WO2015093418A1 - Composite material manufacturing method and composite material - Google Patents

Composite material manufacturing method and composite material Download PDF

Info

Publication number
WO2015093418A1
WO2015093418A1 PCT/JP2014/083056 JP2014083056W WO2015093418A1 WO 2015093418 A1 WO2015093418 A1 WO 2015093418A1 JP 2014083056 W JP2014083056 W JP 2014083056W WO 2015093418 A1 WO2015093418 A1 WO 2015093418A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
jig
molding
vibration
fiber sheet
Prior art date
Application number
PCT/JP2014/083056
Other languages
French (fr)
Japanese (ja)
Inventor
亜希 井上
栗村 隆之
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2015093418A1 publication Critical patent/WO2015093418A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3636Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons ultrasonically or sonically vibrating, e.g. sonotrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3644Vacuum bags; Details thereof, e.g. fixing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/008Using vibrations during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3607Moulds for making articles of definite length, i.e. discrete articles with sealing means or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Definitions

  • the present invention relates to a method for manufacturing a composite material and a composite material using the same, and more particularly to a method for manufacturing a composite material and a composite material that can reduce springback during manufacturing.
  • a fiber sheet is sandwiched between an outer molding jig and a composite material such as a fiber sheet disposed in the opening of an outer molding jig having an opening.
  • the inner molding jig core member
  • the fiber sheet is heat-cured in a state where the fiber sheet is sandwiched between the outer forming jig and the inner forming jig, and the outer heat-cured fiber sheet is used for outer forming.
  • the composite material is manufactured by removing the fiber sheet from the jig and the inner molding jig.
  • a composite material having a U-shaped cross section having a pair of opposed flat plate portions and a connecting portion connecting both ends of the pair of flat plate portions may be manufactured.
  • the fiber sheet of each layer is cured before obtaining a deviation corresponding to the bending degree. Residual stress may occur in this part.
  • the product may be deformed inward (see arrow D) when removing the heat-cured fiber sheet from the outer forming jig and the inner forming jig due to the spring back based on the residual stress.
  • an outer molding jig is provided by placing a support member in a state where elastic deformation is applied to the fiber sheet between a pair of opposed flat plate portions of the inner molding jig. And the deformation of the product based on the residual stress when removing the product from the inner forming jig is reduced.
  • the present invention has been made in view of such circumstances, and provides a method for producing a composite material that can reduce deformation of a product due to springback based on residual stress during molding, and a composite material using the same. Objective.
  • the composite material manufacturing method of the present invention includes a molding step in which a composite material is arranged in a molding jig, the composite material is laminated and molded into a desired shape, and the molding jig and the composite material after molding.
  • the composite material can be gradually cured by heating while applying vibration to the composite material in which a plurality of layers are laminated. It can be solidified into a shape. As a result, the composite material can be molded while relieving the residual stress generated in the composite material at the time of molding. Therefore, a method for manufacturing the composite material that can reduce the deformation of the product due to the spring back can be realized.
  • the forming jig includes a pair of flat plate portions and an outer forming jig having a connection portion for connecting the pair of flat plate portions, a pair of flat plate portions, and the pair of flat plate portions.
  • An inner molding jig having a connecting portion for connecting a flat plate portion, and sandwiching the composite material between the inner molding jig and the outer molding jig to heat the composite material preferable.
  • the composite material is heated and cured in a state where a central portion of the molding jig is fixed.
  • This method gradually shifts the position of the composite material from the center of the fixed forming jig toward both ends, so it is possible to generate a position shift approximately evenly from the center to both ends. It becomes. Accordingly, even when a molding jig having a complicated shape such as an M-shaped cross section is used, the deformation of the product due to the spring back can be more efficiently reduced.
  • the composite material is heated and cured in a state where one end and / or both ends of the forming jig are fixed.
  • This method gradually shifts the position of the composite material from one end and / or both ends of the fixed forming jig toward the central portion, so that it is positioned substantially evenly toward the one end and / or both ends. Deviation can be generated, and deformation of the product due to springback can be further reduced. And since it becomes unnecessary to perform the processing (cutting process) of the composite material at one end and / or both ends where the forming jig is fixed, the working time can be shortened.
  • the composite material manufacturing method of the present invention includes a molding step in which a composite material is arranged in a molding jig, the composite material is laminated and molded into a desired shape, and the composite material arranged in the molding jig.
  • a vacuum suction process for vacuum suction of the film member, a liquid resin sealing process for sealing the liquid resin in the film member and impregnating the liquid resin between the composite materials, and the molding A curing step of heating and curing the composite material disposed in the molding jig while applying vibration to the at least one of the jig and the composite material impregnated with the liquid resin by vibration applying means; and the molding jig.
  • a product removal step of removing the product of the composite material after heat curing from a tool.
  • the composite material can be gradually cured by heating while applying vibration to the composite material in which a plurality of layers are laminated. It becomes possible to solidify into the shape of. As a result, the residual stress generated in the composite material at the time of molding can be relieved, and the composite material can be molded while reducing the porosity accompanying the encapsulation of the liquid resin, so that the deformation of the product due to springback can be reduced. Can be realized.
  • the molding jig and / or the composite material after thermoforming is vibrated by the vibration applying means by a plurality of vibration applying means. It is preferred to cure the material.
  • vibration since vibration is applied by a plurality of vibration applying means, the composite material can be solidified while relaxing the residual stress generated in the composite material at the time of molding, and deformation of the product due to springback can be further reduced.
  • the vibration applying means is a vibrator that applies vibration to the composite material at a predetermined frequency.
  • the composite material of the present invention is obtained by the above-described composite material manufacturing method.
  • the composite material is cured by heating while applying vibration to the composite material in which a plurality of layers are laminated. Therefore, the composite material is cured in a desired shape while mitigating misalignment caused by the formation of the plurality of laminate materials. To do. As a result, the composite material is molded while relieving the residual stress generated in the composite material during molding, so that deformation of the product due to the spring back of the composite material can be reduced.
  • FIG. 1 is a flowchart of a method for manufacturing a composite material according to the first embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of the forming jig according to the first embodiment.
  • FIG. 3A is an explanatory diagram of the method of manufacturing the composite material according to the first embodiment.
  • FIG. 3B is an explanatory diagram of the method of manufacturing the composite material according to the first embodiment.
  • FIG. 4 is an explanatory diagram of the method for manufacturing the composite material according to the first embodiment.
  • FIG. 5A is a diagram illustrating another example of the curing step of the composite material manufacturing method according to the first embodiment.
  • FIG. 5B is a diagram illustrating another example of the curing step of the method for manufacturing a composite material according to the first embodiment.
  • FIG. 5A is a diagram illustrating another example of the curing step of the composite material manufacturing method according to the first embodiment.
  • FIG. 5B is a diagram illustrating another example of the curing step of the method for manufacturing a composite
  • FIG. 5C is a diagram showing another example of the curing step of the method for manufacturing the composite material according to the first exemplary embodiment.
  • FIG. 6 is a diagram illustrating another example of the forming jig according to the first embodiment.
  • FIG. 7A is a diagram illustrating another example of the curing step according to the first embodiment.
  • FIG. 7B is a diagram illustrating another example of the curing step according to the first embodiment.
  • FIG. 8 is a flowchart of the method for manufacturing a composite material according to the second embodiment of the present invention.
  • FIG. 9A is a schematic view of a vacuum impregnation apparatus according to the second embodiment.
  • FIG. 9B is a schematic diagram of a vacuum impregnation apparatus according to the second embodiment.
  • FIG. 1 is a flowchart of a method for manufacturing a composite material according to the first embodiment of the present invention.
  • the composite material manufacturing method according to the present embodiment includes a molding step S11 in which a composite material is placed in a molding jig, the composite material is laminated and molded into a desired shape, and the molding jig and the molded jig A curing step S12 for heating and curing the composite material disposed on the molding jig while applying vibration to at least one of the composite materials, and a product removing step S13 for removing the cured composite material product from the molding jig. And including.
  • a CMC forming step of heating and baking the composite material to form CMC after the effect step may be performed.
  • FIG. 2 is a schematic perspective view of the forming jig 1 according to the present embodiment.
  • the forming jig 1 according to the present embodiment includes a pair of an outer forming jig 11 and an inner forming jig 13 that are made of a metal material and generally have a U-shaped cross section.
  • the outer forming jig 11 has a pair of opposed flat plate portions 11a and a connection portion 11b for connecting one end portions of the pair of flat plate portions 11a.
  • a space surrounded by the pair of flat plate portions 11 a and connection portions 11 b is a recess 11 c serving as an opening.
  • a fiber sheet 12 used when manufacturing the composite material is disposed on the inner surface of the recess 11c.
  • a plurality of the fiber sheets 12 are laminated and formed into a shape along the inner surface of the recess 11c.
  • an inner molding jig 13 that sandwiches the fiber sheet 12 used when producing a composite material with the outer molding jig 11 is disposed.
  • the inner molding jig 13 generally has a U-shaped cross section, and has a similar shape to the outer molding jig 11.
  • the inner forming jig 13 has a pair of opposed flat plate portions 13a and a connection portion 13b for connecting one end portions of the pair of flat plate portions 13a.
  • a space surrounded by a pair of flat plate portions 13a and connecting portions 13b is a recess 13c serving as an opening.
  • 3A and 3B are explanatory diagrams of the method for manufacturing the composite material according to the present embodiment.
  • the fiber sheets 12 are laminated along the outer peripheral surface of the inner forming jig 13 and formed into a desired shape.
  • the fiber sheet 12 for example, glass fiber and carbon fiber fabrics are used.
  • the outer forming jig 11 is placed on the fiber sheet 12, and the fiber sheet 12 is sandwiched between the outer forming jig 11 and the inner forming jig 13.
  • the fiber sheet 12 is gradually heated (for example, 200 ° C.) while applying vibration to the fiber sheet 12 by the vibration applying unit 14 through the outer forming jig 11, and the fiber sheet 12. Curing while molding.
  • the fiber sheet 12 is solidified while changing the position to which vibration is applied by the vibration applying means 14 using the time difference at which the laminated fiber sheets 12 are solidified.
  • the position where vibration is applied by the vibration applying means 14 is not particularly limited as long as the effect of the present invention is achieved, and vibration may be applied to the pair of flat plate portions 13a, and vibration may be applied to the connection portion 13b. You may provide, and you may provide a vibration to the boundary part of a pair of flat plate part 13a and the connection part 13b. In addition, it is preferable to apply the vibration by the vibration applying unit 14 until the fiber sheet 12 is completely cured.
  • the molding jig 1 sandwiching the fiber sheet 12 is placed in a furnace such as an autoclave at 3 kg / cm 2. It is heated and fired at a pressure of about 200 ° C. and a high temperature of about 200 ° C.
  • the product removal step S13 after the molding jig 1 after heating and baking is cooled to about room temperature, the outer molding jig 11 and the inner molding jig 13 are sequentially detached from the fiber sheet 12 and a plurality of fibers. A composite material in which the sheets 12 are laminated is manufactured.
  • temperature in hardening process S12 there is no restriction
  • the temperature in the curing step S12 is, for example, 130 ° C. or higher and 200 ° C. or lower.
  • various vibration applying means can be used as long as the effects of the present invention are achieved.
  • various vibrators can be used, and among these, one capable of applying high-frequency vibration such as an ultrasonic vibrator can be used.
  • the fiber sheet 12 is cured by heating while applying vibration to the fiber sheet 12 in which the plurality of fiber sheets 12 are laminated. It is possible to gradually solidify the composite material into a desired shape while relaxing the positional deviation. Thereby, since the fiber sheet 12 can be heated while relieving the residual stress generated inside the fiber sheet 12 at the time of molding, it is possible to realize a method for manufacturing a composite material that can reduce deformation of the product due to springback.
  • the composite material is molded using the molding jig 1 including the outer molding jig 11 and the inner molding jig 13 having a U-shaped cross section that is largely deformed by the springback. Even if it is a case, since the fiber sheet 12 can be shape
  • tool 1 can change and use a thickness suitably according to the composite material to be used and the shape to shape
  • vibration applying unit 14 an example in which one vibration applying unit 14 is used has been described, but a plurality of vibration applying units 14 may be used in combination.
  • the plurality of vibration applying means 14 By using the plurality of vibration applying means 14 in combination, the deformation of the product due to the spring back can be further reduced.
  • the vibration by the vibration applying means 14 may be applied locally to the fiber sheet 12 or may be applied to the entire fiber sheet 12.
  • FIG. 5A to 5C are diagrams showing another example of the curing step S12 of the composite material manufacturing method according to the above embodiment.
  • the vibration applying unit 14 applies vibration to the fiber sheet 12.
  • the fiber sheet 12 is less likely to transmit vibration compared to the outer forming jig 11, and therefore the vibration is locally generated at a specific location where the spring back of the fiber sheet 12 is likely to occur. It becomes possible to apply, and the deformation of the product due to the spring back can be reduced more effectively.
  • vibration may be applied directly to the fiber sheet 12 from the front side of the paper with respect to the forming jig 1 shown in FIG. 2, and vibration is directly applied to the fiber sheet 12 from the depth direction of the paper with respect to the forming jig 1 shown in FIG. May be applied.
  • an opening may be provided in the outer molding jig 11 and the inner molding jig 13 to apply vibration.
  • vibration is simultaneously applied using two vibration applying means 14A and 14B.
  • the vibration applying unit 14 ⁇ / b> A applies vibration to the fiber sheet 12, and the vibration applying unit 14 ⁇ / b> B applies vibration to the outer forming jig 11.
  • vibration can be applied to a wide range of the fiber sheet 12, and the fiber sheet 12 can be locally vibrated. The back can be further reduced.
  • vibration is simultaneously applied using two vibration applying means 14A and 14B.
  • the vibration applying units 14 ⁇ / b> A and 14 ⁇ / b> B apply vibrations to different locations of the fiber sheet 12.
  • the vibration applying units 14 ⁇ / b> A and 14 ⁇ / b> B apply vibrations to different locations of the fiber sheet 12.
  • FIG. 6 is a view showing another example of the forming jig according to the present embodiment.
  • a forming jig 100 shown in FIG. 6 includes a pair of an outer forming jig 101 and an inner forming jig 103 that are made of a metal material and generally have an M-shaped cross section.
  • the outer forming jig 101 includes a pair of opposing flat plate portions 101a and a pair of extending portions 101b that extend from one end of the pair of flat plate portions 101a to the flat plate portion 101a. Have. The tip ends of the pair of extending portions 101b are joined.
  • a space surrounded by the pair of flat plate portions 10 and the connection portion 101b is a recess 101c serving as an opening.
  • a fiber sheet 102 used when producing a composite material is disposed on the inner surface of the recess 101c.
  • a plurality of the fiber sheets 102 are laminated and formed into a shape along the inner surface of the recess 101c.
  • an inner molding jig 103 that sandwiches the fiber sheet 102 used when manufacturing a composite material with the outer molding jig 101 is disposed.
  • the inner molding jig 103 generally has a U-shaped cross section, and has a similar shape to the outer molding jig 101.
  • the inner forming jig 103 includes a pair of opposed flat plate portions 103a and a pair of extending portions 103b that connect from one end of the pair of flat plate portions 103a so as to be folded back with respect to the flat plate portion 103a. Have. The tip ends of the pair of extending portions 103b are joined.
  • a space surrounded by the pair of flat plate portions 103a and the connection portion 103b is a recess 103c serving as an opening.
  • FIG. 7A and 7B are diagrams showing another example of the curing step S12.
  • the fiber sheet 12 is vibrated while applying vibration to the fiber sheet 12 by the vibration applying means 14 in a state where the center portion of the connection portion 11b of the forming jig 1 is pressed by the pair of fixing jigs 30a and 30b. 12 is cured.
  • a positional shift gradually occurs from the central portion 11c of the fiber sheet 12 toward both ends 12a and 12b from the central portion of the connecting portion 11b of the forming jig 1 fixed by pressing toward the flat plate portion 11a.
  • the vibration applying means 14 in a state where one end of the flat plate portion 11a of the forming jig 1 (or one end portion of each of the pair of flat plate portions 11a) is pressed by the pair of fixing jigs 30a and 30b.
  • the fiber sheet 12 is cured while applying vibration to the fiber sheet 12. Accordingly, the one end of the forming jig 1 fixed by pressing and / or the one end of each of the pair of flat plate portions 11a toward the central portion gradually from both ends 12a, 12b of the fiber sheet 12 to the central portion 12c.
  • the positional deviation occurs, it is possible to cause the positional deviation substantially evenly toward one end of the flat plate portion 11a and / or one end portion of each of the pair of flat plate portions 11a, thereby further reducing the deformation of the product due to the spring back. It can be further reduced. And since it becomes unnecessary to perform the processing (cutting process) of the composite material at one end of the flat plate portion 11a to which the forming jig 1 is fixed and / or one end portion of each of the pair of flat plate portions 11a, the working time is shortened.
  • the pair of fixing jigs 30a and 30b is not particularly limited as long as the position of the fiber sheet 12 can be fixed via the outer forming jig 11 and the inner forming jig 13, for example, an actuator. Etc. can be used.
  • the vibrator applying means 14 is a vibrator that applies vibration to the composite material 12 at a predetermined frequency.
  • the difference in positional deviation between the respective layers can be reduced as compared with the case where vibration is applied intermittently and locally. Residual stress between the layers can be efficiently reduced.
  • FIG. 8 is a flowchart of the method for manufacturing a composite material according to the second embodiment of the present invention.
  • the composite material manufacturing method according to the present embodiment includes a molding step S21 in which a composite material is placed on a molding jig, the composite materials are stacked and molded into a desired shape, and molding is performed. After the composite material arranged on the jig is covered with the film member, a vacuum suction step S22 in which the film member is vacuum-sucked, and a liquid resin such as an epoxy resin is sealed in the film member, and the liquid resin is placed between the composite materials.
  • FIG. 9 is a schematic diagram of the vacuum impregnation apparatus 20 according to the present embodiment.
  • a composite material such as FEP is manufactured by a vacuum impregnation method (VaRTM method: Vacuum assisted Resin Transfer Molding).
  • VaRTM method Vacuum assisted Resin Transfer Molding
  • a plurality of fiber sheets 23 are laminated via a plastic film 22 on a mold (molding jig) 21 made of a metal material.
  • a mesh sheet 24 for preventing resin diffusion is disposed, and a bag film (film member) 25 is disposed so as to cover the fiber sheet 23 and the mesh sheet. Both end portions of the bag film 25 are sealed with a sealing member 26.
  • the inside of the bag film 25 can be vacuum-sucked, and the liquid resin is injected from the injection port 27 after vacuum suction.
  • the method for manufacturing the composite material according to the present embodiment will be described in detail.
  • the fiber sheet 23 and the plastic film 22 are alternately laminated on the molding die 21 and molded so as to have a desired shape.
  • the fiber sheet 23 for example, a woven fabric of glass fiber and carbon fiber is used.
  • vacuum suction process S22 after covering the composite material arrange
  • the liquid resin sealing step S ⁇ b> 23 the liquid resin is sealed inside the bag film 25 and the liquid resin is impregnated between the fiber sheet 23 and the plastic film 22.
  • the liquid resin is injected while applying vibration to the vacuum impregnation apparatus 20 by the vibration applying means 14 during vacuum suction. This makes it possible to reduce bubbles injected into the bag film 25 along with the liquid resin, thereby reducing the porosity inside the composite material formed by laminating the fiber sheets 23.
  • the vibration by the vibration applying means 14 may be applied to the seal member 26 of the vacuum impregnation apparatus 20 or may be applied to the mold 21.
  • the fiber sheet 23 is gradually heated (for example, 130 ° C.) while applying vibration to the fiber sheet 23 laminated by the vibration applying means 14 through the bag film 25.
  • the fiber sheet 23 is solidified while being formed.
  • the fiber sheet 23 is solidified while changing the position to which vibration is applied by the vibration applying means 14 using the time difference at which the laminated fiber sheets 23 are solidified.
  • the fiber sheet 23 impregnated with a plurality of laminated liquid resins is gradually displaced due to the vibration applied by the vibration applying means 14. Solidify while.
  • the residual stress inside the fiber sheets 23 generated during the lamination of the fiber sheets 23 and the influence of pores accompanying the encapsulation of the liquid resin are alleviated. It becomes possible to prevent the deformation of.
  • vibration by the vibration applying means 14 may be applied to the fiber sheet 23 laminated via the bag film 25, or may be applied to the mold 21 (not shown). Moreover, the vibration by the vibration applying means 14 may be applied to the entire mold 21 and the fiber sheet 23 or locally. Moreover, the vibration by the vibration applying means 14 may be applied only to the mold 21, may be applied only to the fiber sheet 23, or may be applied to both the mold 21 and the fiber sheet 23. Further, as the curing conditions, the same conditions as in the curing step according to the first embodiment described above can be used.
  • the bag film 25 and the plastic film 22 are sequentially removed from the fiber sheet 23 to produce a composite material in which a plurality of fiber sheets 23 are laminated. To do.
  • the fiber sheet 23 can be gradually cured by heating while applying vibration to the fiber sheet 23 in which a plurality of layers are laminated. It is possible to solidify the composite material into a desired shape while mitigating the positional shift accompanying the molding of the fiber sheet 23, and to reduce the porosity inside the fiber sheet 23. Thereby, since the composite material can be molded while relaxing the residual stress generated in the fiber sheet 23 at the time of molding, a method for manufacturing the composite material that can reduce the deformation of the product due to the spring back can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

The purpose of the present invention is to provide a composite material manufacturing method with which product deformation due to spring back can be reduced and a composite material for which said method was used. This composite material manufacturing method is characterized in comprising: a molding step (S11) for disposing a composite material in a molding jig and molding the composite material into an intended shape by laminating; a curing step (S12) for heating and curing the composite material disposed in the molding jig while applying vibration to the molding jig and/or the composite material after heating and curing; and a product removal step (S13) for removing the heated and cured composite material product from the molding jig.

Description

複合材料の製造方法、及び複合材料Composite material manufacturing method and composite material
 本発明は、複合材料の製造方法及びそれを用いた複合材料に関し、特に、製造時のスプリングバックを低減できる複合材料の製造方法及び複合材料に関する。 The present invention relates to a method for manufacturing a composite material and a composite material using the same, and more particularly to a method for manufacturing a composite material and a composite material that can reduce springback during manufacturing.
 従来、エネルギー開発材料及び航空宇宙構造材料などの分野においては、耐熱性向上及び比強度向上が可能な複合材料(Composite material)が脚光を浴びている。従来の複合材料の製造方法では、開口部を有する外側成形用治具の開口部内に繊維シートなどの複合材料を配置した状態で、外側成形用治具との間で繊維シートを挟持するように、内側成形用治具(中子部材)を外側成形用治具の開口部内に配置する。そして、従来の複合材料の製造方法では、外側成形用治具と内側成形用治具との間で繊維シートを挟持した状態で繊維シートを加熱硬化し、加熱硬化後の繊維シートから外側成形用治具及び内側成形用治具から繊維シートを取り外すことにより複合材料が製造される。 Conventionally, in the fields of energy development materials and aerospace structural materials, composite materials capable of improving heat resistance and specific strength have been highlighted. In a conventional method for manufacturing a composite material, a fiber sheet is sandwiched between an outer molding jig and a composite material such as a fiber sheet disposed in the opening of an outer molding jig having an opening. The inner molding jig (core member) is disposed in the opening of the outer molding jig. In the conventional composite material manufacturing method, the fiber sheet is heat-cured in a state where the fiber sheet is sandwiched between the outer forming jig and the inner forming jig, and the outer heat-cured fiber sheet is used for outer forming. The composite material is manufactured by removing the fiber sheet from the jig and the inner molding jig.
特開2001-341209号公報JP 2001-341209 A
 ところで、従来の複合材料の製造方法においては、対向する一対の平板部と、この一対の平板部の両端部を接続する接続部とを有する断面U字形状の複合材料を製造する場合がある。この場合、外側成形用治具から加熱硬化後の繊維シートを外す際に、各層の繊維シートが、曲げ度合いに見合ったズレを得る前に硬化するので、一対の平板部と接続部との間の部分に残留応力が発生することがある。そして、残留応力に基づくスプリングバックにより、外側成形用治具及び内側成形用治具から加熱硬化後の繊維シートを取り外す際に製品が内側(矢印D参照)に変形することがある。 By the way, in the conventional method for manufacturing a composite material, there is a case where a composite material having a U-shaped cross section having a pair of opposed flat plate portions and a connecting portion connecting both ends of the pair of flat plate portions may be manufactured. In this case, when removing the heat-cured fiber sheet from the outer forming jig, the fiber sheet of each layer is cured before obtaining a deviation corresponding to the bending degree. Residual stress may occur in this part. The product may be deformed inward (see arrow D) when removing the heat-cured fiber sheet from the outer forming jig and the inner forming jig due to the spring back based on the residual stress.
 このため、従来の複合材料の製造方法では、内側成形用治具の対向する一対の平板部間に、繊維シートに弾性変形を与えた状態で支持部材を配置することにより、外側成形用治具及び内側成形用治具から製品を取り外す際の残留応力に基づく製品の変形を低減している。 For this reason, in the conventional method for manufacturing a composite material, an outer molding jig is provided by placing a support member in a state where elastic deformation is applied to the fiber sheet between a pair of opposed flat plate portions of the inner molding jig. And the deformation of the product based on the residual stress when removing the product from the inner forming jig is reduced.
 しかしながら、従来の複合材料の製造方法では、支持部材を配置した場合であっても、一対の平板部と接続部との間の残留応力の影響を十分に取り除くことができず、スプリングバックによる製品の変形を十分に低減できる複合材料の製造方法が望まれている実情がある。 However, in the conventional composite material manufacturing method, even when the support member is arranged, the influence of the residual stress between the pair of flat plate portions and the connection portions cannot be sufficiently removed, and the product by springback There is a situation in which a method of manufacturing a composite material that can sufficiently reduce the deformation of is desired.
 本発明は、このような実情に鑑みてなされたものであり、成形時の残留応力に基づくスプリングバックによる製品の変形を低減できる複合材料の製造方法及びそれを用いた複合材料を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a method for producing a composite material that can reduce deformation of a product due to springback based on residual stress during molding, and a composite material using the same. Objective.
 本発明の複合材料の製造方法は、成形用治具に複合材料を配置し、前記複合材料を積層して所望の形状に成形する成形工程と、前記成形用治具及び成形後の前記複合材料の少なくとも一方に振動印加手段によって振動を与えながら前記成形用治具に配置された複合材料を加熱して硬化させる硬化工程と、前記成形用治具から前記加熱硬化後の複合材料の製品を取り外す製品取り外し工程と、を含むことを特徴とする。 The composite material manufacturing method of the present invention includes a molding step in which a composite material is arranged in a molding jig, the composite material is laminated and molded into a desired shape, and the molding jig and the composite material after molding. A curing step of heating and curing the composite material disposed on the molding jig while applying vibration to at least one of the vibration applying means, and removing the heat-cured composite material product from the molding jig And a product removal step.
 この方法によれば、複数が積層された複合材料に振動を与えながら加熱によって複合材料を徐々に硬化できるので、積層した複数の複合材料の成形に伴う位置ズレを緩和しながら複合材料を所望の形状に固化させることが可能となる。これにより、成形時に複合材料に発生した残留応力を緩和しながら、複合材料を成形できるので、スプリングバックによる製品の変形を低減できる複合材料の製造方法を実現できる。 According to this method, the composite material can be gradually cured by heating while applying vibration to the composite material in which a plurality of layers are laminated. It can be solidified into a shape. As a result, the composite material can be molded while relieving the residual stress generated in the composite material at the time of molding. Therefore, a method for manufacturing the composite material that can reduce the deformation of the product due to the spring back can be realized.
 本発明の複合材料の製造方法においては、前記成形用治具が、一対の平板部及び当該一対の平板部を接続する接続部を有する外側成形用治具と、一対の平板部及び当該一対の平板部を接続する接続部を有する内側成形用治具とを備え、前記内側成形用治具と前記外側成形用治具との間で前記複合材料を挟持して前記複合材料を加熱することが好ましい。この方法により、スプリングバックによる変形が大きい一対の平板部及び当該一対の平板部を接続する接続部を有する断面U字形状の成形用治具を用いて複合材料を成形する場合であっても、成形時に複合材料に発生した残留応力を緩和しながら、複合材料を成形できるので、スプリングバックによる製品の変形をより一層低減できる。 In the method for producing a composite material of the present invention, the forming jig includes a pair of flat plate portions and an outer forming jig having a connection portion for connecting the pair of flat plate portions, a pair of flat plate portions, and the pair of flat plate portions. An inner molding jig having a connecting portion for connecting a flat plate portion, and sandwiching the composite material between the inner molding jig and the outer molding jig to heat the composite material preferable. By this method, even when molding a composite material using a molding jig having a U-shaped cross section having a pair of flat plate portions that are largely deformed by springback and a connecting portion that connects the pair of flat plate portions, Since the composite material can be molded while relaxing the residual stress generated in the composite material during molding, the deformation of the product due to the spring back can be further reduced.
 本発明の複合材料の製造方法においては、前記硬化工程において、前記成形用治具の中央部を固定した状態で前記複合材料を加熱して硬化させることが好ましい。この方法により、固定された成形用治具の中央部から両端部に向けて徐々に複合材料の位置ズレが生じるので、中央部から両端部に向けて略均等に位置ズレを生じさせることが可能となる。これにより、断面M字形状などの複雑な形状の成形用治具を用いた場合であっても、スプリングバックによる製品の変形をより効率よく低減することが可能となる。 In the method for producing a composite material of the present invention, it is preferable that in the curing step, the composite material is heated and cured in a state where a central portion of the molding jig is fixed. This method gradually shifts the position of the composite material from the center of the fixed forming jig toward both ends, so it is possible to generate a position shift approximately evenly from the center to both ends. It becomes. Accordingly, even when a molding jig having a complicated shape such as an M-shaped cross section is used, the deformation of the product due to the spring back can be more efficiently reduced.
 本発明の複合材料の製造方法においては、前記硬化工程において、前記成形用治具の一端部及び/又は両端部を固定した状態で前記複合材料を加熱して硬化させることが好ましい。この方法により、固定された成形用治具の一端部及び/又は両端部から中央部に向けて徐々に複合材料の位置ズレが生じるので、一端部及び/又は両端部に向けて略均等に位置ズレを生じさせることが可能となり、スプリングバックによる製品の変形をより一層低減できる。そして、成形用治具の固定された一端部及び/又は両端部における複合材料の加工処理(切断処理)を施す必要がなくなるので、作業時間を短縮することもできる。 In the method for producing a composite material of the present invention, it is preferable that in the curing step, the composite material is heated and cured in a state where one end and / or both ends of the forming jig are fixed. This method gradually shifts the position of the composite material from one end and / or both ends of the fixed forming jig toward the central portion, so that it is positioned substantially evenly toward the one end and / or both ends. Deviation can be generated, and deformation of the product due to springback can be further reduced. And since it becomes unnecessary to perform the processing (cutting process) of the composite material at one end and / or both ends where the forming jig is fixed, the working time can be shortened.
 本発明の複合材料の製造方法は、成形用治具に複合材料を配置し、前記複合材料を積層して所望の形状に成形する成形工程と、前記成形用治具に配置された前記複合材料をフィルム部材で覆った後、前記フィルム部材内を真空吸引する真空吸引工程と、前記フィルム部材内に液状樹脂を封入して複合材料間に液状樹脂を含浸させる液状樹脂封入工程と、前記成形用治具及び前記液状樹脂を含浸させた前記複合材料の少なくとも一方に振動印加手段で振動を与えながら前記成形用治具に配置された複合材料を加熱して硬化させる硬化工程と、前記成形用治具から前記加熱硬化後の複合材料の製品を取り外す製品取り外し工程と、を含むことを特徴とする。 The composite material manufacturing method of the present invention includes a molding step in which a composite material is arranged in a molding jig, the composite material is laminated and molded into a desired shape, and the composite material arranged in the molding jig. A vacuum suction process for vacuum suction of the film member, a liquid resin sealing process for sealing the liquid resin in the film member and impregnating the liquid resin between the composite materials, and the molding A curing step of heating and curing the composite material disposed in the molding jig while applying vibration to the at least one of the jig and the composite material impregnated with the liquid resin by vibration applying means; and the molding jig. And a product removal step of removing the product of the composite material after heat curing from a tool.
 この方法によれば、複数が積層された複合材料に振動を与えながら、加熱によって複合材料を徐々に硬化できるので、積層した複数の複合材料の成形に伴う位置ズレを緩和しながら複合材料を所望の形状に固化させることが可能となる。これにより、成形時に複合材料に発生した残留応力を緩和できると共に、液状樹脂の封入に伴う気孔率を低減しながら複合材料を成形できるので、スプリングバックによる製品の変形を低減できる複合材料の製造方法を実現できる。 According to this method, the composite material can be gradually cured by heating while applying vibration to the composite material in which a plurality of layers are laminated. It becomes possible to solidify into the shape of. As a result, the residual stress generated in the composite material at the time of molding can be relieved, and the composite material can be molded while reducing the porosity accompanying the encapsulation of the liquid resin, so that the deformation of the product due to springback can be reduced. Can be realized.
 本発明の複合材料の製造方法においては、前記硬化工程において、複数の振動印加手段により前記成形用治具、及び/又は、加熱成形後の前記複合材料に振動印加手段によって振動を与えながら前記複合材料を硬化させることが好ましい。この方法により、複数の振動印加手段によって振動を付与するので、成形時に複合材料に発生した残留応力を緩和しながら複合材料を固化でき、スプリングバックによる製品の変形をより一層低減できる。 In the method for producing a composite material according to the present invention, in the curing step, the molding jig and / or the composite material after thermoforming is vibrated by the vibration applying means by a plurality of vibration applying means. It is preferred to cure the material. By this method, since vibration is applied by a plurality of vibration applying means, the composite material can be solidified while relaxing the residual stress generated in the composite material at the time of molding, and deformation of the product due to springback can be further reduced.
 本発明の複合材料の製造方法においては、前記振動印加手段が、前記複合材料に所定周波数で振動を付与する振動子であることが好ましい。この方法により、積層した複合材料が硬化するまでに各層に均一かつ適正な位置ズレが生じるので、断続的かつ局所的に振動を付与する場合と比較して各層間の位置ズレの差異を低減でき、各層間の残留応力を効率よく低減することができる。 In the composite material manufacturing method of the present invention, it is preferable that the vibration applying means is a vibrator that applies vibration to the composite material at a predetermined frequency. By this method, uniform and appropriate misalignment occurs in each layer before the laminated composite material is cured, so the difference in misalignment between each layer can be reduced compared to the case where vibration is applied intermittently and locally. The residual stress between each layer can be efficiently reduced.
 本発明の複合材料は、上記複合材料の製造方法によって得られたことを特徴とする。 The composite material of the present invention is obtained by the above-described composite material manufacturing method.
 この構成によれば、複数が積層された複合材料に振動を与えながら複合材料が加熱によって硬化されるので、複数の積層材料の成形に伴う位置ズレを緩和しながら複合材料を所望の形状に硬化する。これにより、成形時に複合材料に発生した残留応力を緩和しながら複合材料が成形されるので、複合材料のスプリングバックによる製品の変形を低減できる。 According to this configuration, the composite material is cured by heating while applying vibration to the composite material in which a plurality of layers are laminated. Therefore, the composite material is cured in a desired shape while mitigating misalignment caused by the formation of the plurality of laminate materials. To do. As a result, the composite material is molded while relieving the residual stress generated in the composite material during molding, so that deformation of the product due to the spring back of the composite material can be reduced.
 本発明によれば、成形時の残留応力に基づくスプリングバックによる製品の変形を低減できる複合材料の製造方法及びそれを用いた複合材料を実現できる。 According to the present invention, it is possible to realize a composite material manufacturing method capable of reducing deformation of a product due to springback based on residual stress during molding and a composite material using the same.
図1は、本発明の第1の実施の形態に係る複合材料の製造方法のフロー図である。FIG. 1 is a flowchart of a method for manufacturing a composite material according to the first embodiment of the present invention. 図2は、第1の実施の形態に係る成形用治具の模式的な斜視図である。FIG. 2 is a schematic perspective view of the forming jig according to the first embodiment. 図3Aは、第1の実施の形態に係る複合材料の製造方法の説明図である。FIG. 3A is an explanatory diagram of the method of manufacturing the composite material according to the first embodiment. 図3Bは、第1の実施の形態に係る複合材料の製造方法の説明図である。FIG. 3B is an explanatory diagram of the method of manufacturing the composite material according to the first embodiment. 図4は、第1の実施の形態に係る複合材料の製造方法の説明図である。FIG. 4 is an explanatory diagram of the method for manufacturing the composite material according to the first embodiment. 図5Aは、第1の実施の形態に係る複合材料の製造方法の硬化工程の他の例を示す図である。FIG. 5A is a diagram illustrating another example of the curing step of the composite material manufacturing method according to the first embodiment. 図5Bは、第1の実施の形態に係る複合材料の製造方法の硬化工程の他の例を示す図である。FIG. 5B is a diagram illustrating another example of the curing step of the method for manufacturing a composite material according to the first embodiment. 図5Cは、第1の実施の形態に係る複合材料の製造方法の硬化工程の他の例を示す図である。FIG. 5C is a diagram showing another example of the curing step of the method for manufacturing the composite material according to the first exemplary embodiment. 図6は、第1の実施の形態に係る成形用治具の他の例を示す図である。FIG. 6 is a diagram illustrating another example of the forming jig according to the first embodiment. 図7Aは、第1の実施の形態に係る硬化工程の他の例を示す図である。FIG. 7A is a diagram illustrating another example of the curing step according to the first embodiment. 図7Bは、第1の実施の形態に係る硬化工程の他の例を示す図である。FIG. 7B is a diagram illustrating another example of the curing step according to the first embodiment. 図8は、本発明の第2の実施の形態に係る複合材料の製造方法のフロー図である。FIG. 8 is a flowchart of the method for manufacturing a composite material according to the second embodiment of the present invention. 図9Aは、第2の実施の形態に係る真空含浸装置の模式図である。FIG. 9A is a schematic view of a vacuum impregnation apparatus according to the second embodiment. 図9Bは、第2の実施の形態に係る真空含浸装置の模式図である。FIG. 9B is a schematic diagram of a vacuum impregnation apparatus according to the second embodiment.
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、本発明は、以下の各実施の形態に限定されるものではなく、適宜変更して実施可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited to each following embodiment, It can implement by changing suitably.
(第1の実施の形態)
 図1は、本発明の第1の実施の形態に係る複合材料の製造方法のフロー図である。本実施の形態に係る複合材料の製造方法は、成形用治具に複合材料を配置し、前記複合材料を積層して所望の形状に成形する成形工程S11と、成形用治具及び成形後の前記複合材料の少なくとも一方に振動を与えながら成形用治具に配置された複合材料を加熱して硬化させる硬化工程S12と、成形用治具から硬化後の複合材料の製品を取り外す製品取り外し工程S13と、を含む。なお、本実施の形態に係る複合材料の製造方法においては、効果工程後に複合材料を加熱焼成してCMC化するCMC化工程などを実施してもよい。
(First embodiment)
FIG. 1 is a flowchart of a method for manufacturing a composite material according to the first embodiment of the present invention. The composite material manufacturing method according to the present embodiment includes a molding step S11 in which a composite material is placed in a molding jig, the composite material is laminated and molded into a desired shape, and the molding jig and the molded jig A curing step S12 for heating and curing the composite material disposed on the molding jig while applying vibration to at least one of the composite materials, and a product removing step S13 for removing the cured composite material product from the molding jig. And including. Note that in the method for manufacturing a composite material according to the present embodiment, a CMC forming step of heating and baking the composite material to form CMC after the effect step may be performed.
 まず、図2を参照して本実施の形態に係る成形用治具について説明する。図2は、本実施の形態に係る成形用治具1の模式的な斜視図である。本実施の形態に係る成形用治具1は、金属材料によって構成され、概して断面U字形状をなしている一対の外側成形用治具11及び内側成形用治具13を備える。外側成形用治具11は、対向する一対の平板部11aと、この一対の平板部11aの一端部をそれぞれ接続する接続部11bとを有する。外側成形用治具11は、一対の平板部11a及び接続部11bによって囲まれた空間が開口部としての凹部11cになっている。この凹部11cの内面には、複合材料を製造する際に用いられる繊維シート12が配置される。この繊維シート12は、複数が積層されて凹部11cの内面に沿った形状に成形される。 First, the forming jig according to the present embodiment will be described with reference to FIG. FIG. 2 is a schematic perspective view of the forming jig 1 according to the present embodiment. The forming jig 1 according to the present embodiment includes a pair of an outer forming jig 11 and an inner forming jig 13 that are made of a metal material and generally have a U-shaped cross section. The outer forming jig 11 has a pair of opposed flat plate portions 11a and a connection portion 11b for connecting one end portions of the pair of flat plate portions 11a. In the outer forming jig 11, a space surrounded by the pair of flat plate portions 11 a and connection portions 11 b is a recess 11 c serving as an opening. A fiber sheet 12 used when manufacturing the composite material is disposed on the inner surface of the recess 11c. A plurality of the fiber sheets 12 are laminated and formed into a shape along the inner surface of the recess 11c.
 外側成形用治具11の凹部11c内には、外側成形用治具11との間で複合材料を製造する際に用いられる繊維シート12を挟持する内側成形用治具13が配置される。内側成形用治具13は、概して断面U字形状を有しており、また外側成形用治具11と相似形状をなしている。内側成形用治具13は、対向する一対の平板部13aと、この一対の平板部13aの一端部をそれぞれ接続する接続部13bとを有する。この内側成形用治具13は、一対の平板部13a及び接続部13bによって囲まれた空間が開口部としての凹部13cになっている。 Inside the recess 11 c of the outer molding jig 11, an inner molding jig 13 that sandwiches the fiber sheet 12 used when producing a composite material with the outer molding jig 11 is disposed. The inner molding jig 13 generally has a U-shaped cross section, and has a similar shape to the outer molding jig 11. The inner forming jig 13 has a pair of opposed flat plate portions 13a and a connection portion 13b for connecting one end portions of the pair of flat plate portions 13a. In the inner forming jig 13, a space surrounded by a pair of flat plate portions 13a and connecting portions 13b is a recess 13c serving as an opening.
 次に、本実施の形態に係る複合材料の製造方法について詳細に説明する。図3A及び図3Bは、本実施の形態に係る複合材料の製造方法の説明図である。図3Aに示すように、成形工程S11では、内側成形用治具13の外周面に沿って繊維シート12を積層して所望の形状となるように成形する。繊維シート12としては、例えば、ガラス繊維及びカーボン繊維の織物が用いられる。次に、図3Bに示すように、外側成形用治具11を繊維シート12上に配置し、外側成形用治具11と内側成形用治具13との間で繊維シート12を挟持する。 Next, the method for manufacturing the composite material according to the present embodiment will be described in detail. 3A and 3B are explanatory diagrams of the method for manufacturing the composite material according to the present embodiment. As shown in FIG. 3A, in the forming step S11, the fiber sheets 12 are laminated along the outer peripheral surface of the inner forming jig 13 and formed into a desired shape. As the fiber sheet 12, for example, glass fiber and carbon fiber fabrics are used. Next, as shown in FIG. 3B, the outer forming jig 11 is placed on the fiber sheet 12, and the fiber sheet 12 is sandwiched between the outer forming jig 11 and the inner forming jig 13.
 次に、硬化工程S12では、外側成形用治具11を介して振動印加手段14で繊維シート12に振動を印加させながら、繊維シート12を徐々に加熱(例えば、200℃)して繊維シート12を成形しながら硬化させる。ここでは、積層された繊維シート12が固化する時間差を利用して振動印加手段14で振動を付与する位置を変えながら繊維シート12の固化を行う。これにより、図3B及び図4に示すように、加熱開始時には相互に密着していた外側成形用治具11、繊維シート12、及び内側成形用治具13が、振動印加手段14によって印加された振動によって徐々に位置ズレしながら固化するので、外側成形用治具11と繊維シート12との間に空間A1及びA2が生じる。この結果、繊維シート12の積層時に発生した複数の繊維シート12内部の残留応力が緩和されるので、後述する加熱硬化後の残留応力に基づくスプリングバックによる製品の変形を防ぐことが可能となる。なお、振動印加手段14によって振動を付与する位置については、本発明の効果を奏する範囲であれば特に制限はなく、一対の平板部13aに振動を付与してもよく、接続部13bに振動を付与してもよく、一対の平板部13aと接続部13bの境界部分に振動を付与してもよい。また、振動印加手段14による振動の付与は、繊維シート12が完全に硬化するまで実施することが好ましい。 Next, in the curing step S <b> 12, the fiber sheet 12 is gradually heated (for example, 200 ° C.) while applying vibration to the fiber sheet 12 by the vibration applying unit 14 through the outer forming jig 11, and the fiber sheet 12. Curing while molding. Here, the fiber sheet 12 is solidified while changing the position to which vibration is applied by the vibration applying means 14 using the time difference at which the laminated fiber sheets 12 are solidified. Thereby, as shown in FIGS. 3B and 4, the outer forming jig 11, the fiber sheet 12, and the inner forming jig 13 that were in close contact with each other at the start of heating were applied by the vibration applying unit 14. Since it solidifies while gradually shifting its position due to vibration, spaces A1 and A2 are formed between the outer forming jig 11 and the fiber sheet 12. As a result, the residual stress inside the plurality of fiber sheets 12 generated during the lamination of the fiber sheets 12 is relieved, so that it is possible to prevent deformation of the product due to springback based on the residual stress after heat curing described later. The position where vibration is applied by the vibration applying means 14 is not particularly limited as long as the effect of the present invention is achieved, and vibration may be applied to the pair of flat plate portions 13a, and vibration may be applied to the connection portion 13b. You may provide, and you may provide a vibration to the boundary part of a pair of flat plate part 13a and the connection part 13b. In addition, it is preferable to apply the vibration by the vibration applying unit 14 until the fiber sheet 12 is completely cured.
 そして、振動印加手段14で繊維シート12に振動を付与しながら、繊維シート12を完全に固化した後、繊維シート12を挟持した成形用治具1をオートクレーブなどの炉内にて3kg/cm程度の圧力、かつ200℃程度の高温で加熱焼成する。最後に、製品取り外し工程S13では、加熱焼成後の成形用治具1を室温程度に冷却した後、外側成形用治具11及び内側成形用治具13を順次繊維シート12から取り外して複数の繊維シート12が積層された複合材料を製造する。 Then, after the fiber sheet 12 is completely solidified while applying vibration to the fiber sheet 12 by the vibration applying means 14, the molding jig 1 sandwiching the fiber sheet 12 is placed in a furnace such as an autoclave at 3 kg / cm 2. It is heated and fired at a pressure of about 200 ° C. and a high temperature of about 200 ° C. Finally, in the product removal step S13, after the molding jig 1 after heating and baking is cooled to about room temperature, the outer molding jig 11 and the inner molding jig 13 are sequentially detached from the fiber sheet 12 and a plurality of fibers. A composite material in which the sheets 12 are laminated is manufactured.
 硬化工程S12における温度としては、本発明の効果を奏する範囲であれば特に制限はない。硬化工程S12における温度は、例えば、130℃以上200℃以下である。また、振動印加手段14としては、本発明の効果を奏する範囲であれば、各種振動印加手段を用いることが可能である。振動印加手段14としては、例えば、各種振動子を用いることができ、これらの中でも、超音波振動子などの高周波の振動を印加できるものを用いることができる。 There is no restriction | limiting in particular as temperature in hardening process S12 if it is a range with the effect of this invention. The temperature in the curing step S12 is, for example, 130 ° C. or higher and 200 ° C. or lower. Further, as the vibration applying means 14, various vibration applying means can be used as long as the effects of the present invention are achieved. As the vibration applying means 14, for example, various vibrators can be used, and among these, one capable of applying high-frequency vibration such as an ultrasonic vibrator can be used.
 このように、本実施の形態によれば、複数が積層された繊維シート12に振動を与えながら、加熱によって繊維シート12を硬化するので、複数の繊維シート12を積層した複合材料の成形に伴う位置ズレを緩和しながら複合材料を所望の形状に徐々に固化させることが可能となる。これにより、成形時に繊維シート12の内部に発生した残留応力を緩和しながら繊維シート12を加熱できるので、スプリングバックによる製品の変形を低減できる複合材料の製造方法を実現できる。 Thus, according to the present embodiment, the fiber sheet 12 is cured by heating while applying vibration to the fiber sheet 12 in which the plurality of fiber sheets 12 are laminated. It is possible to gradually solidify the composite material into a desired shape while relaxing the positional deviation. Thereby, since the fiber sheet 12 can be heated while relieving the residual stress generated inside the fiber sheet 12 at the time of molding, it is possible to realize a method for manufacturing a composite material that can reduce deformation of the product due to springback.
 また、本実施の形態によれば、スプリングバックによる変形が大きい断面U字形状の外側成形用治具11及び内側成形用治具13を備えた成形用治具1を用いて複合材料を成形する場合であっても、成形時に繊維シート12に発生した残留応力を緩和しながら繊維シート12を成形できるので、スプリングバックによる製品の変形をより一層低減できる。なお、成形用治具1は、使用する複合材料及び成形する形状に応じて適宜厚みを変更して用いることができる。また、成形用治具1としては、複数の部材に分解可能なものをもちいてもよい。 Further, according to the present embodiment, the composite material is molded using the molding jig 1 including the outer molding jig 11 and the inner molding jig 13 having a U-shaped cross section that is largely deformed by the springback. Even if it is a case, since the fiber sheet 12 can be shape | molded, relieving the residual stress which generate | occur | produced in the fiber sheet 12 at the time of shaping | molding, the deformation | transformation of the product by a springback can be reduced further. In addition, the shaping | molding jig | tool 1 can change and use a thickness suitably according to the composite material to be used and the shape to shape | mold. Further, as the forming jig 1, a tool that can be disassembled into a plurality of members may be used.
 なお、上記実施の形態においては、1つの振動印加手段14を用いる例について説明したが、振動印加手段14は、複数を併用してもよい。複数の振動印加手段14を併用することにより、スプリングバックによる製品の変形を一層低減することができる。また、振動印加手段14による振動は、繊維シート12に局所的に印加してもよく、また繊維シート12全体に印加してもよい。 In the above embodiment, an example in which one vibration applying unit 14 is used has been described, but a plurality of vibration applying units 14 may be used in combination. By using the plurality of vibration applying means 14 in combination, the deformation of the product due to the spring back can be further reduced. Moreover, the vibration by the vibration applying means 14 may be applied locally to the fiber sheet 12 or may be applied to the entire fiber sheet 12.
 なお、上記実施の形態に係る複合材料の製造方法では、振動印加手段14によって外側成形用治具11に振動を付与しながら繊維シート12を固化する例について説明したが、振動印加手段14による振動は、必ずしも外側成形用治具11に付与する必要はない。 In the composite material manufacturing method according to the above-described embodiment, the example in which the fiber sheet 12 is solidified while applying vibration to the outer forming jig 11 by the vibration applying unit 14 has been described. Is not necessarily applied to the outer forming jig 11.
 図5A~図5Cは、上記実施の形態に係る複合材料の製造方法の硬化工程S12の他の例を示す図である。図5Aに示す例では、振動印加手段14は、繊維シート12に振動を付与している。このように振動を付与することにより、繊維シート12は、外側成形用治具11と比較して振動が伝達しにくいので、繊維シート12におけるスプリングバックが発生しやすい特定箇所に局所的に振動を付与することが可能となり、スプリングバックによる製品の変形をより効果的に低減することが可能となる。なお、振動印加手段14により繊維シート12へ振動を印加する際の位置としては、例えば、一対の外側成形用治具11と内側成形用治具13との間に繊維シート12を挟持した状態で、図2に示す成形用治具1に対する紙面手前方向側から繊維シート12に直接振動を印加してもよく、図2に示す成形用治具1に対する紙面奥行方向側から繊維シート12に直接振動を印加してもよい。また、外側成形用治具11と内側成形用治具13に開口部を設けて振動を印加するようにしてもよい。 5A to 5C are diagrams showing another example of the curing step S12 of the composite material manufacturing method according to the above embodiment. In the example illustrated in FIG. 5A, the vibration applying unit 14 applies vibration to the fiber sheet 12. By imparting vibration in this manner, the fiber sheet 12 is less likely to transmit vibration compared to the outer forming jig 11, and therefore the vibration is locally generated at a specific location where the spring back of the fiber sheet 12 is likely to occur. It becomes possible to apply, and the deformation of the product due to the spring back can be reduced more effectively. In addition, as a position at the time of applying a vibration to the fiber sheet 12 by the vibration applying unit 14, for example, in a state where the fiber sheet 12 is sandwiched between a pair of the outer forming jig 11 and the inner forming jig 13. 2, vibration may be applied directly to the fiber sheet 12 from the front side of the paper with respect to the forming jig 1 shown in FIG. 2, and vibration is directly applied to the fiber sheet 12 from the depth direction of the paper with respect to the forming jig 1 shown in FIG. May be applied. Alternatively, an opening may be provided in the outer molding jig 11 and the inner molding jig 13 to apply vibration.
 図5Bに示す例では、2つの振動印加手段14A、14Bを用いて振動を同時に付与している。振動印加手段14Aは、繊維シート12に振動を付与し、振動印加手段14Bが外側成形用治具11に振動を付与する。このように振動を金属製などの治具と複合材料に同時に付与することにより、繊維シート12の広範囲に振動を付与できると共に、繊維シート12を局所的に振動させることが可能となるので、スプリングバックをより一層低減することができる。 In the example shown in FIG. 5B, vibration is simultaneously applied using two vibration applying means 14A and 14B. The vibration applying unit 14 </ b> A applies vibration to the fiber sheet 12, and the vibration applying unit 14 </ b> B applies vibration to the outer forming jig 11. Thus, by simultaneously applying vibration to a jig such as a metal and a composite material, vibration can be applied to a wide range of the fiber sheet 12, and the fiber sheet 12 can be locally vibrated. The back can be further reduced.
 図5Cに示す例では、2つの振動印加手段14A、14Bを用いて振動を同時に付与している。振動印加手段14A、14Bは、それぞれ繊維シート12の異なる場所に振動を付与する。このように繊維シート12の異なる箇所に同時に振動を付与することにより、繊維シート12の所望の部位を効率よく局所的に振動させることが可能となる。 In the example shown in FIG. 5C, vibration is simultaneously applied using two vibration applying means 14A and 14B. The vibration applying units 14 </ b> A and 14 </ b> B apply vibrations to different locations of the fiber sheet 12. As described above, by simultaneously applying vibrations to different portions of the fiber sheet 12, it is possible to efficiently vibrate desired portions of the fiber sheet 12 locally.
 図6は、本実施の形態に係る成形用治具の他の例を示す図である。図6に示す成形用治具100は、金属材料によって構成され、概して断面M字形状をなしている一対の外側成形用治具101及び内側成形用治具103を備える。外側成形用治具101は、対向する一対の平板部101aと、この一対の平板部101aの一端部からそれぞれ平板部101aに対して折り返す方向に延在する接続する一対の延在部101bとを有する。一対の延在部101bの先端部は接合されている。外側成形用治具101は、一対の平板部10及び接続部101bによって囲まれた空間が開口部としての凹部101cになっている。この凹部101cの内面には、複合材料を製造する際に用いられる繊維シート102が配置される。この繊維シート102は、複数が積層されて凹部101cの内面に沿った形状に成形される。 FIG. 6 is a view showing another example of the forming jig according to the present embodiment. A forming jig 100 shown in FIG. 6 includes a pair of an outer forming jig 101 and an inner forming jig 103 that are made of a metal material and generally have an M-shaped cross section. The outer forming jig 101 includes a pair of opposing flat plate portions 101a and a pair of extending portions 101b that extend from one end of the pair of flat plate portions 101a to the flat plate portion 101a. Have. The tip ends of the pair of extending portions 101b are joined. In the outer forming jig 101, a space surrounded by the pair of flat plate portions 10 and the connection portion 101b is a recess 101c serving as an opening. A fiber sheet 102 used when producing a composite material is disposed on the inner surface of the recess 101c. A plurality of the fiber sheets 102 are laminated and formed into a shape along the inner surface of the recess 101c.
 外側成形用治具101の凹部101c内には、外側成形用治具101との間で複合材料を製造する際に用いられる繊維シート102を挟持する内側成形用治具103が配置される。内側成形用治具103は、概して断面U字形状を有しており、また外側成形用治具101と相似形状をなしている。内側成形用治具103は、対向する一対の平板部103aと、この一対の平板部103aの一端部からそれぞれ平板部103aに対して折り返す方向に延在する接続する一対の延在部103bとを有する。一対の延在部103bの先端部は接合されている。この内側成形用治具103は、一対の平板部103a及び接続部103bによって囲まれた空間が開口部としての凹部103cになっている。このような成形用治具1に対して相対的に複雑な形状を有する成形用治具100においても、上述した成形用治具1で説明したように、振動印加手段14で振動を付与しながら繊維シート102を硬化させることにより、成形時に複合材料に発生した残留応力を緩和しながら、複合材料を成形できるので、スプリングバックによる製品の変形をより一層低減できる。 Inside the concave portion 101 c of the outer molding jig 101, an inner molding jig 103 that sandwiches the fiber sheet 102 used when manufacturing a composite material with the outer molding jig 101 is disposed. The inner molding jig 103 generally has a U-shaped cross section, and has a similar shape to the outer molding jig 101. The inner forming jig 103 includes a pair of opposed flat plate portions 103a and a pair of extending portions 103b that connect from one end of the pair of flat plate portions 103a so as to be folded back with respect to the flat plate portion 103a. Have. The tip ends of the pair of extending portions 103b are joined. In the inner molding jig 103, a space surrounded by the pair of flat plate portions 103a and the connection portion 103b is a recess 103c serving as an opening. Even in the forming jig 100 having a relatively complicated shape with respect to such a forming jig 1, as described in the forming jig 1, while applying vibration by the vibration applying means 14. By curing the fiber sheet 102, the composite material can be molded while relieving the residual stress generated in the composite material during molding, so that the deformation of the product due to the spring back can be further reduced.
 図7A及び図7Bは、硬化工程S12の他の例を示す図である。図7Aに示す例では、一対の固定用治具30a、30bによって成形用治具1の接続部11bにおける中央部を押圧した状態で振動印加手段14によって繊維シート12に振動を付与しながら繊維シート12を硬化させる。これにより、押圧により固定された成形用治具1の接続部11bの中央部から平板部11aに向けて徐々に繊維シート12の中央部11cから両端部12a、12bに向けて位置ズレが生じるので、接続部11bの中央部から平板部11aの両端部に向けて略均等に位置ズレを生じさせることが可能となる。これにより、例えば、図7Aに示す断面U字形状の成形用治具1だけでなく、図6に示したような断面M字形状などの複雑な形状の成形用治具2を用いた場合であっても、スプリングバックによる製品の変形をより効率よく低減することが可能となる。 7A and 7B are diagrams showing another example of the curing step S12. In the example shown in FIG. 7A, the fiber sheet 12 is vibrated while applying vibration to the fiber sheet 12 by the vibration applying means 14 in a state where the center portion of the connection portion 11b of the forming jig 1 is pressed by the pair of fixing jigs 30a and 30b. 12 is cured. As a result, a positional shift gradually occurs from the central portion 11c of the fiber sheet 12 toward both ends 12a and 12b from the central portion of the connecting portion 11b of the forming jig 1 fixed by pressing toward the flat plate portion 11a. In addition, it is possible to cause a positional shift substantially evenly from the central portion of the connecting portion 11b toward both end portions of the flat plate portion 11a. Thereby, for example, in the case of using not only the forming jig 1 having a U-shaped cross section shown in FIG. 7A but also a forming jig 2 having a complicated shape such as an M-shaped cross section as shown in FIG. Even if it exists, it becomes possible to reduce the deformation | transformation of the product by a springback more efficiently.
 図7Bに示す例では、一対の固定用治具30a、30bによって成形用治具1の平板部11aの一端部(又は一対の平板部11aそれぞれの一端部)を押圧した状態で振動印加手段14によって繊維シート12に振動を付与しながら繊維シート12を硬化させる。これにより、押圧によって固定された成形用治具1の一端部及び/又は一対の平板部11aそれぞれの一端部から中央部に向けて徐々に繊維シート12の両端部12a、12bから中央部12cに向けて位置ズレが生じるので、平板部11aの一端部及び/又は一対の平板部11aそれぞれの一端部に向けて略均等に位置ズレを生じさせることが可能となり、スプリングバックによる製品の変形をより一層低減できる。そして、成形用治具1の固定された平板部11aの一端部及び/又は一対の平板部11aそれぞれの一端部における複合材料の加工処理(切断処理)を施す必要がなくなるので、作業時間を短縮することもできる。なお、一対の固定用治具30a、30bとしては、外側成形用治具11及び内側成形用治具13を介して繊維シート12の位置を固定できるものであれば特に制限はなく、例えば、アクチュエータなどを用いることができる。 In the example shown in FIG. 7B, the vibration applying means 14 in a state where one end of the flat plate portion 11a of the forming jig 1 (or one end portion of each of the pair of flat plate portions 11a) is pressed by the pair of fixing jigs 30a and 30b. The fiber sheet 12 is cured while applying vibration to the fiber sheet 12. Accordingly, the one end of the forming jig 1 fixed by pressing and / or the one end of each of the pair of flat plate portions 11a toward the central portion gradually from both ends 12a, 12b of the fiber sheet 12 to the central portion 12c. Since the positional deviation occurs, it is possible to cause the positional deviation substantially evenly toward one end of the flat plate portion 11a and / or one end portion of each of the pair of flat plate portions 11a, thereby further reducing the deformation of the product due to the spring back. It can be further reduced. And since it becomes unnecessary to perform the processing (cutting process) of the composite material at one end of the flat plate portion 11a to which the forming jig 1 is fixed and / or one end portion of each of the pair of flat plate portions 11a, the working time is shortened. You can also The pair of fixing jigs 30a and 30b is not particularly limited as long as the position of the fiber sheet 12 can be fixed via the outer forming jig 11 and the inner forming jig 13, for example, an actuator. Etc. can be used.
 本実施の形態においては、振動子印加手段14が、複合材料12に所定周波数で振動を付与する振動子であることが好ましい。これにより、積層した複合材料が硬化するまでに各層に均一かつ適正な位置ズレが生じるので、断続的かつ局所的に振動を付与する場合と比較して各層間の位置ズレの差異を低減でき、各層間の残留応力を効率よく低減することができる。 In the present embodiment, it is preferable that the vibrator applying means 14 is a vibrator that applies vibration to the composite material 12 at a predetermined frequency. Thereby, since a uniform and appropriate positional deviation occurs in each layer until the laminated composite material is cured, the difference in positional deviation between the respective layers can be reduced as compared with the case where vibration is applied intermittently and locally. Residual stress between the layers can be efficiently reduced.
 次に、本発明の第2の実施の形態に係る複合材料の製造方法について説明する。なお、以下において、上述した実施の形態との相違点について重点的に説明し、説明の重複を避ける。 Next, a method for manufacturing a composite material according to the second embodiment of the present invention will be described. In the following, differences from the above-described embodiment will be mainly described, and overlapping description will be avoided.
(第2の実施の形態)
 図8は、本発明の第2の実施の形態に係る複合材料の製造方法のフロー図である。図8に示すように、本実施の形態に係る複合材料の製造方法は、成形用治具に複合材料を配置し、複合材料を積層して所望の形状に成形する成形工程S21と、成形用治具に配置された複合材料をフィルム部材で覆った後、フィルム部材内を真空吸引する真空吸引工程S22と、フィルム部材内にエポキシ樹脂などの液状樹脂を封入して複合材料間に液状樹脂を含浸させる液状樹脂封入工程S23と、成形用治具、及び/又は、液状樹脂を含浸させた複合材料に振動を与えながら成形用治具に配置された複合材料を加熱して硬化させる硬化工程S24と、成形用治具から加熱硬化後の複合材料の製品を取り外す製品取り外し工程S25と、を含む。
(Second Embodiment)
FIG. 8 is a flowchart of the method for manufacturing a composite material according to the second embodiment of the present invention. As shown in FIG. 8, the composite material manufacturing method according to the present embodiment includes a molding step S21 in which a composite material is placed on a molding jig, the composite materials are stacked and molded into a desired shape, and molding is performed. After the composite material arranged on the jig is covered with the film member, a vacuum suction step S22 in which the film member is vacuum-sucked, and a liquid resin such as an epoxy resin is sealed in the film member, and the liquid resin is placed between the composite materials. Liquid resin sealing step S23 to be impregnated, and curing step S24 for heating and curing the composite material disposed in the molding jig while vibrating the molding material and / or the composite material impregnated with the liquid resin. And a product removal step S25 for removing the product of the composite material after heat curing from the forming jig.
 まず、図9を参照して本実施の形態に係る複合材料の製造方法に用いられる真空含浸装置20について簡単に説明する。図9は、本実施の形態に係る真空含浸装置20の模式図である。この真空含浸装置20では、真空含浸工法(VaRTM法:Vacuum assisted Resin Transfer Molding)によりFEPなどの複合材料を製造する。この真空含浸装置20においては、金属材料によって構成された成形型(成形用治具)21上に、プラスチックフィルム22を介して複数の繊維シート23が積層される。積層された繊維シート23上には、樹脂拡散防止用のメッシュシート24が配置され、繊維シート23及びメッシュシートを覆うようにバッグフィルム(フィルム部材)25が配置される。このバッグフィルム25の両端部は、シール部材26で密封される。この真空含浸装置20においては、バッグフィルム25の内部が真空吸引可能となっており、真空吸引後に液状樹脂が注入口27から注入される。 First, the vacuum impregnation apparatus 20 used in the method for manufacturing a composite material according to the present embodiment will be briefly described with reference to FIG. FIG. 9 is a schematic diagram of the vacuum impregnation apparatus 20 according to the present embodiment. In this vacuum impregnation apparatus 20, a composite material such as FEP is manufactured by a vacuum impregnation method (VaRTM method: Vacuum assisted Resin Transfer Molding). In this vacuum impregnation apparatus 20, a plurality of fiber sheets 23 are laminated via a plastic film 22 on a mold (molding jig) 21 made of a metal material. On the laminated fiber sheet 23, a mesh sheet 24 for preventing resin diffusion is disposed, and a bag film (film member) 25 is disposed so as to cover the fiber sheet 23 and the mesh sheet. Both end portions of the bag film 25 are sealed with a sealing member 26. In this vacuum impregnation apparatus 20, the inside of the bag film 25 can be vacuum-sucked, and the liquid resin is injected from the injection port 27 after vacuum suction.
 次に、本実施の形態に係る複合材料の製造方法について詳細に説明する。成形工程S21では、成形型21の上に繊維シート23とプラスチックフィルム22とを交互に積層して、所望の形状となるように成形する。繊維シート23としては、例えば、ガラス繊維及びカーボン繊維の織物が用いられる。次に、真空吸引工程S22では、成形型21の上に配置された複合材料をバッグフィルム25で覆った後、バッグフィルム25内を真空吸引する。 Next, the method for manufacturing the composite material according to the present embodiment will be described in detail. In the molding step S21, the fiber sheet 23 and the plastic film 22 are alternately laminated on the molding die 21 and molded so as to have a desired shape. As the fiber sheet 23, for example, a woven fabric of glass fiber and carbon fiber is used. Next, in vacuum suction process S22, after covering the composite material arrange | positioned on the shaping | molding die 21 with the bag film 25, the inside of the bag film 25 is vacuum-sucked.
 次に、図9に示すように、液状樹脂封入工程S23では、バッグフィルム25の内部に液状樹脂を封入して繊維シート23とプラスチックフィルム22との間に液状樹脂を含浸させる。ここで、本実施の形態においては、真空吸引中に振動印加手段14により真空含浸装置20に振動を付与しながら液状樹脂を注入する。これにより、液状樹脂に伴ってバッグフィルム25に注入される気泡を低減することが可能となるので、繊維シート23を積層してなる複合材料の内部の気孔率を低減することが可能となる。なお、振動印加手段14による振動は、真空含浸装置20のシール部材26に付与してもよく、成形型21に付与してもよい。 Next, as shown in FIG. 9, in the liquid resin sealing step S <b> 23, the liquid resin is sealed inside the bag film 25 and the liquid resin is impregnated between the fiber sheet 23 and the plastic film 22. Here, in the present embodiment, the liquid resin is injected while applying vibration to the vacuum impregnation apparatus 20 by the vibration applying means 14 during vacuum suction. This makes it possible to reduce bubbles injected into the bag film 25 along with the liquid resin, thereby reducing the porosity inside the composite material formed by laminating the fiber sheets 23. The vibration by the vibration applying means 14 may be applied to the seal member 26 of the vacuum impregnation apparatus 20 or may be applied to the mold 21.
 次に、図9に示すように、硬化工程S24では、バッグフィルム25を介して振動印加手段14で積層した繊維シート23に振動を印加させながら、繊維シート23を徐々に加熱(例えば、130℃)して繊維シート23を成形しながら固化させる。ここでは、積層された繊維シート23が固化する時間差を利用して振動印加手段14で振動を付与する位置を変えながら繊維シート23の固化を行う。これにより、上述した第1の実施の形態に係る複合材料の製造方法と同様に、複数積層された液状樹脂を含浸する繊維シート23が、振動印加手段14によって印加された振動によって徐々に位置ズレしながら固化する。この結果、繊維シート23の積層時に発生した複数の繊維シート23内部の残留応力及び液状樹脂の封入に伴う気孔の影響が緩和されるので、後述する加熱硬化後の残留応力に基づくスプリングバックによる製品の変形を防ぐことが可能となる。 Next, as shown in FIG. 9, in the curing step S24, the fiber sheet 23 is gradually heated (for example, 130 ° C.) while applying vibration to the fiber sheet 23 laminated by the vibration applying means 14 through the bag film 25. The fiber sheet 23 is solidified while being formed. Here, the fiber sheet 23 is solidified while changing the position to which vibration is applied by the vibration applying means 14 using the time difference at which the laminated fiber sheets 23 are solidified. As a result, as in the composite material manufacturing method according to the first embodiment described above, the fiber sheet 23 impregnated with a plurality of laminated liquid resins is gradually displaced due to the vibration applied by the vibration applying means 14. Solidify while. As a result, the residual stress inside the fiber sheets 23 generated during the lamination of the fiber sheets 23 and the influence of pores accompanying the encapsulation of the liquid resin are alleviated. It becomes possible to prevent the deformation of.
 なお、硬化工程S24では、振動印加手段14による振動は、バッグフィルム25を介して積層した繊維シート23に付与してもよく、成形型21に対して付与してもよい(不図示)。また、振動印加手段14による振動は、成形型21及び繊維シート23の全体に付与してもよく、局所的に付与してもよい。また、振動印加手段14による振動は、成形型21のみに付与してもよく、繊維シート23にのみ付与してもよく成形型21及び繊維シート23の双方に付与してもよい。また、硬化の条件としては、上述した第1の実施の形態に係る硬化工程と同様の条件を用いることができる。 In the curing step S24, vibration by the vibration applying means 14 may be applied to the fiber sheet 23 laminated via the bag film 25, or may be applied to the mold 21 (not shown). Moreover, the vibration by the vibration applying means 14 may be applied to the entire mold 21 and the fiber sheet 23 or locally. Moreover, the vibration by the vibration applying means 14 may be applied only to the mold 21, may be applied only to the fiber sheet 23, or may be applied to both the mold 21 and the fiber sheet 23. Further, as the curing conditions, the same conditions as in the curing step according to the first embodiment described above can be used.
 最後に、製品取り外し工程S25では、真空含浸装置20内を室温程度に冷却した後、バッグフィルム25及びプラスチックフィルム22を順次繊維シート23から取り外して複数の繊維シート23が積層された複合材料を製造する。 Finally, in the product removal step S25, after the inside of the vacuum impregnation apparatus 20 is cooled to about room temperature, the bag film 25 and the plastic film 22 are sequentially removed from the fiber sheet 23 to produce a composite material in which a plurality of fiber sheets 23 are laminated. To do.
 以上説明したように、本実施の形態に係る複合材料の製造方法によれば、複数が積層された繊維シート23に振動を与えながら、加熱によって繊維シート23を徐々に硬化できるので、積層した複数の繊維シート23の成形に伴う位置ズレを緩和しながら複合材料を所望の形状に固化させることが可能となると共に、繊維シート23内部の気孔率を低減できる。これにより、成形時に繊維シート23に発生した残留応力を緩和しながら、複合材料を成形できるので、スプリングバックによる製品の変形を低減できる複合材料の製造方法を実現できる。 As described above, according to the method for manufacturing a composite material according to the present embodiment, the fiber sheet 23 can be gradually cured by heating while applying vibration to the fiber sheet 23 in which a plurality of layers are laminated. It is possible to solidify the composite material into a desired shape while mitigating the positional shift accompanying the molding of the fiber sheet 23, and to reduce the porosity inside the fiber sheet 23. Thereby, since the composite material can be molded while relaxing the residual stress generated in the fiber sheet 23 at the time of molding, a method for manufacturing the composite material that can reduce the deformation of the product due to the spring back can be realized.
 1、2 成形用治具
 11、101 外側成形用治具
 11a、101a 平板部
 11b、101b 接続部
 11c、101c 凹部
 12、102 繊維シート
 13、103 内側成形用治具
 13a、103a 平板部
 13b、103b 接続部
 13c、103c 凹部
 14、14A、14B 振動印加手段
 20 真空含浸装置
 21 成形型(成形用治具)
 22 プラスチックフィルム(フィルム部材)
 23 繊維シート
 24 メッシュシート
 25 バッグフィルム
 26 シール部材
 27 注入口
1, 2 Molding jigs 11, 101 Outer molding jigs 11a, 101a Flat plate portions 11b, 101b Connection portions 11c, 101c Recesses 12, 102 Fiber sheets 13, 103 Inner molding jigs 13a, 103a Flat plate portions 13b, 103b Connection part 13c, 103c Concave part 14, 14A, 14B Vibration application means 20 Vacuum impregnation apparatus 21 Mold (molding jig)
22 Plastic film (film member)
23 Fiber sheet 24 Mesh sheet 25 Bag film 26 Seal member 27 Inlet

Claims (8)

  1.  成形用治具に複合材料を配置し、前記複合材料を積層して所望の形状に成形する成形工程と、
     前記成形用治具及び成形後の前記複合材料の少なくとも一方に振動印加手段によって振動を与えながら前記成形用治具に配置された複合材料を加熱して硬化させる硬化工程と、
     前記成形用治具から前記加熱硬化後の複合材料の製品を取り外す製品取り外し工程と、を含むことを特徴とする複合材料の製造方法。
    A molding step of arranging a composite material on a molding jig, laminating the composite material, and molding the composite material into a desired shape;
    A curing step of heating and curing the composite material disposed on the molding jig while applying vibration by vibration applying means to at least one of the molding jig and the molded composite material;
    A product removal step of removing the product of the composite material after the heat curing from the molding jig.
  2.  前記成形用治具が、一対の平板部及び当該一対の平板部を接続する接続部を有する外側成形用治具と、一対の平板部及び当該一対の平板部を接続する接続部を有する内側成形用治具とを備え、前記内側成形用治具と前記外側成形用治具との間で前記複合材料を挟持して前記複合材料を加熱する、請求項1に記載の複合材料の製造方法。 The forming jig includes an outer forming jig having a pair of flat plate portions and a connecting portion connecting the pair of flat plate portions, and an inner forming having a pair of flat plate portions and a connecting portion connecting the pair of flat plate portions. The method for producing a composite material according to claim 1, further comprising a jig for heating the composite material by sandwiching the composite material between the inner molding jig and the outer molding jig.
  3.  前記硬化工程において、前記成形用治具の中央部を固定した状態で前記複合材料を加熱して硬化させる、請求項1又は請求項2に記載の複合材料の製造方法。 The method for producing a composite material according to claim 1 or 2, wherein, in the curing step, the composite material is heated and cured in a state where a central portion of the molding jig is fixed.
  4.  前記硬化工程において、前記成形用治具の一端部及び/又は両端部を固定した状態で前記複合材料を加熱して硬化させる、請求項1又は請求項2に記載の複合材料の製造方法。 The method for producing a composite material according to claim 1 or 2, wherein, in the curing step, the composite material is heated and cured in a state where one end and / or both ends of the forming jig are fixed.
  5.  成形用治具に複合材料を配置し、前記複合材料を積層して所望の形状に成形する成形工程と、
     前記成形用治具に配置された前記複合材料をフィルム部材で覆った後、前記フィルム部材内を真空吸引する真空吸引工程と、
     前記フィルム部材内に液状樹脂を封入して複合材料間に液状樹脂を含浸させる液状樹脂封入工程と、
     前記成形用治具及び前記液状樹脂を含浸させた前記複合材料の少なくとも一方に振動印加手段で振動を与えながら前記成形用治具に配置された複合材料を加熱して硬化させる硬化工程と、
     前記成形用治具から前記加熱硬化後の複合材料の製品を取り外す製品取り外し工程と、を含むことを特徴とする複合材料の製造方法。
    A molding step of arranging a composite material on a molding jig, laminating the composite material, and molding the composite material into a desired shape;
    A vacuum suction step of vacuuming the inside of the film member after covering the composite material arranged on the molding jig with a film member;
    A liquid resin encapsulation step of encapsulating the liquid resin in the film member and impregnating the liquid resin between the composite materials;
    A curing step of heating and curing the composite material disposed in the molding jig while applying vibration by vibration applying means to at least one of the molding jig and the composite material impregnated with the liquid resin;
    A product removal step of removing the product of the composite material after the heat curing from the molding jig.
  6.  前記硬化工程において、複数の振動印加手段により前記成形用治具及び加熱成形後の前記複合材料の少なくとも一方に振動を与えながら前記複合材料を硬化させる、請求項1から請求項5のいずれか1項に記載の複合材料の製造方法。 6. The composite material according to claim 1, wherein, in the curing step, the composite material is cured while applying vibration to at least one of the forming jig and the composite material after heat forming by a plurality of vibration applying means. A method for producing the composite material according to Item.
  7.  前記振動印加手段が、前記複合材料に所定周波数で振動を付与する振動子である、請求項1から請求項6のいずれか1項に記載の複合材料の製造方法。 The method for manufacturing a composite material according to any one of claims 1 to 6, wherein the vibration applying means is a vibrator that applies vibration to the composite material at a predetermined frequency.
  8.  請求項1から請求項7のいずれか1項に記載の複合材料の製造方法によって得られたことを特徴とする、複合材料。 A composite material obtained by the method for producing a composite material according to any one of claims 1 to 7.
PCT/JP2014/083056 2013-12-20 2014-12-12 Composite material manufacturing method and composite material WO2015093418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013264476A JP2015120270A (en) 2013-12-20 2013-12-20 Method for producing composite material, and composite material
JP2013-264476 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093418A1 true WO2015093418A1 (en) 2015-06-25

Family

ID=53402764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083056 WO2015093418A1 (en) 2013-12-20 2014-12-12 Composite material manufacturing method and composite material

Country Status (2)

Country Link
JP (1) JP2015120270A (en)
WO (1) WO2015093418A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192949A (en) * 1992-01-21 1993-08-03 Mitsubishi Heavy Ind Ltd Method for molding composite material
JPH06106645A (en) * 1992-09-30 1994-04-19 Hitachi Chem Co Ltd Manufacture of copper-clad laminate
JP2001341209A (en) * 2000-05-31 2001-12-11 Mitsubishi Heavy Ind Ltd Method and apparatus for manufacturing composite material product
JP2004330474A (en) * 2003-05-01 2004-11-25 Kawasaki Heavy Ind Ltd Method for manufacturing composite material product
US20120040106A1 (en) * 2010-08-16 2012-02-16 Stefan Simmerer Apparatus for impregnating a fiber material with a resin and methods for forming a fiber-reinforced plastic part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192949A (en) * 1992-01-21 1993-08-03 Mitsubishi Heavy Ind Ltd Method for molding composite material
JPH06106645A (en) * 1992-09-30 1994-04-19 Hitachi Chem Co Ltd Manufacture of copper-clad laminate
JP2001341209A (en) * 2000-05-31 2001-12-11 Mitsubishi Heavy Ind Ltd Method and apparatus for manufacturing composite material product
JP2004330474A (en) * 2003-05-01 2004-11-25 Kawasaki Heavy Ind Ltd Method for manufacturing composite material product
US20120040106A1 (en) * 2010-08-16 2012-02-16 Stefan Simmerer Apparatus for impregnating a fiber material with a resin and methods for forming a fiber-reinforced plastic part

Also Published As

Publication number Publication date
JP2015120270A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6005086B2 (en) Method for manufacturing composite structure
JP6132186B2 (en) Manufacturing method and apparatus for preform manufacturing base material, and manufacturing method of preform and fiber reinforced plastic
WO2014069503A1 (en) Method for manufacturing preform and method for manufacturing fiber-reinforced resin molded article
US20130168897A1 (en) Method for manufacturing fiber-reinforced polymeric casing
JP2009542483A (en) Manufacturing method of composite parts
JP2005059596A (en) Method for forming stepped laminate
JP2017537822A (en) Fiber reinforced structure
JP2021014125A (en) Manufacturing method of fiber reinforced resin structure, manufacturing system of fiber reinforced resin structure and fiber reinforced resin structure
WO2018047869A1 (en) Method for molding composite material and jig for molding composite material
JP6543577B2 (en) Method of forming composite material and jig for forming composite material
JP5883107B2 (en) Stabilization apparatus, stabilization method, and method for manufacturing fiber composite component
JP2015145124A (en) Composite material structure
JP6153766B2 (en) Outline cowl with expansion region
WO2015093418A1 (en) Composite material manufacturing method and composite material
JP6328973B2 (en) Electromagnetic wave shielding plate and method for producing electromagnetic wave shielding plate
WO2015146668A1 (en) Fiber-reinforced composite material and method for manufacturing same
JP2012224016A (en) Shaping and molding method, and fiber-reinforced resin molded article
TWI610801B (en) Manufacturing apparatus and manufacturing method of resin molded article
WO2017061146A1 (en) Fiber-reinforced composite member molding device
JP3004309B2 (en) Method for producing fiber-reinforced resin laminate
EP3715081B1 (en) Method for producing composite material
JP6380121B2 (en) Manufacturing method of resin molded body and manufacturing method of resin laminate
JP2008006731A (en) Manufacturing method for laminated material by autoclave process, and laminated material
JPH10278185A (en) Manufacture of sandwich structure
KR101652681B1 (en) Forming method of composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871695

Country of ref document: EP

Kind code of ref document: A1