WO2015090730A1 - Taumelpumpe mit im stator gelagerter welle - Google Patents

Taumelpumpe mit im stator gelagerter welle Download PDF

Info

Publication number
WO2015090730A1
WO2015090730A1 PCT/EP2014/074158 EP2014074158W WO2015090730A1 WO 2015090730 A1 WO2015090730 A1 WO 2015090730A1 EP 2014074158 W EP2014074158 W EP 2014074158W WO 2015090730 A1 WO2015090730 A1 WO 2015090730A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
drive shaft
stator
rotor
shaft
Prior art date
Application number
PCT/EP2014/074158
Other languages
English (en)
French (fr)
Inventor
Marian Kacmar
Raed Hamada
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP14799383.6A priority Critical patent/EP3084126B1/de
Publication of WO2015090730A1 publication Critical patent/WO2015090730A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C3/00Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type
    • F04C3/06Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type the axes being arranged otherwise than at an angle of 90 degrees
    • F04C3/08Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type the axes being arranged otherwise than at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C3/00Rotary-piston machines or engines with non-parallel axes of movement of co-operating members
    • F01C3/06Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees
    • F01C3/08Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F01C3/085Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing the axes of cooperating members being on the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C3/00Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type
    • F04C3/06Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type the axes being arranged otherwise than at an angle of 90 degrees

Definitions

  • the invention relates to a tumble pump. Background of the invention
  • An embodiment of a tumble pump is known from WO 2008/110155 AI.
  • an offset obliquely on a pump shaft of the tumble pump rotor is rotated by rotation of the pump shaft relative to a pump stator in a tumbling motion, so that between the
  • Pump rotor and the pump stator formed pump chambers are increased in volume and reduced. These chambers are connected to an input and an output of the tumble pump, so that a fluid is conveyed by the tumble pump.
  • a tumble pump can be provided with a shortened length. Furthermore, friction losses can be reduced with the tumble pump according to the invention.
  • the tumble pump comprises a pump stator attached to a housing of the tumble pump and a pump rotor guided in the pump stator, which is driven by a drive shaft by means of an oblique face such that it wobbles with its rotor axis about a drive axis of the drive shaft.
  • the drive shaft protrudes through the pump rotor through a through hole and is mounted in a bearing of the pump stator.
  • a rotation of the drive shaft may lead to a tumbling of the pump rotor with respect to the pump stator, whereby pump chambers formed between the pump stator and the pump rotor by a toothing be enlarged and reduced so that a fluid is conveyed by the tumble pump.
  • the pump stator and the pump rotor may have a cycloid-shaped toothing.
  • the drive shaft is mounted in the pump stator. This storage can be done in the radial and optionally in the radial direction.
  • the bearing in the pump stator opposite the bearing in the pump stator opposite
  • Both bearings or at least the bearing in the pump stator, can be designed as plain bearings.
  • radial forces can be absorbed by the two bearings and on the other hand, the sealing function can be decoupled between the mounted on the drive shaft pump shaft and the pump housing from the storage.
  • the bearing in the stator (and also the other bearings) can be designed with a smaller radius than the radius of the pump shaft, which is intended as a sealing point. This can lead to lower slide bearing speeds, which can counteract the generation of heat and friction.
  • the oblique face is provided by a pump shaft, which is positively placed on the drive shaft.
  • a positive connection of the pump shaft directly to the drive shaft can spare a driver.
  • the pump shaft is positively placed on the drive shaft.
  • the arrangement may also be more resistant to particles that can pass the pump shaft passing through a sealing point, since the use of a metallic sleeve in the housing is possible.
  • the drive shaft may have an additional sliding bearing (for example at an end opposite the pump stator).
  • the drive shaft carries a rotor of an electric motor as a drive.
  • the drive shaft can then in a
  • housing part of the tumble pump which carries a stator of the electric motor to be stored.
  • the drive shaft may be a one-piece shaft, which is mounted at its two ends in the stator and in a housing part.
  • the tumble pump further comprises a spring for pressing the drive shaft in the direction of the pump stator. In this way, the sealing function between the spherical surfaces of the
  • this axial force can be generated by carbon brushes of the electric motor (which have a spring).
  • the stator of the electric motor is offset in relation to the rotor of the electric motor in the axial direction such that when operating the motor, the drive shaft is moved by electromagnetic forces in the direction of the pump stator.
  • the axial force can also be generated directly by the electric motor, so that it is possible to dispense with a separate spring.
  • the drive shaft on two coupled drive shaft parts may support the rotor of an electric motor.
  • Another, second part of the drive shaft can carry the pump shaft.
  • the second part of the drive shaft may be mounted in the pump stator and in a further housing part.
  • the two parts of the drive shaft can be positively coupled by means of a pin. In a two-piece drive shaft radial forces and tilting moments can be particularly well received, since they can be distributed to several bearings for the drive shaft parts.
  • the passage opening has inside larger diameter than the drive shaft.
  • the pump rotor can tumble around the drive shaft.
  • the oblique end face is arranged on a side facing away from the electric motor of the tumble pump pump shaft.
  • the toothing of the pump stator faces the electric motor.
  • the oblique end face is arranged on a side facing the electric motor of the tumble pump side of the pump shaft.
  • the toothing of the pump stator is arranged on the side facing away from the electric motor.
  • the pump stator, the pump shaft and the pump rotor received (in that order) between a drive and a housing termination.
  • the spherical surfaces of the pump rotor point towards the drive.
  • One end of the drive shaft may be supported in the housing end part. Further, it is possible that one end of the drive shaft or a
  • Drive shaft part is mounted in a further housing part, which also receives a drive of the tumble pump, such as an electric motor.
  • Fig. 1 shows a cross section through a tumble pump according to a
  • Fig. 2 shows a cross section through a tumble pump according to another embodiment of the invention.
  • Fig. 3 shows a cross section of a portion of a tumble pump according to another embodiment of the invention.
  • a tumble pump 10 which has a housing 12, which is constructed from a plurality of housing parts, an end part 14 has an inlet or inlet 16 of the tumble pump 10.
  • a sealing member 20 provides a seal between a low-pressure region 24 and a high-pressure region 22 and a further end portion 26 serves as a pump stator 28th
  • the housing parts 14, 16, 20 and 26 are held together by a metal ring 30.
  • a shaft assembly 32 includes a drive shaft 34 which is journaled at one end in the support member 16 and at the other end in the pump stator 28 by means of plain bearings 36,38.
  • the one-piece drive shaft 34 carries a rotor 40 of the electric motor 18, which is received in a stator 42 received on the support member 16.
  • the drive shaft 34 carries a pump shaft 44 which is positively placed on the drive shaft 34.
  • the pump shaft 44 is guided in the sealing part 20 such that a seal between the
  • the pump shaft 34 provides an oblique (see FIG. 2) end face 46 which cooperates with and is mechanically coupled to a pump rotor 48.
  • the pump rotor 48 and the pump stator 28 provide spherical surfaces
  • Fluid from the low pressure region 24 is conveyed into the high-pressure region 22.
  • the pump rotor 48 has on its side facing away from the end face 46 a toothing, which is formed on a pump stator 28 on the
  • Gear teeth of the pump rotor 48 and the toothing of the pump stator 28 are designed, for example, as a cycloidal toothing, but can also be a different toothing.
  • the pump rotor has a through hole 49 through which the
  • the passage opening 49 has a larger one
  • the drive shaft 34 can be acted upon by a spring 51 in the axial direction with force, so that via the (positively connected) pump shaft 44, the pump rotor 48 is pressed against the pump stator 28. This can be done alternatively or additionally by a corresponding offset of the rotor 40 of the electric motor 18 relative to the stator 42.
  • FIG. 2 shows a second exemplary embodiment of the tumble pump 10, in which the components pump shaft 34, pump rotor 48 and pump stator 28 are arranged reversed in comparison to FIG. Next, the components pump shaft 34, pump rotor 48 and pump stator 28 are arranged reversed in comparison to FIG. Next, the components pump shaft 34, pump rotor 48 and pump stator 28 are arranged reversed in comparison to FIG. Next, the components pump shaft 34, pump rotor 48 and pump stator 28 are arranged reversed in comparison to FIG.
  • Drive shaft 34 has two shaft parts 34a and 34b. High pressure and
  • the housing 12 has a carrier part 16 ', which carries the drive 18 or the stator 42, the pump stator 28 and an end part 20', on which the pump stator 28 is seated.
  • the opposite end part 14 with the inlet 16 is connected to the support part 16 'by means of an attachment 56.
  • the end portion 20 ' has a further seal for the high-pressure region 24 with respect to the environment, which may be realized, for example, with a sealing ring 58 extending between the carrier part 16' and the end part 20 '.
  • the drive shaft 34 comprises a first part 34 a, which carries the rotor 40 of the electric motor 18 and which is positively coupled via a pin 60 with a second part 34 b, which carries the pump rotor 48.
  • the first part 34a is mounted in the housing 12 by means of a sliding bearing 36.
  • the second part 34b is mounted in the stator 28 in a first sliding bearing 38 and in the end part 20 'in a second sliding bearing.
  • the pin 60 can be offset on the drive shaft part 34b on the stator 28, so that the drive shaft part 34b in an axial direction (from the drive 18th away).
  • FIG. 3 also shows that the pump shaft has at least one channel 64, which communicates with the high-pressure region 22 and has at least one channel 66, which communicates with the low-pressure region 24.
  • fluid from the low pressure region may flow into a pump chamber 54 via the channel 66, is transported by the rotor about the axis of the shaft, and then forced into the channel 64 by reducing the pumping chamber 54 as the pump rotor 48 is skewed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

Eine Taumelpumpe (10) umfasst einen an einem Gehäuse (12) der Taumelpumpe befestigten Pumpenstator (28) und einen im Pumpenstator (28) geführten Pumpenrotor (48), der von einer Antriebswelle (34) mittels einer schrägen Stirnfläche (46) derart angetrieben wird, dass er mit seiner Rotorachse um eine Antriebsachse der Antriebswelle (34) taumelt, wobei die Antriebswelle (34) den Pumpenrotor (48) durch eine Durchgangsöffnung (49) durchragt und in einer Lagerung des Pumpenstators (28) gelagert ist.

Description

Beschreibung
Titel
Taumelpumpe mit im Stator gelagerter Welle Gebiet der Erfindung Die Erfindung betrifft eine Taumelpumpe. Hintergrund der Erfindung
Eine Ausführungsform einer Taumelpumpe ist aus der WO 2008/110155 AI bekannt. Dabei wird ein schräg auf einer Pumpenwelle der Taumelpumpe abgesetzter Pumpenrotor durch Rotation der Pumpenwelle gegenüber einem Pumpenstator in eine Taumelbewegung versetzt, so dass zwischen dem
Pumpenrotor und dem Pumpenstator gebildete Pumpenkammern im Volumen vergrößert und verkleinert werden. Diese Kammern werden mit einem Eingang und einem Ausgang der Taumelpumpe verbunden, so dass ein Fluid durch die Taumelpumpe gefördert wird.
Auf die Pumpenwelle wirken radiale und axiale Kräfte, die beispielsweise, wie in der WO 2008/110155 AI gezeigt, durch ein Radialgleitlager für die Pumpenwelle aufgenommen werden. Der Gleitlagerspalt dient dabei auch zum Abdichten gegenüber dem komprimierten Fluid, was zu einem relativ langen Gleitlager führt.
Zusammenfassung der Erfindung
Mit der Erfindung kann eine Taumelpumpe mit einer verkürzten Baulänge bereitgestellt werden. Weiter können mit der erfindungsgemäßen Taumelpumpe Reibungsverluste vermindert werden. Diese Vorteile können mit dem Gegenstand der unabhängigen Ansprüche erreicht werden. Weitere Ausführungsformen der Erfindung ergeben sich aus den abhängigen Ansprüchen und aus der folgenden Beschreibung. Die Erfindung betrifft eine Taumelpumpe zum Fördern von Fluid, beispielsweise
Kraftstoff.
Gemäß einer Ausführungsform der Erfindung umfasst die Taumelpumpe einen an einem Gehäuse der Taumelpumpe befestigten Pumpenstator und einen im Pumpenstator geführten Pumpenrotor, der von einer Antriebswelle mittels einer schrägen Stirnfläche derart angetrieben wird, dass er mit seiner Rotorachse um eine Antriebsachse der Antriebswelle taumelt. Die Antriebswelle durchragt dabei den Pumpenrotor durch eine Durchgangsöffnung und ist in einer Lagerung des Pumpenstators gelagert.
Eine Rotation der Antriebswelle kann zu einem Taumeln des Pumpenrotors bezüglich des Pumpenstators führen, wodurch Pumpenkammern, die zwischen dem Pumpenstator und dem Pumpenrotor durch eine Verzahnung gebildet sind, derart vergrößert und verkleinert werden, dass ein Fluid durch die Taumelpumpe gefördert wird. Beispielsweise können der Pumpenstator und der Pumpenrotor eine zykloidenförmige Verzahnung aufweisen.
Bei der Taumelpumpe ist die Antriebswelle im Pumpenstator gelagert. Diese Lagerung kann in radialer und optional in radialer Richtung erfolgen. An einem weiteren Ende (dem Lager im Pumpenstator gegenüberliegend) kann die
Antriebswelle in einem Gehäuseteil des Pumpengehäuses gelagert sein. Beide Lager, oder zumindest das Lager im Pumpenstator, können als Gleitlager ausgeführt sein. Damit können einerseits Radialkräfte von den beiden Lagern aufgenommen werden und anderseits kann die Dichtfunktion zwischen einer auf der Antriebswelle aufgesteckten Pumpenwelle und dem Pumpengehäuse von der Lagerung entkoppelt werden.
Da die Antriebswelle an ihren Enden (und nicht in der Mitte) gelagert werden kann, kann ein Verkippen der Antriebswelle vermindert werden. Das Lager im Stator (und auch die anderen Lager) können mit einem geringeren Radius ausgeführt werden als der Radius der Pumpenwelle, der als Dichtstelle vorgesehen ist. Dies kann zu geringeren Gleitlagergeschwindigkeiten führen, was dem Entstehen von Wärme und Reibung entgegenwirken kann.
Gemäß einer Ausführungsform der Erfindung wird die schräge Stirnfläche von einer Pumpenwelle bereitstellt, die formschlüssig auf die Antriebswelle gesteckt ist. Eine formschlüssige Verbindung der Pumpenwelle direkt an der Antriebswelle kann einen Mitnehmer ersparen. Da es möglich ist, die Pumpenwelle
berührungslos im Gehäuse laufen zu lassen, kann die Reibung reduziert werden. Die Anordnung kann auch resistenter gegenüber Partikeln sein, die an der Pumpenwelle vorbei durch eine Dichtstelle dringen können, da der Einsatz einer metallischen Hülse im Gehäuse möglich ist.
Die Antriebswelle kann ein zusätzliches Gleitlager (beispielsweise an einem dem Pumpenstator gegenüberliegenden Ende) aufweisen. Dadurch können
Radialkräfte eines Antriebsmotors von Radialkräften an der Pumpenwelle entkoppelt werden. Gemäß einer Ausführungsform der Erfindung trägt die Antriebswelle einen Rotor eines Elektromotors als Antrieb. Die Antriebswelle kann dann in einem
Gehäuseteil der Taumelpumpe, das einen Stator des Elektromotors trägt, gelagert sein. Beispielsweise kann die Antriebswelle eine einstückige Welle sein, die an ihren beiden Enden im Stator und in einem Gehäuseteil gelagert ist.
Gemäß einer Ausführungsform der Erfindung umfasst die Taumelpumpe weiter eine Feder zum Drücken der Antriebswelle in Richtung des Pumpenstators. Auf diese Weise kann die Dichtfunktion zwischen den Kugelflächen des
Pumpenrotors bzw. Pumpenstators und der Verzahnung eingestellt bzw. erhöht werden, da der Pumpenrotor über die Antriebswelle und die Pumpenwelle in
Richtung Pumpenstator gedrückt wird.
Beispielsweise kann diese Axialkraft durch Kohle-Bürsten des Elektromotors (die eine Feder aufweisen) erzeugt werden. Gemäß einer Ausführungsform der Erfindung ist der Stator des Elektromotors derart gegenüber dem Rotor des Elektromotors in axialer Richtung versetzt, dass beim Betreiben des Motors die Antriebswelle durch elektromagnetische Kräfte in Richtung des Pumpenstators bewegt wird. Die Axialkraft kann auch direkt durch den Elektromotor erzeugt werden, so dass auf eine gesonderte Feder verzichtet werden kann.
Gemäß einer Ausführungsform der Erfindung weist die Antriebswelle zwei miteinander gekoppelte Antriebswellenteile auf. Ein Teil der Antriebswelle (eine Motorwelle) kann den Rotor eines Elektromotors tragen. Ein weiterer, zweiter Teil der Antriebswelle kann die Pumpenwelle tragen. Beispielsweise kann der zweite Teil der Antriebswelle im Pumpenstator und in einem weiteren Gehäuseteil gelagert sein. Die beiden Teile der Antriebswelle können mittels eines Stifts formschlüssig gekoppelt sein. Bei einer zweiteiligen Antriebswelle können radiale Kräfte und Kipp-Momente besonders gut aufgenommen werden, da sie auf mehrere Lager für die Antriebswellenteile verteilt werden können.
Gemäß einer Ausführungsform der Erfindung weist die Durchgangsöffnung innen größeren Durchmesser auf als die Antriebswelle. Somit kann der Pumpenrotor um die Antriebswelle taumeln.
Gemäß einer ersten Ausführungsform der Erfindung weist die schräge
Stirnfläche von einem Antrieb der Taumelpumpe weg. Dabei ist die schräge Stirnfläche auf einer dem Elektromotor der Taumelpumpe abgewandten Seite der Pumpenwelle angeordnet. Bei dieser ersten Ausführung ist die Verzahnung des Pumpenstators dem Elektromotor zugewandt. Beispielsweise sind die
Pumpenwelle und der Pumpenrotor (in dieser Reihenfolge) zwischen einem Antrieb der Pumpe und dem Pumpenstator aufgenommen. Dabei weisen die Kugelflächen des Pumpenrotors vom Antrieb weg.
Gemäß einer zweiten Ausführungsform der Erfindung weist die schräge
Stirnfläche zu einem Antrieb der Taumelpumpe hin. Dabei ist die schräge Stirnfläche auf einer dem Elektromotor der Taumelpumpe zugewandten Seite der Pumpenwelle angeordnet. Bei dieser zweiten Ausführung ist die Verzahnung des Pumpenstators auf der dem Elektromotor abgewandten Seite angeordnet.
Beispielsweise sind der Pumpenstator, die Pumpenwelle und der Pumpenrotor (in dieser Reihenfolge) zwischen einem Antrieb und einem Gehäuseabschlussteil aufgenommen. In diesem Fall weisen die Kugelflächen des Pumpenrotors zum Antrieb hin.
Ein Ende der Antriebswelle kann in dem Gehäuseabschlussteil gelagert sein. Weiter ist es möglich, dass ein Ende der Antriebswelle bzw. eines
Antriebswellenteils in einem weiteren Gehäuseteil gelagert ist, das auch einen Antrieb der Taumelpumpe, wie etwa einen Elektromotor, aufnimmt.
Kurze Beschreibung der Figuren
Im Folgenden werden Ausführungsbeispiele der Erfindung mit Bezug auf die beiliegenden Figuren detailliert beschrieben.
Fig. 1 zeigt einen Querschnitt durch eine Taumelpumpe gemäß einer
Ausführungsform der Erfindung.
Fig. 2 zeigt einen Querschnitt durch eine Taumelpumpe gemäß einer weiteren Ausführungsform der Erfindung.
Fig. 3 zeigt einen Querschnitt eines Abschnitts einer Taumelpumpe gemäß einer weiteren Ausführungsform der Erfindung.
Grundsätzlich sind identische oder ähnliche Teile mit den gleichen
Bezugszeichen versehen.
Detaillierte Beschreibung von Ausführungsbeispielen
Fig. 1 zeigt eine Taumelpumpe 10, die ein Gehäuse 12 aufweist, das aus mehreren Gehäuseteilen aufgebaut ist, ein Endteil 14 weist einen Einlass bzw. Eingang 16 der Taumelpumpe 10 auf. Ein Trägerteil 16, das in das Endteil 14 gesteckt ist, trägt einen Antrieb (Elektromotor) 18 für die Taumelpumpe 10. Ein Dichtteil 20 stellt eine Abdichtung zwischen einem Niederdruckbereich 24 und einem Hochdruckbereich 22 bereit und ein weiteres Endteil 26 dient gleichzeitig als Pumpenstator 28. Die Gehäuseteile 14, 16, 20 und 26 werden von einem Blechring 30 zusammengehalten. Eine Wellenanordnung 32 umfasst eine Antriebswelle 34, die an einem Ende in dem Trägerteil 16 und am anderen Ende im Pumpenstator 28 mittels Gleitlagern 36, 38 gelagert ist. Die einstückige Antriebswelle 34 trägt einen Rotor 40 des Elektromotors 18, der in einem am Trägerteil 16 aufgenommen Stator 42 aufgenommen ist. Weiter trägt die Antriebswelle 34 eine Pumpenwelle 44, die formschlüssig auf die Antriebswelle 34 gesteckt ist. Die Pumpenwelle 44 ist im Dichtteil 20 derart geführt, dass eine Abdichtung zwischen dem
Hochdruckbereich 22 und dem Niederdruckbereich 24 erreicht wird. Zwischen der Pumpenwelle 44 und dem Dichtteil 20 kann ein weiteres Gleitlager 45 gebildet sein.
Die Pumpenwelle 34 stellt eine schräge (siehe dazu Fig. 2) Stirnfläche 46 bereit, die mit einem Pumpenrotor 48 zusammenwirkt und mit diesem mechanisch gekoppelt ist. Der Pumpenrotor 48 und der Pumpenstator 28 stellen Kugelflächen
50, 52 bereit, die aufeinander gleiten können, wobei zwischen den inneren Kugelflächen 50 und den äußeren Kugelflächen 52 durch eine Verzahnung zwischen Pumpenrotor 48 und Pumpenstator 28 Kammern 54 (siehe Fig. 3) gebildet sind, die sich bei Drehung des Pumpenrotors 48 im Pumpenstator 28 vergrößern und verkleinern und somit eine Pumpwirkung entfalten, so dass ein
Fluid aus dem Niederdruckbereich 24 in den Hochdruckbereich 22 gefördert wird.
Der Pumpenrotor 48 weist an seiner der Stirnfläche 46 abgewandten Seite eine Verzahnung auf, die auf einer auf dem Pumpenstator 28 ausgebildeten
Verzahnung kämmt. Zwischen der Verzahnung des Pumpenrotors 48 und der
Verzahnung des Pumpenstators 28 sind die Kammern 54 gebildet. Die
Verzahnung des Pumpenrotors 48 und die Verzahnung des Pumpenstators 28 sind beispielsweise als Zykloidenverzahnung ausgeführt, können aber auch eine andere Verzahnung sein.
Der Pumpenrotor weist eine Durchgangsöffnung 49 auf, durch die die
Antriebswelle 34 ragt. Die Durchgangsöffnung 49 weist einen größeren
Durchmesser als die Antriebswelle 34 in diesem Bereich auf, Die Antriebswelle 34 kann, wie in der Fig. 1 gezeigt, in diesem Bereich einen geringeren
Durchmesser aufweisen, als im Bereich der Pumpenwelle 44. Die Antriebswelle 34 kann von einer Feder 51 in axialer Richtung mit Kraft beaufschlagt werden, so dass über die (formschlüssig verbundene) Pumpenwelle 44 der Pumpenrotor 48 gegen den Pumpenstator 28 gedrückt wird. Dies kann alternativ oder zusätzlich durch einen entsprechenden Versatz des Rotors 40 des Elektromotors 18 gegenüber dem Stator 42 erfolgen.
Die Fig. 2 zeigt ein zweites Ausführungsbeispiel der Taumelpumpe 10, bei der die Komponenten Pumpenwelle 34, Pumpenrotor 48 und Pumpenstator 28 im Vergleich zu der Fig. 1 umgekehrt angeordnet sind. Weiter weist die
Antriebswelle 34 zwei Wellenteile 34a und 34b auf. Hochdruck- und
Niederdruckbereich sind daher ebenfalls umgekehrt angeordnet.
Das Gehäuse 12 weist ein Trägerteil 16' auf, das den Antrieb 18 bzw. den Stator 42, den Pumpenstator 28 und ein Endteil 20' trägt, auf dem der Pumpenstator 28 aufsitzt. Das gegenüberliegende Endteil 14 mit dem Einlass 16 ist mit dem Trägerteil 16' mittels eines Aufsatzes 56 verbunden.
Das Endteil 20' weist eine weitere Dichtung für den Hochdruckbereich 24 gegenüber der Umgebung auf, die beispielsweise mit einem zwischen dem Trägerteil 16' und dem Endteil 20' verlaufenden Dichtring 58 realisiert sein kann.
Die Antriebswelle 34 umfasst einen ersten Teil 34a, der den Rotor 40 des Elektromotors 18 trägt und der mit einem zweiten Teil 34b, der den Pumpenrotor 48 trägt, über einen Stift 60 formschlüssig gekoppelt ist. Der erste Teil 34a ist mittels eines Gleitlagers 36 im Gehäuse 12 gelagert. Der zweite Teil 34b ist im Stator 28 in einem ersten Gleitlager 38 und im Endteil 20' in einem zweiten Gleitlager gelagert.
Die Fig. 3 zeigt einen Ausschnitt aus einer Taumelpumpe analog der Fig. 2. Es ist zu erkennen, dass der Stift 60 an dem Antriebswellenteil 34b auf dem Stator 28 abgesetzt sein kann, so dass der Antriebswellenteil 34b in einer axialen Richtung (vom Antrieb 18 weg) fixiert ist.
In der Fig. 3 ist auch gezeigt, dass die Pumpenwelle zumindest einen Kanal 64 aufweist, der mit dem Hochdruckbereich 22 in Verbindung steht und zumindest einen Kanal 66 aufweist, der mit dem Niederdruckbereich 24 in Verbindung steht. Bei Drehung des Rotors 48 kann Fluid aus dem Niederdruckbereich über den Kanal 66 in eine Pumpenkammer 54 strömen, wird vom Rotor um die Achse der Welle transportiert und dann durch Verkleinerung der Pumpenkammer 54, da der Pumpenrotor 48 schräg steht, in den Kanal 64 gepresst.
Ergänzend ist darauf hinzuweisen, dass„umfassend" keine anderen Elemente oder Schritte ausschließt und„eine" oder„ein" keine Vielzahl ausschließt. Ferner sei darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden sind, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener
Ausführungsbeispiele verwendet werden können. Bezugszeichen in den
Ansprüchen sind nicht als Einschränkung anzusehen.

Claims

Ansprüche
1 . Taumelpumpe (10), umfassend:
einen an einem Gehäuse (12) der Taumelpumpe befestigten Pumpenstator (28);
einen im Pumpenstator (28) geführten Pumpenrotor (48), der von einer Antriebswelle (34) mittels einer schrägen Stirnfläche (46) derart angetrieben wird, dass er mit seiner Rotorachse um eine Antriebsachse der
Antriebswelle (34) taumelt;
dadurch gekennzeichnet, dass
die Antriebswelle (34) den Pumpenrotor (48) durch eine Durchgangsöffnung (49) durchragt und in einer Lagerung des Pumpenstators (28) gelagert ist.
2. Taumelpumpe (10) nach Anspruch 1 ,
wobei die schräge Stirnfläche (46) von einer Pumpenwelle (44) bereitgestellt ist, die formschlüssig auf der Antriebswelle (34) aufgesteckt ist.
3. Taumelpumpe (10) nach einem der Ansprüche 1 oder 2,
wobei eine Antriebswelle (34) einen Rotor (40) eines Elektromotors (18) trägt und die Antriebswelle (34) in einem Gehäuseteil (16, 16') der Taumelpumpe, das einen Stator (42) des Elektromotors (18) trägt, gelagert ist.
4. Taumelpumpe (10) nach einem der vorhergehenden Ansprüche, weiter umfassend:
eine Feder (51 ) zum Drücken der Antriebswelle (34) in Richtung des
Pumpenstators (28).
5. Taumelpumpe (10) nach Anspruch 3 oder 4,
wobei der Stator (42) des Elektromotors (18) derart gegenüber dem Rotor (40) des Elektromotors (18) in axialer Richtung versetzt ist, dass beim Betreiben des Elektromotors die Antriebswelle (34) durch elektromagnetische Kräfte in Richtung des Pumpenstators (28) bewegt wird.
6. Taumelpumpe (10) nach einem der vorhergehenden Ansprüche,
wobei die Durchgangsöffnung (49) einen größeren Durchmesser aufweist als die Antriebswelle (34).
7. Taumelpumpe (10) nach einem der vorhergehenden Ansprüche,
wobei die Antriebswelle (34) zwei miteinander gekoppelte Antriebswellenteile (34a, 34b) aufweist.
8. Taumelpumpe (10) nach einem der vorhergehenden Ansprüche,
wobei die schräge Stirnfläche (46) auf einer dem Elektromotor (18) der Taumelpumpe zugewandten oder abgewandten Seite der Pumpenwelle (44) angeordnet ist.
9. Taumelpumpe (10) nach einem der vorhergehenden Ansprüche,
wobei der Pumpenstator (28), die Pumpenwelle (44) und der Pumpenrotor (48) in Richtung der Antriebswelle gesehen zwischen dem Elektromotor (18) und einem Gehäuseabschlussteil (20') aufgenommen sind; und/oder wobei die Antriebswelle (34) in dem Gehäuseabschlussteil (20') gelagert ist.
10. Taumelpumpe (10) nach einem der vorhergehenden Ansprüche,
wobei der Pumpenstator (28) ein Gleitlager (38) für die Antriebswelle (34) aufweist.
PCT/EP2014/074158 2013-12-20 2014-11-10 Taumelpumpe mit im stator gelagerter welle WO2015090730A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14799383.6A EP3084126B1 (de) 2013-12-20 2014-11-10 Taumelpumpe mit im stator gelagerter welle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226974.9 2013-12-20
DE102013226974.9A DE102013226974A1 (de) 2013-12-20 2013-12-20 Taumelpumpe mit im Stator gelagerter Welle

Publications (1)

Publication Number Publication Date
WO2015090730A1 true WO2015090730A1 (de) 2015-06-25

Family

ID=51903887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/074158 WO2015090730A1 (de) 2013-12-20 2014-11-10 Taumelpumpe mit im stator gelagerter welle

Country Status (3)

Country Link
EP (1) EP3084126B1 (de)
DE (1) DE102013226974A1 (de)
WO (1) WO2015090730A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020124825A1 (de) 2020-09-23 2022-03-24 Kolektor Group D.O.O. Motor-Pumpe-Einheit
WO2022171512A1 (de) 2021-02-12 2022-08-18 Kolektor Group D.O.O. Handgeführtes druckflüssigkeitsgerät

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021115440A1 (de) 2021-06-15 2022-12-15 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe mit einer Axialschubbegrenzungseinrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1965976A (en) * 1932-04-16 1934-07-10 James L Kempthorne Mechanism for pumps, compressors, and the like
US2380886A (en) * 1941-12-18 1945-07-31 Hydraulic Dev Corp Inc Balanced ball type vane pump or motor
US2821932A (en) * 1954-04-28 1958-02-04 Siam Fluid pumps or engines of the piston type
AT322362B (de) * 1973-03-12 1975-05-26 Keplinger Klaus Motor und/oder pumpe
EP1118769A2 (de) * 2000-01-19 2001-07-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Taumelscheibenverdichter
WO2008110155A1 (de) * 2007-03-13 2008-09-18 Cor Pumps + Compressors Ag Pumpe oder motor
DE102011080803A1 (de) * 2011-08-11 2013-02-14 Robert Bosch Gmbh Drehkolbenmaschine, die als Pumpe, Verdichter oder Motor arbeitet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275920B2 (en) * 2003-09-11 2007-10-02 Cor Pumps + Compressors Ag Rotary piston machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1965976A (en) * 1932-04-16 1934-07-10 James L Kempthorne Mechanism for pumps, compressors, and the like
US2380886A (en) * 1941-12-18 1945-07-31 Hydraulic Dev Corp Inc Balanced ball type vane pump or motor
US2821932A (en) * 1954-04-28 1958-02-04 Siam Fluid pumps or engines of the piston type
AT322362B (de) * 1973-03-12 1975-05-26 Keplinger Klaus Motor und/oder pumpe
EP1118769A2 (de) * 2000-01-19 2001-07-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Taumelscheibenverdichter
WO2008110155A1 (de) * 2007-03-13 2008-09-18 Cor Pumps + Compressors Ag Pumpe oder motor
DE102011080803A1 (de) * 2011-08-11 2013-02-14 Robert Bosch Gmbh Drehkolbenmaschine, die als Pumpe, Verdichter oder Motor arbeitet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020124825A1 (de) 2020-09-23 2022-03-24 Kolektor Group D.O.O. Motor-Pumpe-Einheit
WO2022063585A1 (de) 2020-09-23 2022-03-31 Kolektor Group D.O.O. Motor-pumpe-einheit
WO2022171512A1 (de) 2021-02-12 2022-08-18 Kolektor Group D.O.O. Handgeführtes druckflüssigkeitsgerät
DE102021103306A1 (de) 2021-02-12 2022-08-18 Kolektor Group D.O.O. Handgeführtes Druckflüssigkeitsgerät

Also Published As

Publication number Publication date
EP3084126B1 (de) 2019-02-27
DE102013226974A1 (de) 2015-06-25
EP3084126A1 (de) 2016-10-26

Similar Documents

Publication Publication Date Title
EP3535496A1 (de) Elektrische gerotorpumpe und herstellungsverfahren für dieselbe
WO2006037673A1 (de) RADIALKOLBENPUMPE MIT ROLLENSTÖßEL
WO2012034619A1 (de) Axialkolbenmaschine
EP3084126B1 (de) Taumelpumpe mit im stator gelagerter welle
EP0949419B1 (de) Innenzahnradmaschine
DE202015103751U1 (de) Pumpenvorrichtung
EP2585718A1 (de) Axialkolbenmaschine
DE102016104150A1 (de) Lenkgetriebe
EP0666422A1 (de) Lagerung und Antrieb der Rotoren eines Schraubenrotorverdichters
DE19650274A1 (de) Pumpenaggregat
DE102019118708A1 (de) Druckversorgungseinrichtung mit einer Zahnradpumpe
WO2019214835A1 (de) Kolben-zylinder-system mit getrenntem lager- und dichtbereich
EP2035265B1 (de) Fahrzeugbremsanlagen-kolbenpumpe
DE3121527C2 (de)
DE19650272B4 (de) Axialkolbenpumpe
EP2119869A2 (de) Hydromaschine
EP2655802B1 (de) Zahnradmaschine mit kleinem durchmesser-längenverhältnis
DE4403649A1 (de) Lagerung und Antrieb der Rotoren eines Schraubenrotorverdichters
EP1461534A1 (de) Pumpe
DE102019207473A1 (de) Förderaggregat
DE3610302A1 (de) Maschine mit fluiddurchsatz der spiralbauart
DE202019107191U1 (de) Druckversorgungseinrichtung mit einer Zahnradpumpe
DE102018215521A1 (de) Antriebseinrichtung mit Exzenterlager
DE102019118697A1 (de) Zahnradpumpe
DE102019202336A1 (de) Exzenterantrieb einer Exzenterpumpe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14799383

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014799383

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014799383

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE