WO2015089581A1 - Vehicle detector unit, vehicle detector system and a method for detecting presence of a vehicle on a rail - Google Patents

Vehicle detector unit, vehicle detector system and a method for detecting presence of a vehicle on a rail Download PDF

Info

Publication number
WO2015089581A1
WO2015089581A1 PCT/AU2014/050425 AU2014050425W WO2015089581A1 WO 2015089581 A1 WO2015089581 A1 WO 2015089581A1 AU 2014050425 W AU2014050425 W AU 2014050425W WO 2015089581 A1 WO2015089581 A1 WO 2015089581A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
vehicle detector
sensor
vehicle
detector unit
Prior art date
Application number
PCT/AU2014/050425
Other languages
French (fr)
Inventor
Michael John Smith
Graham William LYFORD
Jefferson Grey Harcourt
Original Assignee
Grey Innovation Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2013904930A external-priority patent/AU2013904930A0/en
Application filed by Grey Innovation Pty Ltd filed Critical Grey Innovation Pty Ltd
Priority to US15/106,123 priority Critical patent/US20160311452A1/en
Priority to EP14870833.2A priority patent/EP3083367A4/en
Publication of WO2015089581A1 publication Critical patent/WO2015089581A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/06Control, warning, or like safety means along the route or between vehicles or vehicle trains for warning men working on the route
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or vehicle train, e.g. pedals
    • B61L1/02Electric devices associated with track, e.g. rail contacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or vehicle train, e.g. pedals
    • B61L1/02Electric devices associated with track, e.g. rail contacts
    • B61L1/06Electric devices associated with track, e.g. rail contacts actuated by deformation of rail; actuated by vibration in rail
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or vehicle train, e.g. pedals
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/163Detection devices
    • B61L1/165Electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/04Control, warning, or like safety means along the route or between vehicles or vehicle trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/047Track or rail movements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B26/00Tracks or track components not covered by any one of the preceding groups
    • E01B26/005Means for fixing posts, barriers, fences or the like to rails

Definitions

  • the invention relates to a vehicle detector unit, a vehicle detector system and a method for detecting presence of a vehicle on a rail. More particularly, hut not exclusively, the inventio relates t a vehicle detector unit for detecting presence of a train on a rail for providing an alert, to a worksite.
  • train detector systems are prone to unreliability, faulty detection of threat, and possible failure to identif threats i certain circumstances.
  • Examples of the present invention seek to provide an improved train detection system which overcomes or at leas alleviates disadvantages associated with existing systems.
  • a vehicle detector unit for detecting presence of a vehicle moving, along a rail, including a distance sensor for sensing a body of the vehicle, a rail translation sensor for sensing translation of the rail,, a rail torsion sensor for sensing torsion of the rail, and a processor adapted to process data received from the distance sensor, the rail translation senso and the rail torsion sensor, whereby the processor applies an algorithm to said data to detemiine whether to output an alert, signal.
  • the processor applies said algorithm to detect uncorrelated data received from the distance sensor, the rail translatio sensor and the rail torsion sensor to distinguish between a dangerous event, in which case the vehicle detector unit outputs an alert signal, and a non-dangerous event, whereby the processor identifies a. non-dangerous event in response to detecting uncorrelated data, and the processor identifies a dangerous event i response to delecting correlated data.
  • the processor is arranged to detect possible degradation of operation of the vehicle detector unit when greater than a predetermined threshold of non-dangerous events are detected within a predetermined period and in the absence of detecting a dangerous event. More preferably, the vehicle detector unit output an error signal in response to detecting possible degradation of operation of the vehicle detector unit, in a preferred form, the processor is arranged to detect correlated data when there is consistency between data received from the distance sensor, the rail translation sensor and the rail torsion sensor to indicate presence of a vehicle moving, along the rail, based on threshold values for each of the sensors. More preferably, the processor is arranged to detect correlated data for fast short vehicles and slow long vehicles on the rail, and to detect uncorrelated data for wind-blown debris, dust, rain and the like.
  • the processor i arranged to distinguish presence of vehicles on adjacent tracks from presence of vehicles on said rail,
  • the distance sensor is in the form of an ultrasonic sensor.
  • the rail translation sensor is in the form of an aceelerometer.
  • the rail torsion sensor is in the form of a gyroscopic sensor.
  • the vehicle detector unit includes base for passing beneath said rail, a first clamp which is fixed relative to the base for clamping one side of the rail, and a second clamp which is selectively movable relati ve to the base for clamping an opposite side of the rail. More preferably, the second clamp is selectively held in place relative to the base by operation of a releasable fastener.
  • a vehicle detector system for detecting presence of a vehicle moving along a rail relative to a work site, said system includin a pair of vehicle detector units at spaced locations along the rail, a first one of the vehicle detector units being located in one direction from the work site and a second one of the vehicle detector units being located in an opposite direction from the work site, each of the vehicle detector units being a vehicle detector unit as claimed in claim 1, said system further including a site warning unit located at the work site, wherein the site warning unit is in communication with the vehicle detector units, and the site warning unit outputs audible and/or visual alerts in response to an alert signal received from either of the vehicle detector units.
  • the site warning unit is in communication with the vehicle detector units by way of radio communication.
  • a method for detecting presence of a vehicle on a rail including the steps of:
  • Figure la shows a side view of a vehicle detector unit in accordance with an example of the present invention
  • Figure la shows a bottom perspective view of the vehicle detector unit
  • Figure 2 show a detailed transparent view of one end of the vehicle detector unit
  • Figure 3 is a diagrammatic representation of an algorithm used by a vehicle detector unit
  • Figure 4 is a diagrammatic view of a vehicle detector system in accordance with an example of the present in vention
  • Figure 5 is a diagrammatic representation of hardware architecture of a repeater unit of the vehicle detector system
  • Figure 6 is a diagrammatic representation of procedure followed by the vehicle detector system
  • Figure 7 is a diagrammatic representation of the vehicle detecto system when installed to provide warning to worksite
  • Figure 8 shows a detailed side vie of a vehicle detector unit in accordance with an example of the present invention, depicting clamps of the vehicle detector unit;
  • Figure 9 shows a side view of a vehicle detector unit in accordance with the example shown in Figure 8.
  • Figure 10 shows a partial sectional side view of one end of the vehicle detector unit shown in Figure 9.
  • a vehicle detector system which is able to provide warning to a worksite of a train (or other vehicle) approaching the worksite along a rail.
  • the vehicle detector unit ineludes a distance sensor, a. rail translation, sensor, a rail torsion sensor and a processor, the vehicle detector unit is able to combine data received from the different sensors so as to achieve an improved level of reliability, particularly in detecting dangerous events and i avoiding being triggered by false triggers.
  • Figures la to 3 depict a vehicle detector unit 10 for detecting presence of a vehicle moving along a rail 12, including a distance sensor 14 for sensing a body of the vehicle, a rail translation sensor 16 lor sensing translation of the rail 12, mid a rail torsion sensor 18 for sensing torsion of the rail 12.
  • the vehicle detector unit 10 also includes a processor adapted to process data received from the distance sensor 14, the rail translation sensor 16 and the rail torsion sensor 18, whereby the processor applies an algorithm to the data to determine whether to output an alert signal
  • the alert signal can be transmitted t produce an audible and/or visual alert to a worksite which is remote to the vehicle detector unit 10, as depicted in the vehicle detector system shown in Figures 4 to 7.
  • the processor may be located within a housing 20 of the vehicle detector unit.
  • the processor applies the algorithm to detect uncorrelated data received from the distance sensor 14, the rail translation sensor 16 and the rail torsion sensor 18 to distinguish between a dangerous event, in which case the vehicle detector unit 10 outputs an alert signal, and a non-dangerous event, in which ease the vehicle detector unit 10 does not output an alert signal.
  • the processor identifies a non-dangerous event in response to detecting uncorrelated data, and the processor identifies a dangerous event in response to detecting correlated data.
  • This processing of data is performed by combining data from the distance sensor 14, the translation sensor 16 and the rail torsion sensor 18 in a manner which is depicted by the flow chart in Figure 3,
  • the processor recognises criteria according to the algorithm wherein data from the sensors is correlated to indicate presence of a vehicle movin along the rail 12, an alert signal is provided as an output of the vehicle detector unit 10.
  • the processor may be arranged to detect possible degradation of operation of the vehicle detector unit 10 when greater than: a predetermined threshold of non-dangerous e vents are detected within a predetermined period and in the absence of detecting a dangerous event. In this case, the vehicle detector unit 10 may output an error signal in response to detecting possible degradation of operation of the vehicle detector unit.
  • the system may use an alternative signal to indicate that, the system may be unable to function.
  • the system may use an alert sound from repeater units and site warning units to warn operators that the system may be unable to function and that the system may be less reliable.
  • the processor may be arranged to detect correlated data when there is consistency between data received from the distance sensor 14, the rail translation sensor 16 and the rail torsion sensor 18 to indicate presence of a vehicle moving along rail, based on threshold values for each of the sensors 14, 16, 18.
  • the processo may be arranged to collect correlated data for fast short vehicles and slow long vehicles on the rail 12, and to detect uncorrelated data for wind-blown debris, dust, rain and the l ike.
  • the processor may be arranged to distinguish presence of vehicles on adjacent tracks from presence of vehicles on the rail 12.
  • the distance sensor 14 may be in the form, of an. ultrasonic sensor
  • the rail translation sensor 16 may be in the form of an accelerometer
  • the rail torsion sensor 18 may be in the form of a gyroscopic sensor.
  • the vehicle detector unit 10 incorporates microelectronics, complex signal processing, and radio communications technology.
  • Ultrasonic sensing technology combined with precision measurement of rail translation and rail torsion provides filtering thai, when combined, provide a level of reliability that is superior to existing vehicle protection products.
  • improved system reliability is achieved via. combined monitoring of vehicular presence by way of combining a distance sensor with rail translation and rail torsion sensors.
  • the present invention uses an algorithm which combines data collected on the ultrasonic sensor, accelerometer and gyroscope to manage scenarios including but not limited to fast short vehicles, long slow vehicles and vehicles on adjacent tracks,
  • digital signal filtering and temporal synchronisation are used for the Accelerometer, Gyroscope and Ultrasonic sensors.
  • Ultrasonic sensor phenomena unrelated to vehicle defection, as defined by duration, distance thresholds and coiTelation with other sensors, is implemented such that, these phenomena are removed to the reduce effect on digital signal filtering in following stages. If many phenomena are removed in a short time, a degraded system signal is triggered.
  • the ultrasonic sensor is used such that a threshold and minimum time period are required to trigger an alarm, The time period is shortened if a detection trigger is present from MEMS sensors.
  • a MEMS trigger is determined primarily by a threshold on the ratio of RMS powe in short and long terms whereby the long term period follows the short term period, A MEMS trigger is continued while the long term RMS power remains above a threshold. The MEMS trigger is finally continued by way of a fixed period after the aforementioned triggers.
  • Thresholds and timers vary between gyroscopic and aecelerometric sensors. Accordingly, examples of the present invention use a distance sensor in combination with torsion and translation sensors, using analogue distance, which is useful for defining thresholds and determining between rain and trains, rathe than simple digital. (on/off) "presence".
  • the present invention uses soundwaves from the ultrasonic sensor to determine distance to the train.
  • the vehicle detector unit 10 may include a base 22 for passing beneath the rail, a first damp 24 which is fixed relative to the base 22 for clamping one side of the rail 12, and a second clamp 26 which is selectively movable relative to the base 22 for clamping an opposite side of the rail 12 (see Figure 1A and Fig re IB).
  • the second clamp 26 may be selectively held in place relative to the base 22 by operation of a releasable fastener 28 which can be in the form of a threaded base and a wing nut. As the second clam 26 is able to be slid on and locked to the base 22 by a single wing nut, this makes for very fast attachment and reduces the time spent by an operator on the track in the danger zone.
  • the profile of the base 22 allows for easy installation with minimal disruption to ballast (rock) from under the foot of the rail 12 during installation. Accordingly, examples of the present invention ma be quick to install and may support multiple rail standard sections. Accordingly, the vehicle detector unit 10 may be readily installed temporarily when work is to be undertaken at. a worksite at or near a section of the rail 12.
  • one aspect of the present invention provides a vehicle detector system 30 for detecting presence of a vehicle moving along a rail 12 relative to a worksite 32.
  • the system 30 includes a pair of vehicle detector units 10 at spaced locations along the rail 1.2, a first one of the vehicle detector units 10 being located in one direction from the worksite 32 and a second one of the vehicle detector units 10 being located in an opposite direction from the worksite 32.
  • the first vehicle detector unit 10 is for detecting trains incoming to the worksite 32 while the second one of the vehicle detector units 10 is for detecting trains leaving the worksite such that they do not initiate an alarm.
  • Each of the vehicle detector units 10 may be a vehicle detector unit 10 as shown in Figures la to 3 and as described above.
  • the system 30 further includes a site warning unit 34 located at the worksite 32.
  • the site warning unit 34 is in communication with the vehicle detector units 10 and the site warning unit 34 outputs audible and/or visual alerts in response to an alert signal received from either of the vehicle detector units 10.
  • the site warning unit 34 may be in communication with the vehicle detector units
  • Radio communication certification is related to output power (effective isotropic radiated power). To achieve acceptable range through radiofrequency opaque objects in the Frenel zone, high sensitivity receivers are required. Range is related to elevation so as the train detectors are- low on the track, and repeater units (used close to the train detectors) are on tripods.
  • the system 30 may include a plurality of repeater units 36 which have sirens and lights on a tripod with an additional long distance radio. Hardware architecture of the repeater units 36 is shown in Figure 5.
  • the site warning units 3.4 may each include a siren and lights on a tripod.
  • the vehicle detector system 30 may also include personal warning units 38 which may be clipped onto a belt by workers, and lookout units 40 which may be held by a lookout person.
  • Figure 6 shows a series of steps in a flowchart which may be followed by examples of the vehicle detector system 30, and Figure 7 shows a diagrammatic view where vehicle detector units 10 are installed at a distance of 1.5km at either side of the worksite 32.
  • Figures 8 to 10 depict a vehicle detector unit 10 in accordance with a further example of the present invention.
  • the vehicle detector unit 10 shown in Figures 8 to 10 is generally similar to the one shown in Figures la to 7, and like features are denoted with like reference numerals,
  • the vehicle detector unit 10 of Figures 8 to 10 differs in that it includes a cam 42 for operating the second clamp 26 in place of the nut (or wing nut) used in the example shown in Figure la.
  • the vehicle detector unit 10 of Figures 8 to 1.0 also differs in that it includes heat shielding 44 to protect the housing 20 and the processor within the housing 20.
  • the cam 42 is operated by way of a lever 46. and may be configured for quick operation such that the cam 42 is able to be operated t engage/disengage the clamp 26 against the rail 12 by less than a single full turn of the lever 46.
  • the first and second clamps 24, 26 are able to accommodate rails 12 of different profiles - rails of different profiles have been superimposed in Figure 9 to illustrate this aspect.
  • heat shielding 44 is provided below the housing 20 to protect from heat the housing 20 and the processor within the housing 20.
  • the applicant has determined that at locations where the vehicle detector unit 10 is to be used there may be damaging heat not only from direct sunlight but also in the form of radiation from "ballast" rocks beneath or adjacent the rails, with the rocks acting in a similar manner to coal of a barbecue.
  • the heat shielding 44 may be in the form of a sled mounted to a underside of the vehicle detector unit 10 with an air gap between the heat shielding 44 and the vehicle detector unit 10 along a substantial portion of a length of the sled as shown in Figure 10 so as to insulate the vehicle detector unit, 10.

Abstract

A vehicle detector unit for detecting presence of a vehicle moving along a rail, including a distance sensor for sensing a body of the vehicle, a rail translation sensor for sensing translation of the rail, a rail torsion sensor for sensing torsion of the rail, and a processor adapted to process data received from the distance sensor, the rail translation sensor and the rail torsion sensor, whereby the processor applies an algorithm to said data to determine whether to output an alert signal.

Description

VEHICLE DETECTOR U IT, VEHICLE DETECTOR SYSTEM AND A METHOD FOR DETECTING PRESENCE OF A VEHICLE ON A RAIL
The invention relates to a vehicle detector unit, a vehicle detector system and a method for detecting presence of a vehicle on a rail. More particularly, hut not exclusively, the inventio relates t a vehicle detector unit for detecting presence of a train on a rail for providing an alert, to a worksite.
Background of
It is known to provide a railroad warning system for train operators. In particular, US Patent Mo. 8,109,474 discloses a dual ultrasonic train detector for giving train workers, railroad personnel and others warning of oncoming trains.
The applicant has identified that existing train detector systems are prone to unreliability, faulty detection of threat, and possible failure to identif threats i certain circumstances. Examples of the present invention seek to provide an improved train detection system which overcomes or at leas alleviates disadvantages associated with existing systems.
Summary of the Invention In accordance with the present invention, there is provided a vehicle detector unit for detecting presence of a vehicle moving, along a rail, including a distance sensor for sensing a body of the vehicle, a rail translation sensor for sensing translation of the rail,, a rail torsion sensor for sensing torsion of the rail, and a processor adapted to process data received from the distance sensor, the rail translation senso and the rail torsion sensor, whereby the processor applies an algorithm to said data to detemiine whether to output an alert, signal. Preferably, the processor applies said algorithm to detect uncorrelated data received from the distance sensor, the rail translatio sensor and the rail torsion sensor to distinguish between a dangerous event, in which case the vehicle detector unit outputs an alert signal, and a non-dangerous event, whereby the processor identifies a. non-dangerous event in response to detecting uncorrelated data, and the processor identifies a dangerous event i response to delecting correlated data.
Preferably, the processor is arranged to detect possible degradation of operation of the vehicle detector unit when greater than a predetermined threshold of non-dangerous events are detected within a predetermined period and in the absence of detecting a dangerous event. More preferably, the vehicle detector unit output an error signal in response to detecting possible degradation of operation of the vehicle detector unit, in a preferred form, the processor is arranged to detect correlated data when there is consistency between data received from the distance sensor, the rail translation sensor and the rail torsion sensor to indicate presence of a vehicle moving, along the rail, based on threshold values for each of the sensors. More preferably, the processor is arranged to detect correlated data for fast short vehicles and slow long vehicles on the rail, and to detect uncorrelated data for wind-blown debris, dust, rain and the like.
Preferably, the processor i arranged to distinguish presence of vehicles on adjacent tracks from presence of vehicles on said rail, Preferably, the distance sensor is in the form of an ultrasonic sensor.
Preferably, the rail translation sensor is in the form of an aceelerometer.
Preferably , the rail torsion sensor is in the form of a gyroscopic sensor. In a preferred form, the vehicle detector unit includes base for passing beneath said rail, a first clamp which is fixed relative to the base for clamping one side of the rail, and a second clamp which is selectively movable relati ve to the base for clamping an opposite side of the rail. More preferably, the second clamp is selectively held in place relative to the base by operation of a releasable fastener.
In accordance with another aspect of the present invention, there is provided a vehicle detector system for detecting presence of a vehicle moving along a rail relative to a work site, said system includin a pair of vehicle detector units at spaced locations along the rail, a first one of the vehicle detector units being located in one direction from the work site and a second one of the vehicle detector units being located in an opposite direction from the work site, each of the vehicle detector units being a vehicle detector unit as claimed in claim 1, said system further including a site warning unit located at the work site, wherein the site warning unit is in communication with the vehicle detector units, and the site warning unit outputs audible and/or visual alerts in response to an alert signal received from either of the vehicle detector units.
Preferably, the site warning unit is in communication with the vehicle detector units by way of radio communication.
In accordance with another aspect of the present invention, there is provided a method for detecting presence of a vehicle on a rail, said method including the steps of:
usin a distance sensor for sensin a body of the vehicle,
using a rail translation sensor for sensing translation of the rail, using a rail torsion sensor for sensing torsion of the rail , and
processing data received from the distance sensor, the rail translation sensor and the rail torsion sensor, whereby an algorithm is applied to said data to determine whether to output an alert signal. Brief Description of the Drawings
The invention is described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
Figure la shows a side view of a vehicle detector unit in accordance with an example of the present invention;
Figure la shows a bottom perspective view of the vehicle detector unit;
Figure 2 show a detailed transparent view of one end of the vehicle detector unit; Figure 3 is a diagrammatic representation of an algorithm used by a vehicle detector unit;
Figure 4 is a diagrammatic view of a vehicle detector system in accordance with an example of the present in vention;
Figure 5 is a diagrammatic representation of hardware architecture of a repeater unit of the vehicle detector system;
Figure 6 is a diagrammatic representation of procedure followed by the vehicle detector system;
Figure 7 is a diagrammatic representation of the vehicle detecto system when installed to provide warning to worksite;
Figure 8 shows a detailed side vie of a vehicle detector unit in accordance with an example of the present invention, depicting clamps of the vehicle detector unit;
Figure 9 shows a side view of a vehicle detector unit in accordance with the example shown in Figure 8; and
Figure 10 shows a partial sectional side view of one end of the vehicle detector unit shown in Figure 9.
Detailed Description
With reference to Figures la to 3 of the drawings, there is shown a vehicle detector system which is able to provide warning to a worksite of a train (or other vehicle) approaching the worksite along a rail. Advantageously, as the vehicle detector unit ineludes a distance sensor, a. rail translation, sensor, a rail torsion sensor and a processor, the vehicle detector unit is able to combine data received from the different sensors so as to achieve an improved level of reliability, particularly in detecting dangerous events and i avoiding being triggered by false triggers.
More specifically. Figures la to 3 depict a vehicle detector unit 10 for detecting presence of a vehicle moving along a rail 12, including a distance sensor 14 for sensing a body of the vehicle, a rail translation sensor 16 lor sensing translation of the rail 12, mid a rail torsion sensor 18 for sensing torsion of the rail 12. The vehicle detector unit 10 also includes a processor adapted to process data received from the distance sensor 14, the rail translation sensor 16 and the rail torsion sensor 18, whereby the processor applies an algorithm to the data to determine whether to output an alert signal The alert signal can be transmitted t produce an audible and/or visual alert to a worksite which is remote to the vehicle detector unit 10, as depicted in the vehicle detector system shown in Figures 4 to 7.
The processor may be located within a housing 20 of the vehicle detector unit. The processor applies the algorithm to detect uncorrelated data received from the distance sensor 14, the rail translation sensor 16 and the rail torsion sensor 18 to distinguish between a dangerous event, in which case the vehicle detector unit 10 outputs an alert signal, and a non-dangerous event, in which ease the vehicle detector unit 10 does not output an alert signal. The processor identifies a non-dangerous event in response to detecting uncorrelated data, and the processor identifies a dangerous event in response to detecting correlated data. This processing of data is performed by combining data from the distance sensor 14, the translation sensor 16 and the rail torsion sensor 18 in a manner which is depicted by the flow chart in Figure 3, Provided the processor recognises criteria according to the algorithm wherein data from the sensors is correlated to indicate presence of a vehicle movin along the rail 12, an alert signal is provided as an output of the vehicle detector unit 10. The processor may be arranged to detect possible degradation of operation of the vehicle detector unit 10 when greater than: a predetermined threshold of non-dangerous e vents are detected within a predetermined period and in the absence of detecting a dangerous event. In this case, the vehicle detector unit 10 may output an error signal in response to detecting possible degradation of operation of the vehicle detector unit. This may indicate tha the system may be unable to operate correctly. The system may use an alternative signal to indicate that, the system may be unable to function. For example, the system may use an alert sound from repeater units and site warning units to warn operators that the system may be unable to function and that the system may be less reliable.
The processor may be arranged to detect correlated data when there is consistency between data received from the distance sensor 14, the rail translation sensor 16 and the rail torsion sensor 18 to indicate presence of a vehicle moving along rail, based on threshold values for each of the sensors 14, 16, 18. The processo may be arranged to collect correlated data for fast short vehicles and slow long vehicles on the rail 12, and to detect uncorrelated data for wind-blown debris, dust, rain and the l ike. The processor may be arranged to distinguish presence of vehicles on adjacent tracks from presence of vehicles on the rail 12.
The distance sensor 14 may be in the form, of an. ultrasonic sensor, the rail translation sensor 16 may be in the form of an accelerometer, and the rail torsion sensor 18 may be in the form of a gyroscopic sensor.
Advantageously, the applicant has been able to appl a combination of microelectronic sensors and signal processing in a novel fashion to reliabl detect approaching trains. The vehicle detector unit 10 incorporates microelectronics, complex signal processing, and radio communications technology. Ultrasonic sensing technology combined with precision measurement of rail translation and rail torsion provides filtering thai, when combined, provide a level of reliability that is superior to existing vehicle protection products. In particular, improved system reliability is achieved via. combined monitoring of vehicular presence by way of combining a distance sensor with rail translation and rail torsion sensors. Although it has previously been proposed in an existing system t use only an ultrasonic sensor, the presence of a vehicle which is relativel small (for example, a 3 metre length vehicle as opposed to a 100 metre length train) may appear similar to an animal running past,, at least to an ultrasonic sensor in isolation. Accordingly, if a mere ultrasonic sensor system i programmed to avoid false triggering based on a running animal, that system may also miss the threat provided, by such a relatively small vehicle. Advantageously, by virtue of me sensor fusion of the present invention, such threats and false triggers are accommodated. Previously, false triggers of this kind may have been dealt with by simply removing short pulses, however this would effectively limit the maximum speed at which the existing system would detect vehicles (in particular relativel short vehicles or "high-fail" vehicles).
Advantageously, the present invention uses an algorithm which combines data collected on the ultrasonic sensor, accelerometer and gyroscope to manage scenarios including but not limited to fast short vehicles, long slow vehicles and vehicles on adjacent tracks,
In relation to the algorithm, digital signal filtering and temporal synchronisation are used for the Accelerometer, Gyroscope and Ultrasonic sensors. Ultrasonic sensor phenomena unrelated to vehicle defection, as defined by duration, distance thresholds and coiTelation with other sensors, is implemented such that, these phenomena are removed to the reduce effect on digital signal filtering in following stages. If many phenomena are removed in a short time, a degraded system signal is triggered.
The ultrasonic sensor is used such that a threshold and minimum time period are required to trigger an alarm, The time period is shortened if a detection trigger is present from MEMS sensors.
A MEMS trigger is determined primarily by a threshold on the ratio of RMS powe in short and long terms whereby the long term period follows the short term period, A MEMS trigger is continued while the long term RMS power remains above a threshold. The MEMS trigger is finally continued by way of a fixed period after the aforementioned triggers. Thresholds and timers vary between gyroscopic and aecelerometric sensors. Accordingly, examples of the present invention use a distance sensor in combination with torsion and translation sensors, using analogue distance, which is useful for defining thresholds and determining between rain and trains, rathe than simple digital. (on/off) "presence". The present invention uses soundwaves from the ultrasonic sensor to determine distance to the train. No electric or physical connection is made to the train or components of the train. There i no electrical or mechanical interface interfering with the train or the rail. Sensor fusion as implemented in the present invention enables the vehicle detector unit 10 to differentiate trains, track equipment, environmental effects, debris, electrically and mechanically induced noise, the adjacent track, and other factors. This improvement in differentiation significantly improves the reliability of detection and incidences of false detection.
The vehicle detector unit 10 may include a base 22 for passing beneath the rail, a first damp 24 which is fixed relative to the base 22 for clamping one side of the rail 12, and a second clamp 26 which is selectively movable relative to the base 22 for clamping an opposite side of the rail 12 (see Figure 1A and Fig re IB). The second clamp 26 may be selectively held in place relative to the base 22 by operation of a releasable fastener 28 which can be in the form of a threaded base and a wing nut. As the second clam 26 is able to be slid on and locked to the base 22 by a single wing nut, this makes for very fast attachment and reduces the time spent by an operator on the track in the danger zone. The profile of the base 22 allows for easy installation with minimal disruption to ballast (rock) from under the foot of the rail 12 during installation. Accordingly, examples of the present invention ma be quick to install and may support multiple rail standard sections. Accordingly, the vehicle detector unit 10 may be readily installed temporarily when work is to be undertaken at. a worksite at or near a section of the rail 12.
With reference to Figures 4 to 7, one aspect of the present invention provides a vehicle detector system 30 for detecting presence of a vehicle moving along a rail 12 relative to a worksite 32. The system 30 includes a pair of vehicle detector units 10 at spaced locations along the rail 1.2, a first one of the vehicle detector units 10 being located in one direction from the worksite 32 and a second one of the vehicle detector units 10 being located in an opposite direction from the worksite 32. The first vehicle detector unit 10 is for detecting trains incoming to the worksite 32 while the second one of the vehicle detector units 10 is for detecting trains leaving the worksite such that they do not initiate an alarm. In an alternative example, there may be more than: one vehicle detector unit 1 located at each side of the worksite 32 for detecting incoming velocity of trains. Each of the vehicle detector units 10 may be a vehicle detector unit 10 as shown in Figures la to 3 and as described above. The system 30 further includes a site warning unit 34 located at the worksite 32.
The site warning unit 34 is in communication with the vehicle detector units 10 and the site warning unit 34 outputs audible and/or visual alerts in response to an alert signal received from either of the vehicle detector units 10. The site warning unit 34 may be in communication with the vehicle detector units
10 by way of radio communication. Alternatives includes satellite, cellular and wired communication. Satellite has ongoing costs and is unreliable. Cellular is not available in the normal areas of deployment. Although inherently more reliable than wireless, wired connections require long lengths of wires and need to be run under the tracks. This increases installation time and equipment weight significantly. In addition, long installation, times prevent use of safety systems during short track occupations where the risk to workers may be very high. Radio communication certification is related to output power (effective isotropic radiated power). To achieve acceptable range through radiofrequency opaque objects in the Frenel zone, high sensitivity receivers are required. Range is related to elevation so as the train detectors are- low on the track, and repeater units (used close to the train detectors) are on tripods.
More specifically, with reference to Figure 4, the system 30 may include a plurality of repeater units 36 which have sirens and lights on a tripod with an additional long distance radio. Hardware architecture of the repeater units 36 is shown in Figure 5. The site warning units 3.4 may each include a siren and lights on a tripod. The vehicle detector system 30 may also include personal warning units 38 which may be clipped onto a belt by workers, and lookout units 40 which may be held by a lookout person.
Figure 6 shows a series of steps in a flowchart which may be followed by examples of the vehicle detector system 30, and Figure 7 shows a diagrammatic view where vehicle detector units 10 are installed at a distance of 1.5km at either side of the worksite 32. Figures 8 to 10 depict a vehicle detector unit 10 in accordance with a further example of the present invention. The vehicle detector unit 10 shown in Figures 8 to 10 is generally similar to the one shown in Figures la to 7, and like features are denoted with like reference numerals, The vehicle detector unit 10 of Figures 8 to 10 differs in that it includes a cam 42 for operating the second clamp 26 in place of the nut (or wing nut) used in the example shown in Figure la. The vehicle detector unit 10 of Figures 8 to 1.0 also differs in that it includes heat shielding 44 to protect the housing 20 and the processor within the housing 20.
More specifically, wit reference to Figure 8, the cam 42 is operated by way of a lever 46. and may be configured for quick operation such that the cam 42 is able to be operated t engage/disengage the clamp 26 against the rail 12 by less than a single full turn of the lever 46. As shown in Figure 9, the first and second clamps 24, 26 are able to accommodate rails 12 of different profiles - rails of different profiles have been superimposed in Figure 9 to illustrate this aspect.
Turning to Figure 10, heat shielding 44 is provided below the housing 20 to protect from heat the housing 20 and the processor within the housing 20. The applicant has determined that at locations where the vehicle detector unit 10 is to be used there may be damaging heat not only from direct sunlight but also in the form of radiation from "ballast" rocks beneath or adjacent the rails, with the rocks acting in a similar manner to coal of a barbecue. The heat shielding 44 may be in the form of a sled mounted to a underside of the vehicle detector unit 10 with an air gap between the heat shielding 44 and the vehicle detector unit 10 along a substantial portion of a length of the sled as shown in Figure 10 so as to insulate the vehicle detector unit, 10.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. It will be apparent to a person skilled in the relevant art that variou changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the present invention should not be limited b any of the above described exemplary embodiments.
The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment: or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part o the common general knowledge in the field of endeavour to which this specification relates. Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

Claims

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS;
1. A vehicle detector unit for detecting presence of a vehicle moving along a rail, including a distance sensor for sensing a body of the vehicle, a rail translation sensor for sensing translation of die rail , a rail torsion sensor for sensing torsion of the rail, and a processor adapted to process data received from the distance sensor, the rail translation sensor and the rail torsio sensor, whereby the processor applies an algorithm to said data to determine whether to output an alert signal,
2. A vehicle detector unit as claimed in claim 1 , wherein the processor applies said algorithm to detect uncorrected data received from the distance sensor, the rail translation sensor and the rail torsion sensor to distinguis between a dangerous event, in which case the vehicle detector unit outputs an alert signal, and a non- dangerous event, whereby the processor identifies a non-dangerous event in response to detecting uiicorrelated data, and the processor identifies a dangerous event i response to detecting correlated data.
3. A vehicle detector unit as claimed in claim 1 or claim 2, wherein the processor is arranged to detect possible degradation of operation of the vehicle detector unit when greater than a predetermined threshold of non-dangerous event are detected within a predetermined period and in the absence of detectin a dangerous event.
4. A vehicle detector unit as claimed in. claim 3, wherein the vehicle detector unit outputs an error signal in response to detecting possible degradation of operation of the vehicle detector unit.
5. A vehicle detector unit a claimed in claim 2, wherein the processor is arranged to detect correlated data when there is consistency between data received from the distance sensor, the rail translation sensor and the rail torsion sensor to indicate presence of a vehicle moving along the rail, based on threshold values for each of the sensors.
6. A vehicle detector unit as claimed in claim 5, wherein the processor is arranged- to detect coixelated data for fast, short vehicles and slow long vehicles on the rail, and to detect uncorrected data for wind-blown debris, dust, rain and the like.
7. A vehicle detector unit as claimed in any one of claims 1 to- 6, wherein the processor is arranged to distinguish presence of vehicles on adjacent tracks from presence of vehicles on said rail,
8. A vehicle detector unit as claimed in any one of claims 1 t 7, wherein the distance sensor is in the form of an ultrasonic sensor.
9. A vehicle detector unit as claimed in any one of claim 1 to 8, wherein the rail translation sensor is in. the form of an. aceelerometer.
10. A vehicle detector unit as claimed in any one of claims 1 to 9, wherein the rail torsion sensor is in the form of a gyroscopic sensor.
1.1.. A vehicle detector unit as claimed in any one of claims 1 to 10, wherein the vehicle detector unit includes base for passing beneath said rail, a first clam which is fixed relative to the base for clamping one side of the rail, and a second clamp which is selectively movable relative to the base for clamping an opposite side of the rail.
12. A vehicle detector unit as claimed in claim 11, wherein the second clamp is selectively held in place relative to the base by operation of a releasahle fastener.
13. A vehicle detector system for detecting presence of a- vehicle moving along a rail relative to a work site, said system including a pair of vehicle detector units at spaced locations along the rail a first one of the vehicle detector units being located in one direction from the work site and a second one of the vehicle detector units being located in an. opposite direction from the work site, each of the vehicle detector units being a vehicle detector unit as claimed in claim 1, said system further including a site warning unit located at the work site, wherei the site warning unit is in communication with the vehicle detector units, and the site warning unit outputs audible and/or visual alerts in response to an alert signal received from either of the vehicle detector units.
A vehicle detector system a claimed in claim 13, wherein the site warning unit is in communication with the vehicle detector units by way of radio communication. ίθ
A method for detecting presence of a vehicle on a rail, said method including the steps of:
usin a distance sensor for sensing a body of the vehicle, usin a rail translation sensor for sensing translation of the rail,
using a rail torsion sensor for sensing torsion of the rail, and
processing data received from the distance sensor, the rail translation sensor and the rail torsion sensor, whereby an. algorithm is applied to said data to
■determine whether to output an alert si nal.
A vehicle detector unit substantially as hereinbefore described with reference to the accompanying drawings.
A vehicle detector system substaniially as hereinbefore described vvith reference to the accompanying drawings.
5
A method for detecting presence of a vehicle on a rail substantially hereinbefore described with reference to the accompanying drawings.
PCT/AU2014/050425 2013-12-17 2014-12-17 Vehicle detector unit, vehicle detector system and a method for detecting presence of a vehicle on a rail WO2015089581A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/106,123 US20160311452A1 (en) 2013-12-17 2014-12-17 Vehicle detector unit, vehicle detector system and a method for detecting presence of a vehicle on a rail
EP14870833.2A EP3083367A4 (en) 2013-12-17 2014-12-17 Vehicle detector unit, vehicle detector system and a method for detecting presence of a vehicle on a rail

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2013904930A AU2013904930A0 (en) 2013-12-17 Vehicle detector unit, vehicle detector system and a method for detecting presence of a vehicle on a rail
AU2013904930 2013-12-17

Publications (1)

Publication Number Publication Date
WO2015089581A1 true WO2015089581A1 (en) 2015-06-25

Family

ID=53401801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2014/050425 WO2015089581A1 (en) 2013-12-17 2014-12-17 Vehicle detector unit, vehicle detector system and a method for detecting presence of a vehicle on a rail

Country Status (3)

Country Link
US (1) US20160311452A1 (en)
EP (1) EP3083367A4 (en)
WO (1) WO2015089581A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510919A (en) * 2015-12-01 2016-04-20 南京富岛信息工程有限公司 Intelligent slipper low-temperature distance measurement device and method
WO2017015110A1 (en) 2015-07-17 2017-01-26 Harsco Technologies LLC Rail warning system and method
WO2019122193A1 (en) * 2017-12-20 2019-06-27 Railway Metrics And Dynamics Sweden Ab Detection units for monitoring a train travelling on a railway, and related systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160144875A1 (en) * 2014-11-24 2016-05-26 Electronics And Telecommunications Research Institute Apparatus and method for distributed processing of train monitoring traffic based on hierarchical wireless sensor network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628479A (en) * 1995-12-12 1997-05-13 Harmon Industries, Inc. Vital wheel detector
US5907294A (en) * 1994-08-13 1999-05-25 Ee-Signals Gmbh & Co. Kg Process for detecting sources of danger
US6113037A (en) * 1991-02-04 2000-09-05 Eva Signal Corporation Railroad maintenance-of-way personnel warning system apparatus and method therefor
WO2011153114A2 (en) * 2010-05-31 2011-12-08 Central Signal, Llc Train detection
US8109474B2 (en) * 2009-11-27 2012-02-07 Bartek Peter M Dual ultrasonic train detector
US20130248659A1 (en) * 2010-09-17 2013-09-26 Wavetrain Systems As System and method for early train detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113037A (en) * 1991-02-04 2000-09-05 Eva Signal Corporation Railroad maintenance-of-way personnel warning system apparatus and method therefor
US5907294A (en) * 1994-08-13 1999-05-25 Ee-Signals Gmbh & Co. Kg Process for detecting sources of danger
US5628479A (en) * 1995-12-12 1997-05-13 Harmon Industries, Inc. Vital wheel detector
US8109474B2 (en) * 2009-11-27 2012-02-07 Bartek Peter M Dual ultrasonic train detector
WO2011153114A2 (en) * 2010-05-31 2011-12-08 Central Signal, Llc Train detection
US20130248659A1 (en) * 2010-09-17 2013-09-26 Wavetrain Systems As System and method for early train detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3083367A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015110A1 (en) 2015-07-17 2017-01-26 Harsco Technologies LLC Rail warning system and method
EP3325325A4 (en) * 2015-07-17 2019-06-19 Harsco Technologies LLC Rail warning system and method
US10913472B2 (en) 2015-07-17 2021-02-09 Harsco Technologies LLC Rail warning system and method
US11866078B2 (en) 2015-07-17 2024-01-09 Harsco Technologies LLC Rail warning system and method
CN105510919A (en) * 2015-12-01 2016-04-20 南京富岛信息工程有限公司 Intelligent slipper low-temperature distance measurement device and method
CN105510919B (en) * 2015-12-01 2017-12-29 南京富岛信息工程有限公司 A kind of Intelligent iron shoe low temperature range unit and distance-finding method
WO2019122193A1 (en) * 2017-12-20 2019-06-27 Railway Metrics And Dynamics Sweden Ab Detection units for monitoring a train travelling on a railway, and related systems and methods

Also Published As

Publication number Publication date
US20160311452A1 (en) 2016-10-27
EP3083367A4 (en) 2017-12-13
EP3083367A1 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
RU2730080C2 (en) System and method for early detection of a train
RU2743390C2 (en) Railway monitoring system for detecting partial or complete failure of railway roads
ES2662744T3 (en) Railway systems using acoustic monitoring
US20160311452A1 (en) Vehicle detector unit, vehicle detector system and a method for detecting presence of a vehicle on a rail
KR101070340B1 (en) System for fire detecting of railway
US5907294A (en) Process for detecting sources of danger
AU2015217518A1 (en) Imaging system and method
JPH1081238A (en) Radio railroad-crossing alarm system
CN105501249A (en) System and method for detecting wheel condition
US20140043159A1 (en) Security system, program product therefor, and surveillance method
JP6391463B2 (en) VEHICLE SPEED DETECTING DEVICE, VEHICLE WITH THE DEVICE, AND TRAIN
WO2017125332A3 (en) Detection of a dangerous situation in road traffic
JP6041782B2 (en) Train control device
WO2019122193A1 (en) Detection units for monitoring a train travelling on a railway, and related systems and methods
CN107010087A (en) High ferro system for monitoring intrusion of foreign bodies and method
JP2004106779A (en) Railroad crossing control system
JPH08334560A (en) Detection apparatus
GB2622872A (en) Trackside worker warning method
Zhang et al. Monitoring the gaps between the platform screen doors and the doors of subway train based on optical time domain reflectrometer
RU2586099C1 (en) Device for detecting rolling stock and determining direction and speed thereof
JP2016013714A (en) Crossing gate control device
Wang et al. An Integrated Safety/Security Video Image Detection (VID) System for Road Tunnel Protection
Kim et al. Field test of safety monitoring system for railroad level crossings using laser scanner
KR20190141529A (en) Railway hazardous materials early warning system Detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15106123

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014870833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014870833

Country of ref document: EP