WO2015088146A1 - Conductive composition for forming rear electrode of liquid crystal display device - Google Patents

Conductive composition for forming rear electrode of liquid crystal display device Download PDF

Info

Publication number
WO2015088146A1
WO2015088146A1 PCT/KR2014/010859 KR2014010859W WO2015088146A1 WO 2015088146 A1 WO2015088146 A1 WO 2015088146A1 KR 2014010859 W KR2014010859 W KR 2014010859W WO 2015088146 A1 WO2015088146 A1 WO 2015088146A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
acid
conductive composition
conductive
Prior art date
Application number
PCT/KR2014/010859
Other languages
French (fr)
Korean (ko)
Inventor
변자훈
김동민
이정열
안민석
차영철
홍우성
박성연
배민영
정재훈
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to JP2016538648A priority Critical patent/JP6728045B2/en
Priority to CN201480067695.3A priority patent/CN105814644B/en
Publication of WO2015088146A1 publication Critical patent/WO2015088146A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/22Antistatic materials or arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers

Definitions

  • the present invention relates to a conductive composition used to form a back electrode of a liquid crystal display device having excellent coating film reliability.
  • the back electrode of the liquid crystal display device serves to block static electricity applied from the outside.
  • ITO Indium-tin-oxide used as a back electrode (Korean Patent No. 0603826) in a conventional liquid crystal display or
  • Indium-Zinc-oxide requires a vacuum deposition process, and has the disadvantage of excellent resistance and surface hardness but excellent permeability in its properties.
  • the coating film using the conductive polymer has excellent permeability, but there is a problem of deterioration in reliability due to the increase in sheet resistance according to the period for use as an electrode forming material.
  • the present invention provides a conductive composition for forming a back electrode of the liquid crystal display device which can improve the reliability in the film state in forming the electrode, particularly in the back electrode formation of the liquid crystal display device;
  • An object of the present invention is to provide a back electrode of a liquid crystal display device using the same.
  • an object of the present invention is to provide a method capable of minimizing the increase in sheet resistance over time after coating, hardness improvement and coating film formation. [Solution of problem]
  • the present invention is a silane coupling agent 5 to 40 parts by weight
  • the acid generator is selected from the group consisting of amine blocked, covalent blocked, metal blocked, and quaternary ammonium blocked thermal acid generator. It may be one or more selected.
  • the generator may be one or more selected from the group consisting of dodecylbenzene sulfonic acid, P-luene sulfonic acid, trifluoromethane sulfonic acid, and derivatives thereof.
  • the solvent is selected from the group consisting of 0 water, ii) alcohol compounds, and iii) propylene glycol monoethyl ether, dimethyl formamide, acetyl acetone, 1-methyl-2-pyridinone, dipropylketone and ethyl lactate. At least one solvent selected.
  • the conductive polymer solution has a solid content of the conductive polymer of 0.1 to 5% by weight, and may include 95 to 99.9% by weight of the solvent.
  • the conductive polymer may include at least one selected from the group consisting of polyaniline, polypy, polythiophene, and derivatives thereof, and preferably includes poly ( 3,4 -ethylene dioxythiophene).
  • the conductive polymer is, dodecyl benzene sulfonic acid, toluene sulfonic acid, chempsulfonic acid, benzene sulfonic acid, hydrochloric acid, styrene sulfonic acid, 2 ⁇ acrylamide- 2-methylpropanesulfonic acid, their salt compounds, 2-sulfosuccinic acid ester salt , 5—sulfoisophthalic acid sodium salt, dimethyl-5 sodium sulfoisophthalate
  • the conductive polymer preferably further comprises poly (4-styrenesulfonate) as a dopant.
  • the conductive polymer is preferably poly (3,4-ethylene dioxythiophene): poly (4-styrenesulfonate) (PEDOT: PSS).
  • the silane coupling agent may be at least one selected from the group consisting of alkyloxy silanes, amino silanes, vinyl silanes, epoxy silanes, methacryloxy silanes, isocyanate silanes and fluorine silanes having 1 to 20 carbon atoms. have.
  • the surfactant may further comprise 0.1 to 1.0 parts by weight.
  • the conductive composition may further include 0.1-30 parts by weight of at least one binder resin selected from the group consisting of a polyacrylic resin, a polyurethane resin, an epoxy resin, and a polyester resin based on 100 parts by weight of the conductive composition.
  • the present invention also provides a back electrode for a liquid crystal display device formed by applying the above-described conductive composition.
  • the present invention by using a specific thermal acid generator (TAG, Theraml Acid Generator) in the conductive composition for the back electrode, it is possible to generate additional acid upon baking after coating, so that hydrolysis of the uncoated silane compound (eg, TEOS) By further proceeding to form a coating film having a degree of crosslinking between the more robust silane coupling agent.
  • TAG Thermal acid generator
  • the present invention can optimize the degree of dispersion of the conductive polymer in the conductive composition for the back electrode. Therefore, the present invention can improve the sheet resistance, that is, reliability, over time after forming the coating film in a liquid crystal display (LCD), especially a transverse electric field type liquid crystal display such as IPS and FFS.
  • LCD liquid crystal display
  • IPS and FFS transverse electric field type liquid crystal display
  • the silane coupling agent 5 to 40 parts by weight of the silane coupling agent, 50 to 90 parts by weight of a solvent, 0.1 to 10.0 parts by weight of dilute solution of hydrochloric acid or acetic acid, 5 to 40 parts by weight of a conductive polymer solution having a solid content of 0.1 to 5.0 ⁇ %; And 0.001 to 1.0 part by weight of an acid generator; a conductive composition for forming a back electrode of a liquid crystal display device is provided.
  • the present invention is TAG (Thermal)
  • Such a conductive composition may use a silane coupling agent precursor composition, a conductive polymer solution, and a specific acid generator.
  • the silane coupling agent precursor composition includes 5 to 40 parts by weight of the silane coupling agent, 50 to 90 parts by weight of the solvent, and 0.1 to 10.0 parts by weight of a dilute solution of hydrochloric acid or acetic acid, and is obtained by the sol-gel reaction.
  • the conductive polymer solution refers to a solution having a solid content of 0.1 to 5.0 ⁇ % using a conductive polymer and a solvent.
  • the present invention is characterized by greatly improving the reliability of the conductive composition by using a specific acid generator.
  • the acid generator uses a material that generates acid by heat, and it is preferable that the amine group is blocked at the time of material input.
  • the acid generator usable in the present invention can be used in a wide range from a thermal acid generator (TAG, series managed by a metal ion content of less than 2ppm) to a CXC grade managed above.
  • the acid generator may be one capable of generating acid at a soft bake temperature of 100 to 150 ° C.
  • Such acid generators are composed of amine blocked, covalent blocked, metal blocked, and quaternary ammonium blocked thermal acid generators. It may be at least one selected from.
  • the acid generator may be a product that is soluble in or dissolved in a solvent (eg, IPA, PGME, or water, etc.) used in the present invention.
  • the acid generator is selected from the group consisting of dodecylbenzene sulfonic acid, p-toluene sulfonic acid, trifluoromethane sulfonic acid, and derivatives thereof. One or more kinds can be used.
  • the acid generator is all of King inderstries It can be used up to CXC and TAG Grade.
  • the specific acid generator of the present invention that is, TAG should be additionally used because the characteristics of the existing electrode composition material cannot be matched.
  • the material may be severely denatured when using TAG, and thus may not be applicable in an unoptimized composition.
  • application of the TAG may not be possible in an unoptimized back cathode material.
  • the specific acid generator used in the present invention since the specific acid generator used in the present invention is included in the optimized composition, it may greatly contribute to exhibiting synergistic effects and improving reliability.
  • the silane coupling agent serves to improve the dispersibility of the conductive polymer in the composition.
  • the silane coupling agent may be an alkyloxy silane, an amino silane, a vinyl silane, an epoxy silane, a methacryloxy silane, an isocyanate silane, a fluorine-based silane, or the like.
  • TEOS tetraethyloxysilane
  • vinyltriethoxysilane vinyltrimethoxysilane
  • vinyltris ( ⁇ -methoxyethoxy) silane methacryloxypropyltrimethoxysilane
  • ⁇ _ (3,4-epoxycyclonucleosilane) ethyltrimethoxysilane
  • ⁇ -euraid propyl triene silane phenyl triene silane, methyltriethoxysilane, methyltrimethoxysilane, polyethylene oxide modified silane .
  • the silane coupling agent is preferably used in an amount of 5 to 40 parts by weight, more preferably 10 to 30 parts by weight, based on the total conductive composition.
  • the silane coupling agent is preferably used in an amount of 5 to 40 parts by weight, more preferably 10 to 30 parts by weight, based on the total conductive composition.
  • the content is less than 5 parts by weight, when the coating layer is formed, surface stains may easily appear due to phase separation and surface hardness may be reduced.
  • the content is more than 40 parts by weight, the resistance is increased and the stability of the composition is decreased.
  • the solvent used in the present invention is i) water, ii) alcohol compound, and iii) Propylene glycol monoethyl ether, dimethyl formamide, acetyl acetone,
  • solvents selected from the group consisting of 1-methyl-2-pyridinone, dipropylketone and ethyl lactate.
  • the solvent used in the present invention is water, alcohol-based compound, water is used as the main solvent of the hydrolysis of TEOS and contains 10 to 50 parts by weight relative to the total solvent content, alcoholic compounds are mainly primary and secondary alcohols It is used and has 1 to
  • a boiling point of 10 to 50 to 200 ° C alcohol may be included to 10 to 50 parts by weight relative to the total solvent content.
  • Alcohol is used as a solvent to maintain the stability of the Sol particles by the stable hydrolysis and esterification reaction after the TEOS reaction.
  • solvents of Mesosi, Esisi, and Propyl Ethanol which have boiling points of 100 and 160 degrees, can be used and
  • the alcohol compounds include alcohols, diols or polys, for example methyl alcohol, ethyl alcohol, isopropanol, ethylene glycol, butanediol, neopentyl glycol, 1,3-pentanediol, 1,4-cyclonucleic acid At least one selected from the group consisting of dimethanol ' , diethylene glycol, polyethylene glycol, polybutylene glycol, dimethylol propane, trimethylolpropane and derivatives thereof can be used.
  • halogens such as chloroform, dichloromethane, tetrachloroethylene, trichloroethylene, dibromoethane, dibromopropane and the like; Normal methylpyridone, dimethyl sulfoxide; Triethylamine, tributylamine, trioctylamine; Cresol etc. can be used further.
  • the solvent may solve the non-uniformity of the coating due to the difference in volatility generated during the surface coating and plays a role of increasing the sheet resistance reliability by improving the film density of the TEOS coating film.
  • the solvent may be included in the remainder relative to the total composition, but preferably 50 to 90 parts by weight based on the weight of the layer of the conductive composition.
  • the dilute hydrochloric acid or acetic acid solution can be used to carry out sol-gel reaction with hydrolysis in an acidic atmosphere.
  • the dilute solution of hydrochloric acid or acetic acid may use a dilute solution of 0.1-10% hydrochloric acid or acetic acid diluted with water. However, it is not limited thereto.
  • the dilute hydrochloric acid or acetic acid solution is used in an amount of 0.1 to 10.0 parts by weight based on the total conductivity.
  • the conductive polymer solution is used to prepare the conductive composition of the present invention, and as described above, the solid content is preferably 0, 1 to 5.0 wt%.
  • the content of solids in the conductive polymer solution is less than 0.1 weight ⁇ 3 ⁇ 4, there is a problem of losing the role of the electrode.
  • the content of the solid content exceeds 5% by weight, the aggregation of the TEOS Sol precursor composition and the gelation of the conductive polymer solution itself are performed. There is a difficulty in manufacturing.
  • the conductive polymer solution is used in 5 to 40 parts by weight based on the total conductive composition.
  • the content of the conductive polymer solution is less than 5 parts by weight, the resistance is sharply increased, and when the content of the conductive polymer solution is more than 40 parts by weight, permeability is lowered and dispersion characteristics and stability of the composition are difficult to maintain.
  • the conductive polymer solution may have a solid content of ⁇ to 5% by weight, include 95 to 99.9% by weight of the solvent, or may include 5 to 60% by weight and 40 to 95% by weight of the solvent.
  • the conductive polymer used in the present invention is an organic material and a basic material that makes the composition of the present invention conductive.
  • the conductive polymer needs a doping process in order to have conductivity, and this process is made in the form of a non-conductive powder or film, and then chemically doped or mixed with a non-conductive powder and dopant in a organic solvent to make it conductive There is this.
  • the method using the dopant may be used. Therefore, the conductive polymer is preferably in a form mixed with a dopant, that is, a polymer doped with a dopant material in the conductive polymer.
  • the conductive polymer may be basically a polymer obtained by polymerizing polyaniline, polypi, polythiophene and derivatives thereof, and derivatives of the monomers (aniline, blood and thiophene) as monomers.
  • examples of the polymer obtained by polymerizing a derivative of the monomer with a monomer include poly (3,4-ethylene dioxythiophene) polymerized with 3,4-ethylene dioxythiophene which is a derivative of thiophene (poly (3,4-ethylenedioxythiophen) ), PEDOT).
  • the PEDOT is stable in the air and compared to other polymers High conductivity
  • dodecylbenzenesulfonic acid dodecylbenzenesulfonic acid, toluenesulfonic acid, chemposulfonic acid, benzenesulfonic acid, hydrochloric acid, styrenesulfonic acid,
  • the present invention may use PEDOT-PSS (also referred to as PEDOT: PSS) doped with PSS in the PEDOT when preparing a conductive composition for forming an electrode, which has good coating properties as an electrode or an antistatic material, The adhesiveness is also excellent.
  • PEDOT-PSS also referred to as PEDOT: PSS
  • the surfactant may further include 0.1 to 1.0 parts by weight based on 100 parts by weight of the total conductive composition.
  • the silicone surfactant may be used, but the kind thereof is not limited thereto.
  • the present invention further includes 0.1-30 parts by weight of at least one binder resin selected from the group consisting of polyacrylic resins, polyurethane resins, epoxy resins, and polyester resins, based on 100 parts by weight of the conductive composition, as necessary. can do.
  • the present invention does not use a method of manufacturing by adding a batch of each component (for example, a conductive polymer and a material such as TEOS) added to the composition for forming the back electrode when manufacturing the conductive composition, silane, After the coupling solution (TEQS) is subjected to a sol-gel reaction at a high temperature to prepare a precursor solution, the conductive polymer and the acid generator are mixed to prepare a conductive composition for forming an electrode.
  • a binder resin selected from the group consisting of polyacrylic resins, polyurethane resins, epoxy resins, and polyester resins
  • the precursor preparation process is performed through the sol-gel gel reaction of the silane coupling agent.
  • the conductive composition for forming an electrode of the present invention may include a conductive polymer, a dopant, a silane coupling agent, an acid generator, and a solvent in a final composition.
  • a precursor solution using a silane coupling agent may be prepared to have such a composition. Perform the process. .
  • a precursor obtained by a sol-gel reaction of a silane coupling agent different from the conventional production method is first prepared, and then mixed with a conductive polymer, thereby providing an excellent surface in a film state. It satisfies the hardness and reliability intervals over time, but can exhibit superior physical properties compared to the existing general room temperature manufacturing methods .
  • the conductive composition for electrode formation can be provided.
  • the precursor of the conductive composition for forming a back electrode prepared by the sol-gel reaction of the silane coupling agent is used. Accordingly, the present invention can increase the level of crosslinking of the film itself in the finally obtained rear electrode, and as a result, the surface density of the conductive polymer having properties opposite to that of hardness is increased, thereby reducing the amount of the conductive polymer used. , Conductive polymer concentrated on the surface, which can improve the reliability.
  • the sol-gel reaction is a method widely used in the preparation of inorganic materials for synthesizing ceramic powder in the form of metal oxide or hydroxide by hydrolyzing-condensing metal alkoxide in an alcohol solvent.
  • TEOS sol-gel method is known. Therefore, in the present invention, in view of this point, the sol-gel reaction of the silane coupling agent, but not reacting at room temperature, but proceeds the sol-gel reaction at silver higher than room temperature, to form a film on the metal
  • the crosslinkability of a city can be improved and hardness can be improved.
  • the silane coupling agent precursor composition obtained by the sol-gel gel reaction and the conductive polymer described later can improve the dispersibility of the polymer, the mechanical strength and the thermal properties thereof. Provides a suitable effect for use.
  • Such a configuration can realize the properties constituting the organic-inorganic hybrid composite material, and thus the stiffness and thermal superiority of the inorganic material.
  • the results of the reliability evaluation after film formation confirmed the reliability and improvement of hardness.
  • This sol-gel reaction produces a silane coupling agent precursor solution (eg TEOS sol solution) by sol-gel reaction of the silane coupling agent and the solvent at a high temperature for a certain time.
  • a silane coupling agent precursor solution eg TEOS sol solution
  • the high temperature referred to in the present invention means a higher temperature.
  • the sol-gel reaction is carried out for 1 to 5 hours at a temperature of 40 to 70 ° C.
  • the sol-gel reaction is carried out for 3 hours at a temperature of 50 ° C.
  • the sol-gel reaction is less than 40 ° C may have a decrease in the level of hydrolysis of TEOS and additionally the rate of condensation reaction can occur faster than hydrolysis so that hardness and TEOS sol particles There may be problems with growth.
  • the silane coupling agent precursor composition it is possible to further react by adding a surfactant.
  • 0.1 to 1.0 parts by weight of the surfactant may be further added to 100 parts by weight of the silane coupling agent precursor composition.
  • the conductive composition for back electrode formation of a liquid crystal display device is manufactured.
  • the mixing of the silane coupling agent precursor composition and the conductive polymer may be performed at a silver content of 10 to 40 ° C.
  • the conductive composition for forming the back electrode of the final liquid crystal display device manufactured according to the above method 5 to 40 conductive polymer solution having a solid content of 0.1 to 5.0 ⁇ % An increase part; 3 to 30 parts by weight of the silane coupling crab; 20 to 60 parts by weight of the solvent; And 0.001 to 1.0 part by weight of an acid generator.
  • the conductive composition for forming the final electrode when the content of the conductive polymer is less than 5 parts by weight, the resistance is sharply increased, and when it exceeds 40 parts by weight, the permeability is lowered and dispersion characteristics and stability of the composition are difficult to maintain.
  • the silane coupling agent is preferably included in 3 to 30 parts by weight, more preferably 5 to 20 parts by weight with respect to the final electrode forming composition of the present invention.
  • the content is less than 3 parts by weight, when the coating layer is formed, surface stains may easily appear due to phase separation and surface hardness may be reduced.
  • the content is more than 30 parts by weight, the resistance is increased and the stability of the composition is decreased.
  • the solvent is preferably included in 20 to 60 parts by weight based on the composition for forming the final electrode of the present invention. If the content is less than 20 parts by weight, the stability of the composition is lowered, and if it exceeds 60 parts by weight, not only the resistance is high but also vulnerable to impact.
  • the electrically conductive composition of this invention which consists of the above and a component can further contain the binder resin mentioned above as needed.
  • the binder resin may be a polyacrylic resin, a polyurethane resin, an epoxy resin, a polyester resin, or the like, and the content thereof may be further included in an amount of 0.1-30 parts by weight based on 100 parts by weight of the total conductive composition.
  • a rear electrode for a liquid crystal display device formed by applying the above-described conductive composition.
  • the electrode described in the present invention includes not only the back electrode of the liquid crystal display device, but also a coating film of a conductive polarizing plate (Korean Patent No. 0592329) that can replace the existing back electrode.
  • the conductive composition of the present invention can be used to form the back electrode.
  • the method of forming the back electrode may include coating a conductive composition for forming a back electrode according to the above-described method on an electrode formed on a substrate, and then performing heat treatment.
  • the coating is conventional.
  • the coating method may be applied, and for example, a spray method, a bar coating method, a doctor blade method, a coating method, a dipping method, and the like may be applied to conventional coating methods used in the art.
  • the coating is preferably coated on a substrate of 0.5 to 1 / thickness, and then soft bake on a hot plate at around 100 ° C to form a 300-500 nm thick film layer.
  • the back electrode of the liquid crystal display device is formed.
  • the conductive composition for forming an electrode of the present invention as described above can improve the transmittance of the back electrode by optimizing the dispersion of the conductive polymer in the composition. Also the conductivity of the present invention .
  • Example 1 If the composition can be coated without defects in terms of adhesion with the substrate, its permeability can be dramatically improved.
  • the back electrode coated with the conductive composition of the present invention is also excellent in surface hardness.
  • TE0S tetraethyloxysilane
  • IPA isopropyl alcohol
  • propylene glycol monomethyl ether 26 parts by weight of water
  • acetylacetone 5.0% acetic acid dilute solution (aqueous solution) 1
  • the sol gel reaction was carried out for 3 hours at 50 ° C temperature conditions by mixing the parts by weight.
  • the silane coupling agent precursor composition obtained by the reaction 30 parts by weight of the conductive polymer solution having a solid content of 2.0 ⁇ % and 100% by weight of the amine-blocked thermal acid generator, KAmine Blocked thermal acid generator, TAG of King Industries Co., Ltd. 2713S) 1 part by weight was added and mixed to prepare a conductive composition for forming a back electrode of the liquid crystal display device.
  • the conductive polymer solution includes 2 wt% of solid conductive polymer (PED0T / PSS prepared by polymerization of the ED0T monomer and PSSA used as the dopant) and 98 wt% of water.
  • PED0T / PSS solid conductive polymer
  • Example 2 15 parts by weight of TEOS (tetraethyloxysilane), 9 parts by weight of IPA (isopropyl alcohol), 13 parts by weight of propylene glycol monomethyl ether, 26 parts by weight of water, 5 parts by weight of acetylacetone, 5.0% acetic acid dilute solution (aqueous solution) 1
  • the sol gel reaction was carried out for 3 hours at 50 ° C temperature conditions by mixing the parts by weight.
  • Example 3 To 100 parts by weight of 30 parts by weight of a conductive polymer solution having a solid content of 2.0 ⁇ ⁇ 3 ⁇ 4 the same as in Example 1 and 1 part by weight of an amine blocked thermal acid generator (CXC 1820 from King Industries) In addition, a conductive composition for forming a back electrode of a liquid crystal display device was prepared.
  • a conductive polymer solution having a solid content of 2.0 ⁇ ⁇ 3 ⁇ 4 the same as in Example 1 and 1 part by weight of an amine blocked thermal acid generator (CXC 1820 from King Industries)
  • CXC 1820 an amine blocked thermal acid generator
  • TEOS tetraethyloxysilane
  • IP A isopropyl alcohol
  • propylene glycol monomethyl ether 26 parts by weight of water
  • acetylacetone 5.0% acetic acid dilute solution (aqueous solution) 1 part by weight was mixed and the sol-gel reaction was carried out for 3 hours at a temperature of 50 ° C.
  • Example 5 Thereafter, in the silane coupling agent precursor composition obtained by the reaction, 30 parts by weight of the conductive polymer solution having the same solid content as 2.0 Example 1 and an amine blocked thermal acid generator based on 100 parts by weight of the composition Add 1 part by weight of TAG 2712) from King Industries, and mix. A conductive composition for forming a back electrode of a liquid crystal display device was prepared.
  • Example 5
  • TEOS tetraethyloxysilane
  • IPA isopropyl alcohol
  • propylene glycol monomethyl ether 26 parts by weight of water
  • acetylacetone 5.0% acetic acid dilute solution (aqueous solution) 1
  • the sol gel reaction was carried out for 3 hours at 50 ° C temperature conditions by mixing the parts by weight.
  • TEOS tetraethyloxysilane
  • IPA isopropyl alcohol
  • Example 2 Thereafter, 30 parts by weight of the conductive polymer solution having the same solid content as that of Example 1 was added to the silane coupling agent precursor composition obtained by the reaction to prepare a conductive composition. 2.0 weight% PEDOT / PSS) prepared by the polymerization of PSSA used as dopant and 98 weight% water. Experimental Example .
  • Each conductive composition of Examples 1 to 5 and Comparative Example 1 was applied to the electrode formed on the substrate with a thickness of 0.5 ⁇ , and then soft-baked for 600 seconds on a 12 CTC hot plate to form a 300 ⁇ thick film layer.
  • Phase reliability was evaluated under conditions of room temperature and humidity (Rh 50% or less). High temperature reliability was evaluated while remaining in an 80 ° C. oven. In addition, high temperature and high humidity reliability was used a high temperature and high humidity oven of 65 ° C, Rh 90%. Surface resistance of the substrate was evaluated for 500hr using SIMCO ST-4 equipment.
  • Examples 1 to 5 using the TAG (acid generator) is excellent in room temperature, high temperature, high temperature and high humidity reliability over 500hr compared to Comparative Example 1 without the acid generator The results are shown. In particular, the results of Examples 1 to 2 were found to have the best reliability.
  • Comparative Example 1 is poor in reliability, it can be seen that it is not suitable for electrode formation.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention relates to a conductive composition for forming a rear electrode of a liquid crystal display device. Particularly, the present invention can provide an antistatic rear electrode having excellent transmittance and surface hardness in a liquid crystal display device and improved reliability for a coating film by including a conductive polymer and a specific thermal acid generator in a composition which is obtained through a sol-gel reaction of a silane coupling agent such that the degree of dispersion of the conductive polymer in the composition is optimized. Specifically, the present invention can increase hardness and ensure reliability so as to reduce the change of surface resistance as time passes after coating.

Description

[명세서】  [Specification】
【발명의 명칭]  [Name of invention]
액정표시장치의 배면전극 형성용 도전성 조성물  Conductive composition for back electrode formation of liquid crystal display
【기술분야】  Technical Field
본 발명은 코팅막의 신뢰성이 우수한 액정표시장치의 배면전극 형성에 사용되는 도전성 조성물에 관한 것이다.  The present invention relates to a conductive composition used to form a back electrode of a liquid crystal display device having excellent coating film reliability.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
전극형성 기술에 있어서, 특히 액정표시장치에서의 배면전극은 외부로부터 인가되는 정전기를 차단하는 역할을 한다.  In the electrode forming technology, in particular, the back electrode of the liquid crystal display device serves to block static electricity applied from the outside.
기존의 액정디스플레이에서 배면전극 (대한민국 등록특허 제 0603826호)으로 ] "용된 ITO(Indium-tin-oxide) 또는 ITO (Indium-tin-oxide) used as a back electrode (Korean Patent No. 0603826) in a conventional liquid crystal display or
IZO(Indium-Zinc-oxide)의 경우 진공증착 공정이 요구되며, 그 특성에 있어서 저항과 표면경도는 우수하지만 투과도는 뛰어나지 않다는 단점이 있다. Indium-Zinc-oxide (IZO) requires a vacuum deposition process, and has the disadvantage of excellent resistance and surface hardness but excellent permeability in its properties.
근래 인듬 자원의 고갈 위기가 다가음으로써 ITO를 대체하기 위한 각종 투명전극재료의 개발이 이슈화되고 있다. 하지만, 지금까지 개발 중인 수많은 투명전극 재료들, 예를 들면 전도성 고분자 또는 금속이나 금속산화물과 같은 무기도전성 조성물의 경우, 투과도에 있어서는 만족스럽지 못한 결과를 나타내고 있는 실정이다.  Recently, as the crisis of depletion of inferior resources approaches, the development of various transparent electrode materials to replace ITO is becoming an issue. However, in the case of a large number of transparent electrode materials under development, for example, conductive polymers or inorganic conductive compositions such as metals and metal oxides, the results show unsatisfactory results in permeability.
그 중 전도성 고분자를 이용한 코팅막의 경우 투과도는 우수하나 전극형성 재료로 사용하기 위한 기간에 따른 면저항 상승에 따른 신뢰성 저하의 문제점이 발생하고 있다.  Among them, the coating film using the conductive polymer has excellent permeability, but there is a problem of deterioration in reliability due to the increase in sheet resistance according to the period for use as an electrode forming material.
【발명의 내용] [Contents of the Invention]
【해결하고자 하는 과제】  Problem to be solved
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 전극을 형성함에 있어 특히 액정표시장치의 배면전극형성에 있어 필름상태에서의 신뢰성을 향상시킬 수 있는 액정표시장치의 배면전극 형성용 도전성 조성물 및 이를 이용한 액정표시장치의 배면전극을 제공하는 것을 목적으로 한다.  In order to solve the problems of the prior art as described above, the present invention provides a conductive composition for forming a back electrode of the liquid crystal display device which can improve the reliability in the film state in forming the electrode, particularly in the back electrode formation of the liquid crystal display device; An object of the present invention is to provide a back electrode of a liquid crystal display device using the same.
또한 본 발명은 코팅성, 경도 향상 및 코팅막 형성후 시간 경과에 따른 면저항 상승을 최소화할 수 있는 방법을 제공하는 것을 목적으로 한다. [과제의 해결 수단】 In addition, an object of the present invention is to provide a method capable of minimizing the increase in sheet resistance over time after coating, hardness improvement and coating film formation. [Solution of problem]
본 발명은 실란 커플링제 5 내지 40 중량부,  The present invention is a silane coupling agent 5 to 40 parts by weight,
용매 50 내지 90 중량부,  50 to 90 parts by weight of solvent,
염산 또는 초산 희석 용액 0.1 내지 1으 0 중량부,  0 parts by weight of 0.1 to 1 parts of dilute hydrochloric or acetic acid,
고형분 0.1 내지 5.0 ^%를 갖는 전도성 고분자 용액 5 내지 40 중량부; 및  5 to 40 parts by weight of the conductive polymer solution having a solid content of 0.1 to 5.0 ^%; And
산발생제 0.001 내지 1.0 중량부;  0.001 to 1.0 part by weight of acid generator;
를 포함하는, 액정표시장치의 배면전극 형성용 도전성 조성물을 제공한다. 상기 산발생제는 아민 차단 (Amine blocked), 공유결합 차단 (covalent blocked), 금속차단 (metal blocked), 및 4급 암모늄 차단된 (Quaternary Ammonium Blocked) 열산발생제 (thermal acid generator)로 이루어진 군에서 선택된 1종 이상일 수 있다.  It provides a conductive composition for forming a back electrode of the liquid crystal display device. The acid generator is selected from the group consisting of amine blocked, covalent blocked, metal blocked, and quaternary ammonium blocked thermal acid generator. It may be one or more selected.
또한, 상기 발생제는 도데실벤젠 술폰산, P-를루엔 술폰산, 트리플루오로메탄 술폰산, 및 그 유도체로 이루어진 군에서 선택된 1종 이상일 수 있다.  In addition, the generator may be one or more selected from the group consisting of dodecylbenzene sulfonic acid, P-luene sulfonic acid, trifluoromethane sulfonic acid, and derivatives thereof.
상기 용매는 0 물, ii) 알코올계 화합물, 및 iii) 프로필렌 글리콜 모노에틸 에테르, 디메틸 포름아마이드, 아세틸 아세톤, 1-메틸 -2-피를리딘온, 디프로필케톤 및 에틸 락테이트로 이루어진 군에서 선택된 1종 이상의 용매;를 포함하는 것이 바람직하다.  The solvent is selected from the group consisting of 0 water, ii) alcohol compounds, and iii) propylene glycol monoethyl ether, dimethyl formamide, acetyl acetone, 1-methyl-2-pyridinone, dipropylketone and ethyl lactate. At least one solvent selected.
상기 전도성 고분자 용액은 전도성 고분자의 고형분이 0.1 내지 5 중량%이고, 용매 95 내지 99.9 중량 %를 포함할 수 있다.  The conductive polymer solution has a solid content of the conductive polymer of 0.1 to 5% by weight, and may include 95 to 99.9% by weight of the solvent.
상기 전도성 고분자는 폴리아닐린, 폴리피를, 폴리티오펜 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 폴리 (3,4-에틸렌 디옥시티오펜)을 포함한다. The conductive polymer may include at least one selected from the group consisting of polyaniline, polypy, polythiophene, and derivatives thereof, and preferably includes poly ( 3,4 -ethylene dioxythiophene).
또한 상기 전도성 고분자는, 도데실벤젠술폰산, 를루엔술폰산, 켐포술폰산, 벤젠술폰산, 염산, 스타이렌술폰산, 2ᅳ아크릴아마이도— 2-메틸프로판술폰산, 이들의 염화합물, 2-술포숙신산 에스테르염, 5—술포이소프탈산 소듐염, 디메틸 -5-소듐 술포이소프탈레이트, In addition, the conductive polymer is, dodecyl benzene sulfonic acid, toluene sulfonic acid, chempsulfonic acid, benzene sulfonic acid, hydrochloric acid, styrene sulfonic acid, 2 ᅳ acrylamide- 2-methylpropanesulfonic acid, their salt compounds, 2-sulfosuccinic acid ester salt , 5—sulfoisophthalic acid sodium salt, dimethyl-5 sodium sulfoisophthalate
5-소듐술포 -비스 (βᅳ하이드록시에틸)이소프탈레이트 및 폴리 (4-스타이렌설포네이트)로 이루어진 군으로부터 선택된 1종 이상의 도판트를 더 포함하는 것이 바람직하다. 상기 전도성 고분자는 폴리 (4-스타이렌설포네이트)를 도판트로 더 포함하는 것이 바람직하다. At least one dopant selected from the group consisting of 5-sodiumsulfo-bis (β ᅳ hydroxyethyl) isophthalate and poly (4-styrenesulfonate) It is preferable to further include. The conductive polymer preferably further comprises poly (4-styrenesulfonate) as a dopant.
상기 전도성 고분자는 폴리 (3,4-에틸렌 디옥시티오펜):폴리 (4-스타이렌설포네이트 )(PEDOT:PSS)를 사용하는 것이 바람직하다.  The conductive polymer is preferably poly (3,4-ethylene dioxythiophene): poly (4-styrenesulfonate) (PEDOT: PSS).
상기 실란 커플링제는 탄소수 1 내지 20 의 탄화수소를 갖는 알킬옥시 실란계, 아미노 실란계, 비닐 실란계, 에폭시 실란계, 메타크릴옥시 실란계, 이소시아네이트 실란 및 불소 실란계로 이루어진 군으로부터 선택된 1종 이상일 수 있다.  The silane coupling agent may be at least one selected from the group consisting of alkyloxy silanes, amino silanes, vinyl silanes, epoxy silanes, methacryloxy silanes, isocyanate silanes and fluorine silanes having 1 to 20 carbon atoms. have.
또한 본 발명에 따르면 상기 전체 조성물 100 중량부에 대하여, 계면활성제 0.1 내지 1.0 중량부를 더 포함할 수 있다.  In addition, according to the present invention, based on 100 parts by weight of the total composition, the surfactant may further comprise 0.1 to 1.0 parts by weight.
또한 상기 도전성 조성물 100 증량부에 대하여, 폴리아크릴계 수지, 폴리우레탄계 수지, 에폭시계 수지 및 폴리에스테르계 수지로 이루어진 군으로부터 선택된 1종 이상의 바인더 수지 0.1-30 중량부를 더 포함할 수 있다. 또한 본 발명은 상술한 도전성 조성물을 적용하여 형성된 액정표시장치용 배면전극을 제공한다.  The conductive composition may further include 0.1-30 parts by weight of at least one binder resin selected from the group consisting of a polyacrylic resin, a polyurethane resin, an epoxy resin, and a polyester resin based on 100 parts by weight of the conductive composition. The present invention also provides a back electrode for a liquid crystal display device formed by applying the above-described conductive composition.
【발명의 효과】 【Effects of the Invention】
본 발명은 배면전극용 도전성 조성물 내에서 특정 열산발생제 (TAG, Theraml Acid Generator)를 사용함으로써, 코팅후 베이크시 추가적인 산발생이 가능하므로 미반웅된 실란화합물 (예를 들어, TEOS)의 가수분해를 추가적으로 진행하여 더욱 견고한 실란 커플링제 사이의 가교도를 갖는 코팅막의 형성이 가능하다. 또한, 본 발명은 배면전극용 도전성 조성물 내에서 전도성 고분자의 분산도를 최적화할 수 있다. 따라서, 본 발명은 액정표시장치 (LCD), 특히 IPS, FFS 등의 횡전계 방식의 액정표시장치에서 코팅막 형성후 시간 경과에 따른 면저항 상승 즉 신뢰성을 향상시킬 수 있다.  In the present invention, by using a specific thermal acid generator (TAG, Theraml Acid Generator) in the conductive composition for the back electrode, it is possible to generate additional acid upon baking after coating, so that hydrolysis of the uncoated silane compound (eg, TEOS) By further proceeding to form a coating film having a degree of crosslinking between the more robust silane coupling agent. In addition, the present invention can optimize the degree of dispersion of the conductive polymer in the conductive composition for the back electrode. Therefore, the present invention can improve the sheet resistance, that is, reliability, over time after forming the coating film in a liquid crystal display (LCD), especially a transverse electric field type liquid crystal display such as IPS and FFS.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하에서 본 발명을 상세하게 설명한다.  Hereinafter, the present invention will be described in detail.
발명의 바람직한 일 구현예에 따라, 실란 커플링제 5 내지 40 중량부, 용매 50 내지 90 중량부, 염산 또는 초산 희석 용액 0.1 내지 10.0 중량부, 고형분 0.1 내지 5.0 ^%를 갖는 전도성 고분자 용액 5 내지 40 증량부; 및 산발생제 0.001 내지 1.0 중량부;를 포함하는, 액정표시장치의 배면전극 형성용 도전성 조성물이 제공된다. According to a preferred embodiment of the invention, 5 to 40 parts by weight of the silane coupling agent, 50 to 90 parts by weight of a solvent, 0.1 to 10.0 parts by weight of dilute solution of hydrochloric acid or acetic acid, 5 to 40 parts by weight of a conductive polymer solution having a solid content of 0.1 to 5.0 ^%; And 0.001 to 1.0 part by weight of an acid generator; a conductive composition for forming a back electrode of a liquid crystal display device is provided.
본 발명은 배면전극 형성용 도전성 조성물 증 산 발생제인 TAG (Thermal The present invention is TAG (Thermal),
Acid Generator)를 사용함으로써, 배면전극 코팅막의 신뢰성을 향상시킬 수 있는 장점이 있다. 이러한 도전성 조성물은 실란 커플링게 전구체 조성물, 전도성 고분자 용액 및 특정 산발생제를 이용할 수 있다. By using an acid generator, there is an advantage that can improve the reliability of the back electrode coating film. Such a conductive composition may use a silane coupling agent precursor composition, a conductive polymer solution, and a specific acid generator.
상기 실란 커플링제 전구체 조성물은 실란 커플링제 5 내지 40 중량부, 용매 50 내지 90 중량부, 염산 또는 초산 희석 용액 0.1 내지 10.0 중량부를 포함하고, 이들의 졸ᅳ겔 반응으로 얻어진 것을 의미한다. 또한, 상기 전도성 고분자 용액은 전도성 고분자와 용매를 이용하여, 고형분 함량이 0.1 내지 5.0 ^%인 용액을 의미한다.  The silane coupling agent precursor composition includes 5 to 40 parts by weight of the silane coupling agent, 50 to 90 parts by weight of the solvent, and 0.1 to 10.0 parts by weight of a dilute solution of hydrochloric acid or acetic acid, and is obtained by the sol-gel reaction. In addition, the conductive polymer solution refers to a solution having a solid content of 0.1 to 5.0 ^% using a conductive polymer and a solvent.
또한, 본 발명에서는 특정 산발생제의 사용으로 도전성 조성물의 신뢰성을 크게 향상시키는 것을 특징으로 한다. 상기 산발생제는 열에 의해 산이 발생되는 재료를 사용하며, 이것은 재료 투입시기에 아민기가 차단되어 있는 것이 바람직하다. 또한, 본 발명에서 사용 가능한 산발생제는 금속 이온 함량이 2ppm 이하로 관리되는 열산발생제 (TAG, thermal acid generator) 계열부터 그 이상으로 관리되는 CXC Grade까지 폭넓게 사용될 수 있다. 바람직하게, 상기 산발생제는 100 내지 150 °C의 소프트 베이크 온도에서 산발생이 가능한 것을 사용한다. 이러한 상기 산발생제는 아민 차단 (Amine blocked), 공유결합 차단 (covalent blocked), 금속차단 (metal blocked), 및 4급 암모늄 차단된 (Quaternary Ammonium Blocked) 열산발생제 (thermal acid generator)로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 산발생제는 본 발명에서 사용되는 용매 (예를 들어, IPA, PGME, 또는 물 등)에 용해 가능하거나 또는 용해된 제품을 사용할 수 있다. In addition, the present invention is characterized by greatly improving the reliability of the conductive composition by using a specific acid generator. The acid generator uses a material that generates acid by heat, and it is preferable that the amine group is blocked at the time of material input. In addition, the acid generator usable in the present invention can be used in a wide range from a thermal acid generator (TAG, series managed by a metal ion content of less than 2ppm) to a CXC grade managed above. Preferably, the acid generator may be one capable of generating acid at a soft bake temperature of 100 to 150 ° C. Such acid generators are composed of amine blocked, covalent blocked, metal blocked, and quaternary ammonium blocked thermal acid generators. It may be at least one selected from. The acid generator may be a product that is soluble in or dissolved in a solvent (eg, IPA, PGME, or water, etc.) used in the present invention.
또한, 상기 산발생제는 도데실벤젠 술폰산 (Dodecylbenzene sulfonic acid), P-를루엔 술폰산 (p-Toluene sulfonic acid), 트리폴루오로메탄 술폰산 (Trifluoromethane sulfonic acid), 및 그 유도체로 이루어진 군에서 선택된 1종 이상인 것을 사용할 수 있다. 상기 산 발생제는 King inderstries사의 모든 CXC 및 TAG Grade까지 사용이 가능하다. Further, the acid generator is selected from the group consisting of dodecylbenzene sulfonic acid, p-toluene sulfonic acid, trifluoromethane sulfonic acid, and derivatives thereof. One or more kinds can be used. The acid generator is all of King inderstries It can be used up to CXC and TAG Grade.
이때, 상기 도전성 조성물에서, 신뢰성 개선을 요구할 경우 기존 전극 조성물 재료의 조성으로는 그 특성을 맞출 수 없기 때문에 본 발명의 특정 산발생제, 즉 TAG를 추가적으로 사용해야 한다.  At this time, in the conductive composition, if the reliability improvement is required, the specific acid generator of the present invention, that is, TAG should be additionally used because the characteristics of the existing electrode composition material cannot be matched.
또한, 솔벤트 조성이나 전도성 고분자 특성에 의해 TAG 사용시 재료의 변성이 심하게 일어날 수 있으므로, 최적화되지 않은 조성에서는 적용이 불가능할 수 있다. 예를 들어, 최적화되지 않은 배면저극 재료에서는 상기 TAG의 적용이 불가능할 수 있다. 그런데, 본 발명에서 사용되는 특정 산발생제는 최적화된 조성에 포함되는 것이므로, 시너지 효과를 나타내고 신뢰성을 향상시키는데 크게 기여할 수 있다.  In addition, due to the solvent composition or conductive polymer properties, the material may be severely denatured when using TAG, and thus may not be applicable in an unoptimized composition. For example, application of the TAG may not be possible in an unoptimized back cathode material. However, since the specific acid generator used in the present invention is included in the optimized composition, it may greatly contribute to exhibiting synergistic effects and improving reliability.
한편, 상기 실란 커플링제는 조성물 내에서 전도성 고분자의 분산성을 향상시키는 작용을 한다. 상기 실란 커플링제는 알킬옥시 실란계, 아미노 실란계, 비닐 실란계, 에폭시 실란계, 메타크릴옥시 실란계, 이소시아네이트 실란, 불소 ^란계 등이 사용될 수 있다. 보다 구체적으로 상기 실란 커플링제로는 TEOS (테트라에틸옥시실란), 비닐트리에록시실란, 비닐트리메특시실란, 비닐트리스 (β-메특시에톡시)실란, 메타크릴옥시프로필트리메록시실란, β_(3, 4-에폭시시클로핵실)에틸트리메특시실란,  On the other hand, the silane coupling agent serves to improve the dispersibility of the conductive polymer in the composition. The silane coupling agent may be an alkyloxy silane, an amino silane, a vinyl silane, an epoxy silane, a methacryloxy silane, an isocyanate silane, a fluorine-based silane, or the like. More specifically, as the silane coupling agent, TEOS (tetraethyloxysilane), vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, methacryloxypropyltrimethoxysilane, β_ (3,4-epoxycyclonucleosilane) ethyltrimethoxysilane;
γ -글리시드옥시프로필트리메특시실란, . γ -머캅토프로필트리메톡시실란, 아미노프로필트리에록시실란, γ-glycidoxyoxytrimethicsilane; γ -mercaptopropyltrimethoxysilane, aminopropyltriethoxysilane,
Ν—β— (아미노에틸) -γ-아미노프로필트리메특시실란, Ν—β— (aminoethyl) -γ-aminopropyltrimethoxysilane;
γ-유레이드프로필트리에특시실란, 페닐트리에특시실란, 메틸트리에록시실란, 메틸트리메록시실란, 폴리에틸렌옥사이드 변성 실란 . 단량처 1, 폴리메틸에특시실록산, 핵사메틸디시라진 등이 있으며 이들은 1종 이상 선택하여 사용할 수 있다. γ-euraid propyl triene silane, phenyl triene silane, methyltriethoxysilane, methyltrimethoxysilane, polyethylene oxide modified silane . Monomer 1, polymethyl-specific siloxane, nuxamethyldisilazine, etc., These may be used by selecting one or more.
.상기 실란 커플링제는 전체 도전성 조성물에 대하여 5 내지 40 중량부로 사용되는 것이 바람직하며, 더욱 바람직하게는 10 내지 30 중량부이다. 상기 함량이 5 중량부 미만일 경우에는 코팅층을 형성하였을 때 상분리로 인한 표면의 얼룩이 나타나기 쉬우며 표면경도가 저하될 수 있으며, 40 중량부를 초과하는 경우에는 저항이 높아지며 조성물의 안정성이 저하된다.  The silane coupling agent is preferably used in an amount of 5 to 40 parts by weight, more preferably 10 to 30 parts by weight, based on the total conductive composition. When the content is less than 5 parts by weight, when the coating layer is formed, surface stains may easily appear due to phase separation and surface hardness may be reduced. When the content is more than 40 parts by weight, the resistance is increased and the stability of the composition is decreased.
또한 본 발명에 사용되는 용매는 i) 물, ii) 알코올계 화합물, 및 iii) 프로팔렌 글리콜 모노에틸 에테르, 디메틸 포름아마이드, 아세틸 아세톤,In addition, the solvent used in the present invention is i) water, ii) alcohol compound, and iii) Propylene glycol monoethyl ether, dimethyl formamide, acetyl acetone,
1-메틸 -2-피를리딘온, 디프로필케톤 및 에틸 락테이트로 이루어진 군에서 선택된 1종 이상의 용매;를 포함할 수 있다. And one or more solvents selected from the group consisting of 1-methyl-2-pyridinone, dipropylketone and ethyl lactate.
즉, 본 발명에 사용되는 용매는 물, 알코올계 화합물이며, 물은 TEOS 의 가수분해의 주된 용매로 사용되며 전체 용매 함량 대비 10 내지 50 중량부가 포함되며 알코을계 화합물은 주로 1차 및 2차 알코을이 사용되며 탄소수 1 내지 That is, the solvent used in the present invention is water, alcohol-based compound, water is used as the main solvent of the hydrolysis of TEOS and contains 10 to 50 parts by weight relative to the total solvent content, alcoholic compounds are mainly primary and secondary alcohols It is used and has 1 to
10 의 비점 50 내지 200°C의 알코을을 전체 용매 함량 대비 10 내지 50 중량부가 되도록 포함될 수 있다. 알코올은 TEOS 반응 이후 가수분해와 에스테르화 반웅이 안정적으로 이루어져 Sol 입자의 안정성을 유지시키기 위한 용매로 사용된다. 또한 코팅성을 최적화 시키기 위해 비점 100 160 도 수준의 메특시, 에특시, 프로필 에탄올류의 용매가 사용 가능하며 전체 용매 함량 대비A boiling point of 10 to 50 to 200 ° C alcohol may be included to 10 to 50 parts by weight relative to the total solvent content. Alcohol is used as a solvent to maintain the stability of the Sol particles by the stable hydrolysis and esterification reaction after the TEOS reaction. In addition, to optimize the coating properties, solvents of Mesosi, Esisi, and Propyl Ethanol, which have boiling points of 100 and 160 degrees, can be used and
10 내지 50 중량부가포함될 수 있다. ' 상기 알코을계 화합물은 알코을, 디을 또는 폴리을을 포함하여, 예를 들면 메틸알콜, 에틸알콜, 이소프로파놀, 에틸렌글리콜, 부탄디올, 네오펜틸글리콜, 1,3-펜탄디올, 1,4-사이클로핵산디메탄올', 디에틸렌글리콜, 폴리에틸렌글리콜, 폴리부틸렌글리콜, 디메틸올프로판, 트리메틸올프로판 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 10 to 50 parts by weight may be included. The alcohol compounds include alcohols, diols or polys, for example methyl alcohol, ethyl alcohol, isopropanol, ethylene glycol, butanediol, neopentyl glycol, 1,3-pentanediol, 1,4-cyclonucleic acid At least one selected from the group consisting of dimethanol ' , diethylene glycol, polyethylene glycol, polybutylene glycol, dimethylol propane, trimethylolpropane and derivatives thereof can be used.
또한 본 발명에서는 필요에 따라, 용매로서 클로로포름, 디클로로메탄, 테트라클로로에틸렌, 트리클로로에틸렌, 디브로모에탄, 디브로모프로판 등의 할로겐류; 노말메틸피를리돈, 디메틸설폭사이드; 트리에틸아민, 트리부틸아민, 트리옥틸아민; 크레졸 등을 추가로 사용할 수 있다.  In the present invention, if necessary, halogens such as chloroform, dichloromethane, tetrachloroethylene, trichloroethylene, dibromoethane, dibromopropane and the like; Normal methylpyridone, dimethyl sulfoxide; Triethylamine, tributylamine, trioctylamine; Cresol etc. can be used further.
상기 용매는 표면 코팅시 발생하는 휘발도 차이에 의한 코팅의 불균일성을 해소시킬 수 있므며 TEOS 코팅막의 막 밀도를 향상시켜 면저항 신뢰성을 증가시킬 수 있는 역할을 담당한다.  The solvent may solve the non-uniformity of the coating due to the difference in volatility generated during the surface coating and plays a role of increasing the sheet resistance reliability by improving the film density of the TEOS coating film.
상기 용매는 전체 조성물에 대하여 잔량으로 포함될 수 있으나, 바람직하게 도전성 조성물의 층 중량을 기준으로 50 내지 90 중량부로 사용할 수 있다.  The solvent may be included in the remainder relative to the total composition, but preferably 50 to 90 parts by weight based on the weight of the layer of the conductive composition.
상기 염산 또는 초산 희석 용액은 가수분해를 동반하는 졸-겔 반웅을 산성 분위기에서 수행하기 위해, 사용될 수 있다. 상기 염산 또는 초산 희석 용액은 물로 희석된 0.1 내지 10%의 염산 또는 초산 희석 용액을 사용할 수 있지만, 이에 한정되는 것은 아니다. 상기 염산 또는 초산 희석 용액은 전체 도전성에 대해 0.1 내지 10.0 중량부로 사용한다. The dilute hydrochloric acid or acetic acid solution can be used to carry out sol-gel reaction with hydrolysis in an acidic atmosphere. The dilute solution of hydrochloric acid or acetic acid may use a dilute solution of 0.1-10% hydrochloric acid or acetic acid diluted with water. However, it is not limited thereto. The dilute hydrochloric acid or acetic acid solution is used in an amount of 0.1 to 10.0 parts by weight based on the total conductivity.
또한 본 발명의 도전성 조성물을 제조하기 위해 전도성 고분자 용액을 사용하는데, 상술한 바대로 고형분 함량이 0, 1 내지 5.0 wt%인 것이 바람직하다. 이때, 상기 전도성 고분자 용액에서 고형분의 함량이 0.1 중량 <¾ 미만이면 전극의 역할을 상실하는 문제가 있고, 5 중량 %를 초과하면 TEOS Sol 전구체 조성물과 응집 (aggregation) 및 전도성 고분자 용액 자체의 Gel화가 촉진되어 제조의 어려움이 있다. In addition, the conductive polymer solution is used to prepare the conductive composition of the present invention, and as described above, the solid content is preferably 0, 1 to 5.0 wt%. In this case, when the content of solids in the conductive polymer solution is less than 0.1 weight < ¾, there is a problem of losing the role of the electrode. When the content of the solid content exceeds 5% by weight, the aggregation of the TEOS Sol precursor composition and the gelation of the conductive polymer solution itself are performed. There is a difficulty in manufacturing.
상기 전도성 고분자 용액은 전체 도전성 조성물에 대해 5 내지 40 중량부로 사용한다. 상기 전도성 고분자 용액의 함량이 5 중량부 미만일 경우 저항이 급격히 높아지며, 40 중량부를 초과할 경우에는 투과도가 저하되며 분산특성과 조성물의 안정성이 유지되기 어렵다.  The conductive polymer solution is used in 5 to 40 parts by weight based on the total conductive composition. When the content of the conductive polymer solution is less than 5 parts by weight, the resistance is sharply increased, and when the content of the conductive polymer solution is more than 40 parts by weight, permeability is lowered and dispersion characteristics and stability of the composition are difficult to maintain.
이러한 전도성 고분자 용액은 전도성 고분자의 고형분이 αι 내지 5 증량 %이고, 용매 95 내지 99.9 중량 %를 포함하고, 혹은 5 내지 60 중량 % 및 용매 40 내지 95 중량 %를 포함할 수 있다.  The conductive polymer solution may have a solid content of αι to 5% by weight, include 95 to 99.9% by weight of the solvent, or may include 5 to 60% by weight and 40 to 95% by weight of the solvent.
또한 본 발명에 사용되는 상기 전도성 고분자는 유기 물질 이면서 본 발명의 조성물이 도전성을 띠게 하는 기본적인 물질이다.  In addition, the conductive polymer used in the present invention is an organic material and a basic material that makes the composition of the present invention conductive.
상기 전도성 고분자가 전도성을 갖기 위해서는 도핑 과정이 필요한데, 이러한 과정은 비전도성 분말 형태 또는 필름 형태로 제작한 후, 이들을 화학적으로 도핑하거나 비전도성 분말과 도펀트를 흔합하여 유기 용매에 녹여서 전도성을 띄게 하는 방법이 있다. 이중에서, 본 발명에서는 상기 도펀트를 이용한 방법을 사용할 수 있다. 따라서 상기 전도성 고분자는 도판트와 흔합된 형태, 즉 전도성 고분자에 도펀트 물질을 도핑한 고분자를 사용하는 것이 바람직하다.  The conductive polymer needs a doping process in order to have conductivity, and this process is made in the form of a non-conductive powder or film, and then chemically doped or mixed with a non-conductive powder and dopant in a organic solvent to make it conductive There is this. In the present invention, the method using the dopant may be used. Therefore, the conductive polymer is preferably in a form mixed with a dopant, that is, a polymer doped with a dopant material in the conductive polymer.
예를 들어, 기본적으로 전도성 고분자는 폴리아닐린, 폴리피를, 폴리티오펜과 그 유도체, 그 모노머 (아닐린, 피를, 티오펜)의 유도체를 모노머로 중합한 고분자 등이 사용될 수 있다. 이때, 상기 모노머의 유도체를 모노머로 중합한 고분자의 예로는 티오펜의 유도체인 3,4-에틸렌 디옥시티오펜으로 중합된 폴리 (3,4-에틸렌 디옥시티오펜 )(poly(3,4-ethylenedioxythiophen), PEDOT)이 있다. 상기 PEDOT는 대기 중에서 안정하고 다른 고분자에 비해 상은 전기 전도도가 높다. For example, the conductive polymer may be basically a polymer obtained by polymerizing polyaniline, polypi, polythiophene and derivatives thereof, and derivatives of the monomers (aniline, blood and thiophene) as monomers. At this time, examples of the polymer obtained by polymerizing a derivative of the monomer with a monomer include poly (3,4-ethylene dioxythiophene) polymerized with 3,4-ethylene dioxythiophene which is a derivative of thiophene (poly (3,4-ethylenedioxythiophen) ), PEDOT). The PEDOT is stable in the air and compared to other polymers High conductivity
본 발명에서는 이러한 전도성 고분자에 도데실벤젠술폰산, 를루엔술폰산, 켐포술폰산, 벤젠술폰산, 염산, 스타이렌술폰산, In the present invention, dodecylbenzenesulfonic acid, toluenesulfonic acid, chemposulfonic acid, benzenesulfonic acid, hydrochloric acid, styrenesulfonic acid,
2ᅳ아크릴아마이도 -2-메틸프로판술폰산, 이들의 염화합물, 2—술포숙신산 에스테르염, 5-술포이소프탈산 소듐염, 디메틸 -5-소듐 술포이소프탈레이트, 5-소듐술포-비스 (β-하이드록시에틸)이소프탈레이트 및 플리 (4ᅳ스타이렌설포네이트) (PSS, poly(4-styrene sulfonate))로 이루어진 군으로부터 선택된 1종 이상의 도판트를 더 포함하는 흔합물 형태로 전극 형성용 조성물의 제조에 사용할 수 있다. 또한 도판트는 폴리 (4-스타이렌설포네이트)를 사용하는 것이 바람직하다. 2'acrylamido-2-methylpropanesulfonic acid, salt compounds thereof, 2-sulfosuccinic ester salt, 5-sulfoisophthalic acid sodium salt, dimethyl-5 sodium sulfoisophthalate, 5-sodium sulfo-bis ( For forming the electrode in the form of a mixture further comprising at least one dopant selected from the group consisting of β-hydroxyethyl) isophthalate and poly (4 ᅳ styrenesulfonate) (PSS, poly (4-styrene sulfonate)) It can be used for the preparation of the composition. In addition, it is preferable to use poly (4-styrenesulfonate) as the dopant.
따라서, 본 발명은 전극 형성용 도전성 조성물 제조시, 상기 PEDOT에 PSS가 도핑된 PEDOT-PSS(PEDOT:PSS 라고도 함)를 사용할 수 있으며, 이것은 전극이나 정전 방지 재료로서 코팅성이 좋고, 계면특성과 접착성도 우수하다. " Therefore, the present invention may use PEDOT-PSS (also referred to as PEDOT: PSS) doped with PSS in the PEDOT when preparing a conductive composition for forming an electrode, which has good coating properties as an electrode or an antistatic material, The adhesiveness is also excellent. "
또한 본 발명에 따르면 전체 도전성 조성물 100 중량부에 대해, 계면활성제 0.1 내지 1.0 중량부를 더 포함할 수 있다. 상기 실리콘계 계면활성제를 사용 가능하나, 그 종류가 이에 한정되는 것은 아니다.  In addition, according to the present invention, the surfactant may further include 0.1 to 1.0 parts by weight based on 100 parts by weight of the total conductive composition. The silicone surfactant may be used, but the kind thereof is not limited thereto.
또한 본 발명은 필요에 따라, 상기 도전성 조성물 100 중량부에 대하여, 폴리아크릴계 수지, 폴리우레탄계 수지, 에폭시계 수지 및 폴리에스테르계 수지로 이루어진 군으로부터 선택된 1종 이상의 바인더 수지 0.1-30 중량부를 더 포함할 수 있다. 한편, 본 발명은 도전성 조성물 제조시, 기존과 같이 배면 전극 형성용 조성에 첨가되는 각 성분 (예를 들어, 전도성 고분자와 TEOS와 같은 물질)을 일괄 투입하여 제조하는 방식을 사용하는 것이 아니라, 실란 커플링제 (TEQS)를 고온에서 졸-겔 반응을 진행하여 전구체 용액을 제조한 후에, 전도성 고분자와 산발생제를 흔합하여 전극 형성용 도전성 조성물을 제조하는 것을 특징으로 한다. 그러면, 전극 형성용 도전성 조성물을 제조하는 각 단계에 대하여 보다 구체적으로 설명한다.  The present invention further includes 0.1-30 parts by weight of at least one binder resin selected from the group consisting of polyacrylic resins, polyurethane resins, epoxy resins, and polyester resins, based on 100 parts by weight of the conductive composition, as necessary. can do. On the other hand, the present invention does not use a method of manufacturing by adding a batch of each component (for example, a conductive polymer and a material such as TEOS) added to the composition for forming the back electrode when manufacturing the conductive composition, silane, After the coupling solution (TEQS) is subjected to a sol-gel reaction at a high temperature to prepare a precursor solution, the conductive polymer and the acid generator are mixed to prepare a conductive composition for forming an electrode. Next, each step of preparing the conductive composition for forming an electrode will be described in more detail.
실란 커플링제 전구체 조성물 제조 본 단계에서는 실란 커플링제의 졸ᅳ겔 반웅을 통한 전구체 제조 공정을 진행한다. Preparation of silane coupling agent precursor composition In this step, the precursor preparation process is performed through the sol-gel gel reaction of the silane coupling agent.
본 발명의 전극 형성용 도전성 조성물은 최종 조성에 전도성 고분자, 도판트, 실란 커플링제, 산발생제 및 용매를 포함할 수 있는데, 이러한 조성을 가질 수 있도록 본 발명에서는 실란 커플링제를 이용한 전구체 용액을 제조하는 과정을 수행한다. .  The conductive composition for forming an electrode of the present invention may include a conductive polymer, a dopant, a silane coupling agent, an acid generator, and a solvent in a final composition. In the present invention, a precursor solution using a silane coupling agent may be prepared to have such a composition. Perform the process. .
즉, 본 발명은 기존의 제조 방식과는 다른 실란 커플링제의 졸-겔 반응으로 얻어진 전구체를 먼저 제조한 후, 이를 전도성 고분자와 흔합하므로, 필름상태에서 우수한 표면 . 경도와 시간에 따른 신뢰성 구간을 만족하면서도 기존의 일반적인 상온 제조 방식대비 우수한 물성을 나타낼 수 있는.전극 형성용 도전성 조성물을 제공할 수 있다. That is, according to the present invention, a precursor obtained by a sol-gel reaction of a silane coupling agent different from the conventional production method is first prepared, and then mixed with a conductive polymer, thereby providing an excellent surface in a film state. It satisfies the hardness and reliability intervals over time, but can exhibit superior physical properties compared to the existing general room temperature manufacturing methods . The conductive composition for electrode formation can be provided.
특히 본 발명에서는 기존의 상온 조건에서의 전도성 고분자와 TEOS의 중합으로 제조하던 방식과 달리, 실란계 커플링제의 졸ᅳ겔 반응으로 제조된 배면전극 형성용 도전성 조성물의 전구체를 제조하여 사용한다. 따라서, 본 발명은 최종 얻어진 배면전극에서의 막 자체의 가교 수준을 높일 수 있으며 그에 따른 효과로 경도 향상과 서로 반대되는 성질을 가진 전도성 고분자의 표면 밀도를 증가시켜 전도성 고분자의 사용량을 감소시킬 수 있으며, 표면에 상대적으로 집중된 전도성 고분자로、인한 신뢰성의 향상도 가능하다.  In particular, in the present invention, unlike the conventional method of manufacturing the polymerization of the conductive polymer and TEOS at room temperature conditions, the precursor of the conductive composition for forming a back electrode prepared by the sol-gel reaction of the silane coupling agent is used. Accordingly, the present invention can increase the level of crosslinking of the film itself in the finally obtained rear electrode, and as a result, the surface density of the conductive polymer having properties opposite to that of hardness is increased, thereby reducing the amount of the conductive polymer used. , Conductive polymer concentrated on the surface, which can improve the reliability.
상기 졸-겔 반응은 잘 알려진 바대로, 금속알콕사이드를 알코올 용매하에서 가수분해-중축합 시켜 금속산화물 또는 수산화물 형태의 세라믹 분말을 합성하는 무기소재의 제조에 많이 사용되는 방법이다. 또한 상기 졸-겔반응으로는 TEOS 졸-겔법이 알려져 있다. 따라서, 본 발명에서는 이러한 점에 착안하여, 실란 커플링제의 졸ᅳ겔반응을 수행하되, 상온에서 반웅을 진행시키는 것이 아니라, 상온보다 높은 은도에서 졸-겔 반응을 진행시켜, 금속 상에 막을 형성시의 가교성을 높일 수 있고, 경도를 향상시킬 수 있다. 즉, 본 발명에서는 상기 졸ᅳ겔반응으로 얻어진 실란 커플링제 전구체 조성물과 후술하는 전도성 고분자의 결합으로, 고분자의 분산성을 향상시키고 기계적 강도를 향상시킴과 동시에 열적 성질도 향상시킬 수 있어서 전자 재료에 사용하기 적합한 효과를 제공한다. 이러한 구성은 유 -무기 하이브리드 복합재료를 구성하는 성질을 구현할 수 있으며, 이에 따라 무기 물질의 강성과 열적 우수성을 확보하고, 또한 유기 고분자 물질의 유연성과 가공성 등의 물성도 확보할 수 있다. 또한 본 발명은 필름 형성후 신뢰성 평가를 진행한 결과, 신뢰성 확보 및 경도의 향상을 확인하였다. As is well known, the sol-gel reaction is a method widely used in the preparation of inorganic materials for synthesizing ceramic powder in the form of metal oxide or hydroxide by hydrolyzing-condensing metal alkoxide in an alcohol solvent. As the sol-gel reaction, TEOS sol-gel method is known. Therefore, in the present invention, in view of this point, the sol-gel reaction of the silane coupling agent, but not reacting at room temperature, but proceeds the sol-gel reaction at silver higher than room temperature, to form a film on the metal The crosslinkability of a city can be improved and hardness can be improved. That is, in the present invention, the silane coupling agent precursor composition obtained by the sol-gel gel reaction and the conductive polymer described later can improve the dispersibility of the polymer, the mechanical strength and the thermal properties thereof. Provides a suitable effect for use. Such a configuration can realize the properties constituting the organic-inorganic hybrid composite material, and thus the stiffness and thermal superiority of the inorganic material. In addition, it is possible to secure physical properties such as flexibility and processability of the organic polymer material. In addition, the present invention, the results of the reliability evaluation after film formation, confirmed the reliability and improvement of hardness.
이러한 상기 졸-겔 반응은, 실란 커플링제 및 용매를 고온에서 일정 시간 동안 졸-겔 반웅시켜 실란 커플링제 전구체 용액 (예를 들어, TEOS sol 용액)을 제조한다.  This sol-gel reaction produces a silane coupling agent precursor solution (eg TEOS sol solution) by sol-gel reaction of the silane coupling agent and the solvent at a high temperature for a certain time.
이때, 본 발명에서 언급하는 고온은 상은보다 높은 온도를 의미한다. 바람직하게, 상기 졸―겔 반응은 40 내지 70 °C의 온도에서 1 내지 5시간 동안 수행한다. 가장 바람직하게는, 상기 졸―겔 반응은 50°C의 온도에서 3시간 동안 수행한다. 여기서, 상기 졸-겔 반응이 40°C 미만인 경우 TEOS의 가수분해 (Hydrolysis) 수준의 저하를 가져을 수 있으며 또한 부가적으로 발생하는 축합반웅의 속도가 가수분해 보다 빠르게 진행될 수 있어 경도 및 TEOS sol 입자 성장에 문제가 있을 수 있다. 또한 Sol-Gel 반웅 진행시 70°C를 초과하면 가수분해 측면에서는 더욱 확실한 반응을 진행시킬 수 있으나 향후 가수분해 및 축합반웅이 진행된 TEOS sol 입자의 성장속도가 너무 빨라 겔화 (Gellation)가 빠르게 진행되는 문제가 발생될 수 있다. In this case, the high temperature referred to in the present invention means a higher temperature. Preferably, the sol-gel reaction is carried out for 1 to 5 hours at a temperature of 40 to 70 ° C. Most preferably, the sol-gel reaction is carried out for 3 hours at a temperature of 50 ° C. Here, when the sol-gel reaction is less than 40 ° C may have a decrease in the level of hydrolysis of TEOS and additionally the rate of condensation reaction can occur faster than hydrolysis so that hardness and TEOS sol particles There may be problems with growth. In addition, when Sol-Gel reaction is over 70 ° C, more reliable reaction can be proceeded in terms of hydrolysis.However, the growth rate of TEOS sol particles undergoing hydrolysis and condensation reaction is so fast that gelation proceeds rapidly. Problems may arise.
또한 실란 커플링게 전구체 조성물을 제조하는 단계에서, 계면활성제를 더 첨가하여 반웅을 진행할 수 있다.  In addition, in the step of preparing the silane coupling agent precursor composition, it is possible to further react by adding a surfactant.
바람직하게, 실란 커플링제 전구체 조성물을 제조하는 단계에서, 상기 실란계 커플링제 전구체 조성물 100 중량부에 대하여, 계면활성제 0.1 내지 1.0 증량부를 더 첨가할 수 있다.  Preferably, in the preparing of the silane coupling agent precursor composition, 0.1 to 1.0 parts by weight of the surfactant may be further added to 100 parts by weight of the silane coupling agent precursor composition.
배면 전극 형성용 도전성 조성물의 제조  Preparation of conductive composition for back electrode formation
본 발명에서는 상술한 방법으로 실란 커플링제 전구체 조성물을 제조한 후에, 고형분 0.1 내지 5.0 wt%를 갖는 전도성 고분자 용액 5 내지 40 중량부와 산발생제 0.001 내지 1.0 중량부를 첨가하여 흔합하는 단계를 수행하여, 최종적으로 액정표시장치의 배면전극 형성용 도전성 조성물의 제조한다.  In the present invention, after preparing the silane coupling agent precursor composition by the above-described method, by adding 5 to 40 parts by weight of the conductive polymer solution having a solid content of 0.1 to 5.0 wt% and 0.001 to 1.0 parts by weight of the acid generator to perform a mixing step Finally, the conductive composition for back electrode formation of a liquid crystal display device is manufactured.
상기 방법에서 실란 커플링제 전구체 조성물과 전도성 고분자의 흔합은 10 내지 40°C의 은도에서 수행할 수 있다. In the above method, the mixing of the silane coupling agent precursor composition and the conductive polymer may be performed at a silver content of 10 to 40 ° C.
상술한 방법에 따라 제조된 최종 액정표시장치의 배면전극 형성용 도전성 조성물은, 고형분 0.1 내지 5.0 ^%를 갖는 전도성 고분자 용액 5 내지 40 증량부; 실란 커플링게 3 내지 30 중량부; 용매 20 내지 60 중량부; 및 산발생제 0.001 내지 1.0 중량부를 포함할 수 있다. The conductive composition for forming the back electrode of the final liquid crystal display device manufactured according to the above method, 5 to 40 conductive polymer solution having a solid content of 0.1 to 5.0 ^% An increase part; 3 to 30 parts by weight of the silane coupling crab; 20 to 60 parts by weight of the solvent; And 0.001 to 1.0 part by weight of an acid generator.
최종 전극 형성용 도전성 조성물에서, 상기 전도성 고분자의 함량이 5 중량부 미만일 경우 저항이 급격히 높아지며, 40 중량부를 초과할 경우에는 투과도가 저하되며 분산특성과 조성불의 안정성이 유지되기 어렵다.  In the conductive composition for forming the final electrode, when the content of the conductive polymer is less than 5 parts by weight, the resistance is sharply increased, and when it exceeds 40 parts by weight, the permeability is lowered and dispersion characteristics and stability of the composition are difficult to maintain.
또한 상기 실란 커플링제는 본 발명의 최종 전극 형성용 조성물에 대하여 3 내지 30 중량부로 포함되는 것이 바람직하며, 더욱 바람직하게는 5 내지 20 중량부이다. 상기 함량이 3 중량부 미만일 경우에는 코팅층을 형성하였을 때 상분리로 인한 표면의 얼룩이 나타나기 쉬우며 표면경도가 저하될 수 있으며, 30 중량부를 초과하는 경우에는 저항이 높아지며 조성물의 안정성이 저하된다.  In addition, the silane coupling agent is preferably included in 3 to 30 parts by weight, more preferably 5 to 20 parts by weight with respect to the final electrode forming composition of the present invention. When the content is less than 3 parts by weight, when the coating layer is formed, surface stains may easily appear due to phase separation and surface hardness may be reduced. When the content is more than 30 parts by weight, the resistance is increased and the stability of the composition is decreased.
상기 용매는 본 발명의 최종 전극 형성용 조성물에 대하여 20 내지 60 중량부로 포함되는 것이 바람직하다. 상기 함량이 20 중량부 미만인 경우에는 조성물의 안정성이 저하되며, 60 중량부를 초과하는 경우에는 저항이 높을 뿐 아니라 충격에 취약해진다.  The solvent is preferably included in 20 to 60 parts by weight based on the composition for forming the final electrode of the present invention. If the content is less than 20 parts by weight, the stability of the composition is lowered, and if it exceeds 60 parts by weight, not only the resistance is high but also vulnerable to impact.
상기와 성분으로 이루어지는 본 발명의 도전성 조성물은 필요에 따라 상술한 바인더 수지를 더 포함할 수 있다. 상기 바인더 수지는 폴리아크릴계 수지, 폴리우레탄계 수지, 에폭시계 수지, 폴리에스테르계 수지 등이 사용될 수 있으며, 그 함량은 도전성 조성물 총 100 중량부에 대하여 최대 0.1-30 중량부 더 포함될 수 있다. 한편 본 발명의 다른 구현예에 따라, 상술한 도전성 조성물을 적용하여 형성된 액정표시장치용 배면전극이 제공된다.  The electrically conductive composition of this invention which consists of the above and a component can further contain the binder resin mentioned above as needed. The binder resin may be a polyacrylic resin, a polyurethane resin, an epoxy resin, a polyester resin, or the like, and the content thereof may be further included in an amount of 0.1-30 parts by weight based on 100 parts by weight of the total conductive composition. On the other hand, according to another embodiment of the present invention, there is provided a rear electrode for a liquid crystal display device formed by applying the above-described conductive composition.
본 발명에서 설명하는 전극은 통상 액정표시장치의 배면전극 뿐 아니라, 기존의 배면전극을 대체할 수 있는 도전성 편광판의 코팅필름 (대한민국 등록특허 게 0592329호)을 모두 포함한다. 바람직하게, 본 발명의 전도성 조성물은 배면 전극 형성에 사용될 수 있다.  The electrode described in the present invention includes not only the back electrode of the liquid crystal display device, but also a coating film of a conductive polarizing plate (Korean Patent No. 0592329) that can replace the existing back electrode. Preferably, the conductive composition of the present invention can be used to form the back electrode.
상기 배면전극의 형성방법은 기판에 형성된 전극 상에 상술한 방법에 따른 배면전극 형성용 도전성 조성물을 코팅하고, 열처리하는 단계를 포함할 수 있다.  The method of forming the back electrode may include coating a conductive composition for forming a back electrode according to the above-described method on an electrode formed on a substrate, and then performing heat treatment.
상기 액정표시장치의 배면전극 형성방법에서 상기 코팅은 통상의 코팅방법이 적용될 수 있으며, 일예로 스프레이법, 바 코팅법, 닥터 블레이드법, 를 코팅법, 디핑법 등 당업계에서 사용되는 통상의 코팅 방법이 적용될 수 있다. 상기 코팅은 기판 상에 0.5 내지 1 / 두께로 코팅하는 하는 것이 좋으며, 이후 100 °C의 내외의 핫 플레이트 (hot plate)에서 소프트 베아크 (soft bake)하여 300-500 nm 두께의 필름층을 형성하여 액정표시장치의 배면전극을 형성시킨다. 상기와 같은 본 발명의 전극 형성용 도전성 조성물은 조성물 내에서 전도성 고분자의 분산도를 최적화함으로써 배면전극의 투과도를 향상시킬 수 있다. 또한 본 발명의 도전성 .조성물을 기판과의 접착면에서 결점이 없도록 코팅할 수 있다면 그 투과도는 비약적으로 개선할 수 있게 된다. 뿐만 아니라, 본 발명의 도전성 조성물이 코팅된 배면전극은 표면경도 또한 우수하다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 실시예 1 In the method of forming a back electrode of the liquid crystal display, the coating is conventional. The coating method may be applied, and for example, a spray method, a bar coating method, a doctor blade method, a coating method, a dipping method, and the like may be applied to conventional coating methods used in the art. The coating is preferably coated on a substrate of 0.5 to 1 / thickness, and then soft bake on a hot plate at around 100 ° C to form a 300-500 nm thick film layer. The back electrode of the liquid crystal display device is formed. The conductive composition for forming an electrode of the present invention as described above can improve the transmittance of the back electrode by optimizing the dispersion of the conductive polymer in the composition. Also the conductivity of the present invention . If the composition can be coated without defects in terms of adhesion with the substrate, its permeability can be dramatically improved. In addition, the back electrode coated with the conductive composition of the present invention is also excellent in surface hardness. Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples. Example 1
TE0S (테트라에틸옥시실란) 15 중량부, IPA (이소프로필알콜) 9 중량부, 프로필렌글리콜모노메틸에테르 13 중량부, 물 26 중량부, 아세틸아세톤 5 중량부, 5.0% 초산 희석 용액 (수용액) 1 중량부를 흔합하여 50°C 온도조건에서 3시간 동안 졸겔 반응을 진행하였다. 15 parts by weight of TE0S (tetraethyloxysilane), 9 parts by weight of IPA (isopropyl alcohol), 13 parts by weight of propylene glycol monomethyl ether, 26 parts by weight of water, 5 parts by weight of acetylacetone, 5.0% acetic acid dilute solution (aqueous solution) 1 The sol gel reaction was carried out for 3 hours at 50 ° C temperature conditions by mixing the parts by weight.
이후, 상기 반응으로 얻어진 실란 커플링제 전구체 조성물에, 상기 조성물 100 중량부에 대해 고형분 2.0 ^%를 갖는 전도성 고분자 용액 30 중량부와 아민 차단된 열산발생거 KAmine Blocked thermal acid generator, King Industries 社의 TAG 2713S) 1 중량부를 첨가하고 흔합하여, 액정표시장치의 배면전극 형성용 도전성 조성물을 제조하였다.  Subsequently, in the silane coupling agent precursor composition obtained by the reaction, 30 parts by weight of the conductive polymer solution having a solid content of 2.0 ^% and 100% by weight of the amine-blocked thermal acid generator, KAmine Blocked thermal acid generator, TAG of King Industries Co., Ltd. 2713S) 1 part by weight was added and mixed to prepare a conductive composition for forming a back electrode of the liquid crystal display device.
이때, 전도성 고분자 용액은 고형분 전도성 고분자 (ED0T 모노머와 도판트로 사용된 PSSA 의 중합으로 제조된 PED0T/PSS) 2 중량 % 및 물 98 중량 %를 포함한다. 실시예 2 TEOS (테트라에틸옥시실란) 15 중량부, IPA (이소프로필알콜) 9 중량부, 프로필렌글리콜모노메틸에테르 13 중량부, 물 26 중량부, 아세틸아세톤 5 중량부, 5.0% 초산 희석 용액 (수용액) 1 중량부를 흔합하여 50 °C 온도조건에서 3시간 동안 졸겔 반웅을 진행하였다. At this time, the conductive polymer solution includes 2 wt% of solid conductive polymer (PED0T / PSS prepared by polymerization of the ED0T monomer and PSSA used as the dopant) and 98 wt% of water. Example 2 15 parts by weight of TEOS (tetraethyloxysilane), 9 parts by weight of IPA (isopropyl alcohol), 13 parts by weight of propylene glycol monomethyl ether, 26 parts by weight of water, 5 parts by weight of acetylacetone, 5.0% acetic acid dilute solution (aqueous solution) 1 The sol gel reaction was carried out for 3 hours at 50 ° C temperature conditions by mixing the parts by weight.
이후, 상기 반응으로 얻어진 실란 커플링제 전구체 조성물에, 상기 조성물 Thereafter, in the silane coupling agent precursor composition obtained by the reaction, the composition
100 중량부에 대해 실시예 1과 동일한 고형분 2.0 ^ <¾를 갖는 전도성 고분자 용액 30 중량부와 아민 차단된 열산발생제 (Amine Blocked thermal acid generator, King Industries 社의 CXC 1820) 1 중량부를 첨가하고 흔합하여, 액정표시장치의 배면전극 형성용 도전성 조성물을 제조하였다. 실시예 3 To 100 parts by weight of 30 parts by weight of a conductive polymer solution having a solid content of 2.0 ^ < ¾ the same as in Example 1 and 1 part by weight of an amine blocked thermal acid generator (CXC 1820 from King Industries) In addition, a conductive composition for forming a back electrode of a liquid crystal display device was prepared. Example 3
. TEOS (테트라에틸옥시실란) 15 중량부, IPA (이소프로필알콜) 9 중량부, 프로필렌글리콜모노메틸에테르 13 중량부, 물 26 중량부, 아세틸아세톤 5 중량부, 5.0% 초산 희석 용액 (수용액) 1 중량부를 흔합하여 50 °C 온도조건에서 3시간 동안 졸겔 반응을 진행하였다. . 15 parts by weight of TEOS (tetraethyloxysilane), 9 parts by weight of IPA (isopropyl alcohol), 13 parts by weight of propylene glycol monomethyl ether, 26 parts by weight of water, 5 parts by weight of acetylacetone, 5.0% acetic acid dilute solution (aqueous solution) 1 The sol gel reaction was carried out for 3 hours at 50 ° C temperature conditions by mixing the parts by weight.
이후, 상기 반응으로 얻어진 실란 커플링제 전구체 조성물에, 상기 조성물 100 중량부에 대해 실시예 1과 동일한 고형분 2.0 ^%를 갖는 전도성 고분자 용액 30 중량부와 아민 차단된 열산발생제 (Amine Blocked thermal acid generator, King Industries 社의 TAG 1763) 1 중량부를 첨가하고 흔합하여, 액정표시장치의 배면전극 형성용 도전성 조성물을 제조하였다. 실시예 4  Subsequently, in the silane coupling agent precursor composition obtained by the reaction, 30 parts by weight of the conductive polymer solution having the same solid content as 2.0 Example% and an amine blocked thermal acid generator based on 100 parts by weight of the composition 1 part by weight of TAG 1763) manufactured by King Industries Co., Ltd. was added and mixed to prepare a conductive composition for forming a back electrode of a liquid crystal display device. Example 4
TEOS (테트라에틸옥시실란) 15 중량부, IP A (이소프로필알콜) 9 중량부, 프로필렌글리콜모노메틸에테르 13 중량부, 물 26 중량부, 아세틸아세톤 5 중량부, 5.0% 초산 희석 용액 (수용액) 1 중량부를 흔합하여 50°C 온도조건에서 3시간 동안 졸겔 반응을 진행하였다. 15 parts by weight of TEOS (tetraethyloxysilane), 9 parts by weight of IP A (isopropyl alcohol), 13 parts by weight of propylene glycol monomethyl ether, 26 parts by weight of water, 5 parts by weight of acetylacetone, 5.0% acetic acid dilute solution (aqueous solution) 1 part by weight was mixed and the sol-gel reaction was carried out for 3 hours at a temperature of 50 ° C.
이후, 상기 반응으로 얻어진 실란 커플링제 전구체 조성물에, 상기 조성물 100 중량부에 대해 실시예 1과 동일한 고형분 2.0 ^ %를 갖는 전도성 고분자 용액 30 중량부와 아민 차단된 열산발생제 (Amine Blocked thermal acid generator, King Industries 社의 TAG 2712) 1 중량부를 첨가하고 흔합하여, 액정표시장치의 배면전극 형성용 도전성 조성물을 제조하였다. 실시예 5 Thereafter, in the silane coupling agent precursor composition obtained by the reaction, 30 parts by weight of the conductive polymer solution having the same solid content as 2.0 Example 1 and an amine blocked thermal acid generator based on 100 parts by weight of the composition Add 1 part by weight of TAG 2712) from King Industries, and mix. A conductive composition for forming a back electrode of a liquid crystal display device was prepared. Example 5
TEOS (테트라에틸옥시실란) 15 중량부, IPA (이소프로필알콜) 9 중량부, 프로필렌글리콜모노메틸에테르 13 중량부, 물 26 중량부, 아세틸아세톤 5 중량부, 5.0% 초산 희석 용액 (수용액) 1 중량부를 흔합하여 50 °C 온도조건에서 3시간 동안 졸겔 반웅을 진행하였다. 15 parts by weight of TEOS (tetraethyloxysilane), 9 parts by weight of IPA (isopropyl alcohol), 13 parts by weight of propylene glycol monomethyl ether, 26 parts by weight of water, 5 parts by weight of acetylacetone, 5.0% acetic acid dilute solution (aqueous solution) 1 The sol gel reaction was carried out for 3 hours at 50 ° C temperature conditions by mixing the parts by weight.
이후, 상기 반응으로 얻어진 실란 커플링제 전구체 조성물에, 실시예 1과 동일한 고형분 2.0 ^%를 갖는 전도성 고분자 용액 30 중량부와 4급 암모늄 차단된 열산발생제 (quaternary ammonium Blocked thermal acid generator, King Industries 社의 CXC 1613) 1 중량부를 첨가하고 흔합하여, 액정표시장치의 배면전극 형성용 도전성 조성물을 제조하였다. 비교예 1  Thereafter, in the silane coupling agent precursor composition obtained by the reaction, 30 parts by weight of a conductive polymer solution having a solid content of 2.0 ^% and a quaternary ammonium blocked thermal acid generator (quaternary ammonium Blocked thermal acid generator, King Industries Co., Ltd.) 1 part by weight of CXC 1613) was added and mixed to prepare a conductive composition for forming a back electrode of the liquid crystal display device. Comparative Example 1
TEOS (테트라에틸옥시실란) 15 중량부, IPA (이소프로필알콜) 9 중량부 15 parts by weight of TEOS (tetraethyloxysilane), 9 parts by weight of IPA (isopropyl alcohol)
,프로필렌글리콜모노메틸에테르 13 중량부, 물 27 중량부, 아세틸아세톤 5 중량부, 5.0% 초산 희석 용액 (수용액) 1 중량부를 흔합하여 50 °C 온도조건에서 3시간 동안 졸겔 반웅을 진행하였다. , Was performed with propylene glycol monomethyl ether 13 parts by weight water 27 parts by weight of acetyl acetone, 5 parts by weight, 5.0% acetic acid dilute solution (aqueous solution) 1 weight parts of the combined common for 3 hours at temperature 50 ° C gel banung.
이후, 상기 반응으로 얻어진 실란 커플링제 전구체 조성물에, 실시예 1과 동일한 고형분 2.0 %를 갖는 전도성 고분자 용액 30 중량부를 첨가하여 도전성 조성물을 제조하였다.이때, 전도성 고분자 용액은 고형분 전도성 고분자 (EDOT 모노머와 도판트로 사용된 PSSA 의 중합으로 제조된 PEDOT/PSS) 2.0 중량 % 및 물 98 중량 %를 포함한다. 실험예 . Thereafter, 30 parts by weight of the conductive polymer solution having the same solid content as that of Example 1 was added to the silane coupling agent precursor composition obtained by the reaction to prepare a conductive composition. 2.0 weight% PEDOT / PSS) prepared by the polymerization of PSSA used as dopant and 98 weight% water. Experimental Example .
상기 실시예 1 내지 5 및 비교예 1의 각 도전성 조성물을 기판에 형성된 전극 상에 0.5 μια 두께로 도포한 다음, 12CTC의 핫 플레이트에서 600초 동안 소프트 베이크하여 300 ηπι 두께의 필름층을 형성하였다.  Each conductive composition of Examples 1 to 5 and Comparative Example 1 was applied to the electrode formed on the substrate with a thickness of 0.5 μια, and then soft-baked for 600 seconds on a 12 CTC hot plate to form a 300 ηπι thick film layer.
기판에 코팅된 배면전극 형성용 도전성 재료의 신뢰성 평가는 다음의 방법을 이용하였다. 그 결과는 표 1에 나타내었다. 상은 신뢰성은 상온, 습도 (Rh 50% 이하)의 조건에서 평가하였다. 고온 신뢰성은 80°C 오븐에서 지속 방치하면서 평가하였다. 또한 고온 /고습 신뢰성은 65 °C , Rh 90%의 고온고습 오븐을 이용하였다. 기판의 표면저항은 SIMCO社 ST-4 장비를 사용하여 500hr 동안 평가하였다. The following method was used for the reliability evaluation of the conductive material for forming the back electrode coated on the substrate. The results are shown in Table 1. Phase reliability was evaluated under conditions of room temperature and humidity (Rh 50% or less). High temperature reliability was evaluated while remaining in an 80 ° C. oven. In addition, high temperature and high humidity reliability was used a high temperature and high humidity oven of 65 ° C, Rh 90%. Surface resistance of the substrate was evaluated for 500hr using SIMCO ST-4 equipment.
【표 1】 Table 1
Figure imgf000016_0001
상기 표 1에서 표시한 바와 같이, TAG (산발생제)를 사용한 실시예 1 내지 5의 경우 산발생제를 사용하지 않은 비교예 1과 비교하여 500hr 경과에 따른 상온 및 고온, 고온고습 신뢰성에서 우수한 결과를 나타내었다. 특히 실시예 1 내지 2의 결과가 가장 우수한 신뢰성을 확보한 것으로 나타났다.
Figure imgf000016_0001
As shown in Table 1, Examples 1 to 5 using the TAG (acid generator) is excellent in room temperature, high temperature, high temperature and high humidity reliability over 500hr compared to Comparative Example 1 without the acid generator The results are shown. In particular, the results of Examples 1 to 2 were found to have the best reliability.
하지만, 비교예 1은 신뢰성이 불량하여, 전극 형성에 적합하지 않음을 알 수 있다.  However, Comparative Example 1 is poor in reliability, it can be seen that it is not suitable for electrode formation.

Claims

【특허청구범위】 【Patent Claims】
【청구항 1】 【Claim 1】
실란 커플링제 5 내지 40 중량부, 5 to 40 parts by weight of silane coupling agent,
용매 50 내지 90 중량부, 50 to 90 parts by weight of solvent,
염산 또는 초산 희석 용액 α ΐ 내지 10.0 중량부, Hydrochloric acid or acetic acid diluted solution α ΐ to 10.0 parts by weight,
고형분 0.1 내지 5.0 ^%를 갖는 전도성 고분자 용액 5 내지 40 중량부; 및 5 to 40 parts by weight of a conductive polymer solution having a solid content of 0.1 to 5.0 ^%; and
산발생제 0.001 내지 1.0 중량부; 0.001 to 1.0 parts by weight of an acid generator;
를 포함하는, 액정표시장치의 배면전극 형성용 도전성 조성물. A conductive composition for forming a back electrode of a liquid crystal display device, comprising:
【청구항 2】 【Claim 2】
제 1항에 있어서, 상기 산발생제는 아민 차단 (Amine blocked), 공유결합 차단 (covalent blocked), 금속차단 (metal blocked), 및 4급 암모늄 차단된 (Quaternary Ammonium Blocked) 열산발생제 (thermal acid generator)로 이루어진 군에서 선택된 1종 이상인, 도전성 조성물. The method of claim 1, wherein the acid generator is an amine blocked, covalent blocked, metal blocked, and quaternary ammonium blocked thermal acid generator. A conductive composition that is one or more types selected from the group consisting of (generator).
【청구항 3】 【Claim 3】
제 1항에 있어서, 상기 산발생제는 도데실밴젠 술폰산, P-를루엔 술폰산, 트리플루오로메탄 술폰산, 및 그 유도체로 이루어진 군에서 선택된 1종 이상인, 도전성 조성물. The conductive composition according to claim 1, wherein the acid generator is at least one selected from the group consisting of dodecylbenzene sulfonic acid, p-toluene sulfonic acid, trifluoromethane sulfonic acid, and derivatives thereof.
【청구항 4】 【Claim 4】
제 1항에 있어서, According to clause 1,
상기 용매는 i) 물, ii) 알코을계 화합물, 및 iii) 프로필렌 글리콜 모노에틸 에테르, 디메틸 포름아마이드, 아세틸 아세톤, 1 -메틸 -2ᅳ피롤리딘온, 디프로필케톤 및 에틸 락테이트로 이루어진 군에서 선택된 1종 이상의 용매;를 포함하는 액정표시장치의 배면전극 형성용 도전성 조성물. The solvent is selected from the group consisting of i) water, ii) an alcohol-based compound, and iii) propylene glycol monoethyl ether, dimethyl formamide, acetyl acetone, 1-methyl-2-pyrrolidinone, dipropyl ketone, and ethyl lactate. A conductive composition for forming a back electrode of a liquid crystal display device comprising at least one solvent.
【청구항 5】 【Claim 5】
게 4항에 있어서, 상기 알코을계 화합물은 메틸알콜, 에틸알콜, 이소프로판을, 에틸렌글리콜, 부탄디올, 네오펜틸글리콜, 1 ,3ᅳ펜탄디을, 1,4-사이클로핵산디메탄올, 디에틸렌글리콜, 폴리에틸렌글리콜, 폴리부틸렌글리콜, 디메틸올프로판, 트리메틸을프로판 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상인 도전성 조성물. In paragraph 4, The alcohol-based compounds include methyl alcohol, ethyl alcohol, isopropane, ethylene glycol, butanediol, neopentyl glycol, 1,3-pentanediol, 1,4-cyclohexane dimethanol, diethylene glycol, polyethylene glycol, and polybutylene. A conductive composition comprising at least one selected from the group consisting of glycol, dimethylolpropane, trimethylolpropane, and their derivatives.
【청구항 6】 【Claim 6】
저 U항에 있어서, 상기 전도성 고분자 용액은 전도성 고분자의 고형분이 0.1 내지 5 중량 %이고, 용매 95 내지 99.9 중량 %를포함하는, 도전성 조성물. The conductive composition according to item U, wherein the conductive polymer solution contains a solid content of 0.1 to 5% by weight of the conductive polymer and 95 to 99.9% by weight of a solvent.
【청구항 7】 【Claim 7】
제 6항에 있어서, In clause 6,
상기 전도성 고분자는 폴리아닐린, 폴리피를, 폴리티오펜 및 이들의 유도체로 이루어진 군으로부터 선택된 1종 이상을 포함하는 도전성 조성물. The conductive polymer is a conductive composition comprising at least one selected from the group consisting of polyaniline, polypyrol, polythiophene, and derivatives thereof.
【청구항 8】 【Claim 8】
제 6항에 있어서, In clause 6,
상기 전도성 고분자 폴리 (3,4-에틸렌 디옥시티오펜)을 포함하는 도전성 조성물. A conductive composition comprising the conductive polymer poly (3,4-ethylene dioxythiophene).
【청구항 9】 【Claim 9】
제 8항에 있어서, In clause 8,
상기 전도성 고분자는, 도데실벤젠술픈산, 를루엔술폰산, 켐포술폰산, 벤젠술폰산, 염산, 스타이렌술폰산, 2-아크릴아마이도 -2-메틸프로판술폰산, 이들의 염화합물, 2-술포숙신산 에스테르염, 5-술포이소프탈산 소듐염, 디메틸ᅳ 5-소듐 술포이소프탈레이트, The conductive polymers include dodecylbenzenesulfonic acid, toluenesulfonic acid, camphorsulfonic acid, benzenesulfonic acid, hydrochloric acid, styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, salt compounds thereof, and 2-sulfosuccinic acid ester salt. , 5-sulfoisophthalic acid sodium salt, dimethyl ᅳ 5-sodium sulfoisophthalate,
5-소듐술포 -비스 3—하이드록시에틸)이소프탈레이트 및 폴리 (4ᅳ스타이렌설포네이트)로 이루어진 군으로부터 선택된 1종 이상의 도판트를 더 포함하는 도전성 조성물. A conductive composition further comprising at least one dopant selected from the group consisting of 5-sodium sulfo-bis 3—hydroxyethyl)isophthalate and poly (4-styrenesulfonate).
【청구항 10】 【Claim 10】
제 6항에 있어서, In clause 6,
상기 전도성 고분자는 폴리 (3,4-에틸렌 디옥시티오펜):폴리 (4-스타이렌설포네이트) (PEDOT:PSS)를 사용하는 도전성 조성물. The conductive polymer is a conductive composition using poly (3,4-ethylene dioxythiophene):poly (4-styrenesulfonate) (PEDOT:PSS).
【청구항 11】 【Claim 11】
계 1항에 있어서, In paragraph 1,
상기 실란 커플링제는 탄소수 1 내지 20의 탄화수소를 갖는 알킬옥시 실란계, 아미노 실란계, 비닐 실란계, 에폭시 실란계, 메타크릴옥시 실란계, 이소시아네이트 실란 및 불소 실란계로 이루어진 군으로부터 선택된 1종 이상인, 도전성 조성물. The silane coupling agent is at least one selected from the group consisting of alkyloxy silane-based, amino silane-based, vinyl silane-based, epoxy silane-based, methacryloxy silane-based, isocyanate silane and fluorine silane-based, Conductive composition.
【청구항 12】 【Claim 12】
제 1항에 있어서, 상기 전체 조성물 100 중량부에 대해 계면활성제 0.1 내지 1 중량부를 더 포함하는, 도전성 조성물. The conductive composition of claim 1, further comprising 0.1 to 1 part by weight of a surfactant based on 100 parts by weight of the total composition.
【청구항 13】 【Claim 13】
거 U항에 있어서, In clause U,
상기 도전성 조성물 100 중량부에 대하여, With respect to 100 parts by weight of the conductive composition,
폴리아크릴계 수지, 폴리우레탄계 수지, 에폭시계 수지 및 폴리에스테르계 수지로 이루어진 군으로부터 선택된 1종 이상의 바인더 수지 0.1-30 중량부를 더 포함하는 도전성 조성물. 【청구항 14】 A conductive composition further comprising 0.1 to 30 parts by weight of at least one binder resin selected from the group consisting of polyacrylic resin, polyurethane resin, epoxy resin, and polyester resin. 【Claim 14】
거 U항에 따른 도전성 조성물을 적용하여 형성된 액정표시장치용 배면전 Back panel for liquid crystal display device formed by applying the conductive composition according to Paragraph U
PCT/KR2014/010859 2013-12-12 2014-11-12 Conductive composition for forming rear electrode of liquid crystal display device WO2015088146A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016538648A JP6728045B2 (en) 2013-12-12 2014-11-12 Conductive composition for forming back electrode of liquid crystal display device
CN201480067695.3A CN105814644B (en) 2013-12-12 2014-11-12 conductive composition for forming back electrode of liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0154635 2013-12-12
KR1020130154635A KR20150068685A (en) 2013-12-12 2013-12-12 Conductive composition forming ground electrodes of liquid crystal display

Publications (1)

Publication Number Publication Date
WO2015088146A1 true WO2015088146A1 (en) 2015-06-18

Family

ID=53371412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010859 WO2015088146A1 (en) 2013-12-12 2014-11-12 Conductive composition for forming rear electrode of liquid crystal display device

Country Status (4)

Country Link
JP (1) JP6728045B2 (en)
KR (1) KR20150068685A (en)
CN (1) CN105814644B (en)
WO (1) WO2015088146A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106811009A (en) * 2017-01-25 2017-06-09 新应材股份有限公司 Conductive polymer composites solution and its antistatic film and flat-panel screens
KR102562916B1 (en) * 2022-12-07 2023-08-03 (주)에버켐텍 Forming composition of ground electrodes comprising conductive polymer and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306892B2 (en) * 2002-11-20 2007-12-11 Shipley Company, L.L.C. Multilayer photoresist system
KR20100047440A (en) * 2008-10-29 2010-05-10 주식회사 동진쎄미켐 Conductive composition forming ground electrodes of liquid crystal display
KR20120066944A (en) * 2010-12-15 2012-06-25 삼성전기주식회사 A conductive paste composition for inner electrode, a laminated ceramic electronic parts by using the same and a process thereof
KR20130077487A (en) * 2011-12-29 2013-07-09 주식회사 동진쎄미켐 Conductive composition for forming ground electrodes of liquide crystal display and method for forming ground electrodes using the same
KR20140064063A (en) * 2012-11-19 2014-05-28 주식회사 동진쎄미켐 Method for preparing conductive composition forming ground electrodes of liquid crystal display and using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826231B2 (en) * 1991-08-16 1996-03-13 インターナショナル・ビジネス・マシーンズ・コーポレイション Conductive polymer material and its use
KR100442408B1 (en) * 1998-11-05 2004-11-06 제일모직주식회사 Polythiophene Conductive Polymer Solution Composition with High Conductivity and High Transparency
CN101880460B (en) * 2003-06-18 2011-12-28 信越聚合物株式会社 Conductive composition and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306892B2 (en) * 2002-11-20 2007-12-11 Shipley Company, L.L.C. Multilayer photoresist system
KR20100047440A (en) * 2008-10-29 2010-05-10 주식회사 동진쎄미켐 Conductive composition forming ground electrodes of liquid crystal display
KR20120066944A (en) * 2010-12-15 2012-06-25 삼성전기주식회사 A conductive paste composition for inner electrode, a laminated ceramic electronic parts by using the same and a process thereof
KR20130077487A (en) * 2011-12-29 2013-07-09 주식회사 동진쎄미켐 Conductive composition for forming ground electrodes of liquide crystal display and method for forming ground electrodes using the same
KR20140064063A (en) * 2012-11-19 2014-05-28 주식회사 동진쎄미켐 Method for preparing conductive composition forming ground electrodes of liquid crystal display and using the same

Also Published As

Publication number Publication date
JP6728045B2 (en) 2020-07-22
KR20150068685A (en) 2015-06-22
JP2017502337A (en) 2017-01-19
CN105814644A (en) 2016-07-27
CN105814644B (en) 2018-08-24

Similar Documents

Publication Publication Date Title
TWI598407B (en) Antistatic release agent and antistatic release film
JP5945881B2 (en) Antistatic release agent composition and release film
JP6837387B2 (en) Conductive polymer dispersion, antistatic substrate and its manufacturing method
JP2012515099A (en) Polymer film using conductive polymer solution composition and its structure
KR102063665B1 (en) Flexible transparent conductive electrode structure
US9460826B2 (en) Conductive composition for forming a ground electrode of a liquid crystal display, and a method of forming a ground electrode using the same
KR101538075B1 (en) Conductive composition forming ground electrodes of liquid crystal display
WO2015088146A1 (en) Conductive composition for forming rear electrode of liquid crystal display device
WO2011024830A1 (en) Conductive coating composition and coated member
JPWO2011024829A1 (en) Conductive coating composition and covering member
WO2010090422A1 (en) Antifouling and antistatic polyester film
KR100418508B1 (en) Conductive Polymer Hard Coating Film with Excellent Transparency and Conductivity
JP6491910B2 (en) Transparent conductive sheet and method for producing the same
CN106811009A (en) Conductive polymer composites solution and its antistatic film and flat-panel screens
KR101933383B1 (en) Method for preparing conductive composition forming ground electrodes of liquid crystal display and using the same
CN109575760A (en) The manufacturing method of transparent and electrically conductive film, the coating composition for being used to form transparent and electrically conductive film and transparent and electrically conductive film
KR101986607B1 (en) Manufacturing method for antistatic organic-inorganic hybrid composition and organic-inorganic hybrid firm comprising composition manufactured by the same
JP2015036400A (en) Ink composition, transparent conductive film and electronic component
JP7269816B2 (en) Conductive release film and manufacturing method thereof
CN118146703A (en) Composition for forming back electrode containing conductive polymer and method for manufacturing same
JP2022112834A (en) Conductive polymer dispersion, conductive laminate and method for producing the same
KR20150051105A (en) Composition for preparing conductive film and method for preparing the same
JP2024008379A (en) Conductive polymer dispersion, conductive laminate and method for manufacturing the same
JP2022069939A (en) Conductive polymer dispersion, conductive laminate, and method for producing the same
JP2024008381A (en) Conductive polymer dispersion, conductive laminate and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538648

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870244

Country of ref document: EP

Kind code of ref document: A1