WO2015089018A1 - Multiple illumination sources for dmd lighting - Google Patents

Multiple illumination sources for dmd lighting Download PDF

Info

Publication number
WO2015089018A1
WO2015089018A1 PCT/US2014/069241 US2014069241W WO2015089018A1 WO 2015089018 A1 WO2015089018 A1 WO 2015089018A1 US 2014069241 W US2014069241 W US 2014069241W WO 2015089018 A1 WO2015089018 A1 WO 2015089018A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
mirrors
light
illumination
array
Prior art date
Application number
PCT/US2014/069241
Other languages
French (fr)
Inventor
Vikrant R. BHAKTA
Original Assignee
Texas Instruments Incorporated
Texas Instruments Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Incorporated, Texas Instruments Japan Limited filed Critical Texas Instruments Incorporated
Priority to EP14868935.9A priority Critical patent/EP3079946A4/en
Publication of WO2015089018A1 publication Critical patent/WO2015089018A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Definitions

  • This relates in general to MEMS reflective devices, and in particular to multiple illumination sources for digital micro-mirror device (DMD) lighting.
  • DMD digital micro-mirror device
  • Lighting with DMD projection offers an opportunity to provide bright and even adaptive lighting solutions for many applications. Because the DMD array is "pixel addressable," the projected beam of light formed with a DMD device can be adaptively shaped and masked using DMD devices to suit a variety of applications.
  • FIG. 1 illustrates a conventional arrangement using a DMD device to project light for illumination.
  • illumination optics 22 direct light from a single light source 20 onto the face of a DMD device 12.
  • the DMD device 12 is formed by micro-electromechanical system (MEMS) technology, which is based in part on semiconductor device processing.
  • a semiconductor substrate 16 is processed using semiconductor processing steps, such as photolithography and other steps including deposition, patterning, etching and metallization steps.
  • An array of micro-mirrors 14 is formed over the substrate 16.
  • the micro-mirrors are formed of aluminum and are mounted on a hinged mechanism.
  • the micro-mirrors are attached on a hinge and can be tilted using electronic signals applied to electrodes that control a tilt by pivoting the micro-mirrors around an axis.
  • thousands and even millions of the micro-mirrors are formed in an array that forms a VGA, 720p or 1080p resolution imaging device.
  • individual micro-mirrors 14 are positioned to reflect the light from the illumination optics 22 to a projection lens 18, and a beam of light is projected out of the system 10.
  • the micro-mirrors 14 have three individual states, namely an "on” state, a flat or parked state, and an "off state.
  • the micro-mirrors 14 in FIG. 1 are tilted in a first tilted position from the flat position, repsonsive to signals on an electrode that cause the hinge to flex.
  • the micro-mirrors 14 are positioned to reflect incoming light from illumination optics 22 outwards to the projection lens 18.
  • the micro-mirrors 14 are tilted in a different tilted position to reflect the light away from the projection lens 18.
  • the micro-mirrors 14 are operable to direct light to the projection lens 18, or the reflected light can be reflected away from the projection lens 18.
  • the flat state is a safe position of the mirrors when no power is applied to the device. In the flat state, the micro-mirrors 14 are not tilted, because no power is applied to the control electrodes.
  • FIG. 2 further illustrates the operation of the micro-mirrors in a DMD array.
  • a representative micro-mirror 38 illustrates the various positions of the micro-mirrors.
  • the micro-mirror 38 In the "on" state, the micro-mirror 38 is at a first tilted position, such as +12 degrees from the vertical or flat position.
  • the illumination source 36 is angled at - 24 degrees from the zero degree position, which is aligned with the projection lens 34.
  • the angle of incidence (AOI) of the incoming light is equal to the angle of reflection (AOR) of the reflected light.
  • the -24 degree angle for the illumination source results in reflected light at the zero degree position as shown in FIG. 2.
  • the cone of reflected light labeled "on state energy” shows the reflected light directed outwards from the micro-mirror 38 at the zero degree position.
  • Other DMD devices may provide different tilt angles, such as +/- 10 degrees or +/- 17 degrees.
  • the micro-mirrors can be put in an "off state position, in which the micro-mirror 14 is at a second tilted position at an angle of -12 degrees relative to the flat position.
  • the "off state the light that strikes the micro-mirror is reflected away from the projection lens 34, and is not output from the system 30, but instead is output into a light dump 32.
  • the flat position of the micro-mirror 38 is not used when power to the system is applied, but instead is used when the system is not powered.
  • the flat position is sometimes referred to as a "parked" or "safe" position for the micro-mirror 38.
  • Each stage of the system 30 has some losses.
  • the light source 36 outputs light at a certain brightness.
  • the illumination optics have an efficiency of about 85%.
  • the DMD device has thousands or millions of individual micro-mirrors, such as the micro-mirror 38. The mirrors are spaced from one another, and the dark spaces between the micro-mirrors do not reflect light.
  • the DMD device also has a transparent cover, which has some transmission losses.
  • the DMD device has an overall efficiency of approximately 68%.
  • the projection optics 34 have an efficiency of approximately 75%. From the surface of the light source to the output of the projection lens in an example system, the combined efficiency is approximately 43%, which is the multiple of the individual efficiencies for the components coupled in the light path of the system. This is shown in table 40 of FIG. 3.
  • OSRAM LED devices are available at the http://www.osram-os.com/osram_os/en/products/product ⁇ catalog/led-light-emitting-diodes/osram-ostar/osram-ostar-headlamp/index.jsp. These LED devices are useful in headlamp applications.
  • the Osram LEDs listed in table 45 of FIG. 4 have a range of brightness from approximately 800 lumens to over 1500 lumens. The brightness that could be obtained from a system, such as system 10 in FIG. 1, was evaluated using these LEDs with a 100 % DMD duty cycle.
  • the micro-mirrors in the DMD device were always positioned in the "on” position to provide the maximum brightness available, so the micro-mirrors were positioned in the "on” state 100 % of the time.
  • the brightness that can be obtained is not sufficient for applications such as automotive headlamps.
  • the maximum brightness at the output obtained in these example configurations was 690 lumens for systems such as the system 10 in FIG. 1.
  • DMD temperature In an example automotive application, the headlamp is subjected to the heat from operation of an automotive engine, from the ambient temperature, and from an illumination source.
  • the DMD temperature exceeds a certain operating temperature that is specified by the manufacturer, and which varies with the process of fabricating the DMD device, DMD hinge memory and stiction problems occur if operated at a 100% duty cycle. In an example DMD device, this temperature is approximately 65 degrees Celsius. But as manufacturing processes continue to improve, this temperature rating tends to increase. Because the lamp applications may be specified to operate in environments where the ambient temperature is high, the thermal budget is difficult to manage using previous solutions. Operating the DMD in these high temperature environments can lead to hinge memory and stiction failures. In some previous approaches, a 50/50 duty cycle for the DMD device helps to avoid the hinge memory and stiction problems when temperatures are expected over the critical operating temperature, but such duty cycle limits the brightness that can be achieved.
  • Improvements in illumination using light projection incorporating DMD devices are helpful to address the deficiencies and the disadvantages of previous approaches. Solutions are helpful that are robust, provide reliable device operation with long device life, and are relatively easy to use.
  • multiple illumination sources are used with a DMD device to project a beam from an illumination system.
  • the DMD device includes an array of micro-mirrors that can be placed at multiple positions.
  • the multiple illumination sources are placed proximately to the DMD device and are each positioned, so light from the respective illumination source is reflected by the micro-mirrors of the DMD device when the micro-mirrors are in a corresponding one of the multiple positions.
  • the reflected light is collected into light projection optics and then output from the system.
  • a DMD illumination system includes multiple illumination sources arranged proximate to a digital micro-mirror device, each of the illumination sources directing light onto the digital micro-mirror device at an angle of incidence corresponding to a respective position of an array of micro-mirrors within the digital micro-mirror device, each illumination source of the multiple illumination sources being positioned to cause reflected light from the array of micro-mirrors to be directed out of the system.
  • Control circuitry is coupled to the multiple illumination sources and to the digital micro-mirror device and is configured for controlling the position of the array of micro-mirrors by applying one or more control signals to the digital micro-mirror device, and further configured for providing control signals to the multiple illumination sources, so that the light from the multiple illumination sources strikes the array of micro-mirrors when they are at the respective positions, and the light is reflected from the digital micro-mirror device and out of the system.
  • a method of projecting light for illumination from a DMD device includes: directing light from multiple illumination sources proximate to a digital micro-mirror device onto an array of micro-mirrors in the digital micro-mirror device having multiple positions, each of the multiple positions corresponding to the position of one the multiple illumination sources, the light from the multiple illumination sources being reflected from the array of micro-mirrors towards a light projection system; collecting the reflected light into the light projection system configured for projecting the collected light; controlling the position of the micro-mirrors in the array of micro-mirrors to put the micro-mirrors in a particular one of the multiple positions; and controlling the multiple light sources so that for the particular one of the positions, light from a respective one of the multiple illumination sources is directed to the array of micro-mirrors and reflected into the light projection system.
  • a dual illumination source DMD headlamp includes: a digital micro-mirror device having an array of micro-mirrors that are configured to move between a first tilted position and a second tilted position, responsive to control signals; a first illumination source positioned to direct light onto the array of micro-mirrors when the array of micro-mirrors are in the first tilted position; a second illumination source positioned to direct light onto the array of micro-mirrors when the array of micro-mirrors are in the second tilted position, a light projection optics configured to collect light reflected from the array of micro- mirrors and having a lens to project the light out of the DMD headlamp; and a controller configured to send control signals to the digital micro-mirror device to place the array of micro- mirrors in the first tilted position and the second tilted position while simultaneously pulsing the first illumination source and the second illumination source, so that light output from the first illumination source and the second illumination source
  • FIG. 1 is a block diagram of a conventional DMD illumination system.
  • FIG. 2 is a block diagram of operation of a micro-mirror in a DMD projection system.
  • FIG. 3 is a flow diagram of an efficiency determination.
  • FIG. 4 is a table of a set of comparisons for brightness obtained in a DMD system.
  • FIG. 5 is a simplified block diagram of an embodiment DMD illumination system.
  • FIG. 6A is a diagram of operation of a VSP micro-mirror for use with the embodiments.
  • FIG. 6B is a pupil diagram of operation of the VSP micro-mirror of FIG. 6A.
  • FIG. 7A is a diagram of operation of a TRP micro-mirror for use with the embodiments.
  • FIG. 7B is a pupil diagram of operation of the TRP micro-mirror of FIG. 7A.
  • FIG. 8A is a block diagram of an embodiment DMD illumination system implemented using a VSP DMD device.
  • FIG. 8B is a combined pupil diagram of operation of the system of FIG. 8 A.
  • FIG. 9A is a block diagram of a DMD illumination system implemented using a TRP DMD device.
  • FIG. 9B is a combined pupil diagram of operation of the system of FIG. 9A.
  • FIG. 10A is a block diagram of operation of a DMD system of the embodiments using a
  • VSP DMD device VSP DMD device.
  • FIG. 10B is a block diagram of operation of the DMD system of FIG. 10A.
  • FIG. 11A is a block diagram of operation of a DMD of system of the embodiments using a TRP DMD device.
  • FIG. 1 IB is a block diagram of operation of the DMD system of FIG. 11A.
  • FIG. 12 is a table comparing performance of DMD illumination systems of the previous approaches and example embodiments.
  • FIG. 13A is a block diagram of operation of a DMD illumination system of the embodiments using adaptive beam shaping.
  • FIG. 13B is a block diagram of operation of the DMD illumination system of FIG. 13 A.
  • an automotive headlamp includes a DMD device that is illuminated and projects a beam of light through a lens or other optics.
  • the embodiments advantageously provide a light or lamp using a DMD device as a projection source with greater brightness and reliability.
  • a DMD lighting apparatus achieves excellent brightness at the output and is robust and reliable.
  • a multiple source illumination system is used. Two or even more illumination sources can be used in various embodiments.
  • FIG. 5 is a simple block diagram of a system 50 having example dual illumination sources 60, 66 with a DMD device 52 for projecting illumination.
  • a DMD device 52 has a substrate 56 and hinged micro-mirrors 54.
  • the micro-mirrors are individually addressable, and each micro-mirror can tilt to a first position and a second position, responsive to control signals.
  • Each micro-mirror also has a third untilted (flat) position.
  • a projection optics element 58 such as a lens, is used for collecting and outputting the reflected light from the system 50.
  • the lens may be part of an automotive headlamp assembly.
  • a first illumination source 60 has a first illumination optics element 62 and forms illumination module A.
  • Illumination module A is positioned to direct light onto DMD 52 and to cause light to reflect from the micro-mirrors 54.
  • a second illumination source 66 having a second illumination optics element 68 forms Illumination module B.
  • Illumination module B is also positioned to cause light to reflect from the micro-mirrors 54.
  • a controller 64 provides control signals to the DMD device, and to the light source 60 in illumination module A, and to the light source 66 in illumination module B.
  • Controller 64 may be, in one embodiment, a DMD controller component that is specifically provided for use with a DMD device.
  • Texas Instruments Incorporated offers various DMD controllers, such as the DLPC300 Controller to control the DLP3000 DMD device (which is also available from Texas Instruments Incorporated).
  • controller 64 includes controllers implemented as component parts, such as commercially available DSPs, microprocessors and microcontrollers, and alternatives such as integrated or user programmable solutions including FPGAs, ASICs, CPLDs and state machines.
  • the controller can include firmware or software, or can be a pure hardware implementation.
  • the controller 64 provides control signals to both the DMD device 52 in FIG. 5, and the on and off signals to the illumination modules A and B, controlling light sources 66 and 60.
  • the DMD micro-mirrors 54 are arranged to reflect light in two tilted positions.
  • the first tilted position which corresponds to the "on" state described above, is arranged so that light from the first illumination source 60 strikes the face of the DMD micro-mirrors, and is reflected out to the projection element 58. If the micro-mirrors tilt at +/- 12 degrees, then as shown in FIG. 2, the first illumination source 60 and the illumination optics 62 will be positioned at a -24 degree angle from the horizontal.
  • the positions of the illumination source 60 and the illumination optics 62 are chosen so that the angle of reflection will direct the projected light at a zero degree angle into the projection element 58, because the angle of reflection and the angle of incidence will be equal when the micro-mirrors are in the first tilted position at + 12 degrees.
  • the second illumination source 66 and the corresponding illumination optics 68 in FIG. 5 are positioned at a symmetrical angle on the opposite side of the DMD 52.
  • the second illumination source 66 and the illumination optics 68 are positioned at an angle of +24 degrees from the horizontal, assuming the DMD device has a second tilt position of -12 degrees. In this second tilted position, the light from the second illumination source 66 will be reflected from the micro-mirrors 54 to the projection element 58, and the light will be projected out of the system 50.
  • the illumination sources 60 and 66 are controllable by controller 64 to be pulsed on and off in a synchronous operation with the tilting operations of the DMD 52.
  • the DMD 52 may be operated at a less than 100% duty cycle, such as a 50% duty cycle, and the micro-mirrors 54 may be switched from the first tilted position to the second tilted position.
  • the light sources 60 and 66 may be pulsed on and off.
  • the light from each of the light sources 60 and 66 is directed onto the faces of the micro-mirrors 54 and is reflected out of the projection optics 58, without light dumps, and without projecting light elsewhere in the system, because the light from the light sources 60 and 66 is only transmitted when the micro-mirrors are in the corresponding tilted position to reflect the light out of the system 50.
  • the light sources 60 and 66 may be left on continuously and not pulsed, and the DMD is switched from the first tilted position to the second tilted position at a lowered duty cycle, such as a 50%> duty cycle.
  • the light not reflected out of the projection optics 58 can be collected in a light dump as shown in FIG. 2, instead of being projected.
  • This alternative embodiment uses an approach that is simpler in terms of control signals. However, because some light is not projected out of the system, it is also less efficient than the pulsed operation embodiment.
  • Advantages of this method of using multiple illumination sources include being able to operate the DMD in a continuous 50%> duty cycle.
  • a duty cycle less than 100% the problems of hinge memory or stiction failures are eliminated or substantially reduced.
  • the use of the lowered duty cycle relieves the system of thermal budget constraints, because the temperature of the DMD device can now rise substantially higher than in the 100% duty cycle operation, and the DMD device will still operate reliably. This is particularly significant in outdoor applications and in automotive, marine, aviation and other applications where control of the ambient temperature of the system 50 is impractical or impossible.
  • duty cycles that are less than 100% (but other than 50%) could also be used.
  • the duty cycle could be asymmetric.
  • the dual light sources can be controlled by controller 64 to be pulsed in synchronicity with these alternative duty cycles, so that all of the light produced by the light sources is projected out of the system.
  • the light sources 60, 66 can be any bright source but particular types of light sources are especially useful, such as quantum dots, lasers, LEDs, and lasers that include down converting materials such as phosphor (so-called “phaser "or “laser-phosphor”) light sources.
  • the light sources are pulsed, and quantum dot, laser, LEDs and laser-phosphor light sources each provide bright light sources that are compatible with the pulsed operations.
  • the color spectrum of the illumination sources may be white, such as white LEDs.
  • the visible spectrum may be different for different illumination sources, such as red, green, blue and white, and can be common between the illumination sources, or may be different for different ones of the illumination sources.
  • LEDs can be used as the illumination sources, and the LEDs can be pulse driven in an overdriven state.
  • the frequency of the pulses can be matched to the switching of the DMD micro-mirrors. Because LEDs are used in some embodiments, and the LEDs are pulsed on and off in some of the embodiments, the LEDs can further be pulse driven at supply currents over normal continuous operation current levels, and the brightness output by the LEDs can therefore be increased. Further, previous etendue squeezing techniques are useful to further enhance the brightness obtained from the LEDs.
  • a third illumination source may be added to the system 50.
  • the micro-mirrors are not used in the "flat" position.
  • the flat position can also be used as a third untilted position for the micro-mirrors in the DMD device, and a third illumination source may be positioned to cause light to reflect out of the projection optics when the micro-mirrors are in the flat position.
  • the third illumination source in the third position may also be a quantum dot, LED, laser, phaser or other bright light source, and the illumination source in the third position may also be pulsed in synchronicity with the micro-mirror positions. In this manner the system may operate with increased efficiency.
  • FIG. 6A is a simple drawing of a single micro-mirror that pivots on a single hinge axis.
  • Some devices such as the "VSP" (very small pixel) technology DMD devices from Texas Instruments Incorporated, operate in this fashion.
  • the VSP micro-mirrors are arranged in a diamond pattern.
  • the illumination light enters the array from the side, and the reflected light projects out of the page in FIG. 6A.
  • the micro-mirrors are at a first tilted position to reflect the light out of the page.
  • the micro-mirrors are at the second tilted position, tilted in the other direction.
  • the first and second tilt positions may be +/-12 degrees from a flat position.
  • the flat position is the position of the micro-mirrors when no power is applied to the electrodes in the devices.
  • FIG. 6B is a "pupil diagram" for the micro-mirror 72 in FIG. 6A. Reflected light is shown as an oval projecting from the micro-mirror in each of three micro-mirror positions, which are on, flat and off (the resulting light ovals are respectively numbered 74, 76, 78 in FIG. 6B). The reflected light is shown projected out of the page and moving along a horizontal axis as the micro-mirror is tilted left, corresponding to the "on" state, flat, and tilted right for position corresponding to the "off state, the micro-mirror rotating about the vertical hinge axis as shown in FIG. 6A.
  • VSP DMD devices are available, such as 0.3 inch diagonal arrays with WVGA resolution.
  • An example commercially available part is the DLP3000, sold by Texas Instruments Incorporated, which has an array of 608x684 micrometer sized micro-mirrors, which is a total of 415,872 mirrors.
  • the DLP3000 device is used in digital light projectors (DLP) for television and presentation video projectors, among other applications.
  • FIG. 7 A illustrates a single tilt and roll pixel (TRP) configuration micro-mirror 82.
  • TRP tilt and roll pixel
  • the micro-mirrors are formed on a compound hinge 80.
  • the micro-mirrors tilt left horizontally in a first tilted position, and tilt downwards in a second tilted position.
  • the TRP DMD micro-mirrors are oriented in an orthogonal array, and the hinge axis is diagonal and has compound motion, instead of vertical as in the VSP technology devices.
  • TRP DMD device DLP3114 has 1280x720 micro-mirrors, which is over 921,600 pixel elements. This device provides 720p resolution.
  • Other TRP devices offered by Texas Instruments Incorporated will have over 1 million mirrors.
  • a 0.47 inch array of TRP pixels offers 1080p resolution.
  • FIG. 7B is the pupil diagram for the TRP micro-mirror 82 in FIG. 7A.
  • the micro-mirrors have +/-17 degrees of tilt. The device is illuminated from one side in a conventional projection system, and the light comes out of the page in FIG. 7A.
  • the micro-mirrors are oriented in a downward direction, so the TRP micro-mirror tilts horizontally in the "on" state and downwards in the opposing state. This compound micro-mirror motion affects the positioning of the illumination sources in the example embodiments.
  • the first illumination source will be to one side of the DMD device, corresponding to the first tilted position in the micro-mirrors.
  • the second illumination source will be positioned below the DMD device, so the light from the second illumination source is reflected into a projection optical element when the micro-mirrors are in the second tilted position.
  • the "on" state is shown as oval 84
  • the flat state is shown as oval 86
  • the "off state is shown as oval 88, indicating where the light will be projected from the TRP device 82.
  • FIG. 8A is a simplified block diagram of an embodiment system 90 formed using a VSP technology DMD device 92 with multiple illumination sources.
  • DMD 92 is positioned to project light out of the page.
  • a first illumination module, numbered 94 (the "A" illumination module) is positioned to one side of the DMD, and at an angle that corresponds to a first tilted position of the micro-mirrors in DMD 92.
  • the A illumination module 94 has a light source 96 and illumination optics 98.
  • light source 96 may be a quantum dot, laser, LED array, laser phosphor, or other light source as described above.
  • the light source may be white or may have different visible color spectrum, such as red, green, blue and yellow.
  • the light source 96 can be compatible with a pulsed operation as described above. In certain embodiments, control signal pulses are used for controlling the light source (turning it on and off).
  • a controller 103 provides the control signals to the DMD 92 and to the light sources 96 and 104.
  • a second illumination module 100 (the "B" illumination module) is positioned on an opposite side of the DMD device 92, and includes an illumination source 104 and illumination optics 102. The second illumination module 100 is positioned to cause light to reflect out of the page of FIG. 8A when the micro-mirrors in the DMD 92 are in the second tilted position.
  • the light sources 96 and 104 may both be white, such as white LEDs. Additional alternative embodiments can be formed using different color spectrum for the light sources 105 and 96, such as red, green, blue, yellow for one light source and white for the other light source.
  • the system 90 projects light in a direction out of the page from the light sources 96, 104 while operating the DMD 92 in a 50/50 duty cycle.
  • the illumination module A (94 in FIG. 8A) is positioned at the correct angle to cause the light to reflect out of a projection element (not shown) and out of the page when the VSP micro-mirrors are in the first tilted position.
  • the illumination module B is positioned on the opposite side of the DMD 92 to cause the light to reflect out of the page when the VSP micro-mirrors are in the second tilted position.
  • the illumination module A will be positioned the left and at minus 24 degrees, and the illumination module B will be positioned to the right and at plus 24 degrees.
  • the illumination modules A and B can be pulsed on, and off, in synchronicity with the DMD switching, so that light is continuously projected by the system (in a direction out of the page in FIG. 8A).
  • the light sources 96 and 104 may not be pulsed.
  • the duty cycle can be some other asymmetrical duty cycle that is less than 100%, such as 70/30 or 30/70.
  • FIG. 8B illustrates the operation of the micro-mirrors in system 90 shown in a combined pupil diagram.
  • the two mirror positions that are referred to as “on” and “off are now symmetric with respect to the two illumination modules A and B. Accordingly, the "on” state with respect to illumination source A is the “off state with respect to illumination source B, and vice versa. Accordingly, the two light sources have two different pupil diagrams. However, in FIG. 8B, these are combined to illustrate the overall operation.
  • the circle 110 labeled "Aon, Bon” corresponds to the zero degree position and is the direction aligned with the projection optics to project light out of the page.
  • the circle 118 labeled "AI11, BFlat” indicates the position of the illumination module A. For a +/-12 degree VSP device, this will be at -24 degrees as in FIG. 2.
  • the circle 112 labeled “AFlat, Bill” illustrates where light from illumination module A will reflect when the micro-mirrors are in the "flat” position. This circle is also the correct position for the "B illumination” light source. For a +/-12 degree VSP DMD device, this would correspond to +24 degrees.
  • the circle 114 (labeled “Aoff”) illustrates where the light from illumination module A will go if the micro-mirrors are in the second tilted position, the "off state with respect to illumination source A.
  • the circle 116 (labeled "Boff) similarly indicates where the light from the B illumination source will be projected when the micro-mirrors are in an "off state with respect to illumination module B.
  • the light from the illumination modules A and B is directed to the circle 110, the "Aon Bon" position, and projected out of the page.
  • Other duty cycles can be used, and the light sources for illumination modules A and B can be pulsed in synchronicity with the duty cycle chosen, to form alternative embodiments.
  • a continuous light source can be used for illumination modules A or B.
  • light dumps can be added to the system to collect reflected light that is not projected out of the system.
  • FIGS. 9 A and 9B are block diagrams of a system 120 that uses a TRP DMD device 122 in a multiple illumination source embodiment.
  • Controller 138 sends control signals to the DMD device 122, and to the light sources in the illumination modules 124 and 130.
  • Controller 138 can be a controller specifically produced by Texas Instruments Incorporated for controlling a DMD device.
  • controller 138 can be a DSP, microprocessor, state machine, look-up table, microcontroller, FPGA, ASIC, circuit board or computer, and is generally a programmable or configurable device that can output control signals, and may be implemented as hardware, software and combinations thereof.
  • Illumination module A includes a light source 126 and illumination optics 128, such as a beam shaper that directs light onto the faces of the micro-mirrors of the DMD 122 when the micro-mirrors are in the first tilted position
  • illumination module B includes light source 134 and illumination optics 132, which are configured to direct light onto the faces of the micro-mirrors of the DMD 112 when the micro-mirrors are positioned in a second tilted position, which is now an "on" state with respect to illumination module B.
  • the operation of the system 120 is the same as for the system 90 in FIG. 8 A, except that the illumination modules A and B are positioned to direct light onto the micro-mirrors in the DMD 112 when the TRP micro-mirrors are in a first tilted position and a second tilted position. Because the TRP micro-mirrors have a diagonal hinge axis and move in the tilt and roll directions, instead of moving left and right on a vertical hinge axis as in the VSP devices described above, the illumination sources A and B are now positioned to correspond to the TRP mirror tilted positions.
  • the combined pupil diagram in FIG. 9B further illustrates the operation of system 120.
  • the circle 142 labeled “AIll” corresponds to the position that the illumination module A is placed in to cause light from the illumination module A to be reflected into the circle 140 labeled "Aon Bon”.
  • the circle labeled “Bill” 152 corresponds to the position that the illumination module B is placed in to reflect light in to the "Aon Bon” circle 140 when the micro-mirrors are in the second position (the "off state with respect to illumination module A, which is now the "on” state for illumination module B).
  • the remaining circles 144, 146, 154, 156 in the combined pixel diagram illustrate the position where light is reflected when the micro-mirrors in TRP DMD device 122 are in the "flat” state and the "off state, with respect to each of the A and B illumination modules.
  • the DMD 122 and the illumination modules A and B (126, 134) in FIG. 9A can be operated in synchronicity, so the light sources are pulsed and the micro-mirrors are switched in a 50/50 duty cycle to direct light out of the page in FIG. 9A in a continuous fashion, in the manner described above.
  • Other duty cycles are useful to form alternative arrangements.
  • Continuous light sources are useful to form additional embodiments.
  • a third illumination source that reflects light into the projection optics when the TRP DMD 122 is in the "flat" position may be added to the dual illumination system 120, to create additional alternative embodiments.
  • FIGS. 10A and 10B further illustrate the operation of an embodiment dual illumination system 160 using a DMD device 162 in a horizontal configuration.
  • the DMD device 162 may be a VSP device or other device that has an array of mirrors that tilts on a vertical axis from one side to the other side in a first tilted position and a second tilted position.
  • the dual illumination sources 164, 166 are positioned along the horizontal axis running through the DMD device 162 and on opposing sides of the DMD device 162.
  • the first illumination source 162 projects Illumination A
  • FIG. 10A the first illumination source 162 (projecting Illumination A) is shown as active.
  • the light strikes the micro-mirrors on device 162 while they are in the first tilted position. If the DMD 162 has a +/-12 degree tilt, such as in a VSP device from Texas Instruments Incorporated described above, then the angle of incidence will be at -24 degrees, such as shown in FIG. 2. In this manner, the reflected light 168 will leave the digital micro-mirrors from DMD 162 at the zero degree position.
  • FIG. 10B depicts the system 160 when the micro-mirrors in device 162 are at a second tilted position to receive the light from Illumination B.
  • the DMD device 162 is a +/-12 degree tilt device
  • the second illumination source 166 is placed at the +24 degrees position, and the reflected light 168 will leave the DMD device 162 at the zero degree position. In this manner, the light is all reflected to the projection optics and out of the system.
  • the dual illumination sources in system 160 are pulsed in synchronicity with the micro-mirror position alternating between the first tilted position and the second tilted position.
  • the dual illumination sources 164, 166 can be used and remain active. In this embodiment, some light is dumped into light dumps.
  • the dual illumination sources and the switched duty cycle operation of the micro -mirrors still ensure that the light projected from the system is brighter than that achieved with previous solutions, and that light is continuously output from system 160 for maximum brightness.
  • FIGS. 11 A and 1 IB depict in further detail an embodiment multiple illumination source system 170 using a DMD device 172 with micro-mirrors that perform the compound tilt and roll (TRP) motion around a diagonal axis.
  • the first illumination source 174 projects Illumination A
  • FIG. 11A The reflected light 178 is then projected out of the system 170.
  • the micro-mirrors in device 172 are in a second tilted position, which is now the "on" state with respect to projected Illumination B, and the second illumination source 176 is therefore positioned below the DMD device, to project light onto the faces of the micro-mirrors when they are tilted downwards in the second tilted position.
  • the reflected light 178 is then projected at the zero degree position and out of the projection optics of the system 170.
  • VSP DMD and TRP DMD devices illustrate embodiments formed with DMD devices that are currently commercially available on the market from Texas Instruments Incorporated. However, the example embodiments are not so limited. Various DMD devices can be used in the embodiments.
  • three illumination sources may be used and positioned to cause reflected light to be projected when the micro- mirrors are in a first tilted position, a flat position, and a second tilted position.
  • dual illumination sources are positioned so that when the micro-mirrors are in a first tilted position, a first illumination source provides light onto the micro-mirrors that is reflected into a projection optics and output from the system.
  • a second illumination source provides light that is reflected from the micro-mirrors into projection optics and out of the system.
  • the duty cycle may be a symmetrical 50% duty cycle, but the embodiments are not so limited, and other switching duty cycles may be used.
  • the light sources may be pulsed on and off. However, in alternative embodiments, the light sources may be applied in a continuous manner.
  • Light that strikes the micro-mirrors in a state where the reflection is not to the projection optics, but in another direction, may be collected in a light dump device to absorb any excess heat that exists.
  • the light sources used in the illumination modules and the DMD devices may be controlled by a dedicated controller device, or by programmable processors or microprocessors, DSPs, microcontrollers, state machines, ASICs, FPGAs and CPLDs.
  • FIG. 12 shows a table 181 of the brightness obtained in simulations for systems configured using the dual illumination source embodiments. Evaluations were performed for DMD devices including a 0.3 WVGA DMD device from Texas Instruments Incorporated formed using the VSP micro-mirrors that tilt horizontally about a vertical axis, and a 0.47 inch diagonal TRP DMD device from Texas Instruments Incorporated formed using the TRP micro-mirrors described above, which tilt in a compound fashion about a diagonal axis, first horizontally in a first tilted position, and then vertically in a second tilted position.
  • DMD devices including a 0.3 WVGA DMD device from Texas Instruments Incorporated formed using the VSP micro-mirrors that tilt horizontally about a vertical axis, and a 0.47 inch diagonal TRP DMD device from Texas Instruments Incorporated formed using the TRP micro-mirrors described above, which tilt in a compound fashion about a diagonal axis, first horizontally in a first tilted position
  • an Osram Opto Semiconductors LED numbered LE UW U1A5 was evaluated that has a 1590 lumens output at the LED, using a 0.47 inch DMD from Texas Instruments Incorporated device having TRP micro-mirrors.
  • the brightness obtained in the evaluation was 1035 lumens.
  • FIGS. 13A and 13B further illustrate another aspect of the embodiments.
  • an adaptive beam arrangement is illustrated.
  • the micro-mirrors of the DMD devices used with the embodiments are individually addressable.
  • the pattern of the light beam projected by the system can be altered by the controller according to specifications of a particular application by tilting some of the micro-mirrors in device in an inverted manner from the remainder, so that some of the micro-mirrors are in the first tilted position when the remainder are in the second tilted position, changing the projected beam pattern that is output by the system.
  • the DMD can be used as a spatial light modulator.
  • FIG. 13A illustrates in detail a non- limiting example.
  • An illumination system 180 includes a DMD device 182 (in this non-limiting example, the DMD device is a horizontal tilt device such as the VSP example device described above).
  • a pattern 190 is obtained in the projected light beam 188 by modifying the tilt pattern for four (in this example) micro-mirrors in the DMD device 182.
  • the light source 184 is active in FIG. 15, and the four mirrors that form pattern 190 are tilted away from the illumination A, while the remaining mirrors in DMD device 182 are tilted to reflect the light from light source 184.
  • FIG. 13B illustrates in detail the same non- limiting example as in FIG. 13 A.
  • the system 180 is shown now with the light source 186 active, and Illumination B is projecting light onto the micro-mirrors of device 182, and the pattern 190 again appears in the light beam 188.
  • the pattern obtained with the 50% duty cycle is the same for both the light source 184 (Illumination A) and light source 186 (Illumination B).
  • an automotive headlamp is implemented using the example embodiments described above, and the projected beam can be adaptively modified.
  • the adaptive light beam can be dipped lower and directed away from the eyes of the drivers in the oncoming traffic, while the overall brightness is maintained. After the oncoming traffic passes, the light beam can be returned to a normal pattern.
  • the profiles of the illumination sources can be varied, so the two illumination sources are not necessarily identical. Also, additional beam shaping and adaptive beam shaping can be accomplished by using different illumination profiles for the multiple illumination sources. Different color spectrum can be used for the two illumination sources to further control the beam projected from the headlamp.
  • Use of the embodiments advantageously provides a DMD illumination system with enhanced brightness, adaptive beam capability, robust and reliable operation, high temperature operation, and extended DMD lifetime, without hinge memory and stiction failure concerns that exist in the previous solutions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

In described examples, a DMD illumination system (50) having multiple illumination sources (60, 66). A DMD illumination system (50) includes a plurality of illumination sources (60, 66), each of the illumination sources (60, 66) directing light onto the digital micro-mirror device (52) corresponding to a respective position of an array of micro-mirrors (54), each illumination source (60, 66) being positioned to cause reflected light from the array of micro-mirrors (54) to be projected out of the system (50), and control circuity (64) coupled to the plurality of illumination sources (60, 66) and to the digital micro-mirror device configured for controlling the position of the array of micro-mirrors (64) and further configured for providing control signals (A, B) for turning each of the plurality of illumination sources (60, 66) on and off, so that the light from the plurality of illumination sources strikes the array of micro-mirrors (54) and the light is reflected from the digital micro-mirror device (52) and out of the system (50).

Description

MULTIPLE ILLUMINATION SOURCES FOR DMD LIGHTING
[0001] This relates in general to MEMS reflective devices, and in particular to multiple illumination sources for digital micro-mirror device (DMD) lighting.
BACKGROUND
[0002] Lighting with DMD projection offers an opportunity to provide bright and even adaptive lighting solutions for many applications. Because the DMD array is "pixel addressable," the projected beam of light formed with a DMD device can be adaptively shaped and masked using DMD devices to suit a variety of applications.
[0003] However, obtaining the brightness for these applications has been difficult. DMD lighting efficiency is limited by the efficiency of the illumination sources and by etendue limitations of the DMD device. Further, to obtain the brightness specified for an example automotive headlamp application, a DMD array in the previous arrangements would be "on" 100% of the time. However, when a DMD array is operated in this manner in an environment where high operating temperatures exist, hinge memory problems and stiction problems arise in the micro-mirror devices. A previous solution to the hinge memory problems is to operate the DMD in a lowered duty cycle, such as a 50% duty cycle. Operating the DMD at a 50%> duty cycle moves the hinge in the micro-mirrors from an "on" position to an "off position in a repeating cycle, using a clock and control signals. Moving the micro-mirrors every other clock cycle helps to avoid hinge memory or stuck mirror problems. However, the brightness obtained at the output of the lamp system is substantially reduced when the DMD is operated in this manner, because the light is only reflected out to the projection optics 50% of the time.
[0004] FIG. 1 illustrates a conventional arrangement using a DMD device to project light for illumination. In a system 10, illumination optics 22 direct light from a single light source 20 onto the face of a DMD device 12. The DMD device 12 is formed by micro-electromechanical system (MEMS) technology, which is based in part on semiconductor device processing. A semiconductor substrate 16 is processed using semiconductor processing steps, such as photolithography and other steps including deposition, patterning, etching and metallization steps. An array of micro-mirrors 14 is formed over the substrate 16. In an example process, the micro-mirrors are formed of aluminum and are mounted on a hinged mechanism. The micro-mirrors are attached on a hinge and can be tilted using electronic signals applied to electrodes that control a tilt by pivoting the micro-mirrors around an axis. In an example DMD device, thousands and even millions of the micro-mirrors are formed in an array that forms a VGA, 720p or 1080p resolution imaging device. In a lamp application, individual micro-mirrors 14 are positioned to reflect the light from the illumination optics 22 to a projection lens 18, and a beam of light is projected out of the system 10.
[0005] The micro-mirrors 14 have three individual states, namely an "on" state, a flat or parked state, and an "off state. In the "on" state, the micro-mirrors 14 in FIG. 1 are tilted in a first tilted position from the flat position, repsonsive to signals on an electrode that cause the hinge to flex. In system 10, the micro-mirrors 14 are positioned to reflect incoming light from illumination optics 22 outwards to the projection lens 18. In the "off state, the micro-mirrors 14 are tilted in a different tilted position to reflect the light away from the projection lens 18. By varying the tilted positions using electrical control signals, the micro-mirrors 14 are operable to direct light to the projection lens 18, or the reflected light can be reflected away from the projection lens 18. The flat state is a safe position of the mirrors when no power is applied to the device. In the flat state, the micro-mirrors 14 are not tilted, because no power is applied to the control electrodes.
[0006] FIG. 2 further illustrates the operation of the micro-mirrors in a DMD array. In a projection system 30, a representative micro-mirror 38 illustrates the various positions of the micro-mirrors. In the "on" state, the micro-mirror 38 is at a first tilted position, such as +12 degrees from the vertical or flat position. The illumination source 36 is angled at - 24 degrees from the zero degree position, which is aligned with the projection lens 34. In reflection from a mirror, the angle of incidence (AOI) of the incoming light is equal to the angle of reflection (AOR) of the reflected light. Accordingly, for a +12 degree tilt, the -24 degree angle for the illumination source results in reflected light at the zero degree position as shown in FIG. 2. The cone of reflected light labeled "on state energy" shows the reflected light directed outwards from the micro-mirror 38 at the zero degree position. Other DMD devices may provide different tilt angles, such as +/- 10 degrees or +/- 17 degrees. When the micro-mirror 38 is in the "on" state, the light from the illumination source 36 is reflected as the cone of light labeled "on state energy" at zero degrees into the projection lens 34. The projected light is then output from the system 30. The micro-mirrors can also be put in a "flat" state position, when the system is not powered. Also, the micro-mirrors can be put in an "off state position, in which the micro-mirror 14 is at a second tilted position at an angle of -12 degrees relative to the flat position. In the "off state, the light that strikes the micro-mirror is reflected away from the projection lens 34, and is not output from the system 30, but instead is output into a light dump 32. In conventional projection systems, the flat position of the micro-mirror 38 is not used when power to the system is applied, but instead is used when the system is not powered. The flat position is sometimes referred to as a "parked" or "safe" position for the micro-mirror 38.
[0007] Each stage of the system 30 has some losses. The light source 36 outputs light at a certain brightness. In one example system, the illumination optics have an efficiency of about 85%. The DMD device has thousands or millions of individual micro-mirrors, such as the micro-mirror 38. The mirrors are spaced from one another, and the dark spaces between the micro-mirrors do not reflect light. The DMD device also has a transparent cover, which has some transmission losses. The DMD device has an overall efficiency of approximately 68%. In an example system, the projection optics 34 have an efficiency of approximately 75%. From the surface of the light source to the output of the projection lens in an example system, the combined efficiency is approximately 43%, which is the multiple of the individual efficiencies for the components coupled in the light path of the system. This is shown in table 40 of FIG. 3.
[0008] To determine the possible brightness that can be obtained with a system, such as the conventional system 10 in FIG. 1, simulations were performed. Evaluations were performed on two different DMD device technologies (each available from Texas Instruments Incorporated), namely: a first DMD device whose mirror array measures 0.3 inches diagonally, and which provides a wide VGA (WVGA) resolution; and a second DMD device whose mirror array measures 0.47 inches diagonally, with 1080p resolution. Several light sources were evaluated. The light sources evaluated and shown in FIG. 4 are commercially available LED devices obtained from OSRAM Opto Semiconductors Company. Descriptions of the OSRAM LED devices are available at the http://www.osram-os.com/osram_os/en/products/product~ catalog/led-light-emitting-diodes/osram-ostar/osram-ostar-headlamp/index.jsp. These LED devices are useful in headlamp applications. The Osram LEDs listed in table 45 of FIG. 4 have a range of brightness from approximately 800 lumens to over 1500 lumens. The brightness that could be obtained from a system, such as system 10 in FIG. 1, was evaluated using these LEDs with a 100 % DMD duty cycle. Accordingly, the micro-mirrors in the DMD device were always positioned in the "on" position to provide the maximum brightness available, so the micro-mirrors were positioned in the "on" state 100 % of the time. However, in this configuration, the brightness that can be obtained is not sufficient for applications such as automotive headlamps. As shown in table 45 of FIG. 4, the maximum brightness at the output obtained in these example configurations was 690 lumens for systems such as the system 10 in FIG. 1.
[0009] Additional challenges in the previous approaches occur with increasing DMD temperature. In an example automotive application, the headlamp is subjected to the heat from operation of an automotive engine, from the ambient temperature, and from an illumination source. When the DMD temperature exceeds a certain operating temperature that is specified by the manufacturer, and which varies with the process of fabricating the DMD device, DMD hinge memory and stiction problems occur if operated at a 100% duty cycle. In an example DMD device, this temperature is approximately 65 degrees Celsius. But as manufacturing processes continue to improve, this temperature rating tends to increase. Because the lamp applications may be specified to operate in environments where the ambient temperature is high, the thermal budget is difficult to manage using previous solutions. Operating the DMD in these high temperature environments can lead to hinge memory and stiction failures. In some previous approaches, a 50/50 duty cycle for the DMD device helps to avoid the hinge memory and stiction problems when temperatures are expected over the critical operating temperature, but such duty cycle limits the brightness that can be achieved.
SUMMARY
[0010] Improvements in illumination using light projection incorporating DMD devices are helpful to address the deficiencies and the disadvantages of previous approaches. Solutions are helpful that are robust, provide reliable device operation with long device life, and are relatively easy to use.
[0011] In an aspect of this application, multiple illumination sources are used with a DMD device to project a beam from an illumination system. The DMD device includes an array of micro-mirrors that can be placed at multiple positions. The multiple illumination sources are placed proximately to the DMD device and are each positioned, so light from the respective illumination source is reflected by the micro-mirrors of the DMD device when the micro-mirrors are in a corresponding one of the multiple positions. The reflected light is collected into light projection optics and then output from the system.
[0012] In one aspect of this application, a DMD illumination system includes multiple illumination sources arranged proximate to a digital micro-mirror device, each of the illumination sources directing light onto the digital micro-mirror device at an angle of incidence corresponding to a respective position of an array of micro-mirrors within the digital micro-mirror device, each illumination source of the multiple illumination sources being positioned to cause reflected light from the array of micro-mirrors to be directed out of the system. Control circuitry is coupled to the multiple illumination sources and to the digital micro-mirror device and is configured for controlling the position of the array of micro-mirrors by applying one or more control signals to the digital micro-mirror device, and further configured for providing control signals to the multiple illumination sources, so that the light from the multiple illumination sources strikes the array of micro-mirrors when they are at the respective positions, and the light is reflected from the digital micro-mirror device and out of the system.
[0013] In another aspect of this application, a method of projecting light for illumination from a DMD device includes: directing light from multiple illumination sources proximate to a digital micro-mirror device onto an array of micro-mirrors in the digital micro-mirror device having multiple positions, each of the multiple positions corresponding to the position of one the multiple illumination sources, the light from the multiple illumination sources being reflected from the array of micro-mirrors towards a light projection system; collecting the reflected light into the light projection system configured for projecting the collected light; controlling the position of the micro-mirrors in the array of micro-mirrors to put the micro-mirrors in a particular one of the multiple positions; and controlling the multiple light sources so that for the particular one of the positions, light from a respective one of the multiple illumination sources is directed to the array of micro-mirrors and reflected into the light projection system.
[0014] In still another aspect of this application, a dual illumination source DMD headlamp includes: a digital micro-mirror device having an array of micro-mirrors that are configured to move between a first tilted position and a second tilted position, responsive to control signals; a first illumination source positioned to direct light onto the array of micro-mirrors when the array of micro-mirrors are in the first tilted position; a second illumination source positioned to direct light onto the array of micro-mirrors when the array of micro-mirrors are in the second tilted position, a light projection optics configured to collect light reflected from the array of micro- mirrors and having a lens to project the light out of the DMD headlamp; and a controller configured to send control signals to the digital micro-mirror device to place the array of micro- mirrors in the first tilted position and the second tilted position while simultaneously pulsing the first illumination source and the second illumination source, so that light output from the first illumination source and the second illumination source is reflected from the array of micro- mirrors into the light projection optics and out of the lens.
[0015] Previously, use of a DMD device in a projected light illumination system, such as for an automotive headlamp, could be difficult, because the overall brightness that could be achieved reliably using a DMD was less than specified. Recognition in this application that the use of multiple illumination sources, along with a lowered duty cycle for the micro-mirrors in the DMD device, overcomes the hinge memory and stiction problems of the previous approaches, while still achieving increased brightness and without degrading the performance characteristics of the system, and it advantageously allows the use of the DMD devices and provides capabilities for the use of DMD illumination systems in a variety of applications.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] FIG. 1 is a block diagram of a conventional DMD illumination system.
[0017] FIG. 2 is a block diagram of operation of a micro-mirror in a DMD projection system.
[0018] FIG. 3 is a flow diagram of an efficiency determination.
[0019] FIG. 4 is a table of a set of comparisons for brightness obtained in a DMD system.
[0020] FIG. 5 is a simplified block diagram of an embodiment DMD illumination system.
[0021] FIG. 6A is a diagram of operation of a VSP micro-mirror for use with the embodiments.
[0022] FIG. 6B is a pupil diagram of operation of the VSP micro-mirror of FIG. 6A.
[0023] FIG. 7A is a diagram of operation of a TRP micro-mirror for use with the embodiments.
[0024] FIG. 7B is a pupil diagram of operation of the TRP micro-mirror of FIG. 7A.
[0025] FIG. 8A is a block diagram of an embodiment DMD illumination system implemented using a VSP DMD device.
[0026] FIG. 8B is a combined pupil diagram of operation of the system of FIG. 8 A. [0027] FIG. 9A is a block diagram of a DMD illumination system implemented using a TRP DMD device.
[0028] FIG. 9B is a combined pupil diagram of operation of the system of FIG. 9A.
[0029] FIG. 10A is a block diagram of operation of a DMD system of the embodiments using a
VSP DMD device.
[0030] FIG. 10B is a block diagram of operation of the DMD system of FIG. 10A.
[0031] FIG. 11A is a block diagram of operation of a DMD of system of the embodiments using a TRP DMD device.
[0032] FIG. 1 IB is a block diagram of operation of the DMD system of FIG. 11A.
[0033] FIG. 12 is a table comparing performance of DMD illumination systems of the previous approaches and example embodiments.
[0034] FIG. 13A is a block diagram of operation of a DMD illumination system of the embodiments using adaptive beam shaping.
[0035] FIG. 13B is a block diagram of operation of the DMD illumination system of FIG. 13 A. DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
[0036] Applications of DMDs to project light include automotive headlamps, projection displays, spotlights, flashlights, aircraft lamps, marine lamps and other illumination and light beam applications, such as event lighting and stage lighting. In a non-limiting example, an automotive headlamp includes a DMD device that is illuminated and projects a beam of light through a lens or other optics. The embodiments advantageously provide a light or lamp using a DMD device as a projection source with greater brightness and reliability.
[0037] In the embodiments, a DMD lighting apparatus achieves excellent brightness at the output and is robust and reliable. In the various embodiments, a multiple source illumination system is used. Two or even more illumination sources can be used in various embodiments.
[0038] FIG. 5 is a simple block diagram of a system 50 having example dual illumination sources 60, 66 with a DMD device 52 for projecting illumination. In system 50, a DMD device 52 has a substrate 56 and hinged micro-mirrors 54. There may be thousands or millions of micro-mirrors in a rectangular or square micro-mirror array. The micro-mirrors are individually addressable, and each micro-mirror can tilt to a first position and a second position, responsive to control signals. Each micro-mirror also has a third untilted (flat) position. A projection optics element 58, such as a lens, is used for collecting and outputting the reflected light from the system 50. In an example embodiment, the lens may be part of an automotive headlamp assembly. In system 50, a first illumination source 60 has a first illumination optics element 62 and forms illumination module A. Illumination module A is positioned to direct light onto DMD 52 and to cause light to reflect from the micro-mirrors 54. A second illumination source 66 having a second illumination optics element 68 forms Illumination module B. Illumination module B is also positioned to cause light to reflect from the micro-mirrors 54. A controller 64 provides control signals to the DMD device, and to the light source 60 in illumination module A, and to the light source 66 in illumination module B. Controller 64 may be, in one embodiment, a DMD controller component that is specifically provided for use with a DMD device. Texas Instruments Incorporated offers various DMD controllers, such as the DLPC300 Controller to control the DLP3000 DMD device (which is also available from Texas Instruments Incorporated).
[0039] Alternative implementations for the controller 64 include controllers implemented as component parts, such as commercially available DSPs, microprocessors and microcontrollers, and alternatives such as integrated or user programmable solutions including FPGAs, ASICs, CPLDs and state machines. The controller can include firmware or software, or can be a pure hardware implementation. The controller 64 provides control signals to both the DMD device 52 in FIG. 5, and the on and off signals to the illumination modules A and B, controlling light sources 66 and 60.
[0040] In operation of this example embodiment system 50, the DMD micro-mirrors 54 are arranged to reflect light in two tilted positions. The first tilted position, which corresponds to the "on" state described above, is arranged so that light from the first illumination source 60 strikes the face of the DMD micro-mirrors, and is reflected out to the projection element 58. If the micro-mirrors tilt at +/- 12 degrees, then as shown in FIG. 2, the first illumination source 60 and the illumination optics 62 will be positioned at a -24 degree angle from the horizontal. The positions of the illumination source 60 and the illumination optics 62 are chosen so that the angle of reflection will direct the projected light at a zero degree angle into the projection element 58, because the angle of reflection and the angle of incidence will be equal when the micro-mirrors are in the first tilted position at + 12 degrees.
[0041] The second illumination source 66 and the corresponding illumination optics 68 in FIG. 5 are positioned at a symmetrical angle on the opposite side of the DMD 52. When the micro-mirrors 54 are in the second tilted position, corresponding to the "off state described above, the second illumination source 66 and the illumination optics 68 are positioned at an angle of +24 degrees from the horizontal, assuming the DMD device has a second tilt position of -12 degrees. In this second tilted position, the light from the second illumination source 66 will be reflected from the micro-mirrors 54 to the projection element 58, and the light will be projected out of the system 50.
[0042] In operation of the example embodiment of FIG. 5, the illumination sources 60 and 66 are controllable by controller 64 to be pulsed on and off in a synchronous operation with the tilting operations of the DMD 52. Accordingly, the DMD 52 may be operated at a less than 100% duty cycle, such as a 50% duty cycle, and the micro-mirrors 54 may be switched from the first tilted position to the second tilted position. Simultaneously, and in synchronicity with the micro-mirror positions, the light sources 60 and 66 may be pulsed on and off. In this manner, the light from each of the light sources 60 and 66 is directed onto the faces of the micro-mirrors 54 and is reflected out of the projection optics 58, without light dumps, and without projecting light elsewhere in the system, because the light from the light sources 60 and 66 is only transmitted when the micro-mirrors are in the corresponding tilted position to reflect the light out of the system 50.
[0043] In another alternative embodiment, the light sources 60 and 66 may be left on continuously and not pulsed, and the DMD is switched from the first tilted position to the second tilted position at a lowered duty cycle, such as a 50%> duty cycle. In this alternative embodiment, the light not reflected out of the projection optics 58 can be collected in a light dump as shown in FIG. 2, instead of being projected. This alternative embodiment uses an approach that is simpler in terms of control signals. However, because some light is not projected out of the system, it is also less efficient than the pulsed operation embodiment.
[0044] Advantages of this method of using multiple illumination sources include being able to operate the DMD in a continuous 50%> duty cycle. By using a duty cycle less than 100%, the problems of hinge memory or stiction failures are eliminated or substantially reduced. Further, the use of the lowered duty cycle relieves the system of thermal budget constraints, because the temperature of the DMD device can now rise substantially higher than in the 100% duty cycle operation, and the DMD device will still operate reliably. This is particularly significant in outdoor applications and in automotive, marine, aviation and other applications where control of the ambient temperature of the system 50 is impractical or impossible.
[0045] In alternative embodiments, duty cycles that are less than 100% (but other than 50%) could also be used. In these embodiments, the duty cycle could be asymmetric. The dual light sources can be controlled by controller 64 to be pulsed in synchronicity with these alternative duty cycles, so that all of the light produced by the light sources is projected out of the system.
[0046] The light sources 60, 66 can be any bright source but particular types of light sources are especially useful, such as quantum dots, lasers, LEDs, and lasers that include down converting materials such as phosphor (so-called "phaser "or "laser-phosphor") light sources. In some embodiments, the light sources are pulsed, and quantum dot, laser, LEDs and laser-phosphor light sources each provide bright light sources that are compatible with the pulsed operations.
[0047] Further, in alternative embodiments, the color spectrum of the illumination sources may be white, such as white LEDs. However, in additional alternative embodiments, the visible spectrum may be different for different illumination sources, such as red, green, blue and white, and can be common between the illumination sources, or may be different for different ones of the illumination sources.
[0048] To further increase brightness, LEDs can be used as the illumination sources, and the LEDs can be pulse driven in an overdriven state. The frequency of the pulses can be matched to the switching of the DMD micro-mirrors. Because LEDs are used in some embodiments, and the LEDs are pulsed on and off in some of the embodiments, the LEDs can further be pulse driven at supply currents over normal continuous operation current levels, and the brightness output by the LEDs can therefore be increased. Further, previous etendue squeezing techniques are useful to further enhance the brightness obtained from the LEDs.
[0049] In an alternative and additional embodiment to that of FIG. 5, a third illumination source may be added to the system 50. In a conventional DMD projection system, such as shown in FIG. 1, the micro-mirrors are not used in the "flat" position. By comparison, in the example embodiments, the flat position can also be used as a third untilted position for the micro-mirrors in the DMD device, and a third illumination source may be positioned to cause light to reflect out of the projection optics when the micro-mirrors are in the flat position. The third illumination source in the third position may also be a quantum dot, LED, laser, phaser or other bright light source, and the illumination source in the third position may also be pulsed in synchronicity with the micro-mirror positions. In this manner the system may operate with increased efficiency.
[0050] In various embodiments, different technology DMD devices may be used. FIG. 6A is a simple drawing of a single micro-mirror that pivots on a single hinge axis. Some devices, such as the "VSP" (very small pixel) technology DMD devices from Texas Instruments Incorporated, operate in this fashion. The VSP micro-mirrors are arranged in a diamond pattern. The illumination light enters the array from the side, and the reflected light projects out of the page in FIG. 6A. In the "on" state, the micro-mirrors are at a first tilted position to reflect the light out of the page. In the "off state, the micro-mirrors are at the second tilted position, tilted in the other direction. In an example DMD, the first and second tilt positions may be +/-12 degrees from a flat position. The flat position is the position of the micro-mirrors when no power is applied to the electrodes in the devices.
[0051] FIG. 6B is a "pupil diagram" for the micro-mirror 72 in FIG. 6A. Reflected light is shown as an oval projecting from the micro-mirror in each of three micro-mirror positions, which are on, flat and off (the resulting light ovals are respectively numbered 74, 76, 78 in FIG. 6B). The reflected light is shown projected out of the page and moving along a horizontal axis as the micro-mirror is tilted left, corresponding to the "on" state, flat, and tilted right for position corresponding to the "off state, the micro-mirror rotating about the vertical hinge axis as shown in FIG. 6A.
[0052] Currently, VSP DMD devices are available, such as 0.3 inch diagonal arrays with WVGA resolution. An example commercially available part is the DLP3000, sold by Texas Instruments Incorporated, which has an array of 608x684 micrometer sized micro-mirrors, which is a total of 415,872 mirrors. The DLP3000 device is used in digital light projectors (DLP) for television and presentation video projectors, among other applications.
[0053] In another embodiment, micro-mirrors that move in a different manner can be used. FIG. 7 A illustrates a single tilt and roll pixel (TRP) configuration micro-mirror 82. These devices are available, such as part number DLP3114 from Texas Instruments Incorporated. In the TRP technology, the micro-mirrors are formed on a compound hinge 80. The micro-mirrors tilt left horizontally in a first tilted position, and tilt downwards in a second tilted position. The TRP DMD micro-mirrors are oriented in an orthogonal array, and the hinge axis is diagonal and has compound motion, instead of vertical as in the VSP technology devices. FIG. 7A illustrates the movements of a single micro-mirror using TRP DMD technology. The array in the example TRP DMD device DLP3114 has 1280x720 micro-mirrors, which is over 921,600 pixel elements. This device provides 720p resolution. Other TRP devices offered by Texas Instruments Incorporated will have over 1 million mirrors. A 0.47 inch array of TRP pixels offers 1080p resolution.
[0054] FIG. 7B is the pupil diagram for the TRP micro-mirror 82 in FIG. 7A. In the example Texas Instruments Incorporated TRP device DLP3114, the micro-mirrors have +/-17 degrees of tilt. The device is illuminated from one side in a conventional projection system, and the light comes out of the page in FIG. 7A. As shown in FIG. 7B, in the "off state, the micro-mirrors are oriented in a downward direction, so the TRP micro-mirror tilts horizontally in the "on" state and downwards in the opposing state. This compound micro-mirror motion affects the positioning of the illumination sources in the example embodiments. As in the embodiment described above using the VSP DMD device, the first illumination source will be to one side of the DMD device, corresponding to the first tilted position in the micro-mirrors. But, for the TRP DMD device, the second illumination source will be positioned below the DMD device, so the light from the second illumination source is reflected into a projection optical element when the micro-mirrors are in the second tilted position. In the pupil diagram, the "on" state is shown as oval 84, the flat state is shown as oval 86, and the "off state is shown as oval 88, indicating where the light will be projected from the TRP device 82.
[0055] FIG. 8A is a simplified block diagram of an embodiment system 90 formed using a VSP technology DMD device 92 with multiple illumination sources. In FIG. 8A, DMD 92 is positioned to project light out of the page. A first illumination module, numbered 94 (the "A" illumination module) is positioned to one side of the DMD, and at an angle that corresponds to a first tilted position of the micro-mirrors in DMD 92. The A illumination module 94 has a light source 96 and illumination optics 98. As described above, light source 96 may be a quantum dot, laser, LED array, laser phosphor, or other light source as described above. The light source may be white or may have different visible color spectrum, such as red, green, blue and yellow. The light source 96 can be compatible with a pulsed operation as described above. In certain embodiments, control signal pulses are used for controlling the light source (turning it on and off). A controller 103 provides the control signals to the DMD 92 and to the light sources 96 and 104. [0056] A second illumination module 100 (the "B" illumination module) is positioned on an opposite side of the DMD device 92, and includes an illumination source 104 and illumination optics 102. The second illumination module 100 is positioned to cause light to reflect out of the page of FIG. 8A when the micro-mirrors in the DMD 92 are in the second tilted position. In some embodiments, the light sources 96 and 104 may both be white, such as white LEDs. Additional alternative embodiments can be formed using different color spectrum for the light sources 105 and 96, such as red, green, blue, yellow for one light source and white for the other light source.
[0057] In one example embodiment of operation, the system 90 projects light in a direction out of the page from the light sources 96, 104 while operating the DMD 92 in a 50/50 duty cycle. The illumination module A (94 in FIG. 8A) is positioned at the correct angle to cause the light to reflect out of a projection element (not shown) and out of the page when the VSP micro-mirrors are in the first tilted position. The illumination module B is positioned on the opposite side of the DMD 92 to cause the light to reflect out of the page when the VSP micro-mirrors are in the second tilted position. In an example where the micro-mirrors have +/-12 degrees of tilt, with the zero degree point projecting out of the page, the illumination module A will be positioned the left and at minus 24 degrees, and the illumination module B will be positioned to the right and at plus 24 degrees.
[0058] As the micro-mirrors in DMD 92 are switched in the 50/50 duty cycle from the first tilted position to a second tilted position, the illumination modules A and B can be pulsed on, and off, in synchronicity with the DMD switching, so that light is continuously projected by the system (in a direction out of the page in FIG. 8A). As described above, in additional alternative embodiments, the light sources 96 and 104 may not be pulsed. Also, as described above, the duty cycle can be some other asymmetrical duty cycle that is less than 100%, such as 70/30 or 30/70. By switching the mirror positions at regular intervals, the hinge memory and stiction problems of the previous solutions can be substantially reduced or eliminated.
[0059] FIG. 8B illustrates the operation of the micro-mirrors in system 90 shown in a combined pupil diagram. The two mirror positions that are referred to as "on" and "off are now symmetric with respect to the two illumination modules A and B. Accordingly, the "on" state with respect to illumination source A is the "off state with respect to illumination source B, and vice versa. Accordingly, the two light sources have two different pupil diagrams. However, in FIG. 8B, these are combined to illustrate the overall operation. In FIG. 8B, the circle 110 labeled "Aon, Bon" corresponds to the zero degree position and is the direction aligned with the projection optics to project light out of the page. The circle 118 labeled "AI11, BFlat" indicates the position of the illumination module A. For a +/-12 degree VSP device, this will be at -24 degrees as in FIG. 2. The circle 112 labeled "AFlat, Bill" illustrates where light from illumination module A will reflect when the micro-mirrors are in the "flat" position. This circle is also the correct position for the "B illumination" light source. For a +/-12 degree VSP DMD device, this would correspond to +24 degrees. The circle 114 (labeled "Aoff") illustrates where the light from illumination module A will go if the micro-mirrors are in the second tilted position, the "off state with respect to illumination source A. The circle 116 (labeled "Boff) similarly indicates where the light from the B illumination source will be projected when the micro-mirrors are in an "off state with respect to illumination module B.
[0060] In operation, in an embodiment where the micro-mirrors are operated in the 50/50 duty cycle, and where the A and B illumination modules are pulsed in synchronicity with the micro-mirrors, the light from the illumination modules A and B is directed to the circle 110, the "Aon Bon" position, and projected out of the page. Other duty cycles can be used, and the light sources for illumination modules A and B can be pulsed in synchronicity with the duty cycle chosen, to form alternative embodiments. In another embodiment, a continuous light source can be used for illumination modules A or B. In such an embodiment, light dumps can be added to the system to collect reflected light that is not projected out of the system.
[0061] FIGS. 9 A and 9B are block diagrams of a system 120 that uses a TRP DMD device 122 in a multiple illumination source embodiment. Controller 138 sends control signals to the DMD device 122, and to the light sources in the illumination modules 124 and 130. Controller 138 can be a controller specifically produced by Texas Instruments Incorporated for controlling a DMD device. In alternative embodiments, controller 138 can be a DSP, microprocessor, state machine, look-up table, microcontroller, FPGA, ASIC, circuit board or computer, and is generally a programmable or configurable device that can output control signals, and may be implemented as hardware, software and combinations thereof. The DMD device 122 is positioned so that the reflected light will project in a direction that is out of the page in FIG. 9A. Illumination module A, numbered 124, includes a light source 126 and illumination optics 128, such as a beam shaper that directs light onto the faces of the micro-mirrors of the DMD 122 when the micro-mirrors are in the first tilted position Similarly, illumination module B, numbered 130, includes light source 134 and illumination optics 132, which are configured to direct light onto the faces of the micro-mirrors of the DMD 112 when the micro-mirrors are positioned in a second tilted position, which is now an "on" state with respect to illumination module B.
[0062] The operation of the system 120 is the same as for the system 90 in FIG. 8 A, except that the illumination modules A and B are positioned to direct light onto the micro-mirrors in the DMD 112 when the TRP micro-mirrors are in a first tilted position and a second tilted position. Because the TRP micro-mirrors have a diagonal hinge axis and move in the tilt and roll directions, instead of moving left and right on a vertical hinge axis as in the VSP devices described above, the illumination sources A and B are now positioned to correspond to the TRP mirror tilted positions.
[0063] The combined pupil diagram in FIG. 9B further illustrates the operation of system 120. The circle 142 labeled "AIll" corresponds to the position that the illumination module A is placed in to cause light from the illumination module A to be reflected into the circle 140 labeled "Aon Bon". The circle labeled "Bill" 152 corresponds to the position that the illumination module B is placed in to reflect light in to the "Aon Bon" circle 140 when the micro-mirrors are in the second position (the "off state with respect to illumination module A, which is now the "on" state for illumination module B). The remaining circles 144, 146, 154, 156 in the combined pixel diagram illustrate the position where light is reflected when the micro-mirrors in TRP DMD device 122 are in the "flat" state and the "off state, with respect to each of the A and B illumination modules.
[0064] In operation, the DMD 122 and the illumination modules A and B (126, 134) in FIG. 9A can be operated in synchronicity, so the light sources are pulsed and the micro-mirrors are switched in a 50/50 duty cycle to direct light out of the page in FIG. 9A in a continuous fashion, in the manner described above. Other duty cycles are useful to form alternative arrangements. Continuous light sources are useful to form additional embodiments. In yet another embodiment arrangement, a third illumination source that reflects light into the projection optics when the TRP DMD 122 is in the "flat" position may be added to the dual illumination system 120, to create additional alternative embodiments.
[0065] FIGS. 10A and 10B further illustrate the operation of an embodiment dual illumination system 160 using a DMD device 162 in a horizontal configuration. In FIG. 10A, the DMD device 162 may be a VSP device or other device that has an array of mirrors that tilts on a vertical axis from one side to the other side in a first tilted position and a second tilted position. The dual illumination sources 164, 166 (Illumination A, Illumination B in the figure) are positioned along the horizontal axis running through the DMD device 162 and on opposing sides of the DMD device 162. In FIG. 10A, the first illumination source 162 (projecting Illumination A) is shown as active. The light strikes the micro-mirrors on device 162 while they are in the first tilted position. If the DMD 162 has a +/-12 degree tilt, such as in a VSP device from Texas Instruments Incorporated described above, then the angle of incidence will be at -24 degrees, such as shown in FIG. 2. In this manner, the reflected light 168 will leave the digital micro-mirrors from DMD 162 at the zero degree position.
[0066] Similarly, FIG. 10B depicts the system 160 when the micro-mirrors in device 162 are at a second tilted position to receive the light from Illumination B. When the DMD device 162 is a +/-12 degree tilt device, the second illumination source 166 is placed at the +24 degrees position, and the reflected light 168 will leave the DMD device 162 at the zero degree position. In this manner, the light is all reflected to the projection optics and out of the system.
[0067] In an embodiment, the dual illumination sources in system 160 are pulsed in synchronicity with the micro-mirror position alternating between the first tilted position and the second tilted position. In an alternative embodiment, the dual illumination sources 164, 166 can be used and remain active. In this embodiment, some light is dumped into light dumps. However, the dual illumination sources and the switched duty cycle operation of the micro -mirrors still ensure that the light projected from the system is brighter than that achieved with previous solutions, and that light is continuously output from system 160 for maximum brightness.
[0068] FIGS. 11 A and 1 IB depict in further detail an embodiment multiple illumination source system 170 using a DMD device 172 with micro-mirrors that perform the compound tilt and roll (TRP) motion around a diagonal axis. In these embodiments, the first illumination source 174 (projecting Illumination A) is to one side on the horizontal axis running through the DMD 172 and positioned to project light onto the micro-mirrors in device 172 when the micro-mirrors are in a first tilted position. This situation is illustrated in FIG. 11A. The reflected light 178 is then projected out of the system 170.
[0069] In FIG. 11B, the micro-mirrors in device 172 are in a second tilted position, which is now the "on" state with respect to projected Illumination B, and the second illumination source 176 is therefore positioned below the DMD device, to project light onto the faces of the micro-mirrors when they are tilted downwards in the second tilted position. The reflected light 178 is then projected at the zero degree position and out of the projection optics of the system 170.
[0070] The examples of the VSP DMD and TRP DMD devices described above illustrate embodiments formed with DMD devices that are currently commercially available on the market from Texas Instruments Incorporated. However, the example embodiments are not so limited. Various DMD devices can be used in the embodiments. In an embodiment, three illumination sources may be used and positioned to cause reflected light to be projected when the micro- mirrors are in a first tilted position, a flat position, and a second tilted position. In some embodiments, dual illumination sources are positioned so that when the micro-mirrors are in a first tilted position, a first illumination source provides light onto the micro-mirrors that is reflected into a projection optics and output from the system. When the micro-mirrors are then placed into a second tilted position, a second illumination source provides light that is reflected from the micro-mirrors into projection optics and out of the system. In the embodiments, the advantages accrue by use of multiple illumination sources, and by switching the DMD micro- mirrors at a duty cycle so that hinge memory and stiction problems of the previous solutions do not occur. The duty cycle may be a symmetrical 50% duty cycle, but the embodiments are not so limited, and other switching duty cycles may be used. The light sources may be pulsed on and off. However, in alternative embodiments, the light sources may be applied in a continuous manner. Light that strikes the micro-mirrors in a state where the reflection is not to the projection optics, but in another direction, may be collected in a light dump device to absorb any excess heat that exists. The light sources used in the illumination modules and the DMD devices may be controlled by a dedicated controller device, or by programmable processors or microprocessors, DSPs, microcontrollers, state machines, ASICs, FPGAs and CPLDs.
[0071] FIG. 12 shows a table 181 of the brightness obtained in simulations for systems configured using the dual illumination source embodiments. Evaluations were performed for DMD devices including a 0.3 WVGA DMD device from Texas Instruments Incorporated formed using the VSP micro-mirrors that tilt horizontally about a vertical axis, and a 0.47 inch diagonal TRP DMD device from Texas Instruments Incorporated formed using the TRP micro-mirrors described above, which tilt in a compound fashion about a diagonal axis, first horizontally in a first tilted position, and then vertically in a second tilted position.
[0072] In the first row of the table, labeled "0.3 WVGA", an angle of incidence (AOI) of 36 degrees was used with a first LED device number Q6WP from OSRAM Opto Semiconductors that has an output at the LED of 800 lumens. Three configurations were compared. First, the previous single illumination system such as shown in FIG. 1 was operated in a previous approach at 100 % duty cycle. For this operation to be reliable, and not have hinge memory or stiction faults, the temperature at the DMD device must be below a relatively low operating temperature, as indicated in the column heading in the table. A brightness of only 345 lumens was obtained. This evaluation result is shown in the column labeled "Single illumination, Low Temp., 100% DC."
[0073] In the column labeled "Single illumination, Higher Temp., DC 50/50", the evaluation was performed with the same DMD device and LED source, operated in a previous approach at a 50% duty cycle, which alleviates the problems with hinge memory and stiction for temperatures. However, when the single illumination system of FIG. 1 is operated in this manner, the resulting brightness is further reduced (because light is only reflected 50%> of the time), and a brightness of only 260 lumens was obtained, as shown in the first row, labeled 0.3 WVGA, in table 181.
[0074] In the column labeled "Dual illumination, Higher Temp, .DC-50/50", a third evaluation was performed for the same LED device and DMD device. However, in this example, the dual illumination sources of the example embodiments were used, such as shown in FIG. 5. In this evaluation, the brightness obtained was 520 lumens, approximately twice the brightness of the previous approach using a 50/50 duty cycle as shown in the middle column of results in table 181. Accordingly, the use of the embodiments advantageously provides output brightness greater than the previous approaches, and provides robust and reliable DMD operation up to a higher operating temperatures, such as temperatures up to 90°C and even higher.
[0075] In the remaining rows of the table 181 in FIG. 12, additional evaluation results are shown for different LED light sources numbered LE UW U1A3, LE UW U1A5, also from Osram Opto Semiconductor Company. In each example, the brightness obtained using the embodiments, shown in the results column labeled "Dual illumination Higher Temp. DC-50/50" are substantially greater than brightness of the previous approaches. The use of the embodiments further provides reliable operation at higher temperatures than those that can be maintained using the single illumination source approach at a 100% duty cycle.
[0076] For example, in the last row of the table 181 of FIG. 12, an Osram Opto Semiconductors LED numbered LE UW U1A5 was evaluated that has a 1590 lumens output at the LED, using a 0.47 inch DMD from Texas Instruments Incorporated device having TRP micro-mirrors. Using the dual illumination embodiments such as shown in FIGS. 11 A and 1 IB, the brightness obtained in the evaluation was 1035 lumens.
[0077] FIGS. 13A and 13B further illustrate another aspect of the embodiments. In FIG. 13 A, an adaptive beam arrangement is illustrated. As described above, the micro-mirrors of the DMD devices used with the embodiments are individually addressable. The pattern of the light beam projected by the system can be altered by the controller according to specifications of a particular application by tilting some of the micro-mirrors in device in an inverted manner from the remainder, so that some of the micro-mirrors are in the first tilted position when the remainder are in the second tilted position, changing the projected beam pattern that is output by the system. In this instance, the DMD can be used as a spatial light modulator.
[0078] FIG. 13A illustrates in detail a non- limiting example. An illumination system 180 includes a DMD device 182 (in this non-limiting example, the DMD device is a horizontal tilt device such as the VSP example device described above). A pattern 190 is obtained in the projected light beam 188 by modifying the tilt pattern for four (in this example) micro-mirrors in the DMD device 182. The light source 184 is active in FIG. 15, and the four mirrors that form pattern 190 are tilted away from the illumination A, while the remaining mirrors in DMD device 182 are tilted to reflect the light from light source 184.
[0079] FIG. 13B illustrates in detail the same non- limiting example as in FIG. 13 A. The system 180 is shown now with the light source 186 active, and Illumination B is projecting light onto the micro-mirrors of device 182, and the pattern 190 again appears in the light beam 188. The pattern obtained with the 50% duty cycle is the same for both the light source 184 (Illumination A) and light source 186 (Illumination B).
[0080] In an example application, an automotive headlamp is implemented using the example embodiments described above, and the projected beam can be adaptively modified. For example, in the automotive headlamp application, when oncoming traffic is detected as the car travels along a roadway, the adaptive light beam can be dipped lower and directed away from the eyes of the drivers in the oncoming traffic, while the overall brightness is maintained. After the oncoming traffic passes, the light beam can be returned to a normal pattern. These functions can be performed autonomously, such as freeing the car driver from the responsibility of manually switching from high-beam to low-beam positions.
[0081] In additional embodiments, the profiles of the illumination sources can be varied, so the two illumination sources are not necessarily identical. Also, additional beam shaping and adaptive beam shaping can be accomplished by using different illumination profiles for the multiple illumination sources. Different color spectrum can be used for the two illumination sources to further control the beam projected from the headlamp.
[0082] Use of the embodiments advantageously provides a DMD illumination system with enhanced brightness, adaptive beam capability, robust and reliable operation, high temperature operation, and extended DMD lifetime, without hinge memory and stiction failure concerns that exist in the previous solutions.
[0083] Modifications are possible in the described embodiments, and other embodiments are possible, within the scope of the claims.

Claims

CLAIMS What is claimed is:
1. A DMD illumination system, comprising:
a plurality of illumination sources arranged proximate to a digital micro-mirror device, each of the plurality of illumination sources directing light onto the digital micro-mirror device at an angle of incidence corresponding to a respective position of an array of micro-mirrors within the digital micro-mirror device, each illumination source of the plurality of illumination sources being positioned to cause reflected light from the array of micro-mirrors to be directed to project light in a direction out of the system; and
control circuity coupled to the plurality of illumination sources and to the digital micro- mirror device configured for controlling the position of the array of micro-mirrors by applying one or more control signals to the digital micro-mirror device, and further configured for providing control signals to each of the plurality of illumination sources, so that the light from the plurality of illumination sources strikes the array of micro-mirrors when the micro-mirrors are at the respective positions, and the light is reflected from the digital micro-mirror device and out of the system.
2. The DMD illumination system of claim 1, wherein the plurality of illumination sources further includes illumination sources that are one selected from the group consisting essentially of LEDs, lasers, lasers with down converting material, lasers with down converting material including a phosphor, and quantum dots.
3. The DMD illumination system of claim 1, wherein at least one of the plurality of illumination sources further includes one selected from the group consisting essentially of white, red, blue, and green visible spectrum illumination sources.
4. The DMD illumination system of claim 1, wherein the plurality of illumination sources includes first and second illumination sources, and the digital micro-mirror device further includes an array of micro-mirrors that move from a first tilted position on a horizontal axis to a second tilted position on the horizontal axis.
5. The DMD illumination system of claim 4, wherein the first illumination source is positioned on one side of the digital micro mirror device and along a horizontal axis of the digital micro-mirror device, and the second illumination source is positioned on an opposing side of the digital micro mirror device and along the horizontal axis.
6. The DMD illumination system of claim 1, wherein the plurality of illumination sources include first and second illumination sources, and the digital micro-mirror device further includes a plurality of micro-mirrors that move from a first tilted position on a horizontal axis to a second tilted position that is below the horizontal axis and lies along a vertical axis of the digital micro-mirror device.
7. The DMD illumination system of claim 6, wherein the first illumination source is positioned along the horizontal axis of the digital micro-mirror device and on one side of the digital micro-mirror device corresponding to the first tilted position, and the second illumination source is positioned along the vertical axis of the digital micro-mirror device and below the digital micro-mirror device corresponding to the second tilted position.
8. The DMD illumination system of claim 1 wherein the plurality of illumination sources include first, second and third illumination sources and the digital micro-mirror device further includes a plurality of micro-mirrors that move from a first tilted position to a flat position and then to a second tilted position, the first, second and third illumination sources being positioned to direct light onto the micro-mirrors when the array of micro-mirrors is in the first tilted positon, the flat position, and the second tilted position, respectively.
9. The DMD illumination system of claim 1, wherein the array of micro-mirrors are individually addressable and the controller forms an adaptive beam pattern by controlling at least some of the micro-mirrors in the array of micro-mirrors to be in a tilted position that differs from a tilted position of remaining ones of the micro-mirrors in the array of micro-mirrors, while light is being reflected from at least one of the illumination sources.
10. The DMD illumination system of claim 1, wherein the DMD illumination system includes a lamp that is one selected from the group consisting essentially of an automotive headlamp, a spotlight, an aircraft headlamp, a stage light, an outdoor area light, a motorcycle headlamp, a marine headlamp, a flashlight, a traffic light, a security light.
11. A method of projecting light for illumination from a DMD device, comprising:
directing light from a plurality of illumination sources proximate to a digital micro-mirror device onto an array of micro-mirrors in the digital micro-mirror device having a plurality of positions, each of the plurality of positions corresponding to the position of one the plurality of illumination sources, the light from the plurality of illumination sources being reflected from the array of micro-mirrors towards a light projection system; collecting the reflected light into the light projection system configured for projecting the collected light; and
controlling the position of the micro-mirrors in the array of micro-mirrors to put the micro-mirrors in a particular one of the plurality of positions, and controlling the plurality of light sources so that for the particular one of the positions, light from a respective one of the plurality of illumination sources is directed to the array of micro-mirrors and reflected into the light projection system.
12. The method of claim 11, wherein the plurality of illumination sources include illumination sources that have a light spectrum that is one selected from the group of white, red, blue and green visible spectrum.
13. The method of claim 11, wherein plurality of illumination sources are illumination sources that are one selected from the group consisting essentially of LEDs, lasers, and lasers with down converting material including a phosphor, and quantum dots.
14. The method of claim 11 wherein directing light from a plurality of illumination sources further includes directing light from a first illumination source onto the array of micro-mirrors when the micro-mirrors are in a first tilted position, and directing light from a second illumination source onto the array of micro-mirrors when the micro-mirrors are in a second tilted position.
15. The method of claim 14, wherein the digital micro-mirror device includes one selected from the group consisting essentially of a tilt and roll pixel digital micro-mirror device and a very small pixel digital micro-mirror device.
16. The method of claim 14, wherein the controller adaptively controls the position of the array of micro-mirrors so that when light is output by a selected one of the plurality of illumination sources onto the array of micro-mirrors and reflected by the digital micro-mirror device, at least some of the mirrors in the array of micro-mirrors are tilted away from the selected one of the illumination sources, the collected light being projected being adaptively shaped by the positions of the array of micro-mirrors.
17. The method of claim 11, wherein the plurality of illumination sources are pulsed so that light is output by a selected one of the plurality of illumination sources onto the array of micro- mirrors when the array of micro-mirrors is in a position corresponding to the position of the selected one of the plurality of illumination sources.
18. An dual illumination source DMD headlamp, comprising:
a digital micro-mirror device having an array of micro-mirrors that are configured to move between a first tilted position and a second tilted position, responsive to control signals; a first illumination source positioned to direct light onto the array of micro-mirrors when the array of micro-mirrors are in the first tilted position;
a second illumination source positioned to direct light onto the array of micro-mirrors when the array of micro-mirrors are in the second tilted position;
a light projection optics configured to collect light reflected from the array of micro- mirrors and having a lens to project the light out of the DMD headlamp; and
a controller configured to send control signals to the digital micro-mirror device to place the array of micro-mirrors in the first tilted position and the second tilted position while simultaneously pulsing the first illumination source and the second illumination source, so that light output from the first illumination source and the second illumination source is reflected from the array of micro-mirrors into the light projection optics and out of the lens.
19. The headlamp of claim 18, wherein the controller sends control signals to the digital micro-mirror device to cause the array of micro-mirrors to switch between the first tilted position and the second tilted position at a 50% duty cycle.
20. The headlamp of claim 18, wherein the first light source and the second light source include light sources that are one selected from the group consisting essentially of lasers, LEDs, quantum dots and laser-phosphor.
PCT/US2014/069241 2013-12-09 2014-12-09 Multiple illumination sources for dmd lighting WO2015089018A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14868935.9A EP3079946A4 (en) 2013-12-09 2014-12-09 Multiple illumination sources for dmd lighting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361913755P 2013-12-09 2013-12-09
US61/913,755 2013-12-09
US14/506,049 US9658447B2 (en) 2013-12-09 2014-10-03 Multiple illumination sources for DMD lighting apparatus and methods
US14/506,049 2014-10-03

Publications (1)

Publication Number Publication Date
WO2015089018A1 true WO2015089018A1 (en) 2015-06-18

Family

ID=53270995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/069241 WO2015089018A1 (en) 2013-12-09 2014-12-09 Multiple illumination sources for dmd lighting

Country Status (3)

Country Link
US (1) US9658447B2 (en)
EP (1) EP3079946A4 (en)
WO (1) WO2015089018A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107015360A (en) * 2015-12-30 2017-08-04 英飞凌科技股份有限公司 High efficiency digital light handles engine
EP3214900A1 (en) 2016-03-04 2017-09-06 Audi AG Dimming of a light source
DE102016209648A1 (en) 2016-06-02 2017-12-07 Osram Gmbh Lighting device with sensor on the absorber
DE102016209645A1 (en) 2016-06-02 2017-12-07 Osram Gmbh Lighting device with sensor between optics and absorber
DE102016212199A1 (en) 2016-07-05 2018-01-11 Osram Gmbh Lighting arrangement and vehicle headlights
DE102016118533A1 (en) 2016-09-29 2018-03-29 Automotive Lighting Reutlingen Gmbh Lighting device for a motor vehicle and method for operating a lighting device
DE102018204282A1 (en) 2018-03-20 2019-09-26 Osram Gmbh ILLUMINATION DEVICE
DE102018129780A1 (en) 2018-11-26 2020-05-28 HELLA GmbH & Co. KGaA Lighting device for vehicles and inspection procedures
DE102018133289A1 (en) * 2018-12-21 2020-06-25 Hensoldt Optronics Gmbh Measuring device and method for determining the minimum resolvable contrast

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150285458A1 (en) * 2014-04-08 2015-10-08 Ford Global Technologies, Llc Vehicle headlamp system
US10066799B2 (en) 2014-06-26 2018-09-04 Texas Instruments Incorporated Pixelated projection for automotive headlamp
FR3041112A1 (en) * 2015-09-15 2017-03-17 Valeo Vision MODULE FOR PROJECTING A LIGHT BEAM OF AUTOMOTIVE LIGHTING, AND PROJECTOR PROVIDED WITH SUCH A MODULE
DE102015222188B3 (en) * 2015-11-11 2016-11-17 Automotive Lighting Reutlingen Gmbh Light module for a vehicle headlight and motor vehicle headlight with such a light module
CN105353514B (en) * 2015-11-16 2018-10-16 华侨大学 Reduce method, the method and apparatus of laser microprobe dating of laser beam cross-section product
DE102015016048A1 (en) 2015-12-11 2017-06-14 Audi Ag lighting device
JP2017111977A (en) * 2015-12-16 2017-06-22 スタンレー電気株式会社 Vehicular lighting tool and vehicular irradiation system
CN107128240A (en) * 2016-02-29 2017-09-05 长城汽车股份有限公司 The illuminator and its control method of vehicle, vehicle
FR3048392B1 (en) * 2016-03-02 2019-04-05 Valeo Vision ANTI-GLARE PROJECTOR
DE102016103717A1 (en) 2016-03-02 2017-09-07 Osram Opto Semiconductors Gmbh Pixel Light Source
JP6791644B2 (en) * 2016-03-24 2020-11-25 株式会社小糸製作所 Vehicle headlights
FR3049689B1 (en) * 2016-03-30 2018-04-27 Valeo Vision LIGHTING AND / OR REAR SIGNALING DEVICE FOR A MOTOR VEHICLE, AND REAR LIGHTING AND / OR SIGNALING LAMP EQUIPPED WITH SUCH A DEVICE
TWI591417B (en) * 2016-04-08 2017-07-11 佳世達科技股份有限公司 Projector
DE102016212213A1 (en) * 2016-07-05 2018-01-11 Osram Gmbh Lighting arrangement, vehicle headlights and vehicle
US10180224B2 (en) * 2016-07-26 2019-01-15 Texas Instruments Incorporated Quasi-sparse optical illumination
US10047911B2 (en) 2016-08-31 2018-08-14 Ford Global Technologies, Llc Photoluminescent emission system
US10047659B2 (en) 2016-08-31 2018-08-14 Ford Global Technologies, Llc Photoluminescent engine indicium
US10525731B2 (en) 2016-09-08 2020-01-07 Xerox Coporation Image aware laser diode array shutter for reduced incident energy on DMD chip set
US10069996B2 (en) 2016-09-15 2018-09-04 Xerox Corporation System and method for utilizing digital micromirror devices to split and recombine a signal image to enable heat dissipation
FR3056685B1 (en) * 2016-09-28 2021-01-15 Valeo Vision MONOBLOC BRACKET FOR LUMINOUS DEVICES WITH MICRO-MIRRORS MATRIX
CN106482065A (en) * 2016-11-03 2017-03-08 武汉通畅汽车电子照明有限公司 A kind of laser alignment unit and its automobile-used superelevation luminous flux light source module
CN106594620A (en) * 2016-11-03 2017-04-26 武汉通畅汽车电子照明有限公司 Novel intelligent automobile lamp module and application method thereof
WO2018082222A1 (en) * 2016-11-03 2018-05-11 武汉通畅汽车电子照明有限公司 Novel intelligent vehicle lamp module and application method therefor
WO2018082223A1 (en) * 2016-11-03 2018-05-11 武汉通畅汽车电子照明有限公司 Laser collimation unit and vehicle ultrahigh luminous flux light source module therefor
US10054857B2 (en) 2016-11-17 2018-08-21 Xerox Corporation Switchable mirror lens system for redirecting laser energy during periods of non-printing
GB2556938B (en) * 2016-11-28 2022-09-07 Bae Systems Plc Multiple waveguide structure for colour displays
DE102017101001A1 (en) 2017-01-19 2018-07-19 Osram Gmbh ARRANGEMENT, HEADLIGHTS AND GROUP OF HEADLIGHTS
US10317032B2 (en) * 2017-03-10 2019-06-11 Texas Instruments Incorporated Headlamp with digital micromirror device and static reflector
CN108569191A (en) * 2017-04-19 2018-09-25 常州星宇车灯股份有限公司 A kind of pixel type self-adapted car headlamp control system based on DLP
FR3065784B1 (en) * 2017-04-28 2019-10-11 Valeo Vision LUMINOUS MODULE WITH OPTICAL IMAGING OPTICS FOR A PIXELLIZED SPATIAL MODULATOR FOR A MOTOR VEHICLE
DE102017209730B4 (en) * 2017-06-08 2021-05-27 Osram Gmbh LIGHTING DEVICE WITH A LIGHT SOURCE TO EMISSION AND USE LIGHTING LIGHT
FR3070925B1 (en) * 2017-09-12 2020-09-04 Valeo Vision LIGHTING MODULE FOR MOTOR VEHICLES, AND LIGHTING AND / OR SIGNALING DEVICE EQUIPPED WITH SUCH A MODULE
DE102017219502A1 (en) * 2017-11-02 2019-05-02 Bayerische Motoren Werke Aktiengesellschaft Lighting device for a motor vehicle
DE102017219504A1 (en) 2017-11-02 2019-05-02 Bayerische Motoren Werke Aktiengesellschaft Lighting device for a motor vehicle
DE102017220056A1 (en) * 2017-11-10 2019-05-16 Osram Gmbh LIGHTING DEVICE WITH LIGHT SOURCE
DE102017011327A1 (en) * 2017-12-08 2019-06-13 Daimler Ag Headlight for a vehicle
DE102018201424A1 (en) * 2018-01-30 2019-08-01 Osram Gmbh VEHICLE HEADLIGHTS AND SYSTEM AND VEHICLE THEREFOR
US20190302580A1 (en) * 2018-03-30 2019-10-03 Young Optics Inc. Manufacturing method of projection apparatus
EP3847392A4 (en) 2018-09-05 2021-10-20 Flex-N-gate Advanced Product Development, LLC Programmable glare-free high beam
CN111237716B (en) * 2018-11-28 2022-03-22 株式会社小糸制作所 Vehicle lamp and method for controlling DMD
US10598331B1 (en) 2018-11-29 2020-03-24 Texas Instruments Incorporated Projection device with field splitting element
CZ308248B6 (en) 2019-01-30 2020-03-18 Varroc Lighting Systems, s.r.o. Vehicle lighting equipment with digital micro mirror device
US11977220B2 (en) * 2020-06-03 2024-05-07 Texas Instruments Incorporated Sculpted micromirror in a digital micromirror device
CN113883470A (en) * 2020-07-01 2022-01-04 深圳光峰科技股份有限公司 DLP car light
US11892572B1 (en) * 2020-12-30 2024-02-06 Waymo Llc Spatial light modulator retroreflector mitigation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193393B1 (en) * 1998-09-10 2001-02-27 International Business Machines Corporation Apparatus and method for intensifying illumination brightness by time-superposing multiple pulsed light sources
US20020196636A1 (en) * 2001-06-21 2002-12-26 Dassanayake Mahendra Somasara Headlamp system with selectable beam pattern
US20050219847A1 (en) * 2004-03-31 2005-10-06 Sanyo Electric Co., Ltd. Illumination apparatus and video projection display system
US20070040998A1 (en) * 2003-06-13 2007-02-22 Seiko Epson Corporation Method of driving a spatial light modulator and projector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9024978D0 (en) 1990-11-16 1991-01-02 Rank Cintel Ltd Digital mirror spatial light modulator
US7503659B2 (en) * 2005-06-02 2009-03-17 3M Innovative Properties Company Multiple location illumination system and projection display system employing same
DE102006045692A1 (en) * 2006-09-27 2008-04-03 Osram Opto Semiconductors Gmbh Optical projection device has two light sources with light-emitting diode chip, and numbers of micro mirrors are arranged to micro mirror field
DE102010028949A1 (en) 2010-05-12 2011-11-17 Osram Gesellschaft mit beschränkter Haftung headlight module
CN105190405B (en) * 2013-03-15 2019-08-30 图像影院国际有限公司 For the projector of modulator diffraction effect optimization
WO2015033764A1 (en) * 2013-09-05 2015-03-12 株式会社小糸製作所 Vehicular lighting
FR3024555A1 (en) * 2014-07-31 2016-02-05 Valeo Vision PIXELLIZED LIGHTING MODULE USING A SHUTTER-BASED RECOMBINANT SUBSYSTEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193393B1 (en) * 1998-09-10 2001-02-27 International Business Machines Corporation Apparatus and method for intensifying illumination brightness by time-superposing multiple pulsed light sources
US20020196636A1 (en) * 2001-06-21 2002-12-26 Dassanayake Mahendra Somasara Headlamp system with selectable beam pattern
US20070040998A1 (en) * 2003-06-13 2007-02-22 Seiko Epson Corporation Method of driving a spatial light modulator and projector
US20050219847A1 (en) * 2004-03-31 2005-10-06 Sanyo Electric Co., Ltd. Illumination apparatus and video projection display system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3079946A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10670859B2 (en) 2015-12-30 2020-06-02 Infineon Technologies Ag High efficiency digital light processing engine
CN107015360A (en) * 2015-12-30 2017-08-04 英飞凌科技股份有限公司 High efficiency digital light handles engine
CN107015360B (en) * 2015-12-30 2020-09-11 英飞凌科技股份有限公司 High efficiency digital light processing engine
EP3214900A1 (en) 2016-03-04 2017-09-06 Audi AG Dimming of a light source
DE102016002558A1 (en) 2016-03-04 2017-09-07 Audi Ag Dimming a light source
DE102016209648A1 (en) 2016-06-02 2017-12-07 Osram Gmbh Lighting device with sensor on the absorber
DE102016209645A1 (en) 2016-06-02 2017-12-07 Osram Gmbh Lighting device with sensor between optics and absorber
EP3257707A1 (en) 2016-06-02 2017-12-20 OSRAM GmbH Lighting device with sensor at the absorber
DE102016212199A1 (en) 2016-07-05 2018-01-11 Osram Gmbh Lighting arrangement and vehicle headlights
DE102016118533A1 (en) 2016-09-29 2018-03-29 Automotive Lighting Reutlingen Gmbh Lighting device for a motor vehicle and method for operating a lighting device
DE102016118533B4 (en) 2016-09-29 2022-01-05 Automotive Lighting Reutlingen Gmbh Lighting device for a motor vehicle with a temperature-dependent controllable reflector array device and method for temperature-dependent control of such a reflector array device
DE102018204282A1 (en) 2018-03-20 2019-09-26 Osram Gmbh ILLUMINATION DEVICE
DE102018129780A1 (en) 2018-11-26 2020-05-28 HELLA GmbH & Co. KGaA Lighting device for vehicles and inspection procedures
DE102018133289A1 (en) * 2018-12-21 2020-06-25 Hensoldt Optronics Gmbh Measuring device and method for determining the minimum resolvable contrast

Also Published As

Publication number Publication date
US20150160454A1 (en) 2015-06-11
US9658447B2 (en) 2017-05-23
EP3079946A4 (en) 2017-08-30
EP3079946A1 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
US9658447B2 (en) Multiple illumination sources for DMD lighting apparatus and methods
US10753566B2 (en) Methods and apparatus for illumination with laser modulated adaptive beam shaping
US9441812B2 (en) Illumination apparatus
JP5987080B2 (en) Vehicle lighting device
KR102207846B1 (en) Multi-color micro-LED array light source
JP5424367B2 (en) Illumination optical system and projector using the same
CN107787427B (en) Head lamp for vehicle
US20150191115A1 (en) Vehicle lamp and method for controlling the same
JP2010006109A (en) Vehicular lighting fixture
EP3399226B1 (en) Light emitting device, optical module comprising same device, and vehicle comprising same module
US9822943B2 (en) Lamp unit
WO2019096667A1 (en) Lighting arrangement with a spatially controllable reflector element
WO2020010936A1 (en) Pbs beam splitter-based self-adaptive high beam function adjusting method and smart vehicle light module thereof
US10696225B2 (en) Lamp unit
US20180283641A1 (en) Light beam projection device with mechanical actuator, optical module and headlamp provided with such a device
JPWO2015045946A1 (en) Optical unit
JP2022174212A (en) Headlamp with digital micromirror device and static reflector
TWI388880B (en) Light source module and display system comprising the light source module
JP2004133312A (en) Light source device and projection display apparatus
US20180010759A1 (en) Light-emitting arrangement and vehicle headlight
JP2007141756A (en) Light source device, and projector
Reisinger et al. Potentials of MEMS-based scanners and DMD arrays with high luminance LED and Laser light sources
US20060044952A1 (en) Multiple path illumination for image display systems
CN214094284U (en) Dynamic lamplight imaging system
WO2020253437A1 (en) Illumination system having detection function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014868935

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014868935

Country of ref document: EP