WO2015090203A1 - Procédé biologique d'extraction de métal à partir de déchets solides métallurgiques et minéraux - Google Patents

Procédé biologique d'extraction de métal à partir de déchets solides métallurgiques et minéraux Download PDF

Info

Publication number
WO2015090203A1
WO2015090203A1 PCT/CN2014/094096 CN2014094096W WO2015090203A1 WO 2015090203 A1 WO2015090203 A1 WO 2015090203A1 CN 2014094096 W CN2014094096 W CN 2014094096W WO 2015090203 A1 WO2015090203 A1 WO 2015090203A1
Authority
WO
WIPO (PCT)
Prior art keywords
soaking
waste
solid
biological
metal
Prior art date
Application number
PCT/CN2014/094096
Other languages
English (en)
Chinese (zh)
Inventor
林国友
罗永城
黄景明
Original Assignee
深圳市诺正投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市诺正投资有限公司 filed Critical 深圳市诺正投资有限公司
Publication of WO2015090203A1 publication Critical patent/WO2015090203A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This invention relates to mineral beneficiation processing methods, and more particularly to methods for recovering metals from waste minerals.
  • Microbial engineering technology combined with mineral processing technology has produced microbial metallurgical technology, and its role in mineral resource processing and metallurgy has become increasingly prominent.
  • Microbial metallurgy technology has the characteristics of fully recycling and utilizing mineral resources, low environmental pollution hazard, low investment and low consumption of chemicals, and has broad application prospects.
  • leaching microorganisms in China are Thiobacillus ferrooxidans, Thiobacillus thiooxidans, Leptospirillum oxidans, Aspergillus niger and the like.
  • the minerals treated by these technologies are mainly extracted from a certain target metal in the tailings.
  • the method of leaching metal treatment is only one immersion, the leaching rate is not high, and the final emissions are not considered from an environmental point of view.
  • the waste solids treated by the process are immersed in multiple cycles to ensure that most of the metal inside is leached; there is no waste water discharged during the treatment, and the treated waste solids meet the discharge standards of 5085.3-2007.
  • the object of the present invention is to provide a method for bio-extracting metal in a metallurgical industrial waste solid which is simple, easy to operate, low in cost, low in energy consumption, and capable of reaching the standard discharge, in view of the above-mentioned prior art problems.
  • the present invention is implemented as follows:
  • a method for extracting metal by using biotechnology from waste metallurgy in a metallurgical industry including waste solids crushing, biological soaking, metal recovery in leachate, re-separation of waste solid residue after multiple cycles of soaking, and the like
  • the metallurgical and mining waste solids are pulverized into more than 80 mesh and stored in a biological soaking tank.
  • the mixture is stirred into a slurry at a weight ratio of 1:4 to 10, and then added to the biological soaking pool by Thiobacillus ferrooxidans.
  • a mixed cell composed of Bacillus licheniformis and Aspergillus niger causes the viable cell count of the slurry to reach 5 to 1 billion/mL, soaked under normal temperature conditions, once per day, and solid-liquid separation to obtain the waste solid after soaking and The leachate, the waste solids remain in the soaking tank and repeatedly soaked, and then the metal in the leachate is recovered and then separated by solid and liquid again.
  • the discharged water is re-introduced into the biological soaking tank for recycling, and after 7 to 14 days, the waste solid residue after soaking is obtained. Separation by re-selection.
  • the above-mentioned mixed bacteria consisting of Thiobacillus ferrooxidans (Tf), Bacillus polymyxa and Aspergillus niger has a ratio of active bacteria of 1 to 10:1 to 5: 1 to 5.
  • the solid-liquid separation described above uses the principle of gravity sedimentation to realize the solid-liquid separation after the soaked slurry flows through the deep-flow tank, the plate-frame filter, and the advection sedimentation tank.
  • the above-mentioned soaking waste slag re-election method is the final separation of the waste slag after soaking into fine concentrate, medium mine and treated tailings.
  • the total metal content of the concentrate obtained by the above-mentioned soaking waste slag re-election method can reach 60% (weight ratio, later) or more, and can be directly smelted.
  • the total metal weight content of the middle ore separated by the soaking waste slag re-selection method described above is between 10% and 20%, and can be used for secondary enrichment and re-election.
  • the treated tailings separated by the soaking waste slag re-election method described above meets the discharge standard of the Standard Test Method for Leaching Toxicity of Non-Ferrous Metal Solid Wastes (GB5085.3-2007).
  • Figure 1 is a process flow diagram of the present invention.
  • a method for biologically extracting metals from metallurgical and mining waste solids including waste solids crushing, biological soaking, metal recovery in soaking liquid, and separation of waste solid residue after soaking by re-election method, first metallurgy and mining
  • the waste solids are pulverized into powders of 80 mesh or less and put into a biological soaking tank, and the mixture is stirred into a slurry at a weight ratio of 1:4, and at the same time, according to the number of active bacteria 1:1:1, using Thiobacillus ferrooxidans, Bacillus polymyxa and Aspergillus niger is configured with mixed cells, and then the mixed cells are placed in the biological soaking pool to make the viable count of the slurry reach 500 million/mL, soaked under normal temperature conditions, once per day and separated by solid and liquid.
  • waste solids and leachate After soaking waste solids and leachate, the waste solids remain in the soaking tank and repeatedly soaked, then the metal in the leachate is recovered and then solid-liquid separated again.
  • the discharged water is re-introduced into the biological soaking tank for recycling, and after 7 days, it is soaked.
  • the waste solid residue is separated by re-election method; finally, the waste solid residue after soaking is separated by re-election method to obtain a total metal content of 60% (weight ratio, later) or more, and the total metal content is 10%. 20% of the total ore processed and reaches "non-ferrous metals leaching toxicity of solid wastes Standard Test Method" (GB5085.3-2007) emissions standards tailings.
  • the solid-liquid separation described above uses the principle of gravity sedimentation to realize the solid-liquid separation after the soaked slurry flows through the deep-flow tank, the plate-frame filter, and the advection sedimentation tank.
  • a method for biologically extracting metals from metallurgical and mining waste solids including waste solids crushing, biological soaking, metal recovery in soaking liquid, and separation of waste solid residue after soaking by re-election method, first metallurgy and mining
  • the waste solids are pulverized into powders of 80 mesh or less and put into a biological soaking tank, and the mixture is stirred into a slurry at a weight ratio of 1:6, and the ferrobacillus ferrooxidans and Bacillus polymyxa are used in advance according to the number of active bacteria 4:5:5.
  • the Aspergillus niger is configured with mixed cells, and then the mixed cells are placed in the biological soaking pool to make the viable count of the slurry reach 700 million/mL, soaked under normal temperature conditions, once per day and separated by solid and liquid. After soaking waste solids and leachate, the waste solids remain in the soaking tank and repeatedly soaked, then the metal in the leachate is recovered and then solid-liquid separated again. The discharged water is re-introduced into the biological soaking tank for recycling, and after 9 days, it is soaked.
  • the waste solid residue is separated by re-election method; finally, the waste solid residue after soaking is separated by re-election method to obtain a total metal content of 60% (by weight) or more, and the total metal content is 10% to 20%.
  • the total metal content is 10% to 20%.
  • the ore and the process reaches the total "non-ferrous metals leaching toxicity of solid wastes Standard Test Method" (GB5085.3-2007) emissions standards tailings.
  • the solid-liquid separation described above uses the principle of gravity sedimentation to realize the solid-liquid separation after the soaked slurry flows through the deep-flow tank, the plate-frame filter, and the advection sedimentation tank.
  • a method for biologically extracting metals from metallurgical and mining waste solids including waste solids crushing, biological soaking, metal recovery in soaking liquid, and separation of waste solid residue after soaking by re-election method, first metallurgy and mining
  • the waste solids are pulverized into powders of 80 mesh or less and put into a biological soaking tank, and stirred in a weight ratio of 1:8 to form a slurry, and at the same time, according to the number of active bacteria 8:3:3, using Thiobacillus ferrooxidans, Bacillus polymyxa and Aspergillus niger is configured with mixed cells, and then the mixed cells are placed in the biological soaking pool to make the viable count of the slurry reach 800 million/mL, soaked under normal temperature conditions, once per day and separated by solid and liquid.
  • the waste solids After soaking the waste solids and leachate, the waste solids remain in the soaking tank and repeatedly soaked, then the metal in the leachate is recovered and then solid-liquid separated again.
  • the discharged water is re-introduced into the biological soaking tank for recycling, and after 11 days, it is soaked.
  • the waste solid residue is separated by re-election method; finally, the soaked waste solid residue is separated by re-election method to obtain a total metal content of up to 60% (weight The ratio of the above concentrates and the total metal content between 10% and 20% of the medium ore and the discharge standard of the "Standard for the Test Method of Leaching Toxicity of Nonferrous Metallic Solid Wastes" (GB5085.3-2007) .
  • the solid-liquid separation described above uses the principle of gravity sedimentation to realize the solid-liquid separation after the soaked slurry flows through the deep-flow tank, the plate-frame filter, and the advection sedimentation tank.
  • a method for biologically extracting metals from metallurgical and mining waste solids including waste solids crushing, biological soaking, metal recovery in soaking liquid, and separation of waste solid residue after soaking by re-election method, first metallurgy and mining
  • the waste solids are pulverized into powders of 80 mesh or less and put into a biological soaking tank, and stirred at a weight ratio of 1:10 to form a slurry, and at the same time, according to the number of active bacteria 10:2:2, using Thiobacillus ferrooxidans, Bacillus polymyxa and Aspergillus niger is configured with mixed cells, and then the mixed cells are placed in the biological soaking pool to make the viable count of the slurry reach 1 billion/mL, soaked under normal temperature conditions, once per day and separated by solid and liquid.
  • the waste solids After soaking the waste solids and leachate, the waste solids remain in the soaking tank and repeatedly soaked, then the metal in the leachate is recovered and then solid-liquid separated again.
  • the discharged water is re-introduced into the biological soaking tank for recycling, and after 14 days, it is soaked.
  • the waste solid residue is separated by re-election method; finally, the waste solid residue after soaking is separated by re-election method to obtain a total metal content of 60% (by weight) or more, and the total metal content is 10%-20
  • the ore and the process reaches the total "non-ferrous metals leaching toxicity of solid wastes Standard Test Method" (GB5085.3-2007) emissions standards tailings.
  • the solid-liquid separation described above uses the principle of gravity sedimentation to realize the solid-liquid separation after the soaked slurry flows through the deep-flow tank, the plate-frame filter, and the advection sedimentation tank.
  • the metal recovery rate is high, up to 80%, and the economic benefit is better than that of the original ore.
  • the processing cost is low, the cost of processing tailings is 250 yuan per ton, and the value of tin, zinc, silver and other metals is 600 yuan.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biotechnology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

La présente invention concerne un procédé biologique d'extraction de métal à partir de déchets solides métallurgiques et minéraux, comprenant : le broyage des déchets solides, un trempage biologique, le recyclage du métal à partir du lixiviat et la séparation des scories de déchets solides trempés par le biais d'un procédé de concentration gravitaire. Ce procédé est caractérisé par : le broyage et le tamisage des déchets solides métallurgiques et minéraux, puis leur stockage dans un bassin de trempage biologique, l'ajout d'eau et le brassage afin de former une pâte, puis l'ajout d'un mélange de bactéries composé de Thiobacillus ferrooxidans, Bacillus polymyxa et Aspergillus niger dans le bassin de trempage biologique de façon à obtenir entre 500 et 1000 millions/mL de bactéries viables dans la pâte, la réalisation d'une aération par l'oxygène, le trempage, le retournement des déchets solides une fois par jour et la séparation solide-liquide afin d'obtenir des déchets solides trempés et un lixiviat, le trempage répété des déchets solides restés dans le réservoir, le recyclage du métal présent dans le lixiviat et la réalisation d'une nouvelle séparation solide-liquide, l'introduction de la solution issue de la séparation solide-liquide dans le bassin de trempage biologique à des fins de recyclage et la séparation des scories de déchets solides trempés obtenues par un procédé de concentration gravitaire au bout de 7 à 14 jours. Les résidus traités obtenus à l'issue du procédé biologique respectent les critères d'émission conformément aux « Normes de méthodes d'essai pour la toxicité d'extraction des déchets solides métalliques non ferreux » (GB5085.3-2007).
PCT/CN2014/094096 2013-12-22 2014-12-17 Procédé biologique d'extraction de métal à partir de déchets solides métallurgiques et minéraux WO2015090203A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310710251.4 2013-12-22
CN201310710251.4A CN103667696A (zh) 2013-12-22 2013-12-22 从冶金及矿山废固物中生物提取金属的方法

Publications (1)

Publication Number Publication Date
WO2015090203A1 true WO2015090203A1 (fr) 2015-06-25

Family

ID=50306466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094096 WO2015090203A1 (fr) 2013-12-22 2014-12-17 Procédé biologique d'extraction de métal à partir de déchets solides métallurgiques et minéraux

Country Status (2)

Country Link
CN (1) CN103667696A (fr)
WO (1) WO2015090203A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638606C1 (ru) * 2016-11-16 2017-12-14 Владимир Михайлович Гавриш Способ извлечения молибдена из отработанных молибденсодержащих сплавов с помощью биологического выщелачивания
CN113102092A (zh) * 2021-03-08 2021-07-13 河南科技大学 红渣转化为铅精矿、滕氏蓝颜料、路基石和路基石砖的方法
CN115232981A (zh) * 2022-08-24 2022-10-25 深圳市中金岭南有色金属股份有限公司 基于曝气氧化与废酸熟化的铜锌浮选尾矿生物浸出方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667696A (zh) * 2013-12-22 2014-03-26 广西南宁胜祺安科技开发有限公司 从冶金及矿山废固物中生物提取金属的方法
CN104074259A (zh) * 2014-06-20 2014-10-01 中国瑞林工程技术有限公司 工业区域性污水减排及回用工艺
CN104862474B (zh) * 2015-05-08 2016-09-28 湖南埃格环保科技有限公司 一种基于pH和电位共调控的生物浸提含重金属废物中重金属的方法
CN114380459A (zh) * 2021-12-15 2022-04-22 南京农业大学 一种生物絮凝-电渗析处理养殖场废水的方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829964A (en) * 1955-10-24 1958-04-08 Kennecott Copper Corp Cyclic leaching process employing iron oxidizing bacteria
CN101126125A (zh) * 2007-07-12 2008-02-20 中国铝业股份有限公司 一种铝土矿选矿尾矿综合利用方法
CN101392327A (zh) * 2008-11-05 2009-03-25 东华大学 一种微生物浸取废弃印刷线路板中铜的方法
CN103667696A (zh) * 2013-12-22 2014-03-26 广西南宁胜祺安科技开发有限公司 从冶金及矿山废固物中生物提取金属的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2023734C1 (ru) * 1992-07-13 1994-11-30 Иркутский научно-исследовательский институт редких и цветных металлов Способ переработки золото- и серебросодержащих руд
RU2210608C2 (ru) * 2001-10-09 2003-08-20 Чучалин Лев Климентьевич Способ извлечения благородных металлов из упорных сульфидных материалов
CN102251109B (zh) * 2011-07-07 2013-04-10 中国地质科学院矿产综合利用研究所 硫化矿生物浸出矿堆的防冻方法
CN104152689B (zh) * 2013-07-03 2016-03-02 山东黄金矿业(沂南)有限公司 一种利用金矿分选工艺制备的土壤污染处理物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829964A (en) * 1955-10-24 1958-04-08 Kennecott Copper Corp Cyclic leaching process employing iron oxidizing bacteria
CN101126125A (zh) * 2007-07-12 2008-02-20 中国铝业股份有限公司 一种铝土矿选矿尾矿综合利用方法
CN101392327A (zh) * 2008-11-05 2009-03-25 东华大学 一种微生物浸取废弃印刷线路板中铜的方法
CN103667696A (zh) * 2013-12-22 2014-03-26 广西南宁胜祺安科技开发有限公司 从冶金及矿山废固物中生物提取金属的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI, DEZHOU;, RESOURCE MICROBIAL TECHNOLOGY, 31 May 1996 (1996-05-31), pages 84 - 91 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638606C1 (ru) * 2016-11-16 2017-12-14 Владимир Михайлович Гавриш Способ извлечения молибдена из отработанных молибденсодержащих сплавов с помощью биологического выщелачивания
CN113102092A (zh) * 2021-03-08 2021-07-13 河南科技大学 红渣转化为铅精矿、滕氏蓝颜料、路基石和路基石砖的方法
CN115232981A (zh) * 2022-08-24 2022-10-25 深圳市中金岭南有色金属股份有限公司 基于曝气氧化与废酸熟化的铜锌浮选尾矿生物浸出方法
CN115232981B (zh) * 2022-08-24 2024-05-14 深圳市中金岭南有色金属股份有限公司 基于曝气氧化与废酸熟化的铜锌浮选尾矿生物浸出方法

Also Published As

Publication number Publication date
CN103667696A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2015090203A1 (fr) Procédé biologique d'extraction de métal à partir de déchets solides métallurgiques et minéraux
Falagán et al. New approaches for extracting and recovering metals from mine tailings
Sajjad et al. Metals extraction from sulfide ores with microorganisms: the bioleaching technology and recent developments
Mikoda et al. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans
Willner et al. Extraction of metals from electronic waste by bacterial leaching
Guo et al. Effects of pH, pulp density and particle size on solubilization of metals from a Pb/Zn smelting slag using indigenous moderate thermophilic bacteria
CN109261347B (zh) 一种铅锌冶炼废渣资源化利用的方法
CN103966421A (zh) 一种钢铁冶金固体废弃物综合回收利用的方法
CN101063181A (zh) 一种用转底炉快速还原含碳含金黄铁矿烧渣球团富集金及联产铁粉的方法
CN104531988A (zh) 一种难处理复杂多金属矿的回收工艺
Chen et al. Heavy metals recovery from printed circuit board industry wastewater sludge by thermophilic bioleaching process
Sethurajan et al. Leaching and recovery of metals
CN109762996A (zh) 一种高锑低砷烟尘氧化-硫化固定法分离砷并回收锑的方法
CN104962750A (zh) 一种含碳难处理金精矿的预处理-浸金工艺
Seifelnassr et al. Exploitation of bacterial activities in mineral industry and environmental preservation: An overview
Zhou et al. Enhanced uranium bioleaching high-fluorine and low-sulfur uranium ore by a mesophilic acidophilic bacterial consortium with pyrite
CN109957649B (zh) 一种复杂硫精矿制备高品质铁精矿并协同回收铜锌的方法
CN104232908A (zh) 一种从含金炼汞尾渣中回收黄金的方法
CN103184336B (zh) 高砷高碳微细粒难处理金矿生物提金工艺及所用微生物
Torma Impact of biotechnology on metal extractions
CN100404705C (zh) 一种利用微生物提取金属铜的方法及其应用
CN106609252A (zh) 耐氟浸矿混合菌及其用于铀矿石中铀的两段浸出工艺
Ciftci et al. Microbial leaching of metals from a lateritic nickel ore by pure and mixed cultures of mesophilic acidophiles
Jadhav et al. Acetic acid mediated leaching of metals from lead-free solders
CN103194613B (zh) 从含砷、含炭高碱性脉石中提取金的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871858

Country of ref document: EP

Kind code of ref document: A1