WO2015087990A1 - Polyolefin-based unstretched multilayer film - Google Patents

Polyolefin-based unstretched multilayer film Download PDF

Info

Publication number
WO2015087990A1
WO2015087990A1 PCT/JP2014/082906 JP2014082906W WO2015087990A1 WO 2015087990 A1 WO2015087990 A1 WO 2015087990A1 JP 2014082906 W JP2014082906 W JP 2014082906W WO 2015087990 A1 WO2015087990 A1 WO 2015087990A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer film
polyolefin
weight
film
Prior art date
Application number
PCT/JP2014/082906
Other languages
French (fr)
Japanese (ja)
Inventor
直彦 倉本
三輪 和弘
健二 勘田
陽介 村越
佐藤 豪一
Original Assignee
サン・トックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サン・トックス株式会社 filed Critical サン・トックス株式会社
Priority to KR1020167011591A priority Critical patent/KR20160096589A/en
Priority to CN201480061423.2A priority patent/CN105793037A/en
Priority to JP2015552524A priority patent/JP6457402B2/en
Publication of WO2015087990A1 publication Critical patent/WO2015087990A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • B32B2323/046LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Definitions

  • the present invention relates to a polyolefin-based unstretched multilayer film. Specifically, it has excellent optical properties such as high transparency, high glossiness, high image clarity, blocking resistance, and low temperature heat seal properties.
  • the present invention relates to a polyolefin-based unstretched multilayer film excellent in heat seal strength when bonded to a base film to form a composite film; sealing performance; tear-opening property or easy peel property of a package.
  • Polyolefin resin films are widely used as materials for packaging various products. For example, food packaging applications; textile goods / garments daily goods packaging applications; industrial parts packaging applications.
  • polypropylene resin films are widely used because they are excellent in rigidity and heat resistance, and have a high feeling of elasticity.
  • the polypropylene resin film is not sufficient in at least heat sealability, particularly low temperature heat sealability, and impact resistance.
  • attempts have been made to improve heat sealability and impact resistance by copolymerizing film material polypropylene.
  • a significant effect has not been obtained particularly with respect to impact resistance at low temperatures.
  • blocking problems occur when trying to improve heat sealability. For this reason, the above attempts to form a copolymer have not been successful.
  • a linear ethylene- ⁇ -olefin copolymer (LLDPE) is used as an intermediate layer, and the intermediate layer and a polypropylene resin layer as both outer layers are laminated.
  • LLDPE linear ethylene- ⁇ -olefin copolymer
  • the tear strength when the laminated film is bonded to a base film to obtain a composite film becomes very high, the tear-opening property when this is used as a packaging material is significantly impaired.
  • JP-A-2004-276373 discloses a polyolefin-based multilayer film having improved low-temperature heat sealability and blocking resistance by laminating a specific polypropylene-based polymer as both outer layers and an LLDPE layer as an intermediate layer. Proposed. Even with this technique, the tear strength of the resulting composite film is very high, and the tear-openability when this film is used as a packaging material is not satisfactory. By the way, in food packaging applications, particularly packaging of snacks, etc., there is a demand to peel off the heat seal portion and open the package in addition to the above-described tear opening at the time of opening.
  • the present invention has been made in view of the present state of the art as described above.
  • the object of the present invention is excellent in various properties such as optical properties, blocking resistance, low-temperature heat sealability, heat seal strength, and sealability, as well as polyolefin-based non-stretching that is excellent in tear-opening properties and easy peel properties of the package. It is to provide a multilayer film.
  • a polyolefin-based unstretched multilayer film having a laminate layer as an outermost layer, at least one intermediate layer, and a heat seal layer as another outermost layer
  • the laminate layer is made of a polyolefin resin
  • At least one of the intermediate layers is made of a polyolefin resin containing long-chain branched LLDPE
  • the heat seal layer is made of a polyolefin resin containing a polypropylene resin
  • the polyolefin resin of the laminate layer has a higher melting point than the polypropylene resin in the heat seal layer
  • the long-chain branched LLDPE in the polyolefin-based resin in the intermediate layer is The ratio Mw / Mn of polystyrene-equivalent weight average molecular weight Mw and number average molecular weight Mn measured by gel permeation chromatography is 7.5 to 15.0, The amount of non-crystalline components measured by the temperature rising elution fraction
  • the polyolefin-based unstretched multilayer film of the present invention has a laminate layer that is the outermost layer, at least one intermediate layer, and a heat seal layer that is the other outermost layer.
  • the laminate layer in the multilayer film of the present invention is made of a polyolefin resin.
  • the polyolefin resin has a higher melting point than the polypropylene resin in the heat seal layer described later.
  • the melting point of the polyolefin resin is preferably 3 ° C. or higher, more preferably 5 ° C. or higher, and further preferably 15 ° C. higher than the melting point of the polypropylene resin in the heat seal layer. Thereby, sufficient heat resistance can be obtained in the production, lamination, heat sealing, etc.
  • the difference between the melting point of the polyolefin resin and the melting point of the polypropylene resin in the heat seal layer is preferably kept at 20 ° C. or lower. This is because if the melting point difference becomes excessively large, curling may occur in the multilayer film.
  • the polyolefin resin constituting the laminate layer in the present invention include a polypropylene resin, an ethylene homopolymer, an ethylene- ⁇ -olefin copolymer, and a thermoplastic elastomer. These may be used alone or in admixture of two or more. These polyolefin resins preferably have a melting point in the range of 120 to 165 ° C.
  • melt flow rate MFR in the range of 1 to 30 g / 10 minutes.
  • the melting point is the peak top temperature (Tm) of the maximum endothermic peak in a differential scanning calorimeter (DSC) chart;
  • the MFR is a value measured according to JIS K 7210 (both melting point and MFR are the same in the present specification).
  • the copolymer component for example, ethylene and ⁇ -olefin are preferable, and specifically, for example, ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene. 4-methyl-1-pentene can be used, and one or more selected from these can be used.
  • the proportion of the copolymer component in this polypropylene resin is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 3 mol% or less.
  • the said ethylene-alpha-olefin copolymer does not include what corresponds to said polypropylene resin.
  • Examples of the ⁇ -olefin which is a copolymerization component in the ethylene- ⁇ -olefin copolymer include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1- Examples include decene and 4-methyl-1-pentene, and one or more selected from these can be used.
  • the proportion of the ⁇ -olefin component in the ethylene- ⁇ -olefin copolymer is preferably 1 to 20 mol%, more preferably 5 to 15 mol%.
  • the polyolefin resin in the laminate layer of the multilayer film of the present invention preferably contains a polypropylene resin as described above.
  • the laminate layer may consist only of a polypropylene resin, and may contain other polymers together with the polypropylene resin.
  • the other polymer used here is preferably selected from the above-mentioned ethylene homopolymer, ethylene- ⁇ -olefin copolymer, and thermoplastic elastomer.
  • the content of the other polymer is preferably 10% by weight or less, more preferably 5% by weight or less, and most preferably no other polymer based on the whole polyolefin resin. .
  • the laminate layer of the multilayer film of the present invention includes, as an optional additive, for example, a heat stabilizer, a processing stabilizer, a lubricant, a nucleating agent, an antistatic agent, an antifogging agent, An antiblocking agent, antioxidant, a ultraviolet absorber, a pigment etc. can be mentioned.
  • a heat stabilizer for example, a heat stabilizer, a processing stabilizer, a lubricant, a nucleating agent, an antistatic agent, an antifogging agent, An antiblocking agent, antioxidant, a ultraviolet absorber, a pigment etc.
  • additives may be added by a method of directly blending with the polymer constituting the polyolefin resin, or may be added by a method of blending these additives as a master batch containing a high concentration.
  • the base resin for the masterbatch any of the above polyolefin resins can be used.
  • the proportion of the optional component as described above is preferably 10% by weight or less, and more preferably 5% by weight or less, based on the entire polyolefin resin. Most preferably, it does not contain such an optional component.
  • the thickness of the laminate layer in the multilayer film of the present invention is preferably 1.0 to 30 ⁇ m, more preferably 2.5 to 25 ⁇ m. By setting the thickness of the laminate layer within this range, the resulting multilayer film and composite film are preferable in that high impact resistance can be obtained without impairing heat resistance and openability.
  • ⁇ Intermediate layer> At least one of the intermediate layers in the multilayer film of the present invention is made of a polyolefin resin containing long-chain branched LLDPE (B1).
  • the long chain branched LLDPE (B1) in the present invention is a linear low density polyethylene having a branch having 8 or more carbon atoms.
  • the LLDPE used in the prior art film is common to the long chain branched LLDPE (B1) and LDPE (low density polyethylene) in the present invention in that it is a low density polyethylene having a branch.
  • the long-chain branched LLDPE (B1) in the present invention is different from LLDPE and LDPE in the prior art at least in the content of long-chain branches, Mw / Mn and the amount of non-crystalline components.
  • the long chain branched LLDPE (B1) in the present invention is 13
  • the number of branches having 8 or more carbon atoms measured by C-NMR is 1.5 to 5.0 per 1,000 carbon atoms. This value is preferably 2.0 to 5.0, and more preferably 2.5 to 4.5.
  • LLDPE having such a long chain branch when the multilayer film of the present invention is used as a package, it is possible to obtain an advantage that both tear opening and easy peel properties are compatible.
  • the LLDPE in the prior art is dominant when the number of carbon atoms in the branch is 6 or less, and even if there is a branch having 8 or more carbon atoms, the amount thereof is small, usually per 1,000 carbon atoms. 1 or less, and at most 2 or less.
  • the long-chain branched LLDPE (B1) in the present invention is 13 It can be distinguished from LLDPE and LDPE in the prior art by the amount of branching of 8 or more carbon atoms measured by C-NMR.
  • the branched structure of long-chain branched LLDPE (B1) in the present invention and the branched structure of LLDPE in the prior art are: 13 The following describes how it is measured on C-NMR.
  • the second methylene carbon from the branch end attention is paid to the second methylene carbon from the branch end, and it is determined whether or not the number of branched carbons is 8 or more by the chemical shift.
  • the C-NMR measurement can be performed under the following conditions using an appropriate nuclear magnetic resonance analyzer such as a model “JNM-ECS400” manufactured by JEOL.
  • the long chain branched LLDPE (B1) in the present invention has a ratio Mw / Mn (molecular weight distribution) of the weight average molecular weight Mw and the number average molecular weight Mn in terms of polystyrene measured by gel permeation chromatography (GPC) of 7.5 to 15.0. This value is preferably 8.5 to 14.5, and more preferably 9.5 to 13.5.
  • the long-chain branched LLDPE (B1) in the present invention has a polystyrene-equivalent weight average molecular weight Mw measured by GPC of preferably 80,000 to 150,000, more preferably 90,000 to 140,000. preferable.
  • the long-chain branched LLDPE (B1) in the present invention has an amorphous component amount of 1 to 4% by weight measured by a temperature rising elution fractionation method. In the temperature rising elution fractionation method, a solution obtained by dissolving a polymer sample in a predetermined solvent at a high temperature is supplied to a TREF (Temperature Rising Elution Fractionation) column, and then cooled to precipitate and adsorb the polymer sample in the column.
  • TREF Tempoture Rising Elution Fractionation
  • the column temperature is gradually raised and the eluted fraction is analyzed.
  • the supply of the solvent is started, and the fraction eluted during the period in which the column temperature is maintained at 0 ° C. is used as an amorphous component. Is evaluated as the amount of non-crystalline component.
  • the amount of the amorphous component of the long chain branched LLDPE is preferably 1.5 to 3.0% by weight.
  • Such a temperature rising elution fractionation method can be performed, for example, using an appropriate temperature rising elution fractionation (TREF) apparatus such as a special TREF apparatus manufactured by Senshu Kagaku Co., Ltd.
  • TEZ temperature rising elution fractionation
  • the long-chain branched LLDPE (B1) in the present invention as described above may be synthesized by any method as long as it satisfies the above requirements. For example, it can be produced by a method using a known Ziegler-Natta catalyst, preferably together with an appropriate donor compound; a method using a Phillips catalyst; a method using a metallocene catalyst.
  • the metallocene catalyst is a catalyst comprising a metallocene-type transition metal compound having at least one, preferably two, substituted or unsubstituted cyclopentadienyl ligands and a co-catalyst.
  • the cocatalyst include organoaluminum compounds; complexes of organoboron compounds and cations; ion-exchange silicates and the like, and one or more selected from these can be used.
  • the metallocene catalyst may be supported on a suitable inorganic substance.
  • the at least one layer of the intermediate layer in the multilayer film of the present invention may contain other polymers in addition to the long-chain branched LLDPE (B1) as described above.
  • examples of other polymers that can be used here include polypropylene resin (B2), polyethylene (B3) other than long-chain branched LLDPE (B1), and thermoplastic elastomer.
  • polypropylene resin (B2) for example, a resin similar to the resin described above can be used for the polypropylene resin as the polyolefin resin constituting the laminate layer.
  • polyethylene (B3) other than long-chain branched LLDPE (B1) examples include HDPE, LLDPE, and LDPE.
  • At least one resin selected from the group consisting of polyethylene (B3) other than the polypropylene-based resin (B2) and the long-chain branched LLDPE (B1) among the other polymers described above is used as the intermediate layer in the multilayer film of the present invention.
  • the easy peel strength when the multilayer film is used as a package can be adjusted, which is preferable.
  • the polyolefin resin in the at least one layer of the intermediate layer of the multilayer film of the present invention is: Consists of long-chain branched LLDPE (B1) only, or Long-chain branched LLDPE (B1); It is preferable to consist of at least one resin selected from the group consisting of polypropylene (B2) and polyethylene (B3) other than the long-chain branched LLDPE (B1) as described above.
  • the at least one layer of the intermediate layer of the multilayer film of the present invention preferably comprises only the polyolefin resin as described above and does not contain any other resin.
  • the polyolefin resin in the at least one layer of the intermediate layer of the multilayer film of the present invention preferably contains the above resins in the following proportions.
  • Long chain branched LLDPE (B1) preferably 40% by weight or more, more preferably 50% by weight or more
  • Polypropylene resin (B2) preferably 30% by weight or less, more preferably 25% by weight or less
  • Polyethylene (B3) other than long-chain branched LLDPE (B1) preferably 50% by weight or less, more preferably 30% by weight or less
  • the total of the polyethylene (B3) other than the long chain branched LLDPE (B1), the polypropylene resin (B2) and the long chain branched LLDPE (B1) is 100% by weight.
  • the intermediate layer of the multilayer film of the present invention may contain additives as described as optional components of the laminate layer in the same manner.
  • the intermediate layer in the multilayer film of the present invention may consist of only one layer, or may be a laminate of two or more layers. In the latter case, each layer constituting the intermediate layer is selected from the polyolefin resins as described above.
  • the polyolefin resin constituting each layer may be the same in the type of polyolefin resin, the presence or absence of other optional polymers and additives, and the type and content thereof. One or more of may be different.
  • the thickness of the intermediate layer is preferably 5 to 80 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the intermediate layer By setting the intermediate layer to a thickness in this range, it is preferable in terms of obtaining high impact resistance and excellent image clarity in the obtained multilayer film and composite film without impairing rigidity when a multilayer film is obtained.
  • the intermediate layer is composed of a laminate of polyolefin resin
  • the number of layers is preferably 2 to 4 layers, and more preferably 2 to 3 layers.
  • the polyolefin resin in each layer may be the same or different.
  • the thickness of the laminate is preferably within the above range as the thickness of the intermediate layer.
  • the thickness of each layer constituting the laminate is preferably 2 to 40 ⁇ m, and more preferably 5 to 25 ⁇ m.
  • the heat seal layer in the multilayer film of the present invention is made of a polyolefin resin containing a polypropylene resin.
  • This polypropylene resin preferably contains a polypropylene resin containing 70% by weight or more of the propylene-ethylene copolymer (C).
  • the polymer in the polypropylene resin of this heat seal layer may consist only of the propylene-ethylene copolymer (C), and contains other polymers together with the propylene-ethylene copolymer (C). May be.
  • the composition of the propylene-ethylene copolymer (C) in the polypropylene resin of the heat seal layer is such that the resulting multilayer film and composite film have blocking resistance, low temperature heat seal property, heat seal part strength and heat seal part resistance. Contributes to improved pinhole properties.
  • the proportion of the propylene-ethylene copolymer (C) in the polypropylene resin of the heat seal layer is less than 70% by weight, the degree of the above effect is insufficient, which is not preferable.
  • the proportion of the propylene-ethylene copolymer (C) in the polypropylene resin of the heat seal layer is preferably 80% by weight or more, more preferably 90% by weight or more.
  • the propylene-ethylene copolymer (C) preferably has a molecular weight distribution Mw / Mn represented by a ratio of the weight average molecular weight Mw to the number average molecular weight Mn, preferably 1.5 to 3.5, more preferably 1 8 to 3.2, and more preferably 2.0 to 3.0. If the Mw / Mn of the propylene-ethylene copolymer (C) is less than 1.5, the melt tension becomes too low and the film forming property tends to be inferior. On the other hand, it is preferable that Mw / Mn is 3.5 or less from the viewpoint of securing blocking resistance when a multilayer film is formed and securing optical properties in the multilayer film and the composite film.
  • the propylene-ethylene copolymer (C) preferably has a Mw of 450,000 to 100,000, more preferably 400,000 to 200,000.
  • the propylene-ethylene copolymer (C) preferably has a melt flow rate MFR measured at 230 ° C. and a load of 2.16 kg in accordance with JIS K 7210, preferably 1 to 30 g / 10 minutes, more preferably 5 ⁇ 15 g / 10 min. If the MFR is less than 1 g / 10 min, the melt viscosity is too high, so that the pressure in the film forming machine (for example, an extruder) becomes excessively high during the production of the multilayer film, and the productivity is reduced. It may cause poor appearance such as uniformity and melt fracture.
  • the propylene-ethylene copolymer (C) preferably has a melting point of 120 to 140 ° C, more preferably 120 to 135 ° C.
  • the propylene-ethylene copolymer (C) having a melting point at a temperature in this range is excellent in balance between heat resistance when producing a multilayer film and transparency when formed into a multilayer film or a composite film. This is preferable.
  • the content of ethylene units in the propylene-ethylene copolymer (C) is preferably 1 to 10 mol%, more preferably 2 to 5 mol%. By setting the content ratio of the ethylene unit within this range, the resulting multilayer film can exhibit excellent blocking resistance without impairing transparency, which is preferable.
  • the propylene-ethylene copolymer (C) is preferably polymerized using a metallocene catalyst, and the propylene-ethylene copolymer (C) polymerized using a metallocene catalyst is a multilayer obtained.
  • the film is preferable in that it exhibits a high degree of blocking resistance and exhibits excellent optical properties when formed into a multilayer film and a composite film.
  • the metallocene catalyst is a catalyst comprising a metallocene-type transition metal compound having at least one, preferably two, substituted or unsubstituted cyclopentadienyl ligands and a co-catalyst.
  • the cocatalyst include organoaluminum compounds; complexes of organoboron compounds and cations; ion-exchange silicates and the like, and one or more selected from these can be used.
  • the metallocene catalyst may be supported on a suitable inorganic substance. Metallocene catalysts are already known in the art, and those skilled in the art can appropriately select and use an appropriate metallocene catalyst according to the purpose.
  • a polypropylene resin other than the propylene-ethylene copolymer (C) ( A1) is preferably used as the other polymer.
  • the molecular weight distribution Mw / Mn represented by the ratio of the weight average molecular weight Mw and the number average molecular weight Mn is preferably 4 or more, more preferably 4.5 to 10, and still more preferably. Is 5-8.
  • the tear strength of the resulting multilayer film and the composite film produced using the multilayer film is excessively high, and there is an effect of improving the tear openability in the packaging material. It will be difficult to express. This is considered to be due to the fact that when Mw / Mn is less than 4, melt orientation hardly occurs during the production of the multilayer film. On the other hand, it is preferable that Mw / Mn be 10 or less from the viewpoint of securing the melt resistance during the production of the multilayer film within an appropriate range and ensuring the blocking resistance when the multilayer film is formed.
  • the polypropylene resin (A1) preferably has a Mw of 450,000 to 100,000, more preferably 400,000 to 200,000.
  • the weight average molecular weight Mw and the number average molecular weight Mn are both values in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the polypropylene resin (A1) preferably has a melt flow rate MFR measured at 230 ° C. under a load of 2.16 kg in accordance with JIS K 7210 at 1 to 30 g / 10 minutes, and 5 to 15 g / 10 minutes. It is more preferable. If the MFR is less than 1 g / 10 min, the melt viscosity is too high, so that the pressure in the film forming machine (for example, an extruder) becomes excessively high during the production of the multilayer film, resulting in a decrease in productivity and a decrease in film thickness.
  • the polypropylene resin (A1) preferably has a melting point of 120 to 150 ° C, more preferably 130 to 145 ° C.
  • the polypropylene resin (A1) exhibiting a melting point at a temperature within this range is preferable in that the balance between the heat resistance when producing the multilayer film and the transparency when formed into the multilayer film and the composite film is excellent. .
  • the polypropylene resin (A1) may be a propylene homopolymer or a copolymer of propylene and a copolymer component.
  • the copolymerization component used here ethylene and ⁇ -olefin are preferable. Specifically, for example, ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene and the like can be mentioned, and one or more selected from these can be used.
  • the proportion of the copolymer component in the polypropylene resin (A1) is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 3 mol% or less. It is preferable that a heat seal layer consists only of the said propylene-ethylene copolymer (C), or consists only of a propylene-ethylene copolymer (C) and a polypropylene resin (A1).
  • the heat seal layer of the multilayer film of the present invention may contain additives as described as optional components of the laminate layer in the same manner.
  • the thickness of the heat seal layer in the multilayer film of the present invention is preferably 2 to 30 ⁇ m, more preferably 2.5 to 25 ⁇ m.
  • the resulting multilayer film and composite film are preferable in that high impact resistance can be obtained without impairing low-temperature heat sealability and pinhole resistance.
  • the thickness of the polyolefin-based unstretched multilayer film of the present invention can be appropriately set depending on the use mode and application.
  • the use mode is a selection of whether to use the multilayer film of the present invention as it is as a packaging material, or to use it as a composite film by laminating with a film substrate, The use refers to the type and weight of the contents of the packaging material.
  • the thickness of the polyolefin-based unstretched multilayer film of the present invention can be, for example, 10 to 200 ⁇ m, preferably 15 to 150 ⁇ m, and more preferably 18 to 100 ⁇ m.
  • Method for producing polyolefin-based unstretched multilayer film> The multilayer film of the present invention can be produced by any method as long as the method does not substantially involve stretching. “Substantially no stretching” does not mean that even a slight orientation occurs in the film manufacturing process, but means that the film does not go through an explicit stretching process. Therefore, for example, it should be understood that a slight orientation in the extrusion direction is allowed when an extrusion process under the conditions normally employed is employed.
  • an appropriate method such as an extrusion method or a casting method can be employed.
  • the resin constituting each layer of the multilayer film of the present invention has an appropriate MFR, and is highly compatible with a melt-type film forming machine. It is preferable because it can be expressed to the limit.
  • a T die, an annular die, or the like can be used as the die for the extrusion method. However, from the viewpoint of precisely controlling the thickness of the layer to obtain excellent optical characteristics, it is not preferable to use an annular die, and it is preferable to use a T die or the like.
  • the multilayer film of the present invention has a laminate layer, at least one intermediate layer, and a heat seal layer, it has a multilayer structure composed of at least three layers.
  • a known method such as a co-extrusion method or an in-line laminating method can be employed.
  • the coextrusion method include a multi-manifold method and a feed block method.
  • the coextrusion method is preferably used because the thickness of each layer can be uniformly controlled in the width direction.
  • the multilayer film of the present invention is expected to be applied as a packaging material as it is or in the form of a composite film obtained by laminating it with a film substrate.
  • the film base material is affixed on the outermost layer surface, usually on the surface of the laminate layer.
  • a surface treatment may be performed inline or offline on the outermost layer surface, usually on the surface of the laminate layer. Examples of the surface treatment include corona discharge treatment, flame or flame treatment.
  • the composite film of the present invention is excellent in low temperature heat sealability, heat seal strength, and pinhole resistance of the heat seal portion, and is also excellent in tear openability when used as a packaging material.
  • Film substrate As a material which comprises the film base material in the composite film of this invention, it can determine suitably according to the use of a packaging material. Examples thereof include a resin selected from the group consisting of a polypropylene resin, a polyethylene resin, a polyethylene terephthalate resin, and a polyamide resin, or a metal.
  • the film substrate can be a layer containing one or more materials selected from these, or can be a laminate comprising a plurality of such layers.
  • the thickness of the film substrate is arbitrary depending on the use of the packaging material, but can be, for example, 5 to 75 ⁇ m, and preferably 10 to 50 ⁇ m.
  • the total thickness of the composite film of the present invention can be arbitrarily set according to the use of the packaging material, but can be, for example, 15 to 250 ⁇ m, preferably 20 to 200 ⁇ m, more preferably 23 to 150 ⁇ m. It is.
  • ⁇ Production method of composite film> The manufacturing method of a composite film will not be specifically limited if it is a method which can affix the multilayer film of this invention on the film base material by using the lamination layer side as a sticking surface.
  • Adhesion between the film substrate and the laminate layer of the multilayer film may be performed by an appropriate adhesive or thermocompression bonding.
  • the adhesive used here a commercially available adhesive may be used, or a molten resin such as a molten polyethylene resin may be used.
  • the method for applying the adhesive include transfer means such as gravure, gravure reverse, and offset; scraping means such as a bar and a comma bar.
  • the method of laminating the film base material and the multilayer film with an adhesive layer as required include a dry lamination method and a thermal lamination method.
  • Tear strength As an index of tear resistance, tear strength was measured under the following conditions using an autograph (model number: AG-500D) manufactured by Shimadzu Corporation in accordance with JIS K 7128-1. Test piece dimensions: Long side (vertical) 100 mm, short side (horizontal) 50 mm Slit: 20 mm long notch provided parallel to the long side at the center of one short side of the test piece (position 25 mm from the long side) Tensile speed: 500 mm / min Measuring temperature: 23 ° C.
  • Heat seal strength As an index of heat sealability, the heat seal layers of two composite films were brought into contact with each other, and the strength when heat sealed at each temperature was examined by the following tensile test.
  • the composite film is cut into a 15 mm ⁇ 200 mm rectangle, and the two sheets are stacked together so that the heat seal layers are in contact with each other, and heated under the following conditions using a YSS heat sealer manufactured by Yasuda Seiki Seisakusho Co., Ltd.
  • a test piece was obtained by sealing.
  • Seal bar width 5mm
  • Seal pressure 0.1 MPa Sealing time: 1.0 second Sealing temperature: Variable to 150 ° C., 160 ° C. and 170 ° C.
  • a “longitudinal” direction test piece the case where the long side of the rectangle coincides with the extrusion direction of the film
  • a “lateral” direction test piece the case where the long side of the rectangle is orthogonal to the film extrusion direction.
  • a tensile test was performed under the condition of minutes, and the maximum value of the stress was examined. If the maximum value of the stress is 3 N / 15 mm or more, it can be evaluated that sufficient heat seal strength is obtained at the temperature; If it is 13 N / 15 mm or less, it can be evaluated that it has easy peel properties.
  • Easy peel sensor test
  • a sensory test was conducted in which the package was opened by human hands. Using a vertical pillow packaging machine (model “TWX1N”, manufactured by Tokyo Automatic Machinery Co., Ltd.), the heat seal layers of the composite film are heat-sealed under the following conditions to obtain a 120 mm long and 100 mm wide package. It was.
  • the four sides of the pseudo bag-making body are heat-sealed to the ends.
  • Heat sealing temperature 160 ° C
  • Seal pressure 0.1 MPa
  • Heat sealing time 1.0 seconds
  • Seal width 5 mm
  • a cut of 10 mm is made in the vertical direction from the end portion using a cutter in a piece of the heat seal portion of the obtained pseudo bag-making body, and the cut portion is formed in the lateral direction (parallel to the surface of the pseudo-bag-making body and the cut). Tearing by hand in the direction perpendicular to the direction), the force required for the tearing and the state of the tearing portion were examined, judged according to the following criteria, and evaluated by the following calculation formula.
  • the composite film was cut into a rectangle of 150 mm ⁇ 100 mm and folded back into two at the center of the short side so that the heat seal layer was inside.
  • One side of the short side part is left as an opening, and the remaining two sides (one side part and the long side of the short side) are manufactured by Yasuda Seiki Seisakusho Co., Ltd., using a YSS heat sealer. Heat sealed under conditions to obtain an envelope-like pseudo bag-making body.
  • Heat sealing temperature 160 ° C Seal pressure: 0.1 MPa Heat sealing time: 1.0 seconds Seal width 5mm From the opening of this pseudo bag-making body, Taseto Co., Ltd., dyeing penetrant flaw detection agent, “permeating liquid FP-S standard type” is sprayed, and the liquid leakage state from the seal part is visually observed. Evaluated by criteria.
  • the main agent product number: TM-595) 15 g, a curing agent (product number: CAT-56) 2.7 g and a solution obtained by mixing 36.8 g of ethyl acetate were applied with an applicator (2 mil setting), 80 Dry at 1 ° C. for 1 minute.
  • a laminate film of the polyolefin-based unstretched multilayer film obtained above was laminated on this adhesive layer while pressing with a hand roller, and then aged at 40 ° C. for 3 days to obtain a composite film.
  • the unit “mil” means 0.001 inch, and 1 mil corresponds to about 25.3999 ⁇ m.
  • the above (7) to (10) were evaluated. The evaluation results are shown in Table 5.
  • Example 2 to 10 and Comparative Examples 1 to 4 the polyolefin-based unstretched multilayer was prepared in the same manner as in Example 1 except that the type and amount of resin supplied to the extruder for each layer were as shown in Table 3 and Table 4, respectively. Films and composite films were produced and evaluated respectively. The evaluation results are shown in Tables 5 and 6. In addition, the abbreviation of the resin raw material in Table 3 and Table 4 has the following meaning, respectively.
  • the numerical value in the MFR column of Table 7 is the melt flow rate measured at a load of 2.16 kg in accordance with JIS K 7210.
  • the measurement temperature was 190 ° C. for the polyethylene resin and 230 ° C. for the polypropylene resin.
  • the melting point is the peak temperature of the melting point measured by a differential scanning calorimeter (DSC).
  • the content of the long chain branch shown in the “long chain branch” column is the number of carbon atoms per 1,000 carbon atoms, calculated according to the following formula (2) from the result of 13 C-NMR measured under the following conditions: The number of branches of 8 or more. [ 13C -NMR measurement conditions] Measuring device: Model “JNM-ECS400” manufactured by JEOL Ltd.

Abstract

The present invention provides a polyolefin-based unstretched multilayer film, which has excellent optical characteristics, blocking resistance, heat sealing properties, hermetic sealing properties, package openability by tearing and easy peeling properties. This polyolefin-based unstretched multilayer film comprises a laminate layer, at least one intermediate layer, and a heat sealing layer. At least one intermediate layer is formed of a polyolefin-based resin containing a long-chain branched LLDPE. The long-chain branched LLDPE in the polyolefin-based resin of the intermediate layer has a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in terms of polystyrene as determined by gel permeation chromatography, namely Mw/Mn of 7.5-15.0 and an amorphous content of 1-4% by weight as determined by a temperature raising elution fractionation method. The long-chain branched LLDPE in the polyolefin-based resin of the intermediate layer has 1.5-5.0 branches, each of which has 8 or more carbon atoms, per 1,000 carbon atoms as determined by 13C-NMR.

Description

ポリオレフィン系無延伸多層フィルムPolyolefin-based unstretched multilayer film
 本発明は、ポリオレフィン系無延伸多層フィルムに関する。詳しくは、高透明性、高光沢性、高写像性などの光学的特性;耐ブロッキング性;低温ヒートシール性などの諸特性に優れるとともに、
基材フィルムと貼り合わせて複合フィルムとしたときのヒートシール強度;密封性;包装体の引裂開封性ないしイージーピール性などに優れるポリオレフィン系無延伸多層フィルムに関する。
The present invention relates to a polyolefin-based unstretched multilayer film. Specifically, it has excellent optical properties such as high transparency, high glossiness, high image clarity, blocking resistance, and low temperature heat seal properties.
The present invention relates to a polyolefin-based unstretched multilayer film excellent in heat seal strength when bonded to a base film to form a composite film; sealing performance; tear-opening property or easy peel property of a package.
 ポリオレフィン系樹脂フィルムは、各種製品を包装する材料として広く利用されている。例えば食品包装用途;繊維・衣料などの日用雑貨品の包装用途;工業部品の包装用途などである。特にポリプロピレン系樹脂フィルムは、剛性および耐熱性に優れ、フィルムの腰感も高いことから、製袋機に対する適正が高く、広く利用されている。しかしながら、ポリプロピレン系樹脂フィルムは、少なくともヒートシール性、特に低温ヒートシール性、および耐衝撃性が十分ではない。そこで、フィルム材料のポリプロピレンを共重合体化することによってヒートシール性および耐衝撃性を向上しようとする試みがなされている。しかし、特に低温における耐衝撃性についてはさほどの効果は得られていない。また、ヒートシール性を向上しようとするとブロッキングの問題が生じる。そのため、上記共重合体化の試みは成功していない。
 この点、特開平5−147179号公報では、中間層として直鎖状エチレン−α−オレフィン共重合体(LLDPE)を用い、該中間層と、両外層としてのポリプロピレン系樹脂層とを積層することによって耐衝撃性を向上したポリオレフィン系多層フィルムが提案されている。この方法によると、確かに耐衝撃性の向上は認められるが、積層フィルムの光学特性(透明性、光沢性、写像性など)が損なわれる。また、上記積層フィルムを基材フィルムと貼り合わせて複合フィルムとしたときの引裂強度が非常に高くなるため、これを包装材料として用いた場合の引裂開封性が著しく損なわれる。
 特開2004−276373号公報では、特定のポリプロピレン系重合体を両外層として、これを中間層であるLLDPE層と積層することによって低温ヒートシール性および耐ブロッキング性が改良されたポリオレフィン系多層フィルムが提案されている。この技術によっても、得られる複合フィルムの引裂強度は非常に高く、これを包装材料として用いた場合の引裂開封性は満足できるものではない。
 ところで、例えば食品包装用途、特にスナック菓子などの包装においては、開封の際に、上記の引裂開封のほか、ヒートシール部を剥離して開封したい要請がある。つまり、相対して袋体を構成するフィルムそれぞれのヒートシール部近傍をつかみ、該部分をフィルム面に対して垂直に離隔する方向に引っ張ってヒートシール部を剥離することによって開封する場合である。この、ヒートシール部の剥離のし易さを「イージーピール性」という。
 イージーピール性を有する包装材料の場合でも、食品用途などに用いられるものである以上、密封性は維持する必要がある。しかしながら従来技術においては、包装材料の密封性を維持しながらイージーピール性を向上しようとする検討は、ほとんどなされていないのが現状である。
Polyolefin resin films are widely used as materials for packaging various products. For example, food packaging applications; textile goods / garments daily goods packaging applications; industrial parts packaging applications. In particular, polypropylene resin films are widely used because they are excellent in rigidity and heat resistance, and have a high feeling of elasticity. However, the polypropylene resin film is not sufficient in at least heat sealability, particularly low temperature heat sealability, and impact resistance. Thus, attempts have been made to improve heat sealability and impact resistance by copolymerizing film material polypropylene. However, a significant effect has not been obtained particularly with respect to impact resistance at low temperatures. Also, blocking problems occur when trying to improve heat sealability. For this reason, the above attempts to form a copolymer have not been successful.
In this regard, in Japanese Patent Laid-Open No. 5-147179, a linear ethylene-α-olefin copolymer (LLDPE) is used as an intermediate layer, and the intermediate layer and a polypropylene resin layer as both outer layers are laminated. Has proposed a polyolefin-based multilayer film having improved impact resistance. According to this method, an improvement in impact resistance is certainly observed, but the optical properties (transparency, glossiness, image clarity, etc.) of the laminated film are impaired. Moreover, since the tear strength when the laminated film is bonded to a base film to obtain a composite film becomes very high, the tear-opening property when this is used as a packaging material is significantly impaired.
JP-A-2004-276373 discloses a polyolefin-based multilayer film having improved low-temperature heat sealability and blocking resistance by laminating a specific polypropylene-based polymer as both outer layers and an LLDPE layer as an intermediate layer. Proposed. Even with this technique, the tear strength of the resulting composite film is very high, and the tear-openability when this film is used as a packaging material is not satisfactory.
By the way, in food packaging applications, particularly packaging of snacks, etc., there is a demand to peel off the heat seal portion and open the package in addition to the above-described tear opening at the time of opening. That is, it is a case where it opens by grasping | ascertaining the heat seal part vicinity of each film which comprises a bag body oppositely, pulling this part in the direction spaced apart perpendicularly to a film surface, and peeling a heat seal part. This ease of peeling of the heat seal portion is called “easy peel”.
Even in the case of a packaging material having easy peel properties, it is necessary to maintain hermeticity as long as it is used for food applications. However, in the prior art, there is almost no investigation to improve easy peelability while maintaining the sealing property of the packaging material.
 本発明は、以上のような当業界の現状に鑑みてなされた。
 本発明の目的は、光学的特性、耐ブロッキング性、低温ヒートシール性、ヒートシール強度、密封性などの諸特性に優れるとともに、包装体の引裂開封性およびイージーピール性にも優れるポリオレフィン系無延伸多層フィルムを提供することである。
 本発明によれば、本発明の上記目的および利点は、
最外層であるラミネート層、少なくとも1層の中間層およびもう一方の最外層であるヒートシール層を有するポリオレフィン系無延伸多層フィルムであって、
 前記ラミネート層はポリオレフィン系樹脂からなり、
 前記中間層の少なくとも一層は長鎖分岐LLDPEを含有するポリオレフィン系樹脂からなり、
 前記ヒートシール層はポリプロピレン系樹脂を含有するポリオレフィン系樹脂からなり、
 前記ラミネート層のポリオレフィン系樹脂は、前記ヒートシール層におけるポリプロピレン系樹脂よりも融点が高く、
 上記中間層におけるポリオレフィン系樹脂中の長鎖分岐LLDPEは、
ゲルパーミエーションクロマトグラフィーによって測定したポリスチレン換算の重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが7.5~15.0であり、
昇温溶出分別法によって測定した非結晶性成分量が1~4重量%であり、そして13C−NMRによって測定した炭素数8以上の分岐の数が、炭素原子1,000個あたり1.5~5.0個である
ことを特徴とする、前記多層フィルムによって達成される。
The present invention has been made in view of the present state of the art as described above.
The object of the present invention is excellent in various properties such as optical properties, blocking resistance, low-temperature heat sealability, heat seal strength, and sealability, as well as polyolefin-based non-stretching that is excellent in tear-opening properties and easy peel properties of the package. It is to provide a multilayer film.
According to the present invention, the above objects and advantages of the present invention are:
A polyolefin-based unstretched multilayer film having a laminate layer as an outermost layer, at least one intermediate layer, and a heat seal layer as another outermost layer,
The laminate layer is made of a polyolefin resin,
At least one of the intermediate layers is made of a polyolefin resin containing long-chain branched LLDPE,
The heat seal layer is made of a polyolefin resin containing a polypropylene resin,
The polyolefin resin of the laminate layer has a higher melting point than the polypropylene resin in the heat seal layer,
The long-chain branched LLDPE in the polyolefin-based resin in the intermediate layer is
The ratio Mw / Mn of polystyrene-equivalent weight average molecular weight Mw and number average molecular weight Mn measured by gel permeation chromatography is 7.5 to 15.0,
The amount of non-crystalline components measured by the temperature rising elution fractionation method is 1 to 4% by weight, and the number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1.5 per 1,000 carbon atoms. Achieved by the multilayer film, characterized in that it is ~ 5.0.
 本発明のポリオレフィン系無延伸多層フィルムは、最外層であるラミネート層と、少なくとも1層の中間層と、もう一方の最外層であるヒートシール層とを有する。
<ラミネート層>
 本発明の多層フィルムにおけるラミネート層はポリオレフィン系樹脂からなる。
 上記のポリオレフィン系樹脂は、後述のヒートシール層におけるポリプロピレン系樹脂よりも融点が高いものである。このポリオレフィン系樹脂の融点は、ヒートシール層におけるポリプロピレン系樹脂の融点よりも、3℃以上高いことが好ましく、5℃以上高いことがより好ましく、15℃高いことがさらに好ましい。このことにより、本発明の多層フィルムの製造あるいは積層、ヒートシールなどの際に十分な耐熱性を得ることができる。一方で、上記ポリオレフィン系樹脂の融点とヒートシール層におけるポリプロピレン系樹脂の融点との差は、20℃以下に留めることが好ましい。融点差が過度に大きくなると、多層フィルムにカールが発生する場合があるためである。
 本発明におけるラミネート層を構成するポリオレフィン系樹脂としては、例えばポリプロピレン系樹脂、エチレンの単独重合体、エチレン−α−オレフィン共重合体、熱可塑性エラストマーなどを挙げることができる。これらは単独であるいは2種以上混合して用いられる。これらのポリオレフィン系樹脂は、その融点が120~165℃の範囲にあることが好ましく、メルトフローレートMFRが1~30g/10分の範囲にあることが好ましい。上記融点は、示差走査熱量計(DSC)チャートにおける最大吸熱ピークのピークトップ温度(Tm)であり;
上記MFRは、JIS K 7210に準拠して測定された値である(融点、MFRとも、本明細書において以下同じ。)。
 上記ポリプロピレン系樹脂としては、プロピレンの単独重合体、プロピレンと共重合成分との共重合体を挙げることができる。この共重合成分としては、例えばエチレンおよびα−オレフィンが好ましく、具体的には例えばエチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、4−メチル−1−ペンテンなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。このポリプロピレン系樹脂における共重合成分の割合は、10モル%以下とすることが好ましく、5モル%以下とすることがより好ましく、3モル%以下とすることがさらに好ましい。
 上記エチレン−α−オレフィン共重合体は、上記のポリプロピレン系樹脂に該当するものは包含しない。上記エチレン−α−オレフィン共重合体における共重合成分であるα−オレフィンとしては、例えばプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、4−メチル−1−ペンテンなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。エチレン−α−オレフィン共重合体におけるα−オレフィン成分の割合は、1~20モル%とすることが好ましく、5~15モル%とすることがより好ましい。
 本発明の多層フィルムのラミネート層におけるポリオレフィン系樹脂は、上記のようなポリプロピレン系樹脂を含有することが好ましい。ラミネート層は、ポリプロピレン系樹脂のみからなっていてもよく、ポリプロピレン系樹脂とともに、その他の重合体を含有していてもよい。ここで使用されるその他の重合体は、上記したエチレンの単独重合体、エチレン−α−オレフィン共重合体および熱可塑性エラストマーから選択されることが好ましい。
 その他の重合体の含有割合は、ポリオレフィン系樹脂の全体に対して、好ましくは10重量%以下であり、より好ましくは5重量%以下であり、最も好ましくは他の重合体を含有しないことである。
[任意成分]
 本発明の多層フィルムのラミネート層は、上記のようなポリオレフィン系樹脂以外に、任意的な添加剤として、例えば熱安定剤、加工安定剤、滑剤、増核剤、帯電防止剤、防曇剤、アンチブロッキング剤、酸化防止剤、紫外線吸収剤、顔料などを挙げることができる。これらの添加剤は、ポリオレフィン系樹脂を構成する重合体に直接配合する方法によって添加してもよく、あるいはこれらの添加剤を高濃度で含有するマスターバッチとして配合する方法によって添加してもよい。マスターバッチのベース樹脂としては、上記のポリオレフィン系樹脂のうちのいずれかを用いることができる。
 上記のような任意成分の使用割合は、ポリオレフィン系樹脂の全体に対して、10重量%以下とすることが好ましく、5重量%以下とすることがより好ましい。最も好ましくはこのような任意成分を含有しないことである。
[ラミネート層の厚さ]
 本発明の多層フィルムにおけるラミネート層の厚みは、好ましくは1.0~30μmであり、より好ましくは2.5~25μmである。ラミネート層をこの範囲の厚みに設定することにより、得られる多層フィルムおよび複合フィルムにおいて、耐熱性および開封性を損なわずに高度の耐衝撃性が得られる点で、好ましい。
<中間層>
 本発明の多層フィルムにおける中間層の少なくとも1層は長鎖分岐LLDPE(B1)を含有するポリオレフィン系樹脂からなる。
[長鎖分岐LLDPE]
 本発明における長鎖分岐LLDPE(B1)は、炭素数8以上の分岐を有する直鎖状の低密度ポリエチレンである。
 従来技術のフィルムに用いられているLLDPEは、分岐を有する低密度ポリエチレンである点で、本発明における長鎖分岐LLDPE(B1)およびLDPE(低密度ポリエチレン)と共通する。しかし本発明における長鎖分岐LLDPE(B1)は、少なくとも長鎖分岐の含有量、Mw/Mnおよび非結晶性成分量において、従来技術におけるLLDPEおよびLDPEとは異なる。
 本発明における長鎖分岐LLDPE(B1)は、13C−NMRによって測定した炭素数8以上の分岐の数が、炭素原子1,000個あたり1.5~5.0個である。この値は好ましくは2.0~5.0個であり、より好ましくは2.5~4.5個である。このような長鎖分岐を有するLLDPEを使用することにより、本発明の多層フィルムを包装体としたときに、引裂き開封性とイージーピール性とが両立されるとの利点を得ることができる。
 この点、従来技術におけるLLDPEは、分岐の炭素数は6以下の場合が支配的であり、炭素数8以上の分岐が存在したとしてもその量は少なく、炭素原子1,000個あたり、通常は1個以下であり、多くとも2個以下にとどまる。
 一方、LDPEは、13C−NMRの測定上、炭素数8以上の分岐として検出される成分が炭素数1,000個あたり、5個よりも多い。
 従って本発明における長鎖分岐LLDPE(B1)は、13C−NMRによって測定される炭素数8以上の分岐の量によって、従来技術におけるLLDPEおよびLDPEと区別することができる。
 本発明における長鎖分岐LLDPE(B1)の分岐構造と、従来技術におけるLLDPEの分岐構造とが、13C−NMR上どのように測定されるかについて以下に説明する。ここで、分岐として、長鎖分岐LLDPEのC分岐(1−デセン構造)および従来技術におけるLLDPEのC分岐(1−オクテン構造)に着目することにした。
 ポリエチレンの主鎖に存在するメチレン炭素は、13C−NMR上、化学シフトδ=30ppmに観察される。分岐末端のメチル炭素は、C分岐およびC分岐の双方とも、化学シフトδ=14.06ppmに現れる。ところが、分岐末端から2番目および3番目の各メチレン炭素の化学シフトは、C分岐とC分岐とで、下記表1に示されるように相違する。
Figure JPOXMLDOC01-appb-T000001
 本発明では、このうちの分岐末端から2番目のメチレン炭素に着目し、その化学シフトによって分岐の炭素数が8以上であるか否かを判別することとした。
 実際の計算にあたっては、化学シフトδ=22.87ppmに現れるピークの面積の、主鎖のメチレン炭素に帰属される化学シフトδ=30ppmに現れるピークの面積に対する相対値を評価することとなる。
 上記のような13C−NMRの測定は、例えば日本電子(株)製の型式「JNM−ECS400」などの適宜の核磁気共鳴分析装置を用いて、以下の条件で行うことができる。
 溶媒:トリクロロベンゼン/重ベンゼンの混合溶媒(75/25容量%)
 試料濃度:80mg/2.5mL溶液
 測定モード:1H−完全デカップリング
 測定温度:120℃
 パルス幅:90度パルス
 パルス繰返し時間:9秒
 積算回数:9,000回
 本発明における長鎖分岐の含有量は、
分岐の末端から2番目の炭素(化学シフトδ=22.87ppm)のピーク面積を、
重合体鎖を構成するメチレン炭素(化学シフトδ=30ppm)のピーク面積を1,000とした場合の相対値として表される。単位は(個/1,000C)である。
 本発明における長鎖分岐LLDPE(B1)は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定したポリスチレン換算の重量平均分子量Mwと数平均分子量Mnとの比Mw/Mn(分子量分布)が7.5~15.0である。この値は、好ましくは8.5~14.5であり、より好ましくは9.5~13.5である。このような分子量分布を有する長鎖分岐LLDPEを使用することにより、本発明の多層フィルムを包装体としたときに、引裂き開封性とイージーピール性とが両立されるとの利点を得ることができる。
 本発明における長鎖分岐LLDPE(B1)は、GPCによって測定したポリスチレン換算の重量平均分子量Mwは、80,000~150,000であることが好ましく、90,000~140,000であることがより好ましい。
 本発明における長鎖分岐LLDPE(B1)は、昇温溶出分別法によって測定した非結晶性成分量が1~4重量%である。
 昇温溶出分別法は、重合体試料を所定の溶媒中に高温で溶解した溶液をTREF(Temperature Rising Elution Fractionation)カラムに供給し、次いで冷却して該カラム中に重合体試料を析出・吸着させた後、カラムを徐々に昇温して、溶出する留分を分析する方法である。本発明においては、試料供給後のカラムを0℃まで冷却した後に溶媒の供給を開始し、カラム温度を0℃に維持している期間中に溶出する留分を非結晶成分として、該留分の全留分に対する割合を非結晶性成分量として評価する。長鎖分岐LLDPEの非結晶性成分量は、好ましくは1.5~3.0重量%である。
 このような昇温溶出分別法は、例えば、(株)センシュー科学製のTREF装置特型などの適宜の昇温溶出分別(TREF)装置を用いて行うことができる。
 上記のような結晶性を有する長鎖分岐LLDPEを使用することにより、本発明の多層フィルムの耐ブロッキング性および腰感(弾性)を確保するとの利点を得ることができる。
 参考のため、下記の表2に、代表的な市販品のポリエチレンについて上記各種パラメーターを示した。
Figure JPOXMLDOC01-appb-T000002
 上記のような本発明における長鎖分岐LLDPE(B1)は、上記の要件を満たすものである限り、どのような方法によって合成されたものであってもよい。例えば公知のチーグラー・ナッタ触媒を、好ましくは適当なドナー化合物とともに用いる方法;フィリップス触媒を用いる方法;メタロセン触媒を用いる方法などにより製造することができる。これらのうち、メタロセン触媒を用いる方法によることが、上記の特性を有する重合体を容易に得られる点で好ましい。
 メタロセン触媒は、置換または無置換のシクロペンタジエニル配位子を少なくとも1個、好ましくは2個有するメタロセン型遷移金属化合物と、助触媒と、からなる触媒である。上記助触媒としては、例えば有機アルミニウム化合物;有機ホウ素化合物と陽イオンとの錯体;イオン交換性ケイ酸塩などを挙げることができ、これらのうちから選択される1種以上を使用することができる。メタロセン触媒は、適当な無機物質に担持されていてもよい。メタロセン触媒は、当業界において既に公知であり、当業者は適当なメタロセン触媒をその目的に応じて適宜選択して用いることができる。
[その他の重合体]
 本発明の多層フィルムにおける中間層の上記少なくとも1層は、上記のような長鎖分岐LLDPE(B1)以外に、その他の重合体を含有していてもよい。
 ここで使用することのできるその他の重合体としては、例えばポリプロピレン系樹脂(B2)、長鎖分岐LLDPE(B1)以外のポリエチレン(B3)、熱可塑性エラストマーなどを挙げることができる。
 ポリプロピレン系樹脂(B2)としては、例えばラミネート層を構成するポリオレフィン系樹脂としてのポリプロピレン系樹脂について、上記に説明した樹脂と同様の樹脂を使用することができる。
 長鎖分岐LLDPE(B1)以外のポリエチレン(B3)としては、例えばHDPE、LLDPE、LDPEなどを挙げることができる。
 本発明の多層フィルムにおける中間層が上記した他の重合体のうちポリプロピレン系樹脂(B2)および長鎖分岐LLDPE(B1)以外のポリエチレン(B3)よりなる群から選択される少なくとも1種の樹脂を含有することにより、前記多層フィルムを包装体としたときのイージーピール強度を調整することができるので好ましい。
 上記のような観点から、本発明の多層フィルムの中間層の上記少なくとも1層におけるポリオレフィン系樹脂は、
長鎖分岐LLDPE(B1)のみからなるか、あるいは、
長鎖分岐LLDPE(B1)と、
上記のようなポリプロピレン系樹脂(B2)および長鎖分岐LLDPE(B1)以外のポリエチレン(B3)よりなる群から選択される少なくとも1種の樹脂とからなることが好ましい。
 本発明の多層フィルムの中間層の上記少なくとも1層は、上記のようなポリオレフィン系樹脂のみからなり、その他の樹脂を含有しないことが好ましい。
 本発明の多層フィルムの中間層の上記少なくとも1層におけるポリオレフィン系樹脂は、上記のような樹脂をそれぞれ以下のような割合で含有することが好ましい。
 長鎖分岐LLDPE(B1):好ましくは40重量%以上、より好ましくは50重量%以上
 ポリプロピレン系樹脂(B2):好ましくは30重量%以下、より好ましくは25重量%以下、および
 長鎖分岐LLDPE(B1)以外のポリエチレン(B3):好ましくは50重量%以下、より好ましくは30重量%以下
 上記において、長鎖分岐LLDPE(B1)、ポリプロピレン系樹脂(B2)および長鎖分岐LLDPE(B1)以外のポリエチレン(B3)の合計は100重量%である。
[任意成分]
 本発明の多層フィルムの中間層は、ラミネート層の任意成分として記載したような添加剤を、同様の態様で含有していてもよい。
[中間層の態様]
 本発明の多層フィルムにおける中間層は、一層のみからなっていてもよく、二層以上が積層されたものであってもよい。後者の場合、中間層を構成する各層は、上記のようなポリオレフィン系樹脂から選択される。各層を構成するポリオレフィン系樹脂は、それぞれ、ポリオレフィン系樹脂の種類、ならびに任意成分であるその他の重合体および添加剤の有無ならびにその種類および含有割合のすべてが同じであってもよく、これらのうちの1つ以上が相違していてもよい。
 中間層の厚みは、好ましくは5~80μmであり、より好ましくは10~50μmである。中間層をこの範囲の厚みに設定することにより、多層フィルムとしたときの剛性を損なわずに、得られる多層フィルムおよび複合フィルムにおいて、高い耐衝撃性および優れた写像性が得られる点で、好ましい。
 中間層がポリオレフィン系樹脂の積層体からなる場合、その積層数は2~4層であることが好ましく、2~3層であることがより好ましい。各層のポリオレフィン系樹脂は同一でも異なっていてもよい。この積層体の厚みは、中間層の厚みとして上記した範囲内とすることが好ましい。積層体を構成する各層の厚みは、2~40μmとすることが好ましく、5~25μmとすることがより好ましい。
<ヒートシール層>
 本発明の多層フィルムにおけるヒートシール層は、ポリプロピレン系樹脂を含有するポリオレフィン系樹脂からなる。
 このポリプロピレン系樹脂は、プロピレン−エチレン共重合体(C)を70重量%以上含有するポリプロピレン系樹脂を含有することが好ましい。このヒートシール層のポリプロピレン系樹脂における重合体は、上記プロピレン−エチレン共重合体(C)のみからなっていてもよく、該プロピレン−エチレン共重合体(C)とともにその他の重合体を含有していてもよい。
 ヒートシール層のポリプロピレン系樹脂にプロピレン−エチレン共重合体(C)の配合は、得られる多層フィルムおよび複合フィルムの、耐ブロッキング性、低温ヒートシール性、ヒートシール部の強度およびヒートシール部の耐ピンホール性の向上に寄与する。ヒートシール層のポリプロピレン系樹脂におけるプロピレン−エチレン共重合体(C)の割合が70重量%よりも少ない場合には、上記効果の発現の程度が不足し、好ましくない。ヒートシール層のポリプロピレン系樹脂におけるプロピレン−エチレン共重合体(C)の割合は、好ましくは80重量%以上であり、より好ましくは90重量%以上である。
 上記プロピレン−エチレン共重合体(C)は、重量平均分子量Mwと数平均分子量Mnとの比で表される分子量分布Mw/Mnが好ましくは1.5~3.5であり、より好ましくは1.8~3.2であり、さらに好ましくは2.0~3.0である。プロピレン−エチレン共重合体(C)のMw/Mnが1.5よりも小さいと溶融張力が過小となって、製膜性に劣りがちとなる。一方で多層フィルムとしたときの耐ブロッキング性を確保し、多層フィルムおよび複合フィルムにおける光学的特性を確保する観点から、Mw/Mnは3.5以下とすることが好ましい。上記プロピレン−エチレン共重合体(C)は、そのMwが45万~10万であることが好ましく、40万~20万であることがより好ましい。
 上記プロピレン−エチレン共重合体(C)は、JIS K 7210に準拠して230℃において荷重2.16kgにて測定したメルトフローレートMFRが好ましくは1~30g/10分であり、より好ましくは5~15g/10分である。MFRが1g/10分より小さいと溶融粘度が高すぎるので、多層フィルムの製造時に製膜機(例えば押出機)内の圧力が過度に高くなり、生産性が低下することのほか、膜厚不均一、メルトフラクチャーなどの外観不良を引き起こす場合がある。一方でMFRが30g/10分を超えると、中間層の樹脂との溶融粘度差が過大になることに起因して外層の膜厚が不均一となることのほか、多層フィルムとしたときの耐ブロッキング性が損なわれる場合がある。
 上記プロピレン−エチレン共重合体(C)は、融点が120~140℃であることがより好ましく、120~135℃であることがさらに好ましい。この範囲の温度に融点を示すプロピレン−エチレン共重合体(C)は、多層フィルムを製造する際の耐熱性と、多層フィルムまたは複合フィルムにしたときの透明性と、のバランスに優れることとなる点で好ましい。
 上記プロピレン−エチレン共重合体(C)におけるエチレン単位の含有割合は、好ましくは1~10モル%であり、より好ましくは2~5モル%である。エチレン単位の含有割合をこの範囲に設定することにより、得られる多層フィルムにおいて、透明性を損なわずに優れた耐ブロッキング性を発現することが可能となり、好ましい。
 上記プロピレン−エチレン共重合体(C)は、メタロセン系触媒を用いて重合されたものであるのが好ましく、メタロセン触媒を用いて重合されたプロピレン−エチレン共重合体(C)は、得られる多層フィルムが高度の耐ブロッキング性を示し、しかも多層フィルムおよび複合フィルムとしたときに優れた光学特性を示すこととなる点で、好ましい。
 メタロセン触媒は、置換または無置換のシクロペンタジエニル配位子を少なくとも1個、好ましくは2個有するメタロセン型遷移金属化合物と、助触媒と、からなる触媒である。上記助触媒としては、例えば有機アルミニウム化合物;有機ホウ素化合物と陽イオンとの錯体;イオン交換性ケイ酸塩などを挙げることができ、これらのうちから選択される1種以上を使用することができる。メタロセン触媒は、適当な無機物質に担持されていてもよい。メタロセン触媒は、当業界において既に公知であり、当業者は適当なメタロセン触媒をその目的に応じて適宜選択して用いることができる。
[その他の重合体]
 上記その他の重合体としては、本発明の効果を阻害しないものである限り、特に制限なく選択して使用することができる。しかしながら、本発明の主要な特徴の1つである包装材料の引裂開封性の向上を考慮する場合には、その他の重合体として、上記プロピレン−エチレン共重合体(C)以外のポリプロピレン系樹脂(A1)を使用することが好ましい。ポリプロピレン系樹脂(A1)は、重量平均分子量Mwと数平均分子量Mnとの比で表される分子量分布Mw/Mnが好ましくは4以上であり、より好ましくは4.5~10であり、さらに好ましくは5~8である。ポリプロピレン系樹脂(A1)のMw/Mnが4よりも小さい場合、得られる多層フィルムおよびこれを用いて製造される複合フィルムの引裂強度が過度に高くなり、包装材料における引裂開封性の改良効果が発現し難いこととなる。これは、Mw/Mnが4よりも小さい場合、多層フィルムの製造時に溶融配向が起こり難いことに起因するものと考えられる。一方で、多層フィルム製造時の溶融張力を適当な範囲にとどめ、多層フィルムとしたときの耐ブロッキング性を確保する観点から、Mw/Mnは10以下とすることが好ましい。上記ポリプロピレン系樹脂(A1)は、そのMwが45万~10万であることが好ましく、40万~20万であることがより好ましい。
 重量平均分子量Mwおよび数平均分子量Mnは、いずれもゲルパーミエーションクロマトグラフィー(GPC)によって測定したポリスチレン換算の値である。
 ポリプロピレン系樹脂(A1)は、JIS K 7210に準拠して230℃において荷重2.16kgにて測定したメルトフローレートMFRが好ましくは1~30g/10分であり、5~15g/10分であることがより好ましい。MFRが1g/10分より小さいと溶融粘度が高すぎるため、多層フィルムの製造時に製膜機(例えば押出機)内の圧力が過度に高くなり、生産性が低下することのほか、膜厚不均一、メルトフラクチャーなどの外観不良を引き起こす場合がある。一方でMFRが30g/10分を超えると、中間層の樹脂との溶融粘度差が過大になることに起因して外層の膜厚が不均一となることのほか、多層フィルムとしたときの耐ブロッキング性が損なわれる場合がある。
 上記ポリプロピレン系樹脂(A1)は、融点が120~150℃であることが好ましく、130~145℃であることがより好ましい。この範囲の温度に融点を示すポリプロピレン系樹脂(A1)は、多層フィルムを製造する際の耐熱性と、多層フィルムおよび複合フィルムにしたときの透明性と、のバランスに優れることとなる点で好ましい。ここで、樹脂の融点とは、示差走査熱量計(DSC)チャートにおける最大吸熱ピークのピークトップ温度(Tm)をいう。
 上記ポリプロピレン系樹脂(A1)は、プロピレンの単独重合体であっても、プロピレンと共重合成分との共重合体であってもよい。ここで使用される共重合成分としては、エチレンおよびα−オレフィンが好ましく、具体的には例えばエチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、4−メチル−1−ペンテンなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。ポリプロピレン系樹脂(A1)における共重合成分の割合は、10モル%以下とすることが好ましく、5モル%以下とすることがより好ましく、3モル%以下とすることがさらに好ましい。
 ヒートシール層は、上記プロピレン−エチレン共重合体(C)のみからなるか、あるいはプロピレン−エチレン共重合体(C)およびポリプロピレン系樹脂(A1)のみからなるものであることが好ましい。
[任意成分]
 本発明の多層フィルムのヒートシール層は、ラミネート層の任意成分として記載したような添加剤を、同様の態様で含有していてもよい。
[ヒートシール層の厚み]
 本発明の多層フィルムにおけるヒートシール層の厚みは、好ましくは2~30μmであり、より好ましくは2.5~25μmである。ヒートシール層をこの範囲の厚みに設定することにより、得られる多層フィルムおよび複合フィルムにおいて、低温ヒートシール性および耐ピンホール性を損なわずに高度の耐衝撃性が得られる点で、好ましい。
<ポリオレフィン系無延伸多層フィルムの厚み>
 本発明のポリオレフィン系無延伸多層フィルムの厚みは、その使用態様および用途によって適宜に設定することができる。ここで使用態様とは、本発明の多層フィルムをそのまま包装材料として使用するか、あるいはフィルム基材と貼り合せて複合フィルムとして使用するか、の選択であり、
用途とは、包装材の内容物の種類、重量などをいう。
 本発明のポリオレフィン系無延伸多層フィルムの厚みは、例えば10~200μmとすることができ、好ましくは15~150μmであり、さらに好ましくは18~100μmである。
<ポリオレフィン系無延伸多層フィルムの製造方法>
 本発明の多層フィルムは、実質的に延伸を伴わない方法であれば任意の方法によって製造することができる。「実質的に延伸を伴わない」とは、フィルムの製造過程においてごくわずかの配向が生ずることまでもが禁止される趣旨ではなく、フィルムが明示的な延伸工程を経由しないことを意味する。従って、例えば通常採用される条件下の押出工程を採用した場合に押出方向に若干の配向が生ずることは許容されると解されるべきである。
 本発明の多層フィルムを製造する方法としては、例えば押出法、キャスト法などの適宜の方法を採用することができる。本発明の多層フィルムの各層を構成する樹脂は、いずれも適度のMFRを有し、溶融型の製膜機に対する適合性が高いので、上記のうち押出法を採用すると、本発明の効果を最大限に発現できる点で好ましい。押出法のダイとしては、Tダイ、環状ダイなどを使用することができる。しかしながら、層の厚みを精密にコントロールして、優れた光学的特性を得る観点からは、環状ダイを使用することは好ましくなく、Tダイなどを使用することが好ましい。
 本発明の多層フィルムは、ラミネート層、少なくとも1層の中間層およびヒートシール層を有するから、少なくとも3層からなる多層構造を有する。フィルムを多層化する方法としては、例えば共押出法、インラインラミネート法などの公知の方法を採用することができる。上記共押出法としては、例えばマルチマニホールド法、フィードブロック法などを挙げることができる。これらのうち共押出法を採用することが、各層の厚みを幅方向で均一にコントロールすることが可能であるので好ましい。
 本発明の多層フィルムは、これをそのまま、あるいはこれをフィルム基材と貼り合せた複合フィルムの形態で、包装材料として適用することが予定されている。従って、前者の場合には、最外層表面に製品の出所の明示あるいは意匠的効果の発現のために、印刷が施されることがあり、
後者の場合には、最外層表面上に、通常はラミネート層の表面上に、フィルム基材が貼付されることとなる。このような場合に、インクまたは接着剤との親和性ないし密着性を向上する目的で、最外層表面上に、通常はラミネート層の表面上に、インラインまたはオフラインで表面処理を施してもよい。この表面処理としては、例えばコロナ放電処理、フレームまたは火焔処理などを挙げることができる。
<複合フィルム>
 本発明の複合フィルムは、フィルム基材上に、上記のような多層フィルムを、該多層フィルムのラミネート層側を貼付面として貼付して得られるものである。本発明の複合フィルムは、低温ヒートシール性、ヒートシール強度およびヒートシール部の耐ピンホール性が良好であり、さらに包装材料としたときの引裂開封性にも優れる。
[フィルム基材]
 本発明の複合フィルムにおけるフィルム基材を構成する材料としては、包装材料の用途に応じて適宜に決定することができる。例えばポリプロピレン系樹脂、ポリエチレン系樹脂、ポリエチレンテレフタレート系樹脂およびポリアミド系樹脂よりなる群から選択される樹脂、または金属を挙げることができる。フィルム基材は、これらのうちから選択される1種以上の材料を含有する層であることができ、あるいは、このような層の複数からなる積層体であってもよい。
 フィルム基材の厚みは、包装材料の用途に応じて任意であるが、例えば5~75μmとすることができ、好ましくは10~50μmである。
[複合フィルムの厚み]
 本発明の複合フィルムの総厚みは、包装材料の用途に応じて任意に設定することができるが、例えば15~250μmとすることができ、好ましくは20~200μmであり、より好ましくは23~150μmである。
<複合フィルムの製造方法>
 複合フィルムの製造方法は、フィルム基材上に、本発明の多層フィルムを、そのラミネート層側を貼付面として貼付することができる方法であれば、特に限定されない。
 フィルム基材と多層フィルムのラミネート層との間の接着は、適当な接着剤によってもよく、熱圧着によってもよい。ここで使用される接着剤としては、市販の接着剤を用いてもよく、あるいは溶融樹脂例えば溶融したポリエチレン系樹脂を用いてもよい。接着剤の塗布方法としては、例えばグラビア、グラビアリバース、オフセットなどの転写手段;バー、コンマバーなどの掻き取り手段などを挙げることができる。
 フィルム基材と多層フィルムとを、必要に応じて接着剤層を介して、積層する方法としては、例えばドライラミネーション法、熱ラミネーション法などを挙げることができる。
The polyolefin-based unstretched multilayer film of the present invention has a laminate layer that is the outermost layer, at least one intermediate layer, and a heat seal layer that is the other outermost layer.
<Laminate layer>
The laminate layer in the multilayer film of the present invention is made of a polyolefin resin.
The polyolefin resin has a higher melting point than the polypropylene resin in the heat seal layer described later. The melting point of the polyolefin resin is preferably 3 ° C. or higher, more preferably 5 ° C. or higher, and further preferably 15 ° C. higher than the melting point of the polypropylene resin in the heat seal layer. Thereby, sufficient heat resistance can be obtained in the production, lamination, heat sealing, etc. of the multilayer film of the present invention. On the other hand, the difference between the melting point of the polyolefin resin and the melting point of the polypropylene resin in the heat seal layer is preferably kept at 20 ° C. or lower. This is because if the melting point difference becomes excessively large, curling may occur in the multilayer film.
Examples of the polyolefin resin constituting the laminate layer in the present invention include a polypropylene resin, an ethylene homopolymer, an ethylene-α-olefin copolymer, and a thermoplastic elastomer. These may be used alone or in admixture of two or more. These polyolefin resins preferably have a melting point in the range of 120 to 165 ° C. and a melt flow rate MFR in the range of 1 to 30 g / 10 minutes. The melting point is the peak top temperature (Tm) of the maximum endothermic peak in a differential scanning calorimeter (DSC) chart;
The MFR is a value measured according to JIS K 7210 (both melting point and MFR are the same in the present specification).
As said polypropylene resin, the homopolymer of propylene and the copolymer of a propylene and a copolymerization component can be mentioned. As the copolymer component, for example, ethylene and α-olefin are preferable, and specifically, for example, ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene. 4-methyl-1-pentene can be used, and one or more selected from these can be used. The proportion of the copolymer component in this polypropylene resin is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 3 mol% or less.
The said ethylene-alpha-olefin copolymer does not include what corresponds to said polypropylene resin. Examples of the α-olefin which is a copolymerization component in the ethylene-α-olefin copolymer include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1- Examples include decene and 4-methyl-1-pentene, and one or more selected from these can be used. The proportion of the α-olefin component in the ethylene-α-olefin copolymer is preferably 1 to 20 mol%, more preferably 5 to 15 mol%.
The polyolefin resin in the laminate layer of the multilayer film of the present invention preferably contains a polypropylene resin as described above. The laminate layer may consist only of a polypropylene resin, and may contain other polymers together with the polypropylene resin. The other polymer used here is preferably selected from the above-mentioned ethylene homopolymer, ethylene-α-olefin copolymer, and thermoplastic elastomer.
The content of the other polymer is preferably 10% by weight or less, more preferably 5% by weight or less, and most preferably no other polymer based on the whole polyolefin resin. .
[Optional ingredients]
In addition to the polyolefin resin as described above, the laminate layer of the multilayer film of the present invention includes, as an optional additive, for example, a heat stabilizer, a processing stabilizer, a lubricant, a nucleating agent, an antistatic agent, an antifogging agent, An antiblocking agent, antioxidant, a ultraviolet absorber, a pigment etc. can be mentioned. These additives may be added by a method of directly blending with the polymer constituting the polyolefin resin, or may be added by a method of blending these additives as a master batch containing a high concentration. As the base resin for the masterbatch, any of the above polyolefin resins can be used.
The proportion of the optional component as described above is preferably 10% by weight or less, and more preferably 5% by weight or less, based on the entire polyolefin resin. Most preferably, it does not contain such an optional component.
[Thickness of laminate layer]
The thickness of the laminate layer in the multilayer film of the present invention is preferably 1.0 to 30 μm, more preferably 2.5 to 25 μm. By setting the thickness of the laminate layer within this range, the resulting multilayer film and composite film are preferable in that high impact resistance can be obtained without impairing heat resistance and openability.
<Intermediate layer>
At least one of the intermediate layers in the multilayer film of the present invention is made of a polyolefin resin containing long-chain branched LLDPE (B1).
[Long-chain branched LLDPE]
The long chain branched LLDPE (B1) in the present invention is a linear low density polyethylene having a branch having 8 or more carbon atoms.
The LLDPE used in the prior art film is common to the long chain branched LLDPE (B1) and LDPE (low density polyethylene) in the present invention in that it is a low density polyethylene having a branch. However, the long-chain branched LLDPE (B1) in the present invention is different from LLDPE and LDPE in the prior art at least in the content of long-chain branches, Mw / Mn and the amount of non-crystalline components.
The long chain branched LLDPE (B1) in the present invention is 13 The number of branches having 8 or more carbon atoms measured by C-NMR is 1.5 to 5.0 per 1,000 carbon atoms. This value is preferably 2.0 to 5.0, and more preferably 2.5 to 4.5. By using LLDPE having such a long chain branch, when the multilayer film of the present invention is used as a package, it is possible to obtain an advantage that both tear opening and easy peel properties are compatible.
In this regard, the LLDPE in the prior art is dominant when the number of carbon atoms in the branch is 6 or less, and even if there is a branch having 8 or more carbon atoms, the amount thereof is small, usually per 1,000 carbon atoms. 1 or less, and at most 2 or less.
On the other hand, LDPE 13 In the C-NMR measurement, the number of components detected as branches having 8 or more carbon atoms is more than 5 per 1,000 carbon atoms.
Therefore, the long-chain branched LLDPE (B1) in the present invention is 13 It can be distinguished from LLDPE and LDPE in the prior art by the amount of branching of 8 or more carbon atoms measured by C-NMR.
The branched structure of long-chain branched LLDPE (B1) in the present invention and the branched structure of LLDPE in the prior art are: 13 The following describes how it is measured on C-NMR. Here, as branch, C of long chain branch LLDPE 8 Branched (1-decene structure) and LLDPE C in the prior art 6 We decided to focus on branching (1-octene structure).
The methylene carbon present in the main chain of polyethylene is 13 A chemical shift δ = 30 ppm is observed on C-NMR. The methyl carbon at the branch end is C 8 Branch and C 6 Both branches appear at the chemical shift δ = 14.06 ppm. However, the chemical shift of each of the second and third methylene carbons from the branch end is C 8 Branch and C 6 The branching differs as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
In the present invention, attention is paid to the second methylene carbon from the branch end, and it is determined whether or not the number of branched carbons is 8 or more by the chemical shift.
In actual calculation, the relative value of the peak area appearing at the chemical shift δ = 22.87 ppm to the peak area appearing at the chemical shift δ = 30 ppm attributed to the methylene carbon of the main chain is evaluated.
As above 13 The C-NMR measurement can be performed under the following conditions using an appropriate nuclear magnetic resonance analyzer such as a model “JNM-ECS400” manufactured by JEOL.
Solvent: Mixed solvent of trichlorobenzene / heavy benzene (75/25% by volume)
Sample concentration: 80 mg / 2.5 mL solution
Measurement mode: 1H-complete decoupling
Measurement temperature: 120 ° C
Pulse width: 90 degree pulse
Pulse repetition time: 9 seconds
Integration count: 9,000 times
The content of long chain branching in the present invention is
C 8 The peak area of the second carbon from the end of the branch (chemical shift δ = 22.87 ppm) is
It is expressed as a relative value when the peak area of methylene carbon (chemical shift δ = 30 ppm) constituting the polymer chain is 1,000. The unit is (pieces / 1,000 C).
The long chain branched LLDPE (B1) in the present invention has a ratio Mw / Mn (molecular weight distribution) of the weight average molecular weight Mw and the number average molecular weight Mn in terms of polystyrene measured by gel permeation chromatography (GPC) of 7.5 to 15.0. This value is preferably 8.5 to 14.5, and more preferably 9.5 to 13.5. By using a long-chain branched LLDPE having such a molecular weight distribution, when the multilayer film of the present invention is used as a package, it is possible to obtain an advantage that both tear opening and easy peelability are compatible. .
The long-chain branched LLDPE (B1) in the present invention has a polystyrene-equivalent weight average molecular weight Mw measured by GPC of preferably 80,000 to 150,000, more preferably 90,000 to 140,000. preferable.
The long-chain branched LLDPE (B1) in the present invention has an amorphous component amount of 1 to 4% by weight measured by a temperature rising elution fractionation method.
In the temperature rising elution fractionation method, a solution obtained by dissolving a polymer sample in a predetermined solvent at a high temperature is supplied to a TREF (Temperature Rising Elution Fractionation) column, and then cooled to precipitate and adsorb the polymer sample in the column. Then, the column temperature is gradually raised and the eluted fraction is analyzed. In the present invention, after the column after the sample is supplied is cooled to 0 ° C., the supply of the solvent is started, and the fraction eluted during the period in which the column temperature is maintained at 0 ° C. is used as an amorphous component. Is evaluated as the amount of non-crystalline component. The amount of the amorphous component of the long chain branched LLDPE is preferably 1.5 to 3.0% by weight.
Such a temperature rising elution fractionation method can be performed, for example, using an appropriate temperature rising elution fractionation (TREF) apparatus such as a special TREF apparatus manufactured by Senshu Kagaku Co., Ltd.
By using the long-chain branched LLDPE having the crystallinity as described above, it is possible to obtain the advantage of ensuring the blocking resistance and the back feeling (elasticity) of the multilayer film of the present invention.
For reference, the above-mentioned various parameters are shown in Table 2 below for typical commercially available polyethylene.
Figure JPOXMLDOC01-appb-T000002
The long-chain branched LLDPE (B1) in the present invention as described above may be synthesized by any method as long as it satisfies the above requirements. For example, it can be produced by a method using a known Ziegler-Natta catalyst, preferably together with an appropriate donor compound; a method using a Phillips catalyst; a method using a metallocene catalyst. Among these, the method using a metallocene catalyst is preferable in that a polymer having the above characteristics can be easily obtained.
The metallocene catalyst is a catalyst comprising a metallocene-type transition metal compound having at least one, preferably two, substituted or unsubstituted cyclopentadienyl ligands and a co-catalyst. Examples of the cocatalyst include organoaluminum compounds; complexes of organoboron compounds and cations; ion-exchange silicates and the like, and one or more selected from these can be used. . The metallocene catalyst may be supported on a suitable inorganic substance. Metallocene catalysts are already known in the art, and those skilled in the art can appropriately select and use an appropriate metallocene catalyst according to the purpose.
[Other polymers]
The at least one layer of the intermediate layer in the multilayer film of the present invention may contain other polymers in addition to the long-chain branched LLDPE (B1) as described above.
Examples of other polymers that can be used here include polypropylene resin (B2), polyethylene (B3) other than long-chain branched LLDPE (B1), and thermoplastic elastomer.
As the polypropylene resin (B2), for example, a resin similar to the resin described above can be used for the polypropylene resin as the polyolefin resin constituting the laminate layer.
Examples of polyethylene (B3) other than long-chain branched LLDPE (B1) include HDPE, LLDPE, and LDPE.
At least one resin selected from the group consisting of polyethylene (B3) other than the polypropylene-based resin (B2) and the long-chain branched LLDPE (B1) among the other polymers described above is used as the intermediate layer in the multilayer film of the present invention. By containing, the easy peel strength when the multilayer film is used as a package can be adjusted, which is preferable.
From the above viewpoint, the polyolefin resin in the at least one layer of the intermediate layer of the multilayer film of the present invention is:
Consists of long-chain branched LLDPE (B1) only, or
Long-chain branched LLDPE (B1);
It is preferable to consist of at least one resin selected from the group consisting of polypropylene (B2) and polyethylene (B3) other than the long-chain branched LLDPE (B1) as described above.
The at least one layer of the intermediate layer of the multilayer film of the present invention preferably comprises only the polyolefin resin as described above and does not contain any other resin.
The polyolefin resin in the at least one layer of the intermediate layer of the multilayer film of the present invention preferably contains the above resins in the following proportions.
Long chain branched LLDPE (B1): preferably 40% by weight or more, more preferably 50% by weight or more
Polypropylene resin (B2): preferably 30% by weight or less, more preferably 25% by weight or less, and
Polyethylene (B3) other than long-chain branched LLDPE (B1): preferably 50% by weight or less, more preferably 30% by weight or less
In the above, the total of the polyethylene (B3) other than the long chain branched LLDPE (B1), the polypropylene resin (B2) and the long chain branched LLDPE (B1) is 100% by weight.
[Optional ingredients]
The intermediate layer of the multilayer film of the present invention may contain additives as described as optional components of the laminate layer in the same manner.
[Mode of intermediate layer]
The intermediate layer in the multilayer film of the present invention may consist of only one layer, or may be a laminate of two or more layers. In the latter case, each layer constituting the intermediate layer is selected from the polyolefin resins as described above. The polyolefin resin constituting each layer may be the same in the type of polyolefin resin, the presence or absence of other optional polymers and additives, and the type and content thereof. One or more of may be different.
The thickness of the intermediate layer is preferably 5 to 80 μm, more preferably 10 to 50 μm. By setting the intermediate layer to a thickness in this range, it is preferable in terms of obtaining high impact resistance and excellent image clarity in the obtained multilayer film and composite film without impairing rigidity when a multilayer film is obtained. .
When the intermediate layer is composed of a laminate of polyolefin resin, the number of layers is preferably 2 to 4 layers, and more preferably 2 to 3 layers. The polyolefin resin in each layer may be the same or different. The thickness of the laminate is preferably within the above range as the thickness of the intermediate layer. The thickness of each layer constituting the laminate is preferably 2 to 40 μm, and more preferably 5 to 25 μm.
<Heat seal layer>
The heat seal layer in the multilayer film of the present invention is made of a polyolefin resin containing a polypropylene resin.
This polypropylene resin preferably contains a polypropylene resin containing 70% by weight or more of the propylene-ethylene copolymer (C). The polymer in the polypropylene resin of this heat seal layer may consist only of the propylene-ethylene copolymer (C), and contains other polymers together with the propylene-ethylene copolymer (C). May be.
The composition of the propylene-ethylene copolymer (C) in the polypropylene resin of the heat seal layer is such that the resulting multilayer film and composite film have blocking resistance, low temperature heat seal property, heat seal part strength and heat seal part resistance. Contributes to improved pinhole properties. When the proportion of the propylene-ethylene copolymer (C) in the polypropylene resin of the heat seal layer is less than 70% by weight, the degree of the above effect is insufficient, which is not preferable. The proportion of the propylene-ethylene copolymer (C) in the polypropylene resin of the heat seal layer is preferably 80% by weight or more, more preferably 90% by weight or more.
The propylene-ethylene copolymer (C) preferably has a molecular weight distribution Mw / Mn represented by a ratio of the weight average molecular weight Mw to the number average molecular weight Mn, preferably 1.5 to 3.5, more preferably 1 8 to 3.2, and more preferably 2.0 to 3.0. If the Mw / Mn of the propylene-ethylene copolymer (C) is less than 1.5, the melt tension becomes too low and the film forming property tends to be inferior. On the other hand, it is preferable that Mw / Mn is 3.5 or less from the viewpoint of securing blocking resistance when a multilayer film is formed and securing optical properties in the multilayer film and the composite film. The propylene-ethylene copolymer (C) preferably has a Mw of 450,000 to 100,000, more preferably 400,000 to 200,000.
The propylene-ethylene copolymer (C) preferably has a melt flow rate MFR measured at 230 ° C. and a load of 2.16 kg in accordance with JIS K 7210, preferably 1 to 30 g / 10 minutes, more preferably 5 ~ 15 g / 10 min. If the MFR is less than 1 g / 10 min, the melt viscosity is too high, so that the pressure in the film forming machine (for example, an extruder) becomes excessively high during the production of the multilayer film, and the productivity is reduced. It may cause poor appearance such as uniformity and melt fracture. On the other hand, if the MFR exceeds 30 g / 10 min, the film thickness of the outer layer becomes non-uniform due to an excessive difference in melt viscosity with the resin of the intermediate layer, and the resistance to resistance when a multilayer film is formed. The blocking property may be impaired.
The propylene-ethylene copolymer (C) preferably has a melting point of 120 to 140 ° C, more preferably 120 to 135 ° C. The propylene-ethylene copolymer (C) having a melting point at a temperature in this range is excellent in balance between heat resistance when producing a multilayer film and transparency when formed into a multilayer film or a composite film. This is preferable.
The content of ethylene units in the propylene-ethylene copolymer (C) is preferably 1 to 10 mol%, more preferably 2 to 5 mol%. By setting the content ratio of the ethylene unit within this range, the resulting multilayer film can exhibit excellent blocking resistance without impairing transparency, which is preferable.
The propylene-ethylene copolymer (C) is preferably polymerized using a metallocene catalyst, and the propylene-ethylene copolymer (C) polymerized using a metallocene catalyst is a multilayer obtained. The film is preferable in that it exhibits a high degree of blocking resistance and exhibits excellent optical properties when formed into a multilayer film and a composite film.
The metallocene catalyst is a catalyst comprising a metallocene-type transition metal compound having at least one, preferably two, substituted or unsubstituted cyclopentadienyl ligands and a co-catalyst. Examples of the cocatalyst include organoaluminum compounds; complexes of organoboron compounds and cations; ion-exchange silicates and the like, and one or more selected from these can be used. . The metallocene catalyst may be supported on a suitable inorganic substance. Metallocene catalysts are already known in the art, and those skilled in the art can appropriately select and use an appropriate metallocene catalyst according to the purpose.
[Other polymers]
As said other polymer, as long as the effect of this invention is not inhibited, it can select and use without a restriction | limiting especially. However, when considering the improvement of the tear-opening property of the packaging material, which is one of the main features of the present invention, as the other polymer, a polypropylene resin other than the propylene-ethylene copolymer (C) ( A1) is preferably used. In the polypropylene resin (A1), the molecular weight distribution Mw / Mn represented by the ratio of the weight average molecular weight Mw and the number average molecular weight Mn is preferably 4 or more, more preferably 4.5 to 10, and still more preferably. Is 5-8. When the Mw / Mn of the polypropylene resin (A1) is smaller than 4, the tear strength of the resulting multilayer film and the composite film produced using the multilayer film is excessively high, and there is an effect of improving the tear openability in the packaging material. It will be difficult to express. This is considered to be due to the fact that when Mw / Mn is less than 4, melt orientation hardly occurs during the production of the multilayer film. On the other hand, it is preferable that Mw / Mn be 10 or less from the viewpoint of securing the melt resistance during the production of the multilayer film within an appropriate range and ensuring the blocking resistance when the multilayer film is formed. The polypropylene resin (A1) preferably has a Mw of 450,000 to 100,000, more preferably 400,000 to 200,000.
The weight average molecular weight Mw and the number average molecular weight Mn are both values in terms of polystyrene measured by gel permeation chromatography (GPC).
The polypropylene resin (A1) preferably has a melt flow rate MFR measured at 230 ° C. under a load of 2.16 kg in accordance with JIS K 7210 at 1 to 30 g / 10 minutes, and 5 to 15 g / 10 minutes. It is more preferable. If the MFR is less than 1 g / 10 min, the melt viscosity is too high, so that the pressure in the film forming machine (for example, an extruder) becomes excessively high during the production of the multilayer film, resulting in a decrease in productivity and a decrease in film thickness. It may cause poor appearance such as uniformity and melt fracture. On the other hand, if the MFR exceeds 30 g / 10 min, the film thickness of the outer layer becomes non-uniform due to an excessive difference in melt viscosity with the resin of the intermediate layer, and the resistance to resistance when a multilayer film is formed. The blocking property may be impaired.
The polypropylene resin (A1) preferably has a melting point of 120 to 150 ° C, more preferably 130 to 145 ° C. The polypropylene resin (A1) exhibiting a melting point at a temperature within this range is preferable in that the balance between the heat resistance when producing the multilayer film and the transparency when formed into the multilayer film and the composite film is excellent. . Here, the melting point of the resin means the peak top temperature (Tm) of the maximum endothermic peak in the differential scanning calorimeter (DSC) chart.
The polypropylene resin (A1) may be a propylene homopolymer or a copolymer of propylene and a copolymer component. As the copolymerization component used here, ethylene and α-olefin are preferable. Specifically, for example, ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene and the like can be mentioned, and one or more selected from these can be used. The proportion of the copolymer component in the polypropylene resin (A1) is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 3 mol% or less.
It is preferable that a heat seal layer consists only of the said propylene-ethylene copolymer (C), or consists only of a propylene-ethylene copolymer (C) and a polypropylene resin (A1).
[Optional ingredients]
The heat seal layer of the multilayer film of the present invention may contain additives as described as optional components of the laminate layer in the same manner.
[Thickness of heat seal layer]
The thickness of the heat seal layer in the multilayer film of the present invention is preferably 2 to 30 μm, more preferably 2.5 to 25 μm. By setting the heat seal layer to a thickness in this range, the resulting multilayer film and composite film are preferable in that high impact resistance can be obtained without impairing low-temperature heat sealability and pinhole resistance.
<Thickness of polyolefin-based unstretched multilayer film>
The thickness of the polyolefin-based unstretched multilayer film of the present invention can be appropriately set depending on the use mode and application. Here, the use mode is a selection of whether to use the multilayer film of the present invention as it is as a packaging material, or to use it as a composite film by laminating with a film substrate,
The use refers to the type and weight of the contents of the packaging material.
The thickness of the polyolefin-based unstretched multilayer film of the present invention can be, for example, 10 to 200 μm, preferably 15 to 150 μm, and more preferably 18 to 100 μm.
<Method for producing polyolefin-based unstretched multilayer film>
The multilayer film of the present invention can be produced by any method as long as the method does not substantially involve stretching. “Substantially no stretching” does not mean that even a slight orientation occurs in the film manufacturing process, but means that the film does not go through an explicit stretching process. Therefore, for example, it should be understood that a slight orientation in the extrusion direction is allowed when an extrusion process under the conditions normally employed is employed.
As a method for producing the multilayer film of the present invention, an appropriate method such as an extrusion method or a casting method can be employed. The resin constituting each layer of the multilayer film of the present invention has an appropriate MFR, and is highly compatible with a melt-type film forming machine. It is preferable because it can be expressed to the limit. As the die for the extrusion method, a T die, an annular die, or the like can be used. However, from the viewpoint of precisely controlling the thickness of the layer to obtain excellent optical characteristics, it is not preferable to use an annular die, and it is preferable to use a T die or the like.
Since the multilayer film of the present invention has a laminate layer, at least one intermediate layer, and a heat seal layer, it has a multilayer structure composed of at least three layers. As a method for multilayering the film, a known method such as a co-extrusion method or an in-line laminating method can be employed. Examples of the coextrusion method include a multi-manifold method and a feed block method. Of these, the coextrusion method is preferably used because the thickness of each layer can be uniformly controlled in the width direction.
The multilayer film of the present invention is expected to be applied as a packaging material as it is or in the form of a composite film obtained by laminating it with a film substrate. Therefore, in the former case, printing may be performed on the outermost layer surface in order to clearly indicate the origin of the product or to develop a design effect,
In the latter case, the film base material is affixed on the outermost layer surface, usually on the surface of the laminate layer. In such a case, for the purpose of improving the affinity or adhesion with the ink or the adhesive, a surface treatment may be performed inline or offline on the outermost layer surface, usually on the surface of the laminate layer. Examples of the surface treatment include corona discharge treatment, flame or flame treatment.
<Composite film>
The composite film of the present invention is obtained by sticking the multilayer film as described above on a film substrate with the laminate layer side of the multilayer film as the sticking surface. The composite film of the present invention is excellent in low temperature heat sealability, heat seal strength, and pinhole resistance of the heat seal portion, and is also excellent in tear openability when used as a packaging material.
[Film substrate]
As a material which comprises the film base material in the composite film of this invention, it can determine suitably according to the use of a packaging material. Examples thereof include a resin selected from the group consisting of a polypropylene resin, a polyethylene resin, a polyethylene terephthalate resin, and a polyamide resin, or a metal. The film substrate can be a layer containing one or more materials selected from these, or can be a laminate comprising a plurality of such layers.
The thickness of the film substrate is arbitrary depending on the use of the packaging material, but can be, for example, 5 to 75 μm, and preferably 10 to 50 μm.
[Thickness of composite film]
The total thickness of the composite film of the present invention can be arbitrarily set according to the use of the packaging material, but can be, for example, 15 to 250 μm, preferably 20 to 200 μm, more preferably 23 to 150 μm. It is.
<Production method of composite film>
The manufacturing method of a composite film will not be specifically limited if it is a method which can affix the multilayer film of this invention on the film base material by using the lamination layer side as a sticking surface.
Adhesion between the film substrate and the laminate layer of the multilayer film may be performed by an appropriate adhesive or thermocompression bonding. As the adhesive used here, a commercially available adhesive may be used, or a molten resin such as a molten polyethylene resin may be used. Examples of the method for applying the adhesive include transfer means such as gravure, gravure reverse, and offset; scraping means such as a bar and a comma bar.
Examples of the method of laminating the film base material and the multilayer film with an adhesive layer as required include a dry lamination method and a thermal lamination method.
 以下に実施例および比較例を挙げて本発明について説明するが、本発明はこれら実施例に限定されるものではない。
 以下の実施例および比較例における各評価は、それぞれ以下の手順によった。
<多層フィルムの評価>
(1)ヘーズ
 透明性の指標として、日本電色工業(株)製、ヘイズメーター(型番:NDH5000)を用い、JIS K 7136に準拠してヘーズの測定を行った。
(2)グロス
 光沢性の指標として、スガ試験機(株)製、光沢計(型番:UGV−5D)を用い、JIS K 7105に準拠してグロスの測定を行った。このグロスの評価は、多層フィルムのラミネート層側の面およびヒートシール層側の面の両面についてそれぞれ行った。
(3)像鮮明度
 写像性の指標として、スガ試験機(株)製、写像性測定器(型番:ICM−1DP)を用い、JIS K 7105に準拠し、光学櫛のスリット幅を0.125mmとして像鮮明度の測定を行った。
(4)ブロッキング強度
 耐ブロッキング性の指標として、ブロッキング強度を、以下のような引張試験によって調べた。
 120mm×120mmの正方形に切り出した多層フィルムを、相接するフィルム間でラミネート層とヒートシール層とが接するように10枚重ねにし、その最上面の全面に10kgの荷重をかけた状態で、温度40℃および湿度70%RHの恒温恒湿機中で3日間すなわち72時間保管した。保管後の多層フィルムのうち、上層の2枚および下層の2枚を除去して真ん中の6枚をとり、隣接する2枚ずつをペアとして剥がし取り、3組のペアを得た。各ペアは、2枚の多層フィルムがラミネート層とヒートシール層とを接して上記の条件で圧着されたものである。この各ペアを30mm×120mmの長方形に切り出し、3つの試験片を得た。各試験片の短辺の一端から剥がして行き、圧着部分が40mmの長さで残るようにした。各試験片に残った圧着部分30mm×40mmが耐ブロッキング性の測定領域となる。
 そして、(株)島津製作所製、オートグラフ(型番:AG−500D)を用い、上記試験片の剥がした部分の層を2つのチャックにそれぞれ挟み、測定温度23℃雰囲気、引張速度50mm/分の条件で引張試験を行い、試験片が完全に剥がれるまでの応力の最大値を調べた。n数を3として該最大値の平均値(kPa)を取り、これをブロッキング強度とした。
(5)衝撃強度
 耐衝撃性の指標として、(株)東洋精機製、フィルムインパクトテスターを用い、次の条件で衝撃強度の測定を行った。
 試験片寸法:120mm×120mm
 測定温度:23℃雰囲気および0℃雰囲気
(6)引裂強度(トラウザー引裂法)
 耐引裂き性の指標として、JIS K 7128−1に準拠して、(株)島津製作所製、オートグラフ(型番:AG−500D)を用い、次の条件で引裂強度の測定を行った。
 試験片寸法:長辺(縦)100mm、短辺(横)50mm
 スリット:試験片の一方の短辺の中央部(長辺から25mmの位置)に、長辺に平行に設けられた長さ20mmの切り込み
 引張速度:500mm/分
 測定温度:23℃雰囲気
<複合フィルムの評価>
(7)ヒートシール強度
 ヒートシール性の指標として、2枚の複合フィルムのヒートシール層同士を相接し、各温度でヒートシールした際の強度を、以下のような引張試験によって調べた。
 複合フィルムを15mm×200mmの長方形に切り出し、2枚を一組としてヒートシール層同士が相接するように重ね合わせ、(株)安田精機製作所製、YSSヒートシーラーを用いて、以下の条件でヒートシールして試験片を得た。
 シールバー幅:5mm
 シール圧力:0.1MPa
 シール時間:1.0秒
 シール温度:150℃、160℃および170℃に変量
 上記で得られた試験片のヒートシール部分である5mm×15mmの領域が、それぞれのヒートシール強度の測定領域となる。ここで、長方形の長辺がフィルムの押出方向と一致する場合を「縦」方向の試験片とし、長方形の長辺がフィルムの押出方向と直交する場合を「横」方向の試験片として、1種類の複合フィルムについて2方向×3温度=6種類ずつの試験片を作成した。
 (株)島津製作所製、オートグラフ(型番:AG−500D)を用い、各温度でヒートシールした後の試験片のヒートシールしていない部分を開いて2つのチャックにそれぞれ挟み、引張速度300mm/分の条件で引張試験を行い、応力の最大値を調べた。
 上記の応力の最大値が3N/15mm以上であれば、当該温度で十分なヒートシール強度が得られていると評価することができ;
13N/15mm以下であれば、イージーピール性を有していると評価することができる。
(8)イージーピール性(官能試験)
 イージーピール性を調べるために、包装体を人の手により開封する官能試験を行った。
 縦ピロー包装機((株)東京自働機械製作所製、型式「TWX1N」)を用いて、複合フィルムのヒートシール層同士を以下の条件でヒートシールして縦120mmおよび横100mmの包装体を得た。
 ヒートシール温度 120℃
 ヒートシール時間 0.6秒
 ヒートシール圧力 0.5MPa
 上記で得られた包装体のヒートシールされた袋口上部から30mm離れた部分において、ヒートシールされずに対向している複合フィルム表面のそれぞれを右手と左手の指先でそれぞれ保持し、人間の手によって開封した。
 このときの感触(剥離感)を以下の基準で評価し、イージーピール性の指標とした。
 A:容易且つ滑らかに剥離できた場合(極めて良好)
 B:僅かな抵抗感があったが容易に剥離できた場合(良好)
 C:抵抗感がやや大きかったが剥離は可能であった場合(可)
 D:剥離できなかった場合またはヒートシール部以外の部分が破壊された場合(不良)
(9)引裂き開封性
 2枚の複合フィルムのヒートシール層同士をヒートシールした後の引裂き開封性を調べた。
 複合フィルムを150mm×100mmの長方形に切り出し、2枚を一組としてヒートシール層同士が相接するように重ね合わせ、(株)安田精機製作所製、YSSヒートシーラーを用いて、以下の条件で4辺をヒートシールして、疑似製袋体を得た。この疑似製袋体の4辺は、端部までヒートシールされている。
 ヒートシール温度:160℃
 シール圧力:0.1MPa
 ヒートシール時間:1.0秒
 シール幅:5mm
 得られた疑似製袋体の一片のヒートシール部に、カッターを用いて端部から垂直方向に10mmの切れ目を入れ、該切れ目部を横方向(疑似製袋体の面に平行、且つ切れ目の方向に垂直の方向)に手で引裂き、該引裂きに要した力および引裂き部の状態を調べ、以下の基準で判定し、下記の計算式により評価した。
 軽い力で切れ目から直線的に切れ、フィルムの伸びや毛羽立ちなどがない:A(極めて良好)
 引裂く際に多少重く感じるが、真っ直ぐに切れる:B(良好)
 引裂く際に非常に重く感じ、切れたフィルムが伸びて毛羽立ちができている:C(不良)
 切れ目からフィルムが伸び、切れない:D(極めて不良)
 試験は、3人の試験員によって各自10個の試験片にて行い、合計30個の試験片のうちの「A」判定であった割合を、下記数式(1)により百分率で表して評価した。
 「A」判定の割合(%)=(「A」判定の個数÷30)×100(1)
(10)耐ピンホール性
 ヒートシール部の耐ピンホール性の指標として、ヒートシール部の探傷試験を行った。
 複合フィルムを150mm×100mmの長方形に切り出し、ヒートシール層が内側になるように短辺の中央で2つに折り返した。短辺部分のうちの1辺を開口部として残し、残りの2辺(短辺のうちの1辺部分および長辺)につき、(株)安田精機製作所製、YSSヒートシーラーを用いて、以下の条件でヒートシールして封筒状の疑似製袋体を得た。
 ヒートシール温度:160℃
 シール圧力:0.1MPa
 ヒートシール時間:1.0秒
 シール幅5mm
 この疑似製袋体の開口部から、(株)タセト製、染色浸透探傷剤、「浸透液 FP−S 標準型」を噴霧し、シール部からの液漏れ状態を目視にて観察し、以下の基準で評価した。
 ヒートシール部よりの液漏れなし:○(耐ピンホール性良好)
 ヒートシール部よりの液漏れあり:×(耐ピンホール性不良)
実施例1
<多層フィルムの製造>
 中間層用のスクリュー径75mmの単軸押出機が1台、両外層(ラミネート層およびヒートシール層)用のスクリュー径50mmの単軸押出機が2台の合計3台の押出機からなる3種3層構成のTダイ方式フィルム製膜装置を用い、各押出機に以下のように樹脂を供給した。
 中間層用押出機;b−LLDPE−1(住友化学(株)製、品番:CU7004、融点=108℃、MFR=3.0g/10分(190℃)、Mw/Mn=11.9、密度=0.924g/cm、非結晶性成分=2.5重量%、長鎖分岐含有量=4.12個/1,000C)100重量部
 ラミネート層用押出機;PP−1(日本ポリプロ(株)製、品番:WFX4TA、融点=126℃、MFR=7.0g/10分(230℃)、Mw/Mn=3.0)70重量部およびPP−2(日本ポリプロ(株)製、品番:FW3GT、融点=148℃、MFR=7.0g/10分(230℃)、Mw/Mn=5.3)30重量部の混合物
 ヒートシール層用押出機;PP−1(日本ポリプロ(株)製、品番:WFX4TA、融点=126℃、MFR=7.0g/10分(230℃)、Mw/Mn=3.0)100重量部
3つの押出機のいずれについても樹脂温度220℃、滞留時間1分、Tダイ温度230℃の条件で各Tダイより押出し、3層を合わせて25℃の冷却ロールを通して多層フィルムを得た。この多層フィルムは、3層構成であり、総厚みが30μmであり、3層の厚み構成がおよそ1:2:1であった。
 次いで、この多層フィルムのラミネート層側の表面の濡れ張力が42mN/mとなるようにコロナ放電処理を施し、さらに40℃において24時間エージングすることにより、ポリオレフィン系無延伸多層フィルムを得た。
 このポリオレフィン系無延伸多層フィルムを用いて、上記(1)~(6)の評価を行った。評価結果は表5に示した。
<複合フィルムの製造>
 上記のポリオレフィン系無延伸多層フィルムのラミネート層面を、二軸延伸ポリプロピレンフィルムに貼付して、複合フィルムを製造した。
 サン・トックス(株)製、二軸延伸ポリプロピレンフィルム(品番:サントックス−OP PA20、厚み:20μm、片面コロナ処理品)のコロナ処理面に対し、ドライラミネート用接着剤(東洋モートン(株)製の主剤(品番:TM−595)15g、同社製の硬化剤(品番:CAT−56)2.7gおよび酢酸エチル36.8gを混合した溶液)を、アプリケーター(2ミル設定)により塗布し、80℃において1分間乾燥した。次いで、この接着剤層上に、上記で得られたポリオレフィン系無延伸多層フィルムのラミネート層を、ハンドローラーにて押し付けながら積層した後、40℃において3日間エージングすることにより、複合フィルムを得た。なお、上記の単位「ミル」とは0.001インチの意味であり、1ミルは約25.3995μmに相当する。
 上記で得た複合フィルムを用いて、上記(7)~(10)の評価を行った。評価結果は表5に示した。
実施例2~10および比較例1~4
 上記実施例1において、各層用の押出機に供給する樹脂の種類および配合量を、それぞれ、表3および表4に記載のとおりとしたほかは、実施例1と同様にしてポリオレフィン系無延伸多層フィルムおよび複合フィルムを製造し、それぞれ評価した。
 評価結果は表5および表6に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-I000012
 なお、表3および表4における樹脂原料の略称は、それぞれ次の意味である。
 b−LLDPE−1:住友化学(株)製、品番「CU7004」
 b−LLDPE−2:住友化学(株)製、品番「GT140」
 b−LLDPE−3:住友化学(株)製、品番「GH051」
 LLDPE−1:宇部丸善ポリエチレン(株)製、品番「1540F」
 LLDPE−2:宇部丸善ポリエチレン(株)製、品番「2040FC」
 LLDPE−3:ダウ・ケミカル日本(株)製、品番「KC8852G」
 LDPE−1:住友化学(株)製、品番「L405」
 PP−1:日本ポリプロ(株)製、品番「WFX4TA」
 PP−2:日本ポリプロ(株)製、品番「FW3GT」
 上記の樹脂原料のパラメーターを、下記の表7に示した。
 表7のMFR欄の数値は、JIS K 7210に準拠して荷重2.16kgにて測定したメルトフローレートである。測定温度は、ポリエチレン系樹脂については190℃、ポリプロピレン系樹脂については230℃とした。
 融点は、示差走査熱量計(DSC)によって測定した融点のピーク温度である。
 「長鎖分岐」欄に示した長鎖分岐の含有量は、下記の条件下で測定した13C−NMRの結果から下記数式(2)に従って算出した、炭素原子1,000個あたりの炭素数8以上の分岐の数である。
13C−NMR測定条件]
 測定装置:日本電子(株)製、型式「JNM−ECS400」
 溶媒:トリクロロベンゼン/重ベンゼンの混合溶媒(75/25容量%)
 試料濃度:80mg/2.5mL溶液
 測定モード:1H−完全デカップリング
 測定温度:120℃
 パルス幅:90度パルス
 パルス繰返し時間:9秒
 積算回数:9,000回
 長鎖分岐含有量(個/1000C)=A÷B×1,000    (2)
(数式(2)中、Aは化学シフトδ=22.87ppmのピーク面積であり、Bは化学シフトδ=30ppmのピーク面積である。)
 非結晶成分含有量は、以下の条件下の昇温溶離分別法において、試料供給後のカラムを0℃まで冷却した後に溶媒の供給を開始し、カラム温度を0℃に維持している期間中に溶出する留分が全留分に対して占める重量割合である。
 測定装置:(株)センシュー科学製、型番「TREF装置特型」
 カラム:内径10mm×300mm
 充填剤:クロモソルブP NAW(ジーエルサイエンス(株)製、30/60mesh)
 試料溶液濃度:5mg/mL
 試料溶液注入量:2mL
 溶媒:オルトジクロロベンゼン
 流速:1mL/min
 試料注入温度:140℃
 降温速度:5℃/h
 冷却到達温度:0℃
 冷却到達温度における維持時間:30分
 昇温速度:5℃/h
 検出器:赤外検出器
 測定波数:3.42μm
Figure JPOXMLDOC01-appb-T000013
発明の効果
 本発明によると、光学的特性、耐ブロッキング性、低温ヒートシール性、ヒートシール強度、密封性などの諸特性に優れるとともに、包装の引裂開封性およびイージーピール性にも優れるポリオレフィン系無延伸多層フィルムが提供される。
 本発明の多層フィルムから形成される包装体は、例えば食品包装用途などに特に好適に使用することができる。
Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to these examples.
Each evaluation in the following examples and comparative examples was performed according to the following procedure.
<Evaluation of multilayer film>
(1) Haze As a transparency index, a haze meter (model number: NDH5000) manufactured by Nippon Denshoku Industries Co., Ltd. was used, and haze was measured based on JIS K7136.
(2) Gloss Gloss was measured according to JIS K 7105 using a gloss meter (model number: UGV-5D) manufactured by Suga Test Instruments Co., Ltd. as an index of gloss. The evaluation of the gloss was performed on both the laminate layer side surface and the heat seal layer side surface of the multilayer film.
(3) Image clarity As an index of image clarity, Suga Test Instruments Co., Ltd., image clarity measuring instrument (model number: ICM-1DP) was used, and the slit width of the optical comb was 0.125 mm in accordance with JIS K 7105. As a result, the image clarity was measured.
(4) Blocking strength As an index of blocking resistance, blocking strength was examined by the following tensile test.
10 layers of multilayer films cut into 120 mm × 120 mm squares are stacked so that the laminating layer and the heat seal layer are in contact with each other between adjacent films, and a temperature of 10 kg is applied to the entire top surface of the multilayer film. It was stored for 3 days or 72 hours in a constant temperature and humidity machine at 40 ° C. and a humidity of 70% RH. Of the multilayer film after storage, 2 sheets of the upper layer and 2 sheets of the lower layer were removed to take 6 sheets in the middle, and 2 adjacent sheets were peeled off as a pair to obtain 3 pairs. In each pair, two multilayer films are pressure-bonded under the above conditions with the laminate layer and the heat seal layer in contact. Each pair was cut into a 30 mm × 120 mm rectangle to obtain three test pieces. The test piece was peeled off from one end of the short side of the test piece so that the pressure-bonded portion remained with a length of 40 mm. The pressure-bonded portion 30 mm × 40 mm remaining on each test piece is a blocking resistance measurement region.
Then, using an autograph (model number: AG-500D) manufactured by Shimadzu Corporation, the layer of the peeled portion of the test piece was sandwiched between two chucks, respectively, and the measurement temperature was 23 ° C. atmosphere and the tensile speed was 50 mm / min. A tensile test was performed under the conditions, and the maximum value of stress until the specimen was completely peeled was examined. The average value (kPa) of the maximum value was taken with n being 3, and this was taken as the blocking strength.
(5) Impact strength As an index of impact resistance, a film impact tester manufactured by Toyo Seiki Co., Ltd. was used, and impact strength was measured under the following conditions.
Test piece dimensions: 120 mm x 120 mm
Measurement temperature: 23 ° C. atmosphere and 0 ° C. atmosphere (6) Tear strength (trouser tear method)
As an index of tear resistance, tear strength was measured under the following conditions using an autograph (model number: AG-500D) manufactured by Shimadzu Corporation in accordance with JIS K 7128-1.
Test piece dimensions: Long side (vertical) 100 mm, short side (horizontal) 50 mm
Slit: 20 mm long notch provided parallel to the long side at the center of one short side of the test piece (position 25 mm from the long side) Tensile speed: 500 mm / min Measuring temperature: 23 ° C. atmosphere <composite film Evaluation>
(7) Heat seal strength As an index of heat sealability, the heat seal layers of two composite films were brought into contact with each other, and the strength when heat sealed at each temperature was examined by the following tensile test.
The composite film is cut into a 15 mm × 200 mm rectangle, and the two sheets are stacked together so that the heat seal layers are in contact with each other, and heated under the following conditions using a YSS heat sealer manufactured by Yasuda Seiki Seisakusho Co., Ltd. A test piece was obtained by sealing.
Seal bar width: 5mm
Seal pressure: 0.1 MPa
Sealing time: 1.0 second Sealing temperature: Variable to 150 ° C., 160 ° C. and 170 ° C. The area of 5 mm × 15 mm, which is the heat seal part of the test piece obtained above, becomes the measurement area of each heat seal strength. . Here, the case where the long side of the rectangle coincides with the extrusion direction of the film is referred to as a “longitudinal” direction test piece, and the case where the long side of the rectangle is orthogonal to the film extrusion direction is referred to as a “lateral” direction test piece. Test pieces of 2 types × 3 temperatures = 6 types for each type of composite film were prepared.
Using an autograph (model number: AG-500D) manufactured by Shimadzu Corporation, open the unsealed part of the test piece after heat sealing at each temperature, and sandwich it between the two chucks, respectively. A tensile test was performed under the condition of minutes, and the maximum value of the stress was examined.
If the maximum value of the stress is 3 N / 15 mm or more, it can be evaluated that sufficient heat seal strength is obtained at the temperature;
If it is 13 N / 15 mm or less, it can be evaluated that it has easy peel properties.
(8) Easy peel (sensory test)
In order to examine the easy peel property, a sensory test was conducted in which the package was opened by human hands.
Using a vertical pillow packaging machine (model “TWX1N”, manufactured by Tokyo Automatic Machinery Co., Ltd.), the heat seal layers of the composite film are heat-sealed under the following conditions to obtain a 120 mm long and 100 mm wide package. It was.
Heat seal temperature 120 ℃
Heat sealing time 0.6 seconds Heat sealing pressure 0.5 MPa
In the portion of the package obtained above 30 mm away from the upper part of the heat-sealed bag mouth, each of the facing composite film surfaces without being heat-sealed is held by the fingertips of the right hand and the left hand, respectively. Opened.
The feel (peeling feeling) at this time was evaluated according to the following criteria and used as an easy peel property index.
A: When easily and smoothly peeled off (very good)
B: When there was slight resistance but it was easily peeled off (good)
C: When the resistance was slightly high but could be peeled off (possible)
D: When it cannot peel or when parts other than a heat seal part are destroyed (defect)
(9) Tear-openability The tear-openability after heat-sealing the heat-seal layers of two composite films was examined.
The composite film is cut into a rectangle of 150 mm × 100 mm, and the two sheets are superposed so that the heat seal layers are in contact with each other. Using a YSS heat sealer manufactured by Yasuda Seiki Seisakusho, 4 The sides were heat-sealed to obtain a pseudo bag-making body. The four sides of the pseudo bag-making body are heat-sealed to the ends.
Heat sealing temperature: 160 ° C
Seal pressure: 0.1 MPa
Heat sealing time: 1.0 seconds Seal width: 5 mm
A cut of 10 mm is made in the vertical direction from the end portion using a cutter in a piece of the heat seal portion of the obtained pseudo bag-making body, and the cut portion is formed in the lateral direction (parallel to the surface of the pseudo-bag-making body and the cut). Tearing by hand in the direction perpendicular to the direction), the force required for the tearing and the state of the tearing portion were examined, judged according to the following criteria, and evaluated by the following calculation formula.
Lightly cut straight from the cut line, no film stretch or fuzz: A (very good)
I feel a little heavy when tearing, but cut straight: B (good)
It feels very heavy when tearing, and the cut film is stretched and fluffy: C (defect)
The film extends from the cut and does not break: D (very poor)
The test was performed by three testers with 10 test pieces each, and the percentage of the total 30 test pieces that was “A” judgment was expressed as a percentage by the following formula (1) and evaluated. .
“A” judgment ratio (%) = (number of “A” judgments ÷ 30) × 100 (1)
(10) Pinhole resistance The flaw detection test of the heat seal part was done as a parameter | index of the pinhole resistance of a heat seal part.
The composite film was cut into a rectangle of 150 mm × 100 mm and folded back into two at the center of the short side so that the heat seal layer was inside. One side of the short side part is left as an opening, and the remaining two sides (one side part and the long side of the short side) are manufactured by Yasuda Seiki Seisakusho Co., Ltd., using a YSS heat sealer. Heat sealed under conditions to obtain an envelope-like pseudo bag-making body.
Heat sealing temperature: 160 ° C
Seal pressure: 0.1 MPa
Heat sealing time: 1.0 seconds Seal width 5mm
From the opening of this pseudo bag-making body, Taseto Co., Ltd., dyeing penetrant flaw detection agent, “permeating liquid FP-S standard type” is sprayed, and the liquid leakage state from the seal part is visually observed. Evaluated by criteria.
No liquid leakage from the heat seal part: ○ (Good pinhole resistance)
Liquid leakage from heat seal part: × (Poor pinhole resistance)
Example 1
<Manufacture of multilayer film>
Three types consisting of a total of three extruders: one single-screw extruder with a screw diameter of 75 mm for the intermediate layer and two single-screw extruders with a screw diameter of 50 mm for both outer layers (laminate layer and heat seal layer) Resin was supplied to each extruder as follows using a three-layer T-die film-forming apparatus.
Extruder for intermediate layer; b-LLDPE-1 (manufactured by Sumitomo Chemical Co., Ltd., product number: CU7004, melting point = 108 ° C., MFR = 3.0 g / 10 min (190 ° C.), Mw / Mn = 11.9, density = 0.924 g / cm 3 , amorphous component = 2.5 wt%, long chain branch content = 4.12 pieces / 1,000 C) 100 parts by weight Laminate layer extruder; PP-1 (Nippon Polypro ( Co., Ltd., product number: WFX4TA, melting point = 126 ° C., MFR = 7.0 g / 10 min (230 ° C., Mw / Mn = 3.0) 70 parts by weight and PP-2 (manufactured by Nippon Polypro Co., Ltd., product number) : FW3GT, melting point = 148 ° C., MFR = 7.0 g / 10 min (230 ° C.), Mw / Mn = 5.3) 30 parts by weight of mixture Heat-seal layer extruder; PP-1 (Nippon Polypro Co., Ltd.) Product number: WFX4TA, melting point = 126 ° C., MFR = 7.0 g / 10 min (230 ° C), Mw / Mn = 3.0) 100 parts by weight Each of the three extruders was subjected to a resin temperature of 220 ° C, a residence time of 1 minute, and a T-die temperature of 230 ° C. Extruded from a T-die, the three layers were combined to obtain a multilayer film through a 25 ° C. cooling roll. This multilayer film had a three-layer configuration, a total thickness of 30 μm, and a three-layer thickness configuration of approximately 1: 2: 1.
Next, a corona discharge treatment was applied so that the wet tension of the surface on the laminate layer side of this multilayer film was 42 mN / m, and further aging at 40 ° C. for 24 hours to obtain a polyolefin-based unstretched multilayer film.
Using the polyolefin-based unstretched multilayer film, the evaluations (1) to (6) were performed. The evaluation results are shown in Table 5.
<Manufacture of composite film>
The laminate layer surface of the above polyolefin-based unstretched multilayer film was attached to a biaxially stretched polypropylene film to produce a composite film.
Adhesive for dry lamination (manufactured by Toyo Morton Co., Ltd.) on the corona-treated surface of a biaxially stretched polypropylene film (product number: Santox-OP PA20, thickness: 20 μm, single-sided corona-treated product) manufactured by Sun Tox Co., Ltd. The main agent (product number: TM-595) 15 g, a curing agent (product number: CAT-56) 2.7 g and a solution obtained by mixing 36.8 g of ethyl acetate were applied with an applicator (2 mil setting), 80 Dry at 1 ° C. for 1 minute. Next, a laminate film of the polyolefin-based unstretched multilayer film obtained above was laminated on this adhesive layer while pressing with a hand roller, and then aged at 40 ° C. for 3 days to obtain a composite film. . The unit “mil” means 0.001 inch, and 1 mil corresponds to about 25.3999 μm.
Using the composite film obtained above, the above (7) to (10) were evaluated. The evaluation results are shown in Table 5.
Examples 2 to 10 and Comparative Examples 1 to 4
In Example 1 above, the polyolefin-based unstretched multilayer was prepared in the same manner as in Example 1 except that the type and amount of resin supplied to the extruder for each layer were as shown in Table 3 and Table 4, respectively. Films and composite films were produced and evaluated respectively.
The evaluation results are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-I000012
In addition, the abbreviation of the resin raw material in Table 3 and Table 4 has the following meaning, respectively.
b-LLDPE-1: manufactured by Sumitomo Chemical Co., Ltd., product number “CU7004”
b-LLDPE-2: manufactured by Sumitomo Chemical Co., Ltd., product number “GT140”
b-LLDPE-3: manufactured by Sumitomo Chemical Co., Ltd., product number “GH051”
LLDPE-1: Ube Maruzen Polyethylene Co., Ltd., product number “1540F”
LLDPE-2: Ube Maruzen Polyethylene Co., Ltd., product number “2040FC”
LLDPE-3: manufactured by Dow Chemical Japan Co., Ltd., product number “KC8852G”
LDPE-1: manufactured by Sumitomo Chemical Co., Ltd., product number “L405”
PP-1: manufactured by Nippon Polypro Co., Ltd., product number “WFX4TA”
PP-2: manufactured by Nippon Polypro Co., Ltd., product number “FW3GT”
The parameters of the resin raw material are shown in Table 7 below.
The numerical value in the MFR column of Table 7 is the melt flow rate measured at a load of 2.16 kg in accordance with JIS K 7210. The measurement temperature was 190 ° C. for the polyethylene resin and 230 ° C. for the polypropylene resin.
The melting point is the peak temperature of the melting point measured by a differential scanning calorimeter (DSC).
The content of the long chain branch shown in the “long chain branch” column is the number of carbon atoms per 1,000 carbon atoms, calculated according to the following formula (2) from the result of 13 C-NMR measured under the following conditions: The number of branches of 8 or more.
[ 13C -NMR measurement conditions]
Measuring device: Model “JNM-ECS400” manufactured by JEOL Ltd.
Solvent: Mixed solvent of trichlorobenzene / heavy benzene (75/25% by volume)
Sample concentration: 80 mg / 2.5 mL solution Measurement mode: 1H-complete decoupling Measurement temperature: 120 ° C.
Pulse width: 90 degree pulse Pulse repetition time: 9 seconds Integration number: 9,000 times Long chain branch content (pieces / 1000C) = A ÷ B × 1,000 (2)
(In Formula (2), A is the peak area of chemical shift δ = 22.87 ppm, and B is the peak area of chemical shift δ = 30 ppm.)
In the temperature rising elution fractionation method under the following conditions, the amorphous component content is measured during the period in which the column supply after the sample supply is cooled to 0 ° C. and then the supply of the solvent is started and the column temperature is maintained at 0 ° C. This is the weight ratio of the fraction eluted in the total fraction.
Measuring equipment: Model number "TREF equipment special type", manufactured by Senshu Kagaku Co., Ltd.
Column: Internal diameter 10mm x 300mm
Filler: Chromosolv P NAW (manufactured by GL Sciences, 30/60 mesh)
Sample solution concentration: 5 mg / mL
Sample solution injection volume: 2 mL
Solvent: Orthodichlorobenzene Flow rate: 1 mL / min
Sample injection temperature: 140 ° C
Temperature drop rate: 5 ° C / h
Cooling arrival temperature: 0 ° C
Maintenance time at cooling temperature: 30 minutes Temperature increase rate: 5 ° C / h
Detector: Infrared detector Measurement wave number: 3.42 μm
Figure JPOXMLDOC01-appb-T000013
[Effects of the Invention] According to the present invention, there is no polyolefin-based resin that is excellent in various properties such as optical properties, anti-blocking properties, low-temperature heat sealability, heat seal strength, and sealability, as well as tear-opening properties and easy peel properties of packaging. A stretched multilayer film is provided.
The package formed from the multilayer film of the present invention can be particularly suitably used for food packaging applications, for example.

Claims (6)

  1.  最外層であるラミネート層、少なくとも1層の中間層およびもう一方の最外層であるヒートシール層を有するポリオレフィン系無延伸多層フィルムであって、
     前記ラミネート層はポリオレフィン系樹脂からなり、
     前記中間層の少なくとも1層は長鎖分岐LLDPEを含有するポリオレフィン系樹脂からなり、
     前記ヒートシール層はポリプロピレン系樹脂を含有するポリオレフィン系樹脂からなり、
     前記ラミネート層のポリオレフィン系樹脂は、前記ヒートシール層におけるポリプロピレン系樹脂よりも融点が高く、
     上記中間層におけるポリオレフィン系樹脂中の長鎖分岐LLDPEは、
    ゲルパーミエーションクロマトグラフィーによって測定したポリスチレン換算の重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが7.5~15.0であり、
    昇温溶出分別法によって測定した非結晶性成分量が1~4重量%であり、そして13C−NMRによって測定した炭素数8以上の分岐の数が、炭素原子1,000個あたり1.5~5.0個である
    ことを特徴とする、前記多層フィルム。
    A polyolefin-based unstretched multilayer film having a laminate layer as an outermost layer, at least one intermediate layer, and a heat seal layer as another outermost layer,
    The laminate layer is made of a polyolefin resin,
    At least one of the intermediate layers is made of a polyolefin resin containing long-chain branched LLDPE,
    The heat seal layer is made of a polyolefin resin containing a polypropylene resin,
    The polyolefin resin of the laminate layer has a higher melting point than the polypropylene resin in the heat seal layer,
    The long-chain branched LLDPE in the polyolefin-based resin in the intermediate layer is
    The ratio Mw / Mn of polystyrene-equivalent weight average molecular weight Mw and number average molecular weight Mn measured by gel permeation chromatography is 7.5 to 15.0,
    The amount of non-crystalline components measured by the temperature rising elution fractionation method is 1 to 4% by weight, and the number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1.5 per 1,000 carbon atoms. The multilayer film as described above, wherein the number is ~ 5.0.
  2.  前記中間層におけるポリオレフィン系樹脂中の長鎖分岐LLDPEは、
    その密度が0.90~0.94g/cmであり、
    JIS K 7210に準拠して190℃において荷重2.16kgにて測定したメルトフローレートMFRが0.1~20g/10分である、請求項1に記載の多層フィルム。
    The long chain branched LLDPE in the polyolefin resin in the intermediate layer is
    The density is 0.90 to 0.94 g / cm 3 ,
    The multilayer film according to claim 1, wherein the melt flow rate MFR measured at 190 ° C and a load of 2.16 kg in accordance with JIS K 7210 is 0.1 to 20 g / 10 min.
  3.  前記中間層におけるポリオレフィン系樹脂が、
    前記長鎖分岐LLDPEを40重量%以上、
    ポリプロピレン系樹脂を30重量%以下および
    LLDPE(ただし、前記長鎖分岐LLDPEを除く。)を50重量%以下の範囲で含有する、請求項1または2に記載の多層フィルム。
    The polyolefin resin in the intermediate layer is
    40% by weight or more of the long chain branched LLDPE,
    3. The multilayer film according to claim 1, comprising 30% by weight or less of polypropylene resin and 50% by weight or less of LLDPE (excluding the long-chain branched LLDPE).
  4.  前記ヒートシール層中のポリプロピレン系樹脂が
    分子量分布Mw/Mnが1.5~3.5であり、JIS K 7210に準拠して230℃において荷重2.16kgにて測定したメルトフローレートMFRが1~30g/10分であり、融点が120~140℃であり、そしてメタロセン系触媒を用いて重合されたプロピレン−エチレン共重合体を70重量%以上含有する、請求項1または2に記載の多層フィルム。
    The polypropylene resin in the heat seal layer has a molecular weight distribution Mw / Mn of 1.5 to 3.5, and a melt flow rate MFR measured at 230 ° C. and a load of 2.16 kg according to JIS K 7210 is 1. The multilayer according to claim 1 or 2, which has a melting point of 120 to 140 ° C and 70% by weight or more of a propylene-ethylene copolymer polymerized using a metallocene catalyst. the film.
  5.  フィルム基材上に、請求項1~4のいずれか一項に記載の多層フィルムのラミネート層を貼付してなる、複合フィルム。 A composite film comprising a laminate of the multilayer film according to any one of claims 1 to 4 stuck on a film substrate.
  6.  請求項5に記載の複合フィルムからなる、包装体。 A package comprising the composite film according to claim 5.
PCT/JP2014/082906 2013-12-12 2014-12-05 Polyolefin-based unstretched multilayer film WO2015087990A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167011591A KR20160096589A (en) 2013-12-12 2014-12-05 Polyolefin-based unstretched multilayer film
CN201480061423.2A CN105793037A (en) 2013-12-12 2014-12-05 Polyolefin-based unstretched multilayer film
JP2015552524A JP6457402B2 (en) 2013-12-12 2014-12-05 Polyolefin-based unstretched multilayer film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-257346 2013-12-12
JP2013257346 2013-12-12

Publications (1)

Publication Number Publication Date
WO2015087990A1 true WO2015087990A1 (en) 2015-06-18

Family

ID=53371288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082906 WO2015087990A1 (en) 2013-12-12 2014-12-05 Polyolefin-based unstretched multilayer film

Country Status (5)

Country Link
JP (1) JP6457402B2 (en)
KR (1) KR20160096589A (en)
CN (1) CN105793037A (en)
TW (1) TW201538324A (en)
WO (1) WO2015087990A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032450B1 (en) * 2015-12-25 2016-11-30 一夫 菱沼 Method for selecting a sealant layer in a substrate
JP2017177565A (en) * 2016-03-30 2017-10-05 凸版印刷株式会社 Film for packing material, packing material using the same and package
JP2017222759A (en) * 2016-06-14 2017-12-21 株式会社プライムポリマー Polypropylene-based resin composition for sealant
JP2018065267A (en) * 2016-10-18 2018-04-26 サン・トックス株式会社 Stretched polypropylene film
JP2021000758A (en) * 2019-06-21 2021-01-07 Dic株式会社 Laminate film and packaging material
WO2023129078A1 (en) * 2021-12-29 2023-07-06 Korozo Ambalaj Sanayi Ve Ticaret A.S. A packaging film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237827B2 (en) * 2018-05-21 2023-03-13 東レフィルム加工株式会社 Laminate and packaging material using the same
CN112142897B (en) * 2019-09-25 2021-07-27 中国科学院化学研究所 Application of organosilane in preparation of linear low density polyethylene, linear low density polyethylene and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011301A (en) * 2001-06-29 2003-01-15 Grand Polymer Co Ltd Multi-layer film of polypropylene resin
JP2003535719A (en) * 2000-06-07 2003-12-02 ザ ダウ ケミカル カンパニー Easy tearing non-halogen food wrap
JP2008238532A (en) * 2007-03-27 2008-10-09 Sumitomo Chemical Co Ltd Multi-layer film and bag
JP2010214810A (en) * 2009-03-17 2010-09-30 San Totsukusu Kk Packaging material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194642A (en) * 2010-03-18 2011-10-06 Sumitomo Chemical Co Ltd Method of manufacturing polyethylene film
JP2011225793A (en) * 2010-04-23 2011-11-10 Sumitomo Chemical Co Ltd Film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535719A (en) * 2000-06-07 2003-12-02 ザ ダウ ケミカル カンパニー Easy tearing non-halogen food wrap
JP2003011301A (en) * 2001-06-29 2003-01-15 Grand Polymer Co Ltd Multi-layer film of polypropylene resin
JP2008238532A (en) * 2007-03-27 2008-10-09 Sumitomo Chemical Co Ltd Multi-layer film and bag
JP2010214810A (en) * 2009-03-17 2010-09-30 San Totsukusu Kk Packaging material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032450B1 (en) * 2015-12-25 2016-11-30 一夫 菱沼 Method for selecting a sealant layer in a substrate
JP2017114018A (en) * 2015-12-25 2017-06-29 一夫 菱沼 Method for selection of sealant layer on base material
JP2017177565A (en) * 2016-03-30 2017-10-05 凸版印刷株式会社 Film for packing material, packing material using the same and package
JP2017222759A (en) * 2016-06-14 2017-12-21 株式会社プライムポリマー Polypropylene-based resin composition for sealant
JP2018065267A (en) * 2016-10-18 2018-04-26 サン・トックス株式会社 Stretched polypropylene film
JP2021000758A (en) * 2019-06-21 2021-01-07 Dic株式会社 Laminate film and packaging material
JP7306098B2 (en) 2019-06-21 2023-07-11 Dic株式会社 Laminated films and packaging materials
WO2023129078A1 (en) * 2021-12-29 2023-07-06 Korozo Ambalaj Sanayi Ve Ticaret A.S. A packaging film

Also Published As

Publication number Publication date
KR20160096589A (en) 2016-08-16
TW201538324A (en) 2015-10-16
CN105793037A (en) 2016-07-20
JPWO2015087990A1 (en) 2017-03-16
JP6457402B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP6457402B2 (en) Polyolefin-based unstretched multilayer film
JP6030947B2 (en) Polyolefin-based unstretched multilayer film
JP5883360B2 (en) LAMINATED FILM COMPOSITION, PACKAGE PRODUCT MADE FROM THEM, AND METHOD OF USE
US6423420B1 (en) Oriented coextruded films
CN102248735B (en) Polyolefin film used for packaging and preparation method thereof
EP2639062B1 (en) Polyolefin composite film
US9080082B2 (en) Medium density polyethylene film layer and multilayer film comprising same
WO2015166848A1 (en) Multilayer sealant film
JP2023073314A (en) Food packaging film and food package
JP2023010777A (en) Food product packaging film and food product packaging body
JP2023121783A (en) Packaging film for food and packaging body for food
JP2022186744A (en) Packaging film for food product, and package for food product
EP1858651B1 (en) Sealable biaxially oriented polypropylene film for packaging
JP7112835B2 (en) Food packaging film and food package
KR20160114603A (en) Multi-layer non-oriented polyolefin film
KR101154590B1 (en) Polypropylene film and method for preparing the same
JP2023546643A (en) Multilayer structure with enhanced adhesive bonding strength and article containing this multilayer structure
US11708483B2 (en) Heat sealable films
WO2024070896A1 (en) Packaging film, packaging material, and food package
WO2024070894A1 (en) Packaging film, packaging material, and food package
JP2024049105A (en) Biaxially oriented polypropylene film, food packaging and food packaging
JP6639306B2 (en) Multilayer film and method for producing the same
JP2024049102A (en) Biaxially oriented polypropylene film, food packaging and food packaging
JP2024049096A (en) Biaxially oriented polypropylene film, food packaging and food packaging
JP2024049107A (en) Biaxially oriented polypropylene film, food packaging and food packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552524

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167011591

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870100

Country of ref document: EP

Kind code of ref document: A1