WO2015089351A1 - Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders - Google Patents
Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders Download PDFInfo
- Publication number
- WO2015089351A1 WO2015089351A1 PCT/US2014/069897 US2014069897W WO2015089351A1 WO 2015089351 A1 WO2015089351 A1 WO 2015089351A1 US 2014069897 W US2014069897 W US 2014069897W WO 2015089351 A1 WO2015089351 A1 WO 2015089351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sequence
- crispr
- composition
- target
- expression
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 165
- 239000000203 mixture Substances 0.000 title claims abstract description 161
- 125000003729 nucleotide group Chemical group 0.000 title claims description 115
- 239000002773 nucleotide Substances 0.000 title claims description 114
- 108091033409 CRISPR Proteins 0.000 claims abstract description 213
- 239000013598 vector Substances 0.000 claims abstract description 173
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 84
- 230000000694 effects Effects 0.000 claims abstract description 49
- 201000010099 disease Diseases 0.000 claims abstract description 42
- 238000010354 CRISPR gene editing Methods 0.000 claims abstract 10
- 108090000623 proteins and genes Proteins 0.000 claims description 209
- 210000004027 cell Anatomy 0.000 claims description 184
- 102000040430 polynucleotide Human genes 0.000 claims description 181
- 108091033319 polynucleotide Proteins 0.000 claims description 181
- 239000002157 polynucleotide Substances 0.000 claims description 181
- 230000014509 gene expression Effects 0.000 claims description 172
- 102000004169 proteins and genes Human genes 0.000 claims description 104
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 99
- 230000035772 mutation Effects 0.000 claims description 86
- 108020004414 DNA Proteins 0.000 claims description 72
- 239000002105 nanoparticle Substances 0.000 claims description 69
- 241000282414 Homo sapiens Species 0.000 claims description 62
- 210000001808 exosome Anatomy 0.000 claims description 57
- 150000007523 nucleic acids Chemical group 0.000 claims description 57
- 230000001105 regulatory effect Effects 0.000 claims description 52
- 102000039446 nucleic acids Human genes 0.000 claims description 48
- 108020004707 nucleic acids Proteins 0.000 claims description 48
- 239000003814 drug Substances 0.000 claims description 45
- 238000010362 genome editing Methods 0.000 claims description 45
- 239000013603 viral vector Substances 0.000 claims description 45
- 239000002502 liposome Substances 0.000 claims description 42
- 210000001519 tissue Anatomy 0.000 claims description 36
- 108020004705 Codon Proteins 0.000 claims description 33
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 claims description 31
- 238000011282 treatment Methods 0.000 claims description 30
- 108091026890 Coding region Proteins 0.000 claims description 28
- 230000009870 specific binding Effects 0.000 claims description 25
- 208000009869 Neu-Laxova syndrome Diseases 0.000 claims description 22
- 108010077850 Nuclear Localization Signals Proteins 0.000 claims description 22
- 108091092236 Chimeric RNA Proteins 0.000 claims description 21
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 21
- 230000027455 binding Effects 0.000 claims description 21
- 230000003247 decreasing effect Effects 0.000 claims description 19
- 230000001965 increasing effect Effects 0.000 claims description 19
- 102220606977 Cytosolic arginine sensor for mTORC1 subunit 2_N863A_mutation Human genes 0.000 claims description 15
- 108010008532 Deoxyribonuclease I Proteins 0.000 claims description 15
- 102000007260 Deoxyribonuclease I Human genes 0.000 claims description 15
- 238000002347 injection Methods 0.000 claims description 15
- 239000007924 injection Substances 0.000 claims description 15
- 230000002779 inactivation Effects 0.000 claims description 14
- 239000003550 marker Substances 0.000 claims description 12
- 108091081062 Repeated sequence (DNA) Proteins 0.000 claims description 11
- 230000009437 off-target effect Effects 0.000 claims description 10
- 230000002401 inhibitory effect Effects 0.000 claims description 9
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 claims description 8
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 claims description 8
- 108091081024 Start codon Proteins 0.000 claims description 8
- 230000007547 defect Effects 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000003007 single stranded DNA break Effects 0.000 claims description 8
- 210000004899 c-terminal region Anatomy 0.000 claims description 6
- 230000010474 transient expression Effects 0.000 claims description 6
- 230000005764 inhibitory process Effects 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 4
- 230000002411 adverse Effects 0.000 claims description 3
- 230000037433 frameshift Effects 0.000 claims description 3
- 230000003292 diminished effect Effects 0.000 claims description 2
- 238000012384 transportation and delivery Methods 0.000 abstract description 136
- 210000003527 eukaryotic cell Anatomy 0.000 abstract description 40
- 210000000056 organ Anatomy 0.000 abstract description 17
- 238000005457 optimization Methods 0.000 abstract description 16
- 238000013461 design Methods 0.000 abstract description 8
- 231100000419 toxicity Toxicity 0.000 abstract description 7
- 230000001988 toxicity Effects 0.000 abstract description 7
- 230000009918 complex formation Effects 0.000 abstract description 3
- 102000004190 Enzymes Human genes 0.000 description 269
- 108090000790 Enzymes Proteins 0.000 description 269
- 229940088598 enzyme Drugs 0.000 description 269
- 235000018102 proteins Nutrition 0.000 description 98
- 239000002245 particle Substances 0.000 description 84
- 108020005004 Guide RNA Proteins 0.000 description 82
- 150000002632 lipids Chemical class 0.000 description 62
- 239000000306 component Substances 0.000 description 61
- 239000000047 product Substances 0.000 description 56
- 239000013612 plasmid Substances 0.000 description 52
- 239000004055 small Interfering RNA Substances 0.000 description 51
- 108020004459 Small interfering RNA Proteins 0.000 description 50
- 101000910035 Streptococcus pyogenes serotype M1 CRISPR-associated endonuclease Cas9/Csn1 Proteins 0.000 description 47
- 230000008439 repair process Effects 0.000 description 43
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 42
- 208000035475 disorder Diseases 0.000 description 42
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 40
- 238000003776 cleavage reaction Methods 0.000 description 39
- 230000007017 scission Effects 0.000 description 39
- 230000008685 targeting Effects 0.000 description 38
- 238000001727 in vivo Methods 0.000 description 36
- 150000001875 compounds Chemical class 0.000 description 32
- 238000009472 formulation Methods 0.000 description 32
- 108020004999 messenger RNA Proteins 0.000 description 32
- 210000004556 brain Anatomy 0.000 description 29
- 229920000642 polymer Polymers 0.000 description 28
- 230000004048 modification Effects 0.000 description 26
- 238000012986 modification Methods 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 24
- 229940079593 drug Drugs 0.000 description 23
- -1 methods Substances 0.000 description 23
- 230000001225 therapeutic effect Effects 0.000 description 22
- 241000713666 Lentivirus Species 0.000 description 21
- 101710163270 Nuclease Proteins 0.000 description 21
- 235000012000 cholesterol Nutrition 0.000 description 21
- 230000002159 abnormal effect Effects 0.000 description 20
- 238000011144 upstream manufacturing Methods 0.000 description 20
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 19
- 230000037431 insertion Effects 0.000 description 19
- 238000003780 insertion Methods 0.000 description 19
- 239000002953 phosphate buffered saline Substances 0.000 description 19
- 241000193996 Streptococcus pyogenes Species 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 18
- 230000000295 complement effect Effects 0.000 description 18
- 108090000765 processed proteins & peptides Proteins 0.000 description 18
- 206010028980 Neoplasm Diseases 0.000 description 17
- 241000282412 Homo Species 0.000 description 16
- 230000006870 function Effects 0.000 description 16
- 102000007372 Ataxin-1 Human genes 0.000 description 15
- 108010032963 Ataxin-1 Proteins 0.000 description 15
- 102000053602 DNA Human genes 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 15
- 238000013518 transcription Methods 0.000 description 15
- 230000035897 transcription Effects 0.000 description 15
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 14
- 241000124008 Mammalia Species 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 14
- 241000699670 Mus sp. Species 0.000 description 14
- 241000191967 Staphylococcus aureus Species 0.000 description 14
- 235000001014 amino acid Nutrition 0.000 description 14
- 150000001413 amino acids Chemical class 0.000 description 14
- 239000000412 dendrimer Substances 0.000 description 14
- 229920000736 dendritic polymer Polymers 0.000 description 14
- 238000002513 implantation Methods 0.000 description 14
- 230000001404 mediated effect Effects 0.000 description 14
- 230000030648 nucleus localization Effects 0.000 description 14
- 229920001223 polyethylene glycol Polymers 0.000 description 14
- 230000003612 virological effect Effects 0.000 description 14
- 230000007018 DNA scission Effects 0.000 description 13
- 239000002202 Polyethylene glycol Substances 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 13
- 125000002091 cationic group Chemical group 0.000 description 13
- 238000012377 drug delivery Methods 0.000 description 13
- 230000000415 inactivating effect Effects 0.000 description 13
- 241000894007 species Species 0.000 description 13
- 108091079001 CRISPR RNA Proteins 0.000 description 12
- 208000023105 Huntington disease Diseases 0.000 description 12
- 238000004422 calculation algorithm Methods 0.000 description 12
- 238000001415 gene therapy Methods 0.000 description 12
- 210000004185 liver Anatomy 0.000 description 12
- 102000004196 processed proteins & peptides Human genes 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 239000013607 AAV vector Substances 0.000 description 11
- 102100022437 Myotonin-protein kinase Human genes 0.000 description 11
- 238000013459 approach Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 238000001802 infusion Methods 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 102220605874 Cytosolic arginine sensor for mTORC1 subunit 2_D10A_mutation Human genes 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 description 10
- 241000700605 Viruses Species 0.000 description 10
- 108091027963 non-coding RNA Proteins 0.000 description 10
- 102000042567 non-coding RNA Human genes 0.000 description 10
- 210000004940 nucleus Anatomy 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 241000701161 unidentified adenovirus Species 0.000 description 10
- 102100023532 Synaptic functional regulator FMR1 Human genes 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 238000003197 gene knockdown Methods 0.000 description 9
- 238000011534 incubation Methods 0.000 description 9
- 210000004962 mammalian cell Anatomy 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 9
- 102000014461 Ataxins Human genes 0.000 description 8
- 108010078286 Ataxins Proteins 0.000 description 8
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 8
- 108010052185 Myotonin-Protein Kinase Proteins 0.000 description 8
- 238000005538 encapsulation Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000006780 non-homologous end joining Effects 0.000 description 8
- 238000004806 packaging method and process Methods 0.000 description 8
- 239000013600 plasmid vector Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000001890 transfection Methods 0.000 description 8
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 7
- 108010032606 Fragile X Mental Retardation Protein Proteins 0.000 description 7
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 7
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 7
- 108010071690 Prealbumin Proteins 0.000 description 7
- 102000009190 Transthyretin Human genes 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 238000001994 activation Methods 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 230000005782 double-strand break Effects 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 7
- 210000005260 human cell Anatomy 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 230000010354 integration Effects 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 239000002679 microRNA Substances 0.000 description 7
- NFQBIAXADRDUGK-KWXKLSQISA-N n,n-dimethyl-2,3-bis[(9z,12z)-octadeca-9,12-dienoxy]propan-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/C\C=C/CCCCC NFQBIAXADRDUGK-KWXKLSQISA-N 0.000 description 7
- 238000012552 review Methods 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- YAWWQIFONIPBKT-HXUWFJFHSA-N 2-[[(2r)-2-butyl-6,7-dichloro-2-cyclopentyl-1-oxo-3h-inden-5-yl]oxy]acetic acid Chemical compound C1([C@@]2(C(C3=C(Cl)C(Cl)=C(OCC(O)=O)C=C3C2)=O)CCCC)CCCC1 YAWWQIFONIPBKT-HXUWFJFHSA-N 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 6
- 108700010070 Codon Usage Proteins 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 6
- 230000000975 bioactive effect Effects 0.000 description 6
- 108020001778 catalytic domains Proteins 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 6
- 238000002296 dynamic light scattering Methods 0.000 description 6
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 6
- 201000003415 fragile X-associated tremor/ataxia syndrome Diseases 0.000 description 6
- 230000030279 gene silencing Effects 0.000 description 6
- 230000009368 gene silencing by RNA Effects 0.000 description 6
- 238000002744 homologous recombination Methods 0.000 description 6
- 230000006801 homologous recombination Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000009126 molecular therapy Methods 0.000 description 6
- 210000002569 neuron Anatomy 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 102000007370 Ataxin2 Human genes 0.000 description 5
- 108010032951 Ataxin2 Proteins 0.000 description 5
- 102100021257 Beta-secretase 1 Human genes 0.000 description 5
- 102100033849 CCHC-type zinc finger nucleic acid binding protein Human genes 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 108010010234 HDL Lipoproteins Proteins 0.000 description 5
- 102000015779 HDL Lipoproteins Human genes 0.000 description 5
- 101000894895 Homo sapiens Beta-secretase 1 Proteins 0.000 description 5
- 208000027747 Kennedy disease Diseases 0.000 description 5
- 108700011259 MicroRNAs Proteins 0.000 description 5
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 210000004443 dendritic cell Anatomy 0.000 description 5
- 150000002118 epoxides Chemical class 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 239000005090 green fluorescent protein Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 210000003734 kidney Anatomy 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 108010040003 polyglutamine Proteins 0.000 description 5
- 230000001603 reducing effect Effects 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 4
- 102100032187 Androgen receptor Human genes 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102000043334 C9orf72 Human genes 0.000 description 4
- 108700030955 C9orf72 Proteins 0.000 description 4
- 101150014718 C9orf72 gene Proteins 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 4
- 241000702421 Dependoparvovirus Species 0.000 description 4
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 4
- 102000003869 Frataxin Human genes 0.000 description 4
- 108090000217 Frataxin Proteins 0.000 description 4
- 208000024412 Friedreich ataxia Diseases 0.000 description 4
- 201000011240 Frontotemporal dementia Diseases 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 101000828537 Homo sapiens Synaptic functional regulator FMR1 Proteins 0.000 description 4
- 108091092195 Intron Proteins 0.000 description 4
- 241000288906 Primates Species 0.000 description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- HCAJCMUKLZSPFT-KWXKLSQISA-N [3-(dimethylamino)-2-[(9z,12z)-octadeca-9,12-dienoyl]oxypropyl] (9z,12z)-octadeca-9,12-dienoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OCC(CN(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC HCAJCMUKLZSPFT-KWXKLSQISA-N 0.000 description 4
- 125000003275 alpha amino acid group Chemical group 0.000 description 4
- 108010080146 androgen receptors Proteins 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229920006317 cationic polymer Polymers 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 230000001973 epigenetic effect Effects 0.000 description 4
- 210000002744 extracellular matrix Anatomy 0.000 description 4
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 4
- 229920001477 hydrophilic polymer Polymers 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 210000005171 mammalian brain Anatomy 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 210000004779 membrane envelope Anatomy 0.000 description 4
- 239000000693 micelle Substances 0.000 description 4
- 201000009340 myotonic dystrophy type 1 Diseases 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229920000155 polyglutamine Polymers 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 150000003141 primary amines Chemical class 0.000 description 4
- 230000002035 prolonged effect Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 238000005199 ultracentrifugation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 3
- 108020005345 3' Untranslated Regions Proteins 0.000 description 3
- 108020003589 5' Untranslated Regions Proteins 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- 102000007368 Ataxin-7 Human genes 0.000 description 3
- 108010032953 Ataxin-7 Proteins 0.000 description 3
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 3
- 241000766026 Coregonus nasus Species 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 241000713730 Equine infectious anemia virus Species 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 208000001914 Fragile X syndrome Diseases 0.000 description 3
- 206010019695 Hepatic neoplasm Diseases 0.000 description 3
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 3
- 101000772194 Homo sapiens Transthyretin Proteins 0.000 description 3
- 206010068871 Myotonic dystrophy Diseases 0.000 description 3
- 201000009110 Oculopharyngeal muscular dystrophy Diseases 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 102100037082 Signal recognition particle 14 kDa protein Human genes 0.000 description 3
- 108091027967 Small hairpin RNA Proteins 0.000 description 3
- 201000003487 Spinocerebellar ataxia type 31 Diseases 0.000 description 3
- 241000194020 Streptococcus thermophilus Species 0.000 description 3
- 102100036049 T-complex protein 1 subunit gamma Human genes 0.000 description 3
- 102100040666 Transmembrane protein 185A Human genes 0.000 description 3
- 102100029290 Transthyretin Human genes 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 230000035508 accumulation Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000003466 anti-cipated effect Effects 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 239000013060 biological fluid Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000001574 biopsy Methods 0.000 description 3
- 230000008499 blood brain barrier function Effects 0.000 description 3
- 210000001218 blood-brain barrier Anatomy 0.000 description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 3
- 101150062912 cct3 gene Proteins 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 208000015114 central nervous system disease Diseases 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000009850 completed effect Effects 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 3
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000011987 methylation Effects 0.000 description 3
- 238000007069 methylation reaction Methods 0.000 description 3
- 208000015122 neurodegenerative disease Diseases 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003204 osmotic effect Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 150000003335 secondary amines Chemical class 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000004017 serum-free culture medium Substances 0.000 description 3
- 201000003598 spinocerebellar ataxia type 10 Diseases 0.000 description 3
- 201000003594 spinocerebellar ataxia type 12 Diseases 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 210000003932 urinary bladder Anatomy 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- LRFJOIPOPUJUMI-KWXKLSQISA-N 2-[2,2-bis[(9z,12z)-octadeca-9,12-dienyl]-1,3-dioxolan-4-yl]-n,n-dimethylethanamine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCC1(CCCCCCCC\C=C/C\C=C/CCCCC)OCC(CCN(C)C)O1 LRFJOIPOPUJUMI-KWXKLSQISA-N 0.000 description 2
- XSVWFLQICKPQAA-UHFFFAOYSA-N 2-[4,10-bis(carboxymethyl)-7-[2-(2,5-dioxopyrrolidin-1-yl)oxy-2-oxoethyl]-1,4,7,10-tetrazacyclododec-1-yl]acetic acid Chemical compound C1CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CCN1CC(=O)ON1C(=O)CCC1=O XSVWFLQICKPQAA-UHFFFAOYSA-N 0.000 description 2
- 102100024378 AF4/FMR2 family member 2 Human genes 0.000 description 2
- 102100040431 Activator of basal transcription 1 Human genes 0.000 description 2
- 101710102819 Activator of basal transcription 1 Proteins 0.000 description 2
- 241000702423 Adeno-associated virus - 2 Species 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 2
- 102100034452 Alternative prion protein Human genes 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 102100027308 Apoptosis regulator BAX Human genes 0.000 description 2
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 2
- 108090000448 Aryl Hydrocarbon Receptors Proteins 0.000 description 2
- 102100026792 Aryl hydrocarbon receptor Human genes 0.000 description 2
- 102100026789 Aryl hydrocarbon receptor repressor Human genes 0.000 description 2
- 108050004261 Aryl hydrocarbon receptor repressor Proteins 0.000 description 2
- 102000007371 Ataxin-3 Human genes 0.000 description 2
- 108010032947 Ataxin-3 Proteins 0.000 description 2
- 102100026565 Ataxin-8 Human genes 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 101000623895 Bos taurus Mucin-15 Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- 102100032912 CD44 antigen Human genes 0.000 description 2
- 102100031198 CGG triplet repeat-binding protein 1 Human genes 0.000 description 2
- 101710132053 CGG triplet repeat-binding protein 1 Proteins 0.000 description 2
- 108010040163 CREB-Binding Protein Proteins 0.000 description 2
- 102100021975 CREB-binding protein Human genes 0.000 description 2
- 238000010453 CRISPR/Cas method Methods 0.000 description 2
- 102100025492 CUGBP Elav-like family member 3 Human genes 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 206010008025 Cerebellar ataxia Diseases 0.000 description 2
- 108010077544 Chromatin Proteins 0.000 description 2
- 102100040484 Claspin Human genes 0.000 description 2
- 102100023804 Coagulation factor VII Human genes 0.000 description 2
- 102100027041 Crossover junction endonuclease MUS81 Human genes 0.000 description 2
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 description 2
- 201000003883 Cystic fibrosis Diseases 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 102100020756 D(2) dopamine receptor Human genes 0.000 description 2
- 102100034157 DNA mismatch repair protein Msh2 Human genes 0.000 description 2
- 102100037700 DNA mismatch repair protein Msh3 Human genes 0.000 description 2
- 102100036951 DNA polymerase subunit gamma-1 Human genes 0.000 description 2
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 2
- 101710096438 DNA-binding protein Proteins 0.000 description 2
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 2
- 102100028554 Dual specificity tyrosine-phosphorylation-regulated kinase 1A Human genes 0.000 description 2
- 102100035813 E3 ubiquitin-protein ligase CBL Human genes 0.000 description 2
- 102100034597 E3 ubiquitin-protein ligase TRIM22 Human genes 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 108010023321 Factor VII Proteins 0.000 description 2
- 102100026748 Fatty acid-binding protein, intestinal Human genes 0.000 description 2
- 102100020760 Ferritin heavy chain Human genes 0.000 description 2
- 102100026121 Flap endonuclease 1 Human genes 0.000 description 2
- 108050002219 Flap endonuclease 1 Proteins 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 102100040196 GRB10-interacting GYF protein 2 Human genes 0.000 description 2
- 101710132788 GRB10-interacting GYF protein 2 Proteins 0.000 description 2
- 102100033962 GTP-binding protein RAD Human genes 0.000 description 2
- 102100032518 Gamma-crystallin B Human genes 0.000 description 2
- 102100027813 Gamma-crystallin C Human genes 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 229940123611 Genome editing Drugs 0.000 description 2
- 102100022630 Glutamate receptor ionotropic, NMDA 2B Human genes 0.000 description 2
- 102100039696 Glutamate-cysteine ligase catalytic subunit Human genes 0.000 description 2
- 102100033039 Glutathione peroxidase 1 Human genes 0.000 description 2
- 102100031249 H/ACA ribonucleoprotein complex subunit DKC1 Human genes 0.000 description 2
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical group C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 2
- 108091027305 Heteroduplex Proteins 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 241000251188 Holocephali Species 0.000 description 2
- 102100031470 Homeobox protein ARX Human genes 0.000 description 2
- 101710081544 Homeobox protein ARX Proteins 0.000 description 2
- 102100022377 Homeobox protein DLX-2 Human genes 0.000 description 2
- 102100025110 Homeobox protein Hox-A5 Human genes 0.000 description 2
- 102100030636 Homeobox protein OTX1 Human genes 0.000 description 2
- 102100025449 Homeobox protein SIX5 Human genes 0.000 description 2
- 102100027695 Homeobox protein engrailed-2 Human genes 0.000 description 2
- 101000833172 Homo sapiens AF4/FMR2 family member 2 Proteins 0.000 description 2
- 101000873082 Homo sapiens Ataxin-1 Proteins 0.000 description 2
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 2
- 101000914299 Homo sapiens CUGBP Elav-like family member 3 Proteins 0.000 description 2
- 101000982890 Homo sapiens Crossover junction endonuclease MUS81 Proteins 0.000 description 2
- 101000931901 Homo sapiens D(2) dopamine receptor Proteins 0.000 description 2
- 101001134036 Homo sapiens DNA mismatch repair protein Msh2 Proteins 0.000 description 2
- 101001027762 Homo sapiens DNA mismatch repair protein Msh3 Proteins 0.000 description 2
- 101000804964 Homo sapiens DNA polymerase subunit gamma-1 Proteins 0.000 description 2
- 101000838016 Homo sapiens Dual specificity tyrosine-phosphorylation-regulated kinase 1A Proteins 0.000 description 2
- 101000848629 Homo sapiens E3 ubiquitin-protein ligase TRIM22 Proteins 0.000 description 2
- 101000911337 Homo sapiens Fatty acid-binding protein, intestinal Proteins 0.000 description 2
- 101001002987 Homo sapiens Ferritin heavy chain Proteins 0.000 description 2
- 101001132495 Homo sapiens GTP-binding protein RAD Proteins 0.000 description 2
- 101000942158 Homo sapiens Gamma-crystallin B Proteins 0.000 description 2
- 101000859938 Homo sapiens Gamma-crystallin C Proteins 0.000 description 2
- 101000972850 Homo sapiens Glutamate receptor ionotropic, NMDA 2B Proteins 0.000 description 2
- 101001034527 Homo sapiens Glutamate-cysteine ligase catalytic subunit Proteins 0.000 description 2
- 101000844866 Homo sapiens H/ACA ribonucleoprotein complex subunit DKC1 Proteins 0.000 description 2
- 101000901635 Homo sapiens Homeobox protein DLX-2 Proteins 0.000 description 2
- 101001077568 Homo sapiens Homeobox protein Hox-A5 Proteins 0.000 description 2
- 101000584392 Homo sapiens Homeobox protein OTX1 Proteins 0.000 description 2
- 101000835959 Homo sapiens Homeobox protein SIX5 Proteins 0.000 description 2
- 101001081122 Homo sapiens Homeobox protein engrailed-2 Proteins 0.000 description 2
- 101001003138 Homo sapiens Interleukin-12 receptor subunit beta-2 Proteins 0.000 description 2
- 101001098523 Homo sapiens PAX-interacting protein 1 Proteins 0.000 description 2
- 101000595929 Homo sapiens POLG alternative reading frame Proteins 0.000 description 2
- 101000922137 Homo sapiens Peripheral plasma membrane protein CASK Proteins 0.000 description 2
- 101000710817 Homo sapiens Protein canopy homolog 3 Proteins 0.000 description 2
- 101000957337 Homo sapiens Putative nucleotidyltransferase MAB21L1 Proteins 0.000 description 2
- 101000575639 Homo sapiens Ribonucleoside-diphosphate reductase subunit M2 Proteins 0.000 description 2
- 101000766306 Homo sapiens Serotransferrin Proteins 0.000 description 2
- 101000663158 Homo sapiens Signal recognition particle 14 kDa protein Proteins 0.000 description 2
- 101001026232 Homo sapiens Small conductance calcium-activated potassium channel protein 3 Proteins 0.000 description 2
- 101000655155 Homo sapiens Transmembrane protein 158 Proteins 0.000 description 2
- 101000892344 Homo sapiens Transmembrane protein 185A Proteins 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 208000010158 Huntington disease-like 2 Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 206010051792 Infusion related reaction Diseases 0.000 description 2
- 102100036721 Insulin receptor Human genes 0.000 description 2
- 102100020792 Interleukin-12 receptor subunit beta-2 Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 108010018650 MEF2 Transcription Factors Proteins 0.000 description 2
- 208000002569 Machado-Joseph Disease Diseases 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 208000036626 Mental retardation Diseases 0.000 description 2
- 102100021833 Mesencephalic astrocyte-derived neurotrophic factor Human genes 0.000 description 2
- 101710155665 Mesencephalic astrocyte-derived neurotrophic factor Proteins 0.000 description 2
- 102100037480 Mismatch repair endonuclease PMS2 Human genes 0.000 description 2
- 102100021148 Myocyte-specific enhancer factor 2A Human genes 0.000 description 2
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 206010060860 Neurological symptom Diseases 0.000 description 2
- 108090001145 Nuclear Receptor Coactivator 3 Proteins 0.000 description 2
- 102100022883 Nuclear receptor coactivator 3 Human genes 0.000 description 2
- 239000012124 Opti-MEM Substances 0.000 description 2
- 102100037141 PAX-interacting protein 1 Human genes 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 102100031166 Peripheral plasma membrane protein CASK Human genes 0.000 description 2
- 208000037581 Persistent Infection Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 102220484160 Pogo transposable element with ZNF domain_H840A_mutation Human genes 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 2
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 102100033856 Protein canopy homolog 3 Human genes 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 102100038753 Putative nucleotidyltransferase MAB21L1 Human genes 0.000 description 2
- 102000002490 Rad51 Recombinase Human genes 0.000 description 2
- 108010068097 Rad51 Recombinase Proteins 0.000 description 2
- 102000001218 Rec A Recombinases Human genes 0.000 description 2
- 108010055016 Rec A Recombinases Proteins 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 102100026006 Ribonucleoside-diphosphate reductase subunit M2 Human genes 0.000 description 2
- 102000004387 Ribosomal protein L14 Human genes 0.000 description 2
- 108090000985 Ribosomal protein L14 Proteins 0.000 description 2
- 102100037442 Small conductance calcium-activated potassium channel protein 3 Human genes 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 108091061980 Spherical nucleic acid Proteins 0.000 description 2
- 201000003622 Spinocerebellar ataxia type 2 Diseases 0.000 description 2
- 208000036834 Spinocerebellar ataxia type 3 Diseases 0.000 description 2
- 201000003620 Spinocerebellar ataxia type 6 Diseases 0.000 description 2
- 201000003629 Spinocerebellar ataxia type 8 Diseases 0.000 description 2
- 102100030511 Stanniocalcin-1 Human genes 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 102000006467 TATA-Box Binding Protein Human genes 0.000 description 2
- 108010044281 TATA-Box Binding Protein Proteins 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 108010073062 Transcription Activator-Like Effectors Proteins 0.000 description 2
- 102100027671 Transcriptional repressor CTCF Human genes 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- 102100033036 Transmembrane protein 158 Human genes 0.000 description 2
- 102100040241 Trinucleotide repeat-containing gene 6A protein Human genes 0.000 description 2
- 101710126045 Trinucleotide repeat-containing gene 6A protein Proteins 0.000 description 2
- 102100040244 Trinucleotide repeat-containing gene 6B protein Human genes 0.000 description 2
- 101710087261 Trinucleotide repeat-containing gene 6B protein Proteins 0.000 description 2
- 102100040242 Trinucleotide repeat-containing gene 6C protein Human genes 0.000 description 2
- 101710163378 Trinucleotide repeat-containing gene 6C protein Proteins 0.000 description 2
- 102100039066 Very low-density lipoprotein receptor Human genes 0.000 description 2
- 101710177612 Very low-density lipoprotein receptor Proteins 0.000 description 2
- 208000008383 Wilms tumor Diseases 0.000 description 2
- 208000026448 Wilms tumor 1 Diseases 0.000 description 2
- 102100022748 Wilms tumor protein Human genes 0.000 description 2
- 101710127857 Wilms tumor protein Proteins 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 210000000683 abdominal cavity Anatomy 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 239000012062 aqueous buffer Substances 0.000 description 2
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 2
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- 201000004562 autosomal dominant cerebellar ataxia Diseases 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 108700000707 bcl-2-Associated X Proteins 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 238000002725 brachytherapy Methods 0.000 description 2
- 210000004958 brain cell Anatomy 0.000 description 2
- 210000005013 brain tissue Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 210000003483 chromatin Anatomy 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 208000010877 cognitive disease Diseases 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000012350 deep sequencing Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000003412 degenerative effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 229940124447 delivery agent Drugs 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 208000037765 diseases and disorders Diseases 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 210000003027 ear inner Anatomy 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 210000001163 endosome Anatomy 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical compound CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 229940012413 factor vii Drugs 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 108700014844 flt3 ligand Proteins 0.000 description 2
- 235000019152 folic acid Nutrition 0.000 description 2
- 239000011724 folic acid Substances 0.000 description 2
- 229960000304 folic acid Drugs 0.000 description 2
- 230000000799 fusogenic effect Effects 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000001476 gene delivery Methods 0.000 description 2
- 238000003209 gene knockout Methods 0.000 description 2
- 238000012226 gene silencing method Methods 0.000 description 2
- 230000007614 genetic variation Effects 0.000 description 2
- 238000012268 genome sequencing Methods 0.000 description 2
- 108010086596 glutathione peroxidase GPX1 Proteins 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 102000056417 human ATXN1 Human genes 0.000 description 2
- 102000045409 human FMR1 Human genes 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 102000008371 intracellularly ATP-gated chloride channel activity proteins Human genes 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 229920001427 mPEG Polymers 0.000 description 2
- 108091070501 miRNA Proteins 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 231100000683 possible toxicity Toxicity 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- VYXXMAGSIYIYGD-NWAYQTQBSA-N propan-2-yl 2-[[[(2R)-1-(6-aminopurin-9-yl)propan-2-yl]oxymethyl-(pyrimidine-4-carbonylamino)phosphoryl]amino]-2-methylpropanoate Chemical compound CC(C)OC(=O)C(C)(C)NP(=O)(CO[C@H](C)Cn1cnc2c(N)ncnc12)NC(=O)c1ccncn1 VYXXMAGSIYIYGD-NWAYQTQBSA-N 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 108020001580 protein domains Proteins 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 108010059128 rabies virus glycoprotein peptide Proteins 0.000 description 2
- 102000005912 ran GTP Binding Protein Human genes 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 238000003196 serial analysis of gene expression Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 201000003632 spinocerebellar ataxia type 7 Diseases 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 108091006106 transcriptional activators Proteins 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 239000012096 transfection reagent Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 1
- 102100027831 14-3-3 protein theta Human genes 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- KCYOZNARADAZIZ-CWBQGUJCSA-N 2-[(2e,4e,6e,8e,10e,12e,14e)-15-(4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-2-yl)-6,11-dimethylhexadeca-2,4,6,8,10,12,14-heptaen-2-yl]-4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-6-ol Chemical compound O1C2(C)CC(O)CC(C)(C)C2=CC1C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)C1C=C2C(C)(C)CCCC2(C)O1 KCYOZNARADAZIZ-CWBQGUJCSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- UBKVUFQGVWHZIR-UHFFFAOYSA-N 8-oxoguanine Chemical compound O=C1NC(N)=NC2=NC(=O)N=C21 UBKVUFQGVWHZIR-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 241001164825 Adeno-associated virus - 8 Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 102100022987 Angiogenin Human genes 0.000 description 1
- 102000004550 Angiostatic Proteins Human genes 0.000 description 1
- 108010017551 Angiostatic Proteins Proteins 0.000 description 1
- 102000012936 Angiostatins Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 102000018616 Apolipoproteins B Human genes 0.000 description 1
- 108010027006 Apolipoproteins B Proteins 0.000 description 1
- 101000652691 Arabidopsis thaliana tRNA(adenine(34)) deaminase, chloroplastic Proteins 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 102100035022 Ataxin-2-like protein Human genes 0.000 description 1
- 101710147490 Ataxin-8 Proteins 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- 108090000806 Atrophin-1 Proteins 0.000 description 1
- 102000004321 Atrophin-1 Human genes 0.000 description 1
- 102100020741 Atrophin-1 Human genes 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 101150074725 Atxn3 gene Proteins 0.000 description 1
- 241000589941 Azospirillum Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010054895 Baltic myoclonic epilepsy Diseases 0.000 description 1
- 206010061692 Benign muscle neoplasm Diseases 0.000 description 1
- 102100031006 Beta-Ala-His dipeptidase Human genes 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 108010027741 CASP8 and FADD Like Apoptosis Regulating Protein Proteins 0.000 description 1
- 102100025752 CASP8 and FADD-like apoptosis regulator Human genes 0.000 description 1
- 108010014064 CCCTC-Binding Factor Proteins 0.000 description 1
- 101150029409 CFTR gene Proteins 0.000 description 1
- 238000010446 CRISPR interference Methods 0.000 description 1
- 101150069031 CSN2 gene Proteins 0.000 description 1
- 101100385576 Caenorhabditis elegans ctg-1 gene Proteins 0.000 description 1
- 241000589986 Campylobacter lari Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 102000055007 Cartilage Oligomeric Matrix Human genes 0.000 description 1
- 108700005376 Cartilage Oligomeric Matrix Proteins 0.000 description 1
- 102100027473 Cartilage oligomeric matrix protein Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- ZKLPARSLTMPFCP-UHFFFAOYSA-N Cetirizine Chemical compound C1CN(CCOCC(=O)O)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZKLPARSLTMPFCP-UHFFFAOYSA-N 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 101710117926 Claspin Proteins 0.000 description 1
- 108091028732 Concatemer Proteins 0.000 description 1
- 108091029523 CpG island Proteins 0.000 description 1
- KCYOZNARADAZIZ-PPBBKLJYSA-N Cryptochrome Natural products O[C@@H]1CC(C)(C)C=2[C@@](C)(O[C@H](/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(\C)/[C@H]3O[C@@]4(C)C(C(C)(C)CCC4)=C3)/C)\C)/C)C=2)C1 KCYOZNARADAZIZ-PPBBKLJYSA-N 0.000 description 1
- 108010037139 Cryptochromes Proteins 0.000 description 1
- 102100028908 Cullin-3 Human genes 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 125000002038 D-arginyl group Chemical class N[C@@H](C(=O)*)CCCNC(=N)N 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 230000009946 DNA mutation Effects 0.000 description 1
- 102100028675 DNA polymerase subunit gamma-2, mitochondrial Human genes 0.000 description 1
- 102100035619 DNA-(apurinic or apyrimidinic site) lyase Human genes 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 201000008163 Dentatorubral pallidoluysian atrophy Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 238000007355 Double Michael addition reaction Methods 0.000 description 1
- 102100038913 E1A-binding protein p400 Human genes 0.000 description 1
- 239000001692 EU approved anti-caking agent Substances 0.000 description 1
- 244000148064 Enicostema verticillatum Species 0.000 description 1
- 101710121417 Envelope glycoprotein Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010007005 Estrogen Receptor alpha Proteins 0.000 description 1
- 102100038595 Estrogen receptor Human genes 0.000 description 1
- 241001531192 Eubacterium ventriosum Species 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 208000034846 Familial Amyloid Neuropathies Diseases 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 101150014889 Gad1 gene Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 241001468096 Gluconacetobacter diazotrophicus Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100035902 Glutamate decarboxylase 1 Human genes 0.000 description 1
- 102100035857 Glutamate decarboxylase 2 Human genes 0.000 description 1
- 102100036698 Golgi reassembly-stacking protein 1 Human genes 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102100035341 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 Human genes 0.000 description 1
- 102100031561 Hamartin Human genes 0.000 description 1
- 101710175981 Hamartin Proteins 0.000 description 1
- 108090001102 Hammerhead ribozyme Proteins 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 102100021454 Histone deacetylase 4 Human genes 0.000 description 1
- 102100030309 Homeobox protein Hox-A1 Human genes 0.000 description 1
- 102100030634 Homeobox protein OTX2 Human genes 0.000 description 1
- 101000924727 Homo sapiens Alternative prion protein Proteins 0.000 description 1
- 101000873088 Homo sapiens Ataxin-2-like protein Proteins 0.000 description 1
- 101000765700 Homo sapiens Ataxin-8 Proteins 0.000 description 1
- 101000785083 Homo sapiens Atrophin-1 Proteins 0.000 description 1
- 101000919694 Homo sapiens Beta-Ala-His dipeptidase Proteins 0.000 description 1
- 101000750011 Homo sapiens Claspin Proteins 0.000 description 1
- 101000916238 Homo sapiens Cullin-3 Proteins 0.000 description 1
- 101000837415 Homo sapiens DNA polymerase subunit gamma-2, mitochondrial Proteins 0.000 description 1
- 101001137256 Homo sapiens DNA-(apurinic or apyrimidinic site) lyase Proteins 0.000 description 1
- 101000715390 Homo sapiens E3 ubiquitin-protein ligase CBL Proteins 0.000 description 1
- 101000873786 Homo sapiens Glutamate decarboxylase 2 Proteins 0.000 description 1
- 101001024278 Homo sapiens Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000899259 Homo sapiens Histone deacetylase 4 Proteins 0.000 description 1
- 101001048956 Homo sapiens Homeobox protein EMX1 Proteins 0.000 description 1
- 101001083156 Homo sapiens Homeobox protein Hox-A1 Proteins 0.000 description 1
- 101000584400 Homo sapiens Homeobox protein OTX2 Proteins 0.000 description 1
- 101001030705 Homo sapiens Huntingtin Proteins 0.000 description 1
- 101000852815 Homo sapiens Insulin receptor Proteins 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 101001040800 Homo sapiens Integral membrane protein GPR180 Proteins 0.000 description 1
- 101001027192 Homo sapiens Kelch-like protein 41 Proteins 0.000 description 1
- 101000573901 Homo sapiens Major prion protein Proteins 0.000 description 1
- 101001005668 Homo sapiens Mastermind-like protein 3 Proteins 0.000 description 1
- 101000954986 Homo sapiens Merlin Proteins 0.000 description 1
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 1
- 101000738911 Homo sapiens Mismatch repair endonuclease PMS2 Proteins 0.000 description 1
- 101000597928 Homo sapiens Numb-like protein Proteins 0.000 description 1
- 101001091365 Homo sapiens Plasma kallikrein Proteins 0.000 description 1
- 101000609211 Homo sapiens Polyadenylate-binding protein 2 Proteins 0.000 description 1
- 101000605534 Homo sapiens Prostate-specific antigen Proteins 0.000 description 1
- 101000971468 Homo sapiens Protein kinase C zeta type Proteins 0.000 description 1
- 101000666171 Homo sapiens Protein-glutamine gamma-glutamyltransferase 2 Proteins 0.000 description 1
- 101000687448 Homo sapiens REST corepressor 1 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 1
- 101000864057 Homo sapiens Serine/threonine-protein kinase SMG1 Proteins 0.000 description 1
- 101000701440 Homo sapiens Stanniocalcin-1 Proteins 0.000 description 1
- 101000799388 Homo sapiens Thiopurine S-methyltransferase Proteins 0.000 description 1
- 101000659879 Homo sapiens Thrombospondin-1 Proteins 0.000 description 1
- 101000626636 Homo sapiens Transcriptional adapter 2-beta Proteins 0.000 description 1
- 101000725972 Homo sapiens Transcriptional repressor CTCF Proteins 0.000 description 1
- 101000693985 Homo sapiens Twinkle mtDNA helicase Proteins 0.000 description 1
- 101000742373 Homo sapiens Vesicular inhibitory amino acid transporter Proteins 0.000 description 1
- 101000935117 Homo sapiens Voltage-dependent P/Q-type calcium channel subunit alpha-1A Proteins 0.000 description 1
- 101000804921 Homo sapiens X-ray repair cross-complementing protein 5 Proteins 0.000 description 1
- 108010070875 Human Immunodeficiency Virus tat Gene Products Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010022004 Influenza like illness Diseases 0.000 description 1
- 108010001127 Insulin Receptor Proteins 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 102100021244 Integral membrane protein GPR180 Human genes 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 101150008942 J gene Proteins 0.000 description 1
- 239000013283 Janus particle Substances 0.000 description 1
- 102100037644 Kelch-like protein 41 Human genes 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 238000008214 LDL Cholesterol Methods 0.000 description 1
- 108010007622 LDL Lipoproteins Proteins 0.000 description 1
- 102000007330 LDL Lipoproteins Human genes 0.000 description 1
- 241000186841 Lactobacillus farciminis Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 1
- 229910015837 MSH2 Inorganic materials 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100025134 Mastermind-like protein 3 Human genes 0.000 description 1
- 102100025169 Max-binding protein MNT Human genes 0.000 description 1
- 102100029663 Mediator of RNA polymerase II transcription subunit 15 Human genes 0.000 description 1
- 101710179287 Mediator of RNA polymerase II transcription subunit 15 Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102100037106 Merlin Human genes 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 206010027457 Metastases to liver Diseases 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 1
- 206010027626 Milia Diseases 0.000 description 1
- 241001024304 Mino Species 0.000 description 1
- 108010074346 Mismatch Repair Endonuclease PMS2 Proteins 0.000 description 1
- 101000957678 Mus musculus Cytochrome P450 7B1 Proteins 0.000 description 1
- 101100494762 Mus musculus Nedd9 gene Proteins 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 201000004458 Myoma Diseases 0.000 description 1
- 206010061533 Myotonia Diseases 0.000 description 1
- 241000588654 Neisseria cinerea Species 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 208000033383 Neuroendocrine tumor of pancreas Diseases 0.000 description 1
- 206010029333 Neurosis Diseases 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 208000025464 Norrie disease Diseases 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 102000002488 Nucleoplasmin Human genes 0.000 description 1
- 102100036986 Numb-like protein Human genes 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108010049358 Oncogene Protein p65(gag-jun) Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 208000009608 Papillomavirus Infections Diseases 0.000 description 1
- 241001386755 Parvibaculum lavamentivorans Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 102100034869 Plasma kallikrein Human genes 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 1
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 1
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 1
- 102100039427 Polyadenylate-binding protein 2 Human genes 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 208000033063 Progressive myoclonic epilepsy Diseases 0.000 description 1
- 208000033255 Progressive myoclonic epilepsy type 1 Diseases 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 108700040121 Protein Methyltransferases Proteins 0.000 description 1
- 102000055027 Protein Methyltransferases Human genes 0.000 description 1
- 102000006478 Protein Phosphatase 2 Human genes 0.000 description 1
- 108010058956 Protein Phosphatase 2 Proteins 0.000 description 1
- 101710149951 Protein Tat Proteins 0.000 description 1
- 102000002727 Protein Tyrosine Phosphatase Human genes 0.000 description 1
- 102100021538 Protein kinase C zeta type Human genes 0.000 description 1
- 102100038095 Protein-glutamine gamma-glutamyltransferase 2 Human genes 0.000 description 1
- 208000035955 Proximal myotonic myopathy Diseases 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 102100030469 Putative protein ATXN8OS Human genes 0.000 description 1
- 101710204903 Putative protein ATXN8OS Proteins 0.000 description 1
- 102100024864 REST corepressor 1 Human genes 0.000 description 1
- 101000957679 Rattus norvegicus 25-hydroxycholesterol 7-alpha-hydroxylase Proteins 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000398180 Roseburia intestinalis Species 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 1
- 102100029938 Serine/threonine-protein kinase SMG1 Human genes 0.000 description 1
- 101710089523 Signal recognition particle 14 kDa protein Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 241000639167 Sphaerochaeta globosa Species 0.000 description 1
- 101710142157 Stanniocalcin-1 Proteins 0.000 description 1
- 208000037140 Steinert myotonic dystrophy Diseases 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241001501869 Streptococcus pasteurianus Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000320123 Streptococcus pyogenes M1 GAS Species 0.000 description 1
- 101100166147 Streptococcus thermophilus cas9 gene Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108050009621 Synapsin Proteins 0.000 description 1
- 102000001435 Synapsin Human genes 0.000 description 1
- 229940126530 T cell activator Drugs 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108700012920 TNF Proteins 0.000 description 1
- 102100034162 Thiopurine S-methyltransferase Human genes 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 102000036693 Thrombopoietin Human genes 0.000 description 1
- 108010041111 Thrombopoietin Proteins 0.000 description 1
- 102100036034 Thrombospondin-1 Human genes 0.000 description 1
- 241000283907 Tragelaphus oryx Species 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 102100024858 Transcriptional adapter 2-beta Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 101710197968 Transmembrane protein 185A Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 102000008579 Transposases Human genes 0.000 description 1
- 108010020764 Transposases Proteins 0.000 description 1
- 102100027193 Twinkle mtDNA helicase Human genes 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 101150049278 US20 gene Proteins 0.000 description 1
- 102100035824 Unconventional myosin-Ig Human genes 0.000 description 1
- 208000006657 Unverricht-Lundborg syndrome Diseases 0.000 description 1
- 108010062497 VLDL Lipoproteins Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- 102100038170 Vesicular inhibitory amino acid transporter Human genes 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 102100025330 Voltage-dependent P/Q-type calcium channel subunit alpha-1A Human genes 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 102100036973 X-ray repair cross-complementing protein 5 Human genes 0.000 description 1
- 102100036976 X-ray repair cross-complementing protein 6 Human genes 0.000 description 1
- 101710124907 X-ray repair cross-complementing protein 6 Proteins 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N adenyl group Chemical group N1=CN=C2N=CNC2=C1N GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 102000009899 alpha Karyopherins Human genes 0.000 description 1
- 108010077099 alpha Karyopherins Proteins 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- CWJNMKKMGIAGDK-UHFFFAOYSA-N amtolmetin guacil Chemical compound COC1=CC=CC=C1OC(=O)CNC(=O)CC(N1C)=CC=C1C(=O)C1=CC=C(C)C=C1 CWJNMKKMGIAGDK-UHFFFAOYSA-N 0.000 description 1
- 108010064397 amyloid beta-protein (1-40) Proteins 0.000 description 1
- FEWOUVRMGWFWIH-ILZZQXMPSA-N amyloid-beta polypeptide 40 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 FEWOUVRMGWFWIH-ILZZQXMPSA-N 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 108010072788 angiogenin Proteins 0.000 description 1
- 239000003587 angiostatic protein Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000001796 anti-degenerative effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 210000004227 basal ganglia Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- KCYOZNARADAZIZ-XZOHMNSDSA-N beta-cryptochrome Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C1OC2(C)CC(O)CC(C)(C)C2=C1)C=CC=C(/C)C3OC4(C)CCCC(C)(C)C4=C3 KCYOZNARADAZIZ-XZOHMNSDSA-N 0.000 description 1
- 210000003445 biliary tract Anatomy 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 239000003181 biological factor Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- GHWVXCQZPNWFRO-UHFFFAOYSA-N butane-2,3-diamine Chemical group CC(N)C(C)N GHWVXCQZPNWFRO-UHFFFAOYSA-N 0.000 description 1
- 210000004900 c-terminal fragment Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940022399 cancer vaccine Drugs 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 229960001803 cetirizine Drugs 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 101150055601 cops2 gene Proteins 0.000 description 1
- 210000005257 cortical tissue Anatomy 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- SPTYHKZRPFATHJ-HYZXJONISA-N dT6 Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)CO)[C@@H](O)C1 SPTYHKZRPFATHJ-HYZXJONISA-N 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 229920006237 degradable polymer Polymers 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- RNPXCFINMKSQPQ-UHFFFAOYSA-N dicetyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCC RNPXCFINMKSQPQ-UHFFFAOYSA-N 0.000 description 1
- 229940093541 dicetylphosphate Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- 229960000520 diphenhydramine Drugs 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 238000010387 dual polarisation interferometry Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 238000007459 endoscopic retrograde cholangiopancreatography Methods 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940073505 ethyl vanillin Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 239000012537 formulation buffer Substances 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 210000001222 gaba-ergic neuron Anatomy 0.000 description 1
- ZXQYGBMAQZUVMI-GCMPRSNUSA-N gamma-cyhalothrin Chemical compound CC1(C)[C@@H](\C=C(/Cl)C(F)(F)F)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-GCMPRSNUSA-N 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000037440 gene silencing effect Effects 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- 238000010448 genetic screening Methods 0.000 description 1
- 238000011331 genomic analysis Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 210000004884 grey matter Anatomy 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 102000054185 human HTT Human genes 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000008629 immune suppression Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000002743 insertional mutagenesis Methods 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000001630 jejunum Anatomy 0.000 description 1
- 102000019028 junctophilin Human genes 0.000 description 1
- 108010012212 junctophilin Proteins 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000002357 laparoscopic surgery Methods 0.000 description 1
- 210000003140 lateral ventricle Anatomy 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 238000007449 liver function test Methods 0.000 description 1
- 230000007056 liver toxicity Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004777 loss-of-function mutation Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 229920006030 multiblock copolymer Polymers 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 231100000243 mutagenic effect Toxicity 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 201000008709 myotonic dystrophy type 2 Diseases 0.000 description 1
- YNTOKMNHRPSGFU-UHFFFAOYSA-N n-Propyl carbamate Chemical compound CCCOC(N)=O YNTOKMNHRPSGFU-UHFFFAOYSA-N 0.000 description 1
- 210000004898 n-terminal fragment Anatomy 0.000 description 1
- 229940042880 natural phospholipid Drugs 0.000 description 1
- 238000013188 needle biopsy Methods 0.000 description 1
- 210000001577 neostriatum Anatomy 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000007171 neuropathology Effects 0.000 description 1
- 208000015238 neurotic disease Diseases 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 108060005597 nucleoplasmin Proteins 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 201000007909 oculocutaneous albinism Diseases 0.000 description 1
- 230000009438 off-target cleavage Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229940090668 parachlorophenol Drugs 0.000 description 1
- 238000011192 particle characterization Methods 0.000 description 1
- 230000003950 pathogenic mechanism Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 238000012247 phenotypical assay Methods 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 108010079892 phosphoglycerol kinase Proteins 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 210000000063 presynaptic terminal Anatomy 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 208000022256 primary systemic amyloidosis Diseases 0.000 description 1
- 208000029340 primitive neuroectodermal tumor Diseases 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 201000001204 progressive myoclonus epilepsy Diseases 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 108020000494 protein-tyrosine phosphatase Proteins 0.000 description 1
- ZJFJVRPLNAMIKH-UHFFFAOYSA-N pseudo-u Chemical compound O=C1NC(=O)C(C)=CN1C1OC(COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=S)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)CO)C(O)C1 ZJFJVRPLNAMIKH-UHFFFAOYSA-N 0.000 description 1
- 210000002637 putamen Anatomy 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 208000019465 refractory cytopenia of childhood Diseases 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 210000001626 skin fibroblast Anatomy 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 102000005969 steroid hormone receptors Human genes 0.000 description 1
- 108020003113 steroid hormone receptors Proteins 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 210000003699 striated muscle Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229940044609 sulfur dioxide Drugs 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000010809 targeting technique Methods 0.000 description 1
- 210000000211 third ventricle Anatomy 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- 108091006107 transcriptional repressors Proteins 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 201000007905 transthyretin amyloidosis Diseases 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000006444 vascular growth Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- GPXBXXGIAQBQNI-UHFFFAOYSA-N vemurafenib Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(=CN=C3NC=2)C=2C=CC(Cl)=CC=2)=C1F GPXBXXGIAQBQNI-UHFFFAOYSA-N 0.000 description 1
- 229960003862 vemurafenib Drugs 0.000 description 1
- 230000007332 vesicle formation Effects 0.000 description 1
- 230000001720 vestibular Effects 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 230000010148 water-pollination Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000004885 white matter Anatomy 0.000 description 1
- 208000027121 wild type ATTR amyloidosis Diseases 0.000 description 1
- 235000013618 yogurt Nutrition 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0276—Knock-out vertebrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/465—Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1082—Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/075—Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0306—Animal model for genetic diseases
- A01K2267/0318—Animal model for neurodegenerative disease, e.g. non- Alzheimer's
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/15011—Lentivirus, not HIV, e.g. FIV, SIV
- C12N2740/15041—Use of virus, viral particle or viral elements as a vector
- C12N2740/15043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention generally relates to the delivery, engineering, optimization and therapeutic applications of systems, methods, and compositions used for the control of gene expression involving sequence targeting, such as genome perturbation or gene-editing, that relate to Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and components thereof.
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- the invention relates to delivery, use, control and therapeutic applications of CRISPR- Cas systems and compositions, for brain and central ner us system (CNS) disorders and diseases.
- CRISPR- Cas systems and compositions for nucleotide repeat elements (e.g., trinucleotide repeat, tetranucleotide repeat, nucleotide expansion elements) disorders and diseases.
- nucleotide repeat elements e.g., trinucleotide repeat, tetranucleotide repeat, nucleotide expansion elements
- the invention provides in an aspect, a non-naturaliy occurring or engineered self- inactivating CRTSPR-Cas composition comprising:
- RNA polynucleotide sequence a first regulatory element operably linked to a CRISPR-Cas system RNA polynucleotide sequence, wherein the polynucleotide sequence comprises:
- a second regulatory element operably linked to a polynucleotide sequence encoding a CRISPR enzyme
- parts I and II comprise a first CRISPR-Cas system, and wherein,
- composition further comprises
- composition when transcribed comprises
- a first CRISPR complex comprising the CRISPR enzyme complexed with (1) the first guide sequence that can be hybridized or can be hybridizable to the target sequence, and (2) the tracr mate sequence that can be hybridized to the tracr sequence,
- a second CRISPR complex comprising a CRISPR enzyme complexed with (1 ) the second guide sequence that can be hybridized or hybridizable to a sequence of a polynucleotide comprising or encoding the CRISPR-Cas system, and (2) the tracr mate sequence that can be hybridized to the tracr sequence,
- the first guide sequence directs sequence-spec fic binding of a first CRISPR complex to the target DNA
- the second guide sequence directs sequence-specific binding of a second CRISPR complex to a sequence comprising a polynucleotide comprising or encoding a component of the CRISPR-Cas system and whereby there can be diminished activity of the first CRISPR-Cas system over a period of time, and the CRISPR-Cas composition can be self-inactivating ("SIN CRISPR-Cas composition").
- the target DNA sequence can be within a cell.
- the cell can be a eukaryotic cell, or a prokaryotic cell.
- the composition the first CRISPR-Cas system and/or the second CRISPR-Cas system can be codon optimized, e.g., for a eukaryotic cell
- Part II can include coding for one or more nuclear localization signals (NLSs).
- Part I can be encoded by a first viral vector and part II can be encoded by a second viral vector.
- the first and second viral vectors can be lentiviral vectors or recombinant AAV.
- the recombinant AAV genome can comprise inverted terminal repeats (iTRs).
- the CRISPR enzyme can be driven by the inverted terminal repeat (iTR) in the AAV genome.
- the first regulatory element can be a RNA polymerase type III promoter and the second regulatory element can be a RNA polymerase type III promoter.
- the first regulatory element can be a U6 promoter or a HI promoter.
- the second regulatory element can be a ubiquitous expression promoter or a cell-type specific promoter.
- the CRISPR enzyme can comprise a C-terminal NLS and an N -terminal NLS,
- the composition can be delivered via injection.
- the composition or a part thereof can be delivered via a liposome, a nanoparticle, an exosome, a microvesicles. 17.
- the composition can have the first guide sequence directing sequence-specific binding of the first CRISPR. complex to the target DNA sequence and alters expression of a genomic locus in the cell.
- the composition can have wherein the first CRISPR complex mediating binding to or a double or single stranded DNA break, thereby editing a genomic locus in the cell, 19,
- the first and/or second CRISPR-Cas system can be a multiplexed CRISPR enzyme system further comprising multiple chimeras and/or multiple multiguide sequences and a single tracr sequence.
- the first CRISPR- Cas system can be a multiplexed CRISPR enzyme system to minimize off-target activity.
- the CRISPR enzyme can comprise one or more mutations.
- the one or more mutations can be selected from DiOA, E762A, H840A, N854A, N863A or D986A.
- the one or more mutations can be in a RuvC 1 domain of the CRISPR enzyme.
- the CRISPR complex mediates genome engineering that includes: modifying a target polynucleotide or expression thereof, knocking out a gene, amplifying or increasing or decreasing expression of a polynucleotide or gene, or repairing a mutation, or editing by inserting a polynucleotide.
- the CRISPR enzyme further comprises a functional domain.
- the CRISPR enzyme can be a Cas9.
- the second complex can binds to a sequence for CRISPR enzyme expression.
- the second guide sequence can be capable of hybridizing to (a) a sequence encoding the RNA. or (b) a sequence encoding the CRISPR enzyme, or (c) a non-coding sequence comprising i) a sequence within a regeulatory element driving expression of non-coding RNA elements, ii) a sequence within a regulatory element driving expression of the CRISPR enzyme, iii) a sequence within lOObp of the ATG translational start codon of the CRISPR enzyme coding sequence, and iv) a sequence within an inverted terminal repeat of a viral vector.
- the second guide sequence can be expressed singularly to achieve inactivation of the first CRISPR-Cas system.
- the second CRISPR complex induces a frame shift in CRISPR enzyme coding sequence causing a loss of protein expression.
- the second guide sequence targets an iTR, wherein expression will result in the excision of an entire CRISPR-Cas cassette.
- the second guide sequence can be expressed in an array format to achieve inactivation of the first CRISPR-Cas9 system.
- the second guide sequences can be expressed in array format and targets both regulatory elements, thereby excising intervening nucleotides from within the first CRISPR-Cas system, effectively leading to its inactivation.
- the expression of the second guide sequences can be driven by a U6 promoter.
- the self-inactivation of the first CRISPR-Cas system limits duration of its activity and/or expression in targeted cells. Transient expression of the CRISPR enzyme can be normally lost within 48 hours.
- the invention also comprehends a non-naiurally occurring or engineered composition comprising the first and second CRISPR complexes.
- mutations of the CRISPR. enzyme when the enzyme is not SpCas9, mutations may be made at any or all residues corresponding to positions 10, 762, 840, 854, 863 and/or 986 of SpCas9 (which may be ascertained for instance by standard sequence comparison tools).
- any or all of the following mutations are preferred in SpCas9: D10A, E762A, H840A, N854A, N863A and/or D986A; as well as conservative substitution for any of the replacement amino acids is also envisaged.
- the invention provides as to any or each or all embodiments herein-discussed wherein the CRISPR enzyme comprises at least one or more, or at least two or more mutations, wherein the at least one or more mutation or the at least two or more mutations is as to D10, E762, H840, N854, N863, or D986 according to SpCas9 protein, e.g., D10A, E762A, H840A, N854A, N863A and/or D986A as to SpCas9, or N580 according to SaCas9, e.g., N580A as to SaCas9, or any corresponding mutation(s) in a Cas9 of an ortholog to Sp or Sa, or the CRISPR enzyme comprises at least one mutation wherein at least H840 or N863A as to Sp Cas9 or N580A as to Sa Cas9 is mutated; e.g., wherein the CRISPR enzyme comprises H840A, or D10A, where
- the invention in an aspect provides a method of treating or inhibiting a condition in a cell or tissue having a nucleotide element or trinucleotide repeat or other nucleic acid repeat element that gives rise to an adverse or disease condition caused by a defect in a genomic locus of interest in a cell in a subject or a non-human subject in need thereof comprising modifying the subject or a non-human subject by editing the genomic locus and wherein the condition can be susceptible to treatment or inhibition by editing the genomic locus comprising providing treatment comprising: delivering the non-naturally occurring or engineered composition of the invention.
- the invention in an aspect provides use of a composition of the invention in the manufacture of a medicament for ex vivo gene or genome editing or for use in a method of modifying an organism or a non-human organism by manipulation of a target sequence in a genomic locus of interest or in a method of treating or inhibiting a condition caused by a defect in a target sequence in a genomic locus of interest,
- part III can be introduced into the cell sequentially or at a time point after the introduction of parts I and II.
- the RNA in a use, composition or method of the invention, can be chimeric RNA (chiRJS!A).
- the invention provides for use of a SIN CRISPR-Cas composition of any of the preceding claims or as disclosed herein for genome engineering or for a treatment of a condition or for preparing a medicament or pharmaceutical composition.
- the invention also provides a non-naturally occurring or engineered RNA that can be a first CRISPR-Cas system or first CRISPR-Cas complex guide sequence capable of hybridizing to an RNA sequence of a second CRISPR-Cas system or a nucleic acid molecule for expression of a component of the second CRISPR-Cas complex, to diminish or el iminate functional expression of the second system or complex, whereby the first and/or second system or complex can be Self-Inacnvaiing.
- a non-naturally occurring or engineered RNA can be a first CRISPR-Cas system or first CRISPR-Cas complex guide sequence capable of hybridizing to an RNA sequence of a second CRISPR-Cas system or a nucleic acid molecule for expression of a component of the second CRISPR-Cas complex, to diminish or el iminate functional expression of the second system or complex, whereby the first and/or second system or complex can be Self-Inacnvaiing
- the invention provides use of a SIN CRISPR-Cas composition or first and second CRISPR-Cas complexes of any of the preceding claims or as disclosed herein for genome engineering or for a treatment of a condition or for preparing a medicament or pharmaceutical composition.
- the genome engineering can include: modifying a target polynucleotide or expression thereof, knocking out a gene, amplifying or increasing or decreasing expression of a polynucleotide or gene, or repairing a mutation, or editing by inserting a polynucleotide.
- the invention provides a non-naturally occurring or engineered composition for use in a cell having a defective nucleotide element or trinucleotide repeat or other nucleotide repeat element or nucleotide expansion, the comprising:
- RNA polynucleotide sequence a first regulatory element operably linked to a CRISPR-Cas system RNA polynucleotide sequence, wherein the polynucleotide sequence comprises:
- a second regulatory element operably linked to a polynucleotide sequence encoding a CRISPR enzyme
- parts A.I and A. II comprise a CRISPR-Cas system, and wherein, said composition when transcribed comprises
- a CRISPR complex comprising the CRISPR enzyme complexed with (1 ) the guide sequence that can be hybridized or can be hybridizable to the target sequence, and (2) the tracr mate sequence that can be hybridized to the tracr sequence,
- guide sequence directs sequence-specific binding of a CRISPR complex to the target
- RNA polynucleotide sequence comprising:
- the cell can be a eukaryotic cell or a prokaryotic cell.
- the CRJSPR-Cas system can be codon optimized.
- Pari A. II can include coding for one or more nuclear localization signals (NLSs); or part ⁇ . ⁇ can include one or more NLSs,
- Part A.I can be encoded by a first viral vector and/or part A.II can be encoded by a second viral vector.
- the first and second viral vectors can be lentivirai vectors or recombinant AAV.
- the recombinant AAV genome can comprise irsverted terminal repeats (iTRs),
- the expression of the CRISPR enzyme can be driven by the inverted terminal repeat (i ' TR) in the AAV genome.
- the first regulatory element can be a RNA polymerase type III promoter and the second regulatory element can be a RNA polymerase type III promoter.
- the first regulatory element can be a U6 promoter or a HI promoter.
- the second regulatory element can be a ubiquitous expression promoter or a cell-type specific promoter. There can be a selection marker comprising a FLAG-tag.
- the CRISPR. enzyme can comprise a C-terminal MLS and an N-terminal NLS. The composition can be delivered via injection.
- the composition or a part thereof can be delivered via a liposome, a nanoparticle, an exosome, or a microvesicle.
- the guide sequence can direct sequence-specific binding of the CRISPR complex to the target DMA sequence and alters expression of a genomic locus in the cell.
- the CRISPR complex can mediate binding to or a double or single stranded DNA break, and there can optionally be insertion of DNA, whereby there can be editing of a genomic locus in the cell.
- the CRISPR-Cas system can be a multiplexed CRISPR enzyme system further comprising multiple chimeras and/or multiple multiguide sequences and a single tracr sequence.
- the CRISPR-Cas system can be a multiplexed CRISPR enzyme system to minimize off-target activity.
- the CRISPR enzyme can be a nickase.
- the CRISPR enzyme can comprise one or more mutations.
- the CRISPR enzyme comprises one or more mutations selected from D10A, E762A, H840A, N854A, N863A or D986A.
- the one or more mutations can be in a RuvCl domain of the CRISPR enzyme.
- the CRISPR enzyme further comprises a functional domain.
- the composition of the CRISPR complex can mediate genome engineering that includes: modifying a target polynucleotide or expression thereof, knocking out a gene, amplifying or increasing or decreasing expression of a polynucleotide or gene, or repairing a mutation, or editing by inserting a polynucleotide.
- the CRISPR enzyme can be a Cas9.
- the CRISPR complex can mediate at least one double stranded DNA break thereby causing editing of the target DNA,
- the cell can be a mammalian brain or central nervous tissue cell.
- the nucleotide repeat element can be selected from one or more of: a trinucleotide repeat comprising CTG, CAG, CGG, CCG, GAA, or TTC; a tetranucieotide repeat comprising CCTG, a pentanucleotide repeat comprising ATTCT or AGAAT; a hexanucleotide repeat comprising GGGGCC; and a dodecanucleotide repeat comprising CCCCGCCCCGCG or CGCGGGGCGGGG.
- the defect gives rise to a condition selected from one or more of: a Fragile X (FXS); Fragile X Tremor Ataxia (FXTAS); Unverricht-Lundborg disease (EPM l); Spinocerebellar ataxia type- 12 (SCA12): Amyotrophic Lateral Scleroscan be (ALS); Fronto Temporal Dementia (FTD); Friedreich Ataxia; Myotonic Dystrophy type-1 (DM1); Myotonic Dystrophy type-2 (DM2); Spinocerebellar ataxia type-8 (SCA8); Spinocerebellar ataxia type-10 (SCA10); Spinocerebellar ataxia type-31 (SCA31); Oculopharyngeal muscular dystrophy (OPMD); Spinocerebellar ataxia type-l (SCA l); Spinocerebellar ataxia type-2 (SCA2); Spinocerebellar ataxia type-3 (SCA3); Spinocere
- the invention comprehends in an aspect a method of treating or inhibiting a condition in a cell having a defective nucleotide element or trinucleotide repeat or other nucleotide repeat element or nucleotide expansion, comprising delivering the non-naturally occurring or engineered composition of the invention.
- the invention also comprehends use of a composition of the invention to treat a disease or disorder.
- the invention additionally comprehends use of a composition of the invention to treat disease or disorder wherein the disease or disorder comprises a brain disease or disorder or a central nervous system disease or disorder.
- the invention further comprehends use of a composition of the invention in the manufacture of a medicament for ex vivo gene or genome editing or for use in a method of modifying an organism or a non-human organism by manipulation of a target sequence in a genomic locus of interest or in a method of treating or inhibiting a condition.
- the condition can comprise a brain disease or disorder or a central nervous system disease or disorder.
- the CRISPR-Cas system RNA can be a chimeric RNA (chiR A).
- any method, use or composition of the invention there can be at least one second guide sequence capable of hybridizing to an RNA sequence of the CRISPR-Cas system or a nucleic acid molecule for expression of a component of the CRISPR-Cas complex, to diminish or eliminate functional expression of the system or complex, whereby the system or complex can be Self- inactivating; and, the second guide sequence can be capable of hybridizing to a nucleic acid molecule for expression of the CRISPR enzyme,
- the invention involves the development and application of the CRI8PR-Cas9 system as a tool for editing disease-causing nucleotide repeat expansions in the human genome.
- Applicants provide evidence that the sequences, plasmids and/or viral vectors that Applicants have designed and tested facilitate genomic editing of nucleotide repeat sequences at a number of disease-linked genomic loci including those associated with CAG triplet repeat disorders (i.e. Polyglutarnine diseases), Fragile X and Fragile X-associated tremor/ataxia syndrome (FXTAS) and to other nucleotide repeat disorders or nucleotide expansion disorders as provided herein.
- CAG triplet repeat disorders i.e. Polyglutarnine diseases
- Fragile X and Fragile X-associated tremor/ataxia syndrome FXTAS
- Applicants describe the design and application of CRISPR-Cas9 to the mammalian brain (and other tissues or organs of the central nervous system) using Adeno Associated Virus (AAV) as a vector.
- AAV Adeno Associated Virus
- the invention also discloses a method for the self- inactivation of the Cas9 nuclease as means to limit the duration of its expression in targeted cells.
- the CRISPR-Cas system does not require the generation of customized proteins to target specific sequences but rather a single Cas enzyme can be programmed by a short RNA molecule to recognize a specific DNA target.
- Adding the CRISPR-Cas system to the repertoire of genome sequencing techniques and analysis methods may significantly simplify the methodology and accelerate the ability to catalog and map genetic factors associated with a diverse range of biological functions and diseases.
- An exemplary CRISPR complex comprises a. CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within the target polynucleotide.
- the guide sequence is linked to a tracr mate sequence, which in turn hybridizes to a tracr sequence.
- the invention provides methods for using one or more elements of a CRISPR-Cas system.
- the CRISPR complex of the invention provides an effective means for modifying a target polynucleotide.
- the CRISPR complex of the invention has a wide variety of utilities including modifying (e.g., deleting, inserting, translocating, inactivating, activating) a target polynucleotide in a multiplicity of cell types in various tissues and organs.
- modifying e.g., deleting, inserting, translocating, inactivating, activating
- a target polynucleotide in a multiplicity of cell types in various tissues and organs.
- the CRISPR complex of the invention has a broad spectrum of applications in, e.g., gene or genome editing, gene therapy, drag discovery, drag screening, disease diagnosis, and prognosis.
- aspects of the invention relate to Cas9 enzymes having improved targeting specificity in a CRISPR-Cas9 system having guide RNAs having optimal activity, smaller in length than wild- type Cas9 enzymes and nucleic acid molecules coding therefor, and chimeric Cas9 enzymes, as well as methods of improving the target specificity of a Cas9 enzyme or of designing a CRISPR-Cas9 system comprising designing or preparing guide RNAs having optima] activity and/or selecting or preparing a Cas9 enzyme having a smaller size or length than wild-type Cas9 whereby packaging a nucleic acid coding therefor into a delivery vector is more advanced as there is less coding therefor in the delivery vector than for wild-type Cas9, and/or generating chimeric Cas9 enzymes.
- a Cas9 enzyme may comprise one or more mutations and may be used as a generic DNA binding protein with or without fusion to a functional domain.
- the mutations may be artificially introduced mutations or gain- or loss-of- function mutations.
- the mutations may include but are not limited to mutations in one of the catalytic domains (D10 and H840) in the RuvC and HNH catalytic domains, respectively. Further mutations have been characterized and may be used in one or more compositions of the invention.
- the mutated Cas9 enzyme may be fused to a protein domain, e.g., such as a transcriptional activation domain.
- the transcriptional activation domain may be VP64.
- the transcriptional repressor domain may be KRAB or SID4X.
- Other aspects of the invention relate to the mutated Cas9 enzyme being fused to domains which include but are not limited to a transcriptional activator, repressor, a recombinase, a transposase, a histone remodeler, a demethylase, a DNA methyltransferase, a cryptochrome, a light inducible/controllabie domain or a chemically inducible/controllable domain.
- the invention provides for methods to generate mutant tracrRNA and direct repeat sequences or mutant chimeric guide sequences that allow for enhancing performance of these RJS!As in cells. Aspects of the invention also provide for selection of said sequences.
- aspects of the invention also provide for methods of simplifying the cloning and delivery of components of the CRISPR complex.
- a suitable promoter such as a Pol III promoter such as a U6 promoter
- the promoter can thus be positioned upstream, e.g., contiguous to and upstream, of a sequence encoding the guide RNA
- the resulting PCR product can then be transfected into ceils to drive expression of the guide RNA.
- aspects of the invention also relate to the guide RNA being transcribed in vitro or ordered from a synthesis company and directly transfected.
- the invention provides for methods to improve activity by using a. more active polymerase.
- a T7 promoter may be inserted upstream, e.g., contiguous to and upstream, of a sequence encoding a guide RNA.
- the expression of guide RNAs under the control of the T7 promoter is driven by the expression of the T7 polymerase in the cell
- the cell is a eukaryoiic cell.
- the eukaryotic cell is a human cell.
- the human cell is a. patient specific cell, e.g., a cell removed from a patient that may be modified and/or expanded into a cell population or a modified ceil population, for instance, for re- administration to the patient.
- the invention provides for methods of reducing the toxicity of Cas enzymes.
- the Cas enzyme is any Cas9 as described herein, for instance any naturally-occurring bacterial Cas9 as well as any chimaeras, mutants, homologs or orthologs.
- the Cas enzyme is a nickase.
- the Cas9 is delivered into the cell in the form of a nucleic acid molecule, e.g., DNA, RNA, mRNA. This allows for the transient expression of the enzyme thereby reducing toxicity.
- the Cas9 is delivered into the cell in the nucleotide construct that encodes and expresses the Cas9 enzyme.
- the invention also provides for methods of expressing Cas9 under the control of an inducible promoter, and the constructs used therein.
- the invention provides for methods of improving the in vivo applications of the CRISPR-Cas system.
- the Cas enzyme is wildtype Cas9 or any of the modified versions described herein, including any naturally- occurring bacterial Cas9 as well as any chimaeras, mutants, homologs or orthologs.
- the Cas enzyme is a nickase.
- An advantageous aspect of the invention provides for the selection of Cas9 homologs that are easily packaged into viral vectors for deliver ⁇ '.
- Cas9 orthologs typically share the general organization of 3-4 RuvC domains and a HNH domain. The 5' most RuvC domain cleaves the non-complementary strand, and the HNH domain cleaves the complementary strand. All notations are in reference to the guide sequence.
- the catalytic residue in the 5* RuvC domain is identified through homology comparison of the Cas9 of interest with other Cas9 orthologs (from S. pyogenes type II CRISPR locus, S, thermophilus CRISPR locus 1 , S. thermophilus CRISPR locus 3, and Franciscilla novicida type II CRISPR locus), and the conserved Asp residue (D10) is mutated to alanine to convert Cas9 into a. complementary-strand nicking enzyme. Similarly, the conserved His and Asn residues in the HNH domains are mutated to Alanine to convert Cas9 into a non- complementary-strand nicking enzyme. In some embodiments, both sets of mutations may be made, to convert Cas9 into a non-cutting enzyme.
- the CRISPR enzyme is a type I or III CRISPR enzyme, preferably a type II CRISPR enzyme.
- This type II CRISPR enzyme may be any Cas enzyme.
- a preferred Cas enzyme may be identified as Cas9 as this can refer to the general class of enzymes thai share homology to the biggest nuclease with multiple nuclease domains from the type II CRISPR system.
- the Cas9 enzyme is from, or is derived from, spCas9 or saCas9.
- Applicants mean that the derived enzyme is largely based, in the sense of having a high degree of sequence homology with, a wildtype enzyme, but that it has been mutated (modified) in some way as described herein
- Cas and CRISPR enzyme are generally used herein interchangeably, unless otherwise apparent.
- residue numberings used herein refer to the Cas 9 enzyme from the type II CRISPR locus in Streptococcus pyogenes (annotated alternatively as SpCas9 or spCas9).
- this invention includes many more Cas9s from other species of microbes, such as SpCas9 or or from or derived from 8.
- this invention includes many more Cas9s from other species of microbes, such as SpCas9, SaCas9, StlCas9 and so forth. Further examples are provided herein.
- the skilled person will be able to determine appropriate corresponding residues in Cas9 enzymes other than SpCas9 by comparison of the relevant amino acid sequences.
- a specific amino acid replacement is referred to using the SpCas9 numbering, then, unless the context makes it apparent this is not intended to refer to other Cas9 enzymes, the disclosure is intended to encompass corresponding modifications in other Cas9 enzymes.
- codon optimized sequence in this instance optimized for humans (i.e. being optimized for expression in humans) is provided herein, see the SaCas9 human codon optimized sequence. Whilst this is preferred, it will be appreciated thai other examples are possible and codon optimization for a host species other than human, or for codon optimization for specific organs such as the brain, can be practiced from this disclosure and the knowledge in the art.
- the invention provides for methods of enhancing the function of Cas9 by generating chimeric Cas9 proteins.
- Chimeric Cas9 proteins chimeric Cas9s may be new Cas9 containing fragments from more than one naturally occurring Cas9. These methods may comprise fusing N -terminal fragments of one Cas9 homolog with C -terminal fragments of another Cas9 homolog. These methods also allow for the selection of new properties displayed by the chimeric Cas9 proteins.
- the modification may occur ex vivo or in vitro, for instance in a ceil culture and in some instances not in vivo. In other embodiments, it may occur in vivo.
- the invention provides a method of modifying an organism or a non - human organism by manipulation of a target sequence in a genomic locus of interest comprising: delivering a non-naturally occurring or engineered composition comprising:
- RNA sequence comprises:
- the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence
- the CRISPR complex comprises the CRISPR enzyme complexed with (1 ) the guide sequence that is hybridized or is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized to the tracr sequence and the polynucleotide sequence encoding a CRISPR enzyme is D A or RNA
- the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence
- the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized to the tracr sequence, and the polynucleotide sequence encoding a CRISPR enzyme is DNA or RNA.
- the invention provides a non-naturally occurring or engineered composition for delivery to a cell or to one or more tissues containing cells having a nucleotide element or trinucleotide repeat or other nucleotide repeat element that gives rise to an adverse or disease condition, the composition comprising:
- RNA sequence comprises:
- a second regulatory element operably linked to a polynucleotide sequence encoding a CRISPR enzyme comprising one or more nuclear localization sequences,
- the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence
- the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridized or is hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized to the tracr sequence
- (B) L a first regulatory element operably linked to a polynucleotide comprising:
- a second regulatory element operably linked to a polynucleotide sequence encoding a CRISPR enzyme
- a third regulator operably linked to a polynucleotide sequence comprising a tracr sequence
- the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence
- the CRISPR complex comprises the CRISPR enzyme complexed with (1 ) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized to the tracr sequence, and the polynucleotide sequence encoding a CRISPR enzyme is DNA or RNA:
- the vector system comprises a viral vector system, e.g., an AAV vector or AAV vector system or a lentiviras-derived vector system or a tobacco mosaic vims-derived system or an Agrobacterium Ti or Ri plasmid
- a viral vector system e.g., an AAV vector or AAV vector system or a lentiviras-derived vector system or a tobacco mosaic vims-derived system or an Agrobacterium Ti or Ri plasmid
- any or ail of the polynucleotide sequence encoding a CRISPR enzyme, guide sequence, tracr mate sequence or tracr sequence may be RNA, DNA or a combination of RNA and DNA.
- the polynucleotides comprising the sequence encoding a CRISPR enzyme, the guide sequence, tracr mate sequence or tracr sequence are RNA.
- the polynucleotides comprising the sequence encoding a CRISPR enzyme, the guide sequence, tracr mate sequence or tracr sequence are DNA.
- the polynucleotides are a mixture of DNA and RNA, wherein some of the polynucleotides comprising the sequence encoding one or more of the CRISPR. enzyme, the guide sequence, tracr mate sequence or tracr sequence are DNA and some of the polynucleotides are RNA.
- the polynucleotide comprising the sequence encoding the CRISPR enzyme is a DNA and the guide sequence, tracr mate sequence or tracr sequence are RNA.
- the one or more polynucleotides comprising the sequence encoding a CRISPR enzyme, the guide sequence, tracr mate sequence or tracr sequence may be delivered via liposomes, nanoparticles, exosomes, microvesicles, or a gene-gun.
- the RNA sequence includes the feature.
- the DNA sequence is or can be transcribed into the RNA that comprises the feature at issue.
- the feature is a protein, such as the CRISPR enzyme
- the DNA or RNA sequence referred to is, or can be, translated (and in the case of DNA transcribed first).
- an RNA encoding the CRISPR enzyme is provided to a cell, it is understood that the RNA is capable of being translated by the cell into which it is delivered.
- the invention provides a method of modifying an organism, e.g., mammal including human or a non-human mammal or organism by manipulation of a target sequence in a genomic locus of interest comprising delivering a non- naturally occurring or engineered composition comprising a viral or plasmid vector system comprising one or more viral or plasmid vectors operabiy encoding a composition for expression thereof, wherein the composition comprises: (A) a non-naturally occurring or engineered composition comprising a vector system comprising one or more vectors comprising I.
- a first regulatory element operabiy linked to a CRISPR-Cas system chimeric RNA (chiRNA) polynucleotide sequence wherein the polynucleotide sequence comprises (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, (b) a tracr mate sequence, and (c) a tracr sequence, and II.
- chiRNA CRISPR-Cas system chimeric RNA
- a second regulator ⁇ ' element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, and 111.
- a third regulatory element operably linked to a tracr sequence, wherein components I, II and III are located on the same or different vectors of the system, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized or hybridizable to the tracr sequence.
- components I, II and III are located on the same vector.
- components I and II are located on the same vector, while component III is located on another vector. In other embodiments, components I and III are located on the same vector, while component II is located on another vector. In other embodiments, components II and ill are located on the same vector, while component I is located on another vector. In other embodiments, each of components I, II and III is located on different vectors.
- the invention also provides a viral or plasmid vector system as described herein.
- the vector is a viral vector, such as a lenti- or baculo- or preferably adeno- virai/adeno-associated viral vectors, but other means of delivery are known (such as yeast systems, microvesicles, gene guns/means of attaching vectors to gold nanoparticles) and are provided, in some embodiments, one or more of the viral or plasmid vectors may be delivered via liposomes, nanoparticles, exosomes, microvesicles, or a gene-gun.
- Applicants mean alteration of the target sequence, which may include the epigenetic manipulation of a target sequence.
- This epigenetic manipulation may be of the chromatin state of a target sequence, such as by modification of the methylation state of the target sequence (i.e. addition or removal of methylation or methylation patterns or CpG islands), histone modification, increasing or reducing accessibility to the target sequence, or by promoting 3D folding.
- modification of the methylation state of the target sequence i.e. addition or removal of methylation or methylation patterns or CpG islands
- histone modification i.e. addition or removal of methylation or methylation patterns or CpG islands
- excision of the sequence repeats is the manipulation of primary interest.
- the invention provides a method of treating or inhibiting a condition caused by a defect in a target sequence in a genomic locus of interest in a subject (e.g., mammal or human) or a non-human subject (e.g., mammal) in need thereof comprising modifying the subject or a non-human subject by manipulation of the target sequence and wherein the condition is susceptible to treatment or inhibition by manipulation of the target sequence comprising providing treatment comprising; delivering a non-naturally occurring or engineered composition comprising an AAV or lentiviras vector system comprising one or more AAV or lentivirus vectors operably encoding a composition for expression thereof, wherein the target sequence is manipulated by the composition when expressed, wherein the composition comprises: (A) a non-naturally occurring or engineered composition comprising a vector system comprising one or more vectors comprising I.
- chiR A CRISPR-Cas system chimeric RNA
- a second regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme comprising at least one or more nuclear localization sequences (or optionally at least one or more nuclear localization sequences as some embodiments can involve no NLS, i.e., there can be zero NLSs but advantageously there is greater than zero NLSs, such as one or more or advantageously two or more NLSs, and thus the invention comprehends embodiments wherein there is 0, 1, 2, 3, or more NLSs) wherein (a), (b) and (c) are arranged in a 5' to 3 ' orientation, wherein components I and II are located on the same or different vectors of the system, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRJ5PR complex to the target sequence, and wherein the CR1SPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the
- a first regulatory element operably linked to (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, and (b) at least one or more tracr mate sequences, 11. a second regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, and III.
- a third regulatory element operably linked to a tracr sequence wherein components I, II and III are located on the same or different vectors of the system, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence -specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with ( 1) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized or hybridizable to the tracr sequence.
- components I, II and III are located on the same vector. In other embodiments, components I and II are located on the same vector, while component III is located on another vector.
- components I and III are located on the same vector, while component II is located on another vector. In other embodiments, components II and III are located on the same vector, while component I is located on another vector. In other embodiments, each of components I, II and III is located on different vectors.
- the invention also provides a viral (e.g. AAV or lentivirus) vector system as described herein, although other vector systems are known in the art and can be part of a vector system as described herein.
- Some methods of the invention can include inducing expression.
- the organism or subject is a eukaryote, including e.g. a plant or an animal (including mammal including human) or a non-human eukaryote or a. non-human animal or a non-human mammal.
- the organism or subject is a non-human animal, and may be an arthropod, for example, an insect, or may be a nematode.
- the organism or subject is a.
- a non-human mammal may be for example a rodent (preferably a mouse or a rat), an ungulate, or a primate.
- the viral vector is an AAV or a lentivirus, and can be part of a vector system as described herein.
- Delivery therefore can be via a vector, such as a viral vector, e.g., a recombinant viral vector delivery system; and, this system can be an AAV or lentivirus or derived from an AAV or a lentivirus (e.g., a recombinant AAV or lentivirus that expresses that which is foreign, heterologous or that which is not homologous or native to the virus may make some consider the virus "derived from" is parent virus).
- the viral vector is a lentivirus-derived vector.
- the viral vector is an Agrobacterium Ti or Ri plasmid for use in plants.
- the CRISPR enzyme is a. Cas9.
- the CRISPR enzyme comprises one or more mutations in one of the catalytic domains. In some methods of the invention the CRISPR enzyme is a Cas9 nickase. In some methods of the invention the expression of the guide sequence is under the control of the T7 promoter and that is driven by the expression of T7 polymerase. In some methods of the invention the expression of the guide sequence is under the control of a U6 promoter. In some methods of the invention the CRISPR enzyme comprises one or more mutations in one of the catalytic domains. In some methods of the invention the CRISPR. enzyme is a Cas9 nickase.
- the invention in some embodiments comprehends a method of delivering a CRISPR enzyme comprising delivering to a cell a nucleic acid molecule, e.g., a plasmid or RNA or mRNA encoding the CRISPR enzyme.
- the CRISPR enzyme is a Cas9.
- the invention also pro vides methods of preparing the vector systems of the invention, in particular the viral vector systems as described herein.
- the invention in some embodiments comprehends a method of preparing the vector, e.g., AAV or lentivirus, of the invention comprising transfecting one or more plasmid(s) containing or consisting essentially of nucleic acid moiecule(s) coding for the AAV into AAV-infectable cells, and supplying AAV rep and/or cap obligatory for replication and packaging of the AAV,
- the AAV rep and/or cap obligator ⁇ ' for replication and packaging of the AA V are supplied by transfecting the cells with helper plasmid(s) or helper virus(es).
- the helper virus is a poxvirus, adenovirus, herpesvirus or baculovims.
- the poxvirus is a vaccinia virus.
- the cells are mammalian cells.
- the ceils are insect cells and the helper virus is baculovirus.
- the virus is a lentivirus.
- the invention further comprehends a composition of the invention or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme) for use in medicine or in therapy.
- the invention comprehends a composition according to the invention or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme) for use in a method according to the invention.
- the invention provides for the use of a composition of the invention or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme) in ex vivo gene or genome editing.
- the invention comprehends use of a composition of the invention or a.
- the CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme) in the manufacture of a medicament for ex vivo gene or genome editing or for use in a method according of the invention.
- the CRISPR enzyme comprises one or more mutations in one of the catalytic domains.
- the CRI SPR enzyme is a Cas9 nickase.
- the invention comprehends in some embodiments a composition of the invention or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme), wherein the target sequence is flanked at its 3 ' end by a 5' motif termed a proto-spacer adjacent motif or PAM, especially where the Cas9 is (or is derived from) S. pyogenes or S. aureus Cas9.
- a suitable PAM is 5'-NRG or 5 -NNGRR (where N is any Nucleotide) for SpCas9 or SaCas9 enzymes (or derived enzymes), respectively, as mentioned below.
- SpCas9 or SaCas9 are those from or derived from S. pyogenes or S, aureus Cas9.
- Apects of the invention comprehend improving the specificity of a CRISPR enzyme, e.g. Cas9, mediated gene targeting and reducing the likelihood of off-target modification by the CRISPR enzyme, e.g. Cas9.
- the invention in some embodiments comprehends a method of modifying an organism or a non-human organism by minimizing off-target modifications by manipulation of a first and a second target sequence on opposite strands of a. DMA duplex in a genomic locus of interest in a cell comprising delivering a non-naturally occurring or engineered composition comprising :
- a first CRJSPR-Cas system chimeric RNA (cliiRNA) polynucleotide sequence wherein the first polynucleotide sequence comprises:
- a second CRISPR-Cas system chiR A polynucleotide sequence, wherein the second polynucleotide sequence comprises:
- a second tracr sequence a polynucleotide sequence encoding a CRISPR enzyme comprising at least one or more nuclear localization sequences and comprising one or more mutations, wherein (a), (b) and (c) are arranged in a 5' to 3 ' orientation, wherein when transcribed, the first and the second tracr mate sequence hybridize to the first and second tracr sequence respectively and the first and the second guide sequence directs sequence-specific binding of a first and a second CRISPR complex to the first and second target sequences respectively, wherein the first CRISPR complex comprises the CRISPR enzyme complexed with (1) the first guide sequence that is hybridized or hybridizabie to the first target sequence, and (2) the first tracr mate sequence that is hybridized or hybridizabie to the first tracr sequence, wherein the second CRISPR complex comprises the CRISPR enzyme complexed with (1) the second guide sequence that is hybridized or hybridizabie to the second target sequence, and (2) the second tracr mate
- the first nick and the second nick in the DNA is offset relative to each other by at least one base pair of the duplex.
- the first nick and the second nick are offset relative to each other so that the resulting DNA break has a .3 ' overhang.
- the first nick and the second nick are offset relative to each other so that the resulting DNA break has a 5' overhang.
- the first nick and the second nick are positioned relative to each other such that the overhang is at least 1 nucleotide (nt), at least 10 nt, at least 15 nt, at least 26 nt, at least 30 nt, at least 50 nt or more that at least 50 nt. Additional aspects of the invention comprising the resulting offset double nicked DNA strand can be appreciated by one skilled in the art, and exemplary uses of the double nick system are provided herein.
- any or all of the polynucleotide sequence encoding the CRISPR enzyme, the first and the second guide sequence, the first and the second tracr mate sequence or the first and the second tracr sequence is/are RNA.
- the polynucleotides comprising the sequence encoding the CRISPR enzyme, the first and the second guide sequence, the first and the second tracr mate sequence or the first and the second tracr sequence is/are RNA and are delivered via liposomes, nanoparticles, exosomes, microvesicles, or a gene-gun.
- the first and second tracr mate sequence share 100% identity and/or the first and second tracr sequence share 100% identity.
- the polynucleotides may be comprised within a vector system comprising one or more vectors.
- the CRISPR enzyme is a Cas9 enzyme, e.g. SpCas9.
- the CRISPR enzyme comprises one or more mutations in a. catalytic domain, wherein the one or more mutations are selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the CRISPR enzyme has the D.10A mutation.
- the first CRISPR enzyme has one or more mutations such that the enzyme is a complementary strand nicking enzyme
- the second CRISPR enzyme has one or more mutations such that the enzyme is a non-complementary strand nicking enzyme.
- the first enzyme may be a non-complementary strand nicking enzyme
- the second enzyme may be a complementary strand nicking enzyme.
- the first guide sequence directing cleavage of one strand of the DNA duplex near the first target sequence and the second guide sequence directing cleavage of the other strand near the second target sequence results in a 5' overhang.
- the 5' overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5' overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs,
- the invention in some embodiments comprehends a method of modifying an organism or a non-human organism by minimizing off-target modifications by manipulation of a first and a second target sequence on opposite strands of a DNA duplex in a genomic locus of interest in a ceil comprising delivering a non-naturaily occurring or engineered composition comprising a vector system comprising one or more vectors comprising
- the tracr mate sequence hybridizes to the tracr sequence and the first and the second guide sequence direct sequence-specific binding of a first and a second CRISPR complex to the first and second target sequences respectively
- the first CRISPR complex comprises the CRISPR enzyme complexed with (1) the first guide sequence that is hybridized or hybridizabie to the first target sequence, and (2) the tracr mate sequence that is hybridized or hybridizabie to the tracr sequence
- the second CRISPR complex comprises the CRISPR enzyme complexed with ( I) the second guide sequence that is hybridized or hybridizabie to the second target sequence, and (2) the tracr mate sequence that is hybridized or hybridizabie to the tracr sequence
- the polynucleotide sequence encoding a CRISPR enzyme is ⁇ or RNA
- the first guide sequence directs cleavage of one strand of the D A duplex near the
- the invention also provides a vector system as described herein.
- the system may comprise one, two, three or four different vectors.
- Components I, II, III and IV may thus be located on one, two, three or four different vectors, and all combinations for possible locations of the components are herein envisaged, for example: components I, II, III and IV can be located on the same vector; components I, II, III and IV can each be located on different vectors; components I, II, II I and IV may be located on a total of two or three different vectors, with all combinations of locations envisaged, etc.
- any or all of the polynucleotide sequence encoding the CRISPR enzyme, the first and the second guide sequence, the first and the second tracr mate sequence or the first and the second tracr sequence is/are RNA.
- the first and second tracr mate sequence share 100% identity and/or the first and second tracr sequence share 100% identity.
- the CRISPR enzyme is a Cas9 enzyme, e.g. SpCas9.
- the CRISPR enzyme comprises one or more mutations in a catalytic domain, wherein the one or more mutations are selected from the group consisting of DIOA, E762A, H840A, N854A, N863A and D986A.
- the CRISPR enzyme has the DIOA mutation.
- the first CRISPR enzyme has one or more mutations such that the enzyme is a complementary strand nicking enzyme
- the second CRISPR enzyme has one or more mutations such that the enzyme is a non-complementary strand nicking enzyme.
- the first enzyme may be a non-complementary strand nicking enzyme
- the second enzyme may be a complementary strand nicking enzyme.
- one or more of the viral vectors are delivered via liposomes, nanoparticles, exosomes, microvesicles, or a gene-gun.
- the first guide sequence directing cleavage of one strand of the DNA duplex near the first target sequence and the second guide sequence directing cleavage of the other or opposite strand near the second target sequence results in a 5' overhang.
- the 5' overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5' overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs.
- the invention in some embodiments comprehends a method of modifying a genomic locus of interest by minimizing off-target modifications by introducing into a cell containing and expressing a double stranded DNA molecule encoding a gene product of interest an engineered, non-naturally occurring CRJSPR-Cas system comprising a Cas protein having one or more mutations and two guide RNAs that, target a first strand and a second strand of the DNA molecule respectively, whereby the guide RNAs target the DNA molecule encoding the gene product and the Cas protein nicks each of the first strand and the second strand of the DNA molecule encoding the gene product, whereby expression of the gene product is altered; and, wherein the Cas protein and the two guide RNAs do not naturally occur together,
- the Cas protein nicking each of the first strand and the second strand of the DNA molecule encoding the gene product results in a 5' overhang.
- the 5' overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5' overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs,
- Embodiments of the invention also comprehend the guide RNAs comprising a guide sequence fused to a tracr mate sequence and a tracr sequence.
- the Cas protein is codon optimized for expression in a eukaryotic cell, preferably a mammalian cell or a human cell. As explained in more detail below, codon usage can even be optimized for expression in particular cell types e.g. for brain cells.
- the Cas protein is a type II CRISPR-Cas protein, e.g. a Cas9 protein.
- the Cas protein is a Cas9 protein, e.g. SpCas9.
- the Cas protein has one or more mutations selected from the group consisting of DIOA, E762A, H840A, N854A, N863A and D986A.
- the Cas protein has the DIOA mutation.
- Aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5' overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein.
- the invention also comprehends an engineered, non-naturally occurring CRISPR-Cas system comprising a Cas protein having one or more mutations and two guide RNAs that target a first strand and a second strand respectively of a double stranded DNA molecule encoding a gene product in a cell, whereby the guide RNAs target the DNA molecule encoding the gene product and the Cas protein nicks each of the first strand and the second strand of the DNA molecule encoding the gene product, whereby expression of the gene product is altered; and, wherein the Cas protein and the two guide RNAs do not naturally occur together.
- the guide RN may comprise a guide sequence fused to a tracr mate sequence and a tracr sequence.
- the Cas protein is a. type II CRISPR-Cas protein.
- the Cas protein is codon optimized for expression in a eukaryotic cell, preferably a mammalian cell or a human cell.
- the Cas protein is a type II CRISPR-Cas protein, e.g. a Cas9 protein.
- the Cas protein is a Cas9 protein, e.g. SpCas9.
- the Cas protein has one or more mutations selected from the group consisting of DI OA, E762A, H840A, N854A, N863A and D986A.
- the Cas protein has the DIOA mutation.
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence (such as a trinucleotide repeat or other nucleotide expansion element) being excised precisely by allowing the two 5 ' overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein.
- the invention also comprehends an engineered, non-naturaily occurring vector system comprising one or more vectors comprising:
- a second regulatory element operably linked to a Cas protein, wherein components (a) and (b) are located on same or different vectors of the system, whereby the guide RNAs target the DNA molecule encoding the gene product and the Cas protein nicks each of the first strand and the second strand of the DNA molecule encoding the gene product, whereby expression of the gene product is altered; and, wherein the Cas protein and the two guide RNAs do not naturally occur together.
- the vectors of the system are viral vectors.
- the vectors of the system are delivered via liposomes, nanoparticles, exosomes, microvesicles, or a gene- gun.
- the invention provides a method of modifying a target polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a. tracr sequence.
- said cleavage comprises cleaving one or two strands at the location of the target sequence by said CRISPR enzyme. In some embodiments, said cleavage results in decreased transcription of a target gene. In some embodiments, the method further comprises repairing said cleaved target polynucleotide by homologous recombination with an exogenous template polynucleotide, wherein said repair results in a mutation comprising an insertion, deletion, or substitution of one or more nucleotides of said target polynucleotide. In some embodiments, said mutation results in one or more amino acid changes in a protein expressed from a gene comprising the target sequence.
- the method further comprises delivering one or more vectors to said eukaryotic cell, wherein the one or more vectors drive expression of one or more of: the CRISPR enzyme, the guide sequence linked to the tracr mate sequence, and the tracr sequence.
- said vectors are delivered to the eukaryotic cell in a subject.
- said modifying takes place in said eukaryotic cell in a cell culture.
- the method further comprises isolating said eukaryotic cell from a subject prior to said modifying.
- the method further comprises returning said eukaryotic cell and/or cells derived therefrom to said subject.
- the invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the polynucleotide such that said binding results in increased or decreased expression of said polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within said polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- the nature of the Complex and the target can determine whether binding results in increased or decreased expression.
- the target may be a gene product whose expression leads to the down-regulation or decreased expression of another gene product. Decreasing the expression of that first gene product can lead to expression being increased as to the second gene product (and of course expression of the first product is decreased).
- the complex can bind to a target and result in altered expression of a protein, e.g., a modified version being expressed, in that instance, the expression of the modified form of the protein is increased.
- the method further comprises delivering one or more vectors to said eukaryotic cells, wherein the one or more vectors drive expression of one or more of: the CRISPR enzyme, the guide sequence linked to the tracr mate sequence, and the tracr sequence, [0071]
- the invention provides a method of generating a model eukaryotic cell comprising a mutated disease gene.
- a disease gene is any gene associated with an increase in the risk of having or developing a disease.
- the method comprises (a) introducing one or more vectors into a eukaryotic cell, wherein the one or more vectors drive expression of one or more of: a CRISPR enzyme, a guide sequence linked to a tracr mate sequence, and a tracr sequence; and (b) allowing a CRISPR complex to bind to a target polynucleotide to effect cleavage of the target polynucleotide within said disease gene, wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1 ) the guide sequence that is hybridized or hybridizable to the target sequence within the target polynucleotide, and (2) the tracr mate sequence that is hybridized or hybridizable to the tracr sequence, thereby generating a model eukaryotic cell comprising a mutated disease gene.
- said cleavage comprises cleaving one or two strands at the location of the target sequence by said CRISPR enzyme. In some embodiments, said cleavage results in decreased transcription of a target gene. In some embodiments, the method further comprises repairing said cleaved target polynucleotide by homologous recombination with an exogenous template polynucleotide, wherein said repair results in a. mutation comprising an insertion, deletion, or substitution of one or more nucleotides of said target polynucleotide. In some embodiments, said mutation results in one or more amino acid changes in a protein expression from a gene comprising the target sequence,
- the invention provides for methods of modifying a target polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizabie to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- this invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises increasing or decreasing expression of a. target polynucleotide by using a CRISPR complex that binds to the polynucleotide.
- one or more vectors comprising a tracr sequence, a guide sequence linked to the tracr mate sequence, a sequence encoding a CRISPR enzyme is delivered to a cell.
- the one or more vectors comprises a regulatory element operably linked to an enzyme-coding sequence encoding said CRISPR enzyme comprising a nuclear localization sequence; and a regulatory element operably linked to a tracr mate sequence and one or more insertion sites for inserting a guide sequence upstream of the tracr mate sequence.
- the guide sequence directs sequence-specific binding of a CRISPR complex to a target sequence in a cell.
- the CRISPR complex comprises a CRISPR enzyme complexed with (1) the guide sequence that is hybridized or hybridizabie to the target sequence, and (2) the tracr mate sequence that is hybridized or hybridizabie to the tracr sequence.
- a target polynucleotide can be inactivated to effect the modification of the expression in a cell. For example, upon the binding of a CRISPR complex to a target sequence in a cell, the target polynucleotide is inactivated such that the sequence is not transcribed, the coded protein is not produced, or the sequence does not function as the wild-type sequence does. For example, a protein or microRNA coding sequence may be inactivated such that the protein or microRNA is not produced.
- the CRISPR enzyme comprises one or more mutations selected from the group consisting of D10A, E762A, H840A, N854A, N863A or D986A and/or the one or more mutations is in a RuvCl or HNH domain of the CRISPR enzyme or is a mutation as otheiwise as discussed herein, hi some embodiments, the CRISPR enzyme has one or more mutations in a catalytic domain, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the enzyme further comprises a functional domain.
- a mutated Cas9 enzyme may be fused to a protein domain or functional domain.
- the functional domain is a transcriptional activation domain, preferably VP64.
- the functional domain is a transcription repression domain, preferably KRAB.
- the transcription repression domain is SID, or concatemers of SID (e.g., SID4X).
- the functional domain is an epigenetic modifying domain, such that an epigenetic modifying enzyme is provided.
- the functional domain is an activation domain, which may be the P65 activation domain.
- the CRISPR enzyme is a type I or ⁇ CRISPR enzyme, but is preferably a type II CRISPR enzyme.
- This type II CRISPR enzyme may be any Cas enzyme.
- a Cas enzyme may be identified as Cas9 as this can refer to the general class of enzymes that share homology to the biggest nuclease with multiple nuclease domains from the type II CRISPR system.
- the Cas9 enzyme is from, or is derived from, spCas9 or saCas9.
- Applicants mean that the derived enzyme is largely based, in the sense of having a high degree of sequence homology with, a wildtype enzyme, but that it has been mutated (modified) in some way as described herein.
- Cas and CRISPR enzyme are generally used herein interchangeably, unless otherwise apparent.
- residue numberings used herein refer to the Cas9 enzyme from the type II CRISPR locus in Streptococcus pyogenes.
- this invention includes many more Cas9s from other species of microbes, s uch as SpCas9, SaCa9, StlCas9 and so forth.
- codon optimized sequence in this instance optimized for humans (i.e. being optimized for expression in humans) is provided herein, see the SaCas9 human codon optimized sequence. Whilst this is preferred, it will be appreciated that other examples are possible and codon optimization for a host species other than human, or for codon optimization for specific organs such as the brain, can be employed in the practice of the invention, from the teachings herein in conjunction with the knowledge in the art.
- deliver is in the form of a vector which may be a viral vector, such as a lenti- or baculo- or preferably adeno-viral/adeno-associaied viral vectors, but other means of delivery are known (such as yeast systems, microvesicles, gene guns/means of attaching vectors to gold nanoparticles) and are provided.
- a viral vector such as a lenti- or baculo- or preferably adeno-viral/adeno-associaied viral vectors
- other means of delivery are known (such as yeast systems, microvesicles, gene guns/means of attaching vectors to gold nanoparticles) and are provided.
- a vector may mean not only a viral or yeast system (for instance, where the nucleic acids of interest may be operabiy linked to and under the control of (in terms of expression, such as to ultimately provide a processed RNA) a promoter), but also direct delivery of nucleic acids into a host cell
- the vector may be a viral vector and this is advantageously an AAV
- other viral vectors as herein discussed can be employed, such as lentivirus.
- baculoviruses may be used for expression in insect cells. These insect cells may, in turn be useful for producing large quantities of further vectors, such as AAV or lentivims vectors adapted for delivery of the present invention.
- a method of delivering the present CRISPR enzyme comprising delivering to a cell niR A encoding the CRISPR enzyme.
- the CRISPR enzyme is truncated, and/or comprised of less than one thousand amino acids or less than four thousand amino acids, and/or is a nuclease or nickase, and/or is codon-optimized, and/or comprises one or more mutations, and/or comprises a chimeric CRISPR enzyme, and/or the other options as herein discussed.
- AAV and lentivirai vectors are preferred.
- the target sequence is flanked or followed, at its 3' end, by a PAM suitable for the CRISPR enzyme, typically a Cas and in particular a Cas9.
- a suitable PAM is 5'-NRG or 5'-N GRR for SpCas9 or SaCas9 enzymes (or derived enzymes), respectively.
- a suitable PAM is 5'-NRG.
- Expression of the components of a CRISPR system preferably does not take place systemically in a subject, but rather occurs only in desired cells, tissues or organs of interest.
- the invention utilises three principle ways of controlling expression in this way, which can be used singly or in combination. Firstly, expression can be under the control of regulator)' elements which are specific to the desired cells, tissues or organs. Secondly, a delivery vehicle can be used which is specific to the desired cells, tissues or organs e.g. based on suitably-specific cell surface molecules. Thirdly, local delivery can be used e.g. by delivery into the desired cells, tissues or organs, such as by injection.
- the invention provides a non-naturaily occurring or engineered composition Self Inactivating CRISPR-Cas system comprising
- a second regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme comprising, one, two or more nuclear localization signals (MLSs) and optionally a selection marker,
- MLSs nuclear localization signals
- system further comprises
- the first guide sequence is hybridized or hybridizable to the first target sequence and directs sequence-specific binding of a CRISPR. complex to the first target sequence
- the first CRiSPR complex comprises the CRISPR enzyme complexed with (1 ) the first guide sequence that is hybridized or hybridizable to the first target sequence, and (2) the tracr mate sequence that is hybridized to the tracr sequence, and
- the first CRISPR complex mediates binding to or a double or single stranded DMA break, thereby editing the genomic locus in the cell;
- the second guide sequence is hybridized or hybridizable to the second target sequence that inactivates one or more components of the CRISPR-Cas system, whereby all CRISPR complexes become self-inactivating.
- the second guide sequence is optionally introduced into the system simultaneously with the CRISPR-Cas system comprising the first guide sequence, or sequentially at a time point after the introduction of the elements encoding the first CRISPR-Cas complex.
- Figure 1 shows currently known diseases (highlighted) caused by an abnormal expansion of a nucleotide repeat sequence. Nucleotide repeats vary in size (triangles) and can reside in coding or non-coding regions of the disease-associated genes. Based on empirical and bioinformatics analyses Applicants have determined that each loci can be targeted using the CRISP R-Cas9 approach described in this application.
- Figure 2A-B shows targeting design and editing of the human ATXN1 CAG repeat, a) Review of the CRI8PR-Cas9 system, b) Guide sequences flanking the CAG nucleotide repeat in ATXN1 are removed using the CRISPR-Cas9 system. Shown are PCR products (primers depicted in gray) that correspond to an unedited (top dark band) and edited (lower band, arrow) ATXN1 after transient expression of CRISPR-Cas9 plasmids in a human HT1080 cells. As expected, successful editing of the repeat is only observed when both flanking guide non-coding RNAs are simultaneously expressed (compare lanes 1-5 versus fanes 6-11).
- Figure 3A-C shows CAG repeats are excised by the CRISPR-Cas9 system
- a) Edited genomic DNA ( Figure 3b) was purified, cloned and sequenced to confirm editing of the CAG nucleotide repeat. Over 150 clones were sequenced. The analysis showed that although different sequences were present (Isoforms ⁇ - ⁇ ) all but 1 (Isoform F) lacked the endogenous human ATXN1 CAG repeat, b) Most clones belonged to Isoform A.
- Isoform A produced a new genomic locus with an in-frame deletion lacking the CAG repeat.
- Figure 4A-B shows targeting design and editing of the human FMR1 CGG repeat; a second example, a) Guide sequences that flank the CGG nucleotide repeat region in FMR1. Unlike the CAG repeats in ATXN 1 , the CGG repeats in FMR1 are in the 5' im -translated region (5'UTR). b) Successful editing of FMR1 as evidenced by the PGR products (primers depicted in gray) corresponding to an unedited (top dark band) and edited (lower band, arrow) human FMR1 5'UTR/exon-l region. For this, CR1SPR-Cas9 plasmids were transfected into HT1080 cells for transient.
- Figure 5 shows CGG repeats are excised by the CRISPR-Cas9 system as confirmed by direct sequencing of the FMR1 5'UTR/exon-l region, a) Edited genomic DNA (shown in Figure 4b) was sequenced to confirm appropriate editing of FMR1 CGG repeats. Sequence alignment analysis showed the absence of the CGG repeat sequence in over 100 sequenced clones when compared to wild-type sequence.
- Figure 6A-C shows design of Adeno Associated Viral vectors for the delivery of CRISPR-Cas9 system into the mammalian brain
- SpCas9 containing an N-terminal and C-terminal nuclear localization domain as well as an N-terminal Flag was cloned into an AAV shuttle plasmid. Because of the large size of the SpCas9 cDNA and the desire to obtain low levels of SpCas9 nuclease expression in vivo, Applicants omitted the use of a promoter.
- the SpCas9 is driven by the basal transcriptional activity of the AAV inverted terminal repeat (iTR) sequences.
- the guide RNA (gcRNA) and the transactivating RNA (iracrRNA) were cloned into a different AAV shuttle plasmid and placed under the regulation of two different RNA polymerase type-Ill promoters: the U6 and HI promoters respectively, A reporter gene EGFP shown as an example), or any other sequence, can be cloned downstream of the non-coding expression cassettes, b)
- the non-coding CRISPR components are expressed as an array of chimeras (sgRNAs) driven by the U6 promoter
- AAV plasmids described in 6a were used to target ATXN1 plasmids that carry either 30 CAG nucleotide repeats (normal range) or 80 C AG repeats (disease range).
- Figure 7A-B shows a self-inactivating AAV-CR1SPR-Cas9 system
- a) Diagram of the SIN-CC9 concept Applicants designed plasmids that co-express sgRNAs targeting genomic sequences of interest (shown in grays/black) with "self-inactivating" sgRNAs that target an SpCas9 sequence near the engineered ATG start site (shown in red/black).
- a regulatory- sequence in the U6 promoter region can also be targeted with an sgRNA (shown in blue/black).
- the U6-driven sgRNAs as shown are designed in an array format such that multiple sgRNA sequences can be simultaneously released.
- sgRNAs When first delivered into target tissue/cells (left cell) sgRNAs begin to accumulate while Cas9 levels rise in the nucleus. Cas9 will complex with all of the sgRNAs to mediate genome editing and self-inactivation of the CRISPR-Cas9 plasmids.
- Figure 8A-B shows the concept of CRISPR-Cas9-mediated allele-specific targeting.
- Figure 9A-B shows loss of Ataxin-1 expression after excision of CAG repeats from within the ATXNl locus.
- Figure 9a shows PGR across the human ATXNl locus following a 5- day selection of HT1080 cells transfected the indicated plasmids. After selection with Puromyein, >90% of the cell population contained an edited ATX l locus lacking the CAG repeat, and the arrow shows the shorter locus.
- Figure 9b quantitative PGR analysis of ATXN1 expression reveals a significant reduction in the steady-state levels of ATXN 1 mRNA. Two different cell lines were analyzed and similar results were observed. The y-axis shows transcript levels relative to the control (level 1.0).
- Figure lOA-C shows targeting of expanded CTG repeats in the DMPK locus. Guide sequences were designed to flank the CTG nucleotide repeat region in the 3 ' un-translated region (3'UTR) of DMPK.
- the PGR products in Figure 10a indicate successful editing of the DMPK locus in FIT 1080 cells, comparing unedited (top arrow) and edited (bottom arrow).
- Figure 10b shows primary skin fibroblasts biopsied from a DM! patient. After the CRISPR-Cas9 plasmids targeting the DMPK locus were introduced, Figure 10c shows that the CTG expansion is effectively excised.
- FIG. 1 lA-C shows AAV vectors for delivery of CRISPR-Cas9 system into mammalian tissue.
- the vectors are illustrated in Figure 11a, using the SaCas9 nuclease containing an N-terminai nuclear localization domain as well as an N-terminal HA-tag, cloned into an AAV shuttle piasmid and placed under the control of a CM ⁇ /T promoter.
- the non-coding RNA elements required for Cas9-mediated gene editing are also contained within the same AAV packaging genome. This allows for the co-delivery of a second AAV vector (example provided CMV-EGFP) that could serve as a transduction marker or a template donor whenever FIR is desired.
- a second AAV vector example provided CMV-EGFP
- Figure l ib shows results from successful vector delivery to mice as indicated by expression of a EGFP marker.
- Figure 1 1c shows that delivery of the anti-CTG SaCas9 led to efficient excision of the CTG repeats from the HSA LR transgenic locus, but no editing was observed in mice receiving the AAV9-EGFP vims alone or an AAV9 expressing SaCas9 with a control guide (scrambled sequence).
- Figure 12 shows synthetic expression constructs that contain the first 342 nucleotides (from the ATG start site) of the ATXN2 mRNA fused in-frame to the N-terminus of EGFP (G allele) or mCherry (C allele).
- Experimental results described in Example 37 indicate that allele-specific targeting of the C allele using CRISPR-Cas9 results in a loss of mCherry (C allele) but not EGFP (G allele) expression in cultured cells.
- Figure 13 depicts one aspect of a Self-Inactivating CRISPR-Cas9 system; see Examples 3, 4.
- Figure 14 depicts an exemplary self-inactivating CRISPR-Cas9 system for a chimeric tandem array transcript specific to the ATXN1 locus.
- the ATXNlaPS9 guide edits the ATXN1 locus while the U6aPSl and CMVaPSl guides inactivate the CR1SPR-Cas9 system; see Examples 3, 4.
- FIG. 15A-C shows tandem guide RNAs are efficiently processed especially in the first position. Tandem guide RNAs are efficiently processed especially in the first position. Tandem guide RNAs are efficiently processed especially in the first position ((A) Schematic showing tandem guide RNA scaffolds encoding for either EMX1.3 or EMX63 in the first or second position with position of Emx l.3 Northern probe shown in red. (B) Northern blot analysis examining processing of tandem sgRNA in cells. (C) SURVEYOR assay examining independent sgRNA activity targeting two genomic loci, DYRK1A and GR1N2B. The three left lanes in both panels are tsgRNAs targeting DYRK1A in the first position and GRIN2B in the second position.
- Figure 16A-C shows optimization of tsgRNA scoffold pairings. Optimization of tsgRNA scaffold pairings.
- C 12x12 matrix of tandem scaffold pairings and results of subsequent analyses by flow cytometry).
- Figure 17 depicts tandem pairs between divergent scaffolds improves second spacer activity. Tandem pairs between divergent scaffolds improve second spacer activity (Sequence alignment of the sgRNA scaffolds used in the previous study to the sp85 scaffold).
- Figure 18A-E provides evidence of in vivo CRISPR/Cas9 genome editing efficacy and therapeutic benefit in a polyglutamme disease mouse model.
- Jiang et al. used the clustered, regularly interspaced, short palindromic repeats (CRTSPR)-associated Cas9 endonuclease compiexed with dual-RNAs to introduce precise mutations in the genomes of Streptococcus pneumoniae and Escherichia coll
- the approach relied on dual-RNA:Cas9-directed cleavage at the targeted genomic site to kill unmutated cells and circumvents the need for selectable markers or counter-selection systems.
- the study reported reprogramming dual-RNA:Cas9 specificity by changing the sequence of short CRISPR RNA (crRNA) to make single- and multinucleotide changes carried on editing templates.
- Konenmann et al. addressed the need in the art for versatile and robust technologies that enable optical and chemical modulation of DNA-binding domains based CRISPR Cas9 enzyme and also Transcriptional Activator Like Effectors
- the Cas9 nuclease from the microbial CRISPR- Cas system is targeted to specific genomic loci by a 20 nt guide sequence, which can tolerate certain mismatches to the DMA target and thereby promote undesired off-target mutagenesis.
- Ran et al. described an approach that combined a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage.
- Hsu et al. characterized SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects.
- the authors that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches.
- the authors further showed that SpCas9 -mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification.
- Ran et al. described a set of tools for Cas9-mediated genome editing via non-homologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies.
- NHEJ non-homologous end joining
- HDR homology-directed repair
- the authors further described a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs.
- the protocol provided by the authors experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity.
- the studies showed that beginning with target design, gene modifications can be achieved within as little as 1 -2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.
- shimasu et al. reported the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target D A at 2,5 A° resolution.
- the structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively charged groove at their interface.
- the recognition lobe is essential for binding sgRNA and DNA
- the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and non-complementary strands of the target DNA, respectively.
- the nuclease lobe also contains a carboxyl -terminal domain responsible for the interaction with the protospacer adjacent motif (PAM).
- PAM protospacer adjacent motif
- Wii et al. mapped genome-wide binding sites of a catalytically inactive Cas9 (dCas9) from Streptococcus pyogenes loaded with single guide RNAs (sgR As) in mouse embryonic stem cells (mESCs).
- dCas9 catalytically inactive Cas9
- sgR As single guide RNAs
- mESCs mouse embryonic stem cells
- Hsu 2014 is a review article that discusses generally CRISPR-Cas9 history from yogurt to genome editing, including genetic screening of cells, that is in the information, data and findings of the applications in the lineage of this specification filed prior to June 5, 2014.
- the general teachings of Hsu 2014 do not involve the specific models, animals of the instant specification.
- the CRISPR-Cas or CRISPR system is as used in the foregoing documents, such as WO 2014/093622 (PCT/US2013/074667) and refers collectively to transcripts and other elements involved irs the expression of or directing the activity of CRISPR - associated (“Cas”) genes, including sequences encoding a Cas gene, a tracr (trans -activating CRISPR) sequence (e.g.
- RNA(s) as that term is herein used (e.g., RNA(s) to guide Cas9, e.g. CRISPR RNA and transactivating (tracr) RNA or a single guide RNA (sgRNA) (chimeric RNA)) or other sequences and transcripts from a CRISPR locus.
- RNA(s) to guide Cas9, e.g. CRISPR RNA and transactivating (tracr) RNA or a single guide RNA (sgRNA) (chimeric RNA)
- a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system).
- target sequence refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a. target sequence and a. guide sequence promotes the formation of a CRISPR complex.
- a target sequence may comprise any polynucleotide, such as DNA or RNA polynucleotides.
- a target sequence is located in the nucleus or cytoplasm of a cell.
- direct repeats may be identified in silico by searching for repetitive motifs that fulfill any or all of the following criteria: 1. found in a 2Kb windo of genomic sequence flanking the type II CRISPR locus; 2. span from 20 to 50 bp; and 3, interspaced by 20 to 50 bp. In some embodiments, 2 of these criteria may be used, for instance 1 and 2, 2 and 3, or 1 and 3. In some embodiments, ail 3 criteria may be used.
- the tracr sequence has one or more hairpins and is 30 or more nucleotides in length, 40 or more nucleotides in length, or 50 or more nucleotides in length; the guide sequence is between 10 to 30 nucleotides in length, the CRISPR/Cas enzyme is a Type ⁇ Cas9 enzyme.
- the terms guide sequence and guide RNA are used interchangeably as in foregoing cited documents such as WO 2014/093622 (PCT/US2013/074667).
- a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence.
- the degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a. suitable alignment algorithm is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more.
- Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g. the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (lliumina, San Diego, CA), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net).
- Burrows-Wheeler Transform e.g. the Burrows Wheeler Aligner
- a guide sequence is about or more than about 5, 10, 1 .1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length. Preferably the guide sequence is 10 - 30 nucleotides long. The ability of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be assessed by any suitable assay.
- the components of a CRISPR system sufficient to form a CRISPR complex may be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the CRISPR sequence, followed by an assessment of preferential cleavage within the target sequence, such as by Surveyor assay as described herein.
- cleavage of a target polynucleotide sequence may be evaluated in a test tube by providing the target sequence, components of a CRISPR complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions.
- a guide sequence may be selected to target any target sequence.
- the target sequence is a sequence within a genome of a ceil.
- Exemplary target sequences include those that are unique in the target genome.
- a unique target sequence in a genome may include a Cas9 target site of the form MMM ftMMmmm NXGG where N NNN NNN N XGG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMN NNN NNNNNNXXAGAAW where mmmm XXAGAAW (N is A, a, T, or C; X can be anything; and W is A or T) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S, thermophilus CRISPR 1 Cas9 target site of the form
- a unique target sequence in a genome may include a Cas9 target site of the form Ni lMMM3 ⁇ 4Mmmmmm , XGGXG where
- a unique target sequence in a genome may include an S. pyogenes Cas9 target site of the form MM M ! immmm XGGXG where NNN NNN NNNXGGXG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- NNN NNN NNNXGGXG N is A, G, T, or C; and X can be anything
- M may be A, G, T, or C, and need not be considered in identifying a sequence as unique.
- a guide sequence is selected to reduce the degree secondary structure within the guide sequence.
- Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegier (Nucleic Acids Res. 9 (1981), 133-148). Another example folding algorithm is the online ebserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the ceniroid structure prediction algorithm (see e.g. A.R, Gruber et al., 2008, Cell 106(1): 23-24; and PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151-62).
- a tracr mate sequence includes any sequence that has sufficient complementarity with a tracr sequence to promote one or more of: (1) excision of a guide sequence flanked by tracr mate sequences in a cell containing the corresponding tracr sequence; and (2) formation of a CRISPR complex at a target sequence, wherein the CRISPR complex comprises the tracr mate sequence hybridized to the tracr sequence.
- degree of complementarity is with reference to the optimal alignment of the tracr mate sequence and tracr sequence, along the length of the shorter of the two sequences.
- Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self-complementarity within either the tracr sequence or tracr mate sequence.
- the degree of complementarity between the tracr sequence and tracr mate sequence along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher.
- the tracr sequence is about or more than about 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or more nucleotides in length.
- the tracr sequence and tracr mate sequence are contained within a single transcript, such that hybridization between the two produces a transcript having a secondary structure, such as a hairpin.
- the transcript or transcribed polynucleotide sequence has at least two or more hairpins.
- the transcript has two, three, four or five hairpins, hi a further embodiment of the invention, the transcript has at most five hairpins.
- a hairpin structure the portion of the sequence 5' of the final "N" and upstream of the loop corresponds to the tracr mate sequence, and the portion of the sequence 3 ' of the loop corresponds to the tracr sequence
- single polynucleotides comprising a. guide sequence, a tracr mate sequence, and a tracr sequence are as follows (listed 5 " to 3'), where "N" represents a base of a guide sequence, the first block of lower case letters represent the tracr mate sequence, and the second block of lower case letters represent the tracr sequence, and the final poly-T sequence represents the transcription terminator: (1) NN NNN NNN NNN ⁇
- sequences (1) to (3) are used in combination with Cas9 from S. thermophilus CRISPRi.
- sequences (4) to (6) are used in combination with Cas9 from S. pyogenes.
- the tracr sequence is a separate transcript from a transcript comprising the tracr mate sequence.
- candidate tracrRNA may be subsequently predicted by sequences that fulfill any or all of the following criteria: 1. sequence homology to direct repeats (motif search in Geneious with up to 18 -bp mismatches); 2. presence of a predicted Rho- independent transcriptional terminator in direction of transcription; and 3. stable hairpin secondary structure between tracrRNA and direct repeat. In some embodiments, 2 of these criteria may be used, for instance 1 and 2, 2 and 3, or 1 and 3. In some embodiments, ail 3 criteria may be used.
- chimeric synthetic guide RNAs (sgRNAs) designs may incorporate at least 12 bp of duplex structure between the direct repeat and iracrRNA.
- CRISPR enzyme mRNA and guide RNA For minimization of toxicity and off-target effect, it will be important to control the concentration of CRISPR enzyme mRNA and guide RNA delivered. Optimal concentrations of CRISPR enzyme mRNA and guide RNA can be determined by testing different concentrations in a cellular or non-human eukaryote animal model and using deep sequencing the analyze the extent of modification at potential off-target genomic foci.
- deep sequencing can be used to assess the level of modification at the following two off -target loci, 1 : 5 ' -GAGTCCT AGCAGGAGAAGAA -3 ' and 2: 5 ' -G AGTCT A AGC AG A AGA A GA A- 3 '.
- concentration that gives the highest level of on-target modification while minimizing the level of off-target modification should be chosen for in vivo delivery.
- CRISPR enzyme nickase mRNA for example S.
- pyogenes Cas9 with the D10A mutation can be delivered with a pair of guide RNAs targeting a site of interest.
- the two guide RNAs need to be spaced as follows.
- Guide sequences and strategies to mimize toxicity and off -target effects can be as in WO 2014/093622 (PCT/US2013/074667).
- the CRISPR system is derived advantageously from a. type II CRISPR system.
- one or more elements of a CRISPR system is derived from a particular organism comprising an endogenous CRISPR system, such as Streptococcus pyogenes.
- the CRISPR system is a type II CRISPR system and the Cas enzyme is Cas9, which catalyzes DNA cleavage.
- Non-limiting examples of Cas proteins include Casl, Ca lB, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csnl and Csx l2), CasIO, Csyl , Csy2, Csy3, Csel , Cse2, Csc!
- the unmodified CRISPR enzyme has DNA cleavage activity, such as Cas9.
- the CRISPR enzyme directs cleavage of one or both strands at the location of a target sequence, such as within the target sequence and/or within the complement of the target sequence.
- the CRISPR enzyme directs cleavage of one or both strands within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more base pairs from the first or last nucleotide of a target sequence.
- a vector encodes a CRISPR enzyme that is mutated to with respect to a corresponding wild-type enzyme such that the mutated CRISPR enzyme lacks the ability to cleave one or both strands of a target polynucleotide containing a target sequence.
- an aspartate-to-alanine substitution D.10A
- D.10A aspartate-to-alanine substitution in the RuvC I catalytic domain of Cas9 from S.
- pyogenes converts Cas9 from a nuclease thai cleaves both strands to a nickase (cleaves a single strand).
- mutations that render Cas9 a nickase include, without limitation, H840A, N854A, and N863A,
- two or more catalytic domains of Cas9 may be mutated to produce a mutated Cas9 substantially lacking all DNA cleavage activity.
- a D10A mutation is combined with one or more of H840A, N854A, or N863A mutations to produce a Cas9 enzyme substantially lacking all DNA cleavage activity.
- a CRISPR enzyme is considered to substantially lack all DNA.
- cleavage activity when the DNA cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the DNA cleavage activity of the non- mutated form of the enzyme; an example can be when the DNA cleavage activi ty of the mutated form is nil or negligible as compared with the non-mutated form.
- mutations may be made at any or all residues corresponding to positions 10, 762, 840, 854, 863 and/or 986 of SpCas9 (which may be ascertained for instance by standard sequence comparison tools ).
- any or all of the following mutations are preferred in SpCas9: D10A, E762A, H840A, N854A, N863A and/or D986A; as well as conservative substitution for any of the replacement amino acids is also envisaged.
- the same (or conservative substitutions of these mutations ) at corresponding positions in other Cas9s are also preferred.
- Particularly- preferred are D10 and H840 in SpCas9.
- residues corresponding to SpCas9 D10 and H840 are also preferred.
- Orthologs of SpCas9 can be used in the practice of the invention.
- a Cas enzyme may be identified Cas9 as this can refer to the general class of enzymes that share homology to the biggest nuclease with multiple nuclease domains from the type II CRISPR system.
- the Cas9 enzyme is from, or is derived from, spCas9 (S, pyogenes Cas9) or saCas9 (S. aureus Cas9).
- StCas9 refers to wild type Cas9 from S. thermophil s, the protein sequence of which is given in the SwissProt database under accession number G3ECR.1.
- S pyogenes Cas9 or spCas9 is included in SwissProt under accession number Q99ZW2.
- Cas and CRISPR enzyme are generally used herein interchangeably, unless otherwise apparent.
- residue numberings used herein refer to the Cas9 enzyme from the type II CRISPR locus in Streptococcus pyogenes.
- this invention includes many more Cas9s from other species of microbes, such as SpCas9, SaCa9, StlCas9 and so forth.
- Enzymatic action by Cas9 derived from Streptococcus pyogenes or any closely related Cas9 generates double stranded breaks at target site sequences which hybridize to 20 nucleotides of the guide sequence and that have a protospacer- adjacent motif (PAM) sequence (examples include NGG/NRG or a PAM that can be determined as described herein) following the 20 nucleotides of the target sequence.
- PAM protospacer- adjacent motif
- the CRISPR system small RNA- guided defence in bacteria and archaea, Mole Cell 2010, January 15; 37(1 ): 7.
- the type II CRISPR locus from Streptococcus pyogenes SF370 which contains a cluster of four genes Cas9, Casl, Cas2, and Csnl , as well as two non-coding R A elements, tracrR A and a characteristic array of repetitive sequences (direct repeats ) interspaced by short stretches of no -repetitive sequences (spacers, about 30bp each).
- DSB targeted DNA double-strand break
- RNAs two non-coding RNAs, the pre-crRNA array and tracrRNA, are transcribed from the CRISPR locus.
- tracrRNA hybridizes to the direct repeats of pre-crRNA, which is then processed into mature crRNAs containing individual spacer sequences.
- the mature crRNA:tracrRNA complex directs Cas9 to the DNA target consisting of the protospacer and the corresponding PAM via heteroduplex formation between the spacer region of the crRNA and the protospacer DNA.
- Cas9 mediates cleavage of target DNA upstream of PAM to create a DSB within the protospacer.
- Cas9 may be constitutively present or inducibly present or conditionally present or administered or delivered. Cas9 optimization may be used to enhance function or to develop new functions, one can generate chimeric Cas9 proteins. And Cas9 may be used as a generic DNA binding protein.
- a CRISPR complex comprising a guide sequence hybridized to a target sequence and complexed with one or more Cas proteins
- formation of a CRISPR complex results in cleavage of one or both strands in or near (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, SO, or more base pairs from) the target sequence.
- the tracr sequence which may comprise or consist of all or a portion of a wild- type tracr sequence (e.g.
- a wild-type tracr sequence may also form part of a CRISPR complex, such as by hybridization along at least a portion of the tracr sequence to all or a portion of a tracr mate sequence thai is operably linked to the guide sequence.
- a codon optimized sequence is in this instance a sequence optimized for expression in a eukaryote, e.g., humans (i.e. being optimized for expression in humans), or for another eukaryote, animal or mammal as herein discussed; see, e.g., SaCas9 human codon optimized sequence in WO 2014/093622 (PCT/US2013/074667). Whilst this is preferred, it will be appreciated that other examples are possible and codon optimization for a host species other than human, or for codon optimization for specific organs is known.
- an enzyme coding sequence encoding a CRISPR enzyme is codon optimized for expression in particular cells, such as eukaryotic cells.
- the eukaryotie cells may be those of or derived from a particular organism, such as a mammal, including but not limited to human, or non-human eukaryote or animal or mammal as herein discussed, e.g., mouse, rat, rabbit, dog, livestock, or non-human mammal or primate.
- processes for modifying the germ line genetic identity of human beings and/or processes for modifying the genetic identity of animals which are likely to cause them suffering without any substantial medical benefit to man or animal, and also animals resulting from such processes may be excluded.
- codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g.
- Codon bias differences in codon usage between organisms
- mRNA messenger RNA
- tKNA transfer RN
- genes can be tailored for optimal gene expression in a given organism based on codon optimization.
- Codon usage tables are readily available, for example, at the "Codon Usage Database” available at www.kazusa.orjp/codon/ and these tables can be adapted in a number of ways. See Nakamura, Y., et al. "Codon usage tabulated from the international DNA sequence databases: status for the year 2000" Nucl. Acids Res. 28:292 (2000).
- Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, PA), are also available.
- one or more codons e.g.
- a vector encodes a CRISPR enzyme comprising one or more nuclear localization sequences (NLSs), such as about or more than about I, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs.
- NLSs nuclear localization sequences
- the CRISPR enzyme comprises about or more than about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-termirms, about or more than about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. zero or at least one or more NLS at the ammo-terminus and zero or at one or more NLS at the carboxy terminus).
- each may be selected independen tly of the others, such that a single NLS may be present in more than one copy and'Or in combination with, one or more other NLSs present in one or more copies.
- the CRISPR enzyme comprises at most 6 NLSs.
- an NLS is considered near the N- or C-termirms when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 2.0, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C -terminus.
- NLSs include an NLS sequence derived from: the N LS of the SV40 virus large T -antigen, having the amino acid sequence PKKKRKY; the NLS from nueleoplasmin (e.g.
- RMRIZFKNKGKDTAELRRRRVEVSVEL KAKKDEQILKRR V of the IBB domain from importin-alpha the sequences VSR RPRP and PPK ARED of the myoma. T protein; the sequence POPKKKPL of human p53; the sequence SALIKKKKKMAP of mouse c-abl IV; the sequences DRLRR and PKQKKRK of the influenza vims NS1 ; the sequence RKLKKKIKKL of the Hepatitis vims delta antigen; the sequence REKKKFLKRR of the mouse Mxl protein: the sequence KRKGDEVDGVDEVAKKKSKK of the human poly(ADP-ribose) polymerase and the sequence RKCLQAGMNLEARKTKK of the steroid hormone receptors (human) glucocorticoid.
- the one or more NLSs are of sufficient strength to drive accumulation of the CRISPR enzyme in a detectable amount in the nucleus of a eukaryotic ceil.
- strength of nuclear localization activity may derive from the number of NLSs in the CRISPR enzyme, the particular NLS(s) used, or a combination of these factors.
- Detection of accumulation in the nucleus may be performed by any suitable technique.
- a detectable marker may be fused to the CRISPR enzyme, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI).
- Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of CRISPR complex formation (e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by CRISPR complex formation and/or CRISPR enzyme activity), as compared to a control no exposed to the CRISPR enzyme or complex, or exposed to a CRISPR enzyme lacking the one or more NLSs.
- an assay for the effect of CRISPR complex formation e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by CRISPR complex formation and/or CRISPR enzyme activity
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5' overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein. Only sgRNA pairs creating 5' overhangs with less than 8bp overlap between the guide sequences (offset greater than -8 bp) were able to mediate detectable indel formation.
- each guide used in these assays is able to efficiently induce indels when paired with wildtype Cas9, indicating that the relative positions of the guide pairs are the most important parameters in predicting double nicking activity.
- Cas9n and Cas9H840A nick opposite strands of DNA
- substitution of Cas9n with Cas9H840A with a given sgRNA pair should have resulted in the inversion of the overhang type; but no indel formation is observed as with Cas9H840A indicating that Cas9H840A is a CRISPR enzyme substantially lacking all DNA cleavage activity (which is when the DNA cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1 %, 0.1%, 0.01%, or less of the DNA cleavage activity of the non- mutated form of the enzyme; whereby an example can be when the DNA cleavage activity of the mutated form is nil or negligible as compared with the non-mutated form,
- a recombination template is also provided,
- a recombination template may be a component of another vector as described herein, contained in a separate vector, or provided as a separate polynucleotide.
- a recombination template is designed to serve as a template in homologous recombination, such as within or near a target sequence nicked or cleaved by a CRISPR enzyme as a part of a CRJSPR complex.
- a template polynucleotide may be of any suitable length, such as about or more than about 10, 15, 20, 25, 50, 75, 100, 150, 200, 500, 1000, or more nucleotides in length.
- the template polynucleotide is complementary to a portion of a polynucleotide comprising the target sequence.
- a template polynucleotide When optimally aligned, a template polynucleotide might overlap with one or more nucleotides of a target sequences (e.g. about or more than about I, 5, 10, 15, 20, or more nucleotides). In some embodiments, when a template sequence and a polynucleotide comprising a target sequence are optimally aligned, the nearest nucleotide of the template polynucleotide is within about 1 , 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 5000, 10000, or more nucleotides from the target sequence.
- one or more vectors driving expression of one or more elements of a CRISPR system are introduced into a host cell such that expression of the elements of the CRISPR system direct formation of a CRISPR complex at one or more target sites.
- a Cas enzyme, a guide sequence linked to a traer-mate sequence, and a tracr sequence could each be operably linked to separate regulatory elements on separate vectors.
- RNA(s) of the CRISPR System can be delivered to a transgenic Cas9 animal or mammal, e.g., an animal or mammal that constitutively or inducibly or conditionally expresses Cas9; or an animal or mammal that is otherwise expressing Cas9 or has cells containing Cas9, such as by way of prior administration thereto of a vector or vectors that code for and express in vivo Cas9.
- a transgenic Cas9 animal or mammal e.g., an animal or mammal that constitutively or inducibly or conditionally expresses Cas9; or an animal or mammal that is otherwise expressing Cas9 or has cells containing Cas9, such as by way of prior administration thereto of a vector or vectors that code for and express in vivo Cas9.
- two or more of the elements expressed from the same or different regulatory elements may be combined in a single vector, with one or more additional vectors providing any components of the CRISPR system not included in the first vector.
- CRISPR system elements that are combined in a single vector may be arranged in any suitable orientation, such as one element located 5' with respect to ("upstream” of) or 3 ' with respect to ("downstream” of) a second element.
- the coding sequence of one element may be located on the same or opposite strand of the coding sequence of a second element, and oriented in the same or opposite direction.
- a single promoter drives expression of a transcript encoding a CRJSPR enzyme and one or more of the guide sequence, tracr mate sequence (optionally operably linked to the guide sequence), and a tracr sequence embedded within one or more intron sequences (e.g.
- the CRISPR enzyme, guide sequence, tracr mate sequence, and tracr sequence are operably linked to and expressed from the same promoter. Delivery vehicles, vectors, particles, nanoparticles, formulations and components thereof for expression of one or more elements of a CRISPR system are as used in the foregoing documents,
- a vector comprises one or more insertion sites, such as a restriction endonuclease recognition sequence (also referred to as a "cloning site").
- one or more insertion sites e.g. about or more than about 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, or more insertion sites are located upstream and/or downstream of one or more sequence elements of one or more vectors.
- a vector comprises an insertion site upstream of a tracr mate sequence, and optionally downstream of a regulator ⁇ ' element operably linked to the tracr mate sequence, such that following insertion of a guide sequence into the insertion site and upon expression the guide sequence directs sequence- specific binding of a CRISPR complex to a target sequence in a eukaryotic cell.
- a vector comprises two or more insertion sites, each insertion site being located between two tracr mate sequences so as to allow insertion of a guide sequence at each site.
- the two or more guide sequences may comprise two or more copies of a single guide sequence, two or more different guide sequences, or combinations of these.
- a single expression construct may be used to target CRISPR activity to multiple different, corresponding target sequences within a cell
- a single vector may comprise about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or more guide sequences.
- about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more such guide-sequence-containing vectors may be provided, and optionally delivered to a cell.
- a vector comprises a regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, such as a Cas protein.
- CRISPR enzyme or CRISPR enzyme mRNA or CRISPR guide RNA or RNA(s) can be delivered separately; and advantageously at least one of these is delivered via a nanoparticle complex.
- CRISPR enzyme mRNA can be delivered prior to the guide RNA to give time for CRISPR enzyme to be expressed.
- CRISPR enzyme mRNA might be administered 1 -12 hours (preferably around 2-6 hours) prior to the administrat on of guide RNA.
- CRISPR enzyme mRNA and guide RNA can be administered together.
- a second booster dose of guide RNA can be administered 1-12 hours (preferably around 2-6 hours) after the initial administration of CRISPR enzyme mRNA + guide RN A. Additional administrations of CRISPR. enzyme mRNA and/or guide RNA might be useful to achieve the most efficient levels of genome modification.
- the invention provides methods for using one or more elements of a CRISPR system.
- the CRISPR complex of the invention provides an effective means for modifying a target polynucleotide.
- the CRISPR complex of the invention has a wide variety of utility including modifying (e.g., deleting, inserting, translocating, inactivating, activating) a target polynucleotide in a multiplicity of cell types.
- the CRISPR complex of the invention has a broad spectrum of applications in, e.g., gene therapy, drug screening, disease diagnosis, and prognosis.
- An exemplary CRISPR complex comprises a CRISPR enzyme compiexed with a guide sequence hybridized to a target sequence within the target polynucleotide.
- this invention provides a method of cleaving a target polynucleotide.
- the method comprises modifying a target polynucleotide using a CRISPR. complex that binds to the target polynucleotide and effect cleavage of said target polynucleotide.
- the CRISPR complex of the invention when introduced into a cell, creates a break (e.g., a single or a double strand break) in the genome sequence.
- the method can be used to cleave a disease gene in a cell.
- the break created by the CRISPR complex can be repaired by a repair processes such as the error prone non-homologous end joining (NHEJ) pathway or the high fidelity homology-directed repair (HDR).
- NHEJ error prone non-homologous end joining
- HDR high fidelity homology-directed repair
- an exogenous polynucleotide template can be introduced into the genome sequence.
- the HDR process is used modify genome sequence.
- an exogenous polynucleotide template comprising a sequence to be integrated flanked by an upstream sequence and a downstream sequence is introduced into a cell.
- the upstream and downstream sequences share sequence similarity with either side of the site of integration in the chromosome.
- a donor polynucleotide can be D A, e.g., a D A plasmid, a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), a viral vector, a linear piece of DNA, a PGR fragment, a naked nucleic acid, or a nucleic acid compiexed with a delivery vehicle such as a liposome or poloxamer.
- the exogenous polynucleotide template comprises a sequence to be integrated (e.g., a mutated gene).
- the sequence for integration may be a sequence endogenous or exogenous to the cell.
- sequences to be integrated examples include polynucleotides encoding a protein or a non-coding RNA (e.g., a microKNA).
- the sequence for integration may be operably linked to an appropriate control sequence or sequences.
- the sequence to be integrated may provide a regulatory function.
- the upstream and downstream sequences in the exogenous polynucleotide template are selected to promote recombination between the chromosomal sequence of interest and the donor polynucleotide.
- the upstream sequence is a nucleic acid sequence that shares sequence similarity with the genome sequence upstream of the targeted site for integration.
- the downstream sequence is a nucleic acid sequence that shares sequence similarity with the chromosomal sequence downstream of the targeted site of integration.
- the upstream and downstream sequences in the exogenous polynucleotide template can have 75%, 80%, 85%, 90%, 95%, or 100% sequence identity with the targeted genome sequence.
- the upstream and downstream sequences in the exogenous polynucleotide template have about 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with the targeted genome sequence.
- the upstream and downstream sequences in the exogenous polynucleotide template have about 99% or 100% sequence identity with the targeted genome sequence.
- An upstream or downstream sequence may comprise from about 20 bp to about 2500 bp, for example, about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1 100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2,200, 2300, 2400, or 2500 bp.
- the exemplary upstream or downstream sequence have about 200 bp to about 2000 bp, about 600 bp to about 1000 bp, or more particularly about 700 bp to about 1000 bp.
- the exogenous polynucleotide template may further comprise a marker. Such a marker may make it easy to screen for targeted integrations.
- the exogenous polynucleotide template of the invention can be constructed using recombinant techniques (see, for example, Sambrook et a!., 2001 and Ausubel et a!., 1996).
- a double stranded break is introduced into the genome sequence by the CR1SPR complex, the break is repaired via homologous recombination an exogenous polynucleotide template such that the template is integrated into the genome.
- the presence of a double -stranded break facilitates integration of the template.
- this invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises increasing or decreasing expression of a target polynucleotide by using a CRISPR complex that binds to the polynucleotide.
- a target polynucleotide can be inactivated to effect the modification of the expression in a cell. For example, upon the binding of a CRISPR complex to a target sequence in a cell, the target polynucleotide is inactivated such that the sequence is not transcribed, the coded protein is not produced, or the sequence does not function as the wild-type sequence does.
- control sequence refers to any nucleic acid sequence that effects the transcription, translation, or accessibility of a nucleic acid sequence. Examples of a control sequence include, a promoter, a transcription terminator, and an enhancer are control sequences.
- the target polynucleotide of a CRISPR complex can be any polynucleotide endogenous or exogenous to the eukaryotic cell
- the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell.
- the target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk D A).
- Examples of target polynucleotides include a sequence associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway- associated gene or polynucleotide.
- target polynucleotides include a disease associated gene or polynucleotide.
- a "disease-associated" gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a non disease control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the al tered expression correlates with the occurrence and/or progression of the disease.
- a disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease.
- the transcribed or translated products may be known or unknown, and may be at a normal or abnormal level.
- the target polynucleotide of a CRISPR complex can be any polynucleotide endogenous or exogenous to the eukarvotic cell.
- the target polynucleotide can be a polynucleotide residing in the nucleus of the eukarvotic cell.
- the target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA).
- a gene product e.g., a protein
- a non-coding sequence e.g., a regulatory polynucleotide or a junk DNA.
- PAM protospacer adjacent motif
- the precise sequence and length requirements for the PAM differ depending on the CRISPR enzyme used, but PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence) Examples of PAM sequences are given in the examples section below, and the skilled person will be able to identify further PAM sequences for use with a given CRISPR enzyme.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- the invention provides a method of modifying expression of a polynucleotide in a eukarvotic cell.
- the method comprises allowing a CRISPR complex to bind to the polynucleotide such that said binding results in increased or decreased expression of said polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- Similar considerations and conditions apply as above for methods of modifying a target polynucleotide. In tact, these sampling, cul taring and re-introduction options apply across the aspects of the present invention.
- the invention provides for methods of modifying a target polynucleotide in a eukaryotic cell, which may be in vivo, ex vivo or in vitro.
- the method comprises sampling a cell or population of cells from a human or non- human animal, and modifying the cell or cells. Culturing may occur at any stage ex vivo.
- the cell or cells may even be re-introduced into the non-human animal or plant. For re-introduced cells it is particularly preferred that the ceils are stem cells.
- the CRISPR complex may comprise a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence, wherein said guide sequence may be linked to a tracr mate sequence which in turn may hybridize to a tracr sequence.
- the invention relates to the engineering and optimization of systems, methods and compositions used for the control of gene expression involving sequence targeting, such as genome perturbation or gene-editing, that relate to the CRISPR-Cas system and components thereof.
- the Cas enzyme is Cas9.
- the CRISPR system is particularly suitable for editing nucleotide repeats, such a trinucleotide repeats or other nucleotide expansion elements. These repeats are a. DNA mutation responsible for causing many disorders. Many of these display neurological symptoms, so the use of CRISPR in brain and other central nervous system (CNS) tissues is of particular interest, but non-neurological symptoms are also seen and so delivery to and expression in other tissues is also useful.
- CRISPR central nervous system
- myotonic dystrophy is caused by expansion of nucleotide repeats (a trinucleotide for DM1 , but a tetranucleotide for DM2) but causes muscular dystrophy, cataracts, heart conduction defects, and myotonia, and so diverse target tissues are involved.
- nucleotide repeats a trinucleotide for DM1 , but a tetranucleotide for DM2
- the CRISPR-Cas9 system is a powerful tool for editing nucleotide repeat expansions which can occur in the genome. These repeats are a mutation in genomic DNA and they are responsible for causing many disorders e.g. see 'Human Nucleotide Expansion Disorders' (eds. Fry & Usdin, 2006) Nucleic Acids and Molecular Biology, Vol. 19 (ISBN 978-3-540-33336-4). Most of these disorders are neurodegenerative, but they can affect a variety of tissues.
- nucleotides that comprise the nucleotide expansion elements involved in diseases and disorders vary, but they are commonly trinucleotide repeats, usually involving CTG, CAG, CGG, CCG, GAA, or TTC. Longer repeats are also seen, such as a CCTG tetranucleotide, ATTCT and AGAAT pentanueleotides, GGGGCC hexanucleotides and CCCCGCCCCGCG and CGCGGGGCGGGG dodecanueleotides.
- the nature of the CRISPR system means that it is useful for editing all such nucleotide repeats.
- CRISPR editing of nucleotide repeats includes the excession of the repeat. It is preferred that the excession of the repeat results in the repair to the wildtype. In the presence of multiple repeats, multiple guides may be employed to target the multiple repeats.
- the repeats can occur within coding or within non-coding regions e.g. within an exon, a 5TJTR, a 3'UTR, a promoter element or an intron.
- the invention can be used regardless of the location of the repeat.
- Nucleotide repeat disorders and in particular trinucleotide repeat disorders and nucleotide expansion disorders, are thus preferred conditions to be treated. These are also exemplified herein.
- US Patent Publication No. 201 10016540 describes use of zinc finger nucleases to genetically modify cells, animals and proteins associated with trinucleotide repeat expansion disorders.
- Trinucleotide repeat expansion disorders are complex, progressive disorders that involve developmental neurobiology and often affect cognition as well as sensori-moior functions.
- nucleotide repeat expansion proteins are a diverse set of proteins associated with susceptibility for developing a nucleotide repeat expansion disorder, the presence of a nucleotide repeat expansion disorder, the severity of a nucleotide repeat expansion disorder or any combination thereof.
- Trinucleotide repeat expansion disorders are divided into two categories determined by the type of repeat. The most common repeat is the triplet C G, which, when present in the coding region of a gene, codes for the amino acid giutamine (Q).
- polyglutamine disorders comprise the following diseases: Huntington Disease HD); Spinobulbar Muscular Atrophy (SBMA); Spinocerebellar Ataxias (SCA types 1, 2, 3, 6, 7, and 17); and Dentatorubro-Pallidoluysian Atrophy (DRPLA).
- the remaining trinucleotide repeat expansion disorders either do not involve the CAG triplet or the CAG triplet is not in the coding region of the gene and are, therefore, referred to as the non-polyglutamine disorders.
- the non-polyglutamine disorders comprise Fragile X Syndrome (FRAXA); Fragile X-associated tremor/ataxia syndrome (FXTAS); Fragile XE Mental Retardation (FRAXE); FRAXF; Friedreich Ataxia (FRDA); Myotonic Dystrophy (DM), in particular type 1 (DM1) or the tetranucleotide variant for DM2; and Spinocerebellar Ataxias (SCA types 8, and 12).
- Other nucleotide expansion disorders include progressive myoclonus epilepsy (12-mer repeat), DM2 myotonic dystrophy (4-mer repeat element), C9orf72 (6-mer repeat element) and SCA type 10 (5-mer repeat element).
- the proteins associated with nucleotide repeat expansion disorders are typically selected based on an experimental association of the protein associated with a nucleotide repeat expansion disorder to a nucleotide repeat expansion disorder. For example, the production rate or circulating concentration of a protein associated with a nucleotide repeat expansion disorder may be elevated or depressed in a population having a nucleotide repeat expansion disorder relative to a population lacking the nucleotide repeat expansion disorder. Differences in protein levels may be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (EL1SA), and mass spectrometry.
- EL1SA enzyme linked immunosorbent assay
- the proteins associated with nucleotide repeat expansion disorders may be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q-PCR). Knowing the nucleotide repeat, CRISPR repair involving excision of the repeat, preferably to wildtype, may be excercised. In the same manner, the nucleotide repeat is considered a mutation. The mutation may be repaired by reintroduce on of the missing wildtype sequence into the mutant. In such a case a repair template may be used which allows for reintroduction of the missing wildtye sequence into the mutant.
- Such CRISPR repair may be used to repair any mutation.
- proteins associated with trinucleotide repeat expansion disorders include AR (androgen receptor), FMR1 (fragile X mental retardation 1 ), HTT (huntingtin), DMPK (dystrophia myotonica-protein kinase), FXN (frataxin), ATXN2 (ataxin 2), ATN1 (atrophin 1), FEN1 (flap structure-specific endonuclease 1 ), TNRC6A (trinucleotide repeat containing 6A), PABPN1 (poiy(A) binding protein, nuclear 1), JP1T3 (junctophilin 3), MED 15 (mediator complex subunit 15), ATXN1 (ataxin 1), ATXN3 (ataxin 3), TBP (TATA box binding protein), CACNA IA (calcium channel, voltage-dependent, P/Q type, alpha 1 A subunit), ATXN80S (ATX
- G protein guanine nucleotide binding protein
- beta polypeptide 2 ribosomal protein L14
- ATXN8 ataxin 8
- INSR insulin receptor
- TTR transthyretin
- EP400 EIA binding protein p400
- GIGYF2 GYF protein 2
- OGG1 8-oxoguanine DNA giycosylase
- STC1 sinanniocalcin 1
- CNDP1 camosine dipeptida.se 1 (metallopeptidase M20 family)
- C10or£2 chromosome 10 open reading frame 2
- MAML3 mastermind-like 3 Drosophila
- TYR tyrosinase (oculocutaneous albinism LA)
- EGR1 early growth response 1
- U G uracil-DNA giycosylase
- NUMBL numb homoiog (Drosophila) -like
- FABP2 fatty acid binding protein 2, intestinal
- EN2 engaging homeobox 2
- CRYGC crystallin, gamma C
- SRP14 signal recognition particle 14 kDa (homologous Alu RNA binding protein)
- CRYGB crystallin, gamma B
- PDCD1 programmeed cell death 1
- HOXA1 homeobox Al
- ATXN2L ataxin 2-iike
- PMS2 PMS2 postmeiotic segregation increased 2
- GLA galactosidase, alpha
- CBL Cas-Br- M (murine) ecotropic retroviral transforming sequence
- FTH1 ferritin, heavy polypeptide 1
- IL12RB2 interleukin 12 receptor, beta 2
- OTX2 orthodenticle liomeobox 2
- HOXA5 homeobox A5
- POLG2 polymerase (D A directed), gamma 2, accessor subunit
- DLX2 distal-less homeobox 2
- SIRPA signal-regulator ⁇ ' protein alpha
- OTX1 orthodenticle homeobox 1
- AHRR aryl-hydrocarbon receptor repressor
- MANF mesencephalic astrocyte- derived neurotrophic factor
- TMEM158 transmembrane protein 158 (gene/pseudogene)
- ENSG00000078687 GLA (galactosidase, alpha
- CBL C
- Nucleotide repeats vary in size and cars reside in coding or non-coding regions of the disease-associated genes. The skilled person will be able to recognize such repeats and whether such repeats are normal or aberrant. Each loci can be targeted using the CRISPR-Cas9 approach described in this application.
- An exemplary, abnormal expansion of a nucleotide repeat sequence to be targeted for CRISPR repair in EPMl is CCCCGCCCCGCG. Using the described CRISPR repair the repeat is excised from the affected sequence,
- An exemplary, abnormal expansion of a nucleotide repeat sequence to be targeted for CRISPR repair in C90RF72 is GGGGCC. Using the described CRISPR repair the repeat is excised from the affected sequence.
- An exemplary, abnormal expansion of a nucleotide repeat sequence to be targeted for CRISPR repair in DM2 is CCTG. Using the described CRISPR repair the repeat is excised from the affected sequence.
- An exemplary, abnormal expansion of a nucleotide repeat sequence to be targeted for CRISPR repair in OPMD is GCG/Ala. Using the described CRISPR repair the repeat is excised from the affected sequence.
- An exemplary, abnormal expansion of a nucleotide repeat sequence to be targeted for CRISPR repair in SCA10 is ATTCT. Using the described CRISPR repair the repeat is excised from the affected sequence.
- An exemplary, abnormal expansion of a nucleotide repeat sequence to be targeted for CRISPR repair in Fragile X, FXTAS is CGG. Using the described CRISPR repair the repeat is excised from the affected sequence.
- An exemplary, abnormal expansion of a nucleotide repeat sequence to be targeted for CRISPR repair in SCA12 is CAG. Using the described CRISPR repair the repeat is excised from the affected sequence.
- An exemplary, abnormal expansion of a nucleotide repeat sequence to be targeted for CRISPR repair in Friedreich Ataxia is GAA. Using the described CRISPR repair the repeat is excised from the affected sequence.
- An exemplary, abnormal expansion of a nucleotide repeat sequence to be targeted for CRISPR repair in SCAs 1-3, 6, 7, 17, DRPLA, HD, SBMA, HDL2 (SCAs 8, 12) is CAG/Polyglutamine. Using the described CRISPR repair the repeat is excised from the affected sequence,
- An exemplary, abnormal expansion of a. nucleotide repeat sequence to be targeted for CRISPR repair in SCA31 is TGGAA. Using the described CRISPR repair the repeat is excised from the affected sequence.
- An exemplary, abnormal expansion of a nucleotide repeat sequence to be targeted for CRISPR repair in SCAS, DM 1 is CTG. Using the described CRISPR repair the repeat is excised from the affected sequence,
- Preferred proteins associated with trinucleotide repeat expansion disorders include HTT (Huntingtin), AR (androgen receptor), FXN (frataxin), Atxn3 (ataxin), Atxnl (ataxin), Atxn2 (ataxin), Atxn7 (ataxin), Atx lO (ataxin), DMPK (dystrophia myotonica-protein kinase), Atnl (atrophia I), CBP (creb binding protein), VLDLR (very low density lipoprotein receptor), and any combination thereof.
- RNA interference offers therapeutic potential for this disorder by reducing the expression of HIT, the disease-causing gene of Huntington's disease (see, e.g., McBride et al, Molecular Therapy vol. 19 no. 12 Dec. 201 1 , pp. 2152-2162), and therefore Applicant postulates that it may be adapted to the CRISPR-Cas system.
- the CRISPR-Cas system may be generated using an algorithm to reduce the off-targeting potential of antisense sequences.
- the CRISPR-Cas sequences may target either a sequence in exon 52 of mouse, rhesus or human huntingtin (Htt) and expressed in a viral vector, such as AAV.
- Animals, including humans, may be injected with about three microinjections per hemisphere (six injections total): the first 1 mm rostral to the anterior commissure (12, ⁇ ) and the two remaining injections (12 ⁇ and 10 ⁇ , respectively) spaced 3 and 6 mm caudal to the first injection with l el2 vg/ml of AAV at a rate of about 1 ⁇ /minute, and the needle was left in place for an additional 5 minutes to allo the injectate to diffuse from the needle tip.
- DiFiglia et al. (P AS, October 23, 2007, vol. 104, no. 43, 17204- 17209) observed that single administration into the adult striatum of an siRNA targeting Htt can silence mutant Htt, attenuate neuronal pathology, and delay the abnormal behavioral phenotype observed in a rapid-onset, viral transgenic mouse model of HD, DiFiglia injected mice intrastriatally with 2 ⁇ of Cy3 -labeled cc-siRNA-Hit or unconjugated siR A-Hit at 10 ⁇ .
- a similar dosage of CRISPR Cas targeted to Htt may be contemplated for humans in the present invention, for example, about 5-10 ml of 10 ⁇ CRISPR Cas targeted to Htt may be injected intrastriatally.
- a CRISPR Cas targetd to HTT may be administered continuously (see, e.g., Yu et al., Cell 150, 895-908, August 31 , 2012). Yu et al. utilizes osmotic pumps delivering 0.25 ml/hr (Model 2004) to deliver 300 mg day of ss-siRNA or phosphate-buffered saline (PBS) (Sigma Aldrich) for 28 days, and pumps designed to deliver 0.5 ⁇ /hr (Model 2002) were used to deliver 75 mg/day of the positive control MOE ASO for 14 days.
- ss-siRNA or phosphate-buffered saline (PBS) Sigma Aldrich
- CRISPR Cas targeted to Htt were filled with ss-siRNA or MOE diluted in sterile PBS and then incubated at 37 C for 24 or 48 (Model 2004) hours prior to implantation. Mice were anesthetized with 2.5% isofluorane, and a midline incision was made at the base of the skull. Using stereotaxic guides, a cannula was implanted into the right lateral ventricle and secured with Loctiie adhesive. A catheter attached to an Alzet osmotic mini pump was attached to the cannula, and the pump was placed subcutaneously in the midscapular area. The incision was closed with 5,0 nylon sutures, A similar dosage of CRISPR Cas targeted to Htt may be contemplated for humans in the present invention, for example, about 500 to 1000 g day CRISPR Cas targeted to Htt may be administered.
- C9orf72 (chromosome 9 open reading frame 72) is a protein which in humans encodes a protein found in many regions of the brain, in the cytoplasm of neurons and in presynaptic terminals. Mutation(s) of the C9orf72 gene have been identified that contain a hexanucfeotide repeat expansion element of the six letter string of nucleotides GGGGCC. The mutations in C9orf72 are significant because it is the first pathogenic mechanism identified to be a genetic link between familial frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS).
- FDD familial frontotemporal dementia
- ALS amyotrophic lateral sclerosis
- a method of gene therapy for the treatment of a subject having a mutation in the CFTR gene comprises administering a therapeutically effective amount of a CRISPR-Cas gene therapy particle, optionally via a biocompatible pharmaceutical carrier, to the cells of a. subject.
- the target DMA comprises the mutation deltaF508.
- the mutation is repaired to the wildtype.
- the mutation is a deletion of the three nucleotides that comprise the codon for phenylalanine (F) at position 508. Accordingly, repair in this instance requires reintroduction of the missing codon into the mutant.
- an adenovirus/AAV vector system is introduced into the host cell, cells or patient.
- the system comprises a Cas9 (or Cas9 nickase) and the guide R A along with a adenovirus/AAV vector system comprising the homology repair template containing the F508 residue.
- This may be introduced into the subject via one of the methods of delivery discussed earlier.
- the CRISPR-Cas system may be guided by the CFTRdelta 508 chimeric guide RNA. It targets a specific site of the CFTR genomic locus to be nicked or cleaved.
- the repair template is inserted into the cleavage site via homologous recombination correcting the deletion that results in cystic fibrosis or causes cystic fibrosis related symptoms.
- This strategy to direct delivery and provide systemic introduction of CRISPR systems with appropriate guide RN As can be employed to target genetic mutations to edit or otherwise manipulate genes that cause metabolic, liver, kidney and protein diseases and disorders.
- One aspect is an AAV vector engineered for in vivo CRISPR-Cas9 -mediated genome editing.
- Cas9 e.g. SpCas9
- Cas9 containing an N-terminal and C-ierminai nuclear localization domain as well as an N-terminal Flag may be cloned into an AAV shuttle plasmid. Because of possible size constraints of the Cas9 cDNA and the desire to obtain low levels of Cas9 nuclease expression in vivo, the use of a promoter may be omitted. Instead, expression of the Cas9 may be driven by the basal transcriptional activity of the AAV inverted terminal repeat (iTR) sequences.
- iTR inverted terminal repeat
- the guide RNA (gcRNA) and the transactivating R A (tracrRNA) may be cloned into a different AAV shuttle plasmid and placed under the regulation of two different RNA polymerase type-XXI promoters: the U6 and HI promoters respectively.
- a reporter gene e.g. EGFP
- the non-coding CRISPR components may be expressed as an array of chimeras (sgRNAs) driven by the U6 promoter.
- sgRNAs chimeras
- Such AAV plasmids may be used, e.g., to target ATXN 1 plasmids that cany either 30 CAG nucleotide repeats (normal range) or 80 CAG repeats (disease range).
- Vectors may use the Cas9 nuclease containing an N-terminal nuclear localization domain as well as an N-terminal HA-tag, cloned into an AAV shuttle plasmid and placed under the control of a CMV promoter.
- the non-coding RNA elements required for Cas9-mediat.ed gene editing are also contained within the same AAV packaging genome. This allows for the co- delivery of a second AAV vector that may serve as a transduction marker or a template donor whenever HR is desired.
- Successful vector deliver ⁇ ' may be indicated by expression of a marker (e.g. EGFP).
- AAV vectors may be used for delivery of CRISPR-Cas9 system into mammalian tissue.
- Guide sequences flanking the repeat may be removed using the CRTSPR-Cas9 system.
- Guide sequences may be designed to flank the nucleotide repeat region in the 3 ' untranslated region (3'UTR).
- Successful editing of the repeat may be confirmed when both flanking guide non-coding RNAs are simultaneously expressed.
- Sequencing of affected sequence may also be used for confirmation of successful repair. Upon proper excision of the abnormal expansion, preferably to wildtype, the sequence is repaired.
- the self inactivating CRISPR-Cas system includes additional RNA (i.e., guide RNA) that targets the coding sequence for the CRISPR enzyme itself or that targets one or more non-coding guide target sequences complementary to unique sequences present in one or more of the following:
- RNA can be delivered via a vector, e.g., a separate vector or the same vector that is encoding the CRISPR complex.
- the CRISPR RNA that targets Cas expression can foe administered sequentially or simultaneously.
- the CRISPR RNA that targets Cas expression is to be delivered after the CRISPR RNA that is intended for e.g. gene editing or gene engineering.
- This period may be a period of minutes (e.g. 5 minutes, 10 minutes, 20 minutes, 30 minutes, 45 minutes, 60 minutes).
- This period may be a period of hours (e.g. 2 hours, 4 hours, 6 hours, 8 hours, 12 hours, 24 hours).
- This period may be a period of days (e.g.
- the Cas enzyme associates with a first gRNA/chiRNA capable of hybridizing to a first target, such as a genomic locus or loci of interest and undertakes the function(s) desired of the CRISPR -Cas system (e.g., gene engineering); and subsequently the Cas enzyme may then associate with the second gRNA/chiRNA capable of hybridizing to the sequence comprising at least part of the Cas or CRISPR cassette.
- a first target such as a genomic locus or loci of interest
- the Cas enzyme may then associate with the second gRNA/chiRNA capable of hybridizing to the sequence comprising at least part of the Cas or CRISPR cassette.
- gRNA/chiRNA targets the sequences encoding expression of the Cas protein
- the enzyme becomes impeded and the system becomes self inactivating.
- CRISPR RNA that targets Cas expression applied via, for example liposome, lipofection, nanoparticles, microvesicies as explained herein may be administered sequentially or simultaneously.
- seif- inactivation may be used for inactivation of one or more guide RNA used to target one or more targets.
- a single gRNA is provided that is capable of hybridization to a sequence downstream of a CRISPR enzyme start codon, whereby after a period of time there is a loss of the CRISPR enzyme expression.
- one or more gRNA(s) are provided that are capable of hybridization to one or more coding or non-coding regions of the polynucleotide encoding the CRISPR-Cas system, whereby after a period of time there is a inactivation of one or more, or in some cases all, of the CRISPR-Cas system.
- the cell may comprise a plurality of CRISPR-Cas complexes, wherein a first subset of CRISPR complexes comprise a first chiRNA capable of targeting a genomic locus or loci to be edited, and a second subset of CRISPR complexes comprise at least one second chiRNA capable of targeting the polynucleotide encoding the CRISPR-Cas system, wherein the first subset of CRISPR-Cas complexes mediate editing of the targeted genomic locus or loci and the second subset of CRISPR. complexes eventually inactivate the CRISPR-Cas system, thereby inactivating further CRISPR-Cas expression in the cell.
- the invention provides a CRISPR-Cas system comprising one or more vectors for delivery to a eukaryotic cell, wherein the vector(s) encode(s): (i) a CRISPR enzyme; (ii) a first, guide R.NA capable of hybridizing to a target sequence in the cell; (iii) a second guide RNA capable of hybridizing to one or more target sequence(s) in the vector which encodes the CRISPR enzyme; (iv) at least one tracr mate sequence; and (v) at least one tracr sequence,
- the first and second complexes can use the same tracr and tracr mate, thus differeing only by the guide sequence, wherein, when expressed within the cell: the first guide RNA directs sequence- specific binding of a first CRISPR complex to the target sequence in the cell; the second guide RNA directs sequence-specific binding of a second CRISPR complex to the target sequence in the vector which encodes the CRISPR enzyme; the CRISPR complexes
- the guide sequence(s) can be part of a chiRNA sequence which provides the guide, tracr mate and tracr sequences within a single RNA, such thai the system can encode (i) a CRISPR enzyme; (ii) a first chiRNA comprising a sequence capable of hybridizing to a first target sequence in the cell, a first, tracr mate sequence, and a first tracr sequence; (iii) a second guide RNA capable of hybridizing to the vector which encodes the CRISPR enzyme, a second tracr mate sequence, and a second tracr sequence.
- the enzyme can include one or more NLS, etc.
- the various coding sequences can be included on a single vector or on multiple vectors. For instance, it is possible to encode the enzyme on one vector and the various RNA sequences on another vector, or to encode the enzyme and one chiRNA on one vector, and the remaining chiRNA on another vector, or any other permutation. In general, a system using a total of one or two different vectors is preferred.
- the first guide RNA can target any target sequence of interest within a genome, as described elsewhere herein.
- the second guide RNA targets a sequence within the vector which encodes the CRISPR Cas9 enzyme, and thereby inactivates the enzyme's expression from that vector.
- the target sequence in the vector must be capable of inactivating expression.
- Suitable target sequences can be, for instance, near to or within the translational start codon for the Cas9 coding sequence, in a non-coding sequence in the promoter driving expression of the non-coding RNA elements, within the promoter driving expression of the Cas9 gene, within lOObp of the ATG translational start codon in the Cas9 coding sequence, and/or within the inverted terminal repeat (iTR) of a viral delivery vector, e.g., in the AAV genome.
- iTR inverted terminal repeat
- An alternative target sequence for the "self-inactivating" guide RNA would aim to edit/inactivate regulatory regions/sequences needed for the expression of the CRISPR-Cas 9 system or for the stability of the vector. For instance, if the promoter for the Cas9 coding sequence is disrupted then transcription can be inhibited or prevented. Similarly, if a vector includes sequences for replication, maintenance or stability then it is possible to target these. For instance, in a AAV vector a useful target sequence is within the iTR. Other useful sequences to target can be promoter sequences, polyadenlyation sites, etc.
- the "self-inactivating" guide RNAs that target both promoters simultaneously will result in the excision of the intervening nucleotides from within the CRISPR-Cas expression construct, effectively leading to its complete inactivation.
- excision of the intervening nucleotides will result where the guide RNAs target both ITRs, or targets two or more other CRISPR-Cas components simultaneously.
- Self- inactivation as explained herein is applicable, in general, with CRISPR- Cas9 systems in order to provide regulation of the CRISPR-Cas9.
- self-inactivation as explained herein may be applied to the CRISPR repair of mutations, for example expansion disorders, as explained herein.
- CRISPR repair is only transiently active.
- Addition of non-targeting nucleotides to the 5' end (e.g. 1 - 10 nucleotides, preferably 1 - 5 nucleotides) of the "self-inactivating" guide RNA can be used to delay its processing and/or modify its efficiency as a means of ensuring editing at the targeted genomic locus prior to CRISP -Cas9 shutdown.
- plasmids that co- express one or more sgRNA targeting genomic sequences of interest may be established with "self-inactivating" sgRNAs that target an SpCas9 sequence at or near the engineered ATG start site (e.g. within 5 nucleotides, within 15 nucleotides, within 30 nucleotides, within 50 nucleotides, within 100 nucleotides).
- a regulatory sequence in the U6 promoter region can also be targeted with an sgRNA.
- the U6-driven sgRNAs may be designed in an array format such that multiple sgRNA sequences can be simultaneously released.
- sgRNAs When first delivered into target tissue/cells (left cell) sgRNAs begin to accumulate while Cas9 levels rise in the nucleus. Cas9 complexes with all of the sgRNAs to mediate genome editing and self- inactivation of the CRISPR-Cas9 plasmids.
- One aspect of a self- inactivating CRISPR-Cas9 system is expression of singly or in tan dam array format from 1 up to 4 or more different guide sequences; e.g. up to about 20 or about 30 guides sequences. Each individual self inactivating guide sequence may target a different target. Such may be processed from, e.g. one chimeric po!3 transcript. Po33 promoters such as U6 or HI promoters may be used. Pol2 promoters such as those mentioned throughout herein. Inverted terminal repeat (iTR) sequences may flank the Pol3 promoter - sgRNA(s)-Pol2 promoter- Cas9.
- iTR Inverted terminal repeat
- One aspect of a chimeric, tandem array transcript is that one or more guide(s) edit the one or more target(s) while one or more self inactivating guides inactivate the CRISPR'Cas9 system.
- the described CRISPR-Cas9 system for repairing expansion disorders may be directly combined with the self-inactivating CRISPR-Cas9 system described herein.
- Such a system may, for example, have two guides directed to the target region for repair as well as at least a third guide directed to self-inactivation of the CRISPR-Cas9.
- Vector delivery e.g., plasmid, viral delivery:
- the CRISPR enzyme for instance a Cas9, and/or any of the present RNAs, for instance a guide RNA, can be delivered using any suitable vector, e.g., plasmid or viral vectors, such as adeno associated virus (AAV), lentivirus, adenovirus or other viral vector types, or combinations thereof.
- Cas9 and one or more guide RNAs can be packaged into one or more vectors, e.g., plasmid or viral vectors.
- the vector e.g., plasmid or viral vector is delivered to the tissue of interest by, for example, an intramuscular injection, while other times the delivery is via intravenous, transdermal, intranasal, oral, mucosal, or other delivery methods. Such delivery may be either via a single dose, or multiple doses.
- the actual dosage to be delivered herein may vary greatly depending upon a variety of factors, such as the vector choice, the target cell, organism, or tissue, the general condition of the subject to be treated, the degree of transformation/modification sought, the administration route, the administration mode, the type of transformation/modification sought, etc.
- Such a dosage may further contain, for example, a carrier (water, saline, ethanol, glycerol, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, sesame oil, etc.), a diluent, a pharmaceutically-acceptable carrier (e.g., phosphate-buffered saline), a pharmaceutically- acceptable excipient, and/or other compounds known in the art.
- a carrier water, saline, ethanol, glycerol, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, sesame oil, etc.
- a pharmaceutically-acceptable carrier e.g., phosphate-buffered saline
- a pharmaceutically- acceptable excipient e.g., phosphate-buffered saline
- the dosage may further contain one or more pharmaceutically acceptable salts such as, for example, a mineral acid salt such as a hydrochloride, a hydrobromide, a phosphate, a sulfate, etc.; and the salts of organic acids such as acetates, propionates, malonates, benzoates, etc.
- auxiliary substances such as wetting or emulsifying agents, pH buffering substances, gels or gelling materials, flavorings, colorants, microspheres, polymers, suspension agents, etc. may also be present herein.
- one or more other conventional pharmaceutical ingredients such as preservatives, humectants, suspending agents, surfactants, antioxidants, anticaking agents, fillers, chelating agents, coating agents, chemical stabilizers, etc. may also be present, especially if the dosage form is a reconstitutable form.
- Suitable exemplary ingredients include macrocrystalline cellulose, carboxymethyf cellulose sodium, polysorbate 80, phenyletbyl alcohol, chiorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, the parabens, ethyl vanillin, glycerin, phenol, parachlorophenol, gelatin, albumin and a combination thereof
- macrocrystalline cellulose carboxymethyf cellulose sodium, polysorbate 80, phenyletbyl alcohol, chiorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, the parabens, ethyl vanillin, glycerin, phenol, parachlorophenol, gelatin, albumin and a combination thereof
- the deliver ⁇ ' is via an adenovirus, which may be at a single booster dose containing at least 1 x 10 5 particles (also referred to as particle units, pu) of adenoviral vector.
- the dose comprises no more than about 1 x 10 i4 particles, preferably no more than about 1 x 10 ! ' particles, even more preferably no more than about 1 x 10 32 particles, even more preferably no more than about 1 x !0 ! ! particles, and most preferably no more than about 1 x 10 J 0 particles (e.g., no more than about 1 x 10 9 articles).
- the dose may contain a single dose of adenoviral vector with, for example, about 1 x 10 6 particle units (pu), about 2 x 10" pu, about 4 x iO 6 pu, about 1 x 10' pu, about 2 x 10 7 pu, about 4 x 10' pu, about 1 x I0 8 pu, about 2 x 10 8 pu, about 4 x 10 s pu, about 1 x 10 9 pu, about 2 x 10 9 pu, about 4 x 10 9 pu, about 1 x 10 1J pu, about 2 x 10 50 pu, about 4 x 10 i pu, about 1 x 10 n pu, about 2 x 10' 1 pu, about 4 x 10 ! !
- adenoviral vector about 1 x 10 i 2 pu, about 2 x 10 ! ? pu, or about 4 x 10 !2 pu of adenoviral vector.
- adenoviral vectors in U.S. Patent No. 8,454,972 B2 to Nabel, et. al., granted on June 4, 2013; incorporated by reference herein, and the dosages at col 29, lines 36-58 thereof.
- the adenovirus is delivered via multiple doses.
- the deliver ⁇ ' is via an AAV.
- a therapeutically effective dosage for in vivo delivery of the A AV to a human is believed to be in the range of from about 20 to about 50 ml of saline solution containing from about 1 x 10'° to about 1 x 10 ! 0 functional AAWml solution. The dosage may be adjusted to balance the therapeutic benefit against any side effects.
- the AAV dose is generally in the range of concentrations of from about 1 x 10 5 to 1 x 10 50 genomes AAV, from about 1 x 10 s to 1 x 10 20 genomes AAV, from about 1 x 10 llJ to about 1 x IO 56 genomes, or about 1 x 10 H to about 1 x 10 i6 genomes AAV.
- a human dosage may be about 1 x I O 33 genomes AAV.
- concentrations may be delivered in from about 0.001 ml to about 100 ml, about 0.05 to about 50 ml, or about 10 to about 25 ml of a carrier solution.
- Other effective dosages can be readily established by one of ordinary skill in the art through routine trials establishing dose response curves. See, for example, U.S. Patent No. 8,404,658 B2 to Hajjar, et al., granted on March 26, 2013, at col. 27, lines 45-60.
- the delivery is via a plasmid.
- the dosage should be a sufficient amount of plasmid to elicit a response.
- suitable quantities of plasmid DNA in plasmid compositions can be from about 0.1 to about 2 mg, or from about 1 ⁇ tg to about 10 iig per 70 kg individual.
- Piasmids of the invention will generally comprise (i) a promoter; (ii) a sequence encoding a CRISPR enzyme, operably linked to said promoter; (iii) a selectable marker; (iv) an origin of replication; and (v) a transcription terminator downstream of and operably linked to (ii).
- the plasmid can also encode the RNA components of a CRISPR complex, but one or more of these may instead be encoded on a different vector.
- the doses herein are based on an average 70 kg individual.
- the frequency of administration is within the ambit of the medical or veterinary practitioner (e.g., physician, veterinarian), or scientist skilled in the art. It is also noted that mice used in experiments are typically about 20g and from mice experiments one can scale up to a 70 kg individual.
- RNA molecules of the invention are delivered in liposome or lipofectin formulations and the like and can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Pat. Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incorporated by reference. Delivery systems aimed specifically at the enhanced and improved delivery of siRNA into mammalian cells have been developed, (see, for example, Shen et al FEBS Let. 2003, 539: 11 1-114; Xia et al., Nat. Biotech.
- siRNA has recently been successfully used for inhibition of gene expression in primates (see for example. Tolentino et al, Retina 24(4): 660 which may also be applied to the present invention,
- R A delivery is a useful method of in vivo delivery. It is possible to deliver Cas9 and gRNA (and, for instance, HR repair template) into cells using liposomes or nanoparticles.
- delivery of the CRISPR enzyme, such as a Cas9 and/or delivery of the RNAs of the invention may be in RNA form and via microvesicles, liposomes or nanoparticles.
- Cas9 mRNA and gRNA can be packaged into liposomal particles for delivery in vivo.
- Liposomal transfection reagents such as lipofectamine from Life Technologies and other reagents on the market can effectively deliver RNA molecules into the liver.
- Means of delivery of RNA also preferred include delivery of RNA via nanoparticles (Cho, S., Goldberg, M., Son, 8., Xu, Q,, Yang, F., Mei, Y., Bogatyrev, S., Langer, R. and Anderson, D., Lipid-!ikc nanoparticles for small interfering RNA delivery to endothelial cells, Advanced Functional Materials, 19: 31 12-31 18, 2010) or exosomes (Schroeder, A., Levins, C., Cortez, C, Langer, R., and Anderson, D., Lipid-based nanotherapeutics for siRNA delivery, Journal of Internal Medicine, 267: 9-21 , 2010, PMTD: 2.0059641).
- exosomes have been shown to be particularly useful in delivery siRNA, a system with some parallels to the CRISPR system.
- El-Andaloussi S, et al. (“Exosome -mediated delivery of siRNA in vitro and in vivo.” Nat Protoc. 2012 Dec;7(I2):21 12-26. doi: 10.1038/nprot.2012.131 . Epub 2012 Nov 15.) describe how exosomes are promising tools for drug delivery across different biological barriers and can be harnessed for delivery of siRNA in vitro and in vivo.
- Their approach is to generate targeted exosomes through transfection of an expression vector, comprising an exosomal protein fused with a peptide iigand.
- RNA is loaded into the exosomes.
- Delivery or administration according to the invention can be performed with exosomes, in particular but not limited to the brain.
- Vitamin E a-tocopheroi
- CRISPR Cas may be conjugated with CRISPR Cas and delivered to the brain along with high density lipoprotein (HDL), for example in a similar manner as was done by Uno et al. (HUMAN GENE THERAPY 22:711-719 (June 201 1 )) for delivering short-interfering RNA (siRNA) to the brain.
- HDL high density lipoprotein
- Mice were infused via Osmotic minipumps (model 1007D; Alzet, Cupertino, CA) filled with phosphate-buffered saline (PBS) or free TocsiBACE or Toc-siBACE/HDL and connected with Brain Infusion Kit 3 (Alzet).
- PBS phosphate-buffered saline
- a brain- infusion cannula was placed about 0.5mm posterior to the bregma at midline for infusion into the dorsal third ventricle.
- Uno et al. found that as little as 3 nmol of Toc-siRNA with HDL could induce a target reduction in comparable degree by the same ICV infusion method.
- a similar dosage of CRISPR Cas conjugated to a-tocopherol and co-administered with HDL targeted to the brain may be contemplated for humans in the present invention, for example, about 3 nmol to about 3 ⁇ of CRISPR Cas targeted to the brain may be contemplated.
- Zou et al. (HUMAN GENE THERAPY 22:465-475 (April 201 1)) describes a method of lentiviral-mediated delivery of short-hairpin RNAs targeting PKCy for in vivo gene silencing in the spinal cord of rats.
- Zou et al administered about 10 ⁇ of a recombinant lentivirus having a titer of 1 x 10 9 transducing units (TU)/ml by an intrathecal catheter.
- a similar dosage of CRISPR Cas expressed in a lentivirai vector targeted to the brain may be contemplated for humans in the present invention, for example, about 10-50 ml of CRISPR.
- Cas targeted to the brain in a lentivirus having a titer of 1 x 10 9 transducing units (TU)/ml may be contemplated.
- material can be delivered intrastriatally e.g. by injection. Injection can be performed stereotactically via a craniotomy.
- Enhancing NHEJ or HR efficiency is also helpful for delivery. It is preferred that NHEJ efficiency is enhanced by co-expressing end-processing enzymes such as Trex2 (Dumitrache et al. Genetics. 2011 August; 188(4): 787-797). It is preferred that HR efficiency is increased by transiently inhibiting NHEJ machineries such as Ku70 and Ku86. HR efficiency can also be increased by co-expressing prokarvotic or eukaryotic homologous recombination enzymes such as RecBCD, RecA.
- Ways to package Cas9 coding nucleic acid molecules, e.g., DNA, into vectors, e.g., viral vectors, to mediate genome modification in vivo include: To achieve NHEJ-mediated gene knockout:
- Promoter-gRNA(N)-terminator up to size limit of vector
- Vector 1 containing one expression cassette for driving the expression of Cas9 Promoter-Cas9 coding nucleic acid molecule-terminator
- Vector 2 containing one more expression cassettes for driving the expression of one or more guideR
- Promoter-gRNA(N)-terminator up to size limit of vector
- an additional vector is used to deliver a homology-direct repair template.
- the promoter used to drive Cas9 coding nucleic acid molecule expression can include:
- AAV TTR can serve as a promoter: this is advantageous for eliminating the need for an additional promoter element (which can take up space in the vector).
- the additional space freed up can be used to drive the expression of additional elements (gRNA, etc.).
- 1TR activity is relatively weaker, so can be used to reduce potential toxicity due to over expression of Cas9.
- promoters CMV, CAG, CBh, PGK, SV40, Ferritin heavy or light chains, etc.
- promoters For brain or other CNS expression, can use promoters: Synapsinl for all neurons, CaMKItalpha for excitatory neurons, GAD67 or GAD65 or VGAT for GABAergic neurons, etc.
- Albumin promoter For liver expression, can use Albumin promoter.
- ICAM ICAM
- hematopoietic ceils can use IFNbeta or CD45.
- the promoter used to drive guide RNA can include: Pol 111 promoters such as U6 or HI
- AAV Adeno associated virus
- Cas9 and one or more guide RNA can be delivered using adeno associated virus (AAV), lentivirus, adenoviras or other plasmid or viral vector types, in particular, using formulations and doses from, for example, US Patents Nos. 8,454,972 (formulations, doses for adenoviras), 8,404,658 (formulations, doses for AAV) and 5,846,946 (formulations, doses for D A plasmids) and from clinical trials and publications regarding the clinical trials involving lentivirus, AAV and adenovirus.
- AAV the route of administration, formulation and dose can be as in US Patent No.
- the route of administration, formulation and dose can be as in US Patent No. 8,404,658 and as in clinical trials involving adenovirus.
- the route of administration, formulation and dose can be as in US Patent No 5,846,946 and as in clinical studies involving plasmids. Doses may be based on or extrapolated to an average 70 kg individual (e.g. a male adult human), and can be adjusted for patients, subjects, mammals of different weight and species.
- Frequency of administration is within the ambit of the medical or veterinary practitioner (e.g., physician, veterinarian), depending on usual factors including the age, sex, general health, other conditions of the patient or subject and the particular condition or symptoms being addressed.
- the viral vectors can be injected into the tissue of interest.
- the expression of Cas9 can be driven by a cell-type specific promoter.
- liver-specific expression might use the Albumin promoter and neuron- specific expression (e.g. for targeting CNS disorders) might use the Synapsin I promoter,
- AAV In terms of in vivo delivery, AAV is advantageous over other viral vectors for a couple of reasons:
- AAV has a packaging limit of 4.5 or 4.75 Kb. This means that Cas9 as well as a promoter and transcription terminator have to be all fit into the same viral vector. Constructs larger than 4.5 or 4,75 Kb will lead to significantly reduced vims production. SpCas9 is quite large, the gene itself is over 4, 1 Kb, which makes it difficult for packing into AAV, Therefore embodiments of the in vention include utilizing homoiogs of Cas9 that are shorter. For example:
- the AAV can be AAVl, AAV2, AAV5 or any combination thereof.
- AAV8 is useful for delivery to the liver. The herein promoters and vectors are preferred individually.
- a tabulation of certain AAV serotypes as to these ceils is as follows:
- Lenti virus [0191] Lentiviruses are complex retroviruses that have the ability to infect and express their genes in both mitotic and post-mitotic cells.
- the most commonly known lentivirus is the human immunodeficiency virus (HIV), which uses the envelope glycoproteins of other viruses to target a broad range of cell types.
- HIV human immunodeficiency virus
- lentivirai transfer plasmid pCasESl O
- packaging plasmids 5 fig of pMD2.G (VSV-g pseudotype), and 7.5ug of psPAX2 (gag/pol/rev/tat).
- Transfection was done in 4mL OptiMEM with a cationic lipid delivery agent (50uL Lipofectamine 2000 and lOOul Plus reagent). After 6 hours, the media was changed to antibiotic-free DMEM with 10% fetal bovine serum. These methods use serum during cell culture, but serum-free methods are preferred.
- Lentivirus may be purified as follows. Viral superaatants were harvested after 48 hours. Superaatants were first cleared of debris and filtered through a 0.45um low protein binding (PVDF) filter. They were then spun in a ultracentrituge for 2 hours at 24,000 rpm. Viral pellets were resuspended in 50ui of DMEM overnight at 4C. They were then aliquotted and immediately frozen at -80°C.
- PVDF 0.45um low protein binding
- minimal non-primate lentivirai vectors based on the equine infectious anemia virus are also contemplated, especially for ocular gene therapy (see, e.g., Balagaan, J Gene Med 2006; 8: 275 - 285).
- RetinoStat® an equine infectious anemia virus-based lentivirai gene therapy vector that expresses angiostatic proteins endostatm and angiostatin that is delivered via a subretmal injection for the treatment of the web form of age-related macular degeneration is also contemplated (see, e.g., Binley et al., HUMAN GENE THERAPY 23 :980-991 (September 2012)) and this vector may be modified for the CRISPR-Cas system of the present invention.
- self-inactivating lentivirai vectors with an siRNA targeting a common exon shared by HIV tat/rev, a nucleolar- localizing TAR decoy, and an anti-CCR5- specific hammerhead ribozyme may be used/and or adapted to the CRISPR-Cas system of the present invention.
- a minimum of 2.5 x 10° CD34+ cells per kilogram patient weight may be collected and prestimulated for 16 to 20 hours in X-VPVO 15 medium (Lonza) containing 2 ⁇ /L-glutaniine, stem cell factor (100 ng ' ml), Flt-3 ligand (Flt-3L) (100 ng/ml), and thrombopoietin (10 ng/mi) (CellGenix) at a density of 2 x 10° cells/ml.
- Prestimulated cells may be transduced with lentiviral at a multiplicity of infection of 5 for 16 to 24 hours in 75-em tissue culture flasks coated with fibronectin (25 mg/crrr) (RetroNeetin,Takara Bio Inc.).
- Lentiviral vectors have been disclosed as in the treatment for Parkinson's Disease, see, e.g., US Patent Publication No. 20120295960 and US Patent Nos. 7303910 and 7351585. Lentiviral vectors have also been disclosed for the treatment of ocular diseases, see e.g., US Patent Publication Nos. 20060281180, 20090007284, US20110117189; US20090017543; U82007GG54961, US20100317109. Lentiviral vectors have also been disclosed for delivery to the brain, see, e.g., US Patent Publication Nos. US20110293571; US20110293571 , US20040013648, US20070025970, US200901 ⁇ ⁇ 106 and US Patent No. US7259015.
- RNA delivery The CRISPR enzyme, for instance a Cas9, and/or any of the present RNAs, for instance a guide RNA, can also be delivered in the form of RNA.
- Cas9 mRNA can be generated using in vitro transcription.
- Cas9 mRNA can be synthesized using a PGR.
- the cassette can be used for transcription by T7 polymerase.
- Guide RNAs can also be transcribed using in vitro transcription from a. cassette containing T7 promoter-GG- guide RNA sequence.
- the CRISPR enzyme-coding sequence and/or the guide RNA can be modified to include one or more modified nucleoside e.g. using pseudo-U or 5-Mefhyl-C.
- mRNA delivery methods are especially promising for liver delivery currently.
- RNAi or antisense can be adapted for delivery of RNA for implementing the present invention. References below to RN Ai etc. should be read accordingly.
- CRISPR enzyme mRNA and guide RNA may be delivered simultaneously using nanoparticles or lipid envelopes.
- nanoparticles based on self assembling bioadhesive polymers are contemplated, which may be applied to oral delivery of peptides, intravenous delivery of peptides and nasal delivery of peptides, ail to the brain.
- Other embodiments, such as oral absorption and ocular deliver)' of hydrophobic drugs are also contemplated.
- the molecular envelope technology involves an engineered polymer envelope which is protected and delivered to the site of the disease (see, e.g., Mazza, M. et al. ACSNano, 2013. 7(2): 1016-1026; Siew, A., et al. Mol Pharm, 2012.
- nanoparticles that can deliver RNA to a cancer cell to stop tumor growth developed by Dan Anderson's lab at MIT may be used/and or adapted to the CRISPR Cas system of the present invention.
- the Anderson lab developed fully automated, combinatorial systems for the synthesis, purification, characterization, and formulation of new biomaterials and nanoformuiations. See, e.g., Alabi et al., Proc Natl Acad Sci U S A. 2013 Aug 6;1 10(32): 12881 -6; Zhang et al., Adv Mater. 2013 Sep 6;25(33):464.1 -5; Jiang et al., Nano Lett.
- US patent application 201 10293703 relates to lipidoid compounds are also particularly useful in the administration of polynucleotides, which may be applied to deliver the CRISPR Cas system of the present invention.
- the aminoalcohol lipidoid compounds are combined with an agent to be delivered to a cell or a subject to form, microparticies, nanoparticles, liposomes, or micelles.
- the agent to be delivered by the particles, liposomes, or micelles may be in the form of a gas, liquid, or solid, and the agent may be a polynucleotide, protein, peptide, or small molecule.
- the minoalcohol lipidoid compounds may be combined with other aminoalcohol lipidoid compounds, polymers (synthetic or natural), surfactants, cholesterol, carbohydrates, proteins, lipids, etc. to form the particles. These particles may then optionally be combined with a pharmaceutical excipient to form a pharmaceutical composition.
- US Patent Publication No. 201 10293703 also provides methods of preparing the aminoalcohol lipidoid compounds.
- One or more equivalents of an amine are allowed to react with one or more equivalents of an epoxide-terminated compound under suitable conditions to form an aminoalcohol lipidoid compound of the present invention.
- all the amino groups of the amine are fully reacted with the epoxide-terminated compound to form tertiary amines.
- ail the amino groups of the amine are not fully reacted with the epoxide-terminated compound to form tertiary amines thereby resulting in primary or secondary amines in the aminoalcohol lipidoid compound.
- a diamine or polyamine may include one, two, three, or four epoxide-derived compound tails off the various amino moieties of the molecule resulting in primary, secondary, and tertiary amines. In certain embodiments, all the amino groups are not fully functionalized. In certain embodiments, two of the same types of epoxide-terminated compounds are used. In other embodiments, two or more different epoxide- terminated compounds are used.
- the synthesis of the aminoalcohol lipidoid compounds is performed with or without solvent, and the synthesis may be performed at higher temperatures ranging from 30-100 °C, preferably at approximately 50-90 °C.
- the prepared aminoalcohol lipidoid compounds may be optionally purified.
- the mixture of aminoalcohol lipidoid compounds may be purified to yield an aminoalcohol lipidoid compound with a particular number of epoxide-derived compound tails. Or the mixture may be purified to yield a particular stereo- or regioisomer.
- the aminoalcohol lipidoid compounds may also be alkylated using an alky] halide (e.g., methyl iodide) or other alkylating agent, and/or they may be acylated.
- US Patent Publication No. 201 10293703 also provides libraries of aminoalcohol lipidoid compounds prepared by the inventive methods. These aminoalcohol lipidoid compounds may be prepared and/or screened using high-throughput techniques involving liquid handlers, robots, microtiter plates, computers, etc. In certain embodiments, the aminoalcohol lipidoid compounds are screened for their ability to transfect polynucleotides or other agents (e.g., proteins, peptides, small molecules) into the cell.
- US Patent Publication No, 20130302401 relates to a class of poly(beta-amino alcohols) (PBAAs) has been prepared using combinatorial polymerization.
- PBAAs poly(beta-amino alcohols)
- the inventive PBAAs may be used in biotechnology and biomedical applications as coatings (such as coatings of films or multilayer films for medical devices or implants), additives, materials, excipients, non- biofouling agents, micropatterning agents, and cellular encapsulation agents.
- coatings such as coatings of films or multilayer films for medical devices or implants
- additives materials, excipients, non- biofouling agents, micropatterning agents, and cellular encapsulation agents.
- these PBAAs When used as surface coatings, these elicited different levels of inflammation, both in vitro and in vivo, depending on their chemical structures.
- the large chemical diversity of this class of materials allowed us to identify polymer coatings that inhibit macrophage activation in vitro.
- these coatings reduce the recruitment of inflammatory cells, and reduce fibrosis, following the subcutaneous implantation of carboxylated polystyrene microparticles.
- polymers may be used to form polyelectrolyte complex capsules for cell encapsulation.
- the invention may also have many other biological applications such as antimicrobial coatings, DNA or siRNA delivery, and stem cell tissue engineering.
- US Patent Publication No. 20130302401 may ⁇ be applied to the CRISPR Cas system of the present invention.
- lipid nanoparticies are contemplated.
- An antitransihyretin small interfering RNA has been encapsulated in lipid nanoparticies and delivered to humans (see, e.g., Coelho et al, N Engl J Med 2013;369:819-29), and such a ssystem may be adapted and applied to the CRISPR Cas system of the present invention. Doses of about 0.01 to about 1 mg per kg of body weight administered intravenously are contemplated.
- Medications to reduce the risk of infusion-related reactions are contemplated, such as dexamethasone, acetampinophen, diphenhydramine or cetirizine, and ranitidine are contemplated. Multiple doses of about 0.3 mg per kilogram every 4 weeks for five doses are also contemplated.
- LNPs have been shown to be highly effective in delivering siRNAs to the liver (see, e.g., Tabemero et al, Cancer Discovery, April 2013, Vol. 3, No. 4, pages 363-470) and are therefore contemplated for delivering RNA encoding CRISPR Cas to the liver.
- a dosage of about four doses of 6 mg kg of the LNP every two weeks may be contemplated.
- Tabemero et al. demonstrated that tumor regression was observed after the first 2 cycles of LNPs dosed at 0.7 mg/kg, and by the end of 6 cycles the patient had achieved a partial response with complete regression of the lymph node metastasis and substantial shrinkage of the liver tumors.
- ionizable cationic lipids Four species of ionizable cationic lipids have been focused upon, namely l,2,-dilineoyf-3-dimethylammonium ⁇ propane (DLinDAP), 1 ,2-dilinoleyloxy-3-N,N-dimethylaminopropane (DLinDMA), 1 ,2-dilinoleyloxy- keto-N,N-dimethyl ⁇ 3 ⁇ aminopropane (DLinKDMA), and 1 ,2-diiinoleyl-4-(2- dimethylaminoethyl)-[l,3]-dioxolane (DLinKC2-DMA).
- DLinDAP l,2,-dilineoyf-3-dimethylammonium ⁇ propane
- DLinDMA 1 ,2-dilinoleyloxy-3-N,N-dimethylaminopropane
- DLinKDMA 1 ,2-dil
- LNP siRNA systems containing these lipids exhibit remarkably different gene silencing properties in hepatocytes in vivo, with potencies varying according to the series DLinKC2- DMA>DI.inKDMA>DLinDMA»DLinDAP employing a Factor VII gene silencing model (see, e.g., Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 2011 ).
- a dosage of 1 ⁇ g m ⁇ of LNP or CRISPR-Cas RNA in or associated with the LNP may be contemplated, especially for a formulation containing DLinKC2-DMA.
- Preparation of LNPs and CRISPR Cas encapsulation may be used/and or adapted from Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 2011).
- 2-dimyristyloxlpropyl-3-amine may be provided by Tekmira Pharmaceuticals (Vancouver, Canada) or synthesized. Cholesterol may be purchased from Sigma (St Louis, MO).
- the specific CRISPR Cas RNA may be encapsulated in LNPs containing DLinDAP, DLinDMA, DLinK-DMA, and DLmKC2-DMA (cationic lipid:DSPC:CHOL: PEGS-DMG or PEG-C-DOMG at 40: 10:40: 10 molar ratios).
- SP-DiOC18 (Invitrogen, Burlington, Canada) may be incorporated to assess cellular uptake, intracellular delivery, and biodistribution.
- Encapsulation may be performed by dissolving lipid mixtures comprised of cationic lipid :DSPC:cholesterol:PEG-c-DOMG (40: 10:40: 10 molar ratio) in ethanol to a final lipid concentration of 10 mmol/l.
- This ethanol solution of lipid may be added drop-wise to 50 mmol/l citrate, pH 4.0 to form multilamellar vesicles to produce a final concentration of 30% ethanol vol/vol.
- Large unilamellar vesicles may be formed following extrusion of multilamellar vesicles through two stacked 80 nm Nuclepore polycarbonate filters using the Extruder (Northern Lipids, Vancouver, Canada). Encapsulation may be achieved by adding RNA dissolved at 2 mg/ml in 50 mmol/l citrate, pH 4.0 containing 30% ethanol vol/vol drop-wise to extruded preformed large unilamellar vesicles and incubation at 31 °C for 30 minutes with constant mixing to a final RNA/iipid weight ratio of 0.06/1 wt/wt.
- Nanoparticle size distribution may be determined by dynamic light scattering using a NiCOMP 370 particle sizer, the vesicle/intensity modes, and Gaussian fitting (Nicomp Particle Sizing, Santa Barbara, CA). The particle size for all three LNP systems may be -70 nm in diameter.
- R.NA encapsulation efficiency may be determined by removal of free RNA using VivaPureD MiniH columns (Sartorius Stedim Biotech) from samples collected before and after dialysis.
- RNA to lipid ratio was determined by measurement of cholesterol content in vesicles using the Cholesterol E enzymatic assay from Wako Chemicals USA (Richmond, VA).
- PEGylated liposomes or LNPs are likewise suitable for delivery of a CRISPR-Cas system or components thereof.
- Preparation of large LNPs may be used/and or adapted from Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 201 1.
- a lipid premix solution (20.4 mg/ml total lipid concentration) may be prepared in ethanol containing DLinKC2-DMA, DSPC, and cholesterol at 50: 10:38.5 molar ratios.
- Sodium acetate may be added to the lipid premix at a molar ratio of 0.75: 1 (sodium acetate:DLinKC2-DMA).
- the lipids may be subsequently hydrated by combining the mixture with 1.85 volumes of citrate buffer (10 mmol/l, pH 3.0) with vigorous stirring, resulting in spontaneous liposome formation in aqueous buffer containing 35% ethanol.
- the liposome solution may be incubated at 37 °C to allow for time-dependent increase in particle size. Aliquots may be removed at various times during incubation to investigate changes in liposome size by dynamic light scattering (Zetasizer Nano ZS, Malvern Instruments, Worcestershire, UK).
- stock 10 mg/ml PEG-DMG in 35% (vol/vol) ethanol
- RNA may then be added to the empty liposomes at an RNA to total lipid ratio of approximately 1 : 10 (wt:wi), followed by incubation for 30 minutes at 37 °C to form loaded LNPs.
- the mixture may be subsequently dialyzed overnight in PBS and filtered with a 0.45- ⁇ syringe filter.
- Spherical Nucleic Acid (SNATM) constructs and other nanoparticles (particularly gold nanoparticles) are also contemplated as a means to delivery CRISPR-Cas system to intended targets.
- Significant data show that AuraSense Therapeutics' Spherical Nucleic Acid (SNATM) constructs, based upon nucleic aeid-functionalized gold nanoparticles, are useful.
- Literature that may be employed in conjunction with herein teachings include: Cutler et a]., J. Am. Chem. Soc. 201 1 133:9254-9257, Hao et al., Small. 201 1 7:3158-3162, Zhang et al., ACS Nano. 2011 5:6962-6970, Cutler et al., J. Am. Chem. Soc. 2012 134: 1376-1391, Young et al, Nano Lett. 2012 12:3867-71, Zheng et al., Proc. Natl. Acad. Sci. USA. 2012 109: 1 1975- 80, Mirkin, Nanomedicine 2012 7:635-638 Zhang et al, J. Am. Chem.
- Self-assembling nanoparticles with RNA may be constructed with poly eth l eneimine (PEl) that is PEGylated with an Arg-Gly-Asp (RGD) peptide ligand attached at the distal end of the polyethylene glycol (PEG).
- PEG polyethylene glycol
- This system has been used, for example, as a means to target tumor neovascuiature expressing integrins and deliver siRNA inhibiting vascular endothelial growth factor receptor-2 (VEGF R2) expression and thereby achieve tumor angiogenesis (see, e.g., Schiffelers et al., Nucleic Acids Research, 2004, Vol 32, No, 19).
- VEGF R2 vascular endothelial growth factor receptor-2
- Nanoplexes may be prepared by mixing equal volumes of aqueous solutions of cationic polymer and nucleic acid to give a net molar excess of ionizable nitrogen (polymer) to phosphate (nucleic acid) over the range of 2, to 6.
- the electrostatic interactions between cationic polymers and nucleic acid resulted in the formation of polyplexes with average particle size distribution of about 100 nm, hence referred to here as nanoplexes.
- a dosage of about 100 to 200 mg of CRISPR Cas is envisioned for delivery in the self-assembling nanoparticles of Schiffelers et al,
- the nanoplexes of Bartlett et al may also be applied to the present invention.
- the nanoplexes of Bartlett et al. are prepared by mixing equal volumes of aqueous solutions of cationic polymer and nucleic acid to give a net molar excess of ionizable nitrogen (polymer) to phosphate (nucleic acid) over the range of 2 to 6.
- the electrostatic interactions between cationic polymers and nucleic acid resulted in the formation of polyplexes with average particle size distribution of about 100 nm, hence referred to here as nanoplexes.
- DOTA- NHSester 10-teiraazacyclododecane-l,4,7, 10-ietraacetic acid mono -hydroxysuccinimide ester
- Tf-targeted and nontargeted siRNA nanoparticles may be formed by using cyclodextrin-containing polycations. Typically, nanoparticles were formed in water at a charge ratio of 3 H-) and an siRNA concentration of 0.5 g/liter. One percent of the adamantane-PEG molecules on the surface of the targeted nanoparticles were modified with Tf (adamantane-PEG-Tf). The nanoparticles were suspended in a 5% (wt/vol) glucose carrier solution for injection.
- the nanoparticles consist of a synthetic delivery system containing: (1) a linear, eyclodextrin-based polymer (CDP), (2) a human transferrin protein (TF) targeting ligand displayed on the exterior of the nanoparticle to engage TF receptors (TFR) on the surface of the cancer cells, (3) a hydrophilic polymer (polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids), and (4) siRNA designed to reduce the expression of the RRM2 (sequence used in the clinic was previously denoted siR2B+5).
- CDP linear, eyclodextrin-based polymer
- TF human transferrin protein
- TFR TF receptors
- siRNA designed to reduce the expression of the RRM2 (sequence used in the clinic was previously denoted siR2B+5).
- the TFR has long been known to be upregulated in malignant cells, and RRM2 is an established anti-cancer target.
- nanoparticles (clinical version denoted as CALAA-01 ) have been shown to be well tolerated in multi-dosing studies in non-human primates.
- Davis et al.'s clinical trial is the initial human trial to systemically deliver siRNA with a targeted delivery system and to treat patients with solid cancer.
- Davis et al. investigated biopsies from three patients from three different dosing cohorts; patients A, B and C, all of whom had metastatic melanoma and received CALAA-01 doses of 18, 24 and 30 mg in siRNA, respectively.
- the deliver of the invention may be achieved with nanoparticles containing a linear, eyclodextrin-based polymer (CDP), a human transferrin protein (TF) targeting ligand displayed on the exterior of the nanoparticle to engage TF receptors (TFR) on the surface of the cancer cells and/or a hydrophilic polymer (for example, polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids).
- CDP linear, eyclodextrin-based polymer
- TF human transferrin protein
- TFR TF receptors
- hydrophilic polymer for example, polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids
- Particle delivery systems and/or formulations are Particle delivery systems and/or formulations:
- a particle is defined as a small object that behaves as a whole unit with respect to its transport and properties. Particles are further classified according to diameter Coarse particles cover a range between 2,500 and 10,000 nanometers. Fine particles are sized between 100 and 2,500 nanometers. Ultrafme particles, or nanoparticles, are generally between 1 and 100 nanometers in size. The basis of the 100-nm limit is the fact thai novel properties that differentiate particles from the bulk material typically develop at a critical length scale of under 100 ran.
- a particle deliver ⁇ ' system/formulation is defined as any biological delivery system/formulation which includes a particle in accordance with the present invention.
- a particle in accordance with the present invention is any entity having a greatest dimension (e.g. diameter) of less than 100 microns ( ⁇ ).
- inventive particles have a greatest dimension of less than 10 ⁇ .
- inventive particles have a greatest dimension of less than 2000 nanometers (nm).
- inventive particles have a greatest dimension of less than 1000 nanometers (nm).
- inventive particles have a greatest dimension of less than 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm, or 100 nm.
- inventive particles have a greatest dimension (e.g., diameter) of 500 nm or less.
- inventive particles have a greatest dimension (e.g., diameter) of 250 nm or less.
- inventive particles have a greatest dimension (e.g., diameter) of 200 nm or less.
- inventive particles have a greatest dimension (e.g., diameter) of 150 nm or less.
- inventive particles have a greatest dimension (e.g., diameter) of 100 nm or less. Smaller particles, e.g., having a greatest dimension of 50 nm or less are used in some embodiments of the invention. In some embodiments, inventive particles have a greatest dimension ranging between 25 nm and 200 nm.
- Particle characterization is done using a variety of different techniques. Common techniques are electron microscopy (TEM, SEM), atomic force microscopy (AFM), dynamic light scattering (DES), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), matrix-assisted laser desorptiott' onization time-of- flight mass speetrometry(MALDI-TQF), ultraviolet-visible spectroscopy, dual polarisation interferometry and nuclear magnetic resonance (NMR).
- TEM electron microscopy
- AFM atomic force microscopy
- DES dynamic light scattering
- XPS X-ray photoelectron spectroscopy
- XRD powder X-ray diffraction
- FTIR Fourier transform infrared spectroscopy
- MALDI-TQF matrix-assisted laser desorptiott' onization time-of- flight mass speetro
- Characterization may be made as to native particles (i.e., preloading) or after loading of the cargo (herein cargo refers to e.g., one or more components of CRISPR-Cas system e.g., CR1SPR enzyme or mR A or guide RNA, or any combination thereof, and may include additional carriers and/or excipients) to provide particles of an optimal size for delivery for any in vitro, ex vivo and/or in vivo application of the present invention.
- particle dimension (e.g., diameter) characterization is based on measurements using dynamic laser scattering (DLS). Mention is made of US Patent No. 8,709,843; US Patent No. 6,007,845; US Patent No.
- Particles delivery systems within the scope of the present invention may be provided in any form, including but not limited to solid, semi-solid, emulsion, or colloidal particles.
- any of the delivery systems described herein including but not limited to, e.g., lipid-based systems, liposomes, micelles, microvesicles, exosornes, or gene gun may be provided as particle delivery systems within the scope of the present invention,
- CRISPR complex e.g., CRISPR enzyme or mRNA or guide RNA delivered using nanoparticles or lipid envelopes.
- Other delivery systems or vectors are may be used in conjunction with the nanoparticle aspects of the invention.
- nanoparticle refers to any particle having a diameter of less than 1000 nm.
- nanoparticles of the invention have a greatest dimension (e.g., diameter) of 500 nm or less.
- nanoparticles of the invention have a greatest dimension ranging between 25 nm and 200 nm.
- nanoparticles of the invention have a greatest dimension of 100 nm or less.
- nanoparticles of the invention have a. greatest dimension ranging between 35 nm and 60 nm.
- Nanoparticles encompassed in the present invention may be provided in different forms, e.g., as solid nanoparticles (e.g., metal such as silver, gold, iron, titanium), non-metal, lipid-based solids, polymers), suspensions of nanoparticles, or combinations thereof.
- Metal, dielectric, and semiconductor nanoparticles may be prepared, as well as hybrid structures (e.g., core-shell nanoparticles).
- Nanoparticles made of semiconducting material may also be labeled quantum dots if they are small enough (typically sub 10 nm) that quantization of electronic energy levels occurs. Such nanoseale particles are used in biomedical applications as drug carriers or imaging agents and may be adapted for similar purposes in the present invention.
- Nanoparticles with one half hydrophilic and the other half hydrophobic are termed Janus particles and are particularly effective for stabilizing emulsions. They can self- assemble at water/oil interfaces and act as solid surfactants.
- US Patent No. 8,709,843 incorporated herein by reference, provides a drug delivery system for targeted delivery of therapeutic agent-containing particles to tissues, cells, and intracellular compartments.
- the invention provides targeted particles comprising comprising polymer conjugated to a surfactant, hydrophilic polymer or lipid.
- US Patent No. 6,007,845 incorporated herein by reference, provides particles which have a core of a multiblock copolymer formed by covalently linking a multifunctional compound with one or more hydrophobic polymers and one or more hydrophilic polymers, and conatin a biologically active material.
- US Patent No. 5,855,913, incorporated herein by reference provides a particulate composition having aerodynamically light particles having a tap density of less than 0,4 g/em3 with a mean diameter of between 5 ⁇ and 30 ⁇ , incorporating a surfactant on the surface thereof for drug delivery to the pulmonary system.
- US Patent No. 5,985,309 incorporated herein by reference, provides particles incorporating a surfactant and/or a hydrophilic or hydrophobic complex of a positively or negatively charged therapeutic or diagnostic agent and a charged molecule of opposite charge for delivery to the pulmonary system.
- US. Patent No. 5,543, 158 incorporated herein by reference, provides biodegradable injectable nanoparticles having a biodegradable solid core containing a biologically active material and poiy(alkylene glycol) moieties on the surface.
- WO2012135025 also published as U820120251560, incorporated herein by reference, describes conjugated polyethyleneimine (PET) polymers and conjugated aza- macrocycles (collectively referred to as “conjugated lipomer” or “lipomers”).
- PET polyethyleneimine
- conjugated lipomers can be used in the context of the CKISPR-Cas system to achieve in vitro, ex vivo and in vivo genomic perturbations to modify gene expression, including modulation of protein expression.
- the nanoparticle may be epoxide -modified lipid-poiymer, advantageously 7C1 (see, e.g., James E. Dahlman and Carmen Barnes et al. Nature Nanotechnology (2014) published online 1 1 May 2014, doi: 10.1038/nnano.2014.84).
- C71 was synthesized by reacting O S epoxide-terminated lipids with PEI600 at a 14: 1 molar ratio, and was formulated with C14PEG2000 to produce nanoparticles (diameter between 35 and 60 nm) that were stable in PBS solution for at least 40 days.
- An epoxide-modified lipid-polymer may be utilized to deliver the CRISPR-Cas system of the present invention to pulmonary, cardiovascular or renal cells, however, one of skill in the art may adapt the system to deliver to other target organs. Dosage ranging from about 0.05 to about 0.6 mg kg are envisioned. Dosages over several days or weeks are also envisioned, with a total dosage of about 2 mg/kg,
- Exosomes are endogenous nano-vesicles that transport RNAs and proteins, and which can deliver RNA to the brain and other target organs.
- Alvarez-Erviti et al, (201 1 , Nat Bioteclmol 29: 341 ) used self-derived dendritic cells for exosome production.
- Targeting to the brain was achieved by engineering the dendritic cells to express Lamp2b, an exosomal membrane protein, fused to the neuron-specific RVG peptide. Purified exosomes were loaded with exogenous RNA by electroporation.
- RVG-targeted exosomes delivered GAPDH siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting in a specific gene knockdown. Pre-exposure to RVG exosomes did not attenuate knockdown, and non-specific uptake in other tissues was not observed. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1 , a therapeutic target in Alzheimer's disease.
- exosomes produced were physically homogenous, with a size distribution peaking at 80 nm in diameter as determined by nanoparticle tracking analysis (NTA) and electron microscopy.
- NTA nanoparticle tracking analysis
- Alvarez-Emti et al obtained 6-12 ⁇ g of exosomes (measured based on protein concentration) per 10 6 cells.
- the exosome delivery system of Alvarez-Erviti et al. may be applied to deliver the CRISPR-Cas system of the present invention to therapeutic targets, especially neurodegenerative diseases.
- a dosage of about 100 to 1000 mg of CR1SPR Cas encapsulated in about 100 to 1000 mg of RVG exosomes may be contemplated for the present invention.
- El-Andaloussi et al. discloses how exosomes derived from cultured cells can be harnessed for delivery of RNA in vitro and in vivo. This protocol first describes the generation of targeted exosomes through iransfection of an expression vector, comprising an exosomal protein fused with a peptide ligand. Next, El- Andaloussi et al. explain how to purify and characterize exosomes from transfected cell supernatant. Next, El-Andaloussi et al. detail crucial steps for loading RNA into exosomes. Finally, El-Andaloussi et al.
- the plasma exosomes of Wahlgren et al. are contemplated.
- Exosomes are nano-sized vesicles (30- 90nm in size) produced by many cell types, including dendritic cells (DC), B cells, T cells, mast cells, epithelial cells and tumor cells. These vesicles are formed by inward budding of late endosomes and are then released to the extracellular environment upon fusion with the plasma membrane. Because exosomes naturally carry RNA between cells, this property may be useful in gene therapy, and from this disclosure can be employed in the practice of the instant invention.
- DC dendritic cells
- B cells B cells
- T cells T cells
- mast cells epithelial cells
- tumor cells epithelial cells
- Exosomes from plasma can be prepared by centrifugation ofbuffy coat at 900g for 20 min to isolate the plasma followed by harvesting cell supernatants, centrifuging at 300g for 10 min to eliminate cells and at 16 500g for 30 min followed by filtration through a 0.22 mm filter. Exosomes are pelleted by ultracentrifugation at 120 OOOg for70 min. Chemical iransfection of siRNA into exosomes is carried out according to the manufacturer's instructions in RNAi Human/Mouse Starter Kit (Quiagen, Hilden, Germany). siRNA is added to 100 ml PBS at a final concentration of 2 mmol/mi.
- exosomes are re- isolated using aldehyde/sulfate latex beads.
- the chemical iransfection of CRISPR Cas into exosomes may be conducted similarly to siRJS!A.
- the exosomes may be co-cultured with monocytes and lymphocytes isolated from the peripheral blood of healthy donors. Therefore, it may be contemplated that exosomes containing CRTSPR Cas may be introduced to monocytes and lymphocytes of and autoiogously reintroduced into a human. Accordingly, delivery or administration according to the invention may beperformed using plasma exosomes.
- Liposomes are spherical vesicle structures composed of a uni- or multilamellar lipid bilayer surrounding internal aqueous compartments and a relatively impermeable outer lipophilic phospholipid bilayer. Liposomes have gained considerable attention as drug delivery carriers because they are biocompatible, nontoxic, can deliver both hydrophilie and lipophilic drug molecules, protect their cargo from degradation by plasma enzymes, and transport their load across biological membranes and the blood brain barrier (BBB) (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 201 1, Article ID 469679, 12 pages, 2011. doi: 10.1 155/201 1/469679 for review).
- BBB blood brain barrier
- Liposomes can be made from several different types of lipids; however, phospholipids are most commonly used to generate liposomes as drug carriers. Although liposome formation is spontaneous when a lipid film is mixed with an aqueous solution, it can also be expedited by applying force in the form of shaking by using a homogenizer, sonicator, or an extrusion apparatus (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 201 1. doi: 10.1155/201 1/469679 for review).
- liposomes may be added to liposomes in order to modify their structure and properties.
- cholesterol or sphingomyelin may be added to the liposomal mixture in order to help stabilize the liposomal structure and to prevent the leakage of the liposomal inner cargo.
- liposomes are prepared from hydrogenated egg phosphatidylcholine or egg phosphatidylcholine, cholesterol, and dicetyl phosphate, and their mean vesicle sizes were adjusted to about 50 and 100 nm. (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011 , Article ID 469679, 12 pages, 2011. doi: 10.1 155/201 1/469679 for review),
- a liposome formulation may be mainly comprised of natural phospholipids and lipids such as 1 ,2 -di stearoryl-sn-glycero-3 -phosphati dyl choline (DSPC), sphingomyelin, egg phosphatidylcholines and monosialoganglioside. Since this formulation is made up of phospholipids only, liposomal formulations have encountered many challenges, one of the ones being the instability in plasma. Several attempts to overcome these challenges have been made, specifically in the manipulation of the lipid membrane. One of these attempts focused on the manipulation of cholesterol.
- DSPC 1 ,2 -di stearoryl-sn-glycero-3 -phosphati dyl choline
- Trojan Horse liposomes are desirable and protocols may be found at http://cshprotocols.cship.Org/conient/2010/4/pdb.prot5407.long. These particles allo delivery of a transgene to the entire brain after an intravascular injection. Without being bound by limitation, it is believed that neutral lipid particles with specific antibodies conjugated to surface allow crossing of the blood brain barrier via endocytosis. Applicant postulates utilizing Trojan Horse Liposomes to deliver the CRISPR family of nucleases to the brain via an intravascular injection, which would allow whole brain transgenic animals without the need for embryonic manipulation. About 1-5 g of DNA or R A may be contemplated for in vivo administration in liposomes.
- the CRISPR Cas system may be administered in liposomes, such as a stable nucleic -acid -lipid particle (SNALP) (see, e.g., Morrissey et al., Nature Biotechnology, Vol. 23, No. 8, August 2005).
- SNALP stable nucleic -acid -lipid particle
- Daily intravenous injections of about 1, 3 or 5 mg kg day of a specific CRISPR Cas targeted in a SNALP are contemplated.
- the daily treatment may be over about three days and then weekly for about five weeks.
- a specific CRISPR Cas encapsulated SNALP administered by intravenous injection to at doses of about 1 or 2.5 mg/kg are also contemplated (see, e.g., Zimmerman et al., Nature Letters, Vol. 441 , 4 May 2006).
- the SNALP formulation may contain the lipids 3-N- [(wmethoxypoly(ethylene glycol) 2000) carbamoyl] - 1 ,2-dimyristyloxy-propylamine (PEG-CDMA), l,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane (DLinDMA), 1 ,2-distearoyl-sn- glycero-3-phosphocholine (DSPC) and cholesterol, in a 2:40: 10:48 molar per cent ratio (see, e.g., Zimmerman et al, Nature Letters, Vol. 441, 4 May 2006).
- PEG-CDMA l,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane
- DSPC 1 ,2-distearoyl-sn- glycero-3-phosphocholine
- cholesterol in a 2:40: 10:48 molar per cent ratio
- SNALPs stable nucleic-aeid-lipid particles
- the SNALP liposomes may be prepared by formulating D-Lin-DMA and PEG-C-DMA with disiearoylphosphatidyleholine (DSPC), Cholesterol and siRNA using a 25: 1 lipid/siRNA ratio and a 48/40/10/2 molar ratio of CTiolesterol/D-Lin-DMA/DSPC/PEG-C-DMA.
- DSPC disiearoylphosphatidyleholine
- the resulted S ALP liposomes are about 80-100 nni in size.
- a SNALP may comprise synthetic cholesterol (Sigma- Aldrich, St Louis, MO, USA), dipalmitoylphosphatidylcholine (Avanti Polar Lipids, Alabaster, AL, USA), 3-N-[(w-methoxy poly(ethylene glycol)2000)carbamoyl]-l,2- dimyrestyloxypropylamine, and cationic l,2-dilinoleyloxy-3-N,Ndimethylaminopropane (see, e.g., Geisbert et al., Lancet 2010; 375: 1896-905), A dosage of about 2 mg/kg total CRJSPR Cas per dose administered as, for example, a bolus intravenous infusion may be contemplated.
- synthetic cholesterol Sigma- Aldrich, St Louis, MO, USA
- dipalmitoylphosphatidylcholine Alabaster, AL, USA
- a SNALP may comprise synthetic cholesterol (Sigma- Aklrich), l ,2-distearoyl-sn-glycero-3-phosphocholine (DSPC; Avanti Polar Lipids Inc.), PEG- cDMA, and l,2-dilinoleyloxy-3-(N;N-dimethyl)aminopropane (DLinDMA) (see, e.g., J udge, J. Clin. Invest. 119:661-673 (2009)).
- Formulations used for in vivo studies may comprise a final lipid/RNA mass ratio of about 9: 1.
- RNAi nanomedicines have been reviewed by Barros and Gollob of Alnylam Pharmaceuticals (see, e.g., Advanced Drug Delivery Reviews 64 (2012) 1730-
- the stable nucleic acid lipid particle is comprised of four different lipids an ionizable lipid (DLinDMA) that is cationic at low pH, a neutral helper lipid, cholesterol, and a diffusible polyethylene glycol (PEG)-lipid,
- the particle is approximately 80 nm in diameter and is charge-neutral at physiologic pH.
- the ionizable lipid serves to condense lipid with the anionic RNA during particle formation.
- the ionizable lipid When positively charged under increasingly acidic endosomal conditions, the ionizable lipid also mediates the fusion of SNALP with the endosomal membrane enabling release of RNA into the cytoplasm.
- the PEG-lipid stabilizes the particle and reduces aggregation during formulation, and subsequently provides a neutral hydrophilic exterior that improves pharmacokinetic properties.
- Alnylam Pharmaceuticals has similarly advanced ALN-TTR01 , which employs the SNALP technology described above and targets hepatocyte production of both mutant and wild- type TTR to treat TTR amyloidosis (ATTR).
- TTR amyloidosis Three ATTR syndromes have been described: familial amyloidoiic polyneuropathy (FAP) and familial amyloidotic cardiomyopathy (FAC) both caused by autosomal dominant mutations in TTR; and senile systemic amyloidosis (SSA) cause by wildtype TTR.
- FAP familial amyloidoiic polyneuropathy
- FAC familial amyloidotic cardiomyopathy
- SSA senile systemic amyloidosis
- a placebo -controlled, single dose-escalation phase I trial of ALN- TTR01 was recently completed in patients with ATTR.
- AL --TTRG1 was administered as a.
- a SNALP may be made by solubilizing a cationic lipid, DSPC, cholesterol and PEG-lipid e.g., in ethanol, e.g., at a molar ratio of 40: 10:40: 10, respectively (see, Semple et aL Nature Niotechnology, Volume 28 Number 2 February 2010, pp. 172-177).
- the lipid mixture was added to an aqueous buffer (50 mM citrate, pH 4) with mixing to a final ethanol and lipid concentration of 30% (vol/vol) and 6.1 mg/ml, respectively, and allowed to equilibrate at 22 °C for 2 min before extrusion.
- the hydrated lipids were extruded through two stacked 80 nm pore-sized filters (Nuclepore) at 22 °C using a Lipex Extruder (Northern Lipids) until a vesicle diameter of 70-90 nm, as determined by dynamic light scattering analysis, was obtained. This generally required 1 -3 passes.
- the siRNA (solubilized in a 50 mM citrate, pH 4 aqueous solution containing 30% ethanol) was added to the pre- equilibrated (35 °C) vesicles at a rate of ⁇ 5 ml/min with mixing.
- siRNA were encapsulated in SNALP using a controlled step- wise dilution method process.
- the lipid constituents of KC2-SNALP were DLin- KC2-DMA (cationic lipid), dipalmitoylphosphatidylcholine (DPPC; Avanti Polar Lipids), synthetic cholesterol (Sigma) and PEG-C-DMA used at a molar ratio of 57.1 :7.1 :34.3: 1.4.
- SNALP were dialyzed against PBS and filter sterilized through a 0.2 Lim filter before use. Mean particle sizes were 75-85 nm and 90-95% of the siRNA was encapsulated within the lipid particles.
- the final siRNA/lipid ratio in formulations used for in vivo testing was ⁇ 0.15 (wt/wt).
- L P-siRNA systems containing Factor VII siRNA were diluted to the appropriate concentrations in sterile PBS immediately before use and the formulations were administered intravenously through the lateral tail vein in a total volume of 10 ml/kg. This method and these deliver ⁇ ' systems may be extrapolated to the CRISPR Cas system of the present invention.
- cationic lipids such as amino lipid 2,2-dilinoleyl-4-dimethylaminoethy3-[l,3]- dioxolane (DLin-KC2-DMA) may be utilized to encapsulate CRJSPR Cas or components thereof or nucleic acid moiecule(s) coding therefor e.g., similar to SiR A (see, e.g., Jayaraman, Angew. Chem. Int. Ed. 2012, 51, 8529 -8533), and hence may be employed in the practice of the invention.
- DLin-KC2-DMA amino lipid 2,2-dilinoleyl-4-dimethylaminoethy3-[l,3]- dioxolane
- a preformed vesicle with the following lipid composition may be contemplated: amino lipid, distearoylphosphatidyfcholine (DSPC), cholesterol and (R)-2,3-bis(octadecy3oxy) propyl- l-(methoxy poly( ethylene glycol)2000)propylcarbamate (PEG-lipid) in the molar ratio 40/10/40/10, respectively, and a FVII siRNA/total lipid ratio of approximately 0.05 (w/w).
- the particles may be extruded up to three times through 80 nm membranes prior to adding the CRISPR Cas RNA.
- Particles containing the highly potent amino lipid 16 may be used, in which the molar ratio of the four lipid components 16, DSPC, cholesterol and PEG-lipid (50/10/38.5/1.5) which may be further optimized to enhance in vivo activity.
- lipids may be formulated with the CRISPR Cas sys tem of the present invention to form lipid nanoparticles (LNPs),
- Lipids include, but are not limited to, DLin- C2-DMA4, CI 2-200 and colipids disteroylphosphatidyl choline, cholesterol, and PEG- DMG may be formulated with CRISPR Cas instead of siRNA (see, e.g., Novobrantseva, Molecular Therapy-Nucleic Acids (2012) 1, e4; doi: 10.1038/mtna.2011.3) using a spontaneous vesicle formation procedure.
- the component molar ratio may be about 50/10/38.5/1.5 (DLin- KC2-DMA or C12-200/disteroylphosphatidyl choline/cholesterol/PEG-DMG).
- the final lipidrsiRNA weight ratio may be— 12: 1 and 9: 1 in the case of DLin-KC2-DMA and CI 2-200 lipid nanoparticles (LNPs), respectively.
- the formulations may have mean particle diameters of -80 nm with >90% entrapment efficiency. A 3 mg/kg dose may be contemplated.
- Tekmira has a portfolio of approximately 95 patent families, in the U.S.
- thai are directed to various aspects of LNPs and LNP formulations (see, e.g., U.S. Pat. Nos. 7,982,027; 7,799,565; 8,058,069; 8,283,333; 7,901 ,708; 7,745,651; 7,803,397; 8, 101,741 ; 8, 188,263; 7,915,399; 8,236,943 and 7,838,658 and European Pat. Nos 1766035; 1519714; 1781593 and 1664316), ail of which may be used and/or adapted to the present invention,
- the CRISPR Cas system or components thereof or nucleic acid moleeule(s) coding therefor may be delivered encapsulated in PLGA Microspheres such as that further described in US published applications 20130252281 and 20130245107 and 20130244279 (assigned to Moderaa Therapeutics) which relate to aspects of formulation of compositions comprising modified nucleic acid molecules which may encode a protein, a protein precursor, or a partially or fully processed form of the protein or a protein precursor.
- the formulation may have a molar ratio 50: 10:38.5: 1.5-3.0 (cationic lipid:fusogenic iipid:cholesieroi:PEG lipid).
- the PEG lipid may be selected from, but is not limited to PEG-c-DOMG, PEG-DMG.
- the fusogenic lipid may be DSPC. See also, Schrum et al, Delivery and Formulation of Engineered Nucleic Acids, US published application 20120251618.
- Nanomerics' technology addresses bioavailability challenges for a broad range of therapeutics, including low molecular weight hydrophobic drugs, peptides, and nucleic acid based therapeutics (plasmid, siRNA, miK A).
- Specific administration routes for which the technology has demonstrated clear advantages include the oral route, transport across the biood- brain-barrier, delivery to solid tumours, as well as to the eye. See, e.g., Mazza et al., 2013, ACS Nano. 2013 Feb 26;7(2): 1016-26; Uchegbu and Siew, 2013, J Pharm Sci. 102(2):305-10 and Laiatsa et al., 2012, J Control Release. 2012 Jul 20; 161(2):523-36.
- US Patent Publication No. 20050019923 describes cationic dendrimers for delivering bioactive molecules, such as polynucleotide molecules, peptides and polypeptides and/or pharmaceutical agents, to a mammalian body.
- the dendrimers are suitable for targeting the delivery of the bioactive molecules to, for example, the liver, spleen, lung, kidney or heart (or even the brain).
- Dendrimers are synthetic 3 -dimensional macromolecules that are prepared in a step-wise fashion from simple branched monomer units, the nature and functionality of which can be easily controlled and varied.
- Dendrimers are synthesised from the repeated addition of building blocks to a multifunctional core (divergent approach to synthesis), or towards a multifunctional core (convergent approach to synthesis) and each addition of a 3-dimensional shell of building blocks leads to the formation of a higher generation of the dendrimers.
- Polypropylenimine dendrimers start from a diaminobutane core to which is added twice the number of amino groups by a double Michael addition of acrylonitrile to the primary amines followed by the hydrogenation of the nitriles. This results in a. doubling of the amino groups.
- Polypropvlenimme dendrimers contain 100% proton able nitrogens and up to 64 terminal amino groups (generation 5, DAB 64), Protonable groups are usually amine groups which are able to accept protons at neutral pH.
- DAB 64 terminal amino groups
- the use of dendrimers as gene delivery agents has largely focused on the use of the polyamidoamine. and phosphorous containing compounds with a. mixture of amine/amide or N— P(0 2 )S as the conjugating units respectively with no work being reported on the use of the lower generation poiypropylenimine dendrimers for gene delivery.
- Polypropvlenimme dendrimers have also been studied as pH sensitive controlled release systems for daig delivery and for their encapsulation of guest molecules when chemically modified by peripheral amino acid groups. The cytotoxicity and interaction of poiypropylenimine dendrimers with DNA as well as the transfection efficacy of DAB 64 has also been studied.
- US Patent Publication Mo. 20050019923 is based upon the observation that, contrary to earlier reports, cationic dendrimers, such as poiypropylenimine dendrimers, display suitable properties, such as specific targeting and low toxicity, for use in the targeted delivery of bioactive molecules, such as genetic material. In addition, derivatives of the cationic dendrimer also display suitable properties for the targeted delivery of bioactive molecules.
- Bioactive Polymers US published application 20080267903, which discloses "Various polymers, including cationic polyamine polymers and dendrimeric polymers, are shown to possess anti-proliferative activity, and may therefore be useful for treatment of disorders characterised by undesirable cellular proliferation such as neoplasms and tumours, inflammatory disorders (including autoimmune disorders), psoriasis and atherosclerosis.
- the polymers may be used alone as active agents, or as delivery vehicles for other therapeutic agents, such as drug molecules or nucleic acids for gene therapy.
- the polymers' own intrinsic anti- tumour activity may complement the activity of the agent to be delivered.”
- the disclosures of these patent publications may be employed in conjunction with herein teachings for delivery of CRISP R Cas system(s) or component(s) thereof or nucleic acid molecule(s) coding therefor.
- Supercharged proteins are a class of engineered or naturally occurring proteins with unusually high positive or negative net theoretical charge and may be employed in delivery of CRISPR Cas system(s) or component(s) thereof or nucleic acid molecule(s) coding therefor. Both supernegatively and superpositively charged proteins exhibit a remarkable ability to withstand thermally or chemically induced aggregation. Superpositively charged proteins are also able to penetrate mammalian cells. Associating cargo with these proteins, such as plasmid DNA, RNA, or other proteins, can enable the functional delivery of these macromoiecules into mammalian cells both in vitro and in vivo. David Liu's lab reported the creation and characterization of supercharged proteins in 2007 (Lawrence et al., 2007, Journal of the American Chemical Society 129, 10110-101 12).
- +36 GFP is an effective plasmid delivery reagent in a range of cells.
- plasmid DNA is a larger cargo than siRNA, proportionately more +36 GFP protein is required to effectively complex plasmids.
- Applicants have developed a variant of +36 GFP bearing a C -terminal HA2 peptide tag, a known endosome-disruptmg peptide derived from the influenza virus hemagglutinin protein. The following protocol has been effective in a variety of cells, but as above it is advised that plasmid DNA and supercharged protein doses be optimized for specific cell lines and delivery applications.
- implantable devices are also contemplated for delivery of the CRISPR Cas system or component(s) thereof or nucleic acid moiecule(s) coding therefor.
- US Patent Publication 20110195123 discloses an implantable medical device which elutes a drug locally and in prolonged period is provided, including several types of such a device, the treatment modes of implementation and methods of implantation.
- the device comprising of polymeric substrate, such as a matrix for example, that is used as the device body, and drugs, and in some cases additional scaffolding materials, such as metals or additional polymers, and materials to enhance visibility and imaging.
- An implantable delivery device can be advantageous in providing release locally and over a prolonged period, where drug is released directly to the extracellular matrix (ECM) of the diseased area such as tumor, inflammation, degeneration or for symptomatic objectives, or to injured smooth muscle cells, or for prevention.
- ECM extracellular matrix
- One kind of drug is RNA, as disclosed above, and this system may be used/and or adapted to the CRISPR Cas system of the present invention.
- the modes of implantation in some embodiments are existing implantation procedures that are developed and used today for other treatments, including brachytherapy and needle biopsy. In such cases the dimensions of the new implant described in this invention are similar to the original implant. Typically a few devices are implanted during the same treatment procedure.
- a drag delivery implantable or insertable system including systems applicable to a cavity such as the abdominal cavity and/or any other type of administration in which the drug delivery system is not anchored or attached, comprising a biostable and/or degradable and/or bioabsorbable polymeric substrate, which may for example optionally be a matrix.
- insertion also includes implantation.
- the drug delivery system is preferably implemented as a "Loder” as described in US Patent Publication 20110195123.
- the polymer or plurality of polymers are biocompatible, incorporating an agent and/or plurality of agents, enabling the release of agent at a controlled rate, wherein the total volume of the polymeric substrate, such as a matrix for example, in some embodiments is optionally and preferably no greater than a maximum volume that permits a therapeutic level of the agent to be reached. As a non-limiting example, such a volume is preferably within the range of 0.1 m J to 1000 mm 3 , as required by the volume for the agent load.
- the Loder may optionally be larger, for example when incorporated with a device whose size is determined by functionality, for example and without limitation, a l iee joint, an intra-uterine or cervical ring and the like.
- the drug delivery system (for delivering the composition) is designed in some embodiments to preferably employ degradable polymers, wherein the main release mechanism is bulk erosion; or in some embodiments, non degradable, or slowly degraded polymers are used, wherein the main release mechanism is diffusion rather than bulk erosion, so that the outer part functions as membrane, and its internal part functions as a drug reservoir, which practically is not affected by the surroundings for an extended period (for example from about a week to about a few months). Combinations of different polymers with different release mechanisms may also optionally be used.
- the concentration gradient at the surface is preferably maintained effectively constant during a significant period of the total drug releasing period, and therefore the diffusion rate is effectively constant (termed "zero mode" diffusion).
- the term “constant” it is meant a diffusion rate that is preferably maintained above the lower threshold of therapeutic effectiveness, but which may still optionally feature an initial burst and/or may fluctuate, for example increasing and decreasing to a certain degree.
- the diffusion rate is preferably so maintained for a prolonged period, and it can be considered constant to a certain level to optimize the therapeutically effective period, for example the effective silencing period.
- the drug delivery system optionally and preferably is designed to shield the nucleotide based therapeutic agent from degradation, whether chemical in nature or due to attack from enzymes and other factors in the body of the subject,
- the drag delivery system as described in US Patent Publication 201 10195123 is optionally associated with sensing and/or activation appliances that are operated at and/or after implantation of the device, by non and/or minimally invasive methods of activation and/or acceleration/deceleration, for example optionally including but not limited to thermal heating and cooling, laser beams, and ultrasonic, including focused ultrasound and/or KF (radiofrequency) methods or devices.
- sensing and/or activation appliances that are operated at and/or after implantation of the device, by non and/or minimally invasive methods of activation and/or acceleration/deceleration, for example optionally including but not limited to thermal heating and cooling, laser beams, and ultrasonic, including focused ultrasound and/or KF (radiofrequency) methods or devices.
- KF radiofrequency
- the site for local delivery may optionally include target sites characterized by high abnormal proliferation of cells, and suppressed apoptosis, including tumors, active and or chronic inflammation and infection including autoimmune diseases states, degenerating tissue including muscle and nervous tissue, chronic pain, degenerative sites, and location of bone fractures and other wound locations for enhancement of regeneration of tissue, and injured cardiac, smooth and striated muscle.
- target sites characterized by high abnormal proliferation of cells, and suppressed apoptosis, including tumors, active and or chronic inflammation and infection including autoimmune diseases states, degenerating tissue including muscle and nervous tissue, chronic pain, degenerative sites, and location of bone fractures and other wound locations for enhancement of regeneration of tissue, and injured cardiac, smooth and striated muscle.
- the site for implantation of the composition, or target site preferably features a radius, area and/or volume that is sufficiently small for targeted local delivery.
- the target site optionally has a diameter in a range of from about 0.1 mm to about 5 cm.
- the location of the target site is preferably selected for maximum therapeutic efficacy.
- the composition of the drug delivery system (optionally with a device for implantation as described above) is optionally and preferably implanted within or in the proximity of a tumor en vironment, or the blood supply associated thereof.
- composition (optionally with the device) is optionally implanted within or in the proximity to pancreas, prostate, breast, liver, via the nipple, within the vascular system and so forth.
- the target location is optionally selected from the group consisting of (as non- limiting examples only, as optionally any site within the body may be suitable for implanting a Loder): 1. brain at degenerative sites like in Parkinson or Alzheimer disease at the basal ganglia, white and gray matter; 2. spine as in the case of amyotrophic lateral sclerosis (ALS); 3. uterine cervix to prevent HPV infection; 4. active and chronic inflammatory joints; 5. dermis as in the case of psoriasis; 6, sympathetic and sensoric nervous sites for analgesic effect; 7. Intra osseous implantation; 8. acute and chronic infection sites: 9. Intra vaginal; 10.
- inner ear auditory system, labyrinth of the inner ear, vestibular system; 1 1.
- insertion of the system is associated with injection of material to the ECM at the target site and the vicinity of that site to affect local pH and/or temperature and/or other biological factors affecting the diffusion of the drug and/or drug kinetics in the ECM, of the target site and the vicinity of such a site.
- the release of said agent could be associated with sensing and/or activation appliances that are operated prior and/or at and/or after insertion, by non and/or minimally invasive and/or else methods of activation and/or acceleration/deceleration, including laser beam, radiation, thermal heating and cooling, and ultrasonic, including focused ultrasound and/or RF (radiofrequency) methods or devices, and chemical activators.
- sensing and/or activation appliances that are operated prior and/or at and/or after insertion, by non and/or minimally invasive and/or else methods of activation and/or acceleration/deceleration, including laser beam, radiation, thermal heating and cooling, and ultrasonic, including focused ultrasound and/or RF (radiofrequency) methods or devices, and chemical activators.
- the drug preferably comprises a UNA, for example for localized cancer cases in breast, pancreas, brain, kidney, bladder, lung, and prostate as described below.
- UNA for example for localized cancer cases in breast, pancreas, brain, kidney, bladder, lung, and prostate as described below.
- R Ai many- drugs are applicable to be encapsulated in Loder, and can be used in association with this invention, as long as such drugs can be encapsulated with the Loder substrate, such as a matrix for example, and this system may be used and/or adapted to deliver the CRISPR Cas system of the present invention.
- RNAs may have therapeutic properties for interfering with such abnormal gene expression.
- Local delivery of anti apoptotic, anti inflammatory and anti degenerative drugs including small drags and macromolecules may also optionally be therapeutic.
- the Loder is applied for prolonged release at constant rate and/or through a dedicated device that is implanted separately. All of this may be used and/or adapted to the CRISPR Cas system of the present invention.
- psychiatric and cognitive disorders are treated with gene modifiers.
- Gene knockdown is a treatment option.
- Loders locally delivering agents to central nervous system sites are therapeutic options for psychiatric and cognitive disorders including but not limited to psychosis, bi -polar diseases, neurotic disorders and behavioral maladies.
- the Loders could also deliver locally drugs including small drugs and macromolecules upon implantation at specific brain sites. All of this may be used and/or adapted to the CRISPR Cas system of the present invention.
- silencing of innate and/or adaptive immune mediators at local sites enables the prevention of organ transplant rejection.
- Local delivery of R As and immunomodulating reagents with the Loder implanted into the transplanted organ and/or the implanted site renders local immune suppression by repelling immune cells such as CD 8 activated against the transplanted organ. All of this may be used/and or adapted to the CRISPR Cas system of the present invention.
- vascular growth factors including VEGFs and angiogenin and others are essential for neovascularization.
- Local delivery of the factors, peptides, peptidomimetics, or suppressing their repressors is an important therapeutic modality; silencing the repressors and local delivery of the factors, peptides, macromolecules and small drugs stimulating angiogenesis with the Loder is therapeutic for peripheral, systemic and cardiac vascular disease.
- the method of insertion may optionally already be used for other types of tissue implantation and/or for insertions and/or for sampling tissues, optionally without modifications, or alternatively optionally only with non-major modifications in such methods.
- Such methods optionally include but are not limited to brachytherapy methods, biopsy, endoscopy with and/or without ultrasound, such as ERCP, stereotactic methods into the brain tissue, Laparoscopy, including implantation with a laparoscope into joints, abdominal organs, the bladder wall and body cavities.
- a CRISPR-Cas system that targets nucleotide, e.g., trinucleotide repeats can be used to screen patients or patent samples for the presence of such repeats.
- the repeats can be the target of the RNA of the CRISPR-Cas system, and if there is binding thereto by the CRISPR-Cas system, that binding can be detected, to thereby indicate that such a repeat is present.
- a CRISPR-Cas system can be used to screen patients or patient samples for the presence of the repeat.
- the patient can then be administered suitable compound(s) to address the condition; or, can be administed a CRISPR-Cas system to bind to and cause insertion, deletion or mutation and alleviate the condition.
- nucleic acids, amino acids and proteins The invention uses nucleic acids to bind target DMA sequences. This is advantageous as nucleic acids are much easier and cheaper to produce than proteins, and the specificity can be varied according to the length of the stretch where homology is sought. Complex 3-D positioning of multiple fingers, for example is not required.
- polynucleotide “nucleotide”, “nucleotide sequence”, “nucleic acid” and “oligonucleotide” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucieotides or ribonucleotides, or analogs thereof.
- Polynucleotides may have any three dimensional structure, and may perform any function, known or unknown.
- the following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (niRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers.
- loci locus
- a polynucleotide may comprise one or more modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer.
- the sequence of nucleotides may be interrupted by non-nucleotide components.
- a polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.
- wild type is a term of the art understood by skilled persons and means the typical form of an organism, strain, gene or characteristic as it occurs in nature as distinguished from mutant or variant forms, A "wild type” can be a base line.
- variant should be taken to mean the exhibition of qualities that have a. pattern that deviates from what occurs in nature.
- non-naturally occurring or “engineered” are used interchangeably and indicate the involvement of the hand of man.
- nucleic acid molecules or polypeptides mean that the nucleic acid molecule or the polypeptide is at least substantially free from at least one other component with which they are naturally associated in nature and as found in nature.
- “Complementarity” refers to the ability of a nucleic acid to form hydrogen bond(s) with another nucleic acid sequence by either traditional Watson-Crick base pairing or other non-traditional types.
- a percent complementarity indicates the percentage of residues in a nucleic acid molecule which can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary).
- Perfectly complementary means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence.
- substantially complementary refers to a degree of complementarity that is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 30, 35, 40, 45, 50, or more nucleotides, or refers to two nucleic acids that hybridize under stringent conditions.
- stringent conditions for hybridization refer to conditions under which a nucleic acid having complementarity to a target sequence predominantly hybridizes with the target sequence, and substantially does not hybridize to non-target sequences. Stringent conditions are generally sequence-dependent, and vary depending on a number of factors. In general, the longer the sequence, the higher the temperature at which the sequence specifically hybridizes to its target sequence. Non-limiting examples of stringent conditions are described in detail in Tijssen (1993), Laboratory Techniques In Biochemistry And Molecular Biology-Hybridization With Nucleic Acid Probes Part I, Second Chapter “Overview of principles of hybridization and the strategy of nucleic acid probe assay", Elsevier, N.Y.
- complementary or partially complementary sequences are also envisaged. These are preferably capable of hybridising to the reference sequence under highly stringent conditions.
- relatively lo -stringency hybridization conditions are selected: about 20 to 25° C lower than the thermal melting point T m ).
- the T m is the temperature at which 50% of specific target sequence hybridizes to a perfectly complementary probe in solution at a defined ionic strength and pH.
- highly stringent washing conditions are selected to be about 5 to 15° C lower than the T m .
- moderately-stringent washing conditions are selected to be about 15 to 30° C lower than the T m .
- Highly permissive (very low stringency ) washing conditions may be as low as 50° C below the T m , allowing a high level of mis-matching between hybridized sequences.
- Other physical and chemical parameters in the hybridization and wash stages can also be altered to affect the outcome of a detectable hybridization signal from a specific level of homology between target and probe sequences.
- Preferred highly stringent conditions comprise incubation in 50% formamide, 5 X SSC, and 1% SDS at 42° C, or incubation in 5 SSC and 1% SDS at 65° C, with wash in 0.2xSSC and 0.1% SDS at 65° C.
- “Hybridization” refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner.
- the complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self- hybridizing strand, or any combination of these.
- a hybridization reaction may constitute a step in a more extensive process, such as the initiation of PGR, or the cleavage of a polynucleotide by an enzyme.
- a sequence capable of hybridizing with a given sequence is referred to as the "complement" of the given sequence.
- genomic locus or “locus” (plural loci) is the specific location of a gene or DMA sequence on a chromosome
- locus plural loci
- a “gene” refers to stretches of DNA or RNA that encode a polypeptide or an RNA chain that has functional role to play in an organism and hence is the molecular unit of heredity in living organisms.
- genes include regions which regulate the production of the gene product, whether or not such regulatory sequences are adjacent to coding and/or transcribed sequences.
- a gene includes, but is not necessarily limited to, promoter sequences, terminators, translational regulator ⁇ ' sequences such as ribosome binding sites and internal ribosome entry sites, enhancers, silencers, insulators, boundary elements, replication origins, matrix attachment sites and locus control regions.
- expression of a genomic locus or “gene expression” is the process by which information from a gene is used in the synthesis of a functional gene product.
- the products of gene expression are often proteins, but in non-protein coding genes such as rRNA genes or tRNA genes, the product is functional RNA.
- expression of a gene or nucleic acid encompasses not only cellular gene expression, but also the transcription and translation of nucleic acid(s) in cloning systems and in any other context.
- expression also refers to the process by which a polynucleotide is transcribed from a. DNA template (such as into and mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins.
- Transcripts and encoded polypeptides may be collectively referred to as "gene product.” If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell.
- polypeptide polypeptide
- peptide and protein
- the terms “polypeptide”, “peptide” and “protein” are used interchangeably herein to refer to polymers of amino acids of any length.
- the polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non amino acids.
- the terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.
- amino acid includes natural and/or unnatural or synthetic amino acids, including glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics.
- ⁇ domain or “protein domain” refers to a part of a protein sequence that may exist and function independently of the rest of the protein chain.
- sequence identity is related to sequence homology. Homology comparisons may be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs may calculate percent (%) homology between two or more sequences and may also calculate the sequence identity shared by two or more amino acid or nucleic acid sequences.
- the capping region of the dTALEs described herein have sequences that are at least 95% identical or share identity to the capping region amino acid sequences provided herein.
- Sequence homologies may be generated by any of a number of computer programs known in the art, for example BLAST or FASTA, etc.
- a suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A; Devereux et al, 1984, Nucleic Acids Research 12:387). Examples of other software than may perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 ibid - Chapter 18), FASTA (Atschul et al., 1990, J.
- BLAST and FASTA are available for offline and online searching (see Ausubel et al, 1999 ibid, pages 7-58 to 7-60). However it is preferred to use the GCG Bestfit program. Percentage (%) sequence homology may be calculated over contiguous sequences, i.e., one sequence is aligned with the other sequence and each amino acid or nucleotide in one sequence is directly compared with the corresponding amino acid or nucleotide in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such un gapped alignments are performed only over a relatively short number of residues.
- the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension. Calculation of maximum % homology therefore first requires the production of an optimal alignment, taking into consideration gap penalties.
- a suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (Devereux et al, 1 84 Nuc. Acids Research 12 p387). Examples of other software than may perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al,, 1999 Short Protocols in Molecular Biology, 4 th Ed. - Chapter 18), FAST A (Altschul et al, 1990 J. Mol. Biol. 403-410) and the GENEWORKS suite of comparison tools.
- BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999, Short Protocols in Molecular Biology, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program.
- a new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequences (see FEMS Microbiol Lett. 1999 174(2): 247-50; FEMS Microbiol Lett. 1999 177(1 ): 1 87-8 and the website of the National Center for Biotechnology information at the website of the National Institutes for Health). Although the final % homology may be measured in terms of identity, the alignment process itself is typicaliy not based on an all-or-nothing pair comparison.
- a scaled similarity score matrix is generally used that assigns scores to each pair -wise comparison based on chemical similarity or evolutionary distance.
- An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs.
- GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table, if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.
- percentage homologies may be calculated using the multiple alignment feature in DNASISTM (Hitachi Software), based on an algorithm, analogous to CLUSTAL (Higgins T3G & Sharp PM (1988), Gene 73(1), 237-244).
- DNASISTM Hagachi Software
- CLUSTAL Higgins T3G & Sharp PM (1988), Gene 73(1), 237-244
- % homology preferably % sequence identity.
- the software typicaliy does this as part of the sequence comparison and generates a numerical result.
- the sequences may also have deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a. functionally equivalent substance.
- Deliberate amino acid substitutions may be made on the basis of similarity in amino acid properties (such as polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues) and it is therefore useful to group amino acids together in functional groups.
- Amino acids may be grouped together based on the properties of their side chains alone. However, it is more useful to include mutation data as well.
- the sets of amino acids thus derived are likely to be conserved for structural reasons. These sets may be described in the form of a Venn diagram (Livingstone CD. and Barton G.J, (1993 ) "Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation" Comp l. Appl. Biosci.
- Embodiments of the invention include sequences (both polynucleotide or polypeptide) which may comprise homologous substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue or nucleotide, with an alternative residue or nucleotide) that may occur i.e., like-for-like substitution in the case of amino acids such as basic for basic, acidic for acidic, polar for polar, etc.
- Non-homologous substitution may also occur i.e., from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyriylalanine, thienylalanine, naphthylaianine and phenylgiycine.
- Z ornithine
- B diaminobutyric acid ornithine
- O norleucine ornithine
- pyriylalanine pyriylalanine
- thienylalanine thienylalanine
- naphthylaianine and phenylgiycine
- Variant amino acid sequences may include suitable spacer groups that may be inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or ⁇ -alanine residues.
- alkyl groups such as methyl, ethyl or propyl groups
- amino acid spacers such as glycine or ⁇ -alanine residues.
- a further form of variation which involves the presence of one or more amino acid residues in peptoid form, may be well understood by those skilled in the art.
- the peptoid form is used to refer to variant amino acid residues wherein the a-earbon substituent group is on the no residue's nitrogen atom rather than the a-carbon.
- amplification means any method employing a primer and a polymerase capable of replicating a target sequence with reasonable fidelity.
- Amplification may be carried out by natural or recombinant DNA polymerases such as TaqGoldTM, T7 DNA polymerase, Klenow fragment of E.coli DNA polymerase, and reverse transcriptase.
- a preferred amplification method is PGR.
- a vector is a tool that allows or facilitates the transfer of an entity from one environment to another. It is a replicon, such as a plasniid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
- a vector is capable of replication when associated with the proper control elements.
- the term "vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- Vectors include, but are not limited to, nucleic acid molecules that are single-stranded, double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g. circular); nucleic acid molecules that comprise DNA, RJS!A, or both; and other varieties of polynucleotides known in the art.
- plasmid refers to a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques.
- viral vector wherein virally-derived DNA or RJS!A sequences are present in the vector for packaging into a virus (e.g.
- Viral vectors also include polynucleotides carried by a virus for transfection into a host cell.
- Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g. bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
- Other vectors e.g., non-episomal mammalian vectors are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
- vectors are capable of directing the expression of genes to which they are operaiively- linked. Such vectors are referred to herein as "expression vectors.”
- Common expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
- Recombinant expression vectors can comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory elements, which may be selected on the basis l i l of the host cells to be used for expression, that is operativeiy-linked to the nucleic acid sequence to be expressed.
- "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulator ⁇ ' element(s) in a manner that allows for expression of the nucleotide sequence (e.g. in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host ceil).
- aspects of the invention relate to bicistronic vectors for chimeric RNA and Cas9.
- Bicistronic expression vectors for chimeric RNA and Cas9 are preferred.
- Cas9 is preferably driven by the CBh promoter.
- the chimeric RNA may preferably be dri ven by a Pol III promoter, such as a U6 promoter. Ideally the two are combined.
- the chimeric guide RNA typically consists of a 20bp guide sequence (Ns) and this may be joined to the tracr sequence (running from the first "U" of the lower strand to the end of the transcript). The tracr sequence may be truncated at various positions as indicated.
- the guide and tracr sequences are separated by the tracr-mate sequence, which may be GUUUUAGAGCUA. This may be followed by the loop sequence GAAA as shown. Both of these are preferred examples.
- Applicants have demonstrated Cas9-mediated indels at the human EMX1 and PVALB loci by SURVEYOR assays.
- ChiRNAs are indicated by their "+n" designation, and crRNA refers to a hybrid RNA where guide and tracr sequences are expressed as separate transcripts.
- chimeric RNA may also be called single guide, or synthetic guide RNA (sgRNA).
- the loop is preferably GAAA, but it is not limited to this sequence or indeed to being only 4bp in length.
- preferred loop forming sequences for use in hairpin structures are four nucleotides in length, and most preferably have the sequence GAAA . However, longer or shorter loop sequences may be used, as may alternative sequences.
- the sequences preferably include a nucleotide triplet (for example, AAA), and an additional nucleotide (for example C or G). Examples of loop forming sequences include CAAA and AAAG.
- a suitable vector can be introduced to a.
- the vector is introduced into an embryo by microinjection.
- the vector or vectors may be microinjected into the nucleus or the cytoplasm of the embry o, in some methods, the vector or vectors may be introduced into a cell by nu eofeet on.
- regulatory element is intended to include promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g. transcription termination signals, such as polyadenylation signals and poly-U sequences).
- promoters e.g. promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g. transcription termination signals, such as polyadenylation signals and poly-U sequences).
- IRES internal ribosomal entry sites
- regulatory elements e.g. transcription termination signals, such as polyadenylation signals and poly-U sequences.
- Regulatory elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences).
- a tissue-specific promoter may direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g. liver, pancreas), or particular cell types (e.g. lymphocytes). Regulatory elements may also direct expression in a temporal-dependent manner, such as in a cell-cycle dependent or developmental stage-dependent manner, which may or may not also be tissue or cell-type specific.
- a vector comprises one or more pol III promoter (e.g. 1, 2, 3, 4, 5, or more pol TIT promoters), one or more pol II promoters (e.g. 1, 2, 3, 4, 5, or more pol II promoters), one or more pol I promoters (e.g.
- pol I promoters I, 2, 3, 4, 5, or more pol I promoters), or combinations thereof.
- pol III promoters include, but are not limited to, IJ6 and H I promoters.
- pol II promoters include, but are not limited to, the retroviral Rous sarcoma vims (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, e.g., Boshart et al, Ceil, 41 :521 -530 (1985)], the SV40 promoter, the dihydro folate reductase promoter, the ⁇ -actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EFl a promoter.
- RSV Rous sarcoma vims
- CMV cytomegalovirus
- PGK phosphoglycerol kinase
- enhancer elements such as WPRE; CMV enhancers; the R-U5' segment in LTR of HTLV-I (Moi. Cell. Biol., Vol. 8(1 ), p. 466-472, 1988); SV40 enhancer; and the intron sequence between exons 2 and 3 of rabbit ⁇ -globin (Proc. Natl. Acad. Sci. USA., Vol. 78(3), p. 1527-31, 1981). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression desired, etc.
- a vector can be introduced into host cells to thereby produce transcripts, proteins, or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., clustered regularly interspersed short palindromic repeats (CRISPR) transcripts, proteins, enzymes, mutant forms thereof, fusion proteins thereof, etc.).
- CRISPR clustered regularly interspersed short palindromic repeats
- Vectors can be designed for expression of CR1SP transcripts (e.g. nucleic acid transcripts, proteins, or enzymes) in prokaryotic or eukaryotic ceils.
- CR1SPR transcripts can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors), yeast cells, or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990).
- the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
- Vectors may be introduced and propagated in a prokaryoie or prokaryotic cell
- a prokaryoie is used to amplify copies of a vector to be introduced into a eukaryotic cell or as an intermediate vector in the production of a vector to be introduced into a eukaryotic cell (e.g. amplifying a plasmid as part of a viral vector packaging system).
- a prokaryote is used to amplify copies of a vector and express one or more nucleic acids, such as to provide a source of one or more proteins for delivery to a host cell or host organism.
- Fusion vectors add a number of amino acids to a protein encoded therein, such as to the amino terminus of the recombinant protein.
- Such fusion vectors may serve one or more purposes, such as: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a Hgand in affinity purification.
- a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
- Such enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
- Example fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988.
- GST glutathione S-transferase
- suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET l id (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
- a vector is a yeast expression vector.
- yeast Saccharomyces cerivisae examples include pYepSecl (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa ( uijan and Herskowitz, 1982. Cell 30: 9.3.3- 943), pJRY88 (Sehultz et al., 1987. Gene 54: 1 13- 123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).
- a vector drives protein expression in insect cells using baculo virus expression vectors.
- Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith, et al, 1983. Mol. Cell Biol. 3 : 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).
- a vector is capable of driving expression of one or more sequences in mammalian cells using a mammalian expression vector.
- mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al, 1987. EMBO J. 6: 187-195),
- the expression vector's control functions are typically provided by one or more regulatory elements.
- commonly used promoters are derived from polyoma, adenovims 2, cytomegaiovims, simian viras 40, and others disclosed herein and known in the art.
- the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulator ⁇ ? elements are used to express the nucleic acid).
- tissue-specific regulatory elements are known in the art.
- suitable tissue-specific promoters include the albumin promoter (liver- specific; Pinkert, et al., 1987. Genes Dev. 1 : 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43 : 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J.
- a regulatory element is operably linked to one or more elements of a CRISPR system so as to drive expression of the one or more elements of the CRISPR system.
- CRISPRs Clustered Regularly Interspaced Short Palindromic Repeats
- SPIDRs Sacer Interspersed Direct Repeats
- SSRs interspersed short sequence repeats
- the CRISPR loci typically differ from other SSRs by the structure of the repeats, which have been termed short regularly spaced repeats (SRSRs) (Janssen et al., OMICS J. Integ. Biol, 6:23-33 [2002]: and Mojica et al., Moi. Microbiol, 36:244-246 [2000]).
- SRSRs short regularly spaced repeats
- the repeats are short, elements that occur in clusters that are regularly spaced by unique intervening sequences with a substantially constant lengt (Mojica et al, [2000], supra).
- CRISPR loci have been identified in more than 40 prokaryotes (See e.g., Jansen et al, Moi.
- the CRISPR enzyme is part of a fusion protein comprising one or more heterologous protein domains (e.g. about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more domains in addition to the CRISPR enzyme).
- a CRISPR enzyme fusion protein may comprise any additional protein sequence, and optionally a linker sequence between any two domains.
- Examples of protein domains thai may be fused to a CRISPR enzyme include, without limitation, epitope tags, reporter gene sequences, and protein domains having one or more of the following activities: methylase activity, demethylase activity, transcription activation activity, transcription repression activity, transcription release factor activity, histone modification activity, RNA cleavage activity and nucleic acid binding activity.
- epitope tags include histidine (His) tags, V5 tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags.
- Exampl es of reporter genes include, but are not limited to, glutathione-S-transferase (GST), horseradish peroxidase (HRP), chloramphenicol acetyltransferase (CAT) beta-galaetosidase, beta- glucuronidase, luciferase, green fluorescent protein (GFP), HcRed, DsRed, cyan fluorescent protein (CFP), yellow fluorescent protein (YEP), and autofluorescent proteins including blue fluorescent protein (BFP).
- GST glutathione-S-transferase
- HRP horseradish peroxidase
- CAT chloramphenicol acetyltransferase
- beta-galaetosidase beta-galaetosidase
- beta- glucuronidase beta-galaetosidase
- luciferase green fluorescent protein
- GFP green fluorescent protein
- HcRed HcRed
- a CRISPR enzyme may be fused to a gene sequence encoding a protein or a fragment of a protein that bind DNA molecules or bind other cellular molecules, including but not limited to maltose binding protein (MBP), S-tag, Lex A DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP 16 protein fusions. Additional domains that may form part of a fusion protein comprising a CRISPR enzyme are described in US201 10059502, incorporated herein by reference. In some embodiments, a tagged CRISPR. enzyme is used to identify the location of a target sequence.
- MBP maltose binding protein
- DBD Lex A DNA binding domain
- HSV herpes simplex virus
- a CRISPR enzyme may form a component of an inducible system.
- the inducible nature of the system would allow for spatiotemporal control of gene editing or gene expression using a form of energy.
- the form, of energy may include but is not limited to electromagnetic radiation, sound energy, chemical energy and thermal energy.
- inducible system examples include tetracycline inducible promoters (Tet-On or Tet-Off), small molecule two-hybrid transcription activations systems (FKBP, ABA, etc), or light inducible systems (Phytochrome, LOV domains, or cryptochromej.
- the CRISPR enzyme may be a part of a Light Inducible Transcriptional Effector (LITE) to direct changes in transcriptional activity in a sequence-specific manner.
- the components of a light may include a CRISPR enzyme, a. light -responsive cytochrome heterodimer (e.g. from Arabidopsis thaliana), and a transcriptional activation/repression domain.
- LITE Light Inducible Transcriptional Effector
- the invention provides for methods of modifying a target polynucleotide in a eukaryotic cell, which may be in vivo, ex vivo or in vitro.
- the method comprises sampling a cell or population of ceils from a human or non- human animal, and modifying the cell or cells. Culturing may occur at any stage ex vivo.
- the cell or cells may even be re-introduced into the non-human animal or plant. For re-introduced cells it is particularly preferred that the ceils are stem cells.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- the invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the polynucleotide such that said binding results in increased or decreased expression of said polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within said polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence. Similar considerations and conditions apply as above for methods of modifying a target polynucleotide.
- the C ISPR complex may comprise a CRISPR enzyme coniplexed with a guide sequence hybridized or hybridizable to a target sequence, wherein said guide sequence may be linked to a tracr mate sequence which in turn may hybridize to a tracr sequence. Similar considerations and conditions apply as above for methods of modifying a target polynucleotide.
- kits containing any one or more of the elements disclosed in the above methods and compositions. Elements may be provided individually or in combinations, and may be provided in any suitable container, such as a vial, a bottle, or a tube. In some embodiments, the kit includes instructions in one or more languages, for example in more than one language.
- a kit comprises one or more reagents for use in a process utilizing one or more of the elements described herein.
- Reagents may be provided in any suitable container.
- a kit may provide one or more reaction or storage buffers.
- Reagents may be provided in a form that is usable in a particular assay, or in a form that requires addition of one or more other components before use (e.g. in concentrate or lyophilized form).
- a buffer can be any buffer, including but not limited to a sodium carbonate buffer, a sodium bicarbonate buffer, a borate buffer, a Tris buffer, a MOPS buffer, a HEPES buffer, and combinations thereof.
- the buffer is alkaline.
- the buffer has a pH from about 7 to about 10.
- the kit comprises one or more oligonucleotides corresponding to a guide sequence for insertion into a vector so as to operably link the guide sequence and a regulatory element, hi some embodiments, the kit comprises a homologous recombination template polynucleotide.
- the kit comprises one or more of the vectors and/or one or more of the polynucleotides described herein. The kit may advantageously allows to provide all elements of the systems of the invention.
- Example 1 CRISPR-Cas9 system as a too! for editing disease-causing nucleotide repeat expansions in the human genome
- the invention involves the development and application of the CRISPR-Cas9 system as a tool for editing disease-causing nucleotide repeat expansions in the human genome ( Figure 1).
- Applicants provide evidence that the sequences, piasmids and/or viral vectors that Applicants have designed and tested facilitate genomic editing of nucleotide repeat sequences at a number of disease-linked genomic loci including those associated with CAG triplet repeat disorders (i.e. Polyglutamine diseases), Fragile X and Fragile X-associated tremor/ataxia syndrome (FXTAS).
- Applicants describe the design and application of CRI8PR-Cas9 to the mammalian brain using Adeno Associated Vims (AAV) as a vector.
- AAV Adeno Associated Vims
- Target sequences are chosen based on three primary criteria: i) the presence of a protospacer adjacent motif (PAM) sequence upstream and downstream from the nucleotide repeat, 2) a low predicted off-target potential of the 20-nucieotide target sequence associated with the identified PAM motifs (bioinformatics analysis based on algorithms developed in the Zhang laboratory) the proximity of the target sequence (within 100 nucleotides) to the nucleotide repeat expansion sequence.
- PAM protospacer adjacent motif
- FXTAS Fragile X Tremor Ataxia
- ALS Amyotrophic Lateral Sclerosis
- Oculopharyngeal muscular dystrophy PABPN1 coding
- SCA6 Spinocerebellar ataxia type-6 (SCA6) CACNA 1A coding
- SCA7 Spinocerebellar ataxia type-7
- DPLA Dentatorubral-pal!ido!uysian atrophy
- SBMA Spinobuibar muscular atrophy
- the pX26() vector system promotes the expression of the CRISPR target guide RNA under the control of a U6 RNA polymerase III promoter, a CRISPR transactivating RNA (tracrRNA) under the control of an HI RNA polymerase III promoter and a nuclear-targeted, codon optimized S.
- pyogenes Cas9 gene under the control of a Chicken beta-aciin RNA polymerase II promoter.
- the screening process involves the transient expression of target guide sequences in human cell lines (i.e. HEK293, HeLa or HT1080) followed by genomic DNA extraction and PGR amplification to assess the CRISPR-Cas9- mediated excision of the nucleotide repeat sequence ( Figure 2a).
- the region around the intended target site is amplified by PGR, and the PGR amplicon cloned and sequenced. The results from these analyses are shown in Figures 2b-5.
- ATXN1 editing HT1080 cells were trans fected with a plasmid encoding SpCas9 plus/minus plasmids encoding guide RNAs for editing trinucleotide CAG repeats in the ATXN1 coding sequence.
- the plasmids also permitted selection of transfected cells using puromycin. After five days of selection and growth, >90% of the cell population contained an edited ATXN1 locus lacking the CAG repeat.
- Figure 9a shows that the genomic locus was shortened by approximately 150bp in cells which received the PS2 and PS5 plasmids (see Figure 2b).
- Figure 9b shows that steady-state levels of A TXN1 transcripts were significantly reduced in cells receiving PS2+PS5 or PS1+PS5. Expression of SpCas9 alone did not affect ATXN1 transcript levels.
- DMPK editing A similar approach was used for editing CTG repeats in the DMPK non-coding 3 '-UTR. Guide sequences upstream and downstream of the repeats were designed and expressed in HT1080 cells. Figure 10a shows that the genomic locus was shortened when the cells were co-transfected with plasmids encoding Cas9 and the guide sequences. The same result was also seen in primary skin fibroblasts obtained from a DM1 myotonic dystrophy patient who had around 550 CTG repeats.
- the fibroblasts were transfected with the plasmids via effectroporation, and Figure 10c shows that the CTG expansion is effectively excised using the Cas9 CRJSPR system. At least 1500nt of sequence were excised from the DMPK locus in the genome. DMPK protein expression was unaffected.
- the non-coding RNA components of the CR1SR/Cas9 system are subcloned into a second AAV shuttle vector.
- CRISPR-Cas9 guide target sequences can be expressed individually or as part of an array format where multiple guide target sequences (gcRNA) are produced intracellufarly under the control of an RNA polymerase type ⁇ promoter (i.e. U6 or HI RNA).
- the non-coding tracrRNA can be expressed from the same AAV shuttle vector using a pol ill promoter.
- the gcRNA and the tracrRNA can also be expressed as a chimeric molecule, with the gcRNA and tracrRNA sequences fused as a single transcript (i.e.
- RNA polymerase type III promoter i.e. U6 or HI RNA.
- the non-coding RNA CRISPR-Cas9 components described above are small enough that when cloned into AAV shuttle vectors sufficient space remains to include other elements such as reporter genes, antibiotic resistance genes or other sequences, which are cloned into the AAV shuttle plasmid using standard methods.
- the iTR-SpCas9 AAV and the AAV.guide.taCRISPR are produced following previously described AAV purification protocols and simultaneously delivered in vivo. This can be achieved, for example, by combining both viruses at specified ratios in the same buffer prior to infusion. This results in the transduction of targeted tissue with both the Cas9 nuclease and the non-coding RNAs required to guide the nuclease to the targeted genomic locus.
- the diverse tissue tropism of AAV capsids, or synthetically modified AAV capsids provides an opportunity to deliver AAV CRISPR-Cas9 components effectively to different tissues. Although a two-virus system is described, a three-virus system can also be used to deliver these components into target tissues. This could be desirable, for example, when several non-coding target guide RNAs need to be delivered at different times.
- FIG. 1 1a shows a system where an AAV9 virus encodes SaCas9 (with a N-terminal NLS, under the control of a CMV promoter) and synthetic guide RNA (s).
- this vector can be delivered with a second vector encoding, for example a transduction marker (e.g. EGFP, as shown in Figure 1 1 a) or a template donor if Homologous recombination is desired.
- a transduction marker e.g. EGFP, as shown in Figure 1 1 a
- This experiment used the transgenic mouse HSA'" R model of DM1 which has an expanded CTG repeat in a human skeletal actin (hACTAl ) transgene.
- mice Six-weeks old mice received an intrajugular infusion (systemic delivery, targeting primarily muscle and liver) of AAV9 coding either for an EGFP marker or for SaCas9 and guide sequences targeting the CTG expansion. Fluorescence in muscle biopsy ( Figure 1 lb) confirms that the vector effectively targets muscle tissue.
- the PGR results for muscle tissue in Figure 1 lc show that CTG repeat region is excised in mice receiving SaCas9 and the sgRNA, but not in mice receiving the EGFP -coding vector or in mice receiving SaCas9 in combination with a control sgRNA whose sequence had been scrambled.
- the HSA LR model shows nuclear foci due to retention of transcripts, but FISH analysis showed a reduction in nuclear foci in treated mice.
- SNPs single nucleotide polymorphisms
- PAM de novo protospacer adjacent motifs
- Irs Figure 8 Applicants describe the concept of CRISP -Cas9-mediated allele-specifie targeting.
- a SNP X to a G, where X is any nucleotide but G
- This one nucleotide difference can be used to design a guide sequence (gray Ns) to target the inactivation of the beta allele using the SpCas9.
- Applicants provide one example of this strategy in Figure 8b. However, this strategy can be done for any other PAM motif of any other candidate Cas9.
- a CAG repeat nucleotide expansion in the ATXN2 gene underlies the dominantly inherited neurodegenerative disease Spinocebellar ataxia type-2 (SCA2).
- SCA2 Spinocebellar ataxia type-2
- the rs695871 SNP G to a C
- the SNP results in the formation of a 5'-NGG-3' PAM (underlined) that can be targeted using SpCas9 to preferentially inactivate the mutant ATX 2 allele carrying the CAG expansion, while maintaining normal activity from the second allele lacking the CAG expansion.
- mCherry expression was only inhibited in cells that received the AS- sgRNA constructs and not control.
- EGFP expression was similar in cells that received control or C-allele specific (AS-sgRNA) guide RNA CR1SPR/Cas9.
- Example 3 Design of a SelflNaciivaiing CRISPR-Cas9 system, e.g., to limit and/or prevent unnecessary long-term, chronic expression of the Cas nuclease gene— to control Cos nuclease expression.
- the invention also provides a method for the seif-inactivation of the CRISPR-Cas9 system as a means to limit the duration of its activity and/or expression in targeted cells.
- Figure 13 depicts one aspect of a Self- Inactivating CRISPR-Cas9 system
- Figure 14 depicts an exemplar self-inactivating CRISPR-Cas9 system for a chimeric tandem array transcript specific to the ATXN1 locus.
- CRISPR-Cas9 human genome editing via CRISPR-Cas9 requires, at most, two Cas9 molecules (targeting genomic sites on two different alleles).
- delivery of CRISRP/Cas9 systems that result in sustained cellular expression of the Cas9 gene and/or its non-coding RNA components is unnecessary to successfully achieve editing of disease-causing mutations.
- sustained CRlSPR ⁇ Cas9 activity could lead to undesirable off-target effects at unintended genomic sites, which over time, could be deleterious for the host cell, tissue or organism.
- Applicants have engineered a Self-Inactivating CRISPR-Cas9 system (SIN-CC9) that relies on the use of a non-coding guide target sequences complementary to unique sequences present: i) within the promoter driving expression of the non-coding RNA elements, ii) within the promoter driving expression of the Cas9 gene, iii) within lOObp of the ATG translational start codon in the Cas9 coding sequence, iv) within the inverted terminal repeat of the AAV genome.
- the "self-inactivating" guide RNAs can be expressed singly or in array format to achieve inactivation of the CRISPR-Cas9 system.
- Figure 12 provides an exemplary self-inactivating construct that comprises a cloning cassette optionally flanked by an inverted terminal repeat (iTR) on each of the 5' and 3' ends of the cassette, with the cassette further comprising a Pol III promoter driving the sgRNAs and a Pol II promoter driving Cas9.
- a "self-inactivating" sgRNA (whose target sites are shown as red lines) can be expressed singly or in tandem array format from 1 up to 4 different guide sequences processed from one chimeric Pol III transcript.
- the black brackets depict the expected DNA excision resulting from targeted double strand breaks when at least two different "self- inactivating" sgRNAs are expressed in tandem arrays.
- a wide selection of self-inactivating target sequences are available for use in a SaCas9 system, including, but not limited to, inactivating target sequences in Cas9, CMV, U6, modU6, ITR and the like.
- Pol III promoters may be selected trom, but are not limited to, the U6 or HI promoters.
- Pol II promoters may be selected from, but are not limited to, those proomoters provided throughout the description, including the ubiquitous and cell-type specific promoters.
- non-targeting nucleotides to the 5 " end of the "sell- inactivating" guide RNA can be used to delay its processing and'Or modify its efficiency as a means of ensuring editing at the targeted genomic locus prior to CRISPR-Cas9 shutdown.
- Example 4 U6-driven tandem guide RNAs deliver two functional sgKNAs; Optimization of tandem sgRNA scaffold architecture; Processing of tandem sgRNAS into individual submits occurs; Targeting Cas9 against itself fSelf- Nactivatins: SIN).
- Using pooled delivery of independently transcribed sgRNAs is stochastic in nature and may be less reproducible than a single vector system; for instance, in applications where target saturation may not be desired or achievable.
- Many endogenous microbial CRISPR systems naturally occur as a single-promoter driven array of direct repeats interspaced by protospacers, which are transcribed as a single transcript prior to their processing into individual mature erRNAs.
- the chimeric sgRNA system works much more efficiently than the native crRNA:tracrRN duplex, Applicants sought to develop a system by which a single promoter may drive the expression of multiple sgRNAs arranged in tandem, similar to the native microbial CRISPR loci.
- structurally stable sgRNA scaffolds may be more likely to fold into independent, functionally active units when multiple units are transcribed together in the same transcript.
- Applicants inserted an 8-nt linker between tandem adjacent sgRNAs; for each the invariant sgRNA scaffold (non-guide region), Applicants used either pairs of original sp85 sgRNA or scaffolds with stabilized distal hairpins. Strikingly, Applicants observed that when the tandem synthetic guide RNAs (tsgRNAs) targeted closely approximated genomic loci previously shown to induce indels with Cas9 nickase, the stabilized scaffolds were able to induce indels at frequencies similar to those induced by co- transfected individual sgRNAs.
- tsgRNAs when paired with wild-type Cas9 nuclease, tsgRNAs were similarly able to induce genomic microdeietions in the human EMX1 locus at levels comparable to multiplexed, individual sgRNAs. Having shown that sgRNAs transcribed in tandem are able to simultaneously target two genomic loci, Applicants next sought to determine the optimal linker for connecting the adjacent guide-scaffolds. Applicants designed tsgRNAs using linker sequences of varying lengths in a genomic microdeletion assay with two sgRNAs.
- tandem sgRNAs that carried the same guide in either the first or second position.
- Subsequent Northern blot analyses of transfected cells showed three distinct RNA species, corresponding to a 200+ nt (likely unprocessed tandem RNA transcript), a -140 nt transcript (consistent with premature transcriptional termination signaled by the poly-U tract in the second scaffold), and a -100 nt fully processed sgRNA ( Figure 15B).
- Pairing of sequence-divergent scaffolds results in better second spacer activity:
- an assay for assessing its activity by fluorescence cytometry By targeting the second guide against Cas9 itself in a plasmid expressing Cas9-2A-GFP, Applicants assessed indel activity by measuring the fluorescence traction and intensity of transiected cells (Figure 16A).
- sgRNA scaffolds that are less likely to base-pair with each other could reduce interactions between the pair and aid individual folding.
- Applicants designed a set of twelve distinct sgRNA scaffolds, each with the first guide targeting GRTN2B and the second targeting Cas9, and performed a pair-wise comparison of all scaffold combinations.
- Subsequent f!ow- cytometric analyses identified five potential candidate sgRNA scaffolds that significantly reduced both the MFl of the GFP-positive fraction as well as the overall percentage of GFP- positive cells; the levels of reductions are similar to those obtained by transfecting singly transcribed Cas9-targeting sgRNA (Figure 16C).
- Tandem-arrayed sgRNAs represents a potentially useful approach for co- delivery of two sgRNAs in a single RNA transcript. While some guide sequences appear to function well in the second position, optimization of the sgRNA architecture to maximize inter- scaffold sequence divergence and improve structural stability can aid processing and activity of tandem sgRNAs. And, sgRNAs can be designed to so that the system is SIN.
- Example 5 CRJSPR/Cas9 in vivo genome editing efficacy and therapeutic benefit in a polyglutamine disease mouse model.
- This Example is to be read in conjunction with Figure 18, wherein Applicants provide evidence of in vivo CRISPR/Cas9 genome editing efficacy and therapeutic benefit in a polyglutamine disease mouse model.
- the Example demonstrates gene editing of an expanded CAG trinucleotide repeat using AAV-deiivered CRISPR/Cas9 (AAV-CC9) in a mouse model of Spinocerebellar ataxia type-1 (BOS transgenic mouse line) using the small Cas9 nuclease from Staphylococcus aureus (SaCas9).
- Applicants developed a single AAV vector thai expresses a CMV promoter-driven, HA-tagged SaCas9 and contains a U6 promoter cassette that drives expression of a multimeric sgRNA transcript (see Figure 18A).
- this non-coding RNA transcript is processed to release two individual sgRNAs that complex with SaCas9 to mediate gene editing, CTRL - AAV- CC9 and ATXN l -AAV-CC9 vectors were generated carrying control (targeting the Renilla reniformis Luciferase gene) and ' ⁇ - ⁇ sgRNAs and delivered into the cerebellum of adult SCA1/B05 mice using a stereotactic apparatus.
- SCA1/B05 transgenic mice cany numerous copies (>20) of a mutant human ATXNl transgene that contains 84 CAG nucleotide repeats and is almost exclusively expressed in cerebellar Purkinje cells (Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS, Duvick LA, Zoghbi HY, Orr HT.
- SCA1 transgenic mice a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 1995 Sep 22;82(6):937-48. PubMed PMID: 7553854).
- mice injected with ⁇ 23 ⁇ 47V/-AAV-CC9 performed better in the rotarod apparatus when compared to non-injected or control-injected SCA1/B05 mice.
- This impact in phenotypic progression provides the extent of mutant ATXNl transgene inactivation observed in injected SCA1/B05 mice; demonstrates the efficacy of the invention; and provides a surprising and superior result as such a result was not previously achievable through other genome editing techniques.
- Adeno-associated virus type 4 targets ependyma and astrocytes in the subventricular zone and RMS. Gene Ther, 2005. 12(20): p. 1503-8.
- TALE transcription activator-like effector
- TALE transcription activator-like effector
- Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol, 2000. 74(8): p. 3852-8.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Neurology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Environmental Sciences (AREA)
- Neurosurgery (AREA)
- Immunology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Orthopedic Medicine & Surgery (AREA)
Abstract
Description
Claims
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112016013547A BR112016013547A2 (en) | 2013-12-12 | 2014-12-12 | COMPOSITIONS AND METHODS OF USE OF CRISPR-CAS SYSTEMS IN NUCLEOTIDE REPEAT DISORDERS |
KR1020167018646A KR20160097338A (en) | 2013-12-12 | 2014-12-12 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
AU2014362245A AU2014362245A1 (en) | 2013-12-12 | 2014-12-12 | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
CA2932436A CA2932436A1 (en) | 2013-12-12 | 2014-12-12 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
EP14821429.9A EP3080257A1 (en) | 2013-12-12 | 2014-12-12 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
EP19204106.9A EP3653704A1 (en) | 2013-12-12 | 2014-12-12 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
MX2016007325A MX2016007325A (en) | 2013-12-12 | 2014-12-12 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders. |
JP2016539210A JP6625055B2 (en) | 2013-12-12 | 2014-12-12 | Compositions and methods of using the CRISPR-CAS system in nucleotide repeat disorders |
CN201480072803.6A CN106103705A (en) | 2013-12-12 | 2014-12-12 | Nucleotide repeats compositions and the using method of CRISPR cas system in obstacle |
IL246116A IL246116B (en) | 2013-12-12 | 2016-06-08 | Crispr-cas systems and their uses |
US15/179,941 US20160354487A1 (en) | 2013-12-12 | 2016-06-10 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
US16/262,905 US11591581B2 (en) | 2013-12-12 | 2019-01-30 | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
US18/107,108 US20230365950A1 (en) | 2013-12-12 | 2023-02-08 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361915150P | 2013-12-12 | 2013-12-12 | |
US61/915,150 | 2013-12-12 | ||
US201462010879P | 2014-06-11 | 2014-06-11 | |
US201462010888P | 2014-06-11 | 2014-06-11 | |
US62/010,888 | 2014-06-11 | ||
US62/010,879 | 2014-06-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/179,941 Continuation-In-Part US20160354487A1 (en) | 2013-12-12 | 2016-06-10 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015089351A1 true WO2015089351A1 (en) | 2015-06-18 |
Family
ID=52273577
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/069897 WO2015089351A1 (en) | 2013-12-12 | 2014-12-12 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
PCT/US2014/069902 WO2015089354A1 (en) | 2013-12-12 | 2014-12-12 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/069902 WO2015089354A1 (en) | 2013-12-12 | 2014-12-12 | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
Country Status (12)
Country | Link |
---|---|
US (5) | US10851357B2 (en) |
EP (4) | EP3653703A1 (en) |
JP (2) | JP6625055B2 (en) |
KR (2) | KR20160097338A (en) |
CN (2) | CN106029880A (en) |
AU (2) | AU2014362245A1 (en) |
BR (2) | BR112016013520A2 (en) |
CA (2) | CA2932472A1 (en) |
IL (2) | IL246118A0 (en) |
MX (2) | MX2016007326A (en) |
SG (2) | SG10201804973TA (en) |
WO (2) | WO2015089351A1 (en) |
Cited By (183)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3009511A2 (en) | 2015-06-18 | 2016-04-20 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
WO2016086197A1 (en) | 2014-11-25 | 2016-06-02 | The Brigham And Women's Hospital, Inc. | Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease |
WO2016094867A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Protected guide rnas (pgrnas) |
WO2016094872A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
WO2016100974A1 (en) | 2014-12-19 | 2016-06-23 | The Broad Institute Inc. | Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing |
WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
WO2016106244A1 (en) | 2014-12-24 | 2016-06-30 | The Broad Institute Inc. | Crispr having or associated with destabilization domains |
WO2016108926A1 (en) | 2014-12-30 | 2016-07-07 | The Broad Institute Inc. | Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
JP2016536021A (en) * | 2013-11-07 | 2016-11-24 | エディタス・メディシン,インコーポレイテッド | CRISPR-related methods and compositions with governing gRNA |
WO2016196887A1 (en) | 2015-06-03 | 2016-12-08 | Board Of Regents Of The University Of Nebraska | Dna editing using single-stranded dna |
WO2016205749A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2016205764A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2016205825A1 (en) | 2015-06-19 | 2016-12-22 | Precision Biosciences, Inc. | Self-limiting viral vectors encoding nucleases |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9546384B2 (en) | 2013-12-11 | 2017-01-17 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse genome |
WO2017024111A1 (en) * | 2015-08-04 | 2017-02-09 | The University Of Chicago | Inhibitors of cacna1a/alpha1a subunit internal ribosomal entry site (ires) and methods of treating spinocerebellar ataxia type 6 |
EP3142706A1 (en) * | 2014-05-16 | 2017-03-22 | Vrije Universiteit Brussel | Genetic correction of myotonic dystrophy type 1 |
JP2017510269A (en) * | 2014-03-18 | 2017-04-13 | サンガモ バイオサイエンシーズ, インコーポレイテッド | Methods and compositions for modulating zinc finger protein expression |
WO2017062983A1 (en) * | 2015-10-09 | 2017-04-13 | The Children's Hospital Of Philadelphia | Compositions and methods for treating huntington's disease and related disorders |
WO2017062605A1 (en) * | 2015-10-06 | 2017-04-13 | The Children's Hospital Of Philadelphia | Compositions and methods for treating fragile x syndrome and related syndromes |
WO2017070605A1 (en) | 2015-10-22 | 2017-04-27 | The Broad Institute Inc. | Type vi-b crispr enzymes and systems |
WO2017069958A2 (en) | 2015-10-09 | 2017-04-27 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
WO2017075478A2 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by use of immune cell gene signatures |
WO2017075465A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3 |
WO2017075451A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1 |
WO2017074788A1 (en) | 2015-10-27 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for targeting cancer-specific sequence variations |
WO2017083368A1 (en) * | 2015-11-12 | 2017-05-18 | Pfizer Inc. | Tissue-specific genome engineering using crispr-cas9 |
WO2017087708A1 (en) | 2015-11-19 | 2017-05-26 | The Brigham And Women's Hospital, Inc. | Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity |
WO2017091630A1 (en) * | 2015-11-23 | 2017-06-01 | The Regents Of The University Of California | Tracking and manipulating cellular rna via nuclear delivery of crispr/cas9 |
WO2017106657A1 (en) | 2015-12-18 | 2017-06-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2017109757A1 (en) * | 2015-12-23 | 2017-06-29 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis and/or frontal temporal lobular degeneration |
WO2017136335A1 (en) * | 2016-02-01 | 2017-08-10 | The Regents Of The University Of California | Self-inactivating endonuclease-encoding nucleic acids and methods of using the same |
KR101777367B1 (en) * | 2015-09-09 | 2017-09-12 | 연세대학교 산학협력단 | Editing CGG triplet repeats using Endonuclease for Targeting Fragile X mental retardation 1 |
EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
WO2017178590A1 (en) * | 2016-04-14 | 2017-10-19 | Université de Lausanne | Treatment and/or prevention of dna-triplet repeat diseases or disorders |
WO2017184768A1 (en) | 2016-04-19 | 2017-10-26 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2017184786A1 (en) | 2016-04-19 | 2017-10-26 | The Broad Institute Inc. | Cpf1 complexes with reduced indel activity |
WO2017189308A1 (en) | 2016-04-19 | 2017-11-02 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
WO2017216392A1 (en) * | 2016-09-23 | 2017-12-21 | Dsm Ip Assets B.V. | A guide-rna expression system for a host cell |
WO2018002762A1 (en) * | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis (als) and other related disorders |
WO2018002812A1 (en) * | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of myotonic dystrophy type 1 (dm1) and other related disorders |
WO2018005873A1 (en) | 2016-06-29 | 2018-01-04 | The Broad Institute Inc. | Crispr-cas systems having destabilization domain |
WO2018035388A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
WO2018035387A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
WO2018049025A2 (en) | 2016-09-07 | 2018-03-15 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses |
IT201600102542A1 (en) * | 2016-10-12 | 2018-04-12 | Univ Degli Studi Di Trento | Plasmid and lentiviral system containing a self-limiting Cas9 circuit that increases its safety. |
WO2018067991A1 (en) | 2016-10-07 | 2018-04-12 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
WO2018078131A1 (en) * | 2016-10-28 | 2018-05-03 | Genethon | Compositions and methods for the treatment of myotonic dystrophy |
WO2018078134A1 (en) * | 2016-10-28 | 2018-05-03 | Genethon | Compositions and methods for the treatment of myotonic dystrophy |
US9963719B1 (en) | 2016-12-05 | 2018-05-08 | Editas Medicine, Inc. | Systems and methods for one-shot guide RNA (ogRNA) targeting of endogenous and source DNA |
JP2018522072A (en) * | 2015-07-31 | 2018-08-09 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Modified cells and methods of treatment |
WO2018154439A1 (en) * | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of spinocerebellar ataxia type 1 (sca1) and other spinocerebellar ataxia type 1 protein (atxn1) gene related conditions or disorders |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
WO2018191520A1 (en) | 2017-04-12 | 2018-10-18 | The Broad Institute, Inc. | Respiratory and sweat gland ionocytes |
WO2018191553A1 (en) | 2017-04-12 | 2018-10-18 | Massachusetts Eye And Ear Infirmary | Tumor signature for metastasis, compositions of matter methods of use thereof |
WO2018195486A1 (en) | 2017-04-21 | 2018-10-25 | The Broad Institute, Inc. | Targeted delivery to beta cells |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
WO2019005884A1 (en) | 2017-06-26 | 2019-01-03 | The Broad Institute, Inc. | Crispr/cas-adenine deaminase based compositions, systems, and methods for targeted nucleic acid editing |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
EP3461337A1 (en) * | 2015-05-06 | 2019-04-03 | Snipr Technologies Limited | Altering microbial populations & modifying microbiota |
WO2019071054A1 (en) | 2017-10-04 | 2019-04-11 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
EP3374494A4 (en) * | 2015-11-11 | 2019-05-01 | Coda Biotherapeutics, Inc. | Crispr compositions and methods of using the same for gene therapy |
WO2019092505A1 (en) * | 2017-11-09 | 2019-05-16 | Casebia Therapeutics Llp | Self-inactivating (sin) crispr/cas or crispr/cpf1 systems and uses thereof |
CN109790551A (en) * | 2016-06-16 | 2019-05-21 | 奥斯陆大学医院Hf | Improved gene editing |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10337001B2 (en) | 2014-12-03 | 2019-07-02 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
US10385359B2 (en) | 2013-04-16 | 2019-08-20 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
RU2699670C1 (en) * | 2018-11-16 | 2019-09-09 | Объединенный Институт Ядерных Исследований (Оияи) | Method for increasing the frequency of formation of double-strand breaks of dna in human cells under action of ionizing radiations under conditions of radio modifiers |
US10428319B2 (en) | 2017-06-09 | 2019-10-01 | Editas Medicine, Inc. | Engineered Cas9 nucleases |
US10435685B2 (en) * | 2014-08-19 | 2019-10-08 | Pacific Biosciences Of California, Inc. | Compositions and methods for enrichment of nucleic acids |
WO2019204585A1 (en) | 2018-04-19 | 2019-10-24 | Massachusetts Institute Of Technology | Single-stranded break detection in double-stranded dna |
WO2019204750A1 (en) * | 2018-04-20 | 2019-10-24 | Cellino Biotech, Inc. | Directed cell fate specification and targeted maturation |
US10457960B2 (en) | 2014-11-21 | 2019-10-29 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide RNAs |
EP3560330A1 (en) | 2018-04-24 | 2019-10-30 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
WO2019210268A2 (en) | 2018-04-27 | 2019-10-31 | The Broad Institute, Inc. | Sequencing-based proteomics |
WO2019213660A2 (en) | 2018-05-04 | 2019-11-07 | The Broad Institute, Inc. | Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses |
US10494621B2 (en) | 2015-06-18 | 2019-12-03 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
WO2019232542A2 (en) | 2018-06-01 | 2019-12-05 | Massachusetts Institute Of Technology | Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
WO2020006036A1 (en) | 2018-06-26 | 2020-01-02 | Massachusetts Institute Of Technology | Crispr effector system based amplification methods, systems, and diagnostics |
US10550372B2 (en) | 2013-12-12 | 2020-02-04 | The Broad Institute, Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
WO2020028989A1 (en) * | 2018-08-08 | 2020-02-13 | Deep Genomics Incorporated | Systems and methods for determining effects of therapies and genetic variation on polyadenylation site selection |
WO2020033601A1 (en) | 2018-08-07 | 2020-02-13 | The Broad Institute, Inc. | Novel cas12b enzymes and systems |
WO2020041387A1 (en) | 2018-08-20 | 2020-02-27 | The Brigham And Women's Hospital, Inc. | Degradation domain modifications for spatio-temporal control of rna-guided nucleases |
WO2020041380A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | Methods and compositions for optochemical control of crispr-cas9 |
US10577630B2 (en) | 2013-06-17 | 2020-03-03 | The Broad Institute, Inc. | Delivery and use of the CRISPR-Cas systems, vectors and compositions for hepatic targeting and therapy |
WO2020051507A1 (en) | 2018-09-06 | 2020-03-12 | The Broad Institute, Inc. | Nucleic acid assemblies for use in targeted delivery |
WO2020077236A1 (en) | 2018-10-12 | 2020-04-16 | The Broad Institute, Inc. | Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues |
WO2020081730A2 (en) | 2018-10-16 | 2020-04-23 | Massachusetts Institute Of Technology | Methods and compositions for modulating microenvironment |
WO2020081438A1 (en) * | 2018-10-16 | 2020-04-23 | Blueallele, Llc | Methods for targeted insertion of dna in genes |
US20200140893A1 (en) * | 2018-11-01 | 2020-05-07 | Blueallele, Llc | Methods for altering gene expression for genetic disorders |
US10662425B2 (en) | 2017-11-21 | 2020-05-26 | Crispr Therapeutics Ag | Materials and methods for treatment of autosomal dominant retinitis pigmentosa |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
WO2020131862A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
US10711285B2 (en) | 2013-06-17 | 2020-07-14 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
US10781444B2 (en) | 2013-06-17 | 2020-09-22 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
WO2020198706A1 (en) * | 2019-03-28 | 2020-10-01 | Intellia Therapeutics, Inc. | Compositions and methods for ttr gene editing and treating attr amyloidosis comprising a corticosteroid or use thereof |
WO2020225606A1 (en) * | 2019-05-08 | 2020-11-12 | Crispr Therapeutics Ag | Crispr/cas all-in-two vector systems for treatment of dmd |
WO2020229533A1 (en) | 2019-05-13 | 2020-11-19 | KWS SAAT SE & Co. KGaA | Drought tolerance in corn |
WO2020236967A1 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Random crispr-cas deletion mutant |
WO2020236972A2 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
US10851357B2 (en) | 2013-12-12 | 2020-12-01 | The Broad Institute, Inc. | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
WO2020239680A2 (en) | 2019-05-25 | 2020-12-03 | KWS SAAT SE & Co. KGaA | Haploid induction enhancer |
WO2020243661A1 (en) | 2019-05-31 | 2020-12-03 | The Broad Institute, Inc. | Methods for treating metabolic disorders by targeting adcy5 |
WO2021003432A1 (en) | 2019-07-02 | 2021-01-07 | Fred Hutchinson Cancer Research Center | Recombinant ad35 vectors and related gene therapy improvements |
EP3772542A1 (en) | 2019-08-07 | 2021-02-10 | KWS SAAT SE & Co. KGaA | Modifying genetic variation in crops by modulating the pachytene checkpoint protein 2 |
US10920222B2 (en) | 2018-04-30 | 2021-02-16 | Snipr Biome Aps | Treating and preventing microbial infections |
US10930367B2 (en) | 2012-12-12 | 2021-02-23 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for Cas enzymes or CRISPR-Cas systems for target sequences and conveying results thereof |
WO2021041546A1 (en) * | 2019-08-27 | 2021-03-04 | Vertex Pharmaceuticals Incorporated | Compositions and methods for treatment of disorders associated with repetitive dna |
WO2021041922A1 (en) | 2019-08-30 | 2021-03-04 | The Broad Institute, Inc. | Crispr-associated mu transposase systems |
US10946108B2 (en) | 2013-06-17 | 2021-03-16 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components |
WO2021074367A1 (en) | 2019-10-17 | 2021-04-22 | KWS SAAT SE & Co. KGaA | Enhanced disease resistance of crops by downregulation of repressor genes |
US11008588B2 (en) | 2013-06-17 | 2021-05-18 | The Broad Institute, Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
WO2021102084A1 (en) | 2019-11-22 | 2021-05-27 | President And Fellows Of Harvard College | Ionic liquids for drug delivery |
US11041173B2 (en) | 2012-12-12 | 2021-06-22 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US11078481B1 (en) | 2016-08-03 | 2021-08-03 | KSQ Therapeutics, Inc. | Methods for screening for cancer targets |
US11078483B1 (en) | 2016-09-02 | 2021-08-03 | KSQ Therapeutics, Inc. | Methods for measuring and improving CRISPR reagent function |
US11141481B2 (en) | 2016-06-05 | 2021-10-12 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
US11155795B2 (en) | 2013-12-12 | 2021-10-26 | The Broad Institute, Inc. | CRISPR-Cas systems, crystal structure and uses thereof |
WO2021239986A1 (en) | 2020-05-29 | 2021-12-02 | KWS SAAT SE & Co. KGaA | Plant haploid induction |
US11236313B2 (en) | 2016-04-13 | 2022-02-01 | Editas Medicine, Inc. | Cas9 fusion molecules, gene editing systems, and methods of use thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11306309B2 (en) | 2015-04-06 | 2022-04-19 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11332736B2 (en) | 2017-12-07 | 2022-05-17 | The Broad Institute, Inc. | Methods and compositions for multiplexing single cell and single nuclei sequencing |
EP3787694A4 (en) * | 2018-04-29 | 2022-05-18 | University of Massachusetts | Raav-mediated nuclease-associated vector integration (raav-navi) |
US11390884B2 (en) | 2015-05-11 | 2022-07-19 | Editas Medicine, Inc. | Optimized CRISPR/cas9 systems and methods for gene editing in stem cells |
US11407985B2 (en) | 2013-12-12 | 2022-08-09 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for genome editing |
US11414657B2 (en) | 2015-06-29 | 2022-08-16 | Ionis Pharmaceuticals, Inc. | Modified CRISPR RNA and modified single CRISPR RNA and uses thereof |
US11427861B2 (en) | 2016-03-17 | 2022-08-30 | Massachusetts Institute Of Technology | Methods for identifying and modulating co-occurant cellular phenotypes |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447527B2 (en) | 2018-09-18 | 2022-09-20 | Vnv Newco Inc. | Endogenous Gag-based capsids and uses thereof |
US11453891B2 (en) | 2017-05-10 | 2022-09-27 | The Regents Of The University Of California | Directed editing of cellular RNA via nuclear delivery of CRISPR/CAS9 |
US11466271B2 (en) | 2017-02-06 | 2022-10-11 | Novartis Ag | Compositions and methods for the treatment of hemoglobinopathies |
US11499151B2 (en) | 2017-04-28 | 2022-11-15 | Editas Medicine, Inc. | Methods and systems for analyzing guide RNA molecules |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US20230022576A1 (en) * | 2019-11-19 | 2023-01-26 | Protalix Ltd. | Removal of constructs from transformed cells |
WO2023006933A1 (en) | 2021-07-30 | 2023-02-02 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US11578118B2 (en) | 2017-10-20 | 2023-02-14 | Fred Hutchinson Cancer Center | Systems and methods to produce B cells genetically modified to express selected antibodies |
US11578312B2 (en) | 2015-06-18 | 2023-02-14 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
US11597924B2 (en) | 2016-03-25 | 2023-03-07 | Editas Medicine, Inc. | Genome editing systems comprising repair-modulating enzyme molecules and methods of their use |
US11603544B2 (en) | 2017-06-05 | 2023-03-14 | Fred Hutchinson Cancer Center | Genomic safe harbors for genetic therapies in human stem cells and engineered nanoparticles to provide targeted genetic therapies |
WO2023059846A1 (en) | 2021-10-08 | 2023-04-13 | President And Fellows Of Harvard College | Ionic liquids for drug delivery |
US11630103B2 (en) | 2016-08-17 | 2023-04-18 | The Broad Institute, Inc. | Product and methods useful for modulating and evaluating immune responses |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11667911B2 (en) | 2015-09-24 | 2023-06-06 | Editas Medicine, Inc. | Use of exonucleases to improve CRISPR/CAS-mediated genome editing |
US11680296B2 (en) | 2017-10-16 | 2023-06-20 | Massachusetts Institute Of Technology | Mycobacterium tuberculosis host-pathogen interaction |
US11680268B2 (en) | 2014-11-07 | 2023-06-20 | Editas Medicine, Inc. | Methods for improving CRISPR/Cas-mediated genome-editing |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11739156B2 (en) | 2019-01-06 | 2023-08-29 | The Broad Institute, Inc. Massachusetts Institute of Technology | Methods and compositions for overcoming immunosuppression |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
EP4268831A2 (en) | 2018-09-12 | 2023-11-01 | Fred Hutchinson Cancer Center | Reducing cd33 expression to selectively protect therapeutic cells |
US11866726B2 (en) | 2017-07-14 | 2024-01-09 | Editas Medicine, Inc. | Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites |
US11866697B2 (en) | 2017-05-18 | 2024-01-09 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
EP4276187A3 (en) * | 2016-12-08 | 2024-01-17 | Case Western Reserve University | Methods and compositions for enhancing functional myelin production |
US11884915B2 (en) | 2021-09-10 | 2024-01-30 | Agilent Technologies, Inc. | Guide RNAs with chemical modification for prime editing |
US11897953B2 (en) | 2017-06-14 | 2024-02-13 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US11911415B2 (en) | 2015-06-09 | 2024-02-27 | Editas Medicine, Inc. | CRISPR/Cas-related methods and compositions for improving transplantation |
WO2024042199A1 (en) | 2022-08-26 | 2024-02-29 | KWS SAAT SE & Co. KGaA | Use of paired genes in hybrid breeding |
US11957695B2 (en) | 2018-04-26 | 2024-04-16 | The Broad Institute, Inc. | Methods and compositions targeting glucocorticoid signaling for modulating immune responses |
US11963966B2 (en) | 2017-03-31 | 2024-04-23 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating ovarian tumors |
US11981922B2 (en) | 2019-10-03 | 2024-05-14 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment |
US11994512B2 (en) | 2018-01-04 | 2024-05-28 | Massachusetts Institute Of Technology | Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity |
US12036240B2 (en) | 2018-06-14 | 2024-07-16 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
US12076375B2 (en) | 2022-06-29 | 2024-09-03 | Snipr Biome Aps | Treating and preventing E coli infections |
US12105089B2 (en) | 2017-07-17 | 2024-10-01 | The Broad Institute, Inc. | Cell atlas of the healthy and ulcerative colitis human colon |
US12110545B2 (en) | 2017-01-06 | 2024-10-08 | Editas Medicine, Inc. | Methods of assessing nuclease cleavage |
US12123032B2 (en) | 2019-11-26 | 2024-10-22 | The Broad Institute, Inc. | CRISPR enzyme mutations reducing off-target effects |
Families Citing this family (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015527889A (en) * | 2012-07-25 | 2015-09-24 | ザ ブロード インスティテュート, インコーポレイテッド | Inducible DNA binding protein and genomic disruption tools and their applications |
EP4063503A1 (en) | 2014-02-11 | 2022-09-28 | The Regents of the University of Colorado, a body corporate | Crispr enabled multiplexed genome engineering |
EP4410805A2 (en) | 2014-03-18 | 2024-08-07 | University of Massachusetts | Raav-based compositions and methods for treating amyotrophic lateral sclerosis |
MX2017005834A (en) | 2014-11-05 | 2017-11-17 | Voyager Therapeutics Inc | Aadc polynucleotides for the treatment of parkinson's disease. |
RU2749882C2 (en) | 2014-11-14 | 2021-06-18 | Вояджер Терапьютикс, Инк. | Modulating polynucleotides |
EP3218484A4 (en) | 2014-11-14 | 2018-05-30 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (als) |
AU2015362784B2 (en) * | 2014-12-16 | 2021-05-13 | Danisco Us Inc | Fungal genome modification systems and methods of use |
CN107849547B (en) * | 2015-05-16 | 2022-04-19 | 建新公司 | Gene editing of deep intronic mutations |
WO2016187717A1 (en) * | 2015-05-26 | 2016-12-01 | Exerkine Corporation | Exosomes useful for genome editing |
US10285388B2 (en) | 2015-05-29 | 2019-05-14 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a disruption in a C9ORF72 locus |
BR112017028201A2 (en) * | 2015-07-02 | 2018-08-28 | Univ Johns Hopkins | crisp / cas9 based treatments |
US10973930B2 (en) | 2016-02-18 | 2021-04-13 | The Penn State Research Foundation | Generating GABAergic neurons in brains |
US12011488B2 (en) | 2016-03-23 | 2024-06-18 | The Regents Of The University Of California | Methods of treating mitochondrial disorders |
CN109476716A (en) | 2016-03-23 | 2019-03-15 | 加利福尼亚大学董事会 | The method for treating mitochondria obstacle |
RU2758488C2 (en) | 2016-05-18 | 2021-10-28 | Вояджер Терапьютикс, Инк. | Modulating polynucleotides |
US20190330603A1 (en) * | 2016-06-17 | 2019-10-31 | Genesis Technologies Limited | Crispr-cas system, materials and methods |
US10253316B2 (en) | 2017-06-30 | 2019-04-09 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
US11293021B1 (en) | 2016-06-23 | 2022-04-05 | Inscripta, Inc. | Automated cell processing methods, modules, instruments, and systems |
JP2019518478A (en) | 2016-06-24 | 2019-07-04 | ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate | How to generate a barcoded combinatorial library |
WO2018002886A1 (en) * | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of spinocerebellar ataxia 3 (sca3) and other related disorders |
EP3478828B1 (en) * | 2016-06-29 | 2024-09-04 | CRISPR Therapeutics AG | Materials and methods for treatment of friedreich ataxia and other related disorders |
CA3038548A1 (en) | 2016-09-30 | 2018-04-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a hexanucleotide repeat expansion in a c9orf72 locus |
US11597947B2 (en) * | 2016-12-29 | 2023-03-07 | Asc Therapeutics Inc. | Gene editing method using virus |
GB201702847D0 (en) * | 2017-02-22 | 2017-04-05 | Cancer Res Tech Ltd | Cell labelling, tracking and retrieval |
JP2020511141A (en) * | 2017-03-15 | 2020-04-16 | ザ・ブロード・インスティテュート・インコーポレイテッド | Novel Cas13b ortholog CRISPR enzyme and system |
BR112019021378A2 (en) * | 2017-04-12 | 2020-05-05 | Massachusetts Inst Technology | innovative crispr type vi orthologs and systems |
WO2018204786A1 (en) | 2017-05-05 | 2018-11-08 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (als) |
US11859179B2 (en) | 2017-05-09 | 2024-01-02 | University Of Massachusetts | Methods of treating amyotrophic lateral sclerosis (ALS) |
MX2019015188A (en) * | 2017-06-15 | 2020-08-03 | Univ California | Targeted non-viral dna insertions. |
JOP20190269A1 (en) | 2017-06-15 | 2019-11-20 | Voyager Therapeutics Inc | Aadc polynucleotides for the treatment of parkinson's disease |
US9982279B1 (en) | 2017-06-23 | 2018-05-29 | Inscripta, Inc. | Nucleic acid-guided nucleases |
US10011849B1 (en) | 2017-06-23 | 2018-07-03 | Inscripta, Inc. | Nucleic acid-guided nucleases |
AU2018338188A1 (en) | 2017-09-22 | 2020-04-02 | University Of Massachusetts | SOD1 dual expression vectors and uses thereof |
US20190167815A1 (en) * | 2017-10-24 | 2019-06-06 | Sangamo Therapeutics, Inc. | Methods and compositions for the treatment of rare diseases |
CN108103090B (en) * | 2017-12-12 | 2021-06-15 | 中山大学附属第一医院 | RNA Cas9-m6A modified vector system for targeting RNA methylation, and construction method and application thereof |
CA3097857A1 (en) * | 2018-04-20 | 2019-10-24 | The Regents Of The University Of California | Fusion proteins and fusion ribonucleic acids for tracking and manipulating cellular rna |
EP3796894A4 (en) * | 2018-04-24 | 2022-05-04 | Ligandal, Inc. | Methods and compositions for genome editing |
US10858761B2 (en) | 2018-04-24 | 2020-12-08 | Inscripta, Inc. | Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells |
US10508273B2 (en) | 2018-04-24 | 2019-12-17 | Inscripta, Inc. | Methods for identifying selective binding pairs |
US10557216B2 (en) | 2018-04-24 | 2020-02-11 | Inscripta, Inc. | Automated instrumentation for production of T-cell receptor peptide libraries |
KR20210008497A (en) * | 2018-05-09 | 2021-01-22 | 아이오니스 파마수티컬즈, 인코포레이티드 | Compounds and methods for reducing ATXN3 expression |
EP4252759A3 (en) | 2018-05-11 | 2023-11-08 | Memorial Sloan Kettering Cancer Center | T cell receptors targeting pik3ca mutations and uses thereof |
KR20210045360A (en) | 2018-05-16 | 2021-04-26 | 신테고 코포레이션 | Methods and systems for guide RNA design and use |
US10227576B1 (en) | 2018-06-13 | 2019-03-12 | Caribou Biosciences, Inc. | Engineered cascade components and cascade complexes |
JP6965466B2 (en) * | 2018-06-13 | 2021-11-10 | カリブー・バイオサイエンシーズ・インコーポレイテッド | Manipulated cascade components and cascade complexes |
WO2020006049A1 (en) | 2018-06-26 | 2020-01-02 | The Broad Institute, Inc. | Crispr/cas and transposase based amplification compositions, systems and methods |
CA3108767A1 (en) | 2018-06-30 | 2020-01-02 | Inscripta, Inc. | Instruments, modules, and methods for improved detection of edited sequences in live cells |
US11142740B2 (en) | 2018-08-14 | 2021-10-12 | Inscripta, Inc. | Detection of nuclease edited sequences in automated modules and instruments |
WO2020081149A2 (en) * | 2018-08-30 | 2020-04-23 | Inscripta, Inc. | Improved detection of nuclease edited sequences in automated modules and instruments |
AU2019359505A1 (en) * | 2018-10-11 | 2021-04-29 | Eidgenössische Technische Hochschule Zürich | A method to treat disease using a nucleic acid vector encoding a highly compact multi-input logic gate |
US11214781B2 (en) | 2018-10-22 | 2022-01-04 | Inscripta, Inc. | Engineered enzyme |
EP3870697A4 (en) | 2018-10-22 | 2022-11-09 | Inscripta, Inc. | Engineered enzymes |
SG11202104347UA (en) * | 2018-10-29 | 2021-05-28 | Univ China Agricultural | Novel crispr/cas12f enzyme and system |
WO2020097363A2 (en) | 2018-11-08 | 2020-05-14 | Triton Algae Innovations, Inc. | Compositions and methods for incorporating heme from algae in edible products |
EP3887513A2 (en) * | 2018-11-28 | 2021-10-06 | CRISPR Therapeutics AG | Optimized mrna encoding cas9 for use in lnps |
US20230212604A1 (en) * | 2018-12-11 | 2023-07-06 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Methods and compositions for efficient and precise gene editing in mammalian brain to prevent or treat nervous system disorders |
IT201800020230A1 (en) | 2018-12-19 | 2020-06-19 | Univ Degli Studi Di Siena | CRISPR-Cas system for gene therapy. |
CA3120799A1 (en) | 2018-12-20 | 2020-06-25 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated repeat expansion |
JP2022514956A (en) * | 2018-12-23 | 2022-02-16 | シーエスエル・ベーリング・エルエルシー | Nanocapsules for delivery of cell regulators |
AU2020247900A1 (en) | 2019-03-25 | 2021-11-04 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
US11001831B2 (en) | 2019-03-25 | 2021-05-11 | Inscripta, Inc. | Simultaneous multiplex genome editing in yeast |
GB201905651D0 (en) * | 2019-04-24 | 2019-06-05 | Lightbio Ltd | Nucleic acid constructs and methods for their manufacture |
AU2020288623A1 (en) | 2019-06-06 | 2022-01-06 | Inscripta, Inc. | Curing for recursive nucleic acid-guided cell editing |
EP3986909A4 (en) | 2019-06-21 | 2023-08-02 | Inscripta, Inc. | Genome-wide rationally-designed mutations leading to enhanced lysine production in e. coli |
US10927385B2 (en) | 2019-06-25 | 2021-02-23 | Inscripta, Inc. | Increased nucleic-acid guided cell editing in yeast |
MX2021015626A (en) * | 2019-06-28 | 2022-04-18 | Penn State Res Found | Methods and materials for treating huntington's disease. |
CN112168808B (en) * | 2019-07-02 | 2023-01-24 | 深圳市第二人民医院 | Cell nucleus targeting drug delivery system based on CRISPR |
WO2021011504A1 (en) * | 2019-07-12 | 2021-01-21 | Duke University | Nanoparticle systems for targeted delivery of crispr/cas13 and methods of using same |
US20220290139A1 (en) * | 2019-07-15 | 2022-09-15 | National University Of Singapore | Methods and compositions for gene specific demethylation and activation |
EP4038190A1 (en) | 2019-10-03 | 2022-08-10 | Artisan Development Labs, Inc. | Crispr systems with engineered dual guide nucleic acids |
WO2021087394A1 (en) * | 2019-11-01 | 2021-05-06 | The Broad Institute, Inc. | Type i-b crispr-associated transposase systems |
WO2021102059A1 (en) | 2019-11-19 | 2021-05-27 | Inscripta, Inc. | Methods for increasing observed editing in bacteria |
EP4069837A4 (en) | 2019-12-10 | 2024-03-13 | Inscripta, Inc. | Novel mad nucleases |
US11008557B1 (en) | 2019-12-18 | 2021-05-18 | Inscripta, Inc. | Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells |
CA3157061A1 (en) | 2020-01-27 | 2021-08-05 | Christian SILTANEN | Electroporation modules and instrumentation |
US20230212538A1 (en) * | 2020-03-30 | 2023-07-06 | Blueallele, Llc | Methods for integrating dna into genes with gain-of-function or loss-of-function mutations |
WO2021215827A1 (en) * | 2020-04-21 | 2021-10-28 | 기초과학연구원 | Genome editing using cas9 or cas9 variant |
US20210332388A1 (en) | 2020-04-24 | 2021-10-28 | Inscripta, Inc. | Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells |
US11787841B2 (en) | 2020-05-19 | 2023-10-17 | Inscripta, Inc. | Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli |
CN111471720A (en) * | 2020-05-26 | 2020-07-31 | 苏州泓迅生物科技股份有限公司 | Suicide-suicide type plasmid, saccharomyces cerevisiae traceless gene editing method using suicide-suicide type plasmid and application of suicide-suicide type plasmid |
EP4214314A4 (en) | 2020-09-15 | 2024-10-16 | Inscripta Inc | Crispr editing to embed nucleic acid landing pads into genomes of live cells |
US11512297B2 (en) | 2020-11-09 | 2022-11-29 | Inscripta, Inc. | Affinity tag for recombination protein recruitment |
EP4271802A1 (en) | 2021-01-04 | 2023-11-08 | Inscripta, Inc. | Mad nucleases |
US11332742B1 (en) | 2021-01-07 | 2022-05-17 | Inscripta, Inc. | Mad nucleases |
WO2022155239A1 (en) * | 2021-01-12 | 2022-07-21 | University Of Massachusetts | Allele-specific inactivation of mutant htt via gene editing at coding region single nucleotide polymorphisms |
CN112626070A (en) * | 2021-01-13 | 2021-04-09 | 海南微氪生物科技股份有限公司 | Directional repair system based on excision enzyme gene editing technology |
US11884924B2 (en) | 2021-02-16 | 2024-01-30 | Inscripta, Inc. | Dual strand nucleic acid-guided nickase editing |
CN114958920A (en) * | 2021-02-25 | 2022-08-30 | 北京中因科技有限公司 | Novel CRISPR-Cas9 system vector and preparation method and application thereof |
US20240173358A1 (en) * | 2021-03-16 | 2024-05-30 | The General Hospital Corporation | Compositions and Methods for the Treatment of Conditions Associated with Nucleotide Repeat Expansion |
WO2022204543A1 (en) * | 2021-03-25 | 2022-09-29 | The Regents Of The University Of California | Methods and materials for treating huntington's disease |
WO2022241408A1 (en) | 2021-05-10 | 2022-11-17 | Entrada Therapeutics, Inc. | Compositions and methods for modulating tissue distribution of intracellular therapeutics |
WO2022256448A2 (en) | 2021-06-01 | 2022-12-08 | Artisan Development Labs, Inc. | Compositions and methods for targeting, editing, or modifying genes |
WO2022271818A1 (en) | 2021-06-23 | 2022-12-29 | Entrada Therapeutics, Inc. | Antisense compounds and methods for targeting cug repeats |
AU2022366987A1 (en) | 2021-10-14 | 2024-05-16 | Arsenal Biosciences, Inc. | Immune cells having co-expressed shrnas and logic gate systems |
CA3237300A1 (en) | 2021-11-01 | 2023-05-04 | Tome Biosciences, Inc. | Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo |
CN114295594B (en) * | 2021-12-06 | 2023-09-19 | 贵州理工学院 | "turn on" type fluorescence sensor based on molecular beacon screening triple helix DNA intercalator |
WO2023108405A1 (en) * | 2021-12-14 | 2023-06-22 | 中国科学院深圳先进技术研究院 | Recombinant vector, and construction method therefor and use thereof |
IL313765A (en) | 2021-12-22 | 2024-08-01 | Tome Biosciences Inc | Co-delivery of a gene editor construct and a donor template |
WO2023167882A1 (en) | 2022-03-01 | 2023-09-07 | Artisan Development Labs, Inc. | Composition and methods for transgene insertion |
WO2023185697A2 (en) | 2022-03-29 | 2023-10-05 | Accuredit Therapeutics (Suzhou) Co., Ltd. | Compositions and methods for treatment of transthyretin amyloidosis |
WO2023205744A1 (en) | 2022-04-20 | 2023-10-26 | Tome Biosciences, Inc. | Programmable gene insertion compositions |
WO2023215831A1 (en) | 2022-05-04 | 2023-11-09 | Tome Biosciences, Inc. | Guide rna compositions for programmable gene insertion |
WO2023225670A2 (en) | 2022-05-20 | 2023-11-23 | Tome Biosciences, Inc. | Ex vivo programmable gene insertion |
WO2023250325A1 (en) * | 2022-06-21 | 2023-12-28 | The Regents Of The University Of California | Compositions and methods for treating huntington's disease |
WO2023250324A2 (en) * | 2022-06-21 | 2023-12-28 | The Regents Of The University Of California | Compositions and methods for reducing rna levels |
WO2024020587A2 (en) | 2022-07-22 | 2024-01-25 | Tome Biosciences, Inc. | Pleiopluripotent stem cell programmable gene insertion |
WO2024046393A1 (en) * | 2022-08-30 | 2024-03-07 | 上海鲸奇生物科技有限公司 | Method for trans-differentiating non-neuronal cells into neurons and use thereof |
WO2024061296A2 (en) | 2022-09-22 | 2024-03-28 | Accuredit Therapeutics (Suzhou) Co., Ltd. | Compositions and methods for treatment of hypercholesterolemia and/or cardiovascular disease |
CN116064667B (en) * | 2022-12-09 | 2024-07-02 | 中南大学湘雅医院 | Construction method and application of humanized ATXN3 gene knock-in mouse model based on CRISPR/Cas9 |
WO2024138194A1 (en) | 2022-12-22 | 2024-06-27 | Tome Biosciences, Inc. | Platforms, compositions, and methods for in vivo programmable gene insertion |
Citations (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0264166A1 (en) | 1986-04-09 | 1988-04-20 | Genzyme Corporation | Transgenic animals secreting desired proteins into milk |
US4873316A (en) | 1987-06-23 | 1989-10-10 | Biogen, Inc. | Isolation of exogenous recombinant proteins from the milk of transgenic mammals |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
WO1996039154A1 (en) | 1995-06-06 | 1996-12-12 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5593972A (en) | 1993-01-26 | 1997-01-14 | The Wistar Institute | Genetic immunization |
WO1997003211A1 (en) | 1995-07-13 | 1997-01-30 | Isis Pharmaceuticals, Inc. | Antisense inhibition of hepatitis b virus replication |
US5846946A (en) | 1996-06-14 | 1998-12-08 | Pasteur Merieux Serums Et Vaccins | Compositions and methods for administering Borrelia DNA |
US5855913A (en) | 1997-01-16 | 1999-01-05 | Massachusetts Instite Of Technology | Particles incorporating surfactants for pulmonary drug delivery |
US5985309A (en) | 1996-05-24 | 1999-11-16 | Massachusetts Institute Of Technology | Preparation of particles for inhalation |
US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US20040013648A1 (en) | 2000-10-06 | 2004-01-22 | Kingsman Alan John | Vector system |
US6750059B1 (en) | 1998-07-16 | 2004-06-15 | Whatman, Inc. | Archiving of vectors |
US20040171156A1 (en) | 1995-06-07 | 2004-09-02 | Invitrogen Corporation | Recombinational cloning using nucleic acids having recombination sites |
US20050019923A1 (en) | 2001-10-19 | 2005-01-27 | Ijeoma Uchegbu | Dendrimers for use in targeted delivery |
EP1519714A1 (en) | 2002-06-28 | 2005-04-06 | Protiva Biotherapeutics Inc. | Method and apparatus for producing liposomes |
EP1664316A1 (en) | 2003-09-15 | 2006-06-07 | Protiva Biotherapeutics Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
US20060281180A1 (en) | 2003-10-30 | 2006-12-14 | Philippa Radcliffe | Vectors |
US20070054961A1 (en) | 1999-03-31 | 2007-03-08 | Malcolm Maden | Factor |
EP1766035A1 (en) | 2004-06-07 | 2007-03-28 | Protiva Biotherapeutics Inc. | Lipid encapsulated interfering rna |
EP1781593A2 (en) | 2004-06-07 | 2007-05-09 | Protiva Biotherapeutics Inc. | Cationic lipids and methods of use |
US7303910B2 (en) | 1997-09-25 | 2007-12-04 | Oxford Biomedica (Uk) Limited | Retroviral vectors comprising a functional splice donor site and a functional splice acceptor site |
US7351585B2 (en) | 2002-09-03 | 2008-04-01 | Oxford Biomedica (Uk) Ltd. | Retroviral vector |
US20080267903A1 (en) | 2004-10-14 | 2008-10-30 | Ijeoma Uchegbu | Bioactive Polymers |
US20090007284A1 (en) | 2001-12-21 | 2009-01-01 | Philippa Radcliffe | Transgenic organism |
US20090017543A1 (en) | 2005-12-22 | 2009-01-15 | Fraser Wilkes | Viral Vectors |
US7776321B2 (en) | 2001-09-26 | 2010-08-17 | Mayo Foundation For Medical Education And Research | Mutable vaccines |
US7838658B2 (en) | 2005-10-20 | 2010-11-23 | Ian Maclachlan | siRNA silencing of filovirus gene expression |
US20110016540A1 (en) | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Genome editing of genes associated with trinucleotide repeat expansion disorders in animals |
US20110059502A1 (en) | 2009-09-07 | 2011-03-10 | Chalasani Sreekanth H | Multiple domain proteins |
WO2011028929A2 (en) | 2009-09-03 | 2011-03-10 | The Regents Of The University Of California | Nitrate-responsive promoter |
US7915399B2 (en) | 2006-06-09 | 2011-03-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US20110117189A1 (en) | 2008-07-08 | 2011-05-19 | S.I.F.I. Societa' Industria Farmaceutica Italiana S.P.A. | Ophthalmic compositions for treating pathologies of the posterior segment of the eye |
US7982027B2 (en) | 2003-07-16 | 2011-07-19 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
US20110195123A1 (en) | 2008-06-30 | 2011-08-11 | Silenseed Ltd. | Methods, compositions and systems for local delivery of drugs |
US8058069B2 (en) | 2008-04-15 | 2011-11-15 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
US20110293571A1 (en) | 2010-05-28 | 2011-12-01 | Oxford Biomedica (Uk) Ltd. | Method for vector delivery |
US20110293703A1 (en) | 2008-11-07 | 2011-12-01 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US8101741B2 (en) | 2005-11-02 | 2012-01-24 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US8236943B2 (en) | 2009-07-01 | 2012-08-07 | Protiva Biotherapeutics, Inc. | Compositions and methods for silencing apolipoprotein B |
US20120251560A1 (en) | 2011-03-28 | 2012-10-04 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
US20120251618A1 (en) | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
US8283333B2 (en) | 2009-07-01 | 2012-10-09 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
US20120295960A1 (en) | 2011-05-20 | 2012-11-22 | Oxford Biomedica (Uk) Ltd. | Treatment regimen for parkinson's disease |
US8404658B2 (en) | 2007-12-31 | 2013-03-26 | Nanocor Therapeutics, Inc. | RNA interference for the treatment of heart failure |
US8454972B2 (en) | 2004-07-16 | 2013-06-04 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Method for inducing a multiclade immune response against HIV utilizing a multigene and multiclade immunogen |
WO2013130824A1 (en) * | 2012-02-29 | 2013-09-06 | Sangamo Biosciences, Inc. | Methods and compositions for treating huntington's disease |
US20130244279A1 (en) | 2011-12-16 | 2013-09-19 | modeRNA Therapeutics | Formulation and delivery of plga microspheres |
US20130302401A1 (en) | 2010-08-26 | 2013-11-14 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
WO2014018423A2 (en) | 2012-07-25 | 2014-01-30 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
US8709843B2 (en) | 2006-08-24 | 2014-04-29 | Rohm Co., Ltd. | Method of manufacturing nitride semiconductor and nitride semiconductor element |
WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
WO2014093595A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
WO2014093655A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
WO2014093701A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
WO2014093635A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
WO2014093622A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
WO2014093712A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
WO2014093718A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
WO2014093709A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
US20140287938A1 (en) | 2013-03-15 | 2014-09-25 | The Broad Institute, Inc. | Recombinant virus and preparations thereof |
Family Cites Families (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7150982B2 (en) | 1991-09-09 | 2006-12-19 | Third Wave Technologies, Inc. | RNA detection assays |
US7745416B2 (en) | 1995-04-11 | 2010-06-29 | The Regents Of The University Of California | Method for in vivo regulation of cardiac muscle contractility |
US5622856A (en) | 1995-08-03 | 1997-04-22 | Avigen | High efficiency helper system for AAV vector production |
US6251677B1 (en) | 1997-08-25 | 2001-06-26 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV virus and methods of use thereof |
US7033744B2 (en) | 2001-03-16 | 2006-04-25 | Naoya Kobayashi | Method for proliferating a liver cell, a liver cell obtained thereby, and use thereof |
AU2002307145B2 (en) | 2001-04-05 | 2007-11-29 | The John Hopkins University | Chimeric vaccines |
CA2921821A1 (en) | 2001-07-12 | 2003-01-23 | University Of Massachusetts | In vivo production of small interfering rnas that mediate gene silencing |
EP1572885A2 (en) | 2001-08-08 | 2005-09-14 | Genzyme Corporation | Methods for treating diabetes and other blood sugar disorders |
WO2003016338A1 (en) | 2001-08-15 | 2003-02-27 | Parker Hughes Institute | Crystal structure of the btk kinase domain |
WO2003087993A2 (en) | 2002-04-09 | 2003-10-23 | Beattie Kenneth L | Oligonucleotide probes for genosensor chips |
US20070020627A1 (en) | 2002-06-11 | 2007-01-25 | The Scripps Research Institute | Artificial transcription factors |
US20080226553A1 (en) | 2002-09-27 | 2008-09-18 | Cold Spring Harbor Laboratory | Cell-Based Rna Interference and Related Methods and Compositions |
AU2003290937A1 (en) | 2002-11-15 | 2004-06-15 | Trustees Of Boston University | Cis/trans riboregulators |
US20060178297A1 (en) | 2003-01-28 | 2006-08-10 | Troy Carol M | Systems and methods for silencing expression of a gene in a cell and uses thereof |
US7601492B2 (en) | 2003-07-03 | 2009-10-13 | The Regents Of The University Of California | Genome mapping of functional DNA elements and cellular proteins |
US20070134796A1 (en) | 2005-07-26 | 2007-06-14 | Sangamo Biosciences, Inc. | Targeted integration and expression of exogenous nucleic acid sequences |
CA2534296C (en) | 2003-08-08 | 2013-03-26 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
FR2862659B1 (en) | 2003-11-21 | 2006-02-10 | Pasteur Institut | GENOME OF LEGIONELLA PNEUMOPHILA SOUCHE PARIS- DIAGNOSTIC AND EPIDEMIOLOGICAL APPLICATIONS |
WO2005070948A1 (en) | 2004-01-23 | 2005-08-04 | Intronn, Inc. | Correction of alpha-1-antitrypsin genetic defects using spliceosome mediated rna trans splicing |
WO2005074511A2 (en) | 2004-01-27 | 2005-08-18 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for homozygous gene inactivation using collections of pre-defined nucleotide sequences complementary to chromosomal transcripts |
US20050220796A1 (en) | 2004-03-31 | 2005-10-06 | Dynan William S | Compositions and methods for modulating DNA repair |
FR2872170B1 (en) | 2004-06-25 | 2006-11-10 | Centre Nat Rech Scient Cnrse | NON-INTERACTIVE AND NON-REPLICATIVE LENTIVIRUS, PREPARATION AND USES |
WO2006116756A1 (en) | 2005-04-28 | 2006-11-02 | Benitec, Limited. | Multiple-rnai expression cassettes for simultaneous delivery of rnai agents related to heterozygotic expression patterns |
US7892224B2 (en) | 2005-06-01 | 2011-02-22 | Brainlab Ag | Inverse catheter planning |
US10066233B2 (en) | 2005-08-26 | 2018-09-04 | Dupont Nutrition Biosciences Aps | Method of modulating cell resistance |
US8362229B2 (en) | 2006-02-08 | 2013-01-29 | Quark Pharmaceuticals, Inc. | Tandem siRNAS |
EP1994182B1 (en) | 2006-03-15 | 2019-05-29 | Siemens Healthcare Diagnostics Inc. | Degenerate nucleobase analogs |
JP5570806B2 (en) | 2006-05-11 | 2014-08-13 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | Compositions and methods for inhibiting the expression of the PCSK9 gene |
US8748567B2 (en) | 2006-05-22 | 2014-06-10 | Children's Medical Center Corporation | Method for delivery across the blood brain barrier |
WO2008093152A1 (en) | 2007-02-01 | 2008-08-07 | Cellectis | Obligate heterodimer meganucleases and uses thereof |
TR201905633T4 (en) | 2007-03-02 | 2019-05-21 | Dupont Nutrition Biosci Aps | Cultures with improved phage resistance. |
PE20090064A1 (en) | 2007-03-26 | 2009-03-02 | Novartis Ag | DOUBLE-CHAIN RIBONUCLEIC ACID TO INHIBIT THE EXPRESSION OF THE HUMAN E6AP GENE AND THE PHARMACEUTICAL COMPOSITION THAT INCLUDES IT |
US20100081707A1 (en) | 2008-02-21 | 2010-04-01 | Ali Robin R | Devices and methods for delivering polynucleotides into retinal cells of the macula and fovea |
US8546553B2 (en) | 2008-07-25 | 2013-10-01 | University Of Georgia Research Foundation, Inc. | Prokaryotic RNAi-like system and methods of use |
US20100076057A1 (en) | 2008-09-23 | 2010-03-25 | Northwestern University | TARGET DNA INTERFERENCE WITH crRNA |
WO2010054108A2 (en) | 2008-11-06 | 2010-05-14 | University Of Georgia Research Foundation, Inc. | Cas6 polypeptides and methods of use |
CN102625655B (en) | 2008-12-04 | 2016-07-06 | 桑格摩生物科学股份有限公司 | Zinc finger nuclease is used to carry out genome editor in rats |
CA2746514C (en) | 2008-12-10 | 2018-11-27 | Alnylam Pharmaceuticals, Inc. | Gnaq targeted dsrna compositions and methods for inhibiting expression |
WO2010075424A2 (en) | 2008-12-22 | 2010-07-01 | The Regents Of University Of California | Compositions and methods for downregulating prokaryotic genes |
US20110239315A1 (en) | 2009-01-12 | 2011-09-29 | Ulla Bonas | Modular dna-binding domains and methods of use |
EP2206723A1 (en) | 2009-01-12 | 2010-07-14 | Bonas, Ulla | Modular DNA-binding domains |
CN102369287B (en) | 2009-04-07 | 2014-09-17 | 陶氏益农公司 | Nanoparticle mediated delivery of sequence specific nucleases |
WO2011036510A1 (en) | 2009-09-24 | 2011-03-31 | Cellectis | Meganuclease variants cleaving the genome of the herpes simplex virus and uses thereof |
JP2012529287A (en) | 2009-06-11 | 2012-11-22 | トゥールゲン インコーポレイション | Rearrange target genomes using site-specific nucleases |
CA2767377A1 (en) | 2009-07-24 | 2011-01-27 | Sigma-Aldrich Co. Llc | Method for genome editing |
AU2010281705B2 (en) | 2009-07-28 | 2015-02-05 | Sangamo Therapeutics, Inc. | Methods and compositions for treating trinucleotide repeat disorders |
US9404099B2 (en) | 2009-11-27 | 2016-08-02 | Basf Plant Science Company Gmbh | Optimized endonucleases and uses thereof |
US8586363B2 (en) | 2009-12-10 | 2013-11-19 | Regents Of The University Of Minnesota | TAL effector-mediated DNA modification |
CA2784547A1 (en) | 2009-12-23 | 2011-06-30 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Influenza targets |
JP2013518602A (en) | 2010-02-09 | 2013-05-23 | サンガモ バイオサイエンシーズ, インコーポレイテッド | Targeted genome modification by partially single-stranded donor molecules |
US10087431B2 (en) | 2010-03-10 | 2018-10-02 | The Regents Of The University Of California | Methods of generating nucleic acid fragments |
US8927514B2 (en) | 2010-04-30 | 2015-01-06 | City Of Hope | Recombinant adeno-associated vectors for targeted treatment |
BR112012028805A2 (en) | 2010-05-10 | 2019-09-24 | The Regents Of The Univ Of California E Nereus Pharmaceuticals Inc | endoribonuclease compositions and methods of use thereof. |
EP3156062A1 (en) | 2010-05-17 | 2017-04-19 | Sangamo BioSciences, Inc. | Novel dna-binding proteins and uses thereof |
KR20180121665A (en) | 2010-07-23 | 2018-11-07 | 시그마-알드리치 컴퍼니., 엘엘씨 | Genome editing using targeting endonucleases and single-stranded nucleic acids |
DK2601611T3 (en) | 2010-08-02 | 2021-02-01 | Integrated Dna Tech Inc | PROCEDURES FOR PREDICTING STABILITY AND MELTING TEMPERATURES FOR NUCLEIC ACID DUPLEXES |
WO2012031205A2 (en) | 2010-09-03 | 2012-03-08 | The Brigham And Women's Hospital, Inc. | Lipid-polymer hybrid particles |
CA2814143C (en) | 2010-10-12 | 2020-09-08 | The Children's Hospital Of Philadelphia | Methods and compositions for treating hemophilia b |
RS62795B1 (en) | 2011-04-22 | 2022-02-28 | Univ California | Adeno-associated virus virions with variant capsid and methods of use thereof |
WO2012149470A1 (en) | 2011-04-27 | 2012-11-01 | Amyris, Inc. | Methods for genomic modification |
US20140113376A1 (en) | 2011-06-01 | 2014-04-24 | Rotem Sorek | Compositions and methods for downregulating prokaryotic genes |
CN103917644A (en) | 2011-09-21 | 2014-07-09 | 桑格摩生物科学股份有限公司 | Methods and compositions for regulation of transgene expression |
AU2012318562A1 (en) | 2011-10-06 | 2014-04-10 | Sangamo Therapeutics, Inc. | Methods and compositions for regulating HIV infection |
US20130122096A1 (en) | 2011-11-14 | 2013-05-16 | Silenseed Ltd. | Compositions for drug delivery and methods of manufacturing and using same |
EP2780376B1 (en) | 2011-11-18 | 2017-03-08 | Université Laval | Methods and products for increasing frataxin levels and uses thereof |
WO2013078400A1 (en) | 2011-11-22 | 2013-05-30 | The Children's Hospital Of Philadelphia | Virus vectors for highly efficient transgene delivery |
US8450107B1 (en) | 2011-11-30 | 2013-05-28 | The Broad Institute Inc. | Nucleotide-specific recognition sequences for designer TAL effectors |
GB201122458D0 (en) | 2011-12-30 | 2012-02-08 | Univ Wageningen | Modified cascade ribonucleoproteins and uses thereof |
WO2013141680A1 (en) | 2012-03-20 | 2013-09-26 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
US9637739B2 (en) | 2012-03-20 | 2017-05-02 | Vilnius University | RNA-directed DNA cleavage by the Cas9-crRNA complex |
AU2013204327B2 (en) | 2012-04-20 | 2016-09-01 | Aviagen | Cell transfection method |
DK2800811T3 (en) * | 2012-05-25 | 2017-07-17 | Univ Vienna | METHODS AND COMPOSITIONS FOR RNA DIRECTIVE TARGET DNA MODIFICATION AND FOR RNA DIRECTIVE MODULATION OF TRANSCRIPTION |
BR112014029697A2 (en) | 2012-06-01 | 2017-08-08 | Baruch S Blumberg Inst | method for modulating hepatitis b cccdna transcription in an individual, method for modulating covalently closed circular hepatitis b virus dna and compound |
EP3763810A3 (en) | 2012-10-10 | 2021-07-14 | Sangamo Therapeutics, Inc. | T cell modifying compounds and uses thereof |
SG11201503059XA (en) | 2012-10-23 | 2015-06-29 | Toolgen Inc | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
KR102243092B1 (en) | 2012-12-06 | 2021-04-22 | 시그마-알드리치 컴퍼니., 엘엘씨 | Crispr-based genome modification and regulation |
WO2014093479A1 (en) | 2012-12-11 | 2014-06-19 | Montana State University | Crispr (clustered regularly interspaced short palindromic repeats) rna-guided control of gene regulation |
CN105121641A (en) | 2012-12-17 | 2015-12-02 | 哈佛大学校长及研究员协会 | RNA-guided human genome engineering |
CA2898184A1 (en) | 2013-01-16 | 2014-07-24 | Emory University | Cas9-nucleic acid complexes and uses related thereto |
US11135273B2 (en) | 2013-02-07 | 2021-10-05 | The Rockefeller University | Sequence specific antimicrobials |
US10660943B2 (en) | 2013-02-07 | 2020-05-26 | The Rockefeller University | Sequence specific antimicrobials |
US9163837B2 (en) | 2013-02-27 | 2015-10-20 | Siemens Aktiengesellschaft | Flow conditioner in a combustor of a gas turbine engine |
EP2971167B1 (en) | 2013-03-14 | 2019-07-31 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
IL289396B2 (en) | 2013-03-15 | 2023-12-01 | The General Hospital Coporation | Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing |
EP2979143B1 (en) | 2013-03-27 | 2017-08-16 | Wilco AG | Method of inline inspecting and/or testing devices and apparatus to perform such method |
EP2981612B1 (en) | 2013-04-04 | 2019-07-03 | Trustees of Dartmouth College | Compositions and methods for in vivo excision of hiv-1 proviral dna |
CN116083487A (en) | 2013-05-15 | 2023-05-09 | 桑格摩生物治疗股份有限公司 | Methods and compositions for treating genetic conditions |
CA2913865C (en) | 2013-05-29 | 2022-07-19 | Cellectis | A method for producing precise dna cleavage using cas9 nickase activity |
EP3603679B1 (en) | 2013-06-04 | 2022-08-10 | President and Fellows of Harvard College | Rna-guided transcriptional regulation |
US20140356956A1 (en) | 2013-06-04 | 2014-12-04 | President And Fellows Of Harvard College | RNA-Guided Transcriptional Regulation |
EP3004370B1 (en) | 2013-06-05 | 2024-08-21 | Duke University | Rna-guided gene editing and gene regulation |
CA2915842C (en) * | 2013-06-17 | 2022-11-29 | The Broad Institute, Inc. | Delivery and use of the crispr-cas systems, vectors and compositions for hepatic targeting and therapy |
WO2014204727A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute Inc. | Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof |
KR20160056869A (en) * | 2013-06-17 | 2016-05-20 | 더 브로드 인스티튜트, 인코퍼레이티드 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components |
CA2915845A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells |
EP4245853A3 (en) | 2013-06-17 | 2023-10-18 | The Broad Institute, Inc. | Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation |
CN106062197A (en) | 2013-06-17 | 2016-10-26 | 布罗德研究所有限公司 | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
CN103343120B (en) | 2013-07-04 | 2015-03-04 | 中国科学院遗传与发育生物学研究所 | Wheat genome site-specific modification method |
EP3019619B1 (en) | 2013-07-11 | 2021-08-25 | ModernaTX, Inc. | Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use |
CN103388006B (en) | 2013-07-26 | 2015-10-28 | 华东师范大学 | A kind of construction process of site-directed point mutation |
WO2015031775A1 (en) | 2013-08-29 | 2015-03-05 | Temple University Of The Commonwealth System Of Higher Education | Methods and compositions for rna-guided treatment of hiv infection |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
WO2015048577A2 (en) | 2013-09-27 | 2015-04-02 | Editas Medicine, Inc. | Crispr-related methods and compositions |
WO2015048690A1 (en) | 2013-09-27 | 2015-04-02 | The Regents Of The University Of California | Optimized small guide rnas and methods of use |
WO2015065964A1 (en) | 2013-10-28 | 2015-05-07 | The Broad Institute Inc. | Functional genomics using crispr-cas systems, compositions, methods, screens and applications thereof |
CA2930015A1 (en) * | 2013-11-07 | 2015-05-14 | Editas Medicine, Inc. | Crispr-related methods and compositions with governing grnas |
EP3375877A1 (en) | 2013-11-18 | 2018-09-19 | Crispr Therapeutics AG | Crispr-cas system materials and methods |
CA2932472A1 (en) * | 2013-12-12 | 2015-06-18 | Massachusetts Institute Of Technology | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
WO2015089364A1 (en) | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Crystal structure of a crispr-cas system, and uses thereof |
CN106536729A (en) | 2013-12-12 | 2017-03-22 | 布罗德研究所有限公司 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
KR20160097327A (en) | 2013-12-12 | 2016-08-17 | 더 브로드 인스티튜트, 인코퍼레이티드 | Crispr-cas systems and methods for altering expression of gene products, structural information and inducible modular cas enzymes |
CN103668472B (en) | 2013-12-31 | 2014-12-24 | 北京大学 | Method for constructing eukaryon gene knockout library by using CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system |
WO2015113063A1 (en) | 2014-01-27 | 2015-07-30 | Georgia Tech Research Corporation | Methods and systems for identifying crispr/cas off-target sites |
CN103923911B (en) * | 2014-04-14 | 2016-06-08 | 上海金卫生物技术有限公司 | The method of CRISPR-Cas9 specific knockdown CCR5 gene and the sgRNA for selectively targeted CCR5 gene |
JP6323228B2 (en) | 2014-07-18 | 2018-05-16 | 富士電機株式会社 | Power converter |
WO2016022866A1 (en) | 2014-08-07 | 2016-02-11 | Agilent Technologies, Inc. | Cis-blocked guide rna |
EP3180426B1 (en) | 2014-08-17 | 2019-12-25 | The Broad Institute, Inc. | Genome editing using cas9 nickases |
WO2016141224A1 (en) | 2015-03-03 | 2016-09-09 | The General Hospital Corporation | Engineered crispr-cas9 nucleases with altered pam specificity |
SG11201708706YA (en) | 2015-05-06 | 2017-11-29 | Snipr Tech Ltd | Altering microbial populations & modifying microbiota |
CN109536474A (en) | 2015-06-18 | 2019-03-29 | 布罗德研究所有限公司 | Reduce the CRISPR enzyme mutant of undershooting-effect |
US9512446B1 (en) | 2015-08-28 | 2016-12-06 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
JP6186470B2 (en) | 2016-04-20 | 2017-08-23 | パイオニア株式会社 | Acoustic device, volume control method, volume control program, and recording medium |
WO2018154439A1 (en) * | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of spinocerebellar ataxia type 1 (sca1) and other spinocerebellar ataxia type 1 protein (atxn1) gene related conditions or disorders |
-
2014
- 2014-12-12 CA CA2932472A patent/CA2932472A1/en not_active Abandoned
- 2014-12-12 SG SG10201804973TA patent/SG10201804973TA/en unknown
- 2014-12-12 EP EP19204059.0A patent/EP3653703A1/en active Pending
- 2014-12-12 JP JP2016539210A patent/JP6625055B2/en active Active
- 2014-12-12 CN CN201480072798.9A patent/CN106029880A/en active Pending
- 2014-12-12 WO PCT/US2014/069897 patent/WO2015089351A1/en active Application Filing
- 2014-12-12 BR BR112016013520A patent/BR112016013520A2/en not_active Application Discontinuation
- 2014-12-12 WO PCT/US2014/069902 patent/WO2015089354A1/en active Application Filing
- 2014-12-12 AU AU2014362245A patent/AU2014362245A1/en not_active Abandoned
- 2014-12-12 SG SG10201804974RA patent/SG10201804974RA/en unknown
- 2014-12-12 JP JP2016539142A patent/JP6712948B2/en active Active
- 2014-12-12 MX MX2016007326A patent/MX2016007326A/en unknown
- 2014-12-12 KR KR1020167018646A patent/KR20160097338A/en not_active Application Discontinuation
- 2014-12-12 CA CA2932436A patent/CA2932436A1/en not_active Abandoned
- 2014-12-12 EP EP14821429.9A patent/EP3080257A1/en not_active Withdrawn
- 2014-12-12 KR KR1020167018623A patent/KR20160097331A/en not_active Application Discontinuation
- 2014-12-12 MX MX2016007325A patent/MX2016007325A/en unknown
- 2014-12-12 AU AU2014362248A patent/AU2014362248A1/en not_active Abandoned
- 2014-12-12 CN CN201480072803.6A patent/CN106103705A/en active Pending
- 2014-12-12 BR BR112016013547A patent/BR112016013547A2/en not_active Application Discontinuation
- 2014-12-12 EP EP19204106.9A patent/EP3653704A1/en active Pending
- 2014-12-12 EP EP14821430.7A patent/EP3080258A1/en not_active Withdrawn
-
2016
- 2016-06-08 IL IL246118A patent/IL246118A0/en unknown
- 2016-06-08 IL IL246116A patent/IL246116B/en active IP Right Grant
- 2016-06-10 US US15/179,711 patent/US10851357B2/en active Active
- 2016-06-10 US US15/179,941 patent/US20160354487A1/en not_active Abandoned
-
2019
- 2019-01-30 US US16/262,905 patent/US11591581B2/en active Active
-
2020
- 2020-12-01 US US17/108,771 patent/US20210277370A1/en active Pending
-
2023
- 2023-02-08 US US18/107,108 patent/US20230365950A1/en active Pending
Patent Citations (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0264166A1 (en) | 1986-04-09 | 1988-04-20 | Genzyme Corporation | Transgenic animals secreting desired proteins into milk |
US4873316A (en) | 1987-06-23 | 1989-10-10 | Biogen, Inc. | Isolation of exogenous recombinant proteins from the milk of transgenic mammals |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
US5589466A (en) | 1989-03-21 | 1996-12-31 | Vical Incorporated | Induction of a protective immune response in a mammal by injecting a DNA sequence |
US5593972A (en) | 1993-01-26 | 1997-01-14 | The Wistar Institute | Genetic immunization |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
WO1996039154A1 (en) | 1995-06-06 | 1996-12-12 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US20040171156A1 (en) | 1995-06-07 | 2004-09-02 | Invitrogen Corporation | Recombinational cloning using nucleic acids having recombination sites |
WO1997003211A1 (en) | 1995-07-13 | 1997-01-30 | Isis Pharmaceuticals, Inc. | Antisense inhibition of hepatitis b virus replication |
US5985309A (en) | 1996-05-24 | 1999-11-16 | Massachusetts Institute Of Technology | Preparation of particles for inhalation |
US5846946A (en) | 1996-06-14 | 1998-12-08 | Pasteur Merieux Serums Et Vaccins | Compositions and methods for administering Borrelia DNA |
US5855913A (en) | 1997-01-16 | 1999-01-05 | Massachusetts Instite Of Technology | Particles incorporating surfactants for pulmonary drug delivery |
US7303910B2 (en) | 1997-09-25 | 2007-12-04 | Oxford Biomedica (Uk) Limited | Retroviral vectors comprising a functional splice donor site and a functional splice acceptor site |
US6750059B1 (en) | 1998-07-16 | 2004-06-15 | Whatman, Inc. | Archiving of vectors |
US20100317109A1 (en) | 1999-03-31 | 2010-12-16 | Malcolm Maden | Factor |
US20070054961A1 (en) | 1999-03-31 | 2007-03-08 | Malcolm Maden | Factor |
US20040013648A1 (en) | 2000-10-06 | 2004-01-22 | Kingsman Alan John | Vector system |
US20070025970A1 (en) | 2000-10-06 | 2007-02-01 | Oxford Biomedica (Uk) Limited | Vector system |
US7259015B2 (en) | 2000-10-06 | 2007-08-21 | Oxford Biomedia (Uk) Limited | Vector system |
US20090111106A1 (en) | 2000-10-06 | 2009-04-30 | Kyri Mitrophanous | Vector System |
US7776321B2 (en) | 2001-09-26 | 2010-08-17 | Mayo Foundation For Medical Education And Research | Mutable vaccines |
US20050019923A1 (en) | 2001-10-19 | 2005-01-27 | Ijeoma Uchegbu | Dendrimers for use in targeted delivery |
US20090007284A1 (en) | 2001-12-21 | 2009-01-01 | Philippa Radcliffe | Transgenic organism |
US7901708B2 (en) | 2002-06-28 | 2011-03-08 | Protiva Biotherapeutics, Inc. | Liposomal apparatus and manufacturing methods |
EP1519714A1 (en) | 2002-06-28 | 2005-04-06 | Protiva Biotherapeutics Inc. | Method and apparatus for producing liposomes |
US7351585B2 (en) | 2002-09-03 | 2008-04-01 | Oxford Biomedica (Uk) Ltd. | Retroviral vector |
US7982027B2 (en) | 2003-07-16 | 2011-07-19 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
EP1664316A1 (en) | 2003-09-15 | 2006-06-07 | Protiva Biotherapeutics Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
US7803397B2 (en) | 2003-09-15 | 2010-09-28 | Protiva Biotherapeutics, Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
US20060281180A1 (en) | 2003-10-30 | 2006-12-14 | Philippa Radcliffe | Vectors |
US7745651B2 (en) | 2004-06-07 | 2010-06-29 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods of use |
EP1781593A2 (en) | 2004-06-07 | 2007-05-09 | Protiva Biotherapeutics Inc. | Cationic lipids and methods of use |
US7799565B2 (en) | 2004-06-07 | 2010-09-21 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
EP1766035A1 (en) | 2004-06-07 | 2007-03-28 | Protiva Biotherapeutics Inc. | Lipid encapsulated interfering rna |
US8454972B2 (en) | 2004-07-16 | 2013-06-04 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Method for inducing a multiclade immune response against HIV utilizing a multigene and multiclade immunogen |
US20080267903A1 (en) | 2004-10-14 | 2008-10-30 | Ijeoma Uchegbu | Bioactive Polymers |
US7838658B2 (en) | 2005-10-20 | 2010-11-23 | Ian Maclachlan | siRNA silencing of filovirus gene expression |
US8188263B2 (en) | 2005-11-02 | 2012-05-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US8101741B2 (en) | 2005-11-02 | 2012-01-24 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US20090017543A1 (en) | 2005-12-22 | 2009-01-15 | Fraser Wilkes | Viral Vectors |
US7915399B2 (en) | 2006-06-09 | 2011-03-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US8709843B2 (en) | 2006-08-24 | 2014-04-29 | Rohm Co., Ltd. | Method of manufacturing nitride semiconductor and nitride semiconductor element |
US8404658B2 (en) | 2007-12-31 | 2013-03-26 | Nanocor Therapeutics, Inc. | RNA interference for the treatment of heart failure |
US8058069B2 (en) | 2008-04-15 | 2011-11-15 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
US20110195123A1 (en) | 2008-06-30 | 2011-08-11 | Silenseed Ltd. | Methods, compositions and systems for local delivery of drugs |
US20110117189A1 (en) | 2008-07-08 | 2011-05-19 | S.I.F.I. Societa' Industria Farmaceutica Italiana S.P.A. | Ophthalmic compositions for treating pathologies of the posterior segment of the eye |
US20110293703A1 (en) | 2008-11-07 | 2011-12-01 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US20110016540A1 (en) | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Genome editing of genes associated with trinucleotide repeat expansion disorders in animals |
US8236943B2 (en) | 2009-07-01 | 2012-08-07 | Protiva Biotherapeutics, Inc. | Compositions and methods for silencing apolipoprotein B |
US8283333B2 (en) | 2009-07-01 | 2012-10-09 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
WO2011028929A2 (en) | 2009-09-03 | 2011-03-10 | The Regents Of The University Of California | Nitrate-responsive promoter |
US20110059502A1 (en) | 2009-09-07 | 2011-03-10 | Chalasani Sreekanth H | Multiple domain proteins |
US20110293571A1 (en) | 2010-05-28 | 2011-12-01 | Oxford Biomedica (Uk) Ltd. | Method for vector delivery |
US20130302401A1 (en) | 2010-08-26 | 2013-11-14 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
WO2012135025A2 (en) | 2011-03-28 | 2012-10-04 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
US20120251560A1 (en) | 2011-03-28 | 2012-10-04 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
US20120251618A1 (en) | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
US20120295960A1 (en) | 2011-05-20 | 2012-11-22 | Oxford Biomedica (Uk) Ltd. | Treatment regimen for parkinson's disease |
US20130244279A1 (en) | 2011-12-16 | 2013-09-19 | modeRNA Therapeutics | Formulation and delivery of plga microspheres |
US20130245107A1 (en) | 2011-12-16 | 2013-09-19 | modeRNA Therapeutics | Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides |
US20130252281A1 (en) | 2011-12-16 | 2013-09-26 | modeRNA Therapeutics | Formulation and delivery of plga microspheres |
WO2013130824A1 (en) * | 2012-02-29 | 2013-09-06 | Sangamo Biosciences, Inc. | Methods and compositions for treating huntington's disease |
US20130253040A1 (en) | 2012-02-29 | 2013-09-26 | c/o Sangamo BioSciences, Inc. | Methods and compositions for treating huntington's disease |
WO2014018423A2 (en) | 2012-07-25 | 2014-01-30 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
US20140189896A1 (en) | 2012-12-12 | 2014-07-03 | Feng Zhang | Crispr-cas component systems, methods and compositions for sequence manipulation |
US8795965B2 (en) | 2012-12-12 | 2014-08-05 | The Broad Institute, Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
WO2014093661A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
WO2014093595A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
WO2014093655A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
WO2014093701A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
WO2014093635A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
WO2014093622A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
WO2014093712A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
WO2014093718A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
US20140170753A1 (en) | 2012-12-12 | 2014-06-19 | Massachusetts Institute Of Technology | Crispr-cas systems and methods for altering expression of gene products |
WO2014093709A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
US20140179770A1 (en) | 2012-12-12 | 2014-06-26 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US20140179006A1 (en) | 2012-12-12 | 2014-06-26 | Massachusetts Institute Of Technology | Crispr-cas component systems, methods and compositions for sequence manipulation |
US20140186919A1 (en) | 2012-12-12 | 2014-07-03 | Feng Zhang | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
US20140186958A1 (en) | 2012-12-12 | 2014-07-03 | Feng Zhang | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
US20140186843A1 (en) | 2012-12-12 | 2014-07-03 | Massachusetts Institute Of Technology | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
US8771945B1 (en) | 2012-12-12 | 2014-07-08 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
EP2764103A2 (en) | 2012-12-12 | 2014-08-13 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
US20140227787A1 (en) | 2012-12-12 | 2014-08-14 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
US20140234972A1 (en) | 2012-12-12 | 2014-08-21 | Massachusetts Institute Of Technology | CRISPR-CAS Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
US20140242700A1 (en) | 2012-12-12 | 2014-08-28 | Massachusetts Institute Of Technology | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US20140242699A1 (en) | 2012-12-12 | 2014-08-28 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US20140242664A1 (en) | 2012-12-12 | 2014-08-28 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
EP2771468A1 (en) | 2012-12-12 | 2014-09-03 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US20140248702A1 (en) | 2012-12-12 | 2014-09-04 | The Broad Institute, Inc. | CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
US20140256046A1 (en) | 2012-12-12 | 2014-09-11 | Massachusetts Institute Of Technology | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
US20140273234A1 (en) | 2012-12-12 | 2014-09-18 | The Board Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US20140273232A1 (en) | 2012-12-12 | 2014-09-18 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US20140273231A1 (en) | 2012-12-12 | 2014-09-18 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
US8895308B1 (en) | 2012-12-12 | 2014-11-25 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
EP2784162A1 (en) | 2012-12-12 | 2014-10-01 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US20140310830A1 (en) | 2012-12-12 | 2014-10-16 | Feng Zhang | CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
US8865406B2 (en) | 2012-12-12 | 2014-10-21 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US8871445B2 (en) | 2012-12-12 | 2014-10-28 | The Broad Institute Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
US8889356B2 (en) | 2012-12-12 | 2014-11-18 | The Broad Institute Inc. | CRISPR-Cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
US8889418B2 (en) | 2012-12-12 | 2014-11-18 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US20140287938A1 (en) | 2013-03-15 | 2014-09-25 | The Broad Institute, Inc. | Recombinant virus and preparations thereof |
Non-Patent Citations (244)
Title |
---|
"METHODS IN ENZYMOLOGY", ACADEMIC PRESS, INC. |
"Nucleic Acids and Molecular Biology", vol. 19, 2006, article "Human Nucleotide Expansion Disorders" |
"REMINGTON'S PHARMACEUTICAL SCIENCES", 1991, MACK PUB. CO. |
A. MALINA ET AL: "Repurposing CRISPR/Cas9 for in situ functional assays", GENES & DEVELOPMENT, vol. 27, no. 23, 1 December 2013 (2013-12-01), pages 2602 - 2614, XP055177303, ISSN: 0890-9369, DOI: 10.1101/gad.227132.113 * |
A.R. GRUBER, CELL, vol. 106, no. 1, 2008, pages 23 - 24 |
ADVANCED DRUG DELIVERY REVIEWS, vol. 64, 2012, pages 1730 - 1737 |
AHMAD, S. ET AL., J ROYAL SOC INTERFACE, vol. 7, 2010, pages 423 - 33 |
AKINE ET AL., NAT. BIOTECH., vol. 26, 2010, pages 561 - 569 |
ALABI ET AL., PROC NATL ACAD SCI U S A., vol. 110, no. 32, 6 August 2013 (2013-08-06), pages 12881 - 6 |
ALTSCHUL ET AL., J. MOL. BIOL., 1990, pages 403 - 410 |
ALVAREZ-ERVITI ET AL., NAT BIOTECHNOL, vol. 29, 2011, pages 341 |
AMRANN ET AL., GENE, vol. 69, 1988, pages 301 - 315 |
ATSCHUL ET AL., J. MOL. BIOL., 1990, pages 403 - 410 |
AUSUBEL ET AL., SHORT PROTOCOLS IN MOLECULAR BIOLOGY, 1999, pages 7 - 58,7-60 |
AUSUBEL: "Short Protocols in Molecular Biology, 4th Ed,", 1999, article "Chapter 18" |
BALAGAAN, J, GENE MED, vol. 8, 2006, pages 275 - 285 |
BALDARI ET AL., EMBO J., vol. 6, 1987, pages 229 - 234 |
BANEIJI ET AL., CELL, vol. 33, 1983, pages 729 - 740 |
BANKER G; GOSLIN K.: "Developments in neuronal cell culture", NATURE, vol. 336, no. 6195, 10 November 1988 (1988-11-10), pages 185 - 6 |
BARTLETT ET AL., PNAS, vol. 104, no. 39, 25 September 2007 (2007-09-25) |
BEDELL, V.M. ET AL.: "In vivo genome editing using a high-efficiency TALEN system", NATURE, vol. 491, 2012, pages 114 - U133 |
BHAYA, D.; DAVISON, M.; BARRANGOU, R.: "CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation", ANNU REV GENET, vol. 45, 2011, pages 273 - 297, XP055118832, DOI: doi:10.1146/annurev-genet-110410-132430 |
BINLEY ET AL., HUMAN GENE THERAPY, vol. 23, September 2012 (2012-09-01), pages 980 - 991 |
BOBIS-WOZOWICZ, S.; OSIAK, A.; RAHMAN, S.H.; CATHOMEN, T.: "Targeted genome editing in pluripotent stem cells using zinc-finger nucleases", METHODS, vol. 53, 2011, pages 339 - 346, XP028165728, DOI: doi:10.1016/j.ymeth.2010.12.019 |
BOCH, J. ET AL.: "Breaking the code of DNA binding specificity of TAL-type III effectors", SCIENCE, vol. 326, 2009, pages 1509 - 1512, XP055250971, DOI: doi:10.1126/science.1178811 |
BOGENHAGEN, D.F.; BROWN, D.D.: "Nucleotide sequences in Xenopus 5S DNA required for transcription termination", CELL, vol. 24, 1981, pages 261 - 270, XP023912594, DOI: doi:10.1016/0092-8674(81)90522-5 |
BOSHART ET AL., CELL, vol. 41, 1985, pages 521 - 530 |
BOUDREAU ET AL., MOLECULAR THERAPY, vol. 17, no. 6, June 2009 (2009-06-01) |
BULTMANN, S. ET AL.: "Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers", NUCLEIC ACIDS RES, vol. 40, 2012, pages 5368 - 5377 |
BURRIGHT EN; CLARK HB; SERVADIO A; MATILLA T; FEDDERSEN RM; YUNIS WS; DUVICK LA; ZOGHBI HY; ORR HT.: "SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat", CELL, vol. 82, no. 6, 22 September 1995 (1995-09-22), pages 937 - 48, XP002913537, DOI: doi:10.1016/0092-8674(95)90273-2 |
BYRNE; RUDDLE, PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 5473 - 5477 |
CALAME; EATON, ADV. IMMUNOL., vol. 43, 1988, pages 235 - 275 |
CAMPES; TILGHMAN, GENES DEV., vol. 3, 1989, pages 537 - 546 |
CARLSON, D.F. ET AL.: "Efficient TALEN-mediated gene knockout in livestock", PROC NATL ACAD SCI USA, vol. 109, 2012, pages 17382 - 17387, XP055089730, DOI: doi:10.1073/pnas.1211446109 |
CHEN, F.Q. ET AL.: "High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases", NAT METHODS, vol. 8, 2011, pages 753 - U796 |
CHEN, Y.H. ET AL.: "Sialic acid deposition impairs the utility of AAV9, but not peptide-modified AAVs for brain gene therapy in a mouse model of lysosomal storage disease", MOL THER, vol. 20, no. 7, 2012, pages 1393 - 9, XP055145474, DOI: doi:10.1038/mt.2012.100 |
CHEN, Y.H.; M. CHANG; B.L. DAVIDSON: "Molecular signatures of disease brain endothelia provide new sites for CNS-directed enzyme therapy", NAT MED, vol. 15, no. 10, 2009, pages 1215 - 8, XP002633635, DOI: doi:10.1038/nm.2025 |
CHO, S.; GOLDBERG, M.; SON, S.; XU, Q.; YANG, F.; MEI, Y.; BOGATYREV, S.; LANGER, R; ANDERSON, D.: "Lipid-like nanoparticles for small interfering RNA delivery to endothelial cells", ADVANCED FUNCTIONAL MATERIALS, vol. 19, 2010, pages 3112 - 3118, XP001548633, DOI: doi:10.1002/adfm.200900519 |
CHO, S.W.; KIM, S.; KIM, J.M.; KIM, J.S.: "Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease", NAT BIOTECHNOL, vol. 31, 2013, pages 230 - 232 |
CHOI ET AL., PROC. NATL. ACAD. SCI. USA., vol. 110, no. 19, 2013, pages 7625 - 7630 |
CHRISTIAN, M. ET AL.: "Targeting DNA double-strand breaks with TAL effector nucleases", GENETICS, vol. 186, 2010, pages 757 - 761 |
COELHO ET AL., N ENGL J MED, vol. 369, 2013, pages 819 - 29 |
CONG, L. ET AL.: "Multiplex genome engineering using CRISPR-Cas systems", SCIENCE, vol. 339, 2013, pages 819 - 823, XP055400719, DOI: doi:10.1126/science.1231143 |
CONG, L.; RAN, F.A.; COX, D.; LIN, S.; BARRETTO, R.; HABIB, N.; HSU, P.D.; WU, X.; JIANG, W.; MARRAFFINI, L.A.: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 819 - 23, XP055400719, DOI: doi:10.1126/science.1231143 |
CRONICAN ET AL., ACS CHEMICAL BIOLOGY, vol. 5, 2010, pages 747 - 752 |
CRONICAN ET AL., CHEMISTRY & BIOLOGY, vol. 18, 2011, pages 833 - 838 |
CUTLER ET AL., J. AM. CHEM. SOC., vol. 133, 2011, pages 9254 - 9257 |
CUTLER ET AL., J. AM. CHEM. SOC., vol. 134, 2012, pages 1376 - 1391 |
DAVIDSON, B.L. ET AL.: "Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system", PROC NATL ACAD SCI U S A, vol. 97, no. 7, 2000, pages 3428 - 32, XP002975051, DOI: doi:10.1073/pnas.050581197 |
DAVIDSON, B.L.; J.A. CHIORINI: "Recombinant adeno-associated viral vector types 4 and 5. Preparation and application for CNS gene transfer", METHODS MOL MED, vol. 76, 2003, pages 269 - 85 |
DAVIS ET AL., NATURE, vol. 464, 15 April 2010 (2010-04-15) |
DELTCHEVA, E. ET AL.: "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III", NATURE, vol. 471, 2011, pages 602 - 607, XP055308803, DOI: doi:10.1038/nature09886 |
DEVEAU, H.; GARNEAU, J.E.; MOINEAU, S.: "CRISPR-Cas system and its role in phage-bacteria interactions", ANNU REV MICROBIOL, vol. 64, 2010, pages 475 - 493, XP055067789, DOI: doi:10.1146/annurev.micro.112408.134123 |
DEVEREUX ET AL., NUC. ACIDS RESEARCH, vol. 12, 1984, pages 387 |
DEVEREUX ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387 |
DIFIGLIA ET AL., PNAS, vol. 104, no. 43, 23 October 2007 (2007-10-23), pages 17204 - 17209 |
DIGIUSTO ET AL., SCI TRANS! MED, vol. 2, 2010, pages 36RA43 |
DING, Q. ET AL.: "A TALEN genome-editing system for generating human stem cell-based disease models", CELL STEM CELL, vol. 12, 2013, pages 238 - 251, XP055400863, DOI: doi:10.1016/j.stem.2012.11.011 |
DOENCH ET AL.: "Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation", NATURE BIOTECHNOLOGY, 3 September 2014 (2014-09-03) |
DUMITRACHE ET AL., GENETICS, vol. 188, no. 4, August 2011 (2011-08-01), pages 787 - 797 |
EDLUND ET AL., SCIENCE, vol. 230, 1985, pages 912 - 916 |
EL ANDALOUSSI S ET AL.: "Exosome-mediated delivery of siRNA in vitro and in vivo", NAT PROTOC., vol. 7, no. 12, 15 November 2012 (2012-11-15), pages 2112 - 26, XP055129954, DOI: doi:10.1038/nprot.2012.131 |
EL-ANDALOUSSI ET AL., NATURE PROTOCOLS, vol. 7, 2012, pages 2112 - 2126 |
F. M. AUSUBEL, ET AL.: "CURRENT PROTOCOLS IN MOLECULAR BIOLOGY", 1987 |
FEMS MICROBIOL LETT., vol. 174, no. 2, 1999, pages 247 - 50 |
FEMS MICROBIOL LETT., vol. 177, no. 1, 1999, pages 187 - 8 |
GARNEAU, J.E. ET AL.: "The CRISPR-Cas bacterial immune system cleaves bacteriophage and plasmid DNA", NATURE, vol. 468, 2010, pages 67 - 71, XP055181397, DOI: doi:10.1038/nature09523 |
GARRETT, N.L. ET AL., J BIOPHOTONICS, vol. 5, no. 5-6, 2012, pages 458 - 68 |
GARRETT, N.L. ET AL., J RAMAN SPECT, vol. 43, no. 5, 2012, pages 681 - 688 |
GASIUNAS, G.; BARRANGOU, R.; HORVATH, P.; SIKSNYS, V.: "Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria", PROC NATL ACAD SCI U S A, vol. 109, 2012, pages E2579 - 2586, XP055068588, DOI: doi:10.1073/pnas.1208507109 |
GEISBERT ET AL., LANCET, vol. 375, 2010, pages 1896 - 905 |
GEURTS, A.M. ET AL.: "Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases", SCIENCE, vol. 325, 2009, pages 433 - 433, XP002580718, DOI: doi:10.1126/SCIENCE.1172447 |
GOEDDEL: "GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY", 1990, ACADEMIC PRESS, pages: 185 |
GRAY SJ; FOTI SB; SCHWARTZ JW; BACHABOINA L; TAYLOR-BLAKE B; COLEMAN J; EHLERS MD; ZYLKA MJ; MCCOWN TJ; SAMULSKI RJ.: "Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors", HUM GENE THER., vol. 22, no. 9, September 2011 (2011-09-01), pages 1143 - 53, XP055198141, DOI: doi:10.1089/hum.2010.245 |
GRIMM, D. ET AL., J. VIROL., vol. 82, 2008, pages 5887 - 5911 |
GROENEN ET AL., MOL. MICROBIOL., vol. 10, 1993, pages 1057 - 1065 |
GUSCHIN, D.Y. ET AL.: "A rapid and general assay for monitoring endogenous gene modification", METHODS MOL BIOL, vol. 649, 2010, pages 247 - 256, XP055485617, DOI: doi:10.1007/978-1-60761-753-2_15 |
HAO ET AL., SMALL, vol. 7, 2011, pages 3158 - 3162 |
HARLOW AND LANE,: "ANTIBODIES, A LABORATORY MANUAL", 1988 |
HASTY, P.; RIVERA-PEREZ, J.; BRADLEY, A.: "The length of homology required for gene targeting in embryonic stem cells", MOL CELL BIOL, vol. 11, 1991, pages 5586 - 5591, XP002052222 |
HIGGINS DG; SHARP PM, GENE, vol. 73, no. 1, 1988, pages 237 - 244 |
HOE ET AL., EMERG. INFECT. DIS., vol. 5, 1999, pages 254 - 263 |
HORVATH, P.; BARRANGOU, R.: "CRISPR-Cas, the immune system of bacteria and archaea", SCIENCE, vol. 327, 2010, pages 167 - 170, XP055016971, DOI: doi:10.1126/science.1179555 |
HORWELL DC, TRENDS BIOTECHNOL., vol. 13, no. 4, 1995, pages 132 - 134 |
HSU ET AL.: "Development and Applications of CRISPR-Cas9 for Genome Engineering", CELL, vol. 157, 5 June 2014 (2014-06-05), pages 1262 - 1278, XP028849523, DOI: doi:10.1016/j.cell.2014.05.010 |
HSU, P.; SCOTT, D.; WEINSTEIN, J.; RAN, FA.; KONERMANN, S.; AGARWALA, V.; LI, Y.; FINE, E.; WU, X.; SHALEM, O.: "DNA targeting specificity of RNA-guided Cas9 nucleases", NAT BIOTECHNOL, 2013 |
HSU, P.D.; ZHANG, F.: "Dissecting neural function using targeted genome engineering technologies", ACS CHEM NEUROSCI, vol. 3, 2012, pages 603 - 610 |
HUGHES, S.M. ET AL.: "Viral-mediated gene transfer to mouse primary neural progenitor cells", MOL THER, vol. 5, no. 1, 2002, pages 16 - 24 |
HWANG, W.Y. ET AL.: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NAT BIOTECHNOL, vol. 31, 2013, pages 227 - 229, XP055086625, DOI: doi:10.1038/nbt.2501 |
ISHINO ET AL., J. BACTERIOL., vol. 169, 1987, pages 5429 - 5433 |
JAMES E. DAHIMAN; CARMEN BARNES ET AL., NATURE NANOTECHNOLOGY, 11 May 2014 (2014-05-11) |
JAMES E. DAHLMAN; CARMEN BARNES ET AL., NATURE NANOTECHNOLOGY, 11 May 2014 (2014-05-11) |
JANSEN ET AL., MOL. MICROBIOL., vol. 43, 2002, pages 1565 - 1575 |
JANSSEN ET AL., OMICS J. INTEG. BIOL., vol. 6, 2002, pages 23 - 33 |
JAYARAMAN, ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 8529 - 8533 |
JENSEN ET AL., SCI. TRANSL. MED., vol. 5, 2013, pages 209RAL52 |
JIANG ET AL., NANO LETT., vol. 13, no. 3, 13 March 2013 (2013-03-13), pages 1059 - 64 |
JIANG W.; BIKARD D.; COX D.; ZHANG F; MARRAFFINI LA.: "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, no. 3, March 2013 (2013-03-01), pages 233 - 9, XP055249123, DOI: doi:10.1038/nbt.2508 |
JIANG, W.; BIKARD, D.; COX, D.; ZHANG, F.; MARRAFFINI, L.A.: "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, 2013, pages 233 - 239, XP055249123, DOI: doi:10.1038/nbt.2508 |
JINEK, M. ET AL.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity", SCIENCE, vol. 337, 2012, pages 816 - 821, XP055299674, DOI: doi:10.1126/science.1225829 |
JINEK, M. ET AL.: "RNA-programmed genome editing in human cells", ELIFE, vol. 2, 2013, pages E00471, XP055167481, DOI: doi:10.7554/eLife.00471 |
JUDGE, J. CLIN. INVEST., vol. 119, 2009, pages 661 - 673 |
KAPLITT, M.G. ET AL.: "Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial", LANCET, vol. 369, no. 9579, 23 June 2007 (2007-06-23), pages 2097 - 105, XP022126085, DOI: doi:10.1016/S0140-6736(07)60982-9 |
KARAGIANNIS ET AL., ACS NANO, vol. 6, no. 10, 23 October 2012 (2012-10-23), pages 8484 - 7 |
KARGINOV; HANNON: "The CRISPR system: small RNA-guided defence in bacteria and archaea", MOLE CELL, vol. 37, no. 1, 15 January 2010 (2010-01-15), pages 7, XP055016972, DOI: doi:10.1016/j.molcel.2009.12.033 |
KAUFMAN ET AL., EMBO J., vol. 6, 1987, pages 187 - 195 |
KESSEL; GRUSS, SCIENCE, vol. 249, 1990, pages 374 - 379 |
KONERMANN S; BRIGHAM MD; TREVINO AE, HSU PD; HEIDENREICH M; CONG L; PLATT RJ; SCOTT DA; CHURCH GM; ZHANG F.: "Optical control of mammalian endogenous transcription and epigenetic states", NATURE, vol. 500, no. 7463, 22 August 2013 (2013-08-22), pages 472 - 6 |
KUIJAN; HERSKOWITZ, CELL, vol. 30, 1982, pages 933 - 943 |
L. CONG ET AL: "Multiplex Genome Engineering Using CRISPR/Cas Systems", SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 819 - 823, XP055067741, ISSN: 0036-8075, DOI: 10.1126/science.1231143 * |
LALATSA ET AL., J CONTROL RELEASE, vol. 161, no. 2, 20 July 2012 (2012-07-20), pages 523 - 36 |
LALATSA, A. ET AL., J CONTR REL, vol. 161, no. 2, 2012, pages 523 - 36 |
LALATSA, A. ET AL., MOL PHARM, vol. 9, no. 6, 2012, pages 1665 - 80 |
LALATSA, A. ET AL., MOL PHARM, vol. 9, no. 6, 2012, pages 1764 - 74 |
LAWRENCE ET AL., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, 2007, pages 10110 - 10112 |
LEE ET AL., NAT NANOTECHNOL., vol. 7, no. 6, 3 June 2012 (2012-06-03), pages 389 - 93 |
LEVITT N.; BRIGGS D.; GIL A.; PROUDFOOT N.J.: "Definition of an efficient synthetic poly(A) site", GENES DEV., vol. 3, 1989, pages 1019 - 1025, XP008053152 |
LEWIS ET AL., NAT. GEN., vol. 32, 2002, pages 107 - 108 |
LI, GENE THERAPY, vol. 19, 2012, pages 775 - 780 |
LIU D; FISCHER I.: "Two alternative promoters direct neuron-specific expression of the rat microtubule-associated protein 1B gene", J NEUROSCI., vol. 16, no. 16, 15 August 1996 (1996-08-15), pages 5026 - 36 |
LIU, G. ET AL.: "Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS", GENE THER, vol. 12, no. 20, 2005, pages 1503 - 8, XP055452701, DOI: doi:10.1038/sj.gt.3302554 |
LIVINGSTONE C.D.; BARTON G.J.: "Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation", COMPUT. APPL BIOSCI., vol. 9, 1993, pages 745 - 756 |
LOPES, V.S.: "Retinal gene therapy with a large MYO7A cDNA using adeno-assocaited virus", GENE THER, 24 January 2013 (2013-01-24) |
LOTERY, A.J. ET AL.: "Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina", HUM GENE THER, vol. 14, no. 17, 2003, pages 1663 - 71 |
LUCKLOW; SUMMERS, VIROLOGY, vol. 170, 1989, pages 31 - 39 |
LUKE A. GILBERT ET AL: "CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes", CELL, vol. 154, no. 2, 1 July 2013 (2013-07-01), pages 442 - S5, XP055167546, ISSN: 0092-8674, DOI: 10.1016/j.cell.2013.06.044 * |
M. JINEK ET AL: "A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity (Supplementary Material)", SCIENCE, vol. 337, no. 6096, 28 June 2012 (2012-06-28), pages 816 - 821, XP055067747, ISSN: 0036-8075, DOI: 10.1126/science.1225829 * |
M.J. MACPHERSON, B.D. HAMES AND G.R. TAYLOR: "PCR 2: A PRACTICAL APPROACH", 1995 |
MAHFOUZ, M.M. ET AL.: "De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks", PROC NATL ACAD SCI U S A, vol. 108, 2011, pages 2623 - 2628, XP055007615, DOI: doi:10.1073/pnas.1019533108 |
MAKAROVA, K.S. ET AL.: "Evolution and classification of the CRISPR-Cas systems", NAT REV MICROBIOL, vol. 9, 2011, pages 467 - 477, XP009155547, DOI: doi:10.1038/nrmicro2577 |
MALI, P. ET AL.: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, 2013, pages 823 - 826 |
MASEPOHL ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 1307, 1996, pages 26 - 30 |
MAZZA ET AL., ACS NANO, vol. 7, no. 2, 26 February 2013 (2013-02-26), pages 1016 - 26 |
MAZZA, M. ET AL., ACSNANO, vol. 7, no. 2, 2013, pages 1016 - 1026 |
MCBRIDE ET AL., MOLECULAR THERAPY, vol. 19, no. 12, December 2011 (2011-12-01), pages 2152 - 2162 |
MCCLURE C; COLE KL; WULFF P; KLUGMANN M; MURRAY AJ.: "Production and titering of recombinant adeno-associated viral vectors", J VIS EXP., 27 November 2011 (2011-11-27), pages E3348 |
MCNAUGHTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 106, 2009, pages 6111 - 6116 |
MICHAEL S D KORMANN ET AL.: "Expression of therapeutic proteins after delivery of chemically modified mRNA in mice", NATURE BIOTECHNOLOGY, vol. 29, 2011, pages 154 - 157, XP002696192, DOI: doi:10.1038/nbt.1733 |
MICHAELIS, L.; M., MAUD: "Die kinetik der invertinwirkung", BIOCHEM. Z, 1913 |
MILLER, J.C. ET AL.: "A TALE nuclease architecture for efficient genome editing", NAT BIOTECHNOL, vol. 29, 2011, pages 143 - 148 |
MILLER, J.C. ET AL.: "An improved zinc-finger nuclease architecture for highly specific genome editing", NAT BIOTECHNOL, vol. 25, 2007, pages 778 - 785, XP002465119, DOI: doi:10.1038/nbt1319 |
MIRKIN ET AL., SMALL, vol. 10, pages 186 - 192 |
MIRKIN, NANOMEDICINE, vol. 7, 2012, pages 635 - 638 |
MOJICA ET AL., MOL. MICROBIOL., vol. 17, 1995, pages 85 - 93 |
MOJICA ET AL., MOL. MICROBIOL., vol. 36, 2000, pages 244 - 246 |
MOL. CELL. BIOL., vol. 8, no. 1, 1988, pages 466 - 472 |
MORRISSEY ET AL., NATURE BIOTECHNOLOGY, vol. 23, no. 8, August 2005 (2005-08-01) |
MOSCOU, M.J.; BOGDANOVE, A.J.: "A simple cipher governs DNA recognition by TAL effectors", SCIENCE, vol. 326, 2009, pages 1501, XP002599998 |
MUSSOLINO, C. ET AL.: "A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity", NUCLEIC ACIDS RESEARCH, vol. 39, 2011, pages 9283 - 9293, XP055021128, DOI: doi:10.1093/nar/gkr597 |
NAKAMURA, Y. ET AL.: "Codon usage tabulated from the international DNA sequence databases: status for the year 2000", NUCL. ACIDS RES., vol. 28, 2000, pages 292, XP002941557, DOI: doi:10.1093/nar/28.1.292 |
NAKATA ET AL., J. BACTERIOL., vol. 171, 1989, pages 3553 - 3556 |
NATHWANI, A.C. ET AL.: "Adenovirus-associated virus vector-mediated gene transfer in hemophilia B", N ENGL J MED., vol. 365, no. 25, 10 December 2011 (2011-12-10), pages 2357 - 65, XP055079598, DOI: doi:10.1056/NEJMoa1108046 |
NISHIMASU, H.; RAN, FA.; HSU, PD.; KONERMANN, S.; SHEHATA, SI.; DOLIMAE, N.; ISHITANI, R.; ZHANG, F.; NUREKI, O.: "Crystal structure of cas9 in complex with guide RNA and target DNA", CELL, vol. 156, no. 5, 14 February 2014 (2014-02-14), pages 935 - 49, XP028667665, DOI: doi:10.1016/j.cell.2014.02.001 |
NOVOBRANTSEVA, MOLECULAR THERAPY-NUCLEIC ACIDS, vol. 1, 2012, pages E4 |
OLIVEIRA, T.Y. ET AL.: "Translocation capture sequencing: a method for high throughput mapping of chromosomal rearrangements", J IMMUNOL METHODS, vol. 375, 2012, pages 176 - 181, XP028434307, DOI: doi:10.1016/j.jim.2011.10.007 |
P. MALI ET AL: "RNA-Guided Human Genome Engineering via Cas9", SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 823 - 826, XP055159412, ISSN: 0036-8075, DOI: 10.1126/science.1232033 * |
PA CARR; GM CHURCH, NATURE BIOTECHNOLOGY, vol. 27, no. 12, 2009, pages 1151 - 62 |
PEREZ, E.E. ET AL.: "Establishment of HIV-1 resistance in CD4(+) T cells by genome editing using zinc-finger nucleases", NAT BIOTECHNOL, vol. 26, 2008, pages 808 - 816, XP055024363, DOI: doi:10.1038/nbt1410 |
PINKERT ET AL., GENES DEV., vol. 1, 1987, pages 268 - 277 |
PLATT ET AL.: "CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling", CELL, vol. 159, no. 2, 2014, pages 440 - 455, XP029073412, DOI: doi:10.1016/j.cell.2014.09.014 |
PORTEUS, M.H.; BALTIMORE, D.: "Chimeric nucleases stimulate gene targeting in human cells", SCIENCE, vol. 300, 2003, pages 763, XP002974231, DOI: doi:10.1126/science.1078395 |
PROC. NATL. ACAD. SCI. USA., vol. 78, no. 3, 1981, pages 1527 - 31 |
QI, L.S. ET AL.: "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression", CELL, vol. 152, 2013, pages 1173 - 1183, XP055346792, DOI: doi:10.1016/j.cell.2013.02.022 |
QU, X., BIOMACROMOLECULES, vol. 7, no. 12, 2006, pages 3452 - 9 |
QUEEN; BALTIMORE, CELL, vol. 33, 1983, pages 741 - 748 |
R,I. FRESHNEY,: "ANIMAL CELL CULTURE", 1987 |
RAN, F.A. ET AL.: "Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity", CELL, vol. 154, no. 6, 2013, pages 1380 - 9, XP055299681, DOI: doi:10.1016/j.cell.2013.08.021 |
RAN, F.A. ET AL.: "Genome engineering using the CRISPR-Cas9 system", NAT PROTOC, vol. 8, no. 11, 2013, pages 2281 - 308, XP002772991, DOI: doi:10.1038/nprot.2013.143 |
RAN, FA.; HSU, PD.; LIN, CY.; GOOTENBERG, JS.; KONERMANN, S.; TREVINO, AE.; SCOTT, DA.; INOUE, A.; MATOBA, S.; ZHANG, Y.: "Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity", CELL, vol. PII: S00, no. 13, 28 August 2013 (2013-08-28), pages 01015 - 5 |
RAN, FA.; HSU, PD.; WRIGHT, J.; AGARWALA, V.; SCOTT, DA.; ZHANG, F.: "Genome engineering using the CRISPR-Cas9 system", NATURE PROTOCOLS, vol. 8, no. 1 1, November 2013 (2013-11-01), pages 2281 - 308, XP009174668, DOI: doi:10.1038/nprot.2013.143 |
REICH ET AL., MOL. VISION., vol. 9, 2003, pages 210 - 216 |
REYON, D. ET AL.: "FLASH assembly of TALENs for high-throughput genome editing", NAT BIOTECHNOL, vol. 30, 2012, pages 460 - 465, XP055171172, DOI: doi:10.1038/nbt.2170 |
RODRIGUEZ-LEBRON, E. ET AL.: "Allele-specific RNAi mitigates phenotypic progression in a transgenic model of Alzheimer's disease", MOL THER, vol. 17, no. 9, 2009, pages 1563 - 73 |
ROSIN ET AL., MOLECULAR THERAPY, vol. 19, no. 12, December 2011 (2011-12-01), pages 1286 - 2200 |
SALEH-GOHARI, N.; HELLEDAY, T.: "Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells", NUCLEIC ACIDS RES, vol. 32, 2004, pages 3683 - 3688 |
SAMBROOK ET AL.: "MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed.,", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SAMBROOK; FRITSCH; MANIATIS: "MOLECULAR CLONING: A LABORATORY MANUAL, 2nd edition", 1989 |
SANDER, J.D. ET AL.: "Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA", NAT METHODS, vol. 8, 2011, pages 67 - 69 |
SANJANA, N.E. ET AL.: "A transcription activator-like effector toolbox for genome engineering", NAT PROTOC, vol. 7, 2012, pages 171 - 192, XP009170390, DOI: doi:10.1038/nprot.2011.431 |
SAPRANAUSKAS, R. ET AL.: "The Streptococcus thermophilus CRISPR-Cas system provides immunity in Escherichia coli", NUCLEIC ACIDS RES, vol. 39, 2011, pages 9275 - 9282, XP055265024, DOI: doi:10.1093/nar/gkr606 |
SCHIFFELERS ET AL., NUCLEIC ACIDS RESEARCH, vol. 32, no. 19, 2004 |
SCHROEDER, A.; LEVINS, C.; CORTEZ, C.; LANGER, R.; ANDERSON, D.: "Lipid-based nanotherapeutics for siRNA delivery", JOURNAL OF INTERNAL MEDICINE, vol. 267, 2010, pages 9 - 21 |
SCHULTZ ET AL., GENE, vol. 54, 1987, pages 113 - 123 |
SEED, NATURE, vol. 329, 1987, pages 840 |
SEMPLE ET AL., NATURE NIOTECHNOLOGY, vol. 28, no. 2, February 2010 (2010-02-01), pages 172 - 177 |
SHALEM, O.; SANJANA, NE.; HARTENIAN, E.; SHI, X.; SCOTT, DA.; MIKKELSON, T.; HECKL, D.; EBERT, BL.; ROOT, DE.; DOENCH, JG.: "Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells", SCIENCE, 12 December 2013 (2013-12-12) |
SHEN ET AL., FEES LET., vol. 539, 2003, pages 111 - 114 |
SHEN, B. ET AL.: "Generation of gene-modified mice via Cas9/RNA-mediated gene targeting", CELL RES, vol. 23, 2013, pages 720 - 723, XP055141533, DOI: doi:10.1038/cr.2013.46 |
SIEW, A. ET AL., MOL PHARM, vol. 9, no. 1, 2012, pages 14 - 28 |
SIMEONI ET AL., NAR, vol. 31, no. 11, 2003, pages 2717 - 2724 |
SIMON RJ ET AL., PNAS, vol. 89, no. 20, 1992, pages 9367 - 9371 |
SMITH ET AL., MOL. CELL. BIOL., vol. 3, 1983, pages 2156 - 2165 |
SMITH; JOHNSON, GENE, vol. 67, 1988, pages 31 - 40 |
SMITHIES, 0.; GREGG, R.G.; BOGGS, S.S.; KORALEWSKI, M.A.; KUCHERLAPATI, R.S.: "Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination", NATURE, vol. 3, no. 17, 1985, pages 230 - 234 |
SOLDNER, F. ET AL.: "Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations", CELL, vol. 146, 2011, pages 318 - 331, XP028382613, DOI: doi:10.1016/j.cell.2011.06.019 |
SORENSEN ET AL., J. MOL. BIOL., vol. 327, 2003, pages 761 - 766 |
SPUCH; NAVARRO, JOURNAL OF DRUG DELIVERY, vol. 2011, 2011, pages 12 |
STILES ET AL., EXPERIMENTAL NEUROLOGY, vol. 233, 2012, pages 463 - 471 |
STUDIER ET AL.: "GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY", vol. 185, 1990, ACADEMIC PRESS, pages: 60 - 89 |
SU X; FRICKE J; KAVANAGH DG; IRVINE DJ: "In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles", MOL PHARM., vol. 8, no. 3, 1 April 2011 (2011-04-01), pages 774 - 87, XP055127583, DOI: doi:10.1021/mp100390w |
SWIECH ET AL.: "In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9", NATURE BIOTECHNOLOGY, 19 October 2014 (2014-10-19) |
TABEMERO ET AL., CANCER DISCOVERY, vol. 3, no. 4, April 2013 (2013-04-01), pages 363 - 470 |
TAKASU, Y. ET AL.: "Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection", INSECT BIOCHEM MOLEC, vol. 40, 2010, pages 759 - 765, XP027320284 |
TANGRI S ET AL.: "Rationally engineered therapeutic proteins with reduced immunogenicity", J IMMUNOL., vol. 174, no. 6, 15 March 2005 (2005-03-15), pages 3187 - 96 |
TAYLOR W.R.: "The classification of amino acid conservation", J. THEOR. BIOL., vol. 119, 1986, pages 205 - 218, XP055050432, DOI: doi:10.1016/S0022-5193(86)80075-3 |
THOMAS, K.R.; FOLGER, K.R.; CAPECCHI, M.R.: "High frequency targeting of genes to specific sites in the mammalian genome", CELL, vol. 44, 1986, pages 419 - 428, XP023883170, DOI: doi:10.1016/0092-8674(86)90463-0 |
THOMPSON ET AL., METHODS IN ENZYMOLOGY, vol. 503, 2012, pages 293 - 319 |
THOMPSON, D.B. ET AL., CHEMISTRY & BIOLOGY, vol. 19, no. 7, 2012, pages 831 - 843 |
TIJSSEN: "Laboratory Techniques In Biochemistry And Molecular Biology-Hybridization With Nucleic Acid Probes Part I", 1993, ELSEVIER, article "Overview of principles of hybridization and the strategy of nucleic acid probe assay" |
TOLENTINO ET AL., RETINA, vol. 24, no. 4, pages 660 |
TUSCHL, T.: "Expanding small RNA interference", NAT BIOTECHNOL, vol. 20, 2002, pages 446 - 448, XP002232258, DOI: doi:10.1038/nbt0502-446 |
UCHEGBU, I.F. ET AL., INT J PHARM, vol. 224, 2001, pages 185 - 199 |
UCHEGBU, I.F., EXPERT OPIN DRUG DELIV, vol. 3, no. 5, 2006, pages 629 - 40 |
UCHEGBU; SIEW, J PHARM SCI., vol. 102, no. 2, 2013, pages 305 - 10 |
UNO ET AL., HUMAN GENE THERAPY, vol. 22, June 2011 (2011-06-01), pages 711 - 719 |
URABE, M.; C. DING; R.M. KOTIN: "Insect cells as a factory to produce adeno-associated virus type 2 vectors", HUM GENE THER, vol. 13, no. 16, 2002, pages 1935 - 43, XP002394454, DOI: doi:10.1089/10430340260355347 |
URNOV, F.D.; REBAR, E.J.; HOLMES, M.C.; ZHANG, H.S.; GREGORY, P.D.: "Genome editing with engineered zinc finger nucleases", NAT REV GENET, vol. 11, 2010, pages 636 - 646, XP008150557, DOI: doi:10.1038/nrg2842 |
VALTON, J. ET AL.: "Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation", J BIOL CHEM, vol. 287, 2012, pages 38427 - 38432 |
VAN EMBDEN ET AL., J. BACTERIOL., vol. 182, 2000, pages 2393 - 2401 |
WAHLGREN ET AL., NUCLEIC ACIDS RESEARCH, vol. 40, no. 17, 2012, pages EL 30 |
WANG ET AL.: "Genetic screens in human cells using the CRISPR/Cas9 system", SCIENCE, vol. 343, no. 6166, 3 January 2014 (2014-01-03), pages 80 - 84, XP055294787, DOI: doi:10.1126/science.1246981 |
WANG H.; YANG H.; SHIVALILA CS.; DAWLATY MM.; CHENG AW.; ZHANG F.; JAENISCH R.: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISP/Cas-Mediated Genome Engineering", CELL, vol. 153, no. 4, 9 May 2013 (2013-05-09), pages 910 - 8 |
WANG, H. ET AL.: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR-Cas-Mediated Genome Engineering", CELL, vol. 153, 2013, pages 910 - 918, XP028538358, DOI: doi:10.1016/j.cell.2013.04.025 |
WATANABE, T. ET AL.: "Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases", NAT COMMUN, 2012, pages 3 |
WEINTRAUB, NATURE, vol. 495, 2013, pages S14 - S16 |
WHITEHEAD ET AL., ACS NANO, vol. 6, no. 8, 28 August 2012 (2012-08-28), pages 6922 - 9 |
WILSON, E.B.: "Probable inference, the law of succession, and statistical inference", J AM STAT ASSOC, vol. 22, 1927, pages 209 - 212 |
WINOTO; BALTIMORE, EMBO J., vol. 8, 1989, pages 729 - 733 |
WOOD, A.J. ET AL.: "Targeted genome editing across species using ZFNs and TALENs", SCIENCE, vol. 333, 2011, pages 307, XP055102329, DOI: doi:10.1126/science.1207773 |
WU X.; SCOTT DA.; KRIZ AJ.; CHIU AC.; HSU PD.; DADON DB.; CHENG AW.; TREVINO AE.; KONERMANN S.; CHEN S.: "Genome-wide binding of the CRlSPR endonuclease Cas9 in mammalian cells", NAT BIOTECHNOL., 20 April 2014 (2014-04-20) |
WU, S.; YING, G.X.; WU, Q.; CAPECCHI, M.R.: "A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond", NAT PROTOC, vol. 3, 2008, pages 1056 - 1076, XP055208620, DOI: doi:10.1038/nprot.2008.70 |
XIA ET AL., NAT. BIOTECH., vol. 20, 2002, pages 1006 - 1010 |
YANG, G.S. ET AL.: "Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size", J VIROL, vol. 76, no. 15, 2002, pages 7651 - 60, XP002295353, DOI: doi:10.1128/JVI.76.15.7651-7660.2002 |
YOUNG ET AL., NANO LETT., vol. 12, 2012, pages 3867 - 71 |
YU ET AL., CELL, vol. 150, 31 August 2012 (2012-08-31), pages 895 - 908 |
ZABNER, J. ET AL.: "Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer", J VIROL, vol. 74, no. 8, 2000, pages 3852 - 8, XP002197205, DOI: doi:10.1128/JVI.74.8.3852-3858.2000 |
ZHANG ET AL., ACS NANO, vol. 5, 2011, pages 6962 - 6970 |
ZHANG ET AL., ADV MATER., vol. 25, no. 33, 6 September 2013 (2013-09-06), pages 4641 - 5 |
ZHANG ET AL., J. AM. CHEM. SOC., vol. 134, 2012, pages 16488 - 1691 |
ZHANG, F. ET AL.: "Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription", NAT BIOTECHNOL, vol. 29, 2011, pages 149 - 153, XP055005146, DOI: doi:10.1038/nbt.1775 |
ZHENG ET AL., PROC. NATL. ACAD. SCI. USA., vol. 109, 2012, pages 11975 - 80 |
ZIMMERMAN ET AL., NATURE LETTERS, vol. 441, 4 May 2006 (2006-05-04) |
ZOU ET AL., HUMAN GENE THERAPY, vol. 22, April 2011 (2011-04-01), pages 465 - 475 |
ZUKER; STIEGLER, NUCLEIC ACIDS RES., vol. 9, 1981, pages 133 - 148 |
Cited By (326)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10930367B2 (en) | 2012-12-12 | 2021-02-23 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for Cas enzymes or CRISPR-Cas systems for target sequences and conveying results thereof |
US11041173B2 (en) | 2012-12-12 | 2021-06-22 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US12037596B2 (en) | 2013-04-16 | 2024-07-16 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
US10385359B2 (en) | 2013-04-16 | 2019-08-20 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
US10975390B2 (en) | 2013-04-16 | 2021-04-13 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
US10946108B2 (en) | 2013-06-17 | 2021-03-16 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components |
US12018275B2 (en) | 2013-06-17 | 2024-06-25 | The Broad Institute, Inc. | Delivery and use of the CRISPR-CAS systems, vectors and compositions for hepatic targeting and therapy |
US11597949B2 (en) | 2013-06-17 | 2023-03-07 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
US10711285B2 (en) | 2013-06-17 | 2020-07-14 | The Broad Institute, Inc. | Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation |
US10577630B2 (en) | 2013-06-17 | 2020-03-03 | The Broad Institute, Inc. | Delivery and use of the CRISPR-Cas systems, vectors and compositions for hepatic targeting and therapy |
US10781444B2 (en) | 2013-06-17 | 2020-09-22 | The Broad Institute, Inc. | Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof |
US11008588B2 (en) | 2013-06-17 | 2021-05-18 | The Broad Institute, Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10190137B2 (en) | 2013-11-07 | 2019-01-29 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
JP2016536021A (en) * | 2013-11-07 | 2016-11-24 | エディタス・メディシン,インコーポレイテッド | CRISPR-related methods and compositions with governing gRNA |
EP3066201B1 (en) | 2013-11-07 | 2018-03-07 | Editas Medicine, Inc. | Crispr-related methods and compositions with governing grnas |
US11390887B2 (en) | 2013-11-07 | 2022-07-19 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US10640788B2 (en) | 2013-11-07 | 2020-05-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAs |
US10208317B2 (en) | 2013-12-11 | 2019-02-19 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse embryonic stem cell genome |
US10711280B2 (en) | 2013-12-11 | 2020-07-14 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse ES cell genome |
US11820997B2 (en) | 2013-12-11 | 2023-11-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
US9546384B2 (en) | 2013-12-11 | 2017-01-17 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse genome |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10851357B2 (en) | 2013-12-12 | 2020-12-01 | The Broad Institute, Inc. | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
US11591581B2 (en) | 2013-12-12 | 2023-02-28 | The Broad Institute, Inc. | Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders |
US11597919B2 (en) | 2013-12-12 | 2023-03-07 | The Broad Institute Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US11407985B2 (en) | 2013-12-12 | 2022-08-09 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for genome editing |
US10550372B2 (en) | 2013-12-12 | 2020-02-04 | The Broad Institute, Inc. | Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems |
US11155795B2 (en) | 2013-12-12 | 2021-10-26 | The Broad Institute, Inc. | CRISPR-Cas systems, crystal structure and uses thereof |
JP2017510269A (en) * | 2014-03-18 | 2017-04-13 | サンガモ バイオサイエンシーズ, インコーポレイテッド | Methods and compositions for modulating zinc finger protein expression |
EP3142706A1 (en) * | 2014-05-16 | 2017-03-22 | Vrije Universiteit Brussel | Genetic correction of myotonic dystrophy type 1 |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10435685B2 (en) * | 2014-08-19 | 2019-10-08 | Pacific Biosciences Of California, Inc. | Compositions and methods for enrichment of nucleic acids |
US10858651B2 (en) | 2014-08-19 | 2020-12-08 | Pacific Biosciences Of California, Inc. | Compositions and methods for enrichment of nucleic acids |
US11680268B2 (en) | 2014-11-07 | 2023-06-20 | Editas Medicine, Inc. | Methods for improving CRISPR/Cas-mediated genome-editing |
US10457960B2 (en) | 2014-11-21 | 2019-10-29 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide RNAs |
US11697828B2 (en) | 2014-11-21 | 2023-07-11 | Regeneran Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide RNAs |
EP3626832A2 (en) | 2014-11-25 | 2020-03-25 | The Brigham and Women's Hospital, Inc. | Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease |
WO2016086197A1 (en) | 2014-11-25 | 2016-06-02 | The Brigham And Women's Hospital, Inc. | Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease |
US10337001B2 (en) | 2014-12-03 | 2019-07-02 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
US10900034B2 (en) | 2014-12-03 | 2021-01-26 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
WO2016094872A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
US10954514B2 (en) | 2014-12-12 | 2021-03-23 | The Broad Institute, Inc. | Escorted and functionalized guides for CRISPR-Cas systems |
EP3889260A1 (en) | 2014-12-12 | 2021-10-06 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
WO2016094867A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Protected guide rnas (pgrnas) |
US11624078B2 (en) | 2014-12-12 | 2023-04-11 | The Broad Institute, Inc. | Protected guide RNAS (pgRNAS) |
EP3985115A1 (en) | 2014-12-12 | 2022-04-20 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
US10696986B2 (en) | 2014-12-12 | 2020-06-30 | The Board Institute, Inc. | Protected guide RNAS (PGRNAS) |
WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
WO2016100974A1 (en) | 2014-12-19 | 2016-06-23 | The Broad Institute Inc. | Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing |
WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
EP3702456A1 (en) | 2014-12-24 | 2020-09-02 | The Broad Institute, Inc. | Crispr having or associated with destabilization domains |
WO2016106244A1 (en) | 2014-12-24 | 2016-06-30 | The Broad Institute Inc. | Crispr having or associated with destabilization domains |
US12116619B2 (en) | 2014-12-30 | 2024-10-15 | The Broad Institute, Inc. | CRISPR mediated in vivo modeling and genetic screening of tumor growth and metastasis |
WO2016108926A1 (en) | 2014-12-30 | 2016-07-07 | The Broad Institute Inc. | Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis |
US11535846B2 (en) | 2015-04-06 | 2022-12-27 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAS for CRISPR/Cas-mediated gene regulation |
US11851652B2 (en) | 2015-04-06 | 2023-12-26 | The Board Of Trustees Of The Leland Stanford Junior | Compositions comprising chemically modified guide RNAs for CRISPR/Cas-mediated editing of HBB |
US11306309B2 (en) | 2015-04-06 | 2022-04-19 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation |
US11400110B2 (en) | 2015-05-06 | 2022-08-02 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11517582B2 (en) | 2015-05-06 | 2022-12-06 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11844760B2 (en) | 2015-05-06 | 2023-12-19 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11547716B2 (en) | 2015-05-06 | 2023-01-10 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11642363B2 (en) | 2015-05-06 | 2023-05-09 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
EP4169383A1 (en) * | 2015-05-06 | 2023-04-26 | SNIPR Technologies Limited | Altering microbial populations & modifying microbiota |
US11612617B2 (en) | 2015-05-06 | 2023-03-28 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
EP3461337A1 (en) * | 2015-05-06 | 2019-04-03 | Snipr Technologies Limited | Altering microbial populations & modifying microbiota |
US11147830B2 (en) | 2015-05-06 | 2021-10-19 | Snipr Technologies Limited | Altering microbial populations and modifying microbiota |
US11390884B2 (en) | 2015-05-11 | 2022-07-19 | Editas Medicine, Inc. | Optimized CRISPR/cas9 systems and methods for gene editing in stem cells |
US11549126B2 (en) | 2015-06-03 | 2023-01-10 | Board Of Regents Of The University Of Nebraska | Treatment methods using DNA editing with single-stranded DNA |
US11555208B2 (en) | 2015-06-03 | 2023-01-17 | Board Of Regents Of The University Of Nebraska | DNA editing using relatively long single-stranded DNA and CRISPR/Cas9 to increase success rate in methods for preparing transgenic embryos and animals |
WO2016196887A1 (en) | 2015-06-03 | 2016-12-08 | Board Of Regents Of The University Of Nebraska | Dna editing using single-stranded dna |
US11911415B2 (en) | 2015-06-09 | 2024-02-27 | Editas Medicine, Inc. | CRISPR/Cas-related methods and compositions for improving transplantation |
WO2016205711A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
EP4159856A1 (en) | 2015-06-18 | 2023-04-05 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
WO2016205749A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US11180751B2 (en) | 2015-06-18 | 2021-11-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11578312B2 (en) | 2015-06-18 | 2023-02-14 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation |
EP4403638A2 (en) | 2015-06-18 | 2024-07-24 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US10876100B2 (en) | 2015-06-18 | 2020-12-29 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
EP3009511A2 (en) | 2015-06-18 | 2016-04-20 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US11421250B2 (en) | 2015-06-18 | 2022-08-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11060115B2 (en) | 2015-06-18 | 2021-07-13 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11773412B2 (en) | 2015-06-18 | 2023-10-03 | The Broad Institute, Inc. | Crispr enzymes and systems |
US10494621B2 (en) | 2015-06-18 | 2019-12-03 | The Broad Institute, Inc. | Crispr enzyme mutations reducing off-target effects |
EP3502253A1 (en) | 2015-06-18 | 2019-06-26 | The Broad Institute Inc. | Novel crispr enzymes and systems |
EP3666895A1 (en) | 2015-06-18 | 2020-06-17 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
WO2016205764A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
EP4115894A1 (en) * | 2015-06-19 | 2023-01-11 | Precision Biosciences, Inc. | Self-limiting viral vectors encoding nucleases |
WO2016205825A1 (en) | 2015-06-19 | 2016-12-22 | Precision Biosciences, Inc. | Self-limiting viral vectors encoding nucleases |
US10662440B2 (en) | 2015-06-19 | 2020-05-26 | Precision Biosciences, Inc. | Self-limiting viral vectors encoding nucleases |
EP3310369A4 (en) * | 2015-06-19 | 2018-12-05 | Precision Biosciences, Inc. | Self-limiting viral vectors encoding nucleases |
US11414657B2 (en) | 2015-06-29 | 2022-08-16 | Ionis Pharmaceuticals, Inc. | Modified CRISPR RNA and modified single CRISPR RNA and uses thereof |
JP2018522072A (en) * | 2015-07-31 | 2018-08-09 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Modified cells and methods of treatment |
WO2017024111A1 (en) * | 2015-08-04 | 2017-02-09 | The University Of Chicago | Inhibitors of cacna1a/alpha1a subunit internal ribosomal entry site (ires) and methods of treating spinocerebellar ataxia type 6 |
US11034962B2 (en) | 2015-08-04 | 2021-06-15 | The University Of Chicago | Inhibitors of CACNA1A/ALPHA1A subunit internal ribosomal entry site (IRES) and methods of treating spinocerebellar ataxia type 6 |
KR101777367B1 (en) * | 2015-09-09 | 2017-09-12 | 연세대학교 산학협력단 | Editing CGG triplet repeats using Endonuclease for Targeting Fragile X mental retardation 1 |
US11667911B2 (en) | 2015-09-24 | 2023-06-06 | Editas Medicine, Inc. | Use of exonucleases to improve CRISPR/CAS-mediated genome editing |
US11497816B2 (en) | 2015-10-06 | 2022-11-15 | The Children's Hospital Of Philadelphia | Compositions and methods for treating fragile X syndrome and related syndromes |
WO2017062605A1 (en) * | 2015-10-06 | 2017-04-13 | The Children's Hospital Of Philadelphia | Compositions and methods for treating fragile x syndrome and related syndromes |
AU2016335572B2 (en) * | 2015-10-09 | 2022-12-08 | The Children's Hospital Of Philadelphia | Compositions and methods for treating Huntington's disease and related disorders |
US11473084B2 (en) | 2015-10-09 | 2022-10-18 | The Children's Hospital Of Philadelphia | Compositions and methods for treating Huntington's disease and related disorders |
WO2017069958A2 (en) | 2015-10-09 | 2017-04-27 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
WO2017062983A1 (en) * | 2015-10-09 | 2017-04-13 | The Children's Hospital Of Philadelphia | Compositions and methods for treating huntington's disease and related disorders |
WO2017070605A1 (en) | 2015-10-22 | 2017-04-27 | The Broad Institute Inc. | Type vi-b crispr enzymes and systems |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
WO2017074788A1 (en) | 2015-10-27 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for targeting cancer-specific sequence variations |
WO2017075451A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1 |
WO2017075465A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3 |
WO2017075478A2 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by use of immune cell gene signatures |
US11186825B2 (en) | 2015-10-28 | 2021-11-30 | The Broad Institute, Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting POU2AF1 |
US11180730B2 (en) | 2015-10-28 | 2021-11-23 | The Broad Institute, Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting GATA3 |
EP3374494A4 (en) * | 2015-11-11 | 2019-05-01 | Coda Biotherapeutics, Inc. | Crispr compositions and methods of using the same for gene therapy |
US10851367B2 (en) | 2015-11-12 | 2020-12-01 | Pfizer Inc. | Tissue-specific genome engineering using CRISPR-Cas9 |
WO2017083368A1 (en) * | 2015-11-12 | 2017-05-18 | Pfizer Inc. | Tissue-specific genome engineering using crispr-cas9 |
JP2018537448A (en) * | 2015-11-12 | 2018-12-20 | ファイザー・インコーポレイテッド | Tissue-specific genome manipulation using CRISPR-Cas9 |
JP2022000440A (en) * | 2015-11-12 | 2022-01-04 | ファイザー・インコーポレイテッド | TISSUE-SPECIFIC GENOME ENGINEERING USING CRISPR-Cas9 |
JP7268103B2 (en) | 2015-11-12 | 2023-05-02 | ファイザー・インコーポレイテッド | Tissue-specific genome manipulation using CRISPR-Cas9 |
US11001622B2 (en) | 2015-11-19 | 2021-05-11 | The Brigham And Women's Hospital, Inc. | Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein |
WO2017087708A1 (en) | 2015-11-19 | 2017-05-26 | The Brigham And Women's Hospital, Inc. | Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity |
US11884717B2 (en) | 2015-11-19 | 2024-01-30 | The Brigham And Women's Hospital, Inc. | Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein |
CN109072235A (en) * | 2015-11-23 | 2018-12-21 | 加利福尼亚大学董事会 | It is tracked by nuclear delivery CRISPR/CAS9 and manipulates cell RNA |
WO2017091630A1 (en) * | 2015-11-23 | 2017-06-01 | The Regents Of The University Of California | Tracking and manipulating cellular rna via nuclear delivery of crispr/cas9 |
CN109072235B (en) * | 2015-11-23 | 2023-02-28 | 加利福尼亚大学董事会 | Tracking and manipulation of cellular RNA by nuclear delivery CRISPR/CAS9 |
EP4163374A1 (en) * | 2015-11-23 | 2023-04-12 | The Regents of the University of California | Tracking and manipulating cellular rna via nuclear delivery of crispr/cas9 |
US11667903B2 (en) | 2015-11-23 | 2023-06-06 | The Regents Of The University Of California | Tracking and manipulating cellular RNA via nuclear delivery of CRISPR/CAS9 |
WO2017106657A1 (en) | 2015-12-18 | 2017-06-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2017109757A1 (en) * | 2015-12-23 | 2017-06-29 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis and/or frontal temporal lobular degeneration |
US11530421B2 (en) | 2016-02-01 | 2022-12-20 | The Regents Of The University Of California | Self-inactivating endonuclease-encoding nucleic acids and methods of using the same |
WO2017136335A1 (en) * | 2016-02-01 | 2017-08-10 | The Regents Of The University Of California | Self-inactivating endonuclease-encoding nucleic acids and methods of using the same |
WO2017158153A1 (en) | 2016-03-17 | 2017-09-21 | Imba - Institut Für Molekulare Biotechnologie Gmbh | Conditional crispr sgrna expression |
EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
US11427861B2 (en) | 2016-03-17 | 2022-08-30 | Massachusetts Institute Of Technology | Methods for identifying and modulating co-occurant cellular phenotypes |
US11597924B2 (en) | 2016-03-25 | 2023-03-07 | Editas Medicine, Inc. | Genome editing systems comprising repair-modulating enzyme molecules and methods of their use |
US11236313B2 (en) | 2016-04-13 | 2022-02-01 | Editas Medicine, Inc. | Cas9 fusion molecules, gene editing systems, and methods of use thereof |
US12049651B2 (en) | 2016-04-13 | 2024-07-30 | Editas Medicine, Inc. | Cas9 fusion molecules, gene editing systems, and methods of use thereof |
WO2017178590A1 (en) * | 2016-04-14 | 2017-10-19 | Université de Lausanne | Treatment and/or prevention of dna-triplet repeat diseases or disorders |
WO2017184786A1 (en) | 2016-04-19 | 2017-10-26 | The Broad Institute Inc. | Cpf1 complexes with reduced indel activity |
WO2017189308A1 (en) | 2016-04-19 | 2017-11-02 | The Broad Institute Inc. | Novel crispr enzymes and systems |
WO2017184768A1 (en) | 2016-04-19 | 2017-10-26 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US11141481B2 (en) | 2016-06-05 | 2021-10-12 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
US11291723B2 (en) | 2016-06-05 | 2022-04-05 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
US11471530B2 (en) | 2016-06-05 | 2022-10-18 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
US11351252B2 (en) | 2016-06-05 | 2022-06-07 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
US11471531B2 (en) | 2016-06-05 | 2022-10-18 | Snipr Technologies Limited | Selectively altering microbiota for immune modulation |
US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
CN109790551A (en) * | 2016-06-16 | 2019-05-21 | 奥斯陆大学医院Hf | Improved gene editing |
US11708588B2 (en) | 2016-06-16 | 2023-07-25 | Adam Brian Robertson | Gene editing |
US11427838B2 (en) | 2016-06-29 | 2022-08-30 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of myotonic dystrophy type 1 (DM1) and other related disorders |
WO2018002762A1 (en) * | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis (als) and other related disorders |
WO2018002812A1 (en) * | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of myotonic dystrophy type 1 (dm1) and other related disorders |
US11174469B2 (en) | 2016-06-29 | 2021-11-16 | Crispr Therapeutics Ag | Materials and methods for treatment of Amyotrophic Lateral Sclerosis (ALS) and other related disorders |
WO2018005873A1 (en) | 2016-06-29 | 2018-01-04 | The Broad Institute Inc. | Crispr-cas systems having destabilization domain |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11078481B1 (en) | 2016-08-03 | 2021-08-03 | KSQ Therapeutics, Inc. | Methods for screening for cancer targets |
US11912987B2 (en) | 2016-08-03 | 2024-02-27 | KSQ Therapeutics, Inc. | Methods for screening for cancer targets |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
WO2018035388A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US11630103B2 (en) | 2016-08-17 | 2023-04-18 | The Broad Institute, Inc. | Product and methods useful for modulating and evaluating immune responses |
US11352647B2 (en) | 2016-08-17 | 2022-06-07 | The Broad Institute, Inc. | Crispr enzymes and systems |
WO2018035387A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11078483B1 (en) | 2016-09-02 | 2021-08-03 | KSQ Therapeutics, Inc. | Methods for measuring and improving CRISPR reagent function |
US11946163B2 (en) | 2016-09-02 | 2024-04-02 | KSQ Therapeutics, Inc. | Methods for measuring and improving CRISPR reagent function |
WO2018049025A2 (en) | 2016-09-07 | 2018-03-15 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses |
WO2017216392A1 (en) * | 2016-09-23 | 2017-12-21 | Dsm Ip Assets B.V. | A guide-rna expression system for a host cell |
WO2018067991A1 (en) | 2016-10-07 | 2018-04-12 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
WO2018069474A1 (en) * | 2016-10-12 | 2018-04-19 | Universita' Degli Studi Di Trento | Self-limiting cas9 circuitry for enhanced safety (slices) plasmid and lentiviral system thereof |
CN110312793A (en) * | 2016-10-12 | 2019-10-08 | 阿利亚治疗有限公司 | Safety for enhancing from the restricted circuit Cas9 (SLiCES) plasmid and its slow virus system |
IT201600102542A1 (en) * | 2016-10-12 | 2018-04-12 | Univ Degli Studi Di Trento | Plasmid and lentiviral system containing a self-limiting Cas9 circuit that increases its safety. |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
JP7211940B2 (en) | 2016-10-28 | 2023-01-24 | ジェネトン | Compositions and methods for the treatment of myotonic dystrophy |
JP7157052B2 (en) | 2016-10-28 | 2022-10-19 | ジェネトン | Compositions and methods for the treatment of myotonic dystrophy |
CN110337493B (en) * | 2016-10-28 | 2024-03-12 | 吉尼松公司 | Compositions and methods for treating myotonic dystrophy |
WO2018078131A1 (en) * | 2016-10-28 | 2018-05-03 | Genethon | Compositions and methods for the treatment of myotonic dystrophy |
JP2019534012A (en) * | 2016-10-28 | 2019-11-28 | ジェネトン | Compositions and methods for the treatment of myotonic dystrophy |
WO2018078134A1 (en) * | 2016-10-28 | 2018-05-03 | Genethon | Compositions and methods for the treatment of myotonic dystrophy |
CN110337493A (en) * | 2016-10-28 | 2019-10-15 | 吉尼松公司 | For treating the composition and method of myotonia atrophica |
JP2019532662A (en) * | 2016-10-28 | 2019-11-14 | ジェネトン | Compositions and methods for the treatment of myotonic dystrophy |
US11427824B2 (en) | 2016-10-28 | 2022-08-30 | Genethon | Compositions and methods for the treatment of myotonic dystrophy |
CN110168084A (en) * | 2016-12-05 | 2019-08-23 | 爱迪塔斯医药公司 | System and method for single-shot guide RNA (ogRNA) targeting that is endogenous and carrying out source DNA |
US10494649B2 (en) | 2016-12-05 | 2019-12-03 | Editas Medicine, Inc. | Systems and methods for one-shot guide RNA (ogRNA) targeting of endogenous and source DNA |
WO2018106693A1 (en) * | 2016-12-05 | 2018-06-14 | Editas Medicine, Inc. | SYSTEMS AND METHODS FOR ONE-SHOT GUIDE RNA (ogRNA) TARGETING OF ENDOGENOUS AND SOURCE DNA |
US10006054B1 (en) | 2016-12-05 | 2018-06-26 | Editas Medicine, Inc. | Systems and methods for one-shot guide RNA (ogRNA) targeting of endogenous and source DNA |
US11692205B2 (en) | 2016-12-05 | 2023-07-04 | Editas Medicine, Inc. | Systems and methods for one-shot guide RNA (ogRNA) targeting of endogenous and source DNA |
US9963719B1 (en) | 2016-12-05 | 2018-05-08 | Editas Medicine, Inc. | Systems and methods for one-shot guide RNA (ogRNA) targeting of endogenous and source DNA |
US11028411B2 (en) | 2016-12-05 | 2021-06-08 | Editas Medicine, Inc. | Systems and methods for one-shot guide RNA (ogRNA) targeting of endogenous and source DNA |
EP4276187A3 (en) * | 2016-12-08 | 2024-01-17 | Case Western Reserve University | Methods and compositions for enhancing functional myelin production |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US12110545B2 (en) | 2017-01-06 | 2024-10-08 | Editas Medicine, Inc. | Methods of assessing nuclease cleavage |
US11466271B2 (en) | 2017-02-06 | 2022-10-11 | Novartis Ag | Compositions and methods for the treatment of hemoglobinopathies |
US11559588B2 (en) | 2017-02-22 | 2023-01-24 | Crispr Therapeutics Ag | Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders |
WO2018154439A1 (en) * | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of spinocerebellar ataxia type 1 (sca1) and other spinocerebellar ataxia type 1 protein (atxn1) gene related conditions or disorders |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11963966B2 (en) | 2017-03-31 | 2024-04-23 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating ovarian tumors |
WO2018191520A1 (en) | 2017-04-12 | 2018-10-18 | The Broad Institute, Inc. | Respiratory and sweat gland ionocytes |
WO2018191553A1 (en) | 2017-04-12 | 2018-10-18 | Massachusetts Eye And Ear Infirmary | Tumor signature for metastasis, compositions of matter methods of use thereof |
WO2018195486A1 (en) | 2017-04-21 | 2018-10-25 | The Broad Institute, Inc. | Targeted delivery to beta cells |
US11499151B2 (en) | 2017-04-28 | 2022-11-15 | Editas Medicine, Inc. | Methods and systems for analyzing guide RNA molecules |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
US11453891B2 (en) | 2017-05-10 | 2022-09-27 | The Regents Of The University Of California | Directed editing of cellular RNA via nuclear delivery of CRISPR/CAS9 |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11866697B2 (en) | 2017-05-18 | 2024-01-09 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
US11603544B2 (en) | 2017-06-05 | 2023-03-14 | Fred Hutchinson Cancer Center | Genomic safe harbors for genetic therapies in human stem cells and engineered nanoparticles to provide targeted genetic therapies |
US11098297B2 (en) | 2017-06-09 | 2021-08-24 | Editas Medicine, Inc. | Engineered Cas9 nucleases |
US10428319B2 (en) | 2017-06-09 | 2019-10-01 | Editas Medicine, Inc. | Engineered Cas9 nucleases |
US11897953B2 (en) | 2017-06-14 | 2024-02-13 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
WO2019005884A1 (en) | 2017-06-26 | 2019-01-03 | The Broad Institute, Inc. | Crispr/cas-adenine deaminase based compositions, systems, and methods for targeted nucleic acid editing |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
US11866726B2 (en) | 2017-07-14 | 2024-01-09 | Editas Medicine, Inc. | Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites |
US12105089B2 (en) | 2017-07-17 | 2024-10-01 | The Broad Institute, Inc. | Cell atlas of the healthy and ulcerative colitis human colon |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
WO2019071054A1 (en) | 2017-10-04 | 2019-04-11 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
US11680296B2 (en) | 2017-10-16 | 2023-06-20 | Massachusetts Institute Of Technology | Mycobacterium tuberculosis host-pathogen interaction |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11578118B2 (en) | 2017-10-20 | 2023-02-14 | Fred Hutchinson Cancer Center | Systems and methods to produce B cells genetically modified to express selected antibodies |
WO2019092505A1 (en) * | 2017-11-09 | 2019-05-16 | Casebia Therapeutics Llp | Self-inactivating (sin) crispr/cas or crispr/cpf1 systems and uses thereof |
US10662425B2 (en) | 2017-11-21 | 2020-05-26 | Crispr Therapeutics Ag | Materials and methods for treatment of autosomal dominant retinitis pigmentosa |
US11332736B2 (en) | 2017-12-07 | 2022-05-17 | The Broad Institute, Inc. | Methods and compositions for multiplexing single cell and single nuclei sequencing |
US11994512B2 (en) | 2018-01-04 | 2024-05-28 | Massachusetts Institute Of Technology | Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity |
WO2019204585A1 (en) | 2018-04-19 | 2019-10-24 | Massachusetts Institute Of Technology | Single-stranded break detection in double-stranded dna |
WO2019204750A1 (en) * | 2018-04-20 | 2019-10-24 | Cellino Biotech, Inc. | Directed cell fate specification and targeted maturation |
EP3560330A1 (en) | 2018-04-24 | 2019-10-30 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
WO2019206927A1 (en) | 2018-04-24 | 2019-10-31 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US11957695B2 (en) | 2018-04-26 | 2024-04-16 | The Broad Institute, Inc. | Methods and compositions targeting glucocorticoid signaling for modulating immune responses |
WO2019210268A2 (en) | 2018-04-27 | 2019-10-31 | The Broad Institute, Inc. | Sequencing-based proteomics |
EP3787694A4 (en) * | 2018-04-29 | 2022-05-18 | University of Massachusetts | Raav-mediated nuclease-associated vector integration (raav-navi) |
US11421227B2 (en) | 2018-04-30 | 2022-08-23 | Snipr Biome Aps | Treating and preventing microbial infections |
US11788085B2 (en) | 2018-04-30 | 2023-10-17 | Snipr Biome Aps | Treating and preventing microbial infections |
US10920222B2 (en) | 2018-04-30 | 2021-02-16 | Snipr Biome Aps | Treating and preventing microbial infections |
US11485973B2 (en) | 2018-04-30 | 2022-11-01 | Snipr Biome Aps | Treating and preventing microbial infections |
US11643653B2 (en) | 2018-04-30 | 2023-05-09 | Snipr Biome Aps | Treating and preventing microbial infections |
WO2019213660A2 (en) | 2018-05-04 | 2019-11-07 | The Broad Institute, Inc. | Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses |
WO2019232542A2 (en) | 2018-06-01 | 2019-12-05 | Massachusetts Institute Of Technology | Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients |
US12036240B2 (en) | 2018-06-14 | 2024-07-16 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
WO2020006036A1 (en) | 2018-06-26 | 2020-01-02 | Massachusetts Institute Of Technology | Crispr effector system based amplification methods, systems, and diagnostics |
WO2020033601A1 (en) | 2018-08-07 | 2020-02-13 | The Broad Institute, Inc. | Novel cas12b enzymes and systems |
WO2020028989A1 (en) * | 2018-08-08 | 2020-02-13 | Deep Genomics Incorporated | Systems and methods for determining effects of therapies and genetic variation on polyadenylation site selection |
US11322225B2 (en) | 2018-08-08 | 2022-05-03 | Deep Genomics Incorporated | Systems and methods for determining effects of therapies and genetic variation on polyadenylation site selection |
WO2020041387A1 (en) | 2018-08-20 | 2020-02-27 | The Brigham And Women's Hospital, Inc. | Degradation domain modifications for spatio-temporal control of rna-guided nucleases |
WO2020041380A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | Methods and compositions for optochemical control of crispr-cas9 |
WO2020051507A1 (en) | 2018-09-06 | 2020-03-12 | The Broad Institute, Inc. | Nucleic acid assemblies for use in targeted delivery |
EP4268831A2 (en) | 2018-09-12 | 2023-11-01 | Fred Hutchinson Cancer Center | Reducing cd33 expression to selectively protect therapeutic cells |
US11447527B2 (en) | 2018-09-18 | 2022-09-20 | Vnv Newco Inc. | Endogenous Gag-based capsids and uses thereof |
US11505578B2 (en) | 2018-09-18 | 2022-11-22 | Vnv Newco Inc. | Endogenous Gag-based capsids and uses thereof |
WO2020077236A1 (en) | 2018-10-12 | 2020-04-16 | The Broad Institute, Inc. | Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues |
US11254930B2 (en) | 2018-10-16 | 2022-02-22 | Blueallele Corporation | Methods for targeted insertion of DNA in genes |
AU2019360182B2 (en) * | 2018-10-16 | 2023-02-16 | Blueallele Corporation | Methods for targeted insertion of DNA in genes |
WO2020081730A2 (en) | 2018-10-16 | 2020-04-23 | Massachusetts Institute Of Technology | Methods and compositions for modulating microenvironment |
US12054706B2 (en) | 2018-10-16 | 2024-08-06 | Blueallele Corporation | Methods for targeted insertion of DNA in genes |
GB2593353A (en) * | 2018-10-16 | 2021-09-22 | Blueallele Llc | Methods for targeted insertion of DNA in genes |
GB2611929B (en) * | 2018-10-16 | 2023-11-22 | Blueallele Corp | Methods for targeted insertion of DNA in genes |
US11091756B2 (en) | 2018-10-16 | 2021-08-17 | Blueallele Corporation | Methods for targeted insertion of dna in genes |
GB2611929A (en) * | 2018-10-16 | 2023-04-19 | Blueallele Corp | Methods for targeted insertion of DNA in genes |
GB2593353B (en) * | 2018-10-16 | 2023-03-01 | Blueallele Corp | Methods for targeted insertion of DNA in genes |
US11365407B2 (en) | 2018-10-16 | 2022-06-21 | Blueallele Corporation | Methods for targeted insertion of DNA in genes |
US20240141319A1 (en) * | 2018-10-16 | 2024-05-02 | Blueallele Corporation | Methods for targeted insertion of dna in genes |
WO2020081438A1 (en) * | 2018-10-16 | 2020-04-23 | Blueallele, Llc | Methods for targeted insertion of dna in genes |
US11993770B2 (en) | 2018-10-16 | 2024-05-28 | Blueallele Corporation | Methods for targeted insertion of DNA in genes |
US20200140893A1 (en) * | 2018-11-01 | 2020-05-07 | Blueallele, Llc | Methods for altering gene expression for genetic disorders |
RU2699670C1 (en) * | 2018-11-16 | 2019-09-09 | Объединенный Институт Ядерных Исследований (Оияи) | Method for increasing the frequency of formation of double-strand breaks of dna in human cells under action of ionizing radiations under conditions of radio modifiers |
US11384344B2 (en) | 2018-12-17 | 2022-07-12 | The Broad Institute, Inc. | CRISPR-associated transposase systems and methods of use thereof |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
WO2020131862A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
US11739156B2 (en) | 2019-01-06 | 2023-08-29 | The Broad Institute, Inc. Massachusetts Institute of Technology | Methods and compositions for overcoming immunosuppression |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
WO2020198706A1 (en) * | 2019-03-28 | 2020-10-01 | Intellia Therapeutics, Inc. | Compositions and methods for ttr gene editing and treating attr amyloidosis comprising a corticosteroid or use thereof |
WO2020225606A1 (en) * | 2019-05-08 | 2020-11-12 | Crispr Therapeutics Ag | Crispr/cas all-in-two vector systems for treatment of dmd |
WO2020229533A1 (en) | 2019-05-13 | 2020-11-19 | KWS SAAT SE & Co. KGaA | Drought tolerance in corn |
WO2020236972A2 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
WO2020236967A1 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Random crispr-cas deletion mutant |
WO2020239680A2 (en) | 2019-05-25 | 2020-12-03 | KWS SAAT SE & Co. KGaA | Haploid induction enhancer |
WO2020243661A1 (en) | 2019-05-31 | 2020-12-03 | The Broad Institute, Inc. | Methods for treating metabolic disorders by targeting adcy5 |
WO2021003432A1 (en) | 2019-07-02 | 2021-01-07 | Fred Hutchinson Cancer Research Center | Recombinant ad35 vectors and related gene therapy improvements |
EP3772542A1 (en) | 2019-08-07 | 2021-02-10 | KWS SAAT SE & Co. KGaA | Modifying genetic variation in crops by modulating the pachytene checkpoint protein 2 |
WO2021041546A1 (en) * | 2019-08-27 | 2021-03-04 | Vertex Pharmaceuticals Incorporated | Compositions and methods for treatment of disorders associated with repetitive dna |
WO2021041922A1 (en) | 2019-08-30 | 2021-03-04 | The Broad Institute, Inc. | Crispr-associated mu transposase systems |
US11981922B2 (en) | 2019-10-03 | 2024-05-14 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment |
WO2021074367A1 (en) | 2019-10-17 | 2021-04-22 | KWS SAAT SE & Co. KGaA | Enhanced disease resistance of crops by downregulation of repressor genes |
US20230022576A1 (en) * | 2019-11-19 | 2023-01-26 | Protalix Ltd. | Removal of constructs from transformed cells |
WO2021102084A1 (en) | 2019-11-22 | 2021-05-27 | President And Fellows Of Harvard College | Ionic liquids for drug delivery |
US12123032B2 (en) | 2019-11-26 | 2024-10-22 | The Broad Institute, Inc. | CRISPR enzyme mutations reducing off-target effects |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
WO2021239986A1 (en) | 2020-05-29 | 2021-12-02 | KWS SAAT SE & Co. KGaA | Plant haploid induction |
WO2023006933A1 (en) | 2021-07-30 | 2023-02-02 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US11884915B2 (en) | 2021-09-10 | 2024-01-30 | Agilent Technologies, Inc. | Guide RNAs with chemical modification for prime editing |
WO2023059846A1 (en) | 2021-10-08 | 2023-04-13 | President And Fellows Of Harvard College | Ionic liquids for drug delivery |
US12076375B2 (en) | 2022-06-29 | 2024-09-03 | Snipr Biome Aps | Treating and preventing E coli infections |
WO2024042199A1 (en) | 2022-08-26 | 2024-02-29 | KWS SAAT SE & Co. KGaA | Use of paired genes in hybrid breeding |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230365950A1 (en) | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders | |
US11149259B2 (en) | CRISPR-Cas systems and methods for altering expression of gene products, structural information and inducible modular Cas enzymes | |
US20210277371A1 (en) | Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation | |
US20240117382A1 (en) | DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF CRISPR SYSTEMS AND COMPOSITIONS FOR GENOME EDITING AS TO HEMATOPOIETIC STEM CELLS (HSCs) | |
AU2015101792A4 (en) | Engineering of systems, methods and optimized enzyme and guide scaffolds for sequence manipulation | |
CA3026112A1 (en) | Cpf1 complexes with reduced indel activity | |
CA2915842A1 (en) | Delivery and use of the crispr-cas systems, vectors and compositions for hepatic targeting and therapy | |
CA2932479A1 (en) | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders | |
EP3180426A1 (en) | Genome editing using cas9 nickases | |
WO2016094874A1 (en) | Escorted and functionalized guides for crispr-cas systems | |
WO2016049258A2 (en) | Functional screening with optimized functional crispr-cas systems | |
CA2932475A1 (en) | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components | |
WO2024168253A1 (en) | Delivery of an rna guided recombination system | |
WO2024168265A1 (en) | Aav delivery of rna guided recombination system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14821429 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2932436 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/007325 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 246116 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2016539210 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014362245 Country of ref document: AU Date of ref document: 20141212 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016013547 Country of ref document: BR |
|
REEP | Request for entry into the european phase |
Ref document number: 2014821429 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014821429 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167018646 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016128073 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016013547 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160610 |