WO2015092912A1 - Electric power generation system - Google Patents

Electric power generation system Download PDF

Info

Publication number
WO2015092912A1
WO2015092912A1 PCT/JP2013/084186 JP2013084186W WO2015092912A1 WO 2015092912 A1 WO2015092912 A1 WO 2015092912A1 JP 2013084186 W JP2013084186 W JP 2013084186W WO 2015092912 A1 WO2015092912 A1 WO 2015092912A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
line
heat
hydraulic oil
heat exchange
Prior art date
Application number
PCT/JP2013/084186
Other languages
French (fr)
Japanese (ja)
Inventor
了仁 小畑
向井 寛
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/084186 priority Critical patent/WO2015092912A1/en
Publication of WO2015092912A1 publication Critical patent/WO2015092912A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a power generator that performs power generation operation by transmitting rotational energy of blades and rotors rotated by kinetic energy such as wind, tidal current, ocean current, river flow, etc., as pressure energy of hydraulic oil to a generator.
  • kinetic energy such as wind, tidal current, ocean current, river flow, etc.
  • renewable energy power generators are devices that generate motive power by converting the kinetic energy of wind, tidal currents, ocean currents, or river currents to rotational energy of the rotor, and further using the rotational energy of the rotor to generate power.
  • the rotational energy of the rotor is mechanically transmitted by a shaft or a gear type gearbox and input to the generator. Since the rotor and the generator are mechanically connected in this way, when installing this device, the shaft, support part, gear type gearbox, generator, etc.
  • nacelles to which the rotor is connected are called nacelles.
  • the nacelle is stored in a storage unit, and is installed, for example, around a place where renewable energy is captured.
  • a nacelle of a renewable energy type power generation device is installed at a certain distance from the ground, such as a high place or underwater, in order to efficiently capture renewable energy.
  • the nacelle is supported from several tens of meters to hundreds of tens of meters in order to efficiently acquire wind energy.
  • a nacelle is installed in water. In such a place, since accessibility from the ground is poor, the work and maintenance of installing a nacelle containing a gearbox and a generator, which are heavy objects, are expensive.
  • a renewable energy power generation apparatus using a hydraulic power transmission device combining a hydraulic pump and a hydraulic motor has attracted attention.
  • the rotational energy of the rotor is converted into hydraulic energy by a hydraulic pump, and the power is transmitted. Therefore, the power can be transmitted to an arbitrary location using a pipe that transports hydraulic oil. Therefore, in a renewable energy type power generator using hydraulic power transmission, a heavy generator and a maintenance-purpose power generator or hydraulic motor can be installed at a location with good accessibility.
  • Patent Document 1 describes a wind power generator in which a hydraulic pump is provided in a nacelle, a hydraulic motor and a generator are provided in a lower portion of a tower that supports the nacelle, and the hydraulic pump and the hydraulic motor are connected by piping.
  • Patent Document 2 a regenerative energy type power generator connected from a hydraulic pump provided in a nacelle to a hydraulic motor installed around a tower base using two relatively rotatable pipes. An apparatus is described.
  • renewable energy power generators equipped with hydraulic power transmission are often installed in environments where the ambient temperature, water temperature, and other ambient temperature changes are large in order to capture renewable energy.
  • the hydraulic oil temperature used for power transmission also changes.
  • the viscosity of the hydraulic oil changes greatly due to temperature change, and adversely affects the components of the hydraulic power transmission device such as reduced efficiency and reduced life.
  • the hydraulic oil has a high viscosity at low temperatures, and energy loss during oil feeding increases, the viscosity becomes low at high temperatures, and the sliding portion wears due to a decrease in the lubricity of the constituent devices. Therefore, in a power generator provided with a hydraulic power transmission device, it is required to keep hydraulic oil at an appropriate temperature.
  • Patent Document 3 describes a configuration in which the hydraulic power transmission circuit is efficiently cooled by exchanging heat with a cold water source including seawater, lake water, river water, or groundwater around the tower base.
  • the tower height increases with the increase in the size of the wind turbine generator, and when the pipe length is further extended, or when the pipe is placed in water, such as tidal currents, ocean currents, or river current power generation, it is more accurate. Temperature control becomes difficult. As described above, the viscosity of the hydraulic oil changes greatly with changes in temperature, and adversely affects the components of the hydraulic power transmission device such as reduced efficiency and reduced life.
  • Patent Documents 1 to 3 do not sufficiently consider the influence of the length of the pipe and the surrounding environment in the pipe installation path on the hydraulic oil, so the temperature of the hydraulic oil used for hydraulic power transmission, particularly the hydraulic equipment, is not considered. There is a possibility that the temperature of the flowing hydraulic oil cannot be accurately controlled. Therefore, an object of the present invention is to provide a power generator that can perform temperature control of hydraulic oil more accurately.
  • a blade that rotates by receiving an external force, a hydraulic pump that is driven as the blade rotates, pressurizes sucked hydraulic oil, and discharges the hydraulic oil;
  • a nacelle that houses the hydraulic pump, a tower that supports the nacelle, a hydraulic motor driven by the hydraulic oil discharged from the hydraulic pump, a generator connected to the hydraulic motor, and the hydraulic pump
  • a first line for sending the hydraulic oil from the hydraulic motor to the hydraulic motor, a second line for returning the hydraulic oil from the hydraulic motor to the hydraulic pump, and heat that rotates together with the nacelle and heat-exchanges the hydraulic oil
  • a blade that rotates by receiving an external force, a hydraulic pump that is driven along with the rotation of the blade, pressurizes the sucked hydraulic oil, and discharges the hydraulic oil;
  • a nacelle that houses the hydraulic pump, a tower that supports the nacelle, a foundation that supports the tower, a hydraulic motor that is driven by the hydraulic oil discharged from the hydraulic pump, and is connected to the hydraulic motor.
  • a generator a first line for sending the hydraulic oil from the hydraulic pump to the hydraulic motor, a second line for returning the hydraulic oil from the hydraulic motor to the hydraulic pump, and a foundation. It is characterized by comprising a heat exchange device for exchanging heat of the hydraulic oil flowing through the first line.
  • a blade that rotates by receiving an external force, a hydraulic pump that is driven along with the rotation of the blade, pressurizes the sucked hydraulic oil, and discharges the hydraulic oil;
  • a nacelle that houses a hydraulic pump, a tower that supports the nacelle, a foundation that supports the tower, a hydraulic motor that is driven by the hydraulic oil discharged from the hydraulic pump, and is connected to the hydraulic motor
  • a generator a first line for sending the hydraulic oil from the hydraulic pump to the hydraulic motor, a second line for returning the hydraulic oil from the hydraulic motor to the hydraulic pump, and the base portion,
  • a heat exchanging device for exchanging heat of the hydraulic oil flowing through the second line, wherein the first line and the second line are at least partially covered with a heat insulating material; and Or characterized in that it is constituted by at least partially insulated double pipe of the line.
  • the temperature of the hydraulic oil can be controlled more accurately.
  • FIG. 1 is a hydraulic power transmission circuit diagram of a power generator described in Embodiment 1.
  • FIG. It is a whole block diagram of the electric power generating apparatus described in Example 1, and is the figure which added cooling mechanisms, such as a generator.
  • It is a whole block diagram of the electric power generating apparatus described in Example 2.
  • FIG. It is a fragmentary sectional view which shows the heat insulation structure of the hydraulic piping described in Example 2.
  • FIG. It is a whole block diagram of the electric power generating apparatus described in Example 3, and is the figure which added the heat exchange part. It is a fragmentary sectional view of the heat exchange part 500 described in Example 3.
  • FIG. 1 is a hydraulic power transmission circuit diagram of a power generator described in Embodiment 1.
  • FIG. It is a whole block diagram of the electric power generating apparatus described in Example 1, and is the figure which added cooling mechanisms, such as a generator.
  • It is a whole block diagram of the electric power generating apparatus described in Example 2.
  • FIG. It is a fragmentary sectional
  • FIG. 1 is a diagram showing an overall configuration of a wind turbine generator 100 according to the present embodiment, and a thick line arrow in the drawing represents a flow of hydraulic oil.
  • FIG. 2 shows a circuit diagram of hydraulic power transmission, and a broken line shows a control signal input / output to / from the controller 17.
  • FIG. 1 illustrates an offshore wind power generator installed on the water surface 19
  • the wind power generator 100 may be installed on land.
  • the wind turbine generator 100 mainly includes a blade 1 a and a hub 1 b, a rotor 1 that rotates by receiving wind, and a support member 2 that supports the rotor 1.
  • the hydraulic pump 3 driven by the rotation of the rotor 1 to increase the pressure of the hydraulic oil sucked from the suction port and discharge the hydraulic oil from the discharge port, the nacelle 4 housing the support member 2 and the hydraulic pump 3, and the nacelle 4
  • a tower 5 that supports the top 5a of the tower, a base 6 that supports the base 5b of the tower 5, a hydraulic motor 7 that is driven by the hydraulic oil discharged from the hydraulic pump 3 and is installed on the base 6;
  • a generator 8 connected to the hydraulic motor 7, a high-pressure line 10 that sends hydraulic oil from the hydraulic pump 3 to the hydraulic motor 7, a low-pressure line 9 that returns hydraulic oil from the hydraulic motor 7 to the hydraulic pump 3, and a foundation 6 Heat exchanger installed And a temperature sensor 11 that measures the temperature of hydraulic oil flowing into the
  • a temperature sensor 12 that measures the temperature of the hydraulic oil
  • a heat exchange device 14 installed in the nacelle 4 and a temperature that is provided at the inlet of the heat exchange device 14 and measures the temperature of the hydraulic oil flowing into the heat exchange device 14
  • a sensor 15 and a temperature sensor 16 which is provided at the suction port of the hydraulic pump 3 and measures the temperature of the hydraulic oil flowing into the hydraulic pump 3 are included.
  • the heat exchange device 14 rotates together with the nacelle, but may be arranged inside or outside the nacelle, and further arranged inside and outside the nacelle.
  • the rotor 1 is composed of at least one blade 1 a and a hub 1 b, and the blades 1 a are attached radially around the rotation axis of the rotor 1.
  • the hub 1b is connected to a support member 2 accommodated in the nacelle 4, and supports the rotor 1 rotatably.
  • the support member 2 may serve as a rotating shaft that transmits the rotational energy of the rotor 1 that rotates by receiving wind to the hydraulic pump 3, supports only the weight of the rotor 1 and the load due to wind, and the rotational energy is You may transmit to the hydraulic pump 3 by the hub 1b.
  • the arrangement position of the support member may not be inside the nacelle.
  • the nacelle 4 is mainly provided with a support member 2 and a hydraulic pump 3. A part of the low-pressure line 9 that supplies hydraulic oil sucked by the hydraulic pump 3 and a part of the high-pressure line 10 that sends the discharged hydraulic oil to the hydraulic motor 7 are also accommodated in the nacelle 4.
  • a heat exchange device 14 is installed on the outer wall of the nacelle 4.
  • the nacelle 4 may be separated into a space where the outside air communicates and a space where the outside air cannot freely enter and exit. In this case, if the heat exchange device 14 is arranged in a space communicated with the outside air, the cooling effect can be obtained. I can expect.
  • the nacelle 4 is rotatably supported by the tower 5 so that the rotor 1 faces the wind direction. Therefore, a swivel joint 18 that rotatably connects the high pressure line 10 and the low pressure line 9 in the tower 5 and the nacelle 4 is used.
  • the tower base on the side attached to the base portion 6 is 5 b
  • the tower tip on the side to which the nacelle is attached is 5 a
  • the distance L from the base 5 a to the tip 5 b is the tower height.
  • the high-pressure line 10 and the low-pressure line 9 installed in the tower 5 in the present embodiment are steel pipes or flexible hydraulic pipes.
  • the hydraulic pump 3 installed in the nacelle 4 and the hydraulic motor installed in the foundation 6. Transport hydraulic fluid to The high pressure line 10 and the low pressure line 9 may be collectively referred to as hydraulic piping.
  • the hydraulic pump 3 is driven by the rotational energy of the rotor 1 and generates high-pressure hydraulic oil.
  • This high-pressure hydraulic oil is supplied to the hydraulic motor 7 disposed at the base 5 b of the tower 5 by the high-pressure line 10.
  • the hydraulic motor 7 is driven by the high-pressure hydraulic oil, and generates electric power by driving a generator 8 connected to the hydraulic motor 7.
  • the hydraulic oil discharged from the hydraulic motor 7 flows through the low-pressure line 9 and is controlled to a predetermined temperature by the heat exchange device 13 arranged in the base portion 6. After the hydraulic oil exiting the heat exchange device 13 is fed into the nacelle 4 from the base 5b of the tower 5 by the low pressure line 9, passes through the heat exchange device 14 in the nacelle 4, and is brought to a predetermined temperature. Then, it is sucked into the hydraulic pump 3 again.
  • the heat exchange device 13 installed in the foundation 6 and the heat exchange device 14 installed in the nacelle 4 according to the present invention will be described.
  • the heat exchange device 13 in the present embodiment includes a heat exchanger 13a, a refrigerant line 13b, a heat exchanger 13c, and a cooling fan 13d.
  • the hydraulic oil flowing in the low pressure line 9 and the refrigerant flowing in the refrigerant line 13b exchange heat.
  • the heat exchanger 13c exchanges heat between the refrigerant flowing in the refrigerant line 13b and a medium such as outside air.
  • the amount of heat exchange performed by the heat exchanger 13c can be adjusted by controlling the inflow amount of a medium such as outside air using the cooling fan 13d.
  • the heat exchange device 14 includes a heat exchanger 14a and a blower fan 14b.
  • the heat exchanger 14a performs heat exchange between the hydraulic oil flowing in the low pressure line 9 and a medium such as outside air.
  • the ventilation fan 13d and the ventilation fan 14b mean the apparatus which generate
  • the heat exchange device installed on the foundation 6 Of these, the heat exchanger 13c far from the line through which the hydraulic oil flows may be formed so as to exchange heat with the water around the wind turbine generator by installing it below the water surface.
  • the heat exchange device 13 or 14 may be provided with a heater, that is, both heat and cooling may be performed.
  • a heater that is, both heat and cooling may be performed.
  • the heat exchange apparatus 13 or 14 shall have a function of both cooling and heating. Accordingly, the description of the refrigerant, cooling, etc. is not limited to that for lowering the temperature. Of course, the case where only one of the functions of cooling or heating is provided is not excluded.
  • the heat exchange device 13 is connected to the low pressure line 9 and is installed in the base portion 6. As shown in FIG.
  • the heat exchange device 13 is partly installed inside the tower 5 and partly outside. It may be installed in. As described above, since the heat exchange device 13 is installed on the base portion 6, it is not limited to a specific space as in the tower 5 or the nacelle 4, and the size and weight of the heat exchange device 13 are flexible. Increase. When at least a part of the heat exchange device is arranged outside the tower, it is possible to use a device having a high heat exchange performance in which the heat transfer area of the heat exchange unit is large.
  • the heat exchanging device 13 is installed on the foundation part 6, in the case of an offshore wind power generator in which the foundation part 6 is installed on the ocean, seawater or the like can be used as a refrigerant for heat exchange. Moreover, when arrange
  • the heat exchange device 13 since the heat exchange device 13 is installed on the base portion 6 with good accessibility, the heat exchange device 13 can be easily maintained.
  • the heat exchange device 14 is installed in the nacelle 4. Therefore, it can be installed at a position closer to the hydraulic pump than the heat exchange device 13 by a distance corresponding to the tower height. Therefore, when controlling the temperature of the hydraulic oil flowing into the hydraulic pump, the heat exchange device 14 is closer to the nacelle 4 that is closer to the hydraulic pump than the heat exchange device 13 disposed on the base portion 6 that supports the tower base. Since it is arranged, the responsiveness is good and the influence of heat exchange with the external environment is small, so that temperature control can be accurately performed.
  • the heat exchange device 14 is installed in the nacelle 4 attached to the tip 5a of the tower 5 having a predetermined height. There is no obstacle to block the wind at the tip of the tower compared to the ground, and the wind speed is high. Therefore, heat exchange can be performed at a higher wind speed, and the hydraulic oil can be efficiently cooled.
  • the temperature sensor 11 is provided at the inlet of the heat exchange device 13 and measures the temperature of the hydraulic oil flowing into the heat exchange device 13.
  • the temperature sensor 11 is provided at the outlet of the heat exchange device 13.
  • a temperature sensor 12 for measuring the temperature of the hydraulic oil flowing out is provided.
  • a temperature sensor 15 provided at the inlet of the heat exchange device 14 for measuring the temperature of the hydraulic oil flowing into the heat exchange device 14 and a hydraulic oil provided at the suction port of the hydraulic pump 3 and flowing into the hydraulic pump 3.
  • a temperature sensor 16 is provided for measuring the temperature.
  • the target value temperature of the hydraulic oil is set at the installation positions of these temperature sensors 11, 12, 15, and 16, respectively.
  • blower fan 13d is obtained from the hydraulic oil temperatures T1, T2, T3, T4 acquired from the temperature sensors 11, 12, 15, 16 and the target hydraulic oil temperature at the hydraulic pump inlet and the heat exchanger 13 outlet.
  • a controller 17 for operating the blower fan 14b is provided.
  • the controller 17 controls the rotational speed of the cooling fan 13d from the hydraulic oil temperature T1 measured by the temperature sensor 11, the hydraulic oil temperature T2 measured by the temperature sensor 12, and the target value temperature at the position of the temperature sensor 12. Can do. Thereby, the temperature of the hydraulic oil at the installation position of the temperature sensor 12 can be accurately controlled with power saving.
  • the controller 17 determines the rotation speed of the cooling fan 14b from the hydraulic oil temperature T3 measured by the temperature sensor 15, the hydraulic oil temperature T4 measured by the temperature sensor 16, and the target value temperature at the position of the temperature sensor 16. Can be controlled. Thereby, the temperature of the hydraulic oil at the installation position of the temperature sensor 16 can be accurately controlled with power saving. Furthermore, in this embodiment, since the temperature sensor 16 is provided at the suction port of the hydraulic pump 3, the temperature of the hydraulic oil flowing into the hydraulic pump 3 can be accurately controlled.
  • the controller 17 sets this portion between the portions 9a to 9b of the low pressure line 9 based on the difference between the temperature T3 of the hydraulic fluid measured by the temperature sensor 15 and the temperature T2 of the hydraulic fluid measured by the temperature sensor 12.
  • the amount of heat exchange with the surrounding environment can be estimated. Thereby, control of hydraulic oil temperature can be performed by power saving by adjusting the rotation speed of the ventilation fan 14b or the ventilation fan 13d.
  • FIG. 3 shows a configuration in which the generator 8 and the low-pressure line 9 are added with a heat exchanger 8a for exchanging heat.
  • the generator 8 can be cooled via the heat exchanger 8a by setting the hydraulic oil temperature T2 of the temperature sensor 12 to the hydraulic oil temperature necessary for cooling the generator 8.
  • the heat exchange device 14 installed in the nacelle 4 to cool again the amount of heat exchanged between the generator 8 and the hydraulic oil, the hydraulic oil can be supplied with the optimum temperature to the hydraulic pump 3. Is possible.
  • the transformer 20 is cooled by providing the hydraulic oil flowing through the low-pressure line 9 and the heat exchanger 20a that the transformer 20 performs heat exchange. can do.
  • the transformer 20 has been described as an example, but other devices may be used.
  • a heat exchanger can be similarly provided for a power converter installed in a tower.
  • the heat exchanger can be appropriately changed according to the state of accommodation of the equipment in the tower, such as being provided in one or both of the power converter and the transformer.
  • the heat exchange device, the temperature sensor, and the controller are included, and therefore cooling is necessary.
  • the temperature of the hydraulic oil flowing into the hydraulic pump 3 can be managed while cooling the device.
  • the case where the hydraulic oil flowing through the low-pressure line 9 is heat-exchanged in the heat exchanging device 13 arranged in the base portion 6 is formed so that the hydraulic oil flowing through the high-pressure line 10 is heat-exchanged. You may do it. In that case, since the temperature can be adjusted immediately before the hydraulic motor 7, more accurate temperature control becomes possible.
  • the adjustment of the rotation speed of the fan is taken as an example here, but it is needless to say that the control is not limited to this, and other control is possible.
  • the amount of water flowing into the heat exchanger below the water surface may be controlled.
  • Example 2 will be described with reference to FIGS.
  • a heat insulating mechanism for insulating the low pressure line 9 or the high pressure line 10 is provided in place of the heat exchanging device 14, the temperature sensor 15, and the controller 17 of the first embodiment, and the regeneration shown in FIG.
  • the gray portions around the low-pressure line 9 and the high-pressure line 10 represent a heat insulation mechanism.
  • FIG. 5 shows a cross section perpendicular to the flowing direction of the hydraulic oil in order to represent the low pressure line 9 or the high pressure line 10 to which the heat insulation mechanism is attached.
  • the arrow in the figure represents the direction in which the hydraulic oil flows.
  • the heat insulation mechanism 310 is attached so as to cover the hydraulic piping as shown in FIG.
  • the heat insulating material 310a is made of a highly heat insulating material such as glass wool.
  • the heat insulating material 310a may have a function of absorbing and holding hydraulic oil. Thereby, even if hydraulic fluid leaks from hydraulic piping, the inside of the tower 5, the nacelle 4, etc. is not polluted with hydraulic fluid.
  • a new pipe 320a may be provided on the outside so that the pipe has a double structure to achieve heat insulation performance.
  • a space 320b between the hydraulic pipe and the pipe 320a may be filled with air.
  • air that is lightweight and has high heat insulation performance as a heat insulating material, the hydraulic piping can be insulated at low cost.
  • the space 320b may be evacuated. By making the vacuum, the heat insulation performance of the hydraulic piping is remarkably increased, so that the space 320b can be narrowed and high heat insulation can be obtained in a small space.
  • the double structure prevents the inside of the tower 5 and the nacelle 4 from being contaminated by the hydraulic oil even if the hydraulic oil leaks from the hydraulic piping.
  • the heat insulation mechanism described above suppresses heat exchange with the outside air for all the paths of the low pressure line 9 and the high pressure line 10 as shown in FIG. Thereby, even when oil is supplied from the base 6 to the nacelle 4 using the low pressure line 9 having a distance equivalent to the tower height, it is less likely to be affected by outside air. Therefore, the operating oil temperature flowing into the hydraulic pump 3 can be managed by the heat exchanging device 13 installed in the base portion 6. Moreover, since the high pressure line 10 is also provided with a heat insulating mechanism, heat exchange with the outside air can be suppressed even when oil is fed from the nacelle 4 to the base portion 6.
  • all the hydraulic pipes are provided with a heat insulating mechanism called a heat insulating material or a heat insulating double pipe, but such a heat insulating mechanism is provided with at least a part of each line such as a low pressure line or a high pressure line. But it ’s okay. That is, each line can be at least partially covered with a heat insulating material, or a part of the pipe can be constituted by a heat insulating double pipe. It is also possible to provide the heat insulating structure only in a certain part of the piping. For example, when heat insulation piping is provided only in a part of 9c to 9d of the low-pressure line 9 in FIGS.
  • the temperature of the hydraulic oil managed by the heat exchange device 14 is compared with the environment in the nacelle 4.
  • the oil can be fed to the hydraulic pump 3 while being held without performing heat exchange.
  • each line is at least partially covered with a heat insulating material, or a part of the pipe is formed of a heat insulating double pipe, so that a heat exchanger or a temperature sensor is installed at a position away from the hydraulic pump 3 or the hydraulic motor 7. Even if it is provided, accurate temperature control becomes possible.
  • a heat exchange part As a position away from the hydraulic pump 3 or the hydraulic motor 7, for example, a heat exchange part (a heat exchange device, a heat exchanger, a heat exchange part, or the like in general, which is arranged in the tower from the base part) ) And the like.
  • the structure which provides the heat insulation mechanism called a heat insulating material or heat insulation double piping is not restricted to the structure of a present Example, It can apply similarly about what was demonstrated in Example 1 and Example 3. Needless to say.
  • the present invention can be similarly applied to the scope of application of the present invention other than the specific modes of the embodiments.
  • Example 3 will be described with reference to FIGS.
  • a heat-insulating mechanism that insulates the low-pressure line 9 or the high-pressure line 10 is provided, and further, a heat exchanging unit 500 that performs heat exchange between the hydraulic oil in the low-pressure line 9 and the high-pressure line 10 is provided.
  • a heat exchanging unit 500 that performs heat exchange between the hydraulic oil in the low-pressure line 9 and the high-pressure line 10 is provided.
  • the gray portions around the low-pressure line 9 and the high-pressure line 10 represent a heat insulation mechanism, which is described in the second embodiment.
  • FIG. 6 a portion surrounded by a broken line is a portion provided with a mechanism in which the low pressure line 9 and the high pressure line 10 perform heat exchange, and a sectional view of the portion is shown in FIG.
  • the arrows in FIG. 7 indicate the flow directions of hydraulic oil (low pressure oil and high pressure oil, respectively) in the low pressure line 9 and the high pressure line 10.
  • the heat exchanging unit 500 shown in FIG. 7 where the hydraulic oil in the low pressure line 9 and the high pressure line 10 exchange heat will be described.
  • the heat exchanging unit 500 has a structure in which the high-pressure line 10 and the low-pressure line 9 are disposed adjacent to each other, the respective hydraulic pipes are covered with a heat transfer member 510, and they are brought into contact with each other.
  • the heat transfer member 510 is made of a material having good thermal conductivity, and the high pressure oil flowing through the high pressure line 10 and the low pressure oil flowing through the low pressure line 9 exchange heat through this member.
  • a heat insulating member 520 is provided on the outside thereof. The heat insulating member 520 may be the same as the heat insulating mechanism of the second embodiment.
  • the heat exchange unit 500 since the heat exchange unit 500 is provided, heat exchange can be performed between the high pressure line 10 and the low pressure line 9. Furthermore, the heat exchange efficiency can be improved by making the flows of the high-pressure line 10 and the low-pressure line 9 in the heat exchange section 500 face each other as indicated by arrows in FIG.
  • the hydraulic pump 3 converts rotational energy into hydraulic energy
  • the hydraulic oil heated by heat generated as a loss can be cooled in the high-pressure line 10.
  • the changed temperature of the low-pressure oil can be cooled to the target value temperature of the temperature sensor 16 by the heat exchanged between the high-pressure oil and the low-pressure oil in the heat exchange device 14.
  • the heat exchange amount in the heat exchanging unit 500 can be grasped from the temperature sensor 12 and the temperature sensor 15, the number of rotations of the cooling fan 13d and the cooling fan 14b is controlled by the controller 17 according to the heat exchange amount.
  • heat exchange in the heat exchanging unit 500 can be controlled.
  • a structure in which the high-pressure line 10 and the low-pressure line 9 are provided in the heat exchanging unit 500 is shown, but a double cylindrical structure in which the inside is a step-down line and the outside is a low-pressure line, The heat exchange performance can be improved by separating the high pressure line and the low pressure line into a plurality of lines and increasing the contact area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

The purpose of the present invention is to provide an electric power generation system such that the temperature of hydraulic fluid can be more accurately controlled. In order to solve the aforementioned problem, this electric power generation system is characterized by being equipped with: blades (1) that rotate by receiving an external force; a hydraulic pump (3) that is driven with rotation of the blades (1), boosts the pressure of hydraulic fluid sucked therein, and discharges the resulting hydraulic fluid; a nacelle (4) that houses the hydraulic pump (3); a tower (5) that supports the nacelle (4); a hydraulic motor (7) that is driven by the hydraulic fluid discharged from the hydraulic pump (3); an electric power generator (8) that is connected to the hydraulic motor (7); a first line through which the hydraulic fluid is sent from the hydraulic pump (3) to the hydraulic motor (7); a second line through which the hydraulic fluid is returned from the hydraulic motor (7) to the hydraulic pump (3); and a heat-exchange device (14) that rotates together with the nacelle (4) and exchanges heat with the hydraulic fluid.

Description

発電装置Power generator
 本発明は、風、潮流、海流、河流等の運動エネルギーにより回転せしめられるブレードやロータの回転エネルギーを、作動油の圧力エネルギーとして発電機に伝達し、発電運転する発電装置に関し、特に該作動油の温度管理等に関する。 TECHNICAL FIELD The present invention relates to a power generator that performs power generation operation by transmitting rotational energy of blades and rotors rotated by kinetic energy such as wind, tidal current, ocean current, river flow, etc., as pressure energy of hydraulic oil to a generator. Related to temperature management of
 近年、発電装置として再生可能エネルギーを利用した再生可能エネルギー型発電装置が普及してきており、更なる発電効率向上を目的に、装置の大型化が進んでいる。再生可能エネルギー型発電装置とは、風や潮流・海流又は河流の運動エネルギーをロータの回転エネルギーに変換し、さらにロータの回転エネルギーを用いて発電機を発電運転させ、電力を発生する装置である。 
 従来の発電装置では、ロータの回転エネルギーを、シャフトや歯車式増速機により機械的に伝達し、発電機に入力するようになっていた。このようにロータと発電機が機械的に連結されているために、この装置を設置する際は、ロータが連結されたシャフト、支持部、歯車式増速機、発電機等を、ナセルと呼ばれる収容部に格納し、そのナセルが、例えば再生可能エネルギーを捕獲する場所の周辺に設置される。 
 通常、再生可能エネルギー型発電装置のナセルは、再生可能エネルギーを効率良く捕獲するために、高所や水中等、地上から一定距離離れた場所に設置される。例えば、風力発電装置では、効率良く風のエネルギーを取得するために、ナセルが地上高数十メートルから百数十メートルに支持される。また例えば、潮流・海流又は河流発電に於いては、ナセルが水中に設置される。このような場所は、地上からのアクセス性が悪いため、重量物である増速機や発電機を収容したナセルを設置する作業や、メンテナンスがコスト高になる。
In recent years, a renewable energy type power generation device using renewable energy has become widespread as a power generation device, and the size of the device is increasing for the purpose of further improving the power generation efficiency. Renewable energy power generators are devices that generate motive power by converting the kinetic energy of wind, tidal currents, ocean currents, or river currents to rotational energy of the rotor, and further using the rotational energy of the rotor to generate power. .
In the conventional power generator, the rotational energy of the rotor is mechanically transmitted by a shaft or a gear type gearbox and input to the generator. Since the rotor and the generator are mechanically connected in this way, when installing this device, the shaft, support part, gear type gearbox, generator, etc. to which the rotor is connected are called nacelles. The nacelle is stored in a storage unit, and is installed, for example, around a place where renewable energy is captured.
Usually, a nacelle of a renewable energy type power generation device is installed at a certain distance from the ground, such as a high place or underwater, in order to efficiently capture renewable energy. For example, in a wind turbine generator, the nacelle is supported from several tens of meters to hundreds of tens of meters in order to efficiently acquire wind energy. Further, for example, in tidal current / sea current or river power generation, a nacelle is installed in water. In such a place, since accessibility from the ground is poor, the work and maintenance of installing a nacelle containing a gearbox and a generator, which are heavy objects, are expensive.
 一方で、従来の機械的な動力伝達に替えて、油圧ポンプと油圧モータを組み合わせた油圧動力伝達装置を用いる再生可能エネルギー発電装置が注目されている。油圧動力伝達は、ロータの回転エネルギーを、油圧ポンプにより油圧エネルギーへ変換し、動力を伝達するため、作動油を輸送する配管を用いて、動力を任意の箇所に伝達することができる。したがって、油圧動力伝達を用いた再生可能エネルギー型発電装置では、重量物でかつ、メンテナンスを要する発電機や油圧モータ等を、アクセス性の良い箇所に設置することができる。 On the other hand, in place of the conventional mechanical power transmission, a renewable energy power generation apparatus using a hydraulic power transmission device combining a hydraulic pump and a hydraulic motor has attracted attention. In the hydraulic power transmission, the rotational energy of the rotor is converted into hydraulic energy by a hydraulic pump, and the power is transmitted. Therefore, the power can be transmitted to an arbitrary location using a pipe that transports hydraulic oil. Therefore, in a renewable energy type power generator using hydraulic power transmission, a heavy generator and a maintenance-purpose power generator or hydraulic motor can be installed at a location with good accessibility.
 例えば、特許文献1では、ナセル内に油圧ポンプが設けられ、ナセルを支持するタワーの下部に油圧モータと発電機が設けられ、油圧ポンプと油圧モータとが配管により接続された風力発電装置が記載されている。
特許文献2では、ナセル内に設けられた油圧ポンプから、タワーの基礎部周辺に設置される油圧モータへ、相対的に回転自在な2つの二重配管を用いて接続された、再生エネルギー型発電装置が記載されている。
For example, Patent Document 1 describes a wind power generator in which a hydraulic pump is provided in a nacelle, a hydraulic motor and a generator are provided in a lower portion of a tower that supports the nacelle, and the hydraulic pump and the hydraulic motor are connected by piping. Has been.
In Patent Document 2, a regenerative energy type power generator connected from a hydraulic pump provided in a nacelle to a hydraulic motor installed around a tower base using two relatively rotatable pipes. An apparatus is described.
 一方で、油圧動力伝達を備えた再生可能エネルギー発電装置では、再生可能エネルギーを捕獲するため、外気温や水温他の周囲環境の温度変化が大きい環境に設置されることが多く、これに伴い油圧動力伝達に用いる作動油温度も変化する。作動油は、温度変化によって粘度が大きく変化し、油圧動力伝達装置の構成機器に効率低下、寿命低下等の好ましくない影響を与える。例えば、低温では作動油が高粘度となり、送油の際のエネルギー損失が大きくなる、高温では低粘度となり、構成機器の潤滑性の低下により摺動部が摩耗する等である。従って、油圧動力伝達装置を備える発電装置においては、作動油を適切な温度に保つことが求められる。 On the other hand, renewable energy power generators equipped with hydraulic power transmission are often installed in environments where the ambient temperature, water temperature, and other ambient temperature changes are large in order to capture renewable energy. The hydraulic oil temperature used for power transmission also changes. The viscosity of the hydraulic oil changes greatly due to temperature change, and adversely affects the components of the hydraulic power transmission device such as reduced efficiency and reduced life. For example, the hydraulic oil has a high viscosity at low temperatures, and energy loss during oil feeding increases, the viscosity becomes low at high temperatures, and the sliding portion wears due to a decrease in the lubricity of the constituent devices. Therefore, in a power generator provided with a hydraulic power transmission device, it is required to keep hydraulic oil at an appropriate temperature.
 この点、特許文献3では、タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することにより、油圧動力伝達回路を効率良く冷却する構成が記載されている。 In this regard, Patent Document 3 describes a configuration in which the hydraulic power transmission circuit is efficiently cooled by exchanging heat with a cold water source including seawater, lake water, river water, or groundwater around the tower base.
国際出願公開第2009/064192号公報International Application Publication No. 2009/064192 特許第4950368号Patent No. 4950368 国際出願公開第2012/137370A1International Application Publication No. 2012 / 137370A1
 一方、特許文献1又は2に示される風力発電装置では、ナセルとタワー基部の間で動力伝達を行うため、油圧ポンプと油圧モータがタワー高だけ離れて設置される。したがって油圧ポンプと油圧モータを接続する配管はタワー高相当の長さとなる。このように、油圧ポンプと油圧モータが離れた箇所に配置され、その間を配管で接続する場合は、配管の設置経路における周囲環境と作動油との間で熱交換が行われ、温度制御を正確に行うことができない恐れがある。特に、風力発電装置の大型化に伴ってタワー高が高くなり、配管長が更に延長される際や、潮流・海流又は河流発電のように、配管が水中に配置される際は、さらに正確な温度制御が困難となる。上述の如く、作動油は、温度変化によって粘度が大きく変化し、油圧動力伝達装置の構成機器に効率低下、寿命低下等の好ましくない影響を与える。 On the other hand, in the wind power generator shown in Patent Document 1 or 2, in order to transmit power between the nacelle and the tower base, the hydraulic pump and the hydraulic motor are installed apart by a tower height. Therefore, the pipe connecting the hydraulic pump and the hydraulic motor has a length corresponding to the tower height. In this way, when the hydraulic pump and the hydraulic motor are arranged at separate locations and connected between them by piping, heat is exchanged between the surrounding environment and the hydraulic oil in the piping installation path, and temperature control is accurately performed. There is a risk that you cannot do it. In particular, the tower height increases with the increase in the size of the wind turbine generator, and when the pipe length is further extended, or when the pipe is placed in water, such as tidal currents, ocean currents, or river current power generation, it is more accurate. Temperature control becomes difficult. As described above, the viscosity of the hydraulic oil changes greatly with changes in temperature, and adversely affects the components of the hydraulic power transmission device such as reduced efficiency and reduced life.
 この点、特許文献1乃至3では、配管の長さや配管の設置経路における周囲環境が作動油に与える影響について十分考慮されていないため、油圧動力伝達に用いられる作動油の温度、特に油圧機器に流入する作動油の温度を正確に制御することができない恐れがあった。そこで本発明では、作動油の温度制御をより正確に行うことができる発電装置を提供することを目的とする。 In this respect, Patent Documents 1 to 3 do not sufficiently consider the influence of the length of the pipe and the surrounding environment in the pipe installation path on the hydraulic oil, so the temperature of the hydraulic oil used for hydraulic power transmission, particularly the hydraulic equipment, is not considered. There is a possibility that the temperature of the flowing hydraulic oil cannot be accurately controlled. Therefore, an object of the present invention is to provide a power generator that can perform temperature control of hydraulic oil more accurately.
 上記課題を解決するために、本発明にかかる発電装置では外力を受けて回転するブレードと、前記ブレードの回転に伴い駆動され、吸入した作動油を昇圧し、前記作動油を吐出する油圧ポンプと、前記油圧ポンプを収納するナセルと、前記ナセルを支持するタワーと、前記油圧ポンプから吐出される前記作動油により駆動される油圧モータと、前記油圧モータに接続された発電機と、前記油圧ポンプから前記油圧モータへ前記作動油を送る第1のラインと、前記油圧モータから前記油圧ポンプへ前記作動油を戻す第2のラインと、前記ナセルと共に回転し、前記作動油が熱交換される熱交換装置を備えることを特徴とする。 
 また、本発明にかかる発電装置の他の態様では、外力を受けて回転するブレードと、前記ブレードの回転に伴い駆動され、吸入した作動油を昇圧し、前記作動油を吐出する油圧ポンプと、前記油圧ポンプを収納するナセルと、前記ナセルを支持するタワーと、前記タワーを支持する基礎部と、前記油圧ポンプから吐出される前記作動油により駆動される油圧モータと、前記油圧モータに接続された発電機と、前記油圧ポンプから前記油圧モータへ前記作動油を送る第1のラインと、前記油圧モータから前記油圧ポンプへ前記作動油を戻す第2のラインと、前記基礎部に配置されて前記第1のラインを流れる前記作動油が熱交換される熱交換装置を備えることを特徴とする。 
 本発明にかかる発電装置のさらに他の態様では、外力を受けて回転するブレードと、前記ブレードの回転に伴い駆動され、吸入した作動油を昇圧し、前記作動油を吐出する油圧ポンプと、前記油圧ポンプを収納するナセルと、前記ナセルを支持するタワーと、前記タワーを支持する基礎部と、前記油圧ポンプから吐出される前記作動油により駆動される油圧モータと、前記油圧モータに接続された発電機と、前記油圧ポンプから前記油圧モータへ前記作動油を送る第1のラインと、前記油圧モータから前記油圧ポンプへ前記作動油を戻す第2のラインと、前記基礎部に配置されて前記第2のラインを流れる前記作動油が熱交換される熱交換装置を備え、前記第1のライン及び前記第2のラインは少なくとも部分的に断熱材で覆われるか、及び/または前記ラインの少なくとも部分的に断熱二重配管で構成されることを特徴とする。
In order to solve the above-described problems, in the power generation device according to the present invention, a blade that rotates by receiving an external force, a hydraulic pump that is driven as the blade rotates, pressurizes sucked hydraulic oil, and discharges the hydraulic oil; A nacelle that houses the hydraulic pump, a tower that supports the nacelle, a hydraulic motor driven by the hydraulic oil discharged from the hydraulic pump, a generator connected to the hydraulic motor, and the hydraulic pump A first line for sending the hydraulic oil from the hydraulic motor to the hydraulic motor, a second line for returning the hydraulic oil from the hydraulic motor to the hydraulic pump, and heat that rotates together with the nacelle and heat-exchanges the hydraulic oil An exchange device is provided.
Further, in another aspect of the power generator according to the present invention, a blade that rotates by receiving an external force, a hydraulic pump that is driven along with the rotation of the blade, pressurizes the sucked hydraulic oil, and discharges the hydraulic oil; A nacelle that houses the hydraulic pump, a tower that supports the nacelle, a foundation that supports the tower, a hydraulic motor that is driven by the hydraulic oil discharged from the hydraulic pump, and is connected to the hydraulic motor. A generator, a first line for sending the hydraulic oil from the hydraulic pump to the hydraulic motor, a second line for returning the hydraulic oil from the hydraulic motor to the hydraulic pump, and a foundation. It is characterized by comprising a heat exchange device for exchanging heat of the hydraulic oil flowing through the first line.
In still another aspect of the power generator according to the present invention, a blade that rotates by receiving an external force, a hydraulic pump that is driven along with the rotation of the blade, pressurizes the sucked hydraulic oil, and discharges the hydraulic oil; A nacelle that houses a hydraulic pump, a tower that supports the nacelle, a foundation that supports the tower, a hydraulic motor that is driven by the hydraulic oil discharged from the hydraulic pump, and is connected to the hydraulic motor A generator, a first line for sending the hydraulic oil from the hydraulic pump to the hydraulic motor, a second line for returning the hydraulic oil from the hydraulic motor to the hydraulic pump, and the base portion, A heat exchanging device for exchanging heat of the hydraulic oil flowing through the second line, wherein the first line and the second line are at least partially covered with a heat insulating material; and Or characterized in that it is constituted by at least partially insulated double pipe of the line.
 本発明によれば、作動油の温度制御をより正確に行うことができる。 According to the present invention, the temperature of the hydraulic oil can be controlled more accurately.
実施例1に記載する発電装置の全体構成図の例である。It is an example of the whole block diagram of the electric power generating apparatus described in Example 1. FIG. 実施例1に記載する発電装置の油圧動力伝達回路図である。1 is a hydraulic power transmission circuit diagram of a power generator described in Embodiment 1. FIG. 実施例1に記載する発電装置の全体構成図であり、発電機等の冷却機構を付加した図である。It is a whole block diagram of the electric power generating apparatus described in Example 1, and is the figure which added cooling mechanisms, such as a generator. 実施例2に記載する発電装置の全体構成図である。It is a whole block diagram of the electric power generating apparatus described in Example 2. FIG. 実施例2に記載する油圧配管の断熱構造を示す部分断面図である。It is a fragmentary sectional view which shows the heat insulation structure of the hydraulic piping described in Example 2. FIG. 実施例3に記載する発電装置の全体構成図であり、熱交換部を付加した図である。It is a whole block diagram of the electric power generating apparatus described in Example 3, and is the figure which added the heat exchange part. 実施例3に記載する熱交換部500の部分断面図である。It is a fragmentary sectional view of the heat exchange part 500 described in Example 3. FIG.
 以下、実施例について、図を用いて説明する。尚、下記はあくまでも実施例に過ぎず、本発明の実施態様が下記具体的態様に限定されることを意図する趣旨ではない。 Hereinafter, examples will be described with reference to the drawings. In addition, the following is only an Example to the last, and it is not the meaning which intends that the embodiment of this invention is limited to the following specific aspect.
 実施例1では発電措置の一例として、風力発電装置について、図1ないし図3を用いて説明する。図1は、本実施形態に係る風力発電装置100の全体構成を示した図であり、図中の太線矢印は作動油の流れを表している。図2は、油圧動力伝達の回路図を示しており、破線はコントローラ17に入出力される制御信号を示している。 In Example 1, a wind power generation apparatus will be described with reference to FIGS. 1 to 3 as an example of a power generation measure. FIG. 1 is a diagram showing an overall configuration of a wind turbine generator 100 according to the present embodiment, and a thick line arrow in the drawing represents a flow of hydraulic oil. FIG. 2 shows a circuit diagram of hydraulic power transmission, and a broken line shows a control signal input / output to / from the controller 17.
 なお、図1は水面19に設置される洋上風力発電装置を例にしているが、風力発電装置100は陸上に設置してもよい。 Although FIG. 1 illustrates an offshore wind power generator installed on the water surface 19, the wind power generator 100 may be installed on land.
 図1と図2に示すように、本実施形態に係る風力発電装置100は主に、ブレード1aとハブ1bから成り、風を受けて回転するロータ1と、ロータ1を支持する支持部材2と、ロータ1の回転に伴い駆動され、吸入口から吸入した作動油を昇圧し、吐出口から作動油を吐出する油圧ポンプ3と、支持部材2と油圧ポンプ3を収納するナセル4と、ナセル4をタワー先端部5aに支持するタワー5と、タワー5の基部5bを支持する基礎部6と、油圧ポンプ3から吐出される作動油により駆動され、基礎部6に設置される油圧モータ7と、油圧モータ7に接続された発電機8と、油圧ポンプ3から油圧モータ7へ作動油を送る高圧ライン10と、油圧モータ7から油圧ポンプ3へ作動油を戻す低圧ライン9と、基礎部6に設置される熱交換装置13と、熱交換装置13の入口に設けられ、熱交換装置13へ流入する作動油の温度を計測する温度センサ11と、熱交換装置13の出口に設けられ、熱交換装置13から流出する前記作動油の温度を計測する温度センサ12と、ナセル4に設置される熱交換装置14と、熱交換装置14の入口に設けられ、熱交換装置14へ流入する作動油の温度を計測する温度センサ15と、油圧ポンプ3の吸入口に設けられ、油圧ポンプ3へ流入する作動油の温度を計測する温度センサ16を有する。熱交換装置14はナセルと共に回転することになるが、ナセルの内部或いは外部に配置されても良く、更にナセルの内外に亘って配置することも可能である。 As shown in FIG. 1 and FIG. 2, the wind turbine generator 100 according to the present embodiment mainly includes a blade 1 a and a hub 1 b, a rotor 1 that rotates by receiving wind, and a support member 2 that supports the rotor 1. The hydraulic pump 3 driven by the rotation of the rotor 1 to increase the pressure of the hydraulic oil sucked from the suction port and discharge the hydraulic oil from the discharge port, the nacelle 4 housing the support member 2 and the hydraulic pump 3, and the nacelle 4 A tower 5 that supports the top 5a of the tower, a base 6 that supports the base 5b of the tower 5, a hydraulic motor 7 that is driven by the hydraulic oil discharged from the hydraulic pump 3 and is installed on the base 6; A generator 8 connected to the hydraulic motor 7, a high-pressure line 10 that sends hydraulic oil from the hydraulic pump 3 to the hydraulic motor 7, a low-pressure line 9 that returns hydraulic oil from the hydraulic motor 7 to the hydraulic pump 3, and a foundation 6 Heat exchanger installed And a temperature sensor 11 that measures the temperature of hydraulic oil flowing into the heat exchange device 13 and an outlet of the heat exchange device 13, and flows out of the heat exchange device 13. A temperature sensor 12 that measures the temperature of the hydraulic oil, a heat exchange device 14 installed in the nacelle 4, and a temperature that is provided at the inlet of the heat exchange device 14 and measures the temperature of the hydraulic oil flowing into the heat exchange device 14 A sensor 15 and a temperature sensor 16 which is provided at the suction port of the hydraulic pump 3 and measures the temperature of the hydraulic oil flowing into the hydraulic pump 3 are included. The heat exchange device 14 rotates together with the nacelle, but may be arranged inside or outside the nacelle, and further arranged inside and outside the nacelle.
 ロータ1は、少なくとも1枚以上のブレード1aとハブ1bから成り、ロータ1の回転軸周りに放射状にブレード1aが取り付けられている。ハブ1bはナセル4に収容される支持部材2に連結されており、ロータ1を回転可能に支持する。 The rotor 1 is composed of at least one blade 1 a and a hub 1 b, and the blades 1 a are attached radially around the rotation axis of the rotor 1. The hub 1b is connected to a support member 2 accommodated in the nacelle 4, and supports the rotor 1 rotatably.
 支持部材2は、風を受けて回転するロータ1の回転エネルギーを油圧ポンプ3に伝達する、回転シャフトの役割をしても良いし、ロータ1の重量と風による荷重のみを支え、回転エネルギーはハブ1bによって油圧ポンプ3に伝達しても良い。尚、支持部材の配置位置はナセル内部でなくても良い。 The support member 2 may serve as a rotating shaft that transmits the rotational energy of the rotor 1 that rotates by receiving wind to the hydraulic pump 3, supports only the weight of the rotor 1 and the load due to wind, and the rotational energy is You may transmit to the hydraulic pump 3 by the hub 1b. In addition, the arrangement position of the support member may not be inside the nacelle.
 ナセル4には主に、支持部材2および、油圧ポンプ3が配置される。また油圧ポンプ3が吸入する作動油を供給する低圧ライン9の一部と、吐出した作動油を油圧モータ7へ送る、高圧ライン10の一部もナセル4内に収納される。ナセル4の外壁には、熱交換装置14が設置されている。またナセル4は外気が連通する空間と、外気が自由に出入りできない連通しない空間に分離されていてもよく、その場合、熱交換装置14は外気と連通された空間に配置すれば、冷却効果を期待できる。 
 またナセル4は、ロータ1を風向へ向けるように、タワー5に回転自在に支持される。したがってタワー5内と、ナセル4内の高圧ライン10、低圧ライン9それぞれを、回転自在に接続するスイベルジョイント18を用いる。
The nacelle 4 is mainly provided with a support member 2 and a hydraulic pump 3. A part of the low-pressure line 9 that supplies hydraulic oil sucked by the hydraulic pump 3 and a part of the high-pressure line 10 that sends the discharged hydraulic oil to the hydraulic motor 7 are also accommodated in the nacelle 4. A heat exchange device 14 is installed on the outer wall of the nacelle 4. The nacelle 4 may be separated into a space where the outside air communicates and a space where the outside air cannot freely enter and exit. In this case, if the heat exchange device 14 is arranged in a space communicated with the outside air, the cooling effect can be obtained. I can expect.
The nacelle 4 is rotatably supported by the tower 5 so that the rotor 1 faces the wind direction. Therefore, a swivel joint 18 that rotatably connects the high pressure line 10 and the low pressure line 9 in the tower 5 and the nacelle 4 is used.
 タワー5について、基礎部6に取り付けられる側のタワー基部を5bとし、ナセルが取り付けられる側のタワー先端部を5aとし、基部5aから先端部5bの距離Lをタワー高とする。本実施例におけるタワー5内部に設置される高圧ライン10と低圧ライン9は、鋼管又はフレキシブルな油圧配管であり、ナセル4内に設置された油圧ポンプ3と、基礎部6に設置された油圧モータへ作動油を輸送する。なお高圧ライン10と低圧ライン9を総称して油圧配管と記載することがある。 For the tower 5, the tower base on the side attached to the base portion 6 is 5 b, the tower tip on the side to which the nacelle is attached is 5 a, and the distance L from the base 5 a to the tip 5 b is the tower height. The high-pressure line 10 and the low-pressure line 9 installed in the tower 5 in the present embodiment are steel pipes or flexible hydraulic pipes. The hydraulic pump 3 installed in the nacelle 4 and the hydraulic motor installed in the foundation 6. Transport hydraulic fluid to The high pressure line 10 and the low pressure line 9 may be collectively referred to as hydraulic piping.
 油圧ポンプ3は、ロータ1の回転エネルギーにより駆動され、高圧の作動油を生成する。この高圧の作動油が、高圧ライン10によりタワー5の基部5bに配置された油圧モータ7へ供給される。油圧モータ7は該高圧の作動油によって駆動され、油圧モータ7に連結された発電機8を駆動することによって発電を行う。 The hydraulic pump 3 is driven by the rotational energy of the rotor 1 and generates high-pressure hydraulic oil. This high-pressure hydraulic oil is supplied to the hydraulic motor 7 disposed at the base 5 b of the tower 5 by the high-pressure line 10. The hydraulic motor 7 is driven by the high-pressure hydraulic oil, and generates electric power by driving a generator 8 connected to the hydraulic motor 7.
 油圧モータ7から吐出された作動油は、低圧ライン9を流れ、基礎部6に配置された熱交換装置13にて、所定の温度に制御される。熱交換装置13を出た作動油は、低圧ライン9によりタワー5の基部5bから、ナセル4内へ送油され、ナセル4内で熱交換装置14を通過して、所定の温度にされた後、再び油圧ポンプ3に吸入される。 The hydraulic oil discharged from the hydraulic motor 7 flows through the low-pressure line 9 and is controlled to a predetermined temperature by the heat exchange device 13 arranged in the base portion 6. After the hydraulic oil exiting the heat exchange device 13 is fed into the nacelle 4 from the base 5b of the tower 5 by the low pressure line 9, passes through the heat exchange device 14 in the nacelle 4, and is brought to a predetermined temperature. Then, it is sucked into the hydraulic pump 3 again.
 ここで、本発明に係る、基礎部6に設置される熱交換装置13と、ナセル4に設置される熱交換装置14ついて、説明する。本実施例における熱交換装置13は、図2に示すように、熱交換器13aと、冷媒ライン13bと、熱交換器13cと冷却ファン13dを備える。熱交換器13aは、低圧ライン9内を流れる作動油と冷媒ライン13b内を流れる冷媒が熱交換を行う。また熱交換器13cは、冷媒ライン13b内を流れる冷媒と外気等の媒体との間で熱交換を行う。熱交換器13cで行う熱交換量は、冷却ファン13dを用いて外気等の媒体の流入量を制御することで調節を行うことができる。
 熱交換装置14は、図2に示すように、熱交換器14aと、送風ファン14bを備える。熱交換器14aは、低圧ライン9内を流れる作動油と外気等の媒体との間で熱交換を行う。なお、熱交換器13c又は熱交換器14aが水中に設置される場合は、送風ファン13d、送風ファン14bは水流を発生する装置を意味する。送風ファン13d、送風ファン14bは、それぞれの回転数を制御できるようにしてもよい。これにより、外気等の媒体を熱交換器に送る流速を調整することができ、作動油又は冷媒と、外気等の媒体との熱交換量を調節することができる。本発明における発電装置が、洋上や湖上等の水上に配置されると共に、ブレード1が風を受けて回転する水上設置型の風力発電装置の場合には、基礎部6に設置される熱交換装置13のうちで、作動油が流れるラインからは遠い側の熱交換器13cを水面下に設置する等により、風力発電装置周囲の水と熱交換する様に形成しても良い。
Here, the heat exchange device 13 installed in the foundation 6 and the heat exchange device 14 installed in the nacelle 4 according to the present invention will be described. As shown in FIG. 2, the heat exchange device 13 in the present embodiment includes a heat exchanger 13a, a refrigerant line 13b, a heat exchanger 13c, and a cooling fan 13d. In the heat exchanger 13a, the hydraulic oil flowing in the low pressure line 9 and the refrigerant flowing in the refrigerant line 13b exchange heat. The heat exchanger 13c exchanges heat between the refrigerant flowing in the refrigerant line 13b and a medium such as outside air. The amount of heat exchange performed by the heat exchanger 13c can be adjusted by controlling the inflow amount of a medium such as outside air using the cooling fan 13d.
As shown in FIG. 2, the heat exchange device 14 includes a heat exchanger 14a and a blower fan 14b. The heat exchanger 14a performs heat exchange between the hydraulic oil flowing in the low pressure line 9 and a medium such as outside air. In addition, when the heat exchanger 13c or the heat exchanger 14a is installed in water, the ventilation fan 13d and the ventilation fan 14b mean the apparatus which generate | occur | produces a water flow. You may enable it to control each rotation speed of the ventilation fan 13d and the ventilation fan 14b. Thereby, the flow rate which sends media, such as external air, to a heat exchanger can be adjusted, and the heat exchange amount of hydraulic oil or a refrigerant | coolant and media, such as external air, can be adjusted. In the case of a water-based wind power generator in which the power generator according to the present invention is disposed on the water such as on the ocean or on the lake, and the blade 1 receives wind to rotate, the heat exchange device installed on the foundation 6 Of these, the heat exchanger 13c far from the line through which the hydraulic oil flows may be formed so as to exchange heat with the water around the wind turbine generator by installing it below the water surface.
 また熱交換装置13又は14は、ヒーターを備えていても良く、即ち、加熱・冷却どちらも行えるようにしても良い。これにより、風力発電装置が、寒冷地等に配置され、作動油が外環境との熱交換により、規定の温度よりも低下した際には、ヒーターにより加熱し、作動油を適切な油温に保つことができる。また、熱交換装置13又は14は、冷却と加熱両方の機能を有するものとする。したがって冷媒や冷却等の記載は、温度を低下させる為のものに限定しない。勿論、逆に冷却または加熱一方しか機能を有しない場合を排除するものではない。 
 熱交換装置13は、低圧ライン9に接続されており、基礎部6に設置される。図1に示す様に本実施例では、熱交換装置13は、一部がタワー5の内部、一部が外部に設置されているが、基礎部6の上であれば、タワー5の内外どちらに設置しても良い。このように、熱交換装置13は基礎部6に設置されているため、タワー5内部やナセル4内のように、特定のスペースに制限されず、熱交換装置13の大きさや重量に自由度が増す。熱交換装置の少なくとも一部がタワー外部に配置された場合、熱交換部の伝熱面積を大きくとった、熱交換性能の高い装置を使用することができる。
Further, the heat exchange device 13 or 14 may be provided with a heater, that is, both heat and cooling may be performed. As a result, when the wind power generator is placed in a cold region, etc., and the hydraulic oil drops below the specified temperature due to heat exchange with the outside environment, it is heated by the heater to bring the hydraulic oil to an appropriate oil temperature. Can keep. Moreover, the heat exchange apparatus 13 or 14 shall have a function of both cooling and heating. Accordingly, the description of the refrigerant, cooling, etc. is not limited to that for lowering the temperature. Of course, the case where only one of the functions of cooling or heating is provided is not excluded.
The heat exchange device 13 is connected to the low pressure line 9 and is installed in the base portion 6. As shown in FIG. 1, in the present embodiment, the heat exchange device 13 is partly installed inside the tower 5 and partly outside. It may be installed in. As described above, since the heat exchange device 13 is installed on the base portion 6, it is not limited to a specific space as in the tower 5 or the nacelle 4, and the size and weight of the heat exchange device 13 are flexible. Increase. When at least a part of the heat exchange device is arranged outside the tower, it is possible to use a device having a high heat exchange performance in which the heat transfer area of the heat exchange unit is large.
 また熱交換装置13が、基礎部6に設置されているために、基礎部6が洋上等に設置される洋上風力発電機の場合は、海水等を熱交換の冷媒として用いることができる。また、陸上に配置される際も、熱容量の大きい地中等と熱交換を行うように熱交換装置13を構成することにより、効率良く熱交換することができる。 Further, since the heat exchanging device 13 is installed on the foundation part 6, in the case of an offshore wind power generator in which the foundation part 6 is installed on the ocean, seawater or the like can be used as a refrigerant for heat exchange. Moreover, when arrange | positioning on the land, it can heat-exchange efficiently by comprising the heat exchange apparatus 13 so that heat exchange with the underground etc. with a large heat capacity may be performed.
 また熱交換装置13が、アクセス性の良い基礎部6に設置されるため、熱交換装置13のメンテナンスを容易に行うことができる。 In addition, since the heat exchange device 13 is installed on the base portion 6 with good accessibility, the heat exchange device 13 can be easily maintained.
 熱交換装置14は、ナセル4に設置される。したがって、熱交換装置13よりも、タワー高に相当する距離分、油圧ポンプに近い位置に設置することができる。したがって、油圧ポンプに流入する作動油温度を制御する際に、タワー基部を支持する基礎部6に配置された熱交換装置13よりも、熱交換装置14が油圧ポンプに近い位置であるナセル4に配置されるため、応答性が良く、また外部環境との熱交換による影響等が少なく、正確に温度制御を行うことができる。 The heat exchange device 14 is installed in the nacelle 4. Therefore, it can be installed at a position closer to the hydraulic pump than the heat exchange device 13 by a distance corresponding to the tower height. Therefore, when controlling the temperature of the hydraulic oil flowing into the hydraulic pump, the heat exchange device 14 is closer to the nacelle 4 that is closer to the hydraulic pump than the heat exchange device 13 disposed on the base portion 6 that supports the tower base. Since it is arranged, the responsiveness is good and the influence of heat exchange with the external environment is small, so that temperature control can be accurately performed.
 また熱交換装置14は、所定の高さを有するタワー5の先端部5aに取り付けられたナセル4に設置される。タワー先端においては地上と比較して風を遮る障害がなく、風速が高い。したがって、より高い風速により熱交換を行うことができ、作動油を効率良く冷却することができる。 Further, the heat exchange device 14 is installed in the nacelle 4 attached to the tip 5a of the tower 5 having a predetermined height. There is no obstacle to block the wind at the tip of the tower compared to the ground, and the wind speed is high. Therefore, heat exchange can be performed at a higher wind speed, and the hydraulic oil can be efficiently cooled.
 また本実施例では、熱交換装置13の入口に設けられ、熱交換装置13へ流入する作動油の温度を計測する温度センサ11と、熱交換装置13の出口に設けられ、熱交換装置13から流出する前記作動油の温度を計測する温度センサ12を設けている。 In this embodiment, the temperature sensor 11 is provided at the inlet of the heat exchange device 13 and measures the temperature of the hydraulic oil flowing into the heat exchange device 13. The temperature sensor 11 is provided at the outlet of the heat exchange device 13. A temperature sensor 12 for measuring the temperature of the hydraulic oil flowing out is provided.
 同様に、熱交換装置14の入口に設けられ、熱交換装置14へ流入する作動油の温度を計測する温度センサ15と、油圧ポンプ3の吸入口に設けられ、油圧ポンプ3へ流入する作動油の温度を計測する温度センサ16を設けている。 Similarly, a temperature sensor 15 provided at the inlet of the heat exchange device 14 for measuring the temperature of the hydraulic oil flowing into the heat exchange device 14 and a hydraulic oil provided at the suction port of the hydraulic pump 3 and flowing into the hydraulic pump 3. A temperature sensor 16 is provided for measuring the temperature.
 これら温度センサ11、12、15、16の設置位置ではそれぞれ作動油の目標値温度が設定される。 The target value temperature of the hydraulic oil is set at the installation positions of these temperature sensors 11, 12, 15, and 16, respectively.
 さらに上記温度センサ11、12、15、16からそれぞれ取得した作動油の温度T1、T2、T3、T4と、油圧ポンプ吸入口や熱交換装置13出口での作動油の目標値温度から送風ファン13d、送風ファン14bを運転するコントローラ17を備えている。 Further, the blower fan 13d is obtained from the hydraulic oil temperatures T1, T2, T3, T4 acquired from the temperature sensors 11, 12, 15, 16 and the target hydraulic oil temperature at the hydraulic pump inlet and the heat exchanger 13 outlet. A controller 17 for operating the blower fan 14b is provided.
 コントローラ17は、温度センサ11が計測した作動油温度T1と、温度センサ12で計測した作動油温度T2と、温度センサ12の位置での目標値温度から、冷却ファン13dの回転数を制御することができる。これにより温度センサ12の設置位置での作動油の温度を、正確にかつ省電力で制御することができる。 The controller 17 controls the rotational speed of the cooling fan 13d from the hydraulic oil temperature T1 measured by the temperature sensor 11, the hydraulic oil temperature T2 measured by the temperature sensor 12, and the target value temperature at the position of the temperature sensor 12. Can do. Thereby, the temperature of the hydraulic oil at the installation position of the temperature sensor 12 can be accurately controlled with power saving.
 同様に、コントローラ17は、温度センサ15が計測した作動油温度T3と、温度センサ16で計測した作動油温度T4と、温度センサ16の位置での目標値温度から、冷却ファン14bの回転数を制御することができる。これにより温度センサ16の設置位置での作動油の温度を、正確にかつ省電力で制御することができる。さらに本実施例では、温度センサ16が、油圧ポンプ3の吸入口に設けられているため、油圧ポンプ3に流入する作動油の温度を正確に制御できる。 Similarly, the controller 17 determines the rotation speed of the cooling fan 14b from the hydraulic oil temperature T3 measured by the temperature sensor 15, the hydraulic oil temperature T4 measured by the temperature sensor 16, and the target value temperature at the position of the temperature sensor 16. Can be controlled. Thereby, the temperature of the hydraulic oil at the installation position of the temperature sensor 16 can be accurately controlled with power saving. Furthermore, in this embodiment, since the temperature sensor 16 is provided at the suction port of the hydraulic pump 3, the temperature of the hydraulic oil flowing into the hydraulic pump 3 can be accurately controlled.
 さらにコントローラ17は、温度センサ15で測定した作動油の温度T3と、温度センサ12で測定した作動油の温度T2の差から、低圧ライン9の一部9aから9bの間に、この部分が設置される周囲環境との熱交換量を推定することができる。これにより、送風ファン14b又は、送風ファン13dの回転数を調節することにより、作動油温度の制御を省電力で行うことができる。 Further, the controller 17 sets this portion between the portions 9a to 9b of the low pressure line 9 based on the difference between the temperature T3 of the hydraulic fluid measured by the temperature sensor 15 and the temperature T2 of the hydraulic fluid measured by the temperature sensor 12. The amount of heat exchange with the surrounding environment can be estimated. Thereby, control of hydraulic oil temperature can be performed by power saving by adjusting the rotation speed of the ventilation fan 14b or the ventilation fan 13d.
 さらに図3に、本実施例において、発電機8と低圧ライン9が熱交換を行う熱交換器8aを加えたものを示す。熱交換装置13では、温度センサ12の作動油温T2を発電機8の冷却に必要な作動油温度に設定することにより、発電機8を、熱交換器8aを介して冷却することができ、また作動油を、ナセル4に設置された熱交換装置14を用いて、発電機8と作動油が交換した熱量を再度冷却することにより、油圧ポンプ3に最適な温度の作動油を供給ことが可能である。また、同様に変圧器20等の装置が設置される際にも、同じく低圧ライン9を流れる作動油と、変圧器20が熱交換を行う熱交換器20aを設けることにより、変圧器20を冷却することができる。ここでは変圧器20を例にして説明したが、他の機器でも良く、例えばタワー内に設置された電力変換器などについても同様に熱交換器を設けることができる。熱交換器は電力変換器または変圧器の一方に設けることや双方に設けることなど、タワー内への機器の収納状況に応じて適宜変更可能である。 Further, FIG. 3 shows a configuration in which the generator 8 and the low-pressure line 9 are added with a heat exchanger 8a for exchanging heat. In the heat exchange device 13, the generator 8 can be cooled via the heat exchanger 8a by setting the hydraulic oil temperature T2 of the temperature sensor 12 to the hydraulic oil temperature necessary for cooling the generator 8. Further, by using the heat exchange device 14 installed in the nacelle 4 to cool again the amount of heat exchanged between the generator 8 and the hydraulic oil, the hydraulic oil can be supplied with the optimum temperature to the hydraulic pump 3. Is possible. Similarly, when an apparatus such as the transformer 20 is installed, the transformer 20 is cooled by providing the hydraulic oil flowing through the low-pressure line 9 and the heat exchanger 20a that the transformer 20 performs heat exchange. can do. Here, the transformer 20 has been described as an example, but other devices may be used. For example, a heat exchanger can be similarly provided for a power converter installed in a tower. The heat exchanger can be appropriately changed according to the state of accommodation of the equipment in the tower, such as being provided in one or both of the power converter and the transformer.
 このように、低圧ライン9の9aと9bの間に、冷却が必要な装置が配置された際においても、前記の熱交換装置と、温度センサと、コントローラを備えているため、冷却が必要な装置の冷却を行いつつ、油圧ポンプ3へ流入する作動油温度を管理することができる。 As described above, even when an apparatus that needs to be cooled is disposed between 9a and 9b of the low-pressure line 9, the heat exchange device, the temperature sensor, and the controller are included, and therefore cooling is necessary. The temperature of the hydraulic oil flowing into the hydraulic pump 3 can be managed while cooling the device.
 本実施例では、基礎部6に配置される熱交換装置13では低圧ライン9を流れる作動油が熱交換される場合について説明したが、高圧ライン10を流れる作動油が熱交換される様に形成しても良い。その場合、油圧モータ7の直前で温度調節できるので、より正確な温度制御が可能になる。係る態様の実施に際しては、高圧ライン10に配置される熱交換装置の下流側に温度センサが設けられるのが望ましく、更に好ましくは当該熱交換装置の上流側にも温度センサが設けられると良い。下流に設けることで、熱交換装置から吐出される作動油の温度を管理でき、好適である。更に、上流と下流の両方に温度センサを配置することでより細かな制御が可能になる。該制御の態様として、ここではファンの回転数の調節を例にしたが、無論これに限られるものではなく、それ以外の制御も可能である。一例としては、水面下に熱交換器を配置する場合などでは、当該水面下の熱交換器に流入する水量を制御することなどが挙げられる。 In the present embodiment, the case where the hydraulic oil flowing through the low-pressure line 9 is heat-exchanged in the heat exchanging device 13 arranged in the base portion 6 is formed so that the hydraulic oil flowing through the high-pressure line 10 is heat-exchanged. You may do it. In that case, since the temperature can be adjusted immediately before the hydraulic motor 7, more accurate temperature control becomes possible. In implementing this aspect, it is desirable that a temperature sensor be provided on the downstream side of the heat exchange device disposed in the high-pressure line 10, and it is more preferable that a temperature sensor be provided on the upstream side of the heat exchange device. By providing it downstream, the temperature of the hydraulic fluid discharged from the heat exchange device can be managed, which is preferable. Furthermore, finer control becomes possible by arranging temperature sensors both upstream and downstream. As an example of the control, the adjustment of the rotation speed of the fan is taken as an example here, but it is needless to say that the control is not limited to this, and other control is possible. As an example, when a heat exchanger is disposed below the water surface, the amount of water flowing into the heat exchanger below the water surface may be controlled.
 尚、本明細書中における他の熱交換装置についても下流側に温度センサが設けられるのが望ましく、更に好ましくは当該熱交換装置の上流側にも温度センサが設けられると良い。下流に設けることで、熱交換装置から吐出される作動油の温度を管理でき、好適である。更に、上流と下流の両方に温度センサを配置することでより細かな制御が可能になる。 It should be noted that it is desirable to provide a temperature sensor on the downstream side of other heat exchange devices in this specification, and it is more preferable to provide a temperature sensor on the upstream side of the heat exchange device. By providing it downstream, the temperature of the hydraulic fluid discharged from the heat exchange device can be managed, which is preferable. Furthermore, finer control becomes possible by arranging temperature sensors both upstream and downstream.
 実施例2について、図4、5を用いて説明する。実施例2は、実施例1の熱交換装置14、温度センサ15、コントローラ17に替えて、低圧ライン9又は高圧ライン10を断熱する断熱機構を設けたものであり、図4に示された再生可能エネルギー型発電装置200のうち、既に説明した図1、2に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。 Example 2 will be described with reference to FIGS. In the second embodiment, a heat insulating mechanism for insulating the low pressure line 9 or the high pressure line 10 is provided in place of the heat exchanging device 14, the temperature sensor 15, and the controller 17 of the first embodiment, and the regeneration shown in FIG. In the possible energy type power generation device 200, the description of the components having the same functions as the configurations denoted by the same reference numerals shown in FIGS.
 図4において、低圧ライン9と高圧ライン10の周りをグレー色に施した部分は、断熱機構を表している。 In FIG. 4, the gray portions around the low-pressure line 9 and the high-pressure line 10 represent a heat insulation mechanism.
 図5は断熱機構が取り付けられた低圧ライン9又は高圧ライン10を表すために、作動油の流れる方向に垂直な断面を示している。図中矢印は、作動油の流れる方向を表している。 FIG. 5 shows a cross section perpendicular to the flowing direction of the hydraulic oil in order to represent the low pressure line 9 or the high pressure line 10 to which the heat insulation mechanism is attached. The arrow in the figure represents the direction in which the hydraulic oil flows.
 まず断熱機構310は、図5(A)に示すように油圧配管を覆うように取り付けられている。断熱材310aは、グラスウール等の断熱性の高い材質を用いる。このように油圧配管の周りに断熱材を覆う構造にすることで、油圧配管を設置した後取り付けることができるので、油圧配管を低コストに断熱することができる。また、断熱材310aは、作動油を吸収し保持する機能を有していても良い。これにより、万が一作動油が油圧配管から漏れ出た際にも、タワー5やナセル4等の内部を作動油により汚染しない。 First, the heat insulation mechanism 310 is attached so as to cover the hydraulic piping as shown in FIG. The heat insulating material 310a is made of a highly heat insulating material such as glass wool. Thus, by setting it as the structure which covers a heat insulating material around hydraulic piping, since it can attach after installing hydraulic piping, hydraulic piping can be thermally insulated at low cost. Moreover, the heat insulating material 310a may have a function of absorbing and holding hydraulic oil. Thereby, even if hydraulic fluid leaks from hydraulic piping, the inside of the tower 5, the nacelle 4, etc. is not polluted with hydraulic fluid.
 また図5(B)に示す断熱機構320のように、外側に新たな配管320aを設けることにより、配管を二重構造にし、断熱性能を達成しても良い。油圧配管と配管320aの間の空間320bは、空気で満たされていてもよい。このように軽量で高い断熱性能を有する空気を断熱材として用いることにより、油圧配管を低コストに断熱することができる。また空間320bは真空にしてもよい。真空にすることで、油圧配管の断熱性能が格段に上がるため、空間320bを狭くすることができ、省スペースで高い断熱性を得ることができる。また二重構造にすることにより、万が一作動油が油圧配管から漏れ出た際にも、タワー5やナセル4等の内部を作動油により汚染しない。 Further, as in the heat insulation mechanism 320 shown in FIG. 5B, a new pipe 320a may be provided on the outside so that the pipe has a double structure to achieve heat insulation performance. A space 320b between the hydraulic pipe and the pipe 320a may be filled with air. By using air that is lightweight and has high heat insulation performance as a heat insulating material, the hydraulic piping can be insulated at low cost. The space 320b may be evacuated. By making the vacuum, the heat insulation performance of the hydraulic piping is remarkably increased, so that the space 320b can be narrowed and high heat insulation can be obtained in a small space. In addition, the double structure prevents the inside of the tower 5 and the nacelle 4 from being contaminated by the hydraulic oil even if the hydraulic oil leaks from the hydraulic piping.
 本実施例は、上述の断熱機構により、図4に示すように、低圧ライン9と高圧ライン10の全ての経路について、外気との熱交換を抑制する。これにより、タワー高と同等の距離の低圧ライン9を用いて、基礎部6からナセル4へ送油する際にも、外気の影響を受けにくくなる。従って、基礎部6に設置された熱交換装置13により、油圧ポンプ3に流入する作動油温度を管理することができる。また高圧ライン10についても断熱機構を備えているため、ナセル4から基礎部6へ送油される際にも、外気との熱交換を抑制することができる。 In this embodiment, the heat insulation mechanism described above suppresses heat exchange with the outside air for all the paths of the low pressure line 9 and the high pressure line 10 as shown in FIG. Thereby, even when oil is supplied from the base 6 to the nacelle 4 using the low pressure line 9 having a distance equivalent to the tower height, it is less likely to be affected by outside air. Therefore, the operating oil temperature flowing into the hydraulic pump 3 can be managed by the heat exchanging device 13 installed in the base portion 6. Moreover, since the high pressure line 10 is also provided with a heat insulating mechanism, heat exchange with the outside air can be suppressed even when oil is fed from the nacelle 4 to the base portion 6.
 本実施例では、油圧配管全てにおいて断熱材や断熱二重配管と言った断熱機構を設けているが、この様な断熱機構は低圧ラインや高圧ラインと言った各ラインを少なくとも部分的に設けることでも良い。即ち、各ラインを少なくとも部分的に断熱材で覆ったり、或いは配管の一部を断熱二重配管で構成することが可能である。断熱構造は配管のある一部分のみに設けることも可能である。例えば実施例1の図1ないし図3の低圧ライン9の9cから9dの一部分のみに断熱配管を設けた場合、熱交換装置14にて管理した作動油の温度を、ナセル4内の環境との熱交換を行うことなく、保持したまま油圧ポンプ3に送油することができる。即ち、各ラインを少なくとも部分的に断熱材で覆ったり、或いは配管の一部を断熱二重配管で構成することで、油圧ポンプ3や油圧モータ7から離れた位置に熱交換器や温度センサを設けていても正確な温度制御が可能になる。この油圧ポンプ3や油圧モータ7から離れた位置としては、例えば基礎部からタワー内部において配置される熱交換部位(熱交換装置、熱交換器、熱交換部等、熱交換される部位全般を指す)などが挙げられる。 
 また、断熱材や断熱二重配管と言った断熱機構を設ける構造は本実施例の構造に限られるものでなく、実施例1や実施例3で説明したものについても同様に適用であることは言うまでもない。更に、各実施例の具体的態様以外にも本発明が適用される範囲においてはやはり同様に適用可能である。
In this embodiment, all the hydraulic pipes are provided with a heat insulating mechanism called a heat insulating material or a heat insulating double pipe, but such a heat insulating mechanism is provided with at least a part of each line such as a low pressure line or a high pressure line. But it ’s okay. That is, each line can be at least partially covered with a heat insulating material, or a part of the pipe can be constituted by a heat insulating double pipe. It is also possible to provide the heat insulating structure only in a certain part of the piping. For example, when heat insulation piping is provided only in a part of 9c to 9d of the low-pressure line 9 in FIGS. 1 to 3 of the first embodiment, the temperature of the hydraulic oil managed by the heat exchange device 14 is compared with the environment in the nacelle 4. The oil can be fed to the hydraulic pump 3 while being held without performing heat exchange. In other words, each line is at least partially covered with a heat insulating material, or a part of the pipe is formed of a heat insulating double pipe, so that a heat exchanger or a temperature sensor is installed at a position away from the hydraulic pump 3 or the hydraulic motor 7. Even if it is provided, accurate temperature control becomes possible. As a position away from the hydraulic pump 3 or the hydraulic motor 7, for example, a heat exchange part (a heat exchange device, a heat exchanger, a heat exchange part, or the like in general, which is arranged in the tower from the base part) ) And the like.
Moreover, the structure which provides the heat insulation mechanism called a heat insulating material or heat insulation double piping is not restricted to the structure of a present Example, It can apply similarly about what was demonstrated in Example 1 and Example 3. Needless to say. Furthermore, the present invention can be similarly applied to the scope of application of the present invention other than the specific modes of the embodiments.
 実施例3について、図6、7を用いて説明する。実施例3は、実施例1に加えて、低圧ライン9又は高圧ライン10を断熱する断熱機構を設け、さらに低圧ライン9と高圧ライン10の作動油が熱交換を行う熱交換部500を備えたものである。図6に示された再生可能エネルギー型発電装置400のうち、既に説明した図1、2に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。 Example 3 will be described with reference to FIGS. In the third embodiment, in addition to the first embodiment, a heat-insulating mechanism that insulates the low-pressure line 9 or the high-pressure line 10 is provided, and further, a heat exchanging unit 500 that performs heat exchange between the hydraulic oil in the low-pressure line 9 and the high-pressure line 10 is provided. Is. In the renewable energy type power generator 400 shown in FIG. 6, the description of the components having the same functions as those already described with reference to FIGS. 1 and 2 is omitted. .
 図6において、低圧ライン9と高圧ライン10の周りをグレー色に施した部分は、断熱機構を表しており、これについては実施例2において述べたものである。 In FIG. 6, the gray portions around the low-pressure line 9 and the high-pressure line 10 represent a heat insulation mechanism, which is described in the second embodiment.
 また図6における、破線部で囲んだ部分は、低圧ライン9と高圧ライン10が熱交換を行う機構を備えた箇所であり、その部分の断面図を図7に示す。図7の矢印は、低圧ライン9と高圧ライン10内の作動油(それぞれ低圧油、高圧油とする)の流れる方向を表している。 In FIG. 6, a portion surrounded by a broken line is a portion provided with a mechanism in which the low pressure line 9 and the high pressure line 10 perform heat exchange, and a sectional view of the portion is shown in FIG. The arrows in FIG. 7 indicate the flow directions of hydraulic oil (low pressure oil and high pressure oil, respectively) in the low pressure line 9 and the high pressure line 10.
 まず図7に示す、低圧ライン9と高圧ライン10の作動油が熱交換を行う熱交換部500について説明を行う。熱交換部500は、高圧ライン10と低圧ライン9を隣接して配置し、それぞれの油圧配管を伝熱部材510で覆い、それらを互いに接触させた構造になっている。伝熱部材510は熱伝導性の良い材質でできており、この部材を介して高圧ライン10を流れる高圧油と、低圧ライン9を流れる低圧油が熱交換を行う。またその外側に断熱部材520を備えている。断熱部材520は、実施例2の断熱機構と同様の物を用いても良い。 First, the heat exchanging unit 500 shown in FIG. 7 where the hydraulic oil in the low pressure line 9 and the high pressure line 10 exchange heat will be described. The heat exchanging unit 500 has a structure in which the high-pressure line 10 and the low-pressure line 9 are disposed adjacent to each other, the respective hydraulic pipes are covered with a heat transfer member 510, and they are brought into contact with each other. The heat transfer member 510 is made of a material having good thermal conductivity, and the high pressure oil flowing through the high pressure line 10 and the low pressure oil flowing through the low pressure line 9 exchange heat through this member. In addition, a heat insulating member 520 is provided on the outside thereof. The heat insulating member 520 may be the same as the heat insulating mechanism of the second embodiment.
 本実施例では、熱交換部500を備えているため、高圧ライン10と低圧ライン9との間で熱交換を行うことができる。さらに熱交換部500内の高圧ライン10と低圧ライン9の流れを図7中矢印で示すように、対向させることにより、熱交換効率を高めることができる。高圧ライン10には、油圧ポンプ3が回転エネルギーを油圧エネルギーに変換する際に、損失として発生する熱により加熱された作動油を冷却することができる。さらに熱交換装置14にて、高圧油と低圧油の間で交換された熱により、変化した低圧油の温度を、温度センサ16の目標値温度に冷却することができる。また温度センサ12と温度センサ15から、熱交換部500での熱交換量を把握することができるので、熱交換量に応じて、コントローラ17により冷却ファン13dと冷却ファン14bの回転数を制御することにより、熱交換部500での熱交換を制御することができる。なお、本実施例では熱交換部500において高圧ライン10と低圧ライン9を併設した構造を示しているが、内側を降圧ライン、外側を低圧ラインとした2重円筒構造としたり、熱交換部500における高圧ライン、低圧ラインをそれぞれ複数本に分離して接触面積を増やす事で、熱交換性能を向上させることができる。 In this embodiment, since the heat exchange unit 500 is provided, heat exchange can be performed between the high pressure line 10 and the low pressure line 9. Furthermore, the heat exchange efficiency can be improved by making the flows of the high-pressure line 10 and the low-pressure line 9 in the heat exchange section 500 face each other as indicated by arrows in FIG. When the hydraulic pump 3 converts rotational energy into hydraulic energy, the hydraulic oil heated by heat generated as a loss can be cooled in the high-pressure line 10. Furthermore, the changed temperature of the low-pressure oil can be cooled to the target value temperature of the temperature sensor 16 by the heat exchanged between the high-pressure oil and the low-pressure oil in the heat exchange device 14. Further, since the heat exchange amount in the heat exchanging unit 500 can be grasped from the temperature sensor 12 and the temperature sensor 15, the number of rotations of the cooling fan 13d and the cooling fan 14b is controlled by the controller 17 according to the heat exchange amount. Thus, heat exchange in the heat exchanging unit 500 can be controlled. In the present embodiment, a structure in which the high-pressure line 10 and the low-pressure line 9 are provided in the heat exchanging unit 500 is shown, but a double cylindrical structure in which the inside is a step-down line and the outside is a low-pressure line, The heat exchange performance can be improved by separating the high pressure line and the low pressure line into a plurality of lines and increasing the contact area.
100 (再生可能エネルギー型)発電装置(実施例1)
1 ロータ
2 支持部材
3 油圧ポンプ
4 ナセル
5 タワー
6 基礎部
7 油圧モータ
8 発電機
9 低圧ライン
10 高圧ライン
11 温度センサ
12 温度センサ
13 熱交換装置
14 熱交換装置
15 温度センサ
16 温度センサ
17 コントローラ
18 スイベルジョイント
19 水面
20 変圧器
200 再生可能エネルギー型発電装置(実施例2)
310、320 断熱機構
400 再生可能エネルギー型発電装置(実施例3)
500 熱交換部
510 伝熱部材
520 断熱部材
100 (Renewable Energy Type) Power Generator (Example 1)
DESCRIPTION OF SYMBOLS 1 Rotor 2 Support member 3 Hydraulic pump 4 Nacelle 5 Tower 6 Base part 7 Hydraulic motor 8 Generator 9 Low pressure line 10 High pressure line 11 Temperature sensor 12 Temperature sensor 13 Heat exchange device 14 Heat exchange device 15 Temperature sensor 16 Temperature sensor 17 Controller 18 Swivel joint 19 Water surface 20 Transformer 200 Renewable energy power generator (Example 2)
310, 320 Thermal insulation mechanism 400 Renewable energy type power generator (Example 3)
500 Heat Exchanger 510 Heat Transfer Member 520 Heat Insulation Member

Claims (17)

  1.  外力を受けて回転するブレードと、
     前記ブレードの回転に伴い駆動され、吸入した作動油を昇圧し、前記作動油を吐出する油圧ポンプと、
     前記油圧ポンプを収納するナセルと、
     前記ナセルを支持するタワーと、
     前記油圧ポンプから吐出される前記作動油により駆動される油圧モータと、
     前記油圧モータに接続された発電機と、
     前記油圧ポンプから前記油圧モータへ前記作動油を送る第1のラインと、
     前記油圧モータから前記油圧ポンプへ前記作動油を戻す第2のラインと、
    前記ナセルと共に回転し、前記作動油が熱交換される熱交換装置を備えることを特徴とする発電装置。
    A blade that rotates in response to an external force;
    A hydraulic pump that is driven along with the rotation of the blade, pressurizes the sucked hydraulic oil, and discharges the hydraulic oil;
    A nacelle for housing the hydraulic pump;
    A tower that supports the nacelle;
    A hydraulic motor driven by the hydraulic oil discharged from the hydraulic pump;
    A generator connected to the hydraulic motor;
    A first line for sending the hydraulic oil from the hydraulic pump to the hydraulic motor;
    A second line for returning the hydraulic oil from the hydraulic motor to the hydraulic pump;
    A power generation device comprising a heat exchange device that rotates together with the nacelle and heat exchanges the hydraulic oil.
  2.  請求項1に記載の発電装置であって、
     前記タワーを支持する基礎部と、
     前記基礎部に配置されて前記作動油が熱交換される熱交換装置を備えることを特徴とする発電装置。
    The power generation device according to claim 1,
    A foundation for supporting the tower;
    A power generation device comprising a heat exchange device arranged on the foundation and configured to exchange heat with the hydraulic oil.
  3.  請求項2に記載の発電装置であって、
     前記基礎部に配置される前記熱交換装置では、前記第2のラインを流れる前記作動油が熱交換されることを特徴とする発電装置。
    The power generation device according to claim 2,
    In the heat exchanging device disposed in the base portion, the hydraulic oil flowing through the second line is heat-exchanged.
  4.  外力を受けて回転するブレードと、
     前記ブレードの回転に伴い駆動され、吸入した作動油を昇圧し、前記作動油を吐出する油圧ポンプと、
     前記油圧ポンプを収納するナセルと、
     前記ナセルを支持するタワーと、
     前記タワーを支持する基礎部と、
     前記油圧ポンプから吐出される前記作動油により駆動される油圧モータと、
     前記油圧モータに接続された発電機と、
     前記油圧ポンプから前記油圧モータへ前記作動油を送る第1のラインと、
     前記油圧モータから前記油圧ポンプへ前記作動油を戻す第2のラインと、
     前記基礎部に配置されて前記第1のラインを流れる前記作動油が熱交換される熱交換装置を備えることを特徴とする発電装置。
    A blade that rotates in response to an external force;
    A hydraulic pump that is driven along with the rotation of the blade, pressurizes the sucked hydraulic oil, and discharges the hydraulic oil;
    A nacelle for housing the hydraulic pump;
    A tower that supports the nacelle;
    A foundation for supporting the tower;
    A hydraulic motor driven by the hydraulic oil discharged from the hydraulic pump;
    A generator connected to the hydraulic motor;
    A first line for sending the hydraulic oil from the hydraulic pump to the hydraulic motor;
    A second line for returning the hydraulic oil from the hydraulic motor to the hydraulic pump;
    A power generation device comprising: a heat exchanging device arranged in the base portion for exchanging heat of the hydraulic oil flowing through the first line.
  5.  請求項1ないし4のいずれか一つに記載の発電装置において、
     前記第1のライン及び前記第2のラインは少なくとも部分的に断熱材で覆われるか、及び/または前記ラインの少なくとも部分的に断熱二重配管で構成されることを特徴とする発電装置。
    The power generator according to any one of claims 1 to 4,
    The first line and the second line are at least partially covered with a heat insulating material, and / or are configured with at least partially a heat insulating double pipe in the line.
  6.  外力を受けて回転するブレードと、
     前記ブレードの回転に伴い駆動され、吸入した作動油を昇圧し、前記作動油を吐出する油圧ポンプと、
     前記油圧ポンプを収納するナセルと、
     前記ナセルを支持するタワーと、
     前記タワーを支持する基礎部と、
     前記油圧ポンプから吐出される前記作動油により駆動される油圧モータと、
     前記油圧モータに接続された発電機と、 
     前記油圧ポンプから前記油圧モータへ前記作動油を送る第1のラインと、
     前記油圧モータから前記油圧ポンプへ前記作動油を戻す第2のラインと、
     前記基礎部に配置されて前記第2のラインを流れる前記作動油が熱交換される熱交換装置を備え、前記第1のライン及び前記第2のラインは少なくとも部分的に断熱材で覆われるか、及び/または前記ラインの少なくとも部分的に断熱二重配管で構成されることを特徴とする発電装置。
    A blade that rotates in response to an external force;
    A hydraulic pump that is driven along with the rotation of the blade, pressurizes the sucked hydraulic oil, and discharges the hydraulic oil;
    A nacelle for housing the hydraulic pump;
    A tower that supports the nacelle;
    A foundation for supporting the tower;
    A hydraulic motor driven by the hydraulic oil discharged from the hydraulic pump;
    A generator connected to the hydraulic motor;
    A first line for sending the hydraulic oil from the hydraulic pump to the hydraulic motor;
    A second line for returning the hydraulic oil from the hydraulic motor to the hydraulic pump;
    Whether the hydraulic oil is disposed on the foundation and exchanges heat with the hydraulic fluid flowing through the second line, and is the first line and the second line at least partially covered with a heat insulating material? And / or at least part of the line is constituted by a heat insulating double pipe.
  7.  請求項1ないし6のいずれか一つに記載の発電装置において、
     前記作動油の流路のうち、前記熱交換装置の下流側には温度センサが配置されることを特徴とする発電装置。
    In the electric power generating apparatus as described in any one of Claim 1 thru | or 6,
    A power generation device, wherein a temperature sensor is disposed downstream of the heat exchange device in the hydraulic oil flow path.
  8.  請求項7に記載の発電装置において、
     前記作動油の流路のうち、前記熱交換装置の上流側には温度センサが配置されることを特徴とする発電装置。
    The power generator according to claim 7,
    A power generation device, wherein a temperature sensor is disposed upstream of the heat exchange device in the hydraulic oil flow path.
  9.  請求項1ないし8のいずれか一つに記載の発電装置において、
     前記油圧ポンプへ流入する前記作動油の温度を測定する温度センサが配置されることを特徴とする発電装置。
    The power generator according to any one of claims 1 to 8,
    A power generator, wherein a temperature sensor for measuring a temperature of the hydraulic oil flowing into the hydraulic pump is arranged.
  10.  請求項7ないし9のいずれか一つに記載の発電装置において、
     更に前記温度センサから得られた温度を用いて前記熱交換装置の熱交換性能を制御するコントローラを更に備えることを特徴とする発電装置。
    The power generator according to any one of claims 7 to 9,
    The power generator further comprising a controller that controls the heat exchange performance of the heat exchange device using the temperature obtained from the temperature sensor.
  11.  請求項10に記載の発電装置において、
     前記熱交換装置は前記コントローラからの指令に基づいて制御されるファンを備えており、該ファンの制御を通じて前記熱交換装置の熱交換性能は制御されることを特徴とする発電装置。
    The power generator according to claim 10,
    The heat exchange device includes a fan that is controlled based on a command from the controller, and the heat exchange performance of the heat exchange device is controlled through the control of the fan.
  12.  請求項11に記載の発電装置において、
     前記熱交換装置のうちで基礎部に配置された熱交換装置は、前記作動油が熱交換される第1の熱交換器と、該第1の熱交換器のうちで前記作動油と熱交換された冷媒が流れる冷媒ラインと、該冷媒ラインを流れる前記冷媒が熱交換される第2の熱交換器を備えることを特徴とする発電装置。
    The power generator according to claim 11,
    Among the heat exchange devices, the heat exchange device arranged at the base includes a first heat exchanger in which the hydraulic oil exchanges heat, and the hydraulic oil in the first heat exchanger. And a second heat exchanger for exchanging heat between the refrigerant flowing through the refrigerant line and the refrigerant flowing through the refrigerant line.
  13.  請求項12に記載の発電装置において、
     当該発電装置は水上に配置されると共に、風を受けて前記ブレードが回転させられる水上設置式の風力発電装置であり、
     前記第2の熱交換器で前記冷媒は当該風力発電装置の周囲の水と熱交換することを特徴とする発電装置。
    The power generator according to claim 12,
    The power generation device is a water-mounted wind power generation device that is arranged on the water and receives the wind to rotate the blades.
    In the second heat exchanger, the refrigerant exchanges heat with water around the wind power generator.
  14.  請求項1ないし13のいずれか一つに記載の発電装置において、
     前記第1のラインは高圧ラインであり、前記第2のラインは低圧ラインであり、前記第1のラインを流れる作動油は前記第2のラインを流れる作動油よりも高圧であることを特徴とする発電装置。
    The power generator according to any one of claims 1 to 13,
    The first line is a high-pressure line, the second line is a low-pressure line, and hydraulic fluid flowing through the first line is higher in pressure than hydraulic fluid flowing through the second line. Power generator.
  15.  請求項14に記載の発電装置において、
     前記低圧ラインと前記高圧ラインの間で熱交換を行う熱交換部を有することを特徴とする発電装置。
    The power generator according to claim 14,
    A power generation apparatus comprising: a heat exchanging unit that performs heat exchange between the low-pressure line and the high-pressure line.
  16.  請求項1ないし15のいずれか一つに記載の発電装置において、
     前記発電機と前記第2のラインで熱交換する熱交換器を更に備えることを特徴とする発電装置。
    In the electric power generating apparatus as described in any one of Claims 1 thru | or 15,
    The power generator further comprising a heat exchanger for exchanging heat between the generator and the second line.
  17.  請求項1ないし16のいずれか一つに記載の発電装置において、
     前記タワー内には変圧器及び/または電力変換器が配置され、該変圧器及び/または該電力変換器と前記第2のラインで熱交換する熱交換器を更に備えることを特徴とする発電装置。
    The power generator according to any one of claims 1 to 16,
    A power generator comprising: a transformer and / or a power converter disposed in the tower, and further comprising a heat exchanger for exchanging heat with the transformer and / or the power converter in the second line. .
PCT/JP2013/084186 2013-12-20 2013-12-20 Electric power generation system WO2015092912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084186 WO2015092912A1 (en) 2013-12-20 2013-12-20 Electric power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084186 WO2015092912A1 (en) 2013-12-20 2013-12-20 Electric power generation system

Publications (1)

Publication Number Publication Date
WO2015092912A1 true WO2015092912A1 (en) 2015-06-25

Family

ID=53402305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084186 WO2015092912A1 (en) 2013-12-20 2013-12-20 Electric power generation system

Country Status (1)

Country Link
WO (1) WO2015092912A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240222A (en) * 2015-11-17 2016-01-13 湘电风能有限公司 Nose cooling system for wind generating set
FR3109804A1 (en) * 2020-05-01 2021-11-05 jean-francois roux OFFSHORE WIND FIXED ON A SUBMERSIBLE VESSEL POWERING THREE ELECTRIC GENERATORS HOUSED IN THE CENTRAL HULL.
CN116292108A (en) * 2023-03-17 2023-06-23 浙江大学 Hydraulic wind driven generator system and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131374A (en) * 1982-01-28 1983-08-05 Shimadzu Corp Conversion device of hydraulic wind power to heat
US20100320770A1 (en) * 2007-10-30 2010-12-23 Chapdrive As Wind turbine with hydraulic swivel
JP4950367B1 (en) * 2011-08-10 2012-06-13 三菱重工業株式会社 Renewable energy generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131374A (en) * 1982-01-28 1983-08-05 Shimadzu Corp Conversion device of hydraulic wind power to heat
US20100320770A1 (en) * 2007-10-30 2010-12-23 Chapdrive As Wind turbine with hydraulic swivel
JP4950367B1 (en) * 2011-08-10 2012-06-13 三菱重工業株式会社 Renewable energy generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240222A (en) * 2015-11-17 2016-01-13 湘电风能有限公司 Nose cooling system for wind generating set
FR3109804A1 (en) * 2020-05-01 2021-11-05 jean-francois roux OFFSHORE WIND FIXED ON A SUBMERSIBLE VESSEL POWERING THREE ELECTRIC GENERATORS HOUSED IN THE CENTRAL HULL.
CN116292108A (en) * 2023-03-17 2023-06-23 浙江大学 Hydraulic wind driven generator system and control method
CN116292108B (en) * 2023-03-17 2024-03-22 浙江大学 Hydraulic wind driven generator system and control method

Similar Documents

Publication Publication Date Title
JP5367822B2 (en) Wind power generator
US4236083A (en) Windmill having thermal and electric power output
JP4796039B2 (en) Wind power generator
US20090200114A1 (en) Thermal management system and wind turbine incorporating same
US20090212560A1 (en) Heating System, Wind Turbine Or Wind Park, Method For Utilizing Surplus Heat Of One Or More Wind Turbine Components And Use Hereof
JP5592097B2 (en) Wind power generator
WO2000068570A1 (en) An offshore wind turbine with liquid-cooling
ITMI20100170A1 (en) PLANT AND METHOD OF COOLING OF AN ELECTRIC GENERATOR OF AN AIR SPREADER, AND AIRCONDITIONER INCLUDING SUCH A COOLING PLANT
CN102128139A (en) Wind driven generator cooled by tower barrel wall
WO2015092912A1 (en) Electric power generation system
WO2011073628A1 (en) A heating or cooling system and method
EP2450570B1 (en) Cooling arrangement for a wind turbine
TW201512527A (en) Wind power generation system
Jiang Wind turbine cooling technologies
TW202113228A (en) A wind turbine cooling system
JP2011236790A (en) Power generating system
KR101625143B1 (en) Flowmeter for controlling differential pressure of heat pipe and generating heat
JP6001033B2 (en) Heating device
JP6696219B2 (en) Heat generation system and power generation system using the same
JP2017005932A (en) Eddy current type heating device
JP2005256699A (en) Energy utilization method and energy utilization system
EP2832992A1 (en) Cooling system
JP2014218993A (en) Condensed water utilization steam power generator
JP2008082215A (en) Thermal power generation system
JP2012012978A (en) Wind power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP