WO2015092869A1 - Engine - Google Patents

Engine Download PDF

Info

Publication number
WO2015092869A1
WO2015092869A1 PCT/JP2013/083774 JP2013083774W WO2015092869A1 WO 2015092869 A1 WO2015092869 A1 WO 2015092869A1 JP 2013083774 W JP2013083774 W JP 2013083774W WO 2015092869 A1 WO2015092869 A1 WO 2015092869A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
cylinder head
combustion chamber
exhaust ports
groove portion
Prior art date
Application number
PCT/JP2013/083774
Other languages
French (fr)
Japanese (ja)
Inventor
則孝 長井
Original Assignee
ボルボ ラストバグナー アクチエボラグ
則孝 長井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ ラストバグナー アクチエボラグ, 則孝 長井 filed Critical ボルボ ラストバグナー アクチエボラグ
Priority to PCT/JP2013/083774 priority Critical patent/WO2015092869A1/en
Publication of WO2015092869A1 publication Critical patent/WO2015092869A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/248Methods for avoiding thermal stress-induced cracks in the zone between valve seat openings

Definitions

  • the present invention relates to an engine.
  • thermal stress acts on a cylinder head due to high heat during combustion in a combustion chamber.
  • JP 62-203996A discloses a cylinder head having an annular groove formed at the bottom surface around a fuel injection hole.
  • an annular groove centered on the fuel injection hole is provided on the bottom surface to prevent thermal stress from acting on the fuel injection hole.
  • the thermal stress acting on the fuel injection hole can be relieved, but the thermal stress may concentrate between the pair of exhaust ports.
  • the present invention has been made in view of the above problems, and an object thereof is to suppress the maximum value of thermal stress acting between a plurality of exhaust ports.
  • an engine having a cylinder head that is opened and closed by an exhaust valve to form a plurality of exhaust ports that can exhaust combustion gas in the combustion chamber, and the cylinder head is disposed in the combustion chamber.
  • An engine having a pair of grooves that are formed on a facing surface and connect between the exhaust ports adjacent to each other is provided.
  • FIG. 1 is a configuration diagram of an engine according to an embodiment of the present invention.
  • FIG. 2 is a view showing a surface of the cylinder head facing the combustion chamber.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • the engine 1 includes a cylinder block 2 in which a cylinder 2a is formed, a cylinder head 10 attached to the upper surface of the cylinder block 2, and a piston 3 that is slidably inserted into the cylinder 2a.
  • a combustion chamber 4 is defined in the cylinder 2 a by the bottom surface of the cylinder head 10 and the crown surface of the piston 3.
  • the engine 1 is a diesel engine in which light oil is used as fuel.
  • the cylinder head 10 is provided with an intake port 11 for introducing intake air into the combustion chamber 4, an exhaust port 12 for exhausting exhaust gas from the combustion chamber 4, and an injector 5 for injecting fuel into the combustion chamber 4.
  • the intake port 11 is opened and closed by an intake valve 6 provided in the cylinder head 10.
  • the intake port 11 can introduce intake air into the combustion chamber 4 via the intake valve 6.
  • the intake passage 8 upstream of the intake valve 6 is provided with an air cleaner (not shown) that removes impurities from the intake air.
  • the exhaust port 12 is opened and closed by an exhaust valve 7 provided in the cylinder head 10.
  • the exhaust port 12 can exhaust the combustion gas in the combustion chamber 4 via the exhaust valve 7.
  • the exhaust passage 9 downstream of the exhaust valve 7 is provided with an exhaust catalyst (not shown) for purifying harmful components in the exhaust.
  • the injector 5 is disposed substantially at the center of the combustion chamber 4.
  • the injector 5 injects an amount of fuel into the combustion chamber 4 according to the accelerator operation by the driver.
  • the piston 3 slides downward by the energy generated by the combustion in the combustion chamber 4.
  • the vertical movement of the piston 3 is converted into the rotational movement of the crank 3b by the connecting rod 3a connected to the piston 3 and the crank 3b connected to the connecting rod 3a.
  • the cylinder head 10 has a pair of intake ports 11, a pair of exhaust ports 12, and a fuel injection hole 14 in which the injector 5 is provided.
  • the fuel injection hole 14 is disposed substantially at the center of the combustion chamber 4.
  • the intake port 11 and the exhaust port 12 are formed so as to surround the periphery of the fuel injection hole 14.
  • three exhaust ports 12 may be formed in the cylinder head 10 as long as there are a plurality of exhaust ports 12.
  • the cylinder head 10 has a pair of grooves 13 formed on the bottom surface facing the combustion chamber 4 and connecting between the exhaust ports 12 adjacent to each other.
  • the pair of groove portions 13 includes an inner groove portion 13a as one groove portion and an outer groove portion 13b as the other groove portion formed at a position farther from the injector 5 than the inner groove portion 13a.
  • the inner groove portion 13a and the outer groove portion 13b linearly connect both end portions of the adjacent exhaust ports 12 respectively.
  • the inner groove portion 13a and the outer groove portion 13b are each formed in a U shape in which the central portion in the width direction is deepest.
  • the inner groove 13a is formed so that the end close to the injector 5 circumscribes the exhaust port 12.
  • the outer groove 13 b is formed so that the end on the side away from the injector 5 circumscribes the exhaust port 12.
  • the inner groove 13a is formed larger than the outer groove 13b. Specifically, as shown in FIG. 3, the inner groove portion 13a is formed to have a larger width than the outer groove portion 13b. Further, the inner groove portion 13a is formed with a greater depth than the outer groove portion 13b.
  • the bottom surface of the cylinder head 10 is exposed to high-temperature combustion gas. Thermal stress acts on the cylinder head 10 by repeating thermal expansion due to high heat during combustion in the combustion chamber 4 and thermal contraction due to cooling.
  • thermal stress is dispersed in the inner groove portion 13a and the outer groove portion 13b.
  • the thermal stress concentrated in one place is dispersed in two places, the maximum value of the thermal stress acting on the cylinder head 10 during operation of the engine 1 can be suppressed.
  • the side closer to the injector 5 becomes hotter than the side away from the injector 5, and the thermal stress is also increased.
  • the inner groove portion 13 a on the side close to the injector 5 is formed larger than the outer groove portion 13 b on the side away from the injector 5. Thereby, it is possible to suppress the temperature rise of the inner groove 13a on the side close to the injector 5.
  • the pair of groove portions 13 that connect the adjacent exhaust ports 12 are formed, so that the thermal stress between the exhaust ports 12 can be dispersed in two places. Therefore, the maximum value of the thermal stress acting between the exhaust ports 12 can be suppressed. Therefore, the output of the engine 1 can be increased by the amount that the thermal stress is reduced, and the durability of the engine 1 can be improved.
  • the inner groove portion 13 a is deeper than the outer groove portion 13 b to suppress the temperature rise in the inner groove portion 13 a. Is possible.
  • the cylinder head 10 is formed with a pair of grooves 13 that connect between the exhaust ports 12 adjacent to each other, so that the thermal stress between the exhaust ports 12 can be dispersed in two places. Therefore, the maximum value of the thermal stress acting between the exhaust ports 12 can be suppressed. Therefore, the output of the engine 1 can be increased by the amount that the thermal stress is reduced, and the durability of the engine 1 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

This engine is equipped with a cylinder head that has multiple exhaust ports (12) that are opened/closed by mean of valves and capable of exhausting combustion gas in a combustion chamber. The cylinder head has a pair of groove sections (13) that are formed on a surface facing the combustion chamber and connect exhaust ports (12) that are arranged adjacent to each other.

Description

エンジンengine
 本発明は、エンジンに関するものである。 The present invention relates to an engine.
 一般に、エンジンでは、燃焼室における燃焼時の高熱によって、シリンダヘッドに熱応力が作用することが知られている。 Generally, in an engine, it is known that thermal stress acts on a cylinder head due to high heat during combustion in a combustion chamber.
 JP62-203996Aには、燃料噴射孔を中心に形成される環状の溝を底面に有するシリンダヘッドが開示されている。このシリンダヘッドでは、燃料噴射孔を中心とする環状の溝が底面に設けられることによって、燃料噴射孔に熱応力が作用することを防止している。 JP 62-203996A discloses a cylinder head having an annular groove formed at the bottom surface around a fuel injection hole. In this cylinder head, an annular groove centered on the fuel injection hole is provided on the bottom surface to prevent thermal stress from acting on the fuel injection hole.
 しかしながら、JP62-203996Aに記載のシリンダヘッドでは、燃料噴射孔に作用する熱応力を緩和することはできるものの、一対の排気ポート間に熱応力が集中するおそれがある。 However, in the cylinder head described in JP62-203996A, the thermal stress acting on the fuel injection hole can be relieved, but the thermal stress may concentrate between the pair of exhaust ports.
 本発明は、上記の問題点に鑑みてなされたものであり、複数の排気ポート間に作用する熱応力の最大値を抑制することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to suppress the maximum value of thermal stress acting between a plurality of exhaust ports.
 本発明のある態様によれば、排気弁によって開閉されて燃焼室内の燃焼ガスを排気可能な複数の排気ポートが形成されるシリンダヘッドを備えるエンジンであって、前記シリンダヘッドは、前記燃焼室に臨む面に形成され互いに隣り合う前記排気ポートの間を連結する一対の溝部を有するエンジンが提供される。 According to an aspect of the present invention, there is provided an engine having a cylinder head that is opened and closed by an exhaust valve to form a plurality of exhaust ports that can exhaust combustion gas in the combustion chamber, and the cylinder head is disposed in the combustion chamber. An engine having a pair of grooves that are formed on a facing surface and connect between the exhaust ports adjacent to each other is provided.
図1は、本発明の実施の形態に係るエンジンの構成図である。FIG. 1 is a configuration diagram of an engine according to an embodiment of the present invention. 図2は、シリンダヘッドの燃焼室に臨む面を示す図である。FIG. 2 is a view showing a surface of the cylinder head facing the combustion chamber. 図3は、図2におけるIII-III断面図である。3 is a cross-sectional view taken along the line III-III in FIG.
 以下、図面を参照して、本発明の実施の形態に係るエンジン1について説明する。 Hereinafter, an engine 1 according to an embodiment of the present invention will be described with reference to the drawings.
 まず、図1を参照して、エンジン1の全体構成について説明する。 First, the overall configuration of the engine 1 will be described with reference to FIG.
 エンジン1は、シリンダ2aが形成されるシリンダブロック2と、シリンダブロック2の上面に取り付けられるシリンダヘッド10と、シリンダ2aに摺動自在に挿入されるピストン3とを備える。シリンダ2a内には、シリンダヘッド10の底面とピストン3の冠面とによって燃焼室4が画成される。エンジン1は、燃料として軽油が用いられるディーゼルエンジンである。 The engine 1 includes a cylinder block 2 in which a cylinder 2a is formed, a cylinder head 10 attached to the upper surface of the cylinder block 2, and a piston 3 that is slidably inserted into the cylinder 2a. A combustion chamber 4 is defined in the cylinder 2 a by the bottom surface of the cylinder head 10 and the crown surface of the piston 3. The engine 1 is a diesel engine in which light oil is used as fuel.
 シリンダヘッド10には、燃焼室4に吸気を導入する吸気ポート11と、燃焼室4から排気を導出する排気ポート12と、燃焼室4に燃料を噴射するインジェクタ5とが設けられる。 The cylinder head 10 is provided with an intake port 11 for introducing intake air into the combustion chamber 4, an exhaust port 12 for exhausting exhaust gas from the combustion chamber 4, and an injector 5 for injecting fuel into the combustion chamber 4.
 吸気ポート11は、シリンダヘッド10に設けられた吸気弁6によって開閉される。吸気ポート11は、吸気弁6を介して燃焼室4内へ吸気を導入可能である。吸気弁6の上流の吸気通路8には、吸気から不純物を取り除くエアクリーナ(図示省略)が設けられる。 The intake port 11 is opened and closed by an intake valve 6 provided in the cylinder head 10. The intake port 11 can introduce intake air into the combustion chamber 4 via the intake valve 6. The intake passage 8 upstream of the intake valve 6 is provided with an air cleaner (not shown) that removes impurities from the intake air.
 排気ポート12は、シリンダヘッド10に設けられた排気弁7によって開閉される。排気ポート12は、排気弁7を介して燃焼室4内の燃焼ガスを排気可能である。排気弁7の下流の排気通路9には、排気中の有害成分を浄化する排気触媒(図示省略)が設けられる。 The exhaust port 12 is opened and closed by an exhaust valve 7 provided in the cylinder head 10. The exhaust port 12 can exhaust the combustion gas in the combustion chamber 4 via the exhaust valve 7. The exhaust passage 9 downstream of the exhaust valve 7 is provided with an exhaust catalyst (not shown) for purifying harmful components in the exhaust.
 インジェクタ5は、燃焼室4の略中央に配設される。インジェクタ5は、運転者によるアクセル操作に応じた量の燃料を燃焼室4内に噴射する。 The injector 5 is disposed substantially at the center of the combustion chamber 4. The injector 5 injects an amount of fuel into the combustion chamber 4 according to the accelerator operation by the driver.
 ピストン3は、燃焼室4内での燃焼によって発生したエネルギーによって下方向へ摺動する。ピストン3の上下運動は、ピストン3に連結されるコンロッド3aとコンロッド3aに連結されるクランク3bとによって、クランク3bの回転運動に変換される。 The piston 3 slides downward by the energy generated by the combustion in the combustion chamber 4. The vertical movement of the piston 3 is converted into the rotational movement of the crank 3b by the connecting rod 3a connected to the piston 3 and the crank 3b connected to the connecting rod 3a.
 次に、図2及び図3を参照して、シリンダヘッド10について説明する。 Next, the cylinder head 10 will be described with reference to FIGS.
 図2に示すように、シリンダヘッド10は、一対の吸気ポート11と、一対の排気ポート12と、インジェクタ5が設けられる燃料噴射孔14とを有する。燃料噴射孔14は、燃焼室4の略中央に配設される。吸気ポート11と排気ポート12とは、燃料噴射孔14の周囲を囲むように形成される。排気ポート12は、複数であればよいため、例えば、三つの排気ポート12がシリンダヘッド10に形成されてもよい。 As shown in FIG. 2, the cylinder head 10 has a pair of intake ports 11, a pair of exhaust ports 12, and a fuel injection hole 14 in which the injector 5 is provided. The fuel injection hole 14 is disposed substantially at the center of the combustion chamber 4. The intake port 11 and the exhaust port 12 are formed so as to surround the periphery of the fuel injection hole 14. For example, three exhaust ports 12 may be formed in the cylinder head 10 as long as there are a plurality of exhaust ports 12.
 シリンダヘッド10は、燃焼室4に臨む底面に形成され互いに隣り合う排気ポート12の間を連結する一対の溝部13を有する。 The cylinder head 10 has a pair of grooves 13 formed on the bottom surface facing the combustion chamber 4 and connecting between the exhaust ports 12 adjacent to each other.
 一対の溝部13は、一方の溝部としての内側溝部13aと、内側溝部13aと比較してインジェクタ5から離れた位置に形成される他方の溝部としての外側溝部13bとからなる。 The pair of groove portions 13 includes an inner groove portion 13a as one groove portion and an outer groove portion 13b as the other groove portion formed at a position farther from the injector 5 than the inner groove portion 13a.
 内側溝部13aと外側溝部13bとは、隣り合う排気ポート12の両端部を各々直線的に連結する。内側溝部13aと外側溝部13bとは、幅方向の中央部が最も深くなるU字状に各々形成される。 The inner groove portion 13a and the outer groove portion 13b linearly connect both end portions of the adjacent exhaust ports 12 respectively. The inner groove portion 13a and the outer groove portion 13b are each formed in a U shape in which the central portion in the width direction is deepest.
 内側溝部13aは、インジェクタ5に近い側の端部が排気ポート12に外接するように形成される。一方、外側溝部13bは、インジェクタ5から離れた側の端部が排気ポート12に外接するように形成される。 The inner groove 13a is formed so that the end close to the injector 5 circumscribes the exhaust port 12. On the other hand, the outer groove 13 b is formed so that the end on the side away from the injector 5 circumscribes the exhaust port 12.
 内側溝部13aは、外側溝部13bと比較して大きく形成される。具体的には、図3に示すように、内側溝部13aは、外側溝部13bと比較して幅が大きく形成される。また、内側溝部13aは、外側溝部13bと比較して深さが大きく形成される。 The inner groove 13a is formed larger than the outer groove 13b. Specifically, as shown in FIG. 3, the inner groove portion 13a is formed to have a larger width than the outer groove portion 13b. Further, the inner groove portion 13a is formed with a greater depth than the outer groove portion 13b.
 次に、シリンダヘッド10を備えるエンジン1の作用を説明する。 Next, the operation of the engine 1 including the cylinder head 10 will be described.
 エンジン1の運転時には、シリンダヘッド10の底面は、高温の燃焼ガスにさらされる。シリンダヘッド10には、燃焼室4における燃焼時の高熱による熱膨張と冷却による熱収縮とを繰り返すことによって、熱応力が作用する。 During operation of the engine 1, the bottom surface of the cylinder head 10 is exposed to high-temperature combustion gas. Thermal stress acts on the cylinder head 10 by repeating thermal expansion due to high heat during combustion in the combustion chamber 4 and thermal contraction due to cooling.
 ここで、比較例として、隣り合う排気ポート12の略中央を連結する単一の溝部が形成される場合について説明する。単一の溝部が形成される場合には、溝部の最も剛性の低い一箇所に熱応力が集中する。よって、単一の溝部が形成された場合には、温度上昇を抑制することは可能であるが、熱応力が単一の溝部に集中する。 Here, as a comparative example, a case will be described in which a single groove portion that connects substantially the centers of adjacent exhaust ports 12 is formed. When a single groove portion is formed, thermal stress concentrates at one location where the rigidity of the groove portion is the lowest. Therefore, when a single groove is formed, the temperature rise can be suppressed, but thermal stress is concentrated on the single groove.
 これに対して、シリンダヘッド10では、隣り合う排気ポート12の間を連結する一対の溝部13が形成されるため、内側溝部13aと外側溝部13bとに熱応力が分散する。このように、一箇所に集中していた熱応力が二箇所に分散するため、エンジン1の運転時にシリンダヘッド10に作用する熱応力の最大値を抑制することができる。 On the other hand, in the cylinder head 10, since a pair of groove portions 13 that connect the adjacent exhaust ports 12 are formed, thermal stress is dispersed in the inner groove portion 13a and the outer groove portion 13b. As described above, since the thermal stress concentrated in one place is dispersed in two places, the maximum value of the thermal stress acting on the cylinder head 10 during operation of the engine 1 can be suppressed.
 また、隣り合う排気ポート12の間では、インジェクタ5に近い側は、インジェクタ5から離れた側と比較して高熱になるため、熱応力も大きくなる。 Also, between the adjacent exhaust ports 12, the side closer to the injector 5 becomes hotter than the side away from the injector 5, and the thermal stress is also increased.
 シリンダヘッド10では、インジェクタ5に近い側の内側溝部13aは、インジェクタ5から離れた側の外側溝部13bと比較して大きく形成される。これにより、インジェクタ5に近い側の内側溝部13aの温度上昇を抑制することが可能である。 In the cylinder head 10, the inner groove portion 13 a on the side close to the injector 5 is formed larger than the outer groove portion 13 b on the side away from the injector 5. Thereby, it is possible to suppress the temperature rise of the inner groove 13a on the side close to the injector 5.
 以上のように、シリンダヘッド10では、隣り合う排気ポート12の間を連結する一対の溝部13が形成されるため、排気ポート12間の熱応力を二箇所に分散させることができる。よって、排気ポート12間に作用する熱応力の最大値を抑制することができる。したがって、熱応力が低減された分だけ、エンジン1の出力を大きくすることが可能であり、エンジン1の耐久性を向上させることが可能である。 As described above, in the cylinder head 10, the pair of groove portions 13 that connect the adjacent exhaust ports 12 are formed, so that the thermal stress between the exhaust ports 12 can be dispersed in two places. Therefore, the maximum value of the thermal stress acting between the exhaust ports 12 can be suppressed. Therefore, the output of the engine 1 can be increased by the amount that the thermal stress is reduced, and the durability of the engine 1 can be improved.
 なお、溝部13の深さは、小さいほど熱応力の低減に効果がある。また、溝部13の深さは、深いほど温度上昇の抑制に効果がある。シリンダヘッド10では、一対の溝部13を形成することによって、熱応力を二箇所に分散させているため、内側溝部13aを外側溝部13bよりも深くして、内側溝部13aにおける温度上昇を抑制することが可能である。 Note that the smaller the depth of the groove 13, the more effective is the reduction of thermal stress. Further, the deeper the groove 13 is, the more effective the suppression of the temperature rise is. In the cylinder head 10, since the thermal stress is dispersed in two places by forming the pair of groove portions 13, the inner groove portion 13 a is deeper than the outer groove portion 13 b to suppress the temperature rise in the inner groove portion 13 a. Is possible.
 以上の実施の形態によれば、以下に示す効果を奏する。 According to the above embodiment, the following effects are obtained.
 シリンダヘッド10では、隣り合う排気ポート12の間を連結する一対の溝部13が形成されるため、排気ポート12間の熱応力を二箇所に分散させることができる。よって、排気ポート12間に作用する熱応力の最大値を抑制することができる。したがって、熱応力が低減された分だけ、エンジン1の出力を大きくすることが可能であり、エンジン1の耐久性を向上させることが可能である。 The cylinder head 10 is formed with a pair of grooves 13 that connect between the exhaust ports 12 adjacent to each other, so that the thermal stress between the exhaust ports 12 can be dispersed in two places. Therefore, the maximum value of the thermal stress acting between the exhaust ports 12 can be suppressed. Therefore, the output of the engine 1 can be increased by the amount that the thermal stress is reduced, and the durability of the engine 1 can be improved.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

Claims (5)

  1.  排気弁によって開閉されて燃焼室内の燃焼ガスを排気可能な複数の排気ポートが形成されるシリンダヘッドを備えるエンジンであって、
     前記シリンダヘッドは、前記燃焼室に臨む面に形成され互いに隣り合う前記排気ポートの間を連結する一対の溝部を有するエンジン。
    An engine including a cylinder head that is opened and closed by an exhaust valve to form a plurality of exhaust ports capable of exhausting combustion gas in a combustion chamber,
    The cylinder head is an engine having a pair of grooves that are formed on a surface facing the combustion chamber and connect the exhaust ports adjacent to each other.
  2.  請求項1に記載のエンジンであって、
     前記一対の溝部は、隣り合う前記排気ポートの両端部を各々連結するように形成されるエンジン。
    The engine according to claim 1,
    The pair of grooves is an engine formed so as to connect both ends of the adjacent exhaust ports.
  3.  請求項1又は2に記載のエンジンであって、
     前記シリンダヘッドに設けられ前記燃焼室に燃料を噴射するインジェクタを更に備え、
     前記一対の溝部のうち前記インジェクタに近い一方の溝部は、他方の溝部と比較して大きく形成されるエンジン。
    The engine according to claim 1 or 2,
    An injector provided in the cylinder head for injecting fuel into the combustion chamber;
    One of the pair of grooves that is closer to the injector is formed larger than the other groove.
  4.  請求項3に記載のエンジンであって、
     前記一方の溝部は、前記他方の溝部と比較して幅が大きく形成されるエンジン。
    The engine according to claim 3,
    The engine in which the one groove is formed wider than the other groove.
  5.  請求項3又は4に記載のエンジンであって、
     前記一方の溝部は、前記他方の溝部と比較して深さが大きく形成されるエンジン。
     
    The engine according to claim 3 or 4,
    The engine in which the one groove is formed deeper than the other groove.
PCT/JP2013/083774 2013-12-17 2013-12-17 Engine WO2015092869A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083774 WO2015092869A1 (en) 2013-12-17 2013-12-17 Engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083774 WO2015092869A1 (en) 2013-12-17 2013-12-17 Engine

Publications (1)

Publication Number Publication Date
WO2015092869A1 true WO2015092869A1 (en) 2015-06-25

Family

ID=53402265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083774 WO2015092869A1 (en) 2013-12-17 2013-12-17 Engine

Country Status (1)

Country Link
WO (1) WO2015092869A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1001860B (en) * 1952-05-15 1957-01-31 Kloeckner Humboldt Deutz Ag Cylinder head for internal combustion engines
US3469305A (en) * 1964-08-06 1969-09-30 Mitsubishi Heavy Ind Ltd Method for preventing cracking of machine parts
JPS5236883Y2 (en) * 1973-03-12 1977-08-23
JPS60178342U (en) * 1984-05-04 1985-11-27 日産自動車株式会社 cylinder head of internal combustion engine
JP2002276460A (en) * 2001-03-22 2002-09-25 Isuzu Motors Ltd Cylinder head

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1001860B (en) * 1952-05-15 1957-01-31 Kloeckner Humboldt Deutz Ag Cylinder head for internal combustion engines
US3469305A (en) * 1964-08-06 1969-09-30 Mitsubishi Heavy Ind Ltd Method for preventing cracking of machine parts
JPS5236883Y2 (en) * 1973-03-12 1977-08-23
JPS60178342U (en) * 1984-05-04 1985-11-27 日産自動車株式会社 cylinder head of internal combustion engine
JP2002276460A (en) * 2001-03-22 2002-09-25 Isuzu Motors Ltd Cylinder head

Similar Documents

Publication Publication Date Title
RU2695550C2 (en) Internal combustion engine (embodiments) and engine cylinder head gasket with cooling jacket
KR101637293B1 (en) Cylinder head that exhaust manifold is integrally formed having coolant jajcket
JP2011169232A (en) Internal combustion engine
US9334828B2 (en) Bore bridge and cylinder cooling
KR101755505B1 (en) Water jacket for cylinder head
JP5692364B2 (en) Cylinder head of internal combustion engine
JP6490440B2 (en) Monoblock engine cylinder structure
JP2014234740A (en) Compression ignition type internal combustion engine
WO2015092869A1 (en) Engine
MX2017001072A (en) Turbine housing.
JP6079405B2 (en) Exhaust gas recirculation device for vehicle engine
JP6355196B2 (en) Internal combustion engine
KR20160070275A (en) Apparatus for emitting exhaust gas of vehicles
JP6344455B2 (en) Engine combustion chamber structure
US10519895B2 (en) Cylinder head and engine
KR101543152B1 (en) Cylinder head
JP2014163282A (en) Cylinder head structure for internal combustion engine
JP2012149581A (en) Internal combustion engine
JP5293886B2 (en) Engine pistons
JP4793871B2 (en) 4-cycle engine
JP2018021540A (en) Multi-valve type combustion chamber
JP2013177831A (en) Two-stroke internal combustion engine
JP6036360B2 (en) Compression ignition internal combustion engine
JP2014080915A (en) Piston of internal combustion engine, and the internal combustion engine
JP6057667B2 (en) Internal combustion engine cylinder block

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899438

Country of ref document: EP

Kind code of ref document: A1