WO2015092850A1 - 塩素供給制御装置、塩素供給制御方法、及び管保護システム - Google Patents
塩素供給制御装置、塩素供給制御方法、及び管保護システム Download PDFInfo
- Publication number
- WO2015092850A1 WO2015092850A1 PCT/JP2013/083636 JP2013083636W WO2015092850A1 WO 2015092850 A1 WO2015092850 A1 WO 2015092850A1 JP 2013083636 W JP2013083636 W JP 2013083636W WO 2015092850 A1 WO2015092850 A1 WO 2015092850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chlorine supply
- chlorine
- seawater
- supply control
- tube
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
- C02F2103/023—Water in cooling circuits
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/29—Chlorine compounds
Definitions
- the present invention relates to a chlorine supply control device, a chlorine supply control method, and a pipe protection system.
- Seawater is used as cooling water for the power plant condenser, but the heat exchange tubule made of aluminum brass, which is the path of the circulating water, contains barnacles, mussels, etc.
- adherent organisms adhered Such attachment of adherent organisms to the heat exchanger tubules in the condenser causes a decrease in the heat conductivity of the heat exchanger tubules in the condenser and a decrease in the vacuum degree of the condenser. Reduce.
- chlorine is injected into seawater in order to prevent adhesion of adherent organisms (Japanese Patent Publication No. 2011-92821).
- One embodiment of the present invention is a chlorine supply control device for controlling chlorine supply to a pipe for injecting seawater containing divalent iron ions, wherein the chlorine supply is reduced when the chlorophyll in the seawater has a predetermined concentration or more. Then, the chlorine supply control device controls the chlorine supply so that the chlorine supply is increased when the zooplankton has a predetermined density or higher. The chlorine supply may be stopped when the chlorophyll in the seawater has a predetermined concentration or higher, and then the chlorine supply may be resumed when the zooplankton has a predetermined density or higher.
- the tube may be a heat exchange thin tube in a power plant condenser.
- the tube may be made of aluminum brass.
- Another embodiment of the present invention is a pipe protection system for pipes for injecting seawater, a divalent iron ion supply device for supplying divalent iron ions to the seawater, and a chlorine supply for supplying chlorine to the seawater.
- a device a chlorine supply control device that controls the chlorine supply to the seawater, a first detection device that detects chlorophyll in the seawater, and a second detection device that detects zooplankton in the seawater.
- the divalent iron ion supply device supplies divalent iron ions to the seawater
- the chlorine supply control device reduces the chlorine supply when the first detection device detects the chlorophyll at a predetermined concentration or more.
- the pipe protection system controls the chlorine supply by the chlorine supply device so that the chlorine supply is increased when the second detection device detects the zooplankton above a predetermined density.
- the chlorine supply is stopped when the first detection device detects the chlorophyll at a predetermined concentration or higher, and then the chlorine supply is resumed when the second detection device detects the zooplankton at a predetermined density or higher.
- the tube may be a heat exchange thin tube in a power plant condenser.
- the tube may be made of aluminum brass.
- Still another embodiment of the present invention is a chlorine supply control method for controlling supply of chlorine to a pipe for injecting seawater containing divalent iron ions, when chlorophyll in the seawater is detected at a predetermined concentration or more.
- a chlorine supply control method wherein the chlorine supply is controlled so that the chlorine supply is reduced and then the chlorine supply is increased when zooplankton in the seawater is detected at a predetermined density or more.
- the chlorine supply may be stopped when the chlorophyll is detected at a predetermined concentration or higher, and the chlorine supply is resumed when the zooplankton is detected at a predetermined density or higher.
- the tube may be a heat exchange thin tube in a power plant condenser.
- the tube may be made of aluminum brass.
- a chlorine supply control method for controlling chlorine supply to a pipe for injecting seawater containing divalent iron ions reduces chlorine supply when chlorophyll in the seawater is detected above a predetermined concentration, The chlorine supply is controlled so that the chlorine supply is increased when the zooplankton in the medium is detected at a predetermined density or more.
- the weight loss is preferably 50% weight loss, more preferably 80% weight loss, more preferably 90% weight loss, and most preferably 100% weight loss, that is, supply stoppage. Further, the increase is preferably 50%, more preferably 80%, and even more preferably 90% compared to the chlorine supply before stopping. It is most preferable to increase the amount until 100%, but the amount may be increased until it reaches 100% or more.
- seawater containing divalent iron ions can be produced by adding a compound that generates divalent iron ions to seawater.
- the divalent iron ion is preferably ferrous sulfate, for example, but is not particularly limited. Although the addition method and frequency are not specifically limited, It is preferable that it is always added.
- the concentration of divalent iron ions is preferably 0.05 ppm or more, more preferably 0.1 ppm or more, further preferably 0.3 ppm or more, and further preferably 1.0 ppm or more, preferably Is 10 ppm or less, More preferably, it is 3.0 ppm or less, More preferably, it is 1.0 ppm or less.
- the target tube is preferably a heat exchange thin tube in a power plant condenser, but is not particularly limited.
- the material of the tube is not particularly limited, but aluminum brass is preferable.
- the target phytoplankton is not particularly limited, but can be exemplified by Coscinodiscus.
- the predetermined value of the chlorophyll concentration in the seawater at which chlorine supply is stopped is preferably 0.01 to 1.00 ⁇ g / l, and most preferably 0.05 ⁇ g / l.
- the concentration of chlorophyll in seawater is measured and used as an index of the total amount of organic matter.
- the total mass or total weight of phytoplankton may be used as an index.
- zooplankton is not particularly limited, but examples include barnacles such as red barnacles, mussels such as blue mussels, and hydras such as red hydrangea.
- the predetermined value of zooplankton is not particularly limited, but it is preferable to supply chlorine to the zooplankton adhering larva as soon as it is detected.
- the chlorine concentration to be introduced is not particularly limited, and the injection concentration is such that it is not detected at the outlet in consideration of the change in chlorine consumption in seawater.
- chlorine for example, sodium hypochlorite, powdered chlorine, chloride ion by seawater electrolysis and the like are preferably added, but not particularly limited.
- the method by which the chlorine supply control device obtains information that the chlorophyll in seawater has a predetermined concentration or more is not particularly limited, and the concentration of chlorophyll can be measured by a known method such as quantification by a chlorophyll fluorescence measurement device or quantification by acetone extraction. .
- the divalent iron ion supply device is not limited as long as it can be supplied to seawater into which iron divalent ions are injected.
- the chlorine supply device is not particularly limited as long as chlorine can be supplied to seawater.
- the chlorine supply control device is a device that controls the supply amount of chlorine with respect to the chlorine supply device, and the above-described chlorine supply control device can be used.
- the chlorine supply control device may control the opening and closing of the supply electromagnetic valve.
- the device for measuring the concentration of chlorophyll may be, for example, a chlorophyll fluorescent device (Turner Design Co., Ltd., Kasa Principle Kagaku Kogyo Co., Ltd., JFE Advantech, etc.) By visual observation under a microscope.
- a chlorophyll fluorescent device Teurner Design Co., Ltd., Kasa Principle Kagaku Kogyo Co., Ltd., JFE Advantech, etc.
- Test section 1 Diatom solution + iron ion (100ppm) + chlorine concentration (30ppm)
- Test section 2 Diatom solution + iron ion (100ppm)
- Test Zone 3 Filtered seawater + iron ion (100ppm) + chlorine concentration (30ppm)
- a reddish brown film was confirmed, but in the test groups 2 and 3, no film formation was observed (FIG. 4).
- FOG. 4 In the test group 1, a reddish brown film was confirmed, but in the test groups 2 and 3, no film formation was observed (FIG. 4). Thus, it can be seen that a film is formed when iron ions and chlorine coexist with diatom.
- phytoplankton starts to increase from the beginning of February, and zooplankton starts to increase from the end of May. This is because phytoplankton begins to increase with prolonged sunshine and a rise in seawater temperature, and zooplankton begins to increase after the growth of phytoplankton.
- An object of the present invention is to provide a chlorine supply control device, a chlorine supply control method, and a pipe protection system.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
【課題】本発明は、塩素供給制御装置、塩素供給制御方法、及び管保護システムを提供することを目的とする。そのため、海水を注水する管の管保護システムは、前記海水に二価鉄イオンを供給する二価鉄イオン供給装置と、前記海水に塩素を供給する塩素供給装置と、前記海水に対する前記塩素供給を制御する塩素供給制御装置と、前記海水中のクロロフィルを検出する第一の検出装置と、前記海水中の動物プランクトンを検出する第二の検出装置と、を備え、前記二価鉄イオン供給装置は、前記海水に二価鉄イオンを供給し、前記塩素供給制御装置は、第一の検出装置が前記クロロフィルを所定の濃度以上検出した時に塩素供給を減量し、その後、第二の検出装置が前記動物プランクトンを所定の密度以上検出した時に塩素供給を増量するように、前記塩素供給装置による塩素供給を制御するものとする。
Description
本発明は、塩素供給制御装置、塩素供給制御方法、及び管保護システムに関する。
発電所復水器へは、冷却用循環水として、海水が用いられているが、その循環水の通り道であるアルミ黄銅製の復水器内熱交換細管には、フジツボ類・イガイ類等の付着性生物が付着するという問題があった。このような復水器内熱交換細管への付着性生物の付着は、復水器内熱交換細管の熱伝導率の低下や復水器真空度の低下を招き、結果的に発電機出力を低下させる。この解決手法として、付着性生物の付着を防止するため、海水への塩素注入が行われている(特許公開2011-92821号)。
近年、四季のある日本の発電所では冬季の一時期において、循環海水温度が低く、大きな温度変化がないにも関わらず、復水器真空度が低下し、発電機出力に影響を与えるという現象が起きている。発明者らは、その原因について研究し、その時期に爆発的に増殖する植物プランクトンが塩素によって破壊されることで、海水中に内容物である大量の有機物が放出され、後述するように、それらが復水器細管内に通常とは異なる皮膜の形成に寄与していることを見出し、本発明の完成に至った。
本発明の一実施態様は、二価鉄イオンを含む海水を注水する管に対する塩素供給を制御する塩素供給制御装置であって、前記海水中のクロロフィルが所定の濃度以上の時に前記塩素供給を減量し、その後、前記動物プランクトンが所定の密度以上の時に前記塩素供給を増量するように、前記塩素供給を制御する、塩素供給制御装置である。前記海水中のクロロフィルが所定の濃度以上の時に前記塩素供給を停止し、その後、前記動物プランクトンが所定の密度以上の時に前記塩素供給を再開してもよい。前記管が、発電所復水器内熱交換細管であってもよい。前記管が、アルミ黄銅製であってもよい。
本発明の他の一実施態様は、海水を注水する管の管保護システムであって、前記海水に二価鉄イオンを供給する二価鉄イオン供給装置と、前記海水に塩素を供給する塩素供給装置と、前記海水に対する前記塩素供給を制御する塩素供給制御装置と、前記海水中のクロロフィルを検出する第一の検出装置と、前記海水中の動物プランクトンを検出する第二の検出装置と、を備え、前記二価鉄イオン供給装置は、前記海水に二価鉄イオンを供給し、前記塩素供給制御装置は、第一の検出装置が前記クロロフィルを所定の濃度以上検出した時に塩素供給を減量し、その後、第二の検出装置が前記動物プランクトンを所定の密度以上検出した時に塩素供給を増量するように、前記塩素供給装置による塩素供給を制御する、管保護システムである。第一の検出装置が前記クロロフィルを所定の濃度以上検出した時に前記塩素供給を停止し、その後、第二の検出装置が前記動物プランクトンを所定の密度以上検出した時に前記塩素供給を再開してもよい。前記管が、発電所復水器内熱交換細管であってもよい。前記管が、アルミ黄銅製であってもよい。
本発明のさらなる他の一実施態様は、二価鉄イオンを含む海水を注水する管に対する塩素供給を制御する塩素供給制御方法であって、前記海水中のクロロフィルが所定の濃度以上検出された時に塩素供給を減量し、その後、前記海水中の動物プランクトンが所定の密度以上検出された時に塩素供給を増量するように、前記塩素供給を制御する、塩素供給制御方法である。前記クロロフィルが所定の濃度以上検出された時に前記塩素供給を停止し、前記動物プランクトンが所定の密度以上検出された時に前記塩素供給を再開してもよい。前記管が、発電所復水器内熱交換細管であってもよい。前記管が、アルミ黄銅製であってもよい。
本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的に実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
==塩素供給制御方法==
本発明にかかる、二価鉄イオンを含む海水を注水する管に対する塩素供給を制御する塩素供給制御方法は、海水中のクロロフィルが所定の濃度以上検出された時に塩素供給を減量し、その後、海水中の動物プランクトンが所定の密度以上検出された時に塩素供給を増量するように、塩素供給を制御する。減量は、50%減量が好ましく、80%減量がより好ましく、90%減量がさらに好ましく、100%減量、すなわち供給停止が最も好ましい。また、増量は、停止前の塩素供給量と比較して、50%になるまで増量するのが好ましく、80%になるまで増量するのがより好ましく、90%になるまで増量するのがさらに好ましく、100%になるまで増量するのが最も好ましいが、100%以上になるまで増量してもかまわない。
本発明にかかる、二価鉄イオンを含む海水を注水する管に対する塩素供給を制御する塩素供給制御方法は、海水中のクロロフィルが所定の濃度以上検出された時に塩素供給を減量し、その後、海水中の動物プランクトンが所定の密度以上検出された時に塩素供給を増量するように、塩素供給を制御する。減量は、50%減量が好ましく、80%減量がより好ましく、90%減量がさらに好ましく、100%減量、すなわち供給停止が最も好ましい。また、増量は、停止前の塩素供給量と比較して、50%になるまで増量するのが好ましく、80%になるまで増量するのがより好ましく、90%になるまで増量するのがさらに好ましく、100%になるまで増量するのが最も好ましいが、100%以上になるまで増量してもかまわない。
ここで、二価鉄イオンを含む海水は、海水に二価鉄イオンを生じる化合物を添加することで製造できる。二価鉄イオンは、例えば、硫酸第一鉄が好ましいが、特に限定されない。添加方法や頻度は特に限定されないが、常時添加されているのが好ましい。二価鉄イオンの濃度は、好ましくは0.05ppm以上であり、より好ましくは0.1ppm以上であり、さらに好ましくは0.3ppm以上であり、さらに好ましくは、1.0ppm以上であるが、好ましくは、10ppm以下であり、より好ましくは、3.0ppm以下であり、さらに好ましくは1.0ppm以下である。
対象となる管は、発電所復水器内熱交換細管が好ましいが、特に限定されない。管の材料も特に限定されないが、アルミ黄銅が好ましい。
対象の植物プランクトンは特に限定されないが、コスキノディスカス(Coscinodiscus)が例示できる。
塩素供給を停止する海水中のクロロフィルの濃度の所定値は、0.01~1.00μg/lの値であることが好ましく、0.05μg/lが最も好ましい。なお、本方法では、海水中のクロロフィルの濃度を測定し、総有機物量の指標としているが、植物プランクトンの総質量や総重量を指標としてもよい。
また、動物プランクトンも特に限定されないが、アカフジツボなどのフジツボ類、ムラサキイガイなどのイガイ類、ベニクダウミヒドラなどのヒドラ類が例示できる。
動物プランクトンの所定値は特に限定されないが、検出されると直ちに動物プランクトンの付着期幼生に対して塩素を供給するのが好ましい。
導入する塩素濃度は、特に限定されず、海水中における塩素の消費量の変化を考慮し、放水口において検出されないような注入濃度とする。塩素は、例えば、次亜塩素酸ナトリウム、粉末塩素,海水電解による塩化物イオンなどを添加することが好ましいが、特に限定されない。
植物プランクトンが増加した後も、二価鉄イオンを含む海水を注水する管に塩素供給を続けていると、実施例で後述するように、植物プランクトンが塩素で破壊されて放出される有機物と、二価鉄存在下で沈殿が生じ、その沈殿が管壁に沈着し、皮膜を形成するため、復水器真空度が低下し、発電機出力に影響が及ぶ。従って、クロロフィルの濃度が所定値以上になったら、塩素供給を減量することで、皮膜の形成を防止することができる。塩素供給は、また、動物プランクトンの密度が所定値以上になったら、塩素供給を増量することで、動物プランクトンを駆除することができる。
以下、本方法に用いることができる装置例について、詳細に述べる。
==塩素供給制御装置==
本発明にかかる塩素供給制御装置は、二価鉄イオンを含む海水を注水する管に対する塩素供給を制御する塩素供給制御装置であって、海水中のクロロフィルが所定の濃度以上の時に塩素供給を減量し、その後、動物プランクトンが所定の密度以上の時に塩素供給を増量するように、塩素供給を制御する。塩素供給制御装置が、海水中のクロロフィルが所定の濃度以上である情報を得る方法は特に限定されず、クロロフィルの濃度は、クロロフィル蛍光測定装置による定量やアセトン抽出による定量など公知の方法によって計測できる。
本発明にかかる塩素供給制御装置は、二価鉄イオンを含む海水を注水する管に対する塩素供給を制御する塩素供給制御装置であって、海水中のクロロフィルが所定の濃度以上の時に塩素供給を減量し、その後、動物プランクトンが所定の密度以上の時に塩素供給を増量するように、塩素供給を制御する。塩素供給制御装置が、海水中のクロロフィルが所定の濃度以上である情報を得る方法は特に限定されず、クロロフィルの濃度は、クロロフィル蛍光測定装置による定量やアセトン抽出による定量など公知の方法によって計測できる。
==管保護システム==
本発明にかかる、海水を注水する管の管保護システムは、海水に二価鉄イオンを供給する二価鉄イオン供給装置と、海水に塩素を供給する塩素供給装置と、海水に対する塩素供給を制御する塩素供給制御装置と、海水中のクロロフィルを検出する第一の検出装置と、海水中の動物プランクトンを検出する第二の検出装置と、を備え、二価鉄イオン供給装置は、海水に二価鉄イオンを供給し、塩素供給制御装置は、第一の検出装置がクロロフィルを所定の濃度以上検出した時に塩素供給を減量し、その後、第二の検出装置が動物プランクトンを所定の密度以上検出した時に塩素供給を増量するように、塩素供給装置による塩素供給を制御する。
本発明にかかる、海水を注水する管の管保護システムは、海水に二価鉄イオンを供給する二価鉄イオン供給装置と、海水に塩素を供給する塩素供給装置と、海水に対する塩素供給を制御する塩素供給制御装置と、海水中のクロロフィルを検出する第一の検出装置と、海水中の動物プランクトンを検出する第二の検出装置と、を備え、二価鉄イオン供給装置は、海水に二価鉄イオンを供給し、塩素供給制御装置は、第一の検出装置がクロロフィルを所定の濃度以上検出した時に塩素供給を減量し、その後、第二の検出装置が動物プランクトンを所定の密度以上検出した時に塩素供給を増量するように、塩素供給装置による塩素供給を制御する。
二価鉄イオン供給装置は、鉄の二価イオンを管に注入する海水に供給できれば、限定されない。
塩素供給装置も、海水に塩素が供給できれば、特に限定されない。
塩素供給制御装置は、塩素供給装置に対し、塩素の供給量を制御する装置であり、上述した塩素供給制御装置を用いることができる。例えば、塩素供給装置が塩素を液体の形で、電磁弁を通じて供給する場合、塩素供給制御装置は、その供給電磁弁の開閉を制御すればよい。
クロロフィルの濃度を測定する装置は、例えば、クロロフィル蛍光装置(ターナーデザイン社製、笠原理化工業,JFEアドバンテックなどであってもよい。動物プランクトンの検出は、幼生検出キット(Wako社)によるか,あるいは顕微鏡観察による目視による。
(1)模擬配管による海水通水試験
発電所1号機の復水器入口 CSW ベント配管ライン(ベント弁下流側)にアルミ黄銅管を実装した模擬配管経路を仮設し、本系統と同様の海水を通水することで、アルミ黄銅管内における鉄皮膜の形成状況を観察した。アルミ黄銅管には、実際の復水器冷却管であるフェロコチューブ (神鋼メタルプロダクツ社製 JISH3300C6872T-0 アルミブラス;外径3.175 cm、厚さ2.14 mm)を使用した。アルミ黄銅管内への供給流量を1.4L/sec とすることにより、実際の復水器と同様、細管内流速2.4 m/sec を再現した。なお、通水は、夜間の取水槽ゲート部への鉄イオン注入時 (通常注入時; 鉄イオン濃度0.1ppm 7時間)を含め、常時行った。模擬配管経路は、本系統の復水器とは “温度・流れ (層流・乱流)” などの物理的要因が異なるものとなるが、定期的な細管の一部採取を可能とすることで、経時的な皮膜形成状況に関して付加的なデータを得る。ちなみに、模擬配管経路設置時には、植物プランクトンが大量に確認されており,通常真空度が低下する時期である。
発電所1号機の復水器入口 CSW ベント配管ライン(ベント弁下流側)にアルミ黄銅管を実装した模擬配管経路を仮設し、本系統と同様の海水を通水することで、アルミ黄銅管内における鉄皮膜の形成状況を観察した。アルミ黄銅管には、実際の復水器冷却管であるフェロコチューブ (神鋼メタルプロダクツ社製 JISH3300C6872T-0 アルミブラス;外径3.175 cm、厚さ2.14 mm)を使用した。アルミ黄銅管内への供給流量を1.4L/sec とすることにより、実際の復水器と同様、細管内流速2.4 m/sec を再現した。なお、通水は、夜間の取水槽ゲート部への鉄イオン注入時 (通常注入時; 鉄イオン濃度0.1ppm 7時間)を含め、常時行った。模擬配管経路は、本系統の復水器とは “温度・流れ (層流・乱流)” などの物理的要因が異なるものとなるが、定期的な細管の一部採取を可能とすることで、経時的な皮膜形成状況に関して付加的なデータを得る。ちなみに、模擬配管経路設置時には、植物プランクトンが大量に確認されており,通常真空度が低下する時期である。
未使用のチューブ(図1左)と比べ、設置後一ヶ月には、管の内面にべったりした膜ができていた(図1右)。植物プランクトンと塩素によって有機物が大量に海水中に吐露され,そこに鉄が加わることで形成したものであると考えられた。内面の膜は、少し管に衝撃が加わっただけで簡単に片寄るようなものであった。
(2)ビーカーでの実験
目合い32μmのメッシュフィルターを用いて培養培地中のチョウチンケイソウを捕集し、濾過海水で洗浄した後、濾過海水中に移した。この珪藻溶液(珪藻密度 27x103個/mL)に、図に示した濃度の次亜塩素酸ナトリウムを加え、その後に硫酸第一鉄を鉄イオンが100ppmになるように加えたところ(図3)、3者が存在し、しかも、珪藻が存在する場合、塩素が30ppmで、橙褐色の沈殿が形成された。珪藻が存在しない場合は、その10倍である300ppmの塩素がないと、橙褐色の沈殿が生じなかった。このように、有機物が存在すると、橙褐色の沈殿が非常に生じやすくなる。
目合い32μmのメッシュフィルターを用いて培養培地中のチョウチンケイソウを捕集し、濾過海水で洗浄した後、濾過海水中に移した。この珪藻溶液(珪藻密度 27x103個/mL)に、図に示した濃度の次亜塩素酸ナトリウムを加え、その後に硫酸第一鉄を鉄イオンが100ppmになるように加えたところ(図3)、3者が存在し、しかも、珪藻が存在する場合、塩素が30ppmで、橙褐色の沈殿が形成された。珪藻が存在しない場合は、その10倍である300ppmの塩素がないと、橙褐色の沈殿が生じなかった。このように、有機物が存在すると、橙褐色の沈殿が非常に生じやすくなる。
(4)皮膜形成実験
(3)と同様の溶液を調整し、アルミ黄銅片(試験片)を浸漬し、皮膜の形成状態を確認した。アルミ黄銅片には、実際の復水器冷却管であるフェロコチューブ(神鋼メタルプロダクツ社製 JISH3300C6872T-0 アルミブラス; 外径3.175 cm、厚さ2.14 mm)をダイヤモンドソーにより切断した、長さ2cm の半管を使用した。各試験区への浸漬時間は49 時間 (通常鉄注入7 時間×7 日間に相当) とした。試験終了後、試験水中から試験片をゆっくりと垂直に引き上げ回収し、室温にて2日間自然乾燥させた(図4)。試験片上に乾燥・固化した皮膜を実体顕微鏡により観察し(図5)、また、その成分の分析 (元素分析) を行った。
(3)と同様の溶液を調整し、アルミ黄銅片(試験片)を浸漬し、皮膜の形成状態を確認した。アルミ黄銅片には、実際の復水器冷却管であるフェロコチューブ(神鋼メタルプロダクツ社製 JISH3300C6872T-0 アルミブラス; 外径3.175 cm、厚さ2.14 mm)をダイヤモンドソーにより切断した、長さ2cm の半管を使用した。各試験区への浸漬時間は49 時間 (通常鉄注入7 時間×7 日間に相当) とした。試験終了後、試験水中から試験片をゆっくりと垂直に引き上げ回収し、室温にて2日間自然乾燥させた(図4)。試験片上に乾燥・固化した皮膜を実体顕微鏡により観察し(図5)、また、その成分の分析 (元素分析) を行った。
試験区1:珪藻溶液+鉄イオン(100ppm)+塩素濃度(30ppm)
試験区2:珪藻溶液+鉄イオン(100ppm)
試験区3:濾過海水+鉄イオン(100ppm)+塩素濃度(30ppm)
試験区1では、赤褐色の皮膜が確認されたが、試験区2、3では、皮膜の形成は認められなかった(図4)。このように、珪藻に対し、鉄イオンと塩素が共存すると、皮膜が形成されることがわかる。
試験区2:珪藻溶液+鉄イオン(100ppm)
試験区3:濾過海水+鉄イオン(100ppm)+塩素濃度(30ppm)
試験区1では、赤褐色の皮膜が確認されたが、試験区2、3では、皮膜の形成は認められなかった(図4)。このように、珪藻に対し、鉄イオンと塩素が共存すると、皮膜が形成されることがわかる。
以上より、冬の一時期に、復水器真空度が低下し、発電機出力に影響を与えるのは、植物プランクトンが、塩素及び鉄イオンの存在下で、皮膜を形成するためであることがわかる。
(5)プランクトンの発生時期
平成23年及び24年に、1号機復水器、2号機復水器で、動物プランクトンとして、フジツボ類キプリス幼生の500L辺りの固体数を測定した。また、平成23年に、取水口及び2号機復水器で、平成24年1号機復水器、植物プランクトンの500L辺りの固体数を測定した。
平成23年及び24年に、1号機復水器、2号機復水器で、動物プランクトンとして、フジツボ類キプリス幼生の500L辺りの固体数を測定した。また、平成23年に、取水口及び2号機復水器で、平成24年1号機復水器、植物プランクトンの500L辺りの固体数を測定した。
図6に示したように、植物プランクトンは、2月初旬から増え始め、動物プランクトンは、5月下旬から増え始める。それは、日照の長時間化や海水の温度上昇とともに植物プランクトンが増え始め、植物プランクトンの増殖後、それを餌として、動物プランクトンが増え始めるためである。
従って、植物プランクトンが増え始めてから動物プランクトンが増え始めるまでの間、塩素注入を止めるのが好ましい。
本発明は、塩素供給制御装置、塩素供給制御方法、及び管保護システムを提供することを目的とする。
Claims (12)
- 二価鉄イオンを含む海水を注水する管に対する塩素供給を制御する塩素供給制御装置であって、
前記海水中のクロロフィルが所定の濃度以上の時に前記塩素供給を減量し、その後、前記動物プランクトンが所定の密度以上の時に前記塩素供給を増量するように、前記塩素供給を制御する、塩素供給制御装置。 - 前記海水中のクロロフィルが所定の濃度以上の時に前記塩素供給を停止し、その後、前記動物プランクトンが所定の密度以上の時に前記塩素供給を再開する、請求項2に記載の塩素供給制御装置。
- 前記管が、発電所復水器内熱交換細管である、請求項1または2に記載の塩素供給制御装置。
- 前記管が、アルミ黄銅製である、請求項1~3のいずれか1項に記載の塩素供給制御装置。
- 海水を注水する管の管保護システムであって、
前記海水に二価鉄イオンを供給する二価鉄イオン供給装置と、
前記海水に塩素を供給する塩素供給装置と、
前記海水に対する前記塩素供給を制御する塩素供給制御装置と、
前記海水中のクロロフィルを検出する第一の検出装置と、
前記海水中の動物プランクトンを検出する第二の検出装置と、を備え、
前記二価鉄イオン供給装置は、前記海水に二価鉄イオンを供給し、
前記塩素供給制御装置は、第一の検出装置が前記クロロフィルを所定の濃度以上検出した時に塩素供給を減量し、その後、第二の検出装置が前記動物プランクトンを所定の密度以上検出した時に塩素供給を増量するように、前記塩素供給装置による塩素供給を制御する、管保護システム。 - 第一の検出装置が前記クロロフィルを所定の濃度以上検出した時に前記塩素供給を停止し、その後、第二の検出装置が前記動物プランクトンを所定の密度以上検出した時に前記塩素供給を再開する、請求項5に記載の管保護システム。
- 前記管が、発電所復水器内熱交換細管である、請求項5または6に記載の管保護システム。
- 前記管が、アルミ黄銅製である、請求項5~7のいずれか1項に記載の管保護システム。
- 二価鉄イオンを含む海水を注水する管に対する塩素供給を制御する塩素供給制御方法であって、
前記海水中のクロロフィルが所定の濃度以上検出された時に塩素供給を減量し、その後、前記海水中の動物プランクトンが所定の密度以上検出された時に塩素供給を増量するように、前記塩素供給を制御する、塩素供給制御方法。 - 前記クロロフィルが所定の濃度以上検出された時に前記塩素供給を停止し、前記動物プランクトンが所定の密度以上検出された時に前記塩素供給を再開する、請求項9に記載の塩素供給制御方法。
- 前記管が、発電所復水器内熱交換細管である、請求項9または10に記載の塩素供給制御方法。
- 前記管が、アルミ黄銅製である、請求項9~11のいずれか1項に記載の塩素供給制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015515741A JP5833275B1 (ja) | 2013-12-16 | 2013-12-16 | 塩素供給制御装置、塩素供給制御方法、及び管保護システム |
PCT/JP2013/083636 WO2015092850A1 (ja) | 2013-12-16 | 2013-12-16 | 塩素供給制御装置、塩素供給制御方法、及び管保護システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/083636 WO2015092850A1 (ja) | 2013-12-16 | 2013-12-16 | 塩素供給制御装置、塩素供給制御方法、及び管保護システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015092850A1 true WO2015092850A1 (ja) | 2015-06-25 |
Family
ID=53402246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/083636 WO2015092850A1 (ja) | 2013-12-16 | 2013-12-16 | 塩素供給制御装置、塩素供給制御方法、及び管保護システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5833275B1 (ja) |
WO (1) | WO2015092850A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017103966A1 (ja) * | 2015-12-14 | 2017-06-22 | 中国電力株式会社 | 模擬配管装置 |
WO2022014490A1 (ja) * | 2020-07-15 | 2022-01-20 | 中国電力株式会社 | 異物付着防止装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62129697A (ja) * | 1985-11-28 | 1987-06-11 | Kansai Electric Power Co Inc:The | 銅合金製復水器管の防食・防汚管理方法 |
JPH06296972A (ja) * | 1993-04-15 | 1994-10-25 | Tatsumi Eng Kk | 閉鎖水域の浄化方法及び浄化設備 |
JPH11333466A (ja) * | 1998-05-28 | 1999-12-07 | Kansai Electric Power Co Inc:The | 海生物の付着防止方法 |
JP2006026545A (ja) * | 2004-07-16 | 2006-02-02 | Ryomei Eng Corp Ltd | バラストタンク水中生物のオゾン処理 |
WO2008041400A1 (fr) * | 2006-09-29 | 2008-04-10 | Katayama Chemical, Inc. | Procédé d'inhibition du moussage dans un circuit de refroidissement à base d'eau de mer |
JP2012148770A (ja) * | 2005-02-09 | 2012-08-09 | Toshiba Corp | バラスト水浄化装置、船舶及びバラスト水浄化方法 |
-
2013
- 2013-12-16 JP JP2015515741A patent/JP5833275B1/ja active Active
- 2013-12-16 WO PCT/JP2013/083636 patent/WO2015092850A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62129697A (ja) * | 1985-11-28 | 1987-06-11 | Kansai Electric Power Co Inc:The | 銅合金製復水器管の防食・防汚管理方法 |
JPH06296972A (ja) * | 1993-04-15 | 1994-10-25 | Tatsumi Eng Kk | 閉鎖水域の浄化方法及び浄化設備 |
JPH11333466A (ja) * | 1998-05-28 | 1999-12-07 | Kansai Electric Power Co Inc:The | 海生物の付着防止方法 |
JP2006026545A (ja) * | 2004-07-16 | 2006-02-02 | Ryomei Eng Corp Ltd | バラストタンク水中生物のオゾン処理 |
JP2012148770A (ja) * | 2005-02-09 | 2012-08-09 | Toshiba Corp | バラスト水浄化装置、船舶及びバラスト水浄化方法 |
WO2008041400A1 (fr) * | 2006-09-29 | 2008-04-10 | Katayama Chemical, Inc. | Procédé d'inhibition du moussage dans un circuit de refroidissement à base d'eau de mer |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017103966A1 (ja) * | 2015-12-14 | 2017-06-22 | 中国電力株式会社 | 模擬配管装置 |
JPWO2017103966A1 (ja) * | 2015-12-14 | 2017-12-14 | 中国電力株式会社 | 模擬配管装置 |
WO2022014490A1 (ja) * | 2020-07-15 | 2022-01-20 | 中国電力株式会社 | 異物付着防止装置 |
JP7090270B1 (ja) * | 2020-07-15 | 2022-06-24 | 中国電力株式会社 | 異物付着防止装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5833275B1 (ja) | 2015-12-16 |
JPWO2015092850A1 (ja) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Flemming | Biofouling and me: My Stockholm syndrome with biofilms | |
US11105730B2 (en) | System and method for detecting biofilm growth in water systems | |
CN108843314B (zh) | 用于产水气井井筒结垢风险评价的实验装置与方法 | |
CN101254953A (zh) | 循环冷却水净化再利用自动监控系统 | |
Frota et al. | On-line cleaning technique for mitigation of biofouling in heat exchangers: A case study of a hydroelectric power plant in Brazil | |
JP5833275B1 (ja) | 塩素供給制御装置、塩素供給制御方法、及び管保護システム | |
CN101696926A (zh) | 一种模拟海下固相表面所受流体剪切力的装置 | |
Xu et al. | Experimental study on microbial fouling characteristics of the plate heat exchanger | |
US11662314B2 (en) | System and method of inline deposit detection in process fluid | |
JPH03288586A (ja) | 水系の汚れのモニタリング方法 | |
ZA200104394B (en) | A biofouling monitor and methods to monitor or detect biofouling. | |
Walker et al. | Study of microbial biofilms using light microscope techniques | |
CN207209988U (zh) | 一种开放式冷却水加药装置 | |
CN205470693U (zh) | 储罐 | |
Tong et al. | Insight into the membrane fouling in a pilot SWNF system with different membrane module arrangements | |
CN106501132A (zh) | 一种防污材料抗生物污损性能测试方法 | |
Jaglarz et al. | Experimental study of fouling in plate heat exchangers in district heating systems | |
Wan et al. | Influence of hydrophobic coatings on fouling mechanism of combined fouling in enhanced tubes | |
Melo et al. | 18 Mechanistic aspects of heat exchanger and membrane biofouling and prevention | |
JP2012011287A (ja) | 検水中のアルミニウム濃度測定方法及び自動測定装置、並びにシリカ系スケール付着防止剤濃度の制御方法 | |
Tsvetanova et al. | Assessment of microbial growth potential of PVC flexible tubing in contact with drinking water | |
JP2007198869A (ja) | 水系のバイオフィルムモニタリング方法 | |
Ras | Control of Biofouling on Reverse Osmosis membranes using DBNPA | |
Perez et al. | Scale prevention at high LSI, high cycles, and high pH without the need for acid feed | |
JP5805915B1 (ja) | 電解液供給装置および電解液供給方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015515741 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13899702 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13899702 Country of ref document: EP Kind code of ref document: A1 |