following evaluation criteria.
-Evaluation criteria-
A: When an operation of peeling the heat-sealed nonwoven fabric sample and the polyethylene film is performed, the base material breaks down and the heat sealability is excellent.
B: Although the base material is not destroyed even if an operation of peeling the heat-sealed nonwoven fabric sample and the polyethylene film is performed, both peel easily.
C: Even if heat-sealed, the nonwoven fabric sample and the polyethylene film do not adhere at all, and the heat-sealability is poor.
(6)電子線滅菌性の評価
 メルトブロー不織布(フィルタ)から、縦20cm×横20cmの不織布試料を10枚切り出した。
 得られた10枚の不織布試料を重ね、重ねた不織布試料に対し、45kGyの強度にて電子線照射を行った。
 次に、下記評価基準に従い、電子線滅菌性を官能評価した。
-評価基準-
A:電子線照射によっても、不織布試料の劣化、不織布試料の変色、及び臭いのいずれも認められない。
B:電子線照射により、不織布試料の劣化、不織布試料の変色、及び臭いの少なくとも1つが認められる。
(6) Evaluation of electron beam sterilization Ten pieces of nonwoven fabric samples 20 cm long × 20 cm wide were cut out from the melt blown nonwoven fabric (filter).
The obtained 10 nonwoven fabric samples were stacked, and the stacked nonwoven fabric samples were irradiated with an electron beam at an intensity of 45 kGy.
Next, sensory evaluation of electron beam sterilization was performed according to the following evaluation criteria.
-Evaluation criteria-
A: Neither deterioration of the nonwoven fabric sample, discoloration of the nonwoven fabric sample, nor odor is observed even by electron beam irradiation.
B: At least one of deterioration of the nonwoven fabric sample, discoloration of the nonwoven fabric sample, and odor is recognized by electron beam irradiation.
[実施例1]
<メルトブロー不織布(フィルタ)の製造>
 エチレン系重合体(a)としてのメタロセン触媒によるエチレン共重合体〔(株)プライムポリマー社製、製品名:エボリューH(登録商標) SP50800P、密度:0.951g/cm、MFR:135g/10分〕50質量部と、エチレン系重合体ワックス(b)としてのメタロセン触媒によるエチレン系重合体ワックス〔三井化学(株)製、製品名エクセレックス(登録商標)40800、密度:0.980g/cm、重量平均分子量(Mw):6,900、Z平均分子量(Mz):12,900〕50質量部と、の混合物(エチレン系重合体組成物)をメルトブロー法によって成形することにより、メルトブロー不織布(MB)(ポリエチレン不織布)を製造した。
 詳細には、上記エチレン系重合体組成物の溶融樹脂を、220℃、単孔当たり0.1g/分で吐出させることにより、メルトブロー法による溶融紡糸を行ってマイクロファイバーを成形し、得られたマイクロファイバーを捕集面上に堆積させることにより、目付7.5g/mのメルトブロー不織布(MB)(ポリエチレン不織布)を得た。
 得られたメルトブロー不織布(MB)(ポリエチレン不織布)をフィルタとして用い、上述した測定及び評価を行った。
 結果を表1に示す。
[Example 1]
<Manufacture of melt blown nonwoven fabric (filter)>
Ethylene copolymer by metallocene catalyst as ethylene polymer (a) [manufactured by Prime Polymer Co., Ltd., product name: Evolu H (registered trademark) SP50800P, density: 0.951 g / cm 3 , MFR: 135 g / 10 Min] 50 parts by mass and an ethylene polymer wax by a metallocene catalyst as an ethylene polymer wax (b) [Mitsui Chemicals, product name Excellex (registered trademark) 40800, density: 0.980 g / cm 3 , weight average molecular weight (Mw): 6,900, Z average molecular weight (Mz): 12,900] and 50 parts by mass of the mixture (ethylene polymer composition) by molding by a melt blow method, a melt blown nonwoven fabric (MB) (polyethylene nonwoven fabric) was produced.
Specifically, the melt resin of the ethylene polymer composition was discharged at 220 ° C. at a rate of 0.1 g / min per single hole, and melt spinning was performed by a melt blow method to obtain a microfiber. The melt blown nonwoven fabric (MB) (polyethylene nonwoven fabric) having a basis weight of 7.5 g / m 2 was obtained by depositing the microfibers on the collecting surface.
The obtained melt blown nonwoven fabric (MB) (polyethylene nonwoven fabric) was used as a filter, and the above-described measurement and evaluation were performed.
The results are shown in Table 1.
[実施例2~3]
 実施例1において、エチレン共重合体とエチレン系重合体ワックスとの質量比率、並びにメルトブロー不織布(MB)(ポリエチレン不織布)の目付を表1に示す通りとしたこと以外は、実施例1と同様の操作を行った。結果を表1に示す
[Examples 2 to 3]
In Example 1, the mass ratio of the ethylene copolymer and the ethylene polymer wax and the basis weight of the melt blown nonwoven fabric (MB) (polyethylene nonwoven fabric) were the same as in Example 1, except that the basis weight was as shown in Table 1. The operation was performed. The results are shown in Table 1.
[実施例4]
 実施例3において、エチレン共重合体とエチレン系重合体ワックスとの質量比率を表1に示す通りとしたこと以外は、実施例3と同様にしてメルトブロー不織布(ポリエチレン不織布)を得た。得られたメルトブロー不織布(ポリエチレン不織布)を、60℃に加熱されたゴムフラットロールと金属フラットロールとで5m/分、1MPaで加圧することにより、カレンダー処理を行った。
 カレンダー処理後のメルトブロー不織布(ポリエチレン不織布)をフィルタとして用い、上述した測定及び評価を行った。結果を表1に示す。
[Example 4]
In Example 3, a melt blown nonwoven fabric (polyethylene nonwoven fabric) was obtained in the same manner as in Example 3 except that the mass ratio of the ethylene copolymer and the ethylene polymer wax was changed as shown in Table 1. The obtained melt blown nonwoven fabric (polyethylene nonwoven fabric) was calendered by pressurizing at 5 m / min and 1 MPa with a rubber flat roll and a metal flat roll heated to 60 ° C.
The measurement and evaluation mentioned above were performed using the melt blown nonwoven fabric (polyethylene nonwoven fabric) after a calendar process as a filter. The results are shown in Table 1.
[実施例5]
 実施例3において、エチレン系重合体組成物100質量部を、エチレン系重合体ワックス(b)としてのチーグラー触媒によるエチレン系重合体ワックス〔三井化学(株)製、製品名ハイワックス800P(登録商標)、密度:0.973g/cm、重量平均分子量(Mw):12,700、Z平均分子量(Mz):25,700〕100質量部に変更したこと以外は実施例3と同様の操作を行った。結果を表1に示す。
[Example 5]
In Example 3, 100 parts by mass of an ethylene polymer composition was added to an ethylene polymer wax produced by a Ziegler catalyst as an ethylene polymer wax (b) [product name: High Wax 800P (registered trademark) manufactured by Mitsui Chemicals, Inc. ), Density: 0.973 g / cm 3 , weight average molecular weight (Mw): 12,700, Z average molecular weight (Mz): 25,700] The same operation as in Example 3 except that the mass was changed to 100 parts by mass. went. The results are shown in Table 1.
[実施例6]
 実施例3において、エチレン共重合体(エボリューH(登録商標) SP50800P)50質量部を、メタロセン触媒によるエチレン共重合体〔旭化成(株)社製、製品名:クレオレックス(登録商標)、密度:0.951g/cm、MFR:150g/10分〕50質量部に変更したこと以外は実施例3と同様の操作を行った。結果を表1に示す。
[Example 6]
In Example 3, 50 parts by mass of an ethylene copolymer (Evolue H (registered trademark) SP50800P) was mixed with an ethylene copolymer using a metallocene catalyst (manufactured by Asahi Kasei Co., Ltd., product name: Creolex (registered trademark), density: 0.951 g / cm 3 , MFR: 150 g / 10 min] The same operation as in Example 3 was performed except that the content was changed to 50 parts by mass. The results are shown in Table 1.
[比較例1]
 実施例2において、エチレン共重合体(エボリューH(登録商標) SP50800P)60質量部を、チーグラー触媒によるエチレン共重合体〔(株)プライムポリマー社製、製品名:ネオゼックス50302(登録商標)、密度:0.950g/cm、MFR:30g/10分〕60質量部に変更し、目付を表1に示す通りとしたこと以外は実施例2と同様の操作を行った。結果を表1に示す。
 
[Comparative Example 1]
In Example 2, 60 parts by mass of an ethylene copolymer (Evolue H (registered trademark) SP50800P) was added to an ethylene copolymer by Ziegler catalyst [manufactured by Prime Polymer Co., Ltd., product name: Neozex 50302 (registered trademark), density]. : 0.950 g / cm 3 , MFR: 30 g / 10 min] The operation was performed in the same manner as in Example 2 except that the weight was changed to 60 parts by mass and the basis weight was changed as shown in Table 1. The results are shown in Table 1.
[比較例2]
 実施例3において、エチレン系重合体組成物100質量部を、エチレン系重合体ワックス(製品名エクセレックス(登録商標)40800)100質量部に変更したこと以外は実施例3と同様にしてメルトブロー不織布を作製しようとしたが、不織布の強度が低く、不織布を採取することができなかった。
[Comparative Example 2]
In Example 3, the melt blown nonwoven fabric was obtained in the same manner as in Example 3 except that 100 parts by mass of the ethylene polymer composition was changed to 100 parts by mass of the ethylene polymer wax (product name Excellex (registered trademark) 40800). Although the strength of the nonwoven fabric was low, the nonwoven fabric could not be collected.
[比較例3]
 実施例6において、エチレン系重合体組成物100質量部を、エチレン共重合体〔旭化成(株)社製、製品名:クレオレックス(登録商標))100質量部に変更したこと以外は実施例6と同様の操作を行った。結果を表1に示す。
[Comparative Example 3]
In Example 6, Example 6 except that 100 parts by mass of the ethylene-based polymer composition was changed to 100 parts by mass of an ethylene copolymer (manufactured by Asahi Kasei Corporation, product name: Creolex (registered trademark)). The same operation was performed. The results are shown in Table 1.
[比較例4]
 実施例1において、エチレン系重合体組成物100質量部をプロピレン単独重合体(MFR:25g/10分)100質量部に変更し、吐出時の温度を300℃に変更し、目付を表1に示す通りとしたこと以外は、実施例1と同様の操作を行った。結果を表1に示す。
 なお、表1では、便宜上、プロピレン単独重合体の物性値を、「エチレン系重合体(a)」欄及び「エチレン系重合体組成物」欄に記載した。
[Comparative Example 4]
In Example 1, 100 parts by mass of the ethylene-based polymer composition was changed to 100 parts by mass of a propylene homopolymer (MFR: 25 g / 10 min), the temperature at the time of discharge was changed to 300 ° C., and the basis weight is shown in Table 1. The same operation as in Example 1 was performed except that it was as shown. The results are shown in Table 1.
In Table 1, for convenience, the physical property values of the propylene homopolymer are listed in the “ethylene polymer (a)” column and the “ethylene polymer composition” column.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、Mwが10,000~45,000でありMzが65,000以下であるエチレン系重合体組成物をメルトブロー法により成形してなるポリエチレン不織布(メルトブロー不織布)からなる実施例1~6のフィルタは、微粒子阻止率とろ過流量とのバランスに優れていた。実施例1~6のフィルタは、更に、ヒートシール性及び電子滅菌性も良好であった。
 これに対し、エチレン系重合体組成物のMzが65,000を超える比較例1及び3では、いずれも微粒子阻止率が低下した。
 また、エチレン系重合体組成物のMwが10,000未満である比較例2では、前述のとおり、不織布の強度が低く、不織布を採取することができなかった。
 また、エチレン系重合体組成物ではなくプロピレン系重合体を用いた比較例4では、ろ過流量が低く、また、ヒートシール性及び電子滅菌性にも劣っていた。
As shown in Table 1, an example comprising a polyethylene nonwoven fabric (melt blown nonwoven fabric) formed by melt-blowing an ethylene polymer composition having an Mw of 10,000 to 45,000 and an Mz of 65,000 or less. The filters 1 to 6 were excellent in the balance between the fine particle rejection rate and the filtration flow rate. The filters of Examples 1 to 6 were also excellent in heat sealability and electronic sterilization properties.
On the other hand, in Comparative Examples 1 and 3 in which Mz of the ethylene-based polymer composition exceeds 65,000, both the fine particle blocking rate decreased.
In Comparative Example 2 where the Mw of the ethylene polymer composition was less than 10,000, as described above, the strength of the nonwoven fabric was low, and the nonwoven fabric could not be collected.
Moreover, in the comparative example 4 which used the propylene polymer instead of the ethylene polymer composition, the filtration flow rate was low, and it was inferior to heat seal property and electronic sterilization property.
 日本出願2013-259495の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2013-259495 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (9)

  1.  重量平均分子量が10,000~45,000でありZ平均分子量が65,000以下であるエチレン系重合体組成物をメルトブロー法により成形してなるポリエチレン不織布からなるフィルタ。 A filter comprising a polyethylene non-woven fabric obtained by molding an ethylene polymer composition having a weight average molecular weight of 10,000 to 45,000 and a Z average molecular weight of 65,000 or less by a melt blow method.
  2.  前記ポリエチレン不織布は、平均繊維径が2.8μm未満である請求項1に記載のフィルタ。 The filter according to claim 1, wherein the polyethylene nonwoven fabric has an average fiber diameter of less than 2.8 μm.
  3.  前記エチレン系重合体組成物は、重量平均分子量が15,000以下であるエチレン系重合体ワックス(b)を含む請求項1又は請求項2に記載のフィルタ。 The filter according to claim 1 or 2, wherein the ethylene polymer composition contains an ethylene polymer wax (b) having a weight average molecular weight of 15,000 or less.
  4.  前記エチレン系重合体組成物は、重量平均分子量が10,000~45,000であるエチレン系重合体(a)を含む請求項1又は請求項2に記載のフィルタ。 The filter according to claim 1 or 2, wherein the ethylene polymer composition contains an ethylene polymer (a) having a weight average molecular weight of 10,000 to 45,000.
  5.  前記エチレン系重合体組成物は、
     重量平均分子量が15,000以下であるエチレン系重合体ワックス(b)と、
     重量平均分子量が10,000~45,000であって且つ前記エチレン系重合体ワックス(b)の重量平均分子量よりも高い値であるエチレン系重合体(a)と、
    を含む請求項1又は請求項2に記載のフィルタ。
    The ethylene polymer composition is:
    An ethylene polymer wax (b) having a weight average molecular weight of 15,000 or less;
    An ethylene polymer (a) having a weight average molecular weight of 10,000 to 45,000 and a value higher than the weight average molecular weight of the ethylene polymer wax (b);
    The filter of Claim 1 or Claim 2 containing this.
  6.  前記エチレン系重合体(a)の重量平均分子量が、20,000~45,000である請求項5に記載のフィルタ。 The filter according to claim 5, wherein the ethylene polymer (a) has a weight average molecular weight of 20,000 to 45,000.
  7.  前記ポリエチレン不織布は、目付60g/mで測定した平均孔径が20μm以下である請求項1~請求項6のいずれか1項に記載のフィルタ。 The filter according to any one of claims 1 to 6, wherein the polyethylene nonwoven fabric has an average pore diameter of 20 µm or less measured at a basis weight of 60 g / m 2 .
  8.  前記ポリエチレン不織布は、目付60g/mで測定した通気度が15cm/cm/sec以下である請求項1~請求項7のいずれか1項に記載のフィルタ。 The filter according to any one of claims 1 to 7, wherein the polyethylene non-woven fabric has an air permeability of 15 cm 3 / cm 2 / sec or less measured at a basis weight of 60 g / m 2 .
  9.  前記ポリエチレン不織布は、目付60g/mで測定した球状粒子径3.00μmのポリスチレンラテックス粒子の阻止率が10%以上である請求項1~請求項8のいずれか1項に記載のフィルタ。 The filter according to any one of claims 1 to 8, wherein the polyethylene nonwoven fabric has a blocking rate of polystyrene latex particles having a spherical particle diameter of 3.00 µm measured at a basis weight of 60 g / m 2 of 10% or more.
PCT/JP2014/083173 2013-12-16 2014-12-15 Filter WO2015093451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-259495 2013-12-16
JP2013259495 2013-12-16

Publications (1)

Publication Number Publication Date
WO2015093451A1 true WO2015093451A1 (en) 2015-06-25

Family

ID=53402797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083173 WO2015093451A1 (en) 2013-12-16 2014-12-15 Filter

Country Status (2)

Country Link
TW (1) TW201532655A (en)
WO (1) WO2015093451A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142021A1 (en) * 2016-02-16 2017-08-24 三井化学株式会社 Nonwoven fabric, filter, and manufacturing method for nonwoven fabric
WO2019065760A1 (en) 2017-09-26 2019-04-04 三井化学株式会社 Melt-blown nonwoven fabric and filter
WO2019130697A1 (en) 2017-12-28 2019-07-04 三井化学株式会社 Melt-blown nonwoven fabric, filter, and method for manufacturing melt-blown nonwoven fabric
WO2019187282A1 (en) 2018-03-29 2019-10-03 三井化学株式会社 Non-woven fabric and filter
KR20200088456A (en) 2017-12-28 2020-07-22 미쓰이 가가쿠 가부시키가이샤 Melt blown nonwoven fabric, filter, and method for manufacturing melt blown nonwoven fabric

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022219A1 (en) * 1998-10-09 2000-04-20 Mitsui Chemicals, Inc. Polyethylene nonwoven fabric and nonwoven fabric laminate containing the same
WO2012111724A1 (en) * 2011-02-15 2012-08-23 三井化学株式会社 Nonwoven laminate
WO2014030702A1 (en) * 2012-08-22 2014-02-27 三井化学株式会社 Nonwoven fabric laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022219A1 (en) * 1998-10-09 2000-04-20 Mitsui Chemicals, Inc. Polyethylene nonwoven fabric and nonwoven fabric laminate containing the same
WO2012111724A1 (en) * 2011-02-15 2012-08-23 三井化学株式会社 Nonwoven laminate
WO2014030702A1 (en) * 2012-08-22 2014-02-27 三井化学株式会社 Nonwoven fabric laminate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142021A1 (en) * 2016-02-16 2017-08-24 三井化学株式会社 Nonwoven fabric, filter, and manufacturing method for nonwoven fabric
JPWO2017142021A1 (en) * 2016-02-16 2018-07-05 三井化学株式会社 Nonwoven fabric, filter and method for producing nonwoven fabric
WO2019065760A1 (en) 2017-09-26 2019-04-04 三井化学株式会社 Melt-blown nonwoven fabric and filter
KR20200047703A (en) 2017-09-26 2020-05-07 미쓰이 가가쿠 가부시키가이샤 Meltbloon non-woven fabric and filter
CN111148872A (en) * 2017-09-26 2020-05-12 三井化学株式会社 Melt-blown nonwoven fabric and filter
WO2019130697A1 (en) 2017-12-28 2019-07-04 三井化学株式会社 Melt-blown nonwoven fabric, filter, and method for manufacturing melt-blown nonwoven fabric
KR20200088456A (en) 2017-12-28 2020-07-22 미쓰이 가가쿠 가부시키가이샤 Melt blown nonwoven fabric, filter, and method for manufacturing melt blown nonwoven fabric
WO2019187282A1 (en) 2018-03-29 2019-10-03 三井化学株式会社 Non-woven fabric and filter
US11491429B2 (en) 2018-03-29 2022-11-08 Mitsui Chemicals, Inc. Nonwoven fabric and filter

Also Published As

Publication number Publication date
TW201532655A (en) 2015-09-01

Similar Documents

Publication Publication Date Title
JP5744925B2 (en) Nonwoven laminate
JP3995885B2 (en) Polyethylene nonwoven fabric and nonwoven fabric laminate comprising the same
JP5925322B2 (en) Nonwoven laminate
JP6337137B2 (en) Spunbond nonwovens, nonwoven laminates, medical apparel, drapes, and meltblown nonwovens
DK2720862T3 (en) Vapor permeable, water impervious TOTAL MAJOR MULTI-LAYER ARTICLE
JP5931207B2 (en) Spunbond nonwoven fabric
JP5484564B2 (en) Crimped composite fiber and nonwoven fabric made of the fiber
WO2015093451A1 (en) Filter
JP6715074B2 (en) Meltblown nonwovens, nonwoven laminates, medical clothing and drapes
WO2017142021A1 (en) Nonwoven fabric, filter, and manufacturing method for nonwoven fabric
JP2001355173A (en) Nonwoven fabric laminate and its use
JP2010150674A (en) Fiber and nonwoven fabric
JP2008213282A (en) Nonwoven fabric laminate and its manufacturing method
JP7299316B2 (en) Meltblown nonwoven fabric, filter, and method for producing meltblown nonwoven fabric
JP7138197B2 (en) Spunbond nonwoven fabric, sanitary material, and method for producing spunbond nonwoven fabric
JP7013486B2 (en) Manufacturing method of spunbonded non-woven fabric, sanitary material, and spunbonded non-woven fabric
JP2001341218A (en) Surface material of absorbable article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP