WO2015087986A1 - Method for producing dispersion, and dispersion - Google Patents

Method for producing dispersion, and dispersion Download PDF

Info

Publication number
WO2015087986A1
WO2015087986A1 PCT/JP2014/082901 JP2014082901W WO2015087986A1 WO 2015087986 A1 WO2015087986 A1 WO 2015087986A1 JP 2014082901 W JP2014082901 W JP 2014082901W WO 2015087986 A1 WO2015087986 A1 WO 2015087986A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
volume
dispersion
dispersoid
temperature
Prior art date
Application number
PCT/JP2014/082901
Other languages
French (fr)
Japanese (ja)
Inventor
貴司 芥川
健一郎 榎
大輝 松田
理 根布谷
修一 篠原
金子 尚史
太田 浩二
泰治 山下
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2015552522A priority Critical patent/JP6533467B2/en
Publication of WO2015087986A1 publication Critical patent/WO2015087986A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters

Definitions

  • the present invention relates to a method for producing a dispersion and a dispersion. Specifically, the present invention relates to a method for producing a dispersion in which various fine particles such as solid particles are dispersed in a solvent, and the dispersion.
  • the process includes the step of making materials such as solid particles fine and dispersing the fine particles in a dispersion solvent such as water or organic solvent to produce a dispersion.
  • a dispersion solvent such as water or organic solvent
  • the conventional method and apparatus require a long time and a lot of power to disperse the fine particles such as solid particles in the solvent.
  • the mixture in the supercritical state is released into the atmosphere, and is put into a collision part.
  • a supercritical fluid in which the dispersoid is dissolved is ejected from a nozzle.
  • the supercritical rapid expansion method for precipitating the dispersoid or the solution in which the dispersoid is dissolved is ejected from the nozzle into the supercritical fluid, or the supercritical fluid is ejected from the nozzle in the solution in which the solute is dissolved.
  • Patent Document 2 Although a supercritical poor solvent method for precipitation has been proposed (see, for example, Patent Document 2), there is a problem that dispersibility of the dispersoid in the solvent is insufficient. Furthermore, although a method has been proposed in which a mixture of a dispersoid and a compressive fluid is expanded under reduced pressure from a temperature equal to or higher than the melting point of the dispersoid (Patent Document 3), the stability of the dispersion after expansion under reduced pressure is insufficient. There is a problem that only a crystalline material having a melting point can be handled.
  • the problem to be solved by the present invention is to provide a method for producing a dispersion, in which a dispersoid such as solid particles is finely and stably dispersed in a dispersion solvent can be obtained quickly and with little power. It is.
  • the particles (C) containing the dispersoid (A) including the step of expanding the volume of the mixture (X) containing the dispersoid (A), the solvent (S), and the compressive fluid (F).
  • the mixture (X) is volume-expanded below the melting point or softening point of the dispersoid (A), and a dispersion liquid in which the median diameter of the particles (C) is 3.0 ⁇ m or less ( A method for producing L) is provided to solve the above problems.
  • the present invention it is possible to effectively disperse the dispersoid, and it is possible to obtain a dispersion liquid in which the median diameter of the dispersoid is fine and stable quickly and with less power.
  • the dispersoid (A) used in the present invention is not particularly limited and may be an organic substance and / or an inorganic substance.
  • wax, resin (crystalline resin, amorphous resin), dye, pigment, filler, antistatic agent, charge control agent, ultraviolet absorber, antioxidant, antiblocking agent, heat stabilizer, and flame retardant In addition, two or more of the above may be used in combination.
  • a wax and a crystalline resin are preferable in that the effect of atomization is greater.
  • the dispersoid (A) is an amorphous material
  • the dispersoid (A) is dissolved in the solvent (S) and / or the compressive fluid (F) in a mixture of the compressive fluid (F) and the solvent (S).
  • an amorphous resin is preferable, for example, a vinyl resin, a polyester resin, a polyurethane resin, an epoxy resin, and the like, and combinations thereof.
  • wax examples include polyolefin wax, natural wax, aliphatic alcohol having 30 to 50 carbon atoms, fatty acid having 30 to 50 carbon atoms, fatty acid ester having 30 to 50 carbon atoms, and a mixture thereof.
  • Polyolefin waxes include (co) polymers [obtained by (co) polymerization] of olefins (for example, ethylene, propylene, 1-butene, isobutylene, 1-hexene, 1-dodecene, 1-octadecene, and mixtures thereof).
  • olefin (co) polymer oxides by oxygen and / or ozone maleic acid modifications of olefin (co) polymers [eg maleic acid and its derivatives (maleic anhydride, Modified products such as monomethyl maleate, monobutyl maleate and dimethyl maleate), olefins and unsaturated carboxylic acids [(meth) acrylic acid, itaconic acid and maleic anhydride, etc.] and / or unsaturated carboxylic acid alkyl esters [(meta ) Alkyl acrylate (alkyl of 1 to 18 carbon atoms) ester and Copolymers of maleic acid alkyl (number of carbon atoms in the alkyl 1-18) ester, etc.] or the like, and Sasol wax.
  • maleic acid modifications of olefin (co) polymers eg maleic acid and its derivatives (maleic anhydride, Modified products such as monomethyl maleate, monobutyl maleate and dimethyl maleate),
  • Examples of natural waxes include carnauba wax, montan wax, paraffin wax, and rice wax.
  • Examples of the aliphatic alcohol having 30 to 50 carbon atoms include triacontanol.
  • Examples of the fatty acid having 30 to 50 carbon atoms include triacontane carboxylic acid.
  • Examples of the fatty acid ester having 30 to 50 carbon atoms include stearyl stearate.
  • the dispersoid (A) suitable for using the method for producing a dispersion of the present invention has a melting point or a softening point.
  • the melting point or softening point of the dispersoid (A) is preferably 30 to 120 ° C, more preferably 40 to 110 ° C, still more preferably 50 ° C to 100 ° C, particularly preferably 55 ° C to 90 ° C, most preferably 60 to 80 ° C. ° C.
  • the melting point in the present invention is used when the dispersoid (A) is a crystalline material, and is determined from an endothermic peak in differential scanning calorimetry (hereinafter referred to as DSC).
  • DSC differential scanning calorimetry
  • the softening point in the present invention is obtained when the dispersoid (A) is an amorphous material, and is measured and determined using a descending flow tester.
  • the term “amorphous” means a material that does not exhibit the following crystal characteristics, and the crystallinity is defined below. “Crystallinity” means that in differential scanning calorimetry (DSC), it has a clear endothermic peak, not a step-like endothermic change, and an absolute temperature ratio between the peak temperature and the softening temperature (softening temperature / (Endothermic peak temperature) is 0.93 to 1.07.
  • the softening point in the present invention is measured using a descending flow tester ⁇ for example, CFT-500D, manufactured by Shimadzu Corporation), while 1 g of a measurement sample is heated at a heating rate of 6 ° C./min.
  • Resins include crystalline resins and amorphous resins.
  • the composition of the crystalline resin is not particularly limited, and examples thereof include crystalline resins such as polyester resins, polyurethane resins, polyurea resins, polyamide resins, polyether resins, polycarbonate resins, and vinyl resins, and composite resins thereof.
  • Amorphous resins include vinyl resins, epoxy resins, polyester resins, polyamide resins, polyimide resins, silicon resins, phenol resins, melamine resins, urea resins, aniline resins, ionomer resins, and polycarbonate resins. And composite resins thereof.
  • the polyester resin is preferably a polycondensed polyester resin synthesized from an alcohol (diol) component and an acid (dicarboxylic acid) component from the viewpoint of crystallinity.
  • a tri- or higher functional alcohol (trivalent or higher polyol) component or an acid (trivalent or higher polycarboxylic acid) component may be used as necessary.
  • the polyurethane resin include a polyurethane resin synthesized from an alcohol (diol) component and an isocyanate (diisocyanate) component.
  • a tri- or higher functional alcohol (trivalent or higher polyol) component or an isocyanate (trivalent or higher polyisocyanate) component may be used.
  • polyamide resin examples include a polyamide resin synthesized from an amine (diamine) component and an acid (dicarboxylic acid) component. However, a tri- or higher functional amine (trivalent or higher polyamine) component or an acid (trivalent or higher polycarboxylic acid) component may be used as necessary.
  • polyurea resin examples include a polyurea resin synthesized from an amine (diamine) component and an isocyanate (diisocyanate) component. However, a tri- or higher functional amine (trivalent or higher polyamine) component or an isocyanate (trivalent or higher polyisocyanate) component may be used as necessary.
  • polyester resin in addition to the polycondensation polyester resin, a lactone ring-opening polymer and polyhydroxycarboxylic acid are also preferable.
  • polycarbonate resin include a polycarbonate resin synthesized from a diol component and phosgene or dimethyl carbonate.
  • the polycarboxylic acid component, diisocyanate component, trivalent or higher polyol component, diamine component, and trivalent or higher polyamine component will be described.
  • -Diol component- As the diol component, an aliphatic diol is preferable, and the chain carbon number is preferably in the range of 2 to 36. A linear aliphatic diol is more preferred.
  • the crystallinity of the polyester resin is lowered and the melting point is lowered.
  • toner blocking resistance, image storage stability, and low-temperature fixability of the resulting dispersion (L) are deteriorated. May end up.
  • the number of carbon atoms exceeds 36, it may be difficult to obtain practical materials.
  • the content of the linear aliphatic diol in the diol component is preferably 80 mol% or more of the diol component used, and more preferably 90 mol% or more. Other components may be included as necessary.
  • the content of the linear aliphatic diol is 80 mol% or more, the crystallinity of the polyester resin is improved, so that the particle size can be easily reduced.
  • linear aliphatic diol examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7.
  • ethylene glycol 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol are preferable in view of availability.
  • diols used as necessary include aliphatic diols other than those having 2 to 36 carbon atoms (1,2-propylene glycol, butanediol, hexanediol, octanediol, decanediol, dodecanediol, tetradecanediol, Neopentyl glycol, 2,2-diethyl-1,3-propanediol, etc.); C4-C36 alkylene ether glycol (diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol) Alicyclic diol having 4 to 36 carbon atoms (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.); alkylene oxide of the alicyclic diol (hereinafter abbreviated as AO) [Ethylene oxide (hereinafter abbreviated as
  • a diol having another functional group may be used in addition to the diol having no functional group other than the above hydroxyl group.
  • the diol having a functional group other than a hydroxyl group include a diol having a carboxyl group, a diol having a sulfonic acid group or a sulfamic acid group, and salts thereof.
  • Diols having a carboxyl group include dialkylol alkanoic acids [having 6 to 24 carbon atoms, such as 2,2-dimethylolpropionic acid (DMPA), 2,2-dimethylolbutanoic acid, 2,2-dimethylol.
  • Examples of the diol having a sulfonic acid group or a sulfamic acid group include a sulfamic acid diol [N, N-bis (2-hydroxyalkyl) sulfamic acid (the alkyl group has 1 to 6 carbon atoms) or an AO adduct thereof (EO as AO).
  • PO such as PO, such as N, N-bis (2-hydroxyethyl) sulfamic acid and N, N-bis (2-hydroxyethyl) sulfamic acid PO2 molar adduct, etc.]; (2-hydroxyethyl) phosphate and the like.
  • Examples of the salt of the diol having a functional group other than the hydroxyl group include salts of the functional group with the tertiary amine having 3 to 30 carbon atoms (such as triethylamine) and / or alkali metal (such as sodium). It is done. Among these, preferred are alkylene glycols having 2 to 12 carbon atoms, diols having a carboxyl group, AO adducts of bisphenols, and combinations thereof.
  • trihydric or higher polyols examples include trihydric to octahydric or higher polyols.
  • examples of the polyol having a valence of 3 to 8 or more include polyhydric aliphatic alcohols having a valence of 3 to 8 or more having 3 to 36 carbon atoms (an alkane polyol and an intramolecular or intermolecular dehydration product thereof).
  • glycerin trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, sorbitan, and polyglycerin; sugars and derivatives thereof such as sucrose and methylglucoside); AO adducts of trisphenols (such as trisphenol PA) ( Addition mole number 2-30); AO addition product (addition mole number 2-30) of novolak resin (phenol novolak, cresol novolak, etc.); acrylic polyol [copolymer of hydroxyethyl (meth) acrylate and other vinyl monomers, etc. ]; Etc. are mentioned.
  • trivalent to octavalent or higher valent polyhydric aliphatic alcohols and novolak resin AO adducts and more preferred are novolak resin AO adducts.
  • dicarboxylic acid component examples include various dicarboxylic acids, but aliphatic dicarboxylic acids and aromatic dicarboxylic acids are preferable, and the aliphatic dicarboxylic acids are more preferably linear carboxylic acids.
  • trivalent or higher polycarboxylic acid component examples include polycarboxylic acids having a valence of 3 to 6 or higher.
  • dicarboxylic acid examples include alkane dicarboxylic acids having 4 to 36 carbon atoms (succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, decylsuccinic acid, etc.); alicyclic dicarboxylic acids having 6 to 40 carbon atoms Acid [dimer acid (dimerized linoleic acid), etc.], alkene dicarboxylic acid having 4 to 36 carbon atoms (alkenyl succinic acid such as dodecenyl succinic acid, pentadecenyl succinic acid, octadecenyl succinic acid, maleic acid, fumaric acid) C8-36 aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid, t-butylisophthalic acid, 2,6-naphthalened
  • the dicarboxylic acid or the polycarboxylic acid having 3 to 6 or more valences the above acid anhydrides or lower alkyl esters having 1 to 4 carbon atoms (methyl ester, ethyl ester, isopropyl ester, etc.) can be used. It may be used.
  • these dicarboxylic acids it is particularly preferable to use an aliphatic dicarboxylic acid (particularly a straight-chain carboxylic acid) alone, but an aromatic dicarboxylic acid (terephthalic acid, isophthalic acid, t-butylisophthalic acid) together with the aliphatic dicarboxylic acid.
  • the copolymerization amount of the aromatic dicarboxylic acid is preferably 20 mol% or less.
  • the dicarboxylic acid component include, but are not limited to, the above carboxylic acids. Of these, adipic acid, sebacic acid, dodecanedicarboxylic acid, terephthalic acid, and isophthalic acid are preferable in consideration of crystallinity and availability.
  • diisocyanate examples include aromatic diisocyanates having 6 to 20 carbon atoms (excluding carbon in the NCO group, the same shall apply hereinafter), aliphatic diisocyanates having 2 to 18 carbon atoms, alicyclic diisocyanates having 4 to 15 carbon atoms, and 8 carbon atoms.
  • araliphatic diisocyanates and modified products of these diisocyanates (urethane groups, carbodiimide groups, allophanate groups, urea groups, burette groups, uretdione groups, uretoimine groups, isocyanurate groups, oxazolidone group-containing modified products) and the like
  • urethane groups, carbodiimide groups, allophanate groups, urea groups, burette groups, uretdione groups, uretoimine groups, isocyanurate groups, oxazolidone group-containing modified products and the like
  • the mixture of 2 or more types of these is mentioned.
  • aromatic diisocyanate having 6 to 20 carbon atoms and the trivalent or higher aromatic polyisocyanate include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), crude TDI, 2,4′- or 4,4′-diphenylmethane diisocyanate (MDI), crude MDI [crude diaminophenylmethane [condensation product of formaldehyde with an aromatic amine (aniline) or a mixture thereof; diaminodiphenylmethane] And a small amount (for example, 5 to 20% by weight) of a trifunctional or higher functional polyamine] phosgenation product: polyallyl polyisocyanate (PAPI)], 1,5-naphthylene diisocyanate, 4,4 ′, 4 ′′ -tri Phenylmethane triisocyanate, m- or p-isocyanatophenylsulfur
  • PAPI
  • aliphatic diisocyanate having 2 to 18 carbon atoms and the trivalent or higher aliphatic polyisocyanate include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,6,11-undecane.
  • Triisocyanate 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2- And isocyanatoethyl-2,6-diisocyanatohexanoate.
  • alicyclic diisocyanate having 4 to 15 carbon atoms include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated TDI). ), Bis (2-isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate, 2,5- or 2,6-norbornane diisocyanate, and the like.
  • IPDI isophorone diisocyanate
  • MDI dicyclohexylmethane-4,4′-diisocyanate
  • TDI methylcyclohexylene diisocyanate
  • Bis (2-isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate 2,5- or 2,6-norbornane diisocyan
  • araliphatic diisocyanate having 8 to 15 carbon atoms include m- or p-xylylene diisocyanate (XDI), ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate (TMXDI), and the like. It is done.
  • modified products of diisocyanate and polyisocyanate having 3 or more valences include urethane group, carbodiimide group, allophanate group, urea group, burette group, uretdione group, uretoimine group, isocyanurate group, and oxazolidone group-containing modified product. Can be mentioned.
  • modified MDI urethane-modified MDI, carbodiimide-modified MDI, trihydrocarbyl phosphate-modified MDI, etc.
  • modified products of diisocyanates such as urethane-modified TDI, and mixtures of two or more thereof (for example, modified MDI and urethane-modified TDI ( In combination with an isocyanate-containing prepolymer).
  • modified MDI and urethane-modified TDI In combination with an isocyanate-containing prepolymer.
  • aromatic diisocyanates having 6 to 15 carbon atoms
  • aliphatic diisocyanates having 4 to 12 carbon atoms
  • alicyclic diisocyanates having 4 to 15 carbon atoms
  • particularly preferred are TDI, MDI and HDI.
  • Hydrogenated MDI, and IPDI are preferred.
  • diamines and trivalent or higher polyamines include aliphatic diamines having 2 to 18 carbon atoms and aliphatic polyamines having 3 or more carbon atoms, aromatic diamines having 6 to 20 carbon atoms, and aromatic polyamines having 3 or more carbon atoms. Is mentioned.
  • Examples of the aliphatic diamines and trivalent or higher aliphatic polyamines (2 to 18 carbon atoms) include [1] aliphatic diamines and trivalent or higher aliphatic polyamines ⁇ C 2-6 alkylene diamines (ethylenediamine, Propylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, etc.), polyalkylene (2 to 6 carbon atoms) diamine [diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine , Pentaethylenehexamine, etc.] ; [2] These alkyl (carbon number 1 to 4) or hydroxyalkyl (carbon number 2 to 4) substitutes [dialkyl (carbon number 1 to 3) aminopropylamine, trimethylhexamethylenediamine Aminoethyl etano Lumin, 2,5-dimethyl-2,5-
  • aromatic diamines and trivalent or higher aromatic polyamines include [1] unsubstituted aromatic diamines and trivalent or higher unsubstituted aromatic polyamines [1,2-, 1,3. -Or 1,4-phenylenediamine, 2,4'- or 4,4'-diphenylmethanediamine, crude diphenylmethanediamine (polyphenylpolymethylenepolyamine), diaminodiphenylsulfone, benzidine, thiodianiline, bis (3,4-diaminophenyl) ) Sulfone, 2,6-diaminopyridine, m-aminobenzylamine, triphenylmethane-4,4 ′, 4 ′′ -triamine, naphthylenediamine, etc.]; [2] nucleus-substituted alkyl groups (methyl, ethyl, n- Or an aromatic diamine having 1 to 4 carbon atoms such
  • Group polyamines such as 2,4- or 2,6-tolylenediamine, crude tolylenediamine, diethyltolylenediamine, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-bis (o -Toluidine), dianisidine, diaminoditolyl sulfone, 1,3-dimethyl-2,4-diaminobenzene, 1,3-dimethyl-2,6-diaminobenzene, 1,4-diisopropyl-2,5-diaminobenzene, 2,4-diaminomesitylene, 1-methyl-3,5-diethyl-2,4-diaminobenzene, 2,3-dimethyl-1,4-diaminonaphthalene, 2,6-dimethyl-1,5-diaminonaphthalene, 3,3 ′, 5,5′-tetramethylbenzidine, 3,3 ′
  • diamine or triamine or higher polyamine components include polyamide polyamines [dicarboxylic acid (dimer acid, etc.) and excess polyamines (more than 2 mol per mol of acid) (the above alkylenediamine, polyalkylenepolyamine, etc.) Low-molecular-weight polyamide polyamines obtained by condensation with polyamines], polyether polyamines [hydrides of cyanoethylated polyether polyols (polyalkylene glycols, etc.)], and the like.
  • lactone ring-opening polymerization products are monolactones having 3 to 12 carbon atoms (number of ester groups in the ring) such as ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -caprolactone. Lactones such as one) can be obtained by ring-opening polymerization using a catalyst such as a metal oxide or an organometallic compound. Of these, a preferred lactone is ⁇ -caprolactone from the viewpoint of crystallinity. When glycol is used as the initiator, a lactone ring-opening polymer having a hydroxyl group at the terminal is obtained.
  • Such a lactone ring-opening polymer can be obtained, for example, by reacting the lactone with the diol component such as ethylene glycol or diethylene glycol in the presence of a catalyst.
  • a catalyst an organic tin compound, an organic titanium compound, an organic tin halide compound, or the like is generally used, and is added to the reaction solution at a rate of about 0.1 to 5000 ppm, and preferably at 100 to 230 ° C.
  • a lactone ring-opening polymer By polymerizing in an active atmosphere, a lactone ring-opening polymer can be obtained.
  • the lactone ring-opening polymer may be modified at its terminal so as to be, for example, a carboxyl group.
  • the lactone ring-opening polymer is a thermoplastic aliphatic polyester resin having high crystallinity.
  • polyhydroxycarboxylic acid can be obtained by directly dehydrating and condensing hydroxycarboxylic acid such as glycolic acid and lactic acid (L-form, D-form, racemic form), but glycolide, lactide (L-form, A cyclic ester having 4 to 12 carbon atoms (2 to 3 ester groups in the ring) corresponding to a dehydration condensate of two or three molecules of a hydroxycarboxylic acid such as D-form or racemate) as a metal oxide or organic Ring-opening polymerization using a catalyst such as a metal compound is preferred from the viewpoint of adjusting the molecular weight.
  • hydroxycarboxylic acid such as glycolic acid and lactic acid (L-form, D-form, racemic form)
  • lactide L-form, A cyclic ester having 4 to 12 carbon atoms (2 to 3 ester groups in the ring) corresponding to a dehydration condensate of two or three molecules of a hydroxycarboxylic acid such
  • preferred cyclic esters are L-lactide and D-lactide from the viewpoint of crystallinity.
  • glycol is used as an initiator, a polyhydroxycarboxylic acid skeleton having a hydroxyl group at the terminal is obtained.
  • Such a compound having a polyhydroxycarboxylic acid skeleton having a hydroxyl group at the terminal can be obtained, for example, by reacting the cyclic ester with the diol component such as ethylene glycol or diethylene glycol in the presence of a catalyst.
  • an organic tin compound, an organic titanium compound, an organic tin halide compound, or the like is generally used, and is added to the reaction solution at a rate of about 0.1 to 5000 ppm, and preferably at 100 to 230 ° C.
  • a polyhydroxycarboxylic acid can be obtained by polymerization in an active atmosphere.
  • the polyhydroxycarboxylic acid may have a terminal modified so as to be, for example, a carboxyl group.
  • Examples of the polyether resin include crystalline polyoxyalkylene polyols.
  • the method for producing the crystalline polyoxyalkylene polyol is not particularly limited, and any conventionally known method may be used. For example, a method of ring-opening polymerization of a chiral AO with a catalyst usually used in the polymerization of AO (for example, Journal of the American Chemical Society, 1956, Vol. 18, No. 18, p. 4787-4792) And a method of ring-opening polymerization of inexpensive racemic AO using a sterically bulky complex having a special chemical structure as a catalyst.
  • a method using a special complex a method in which a compound obtained by contacting a lanthanoid complex and organoaluminum is used as a catalyst (for example, described in JP-A-11-12353), or bimetal ⁇ -oxoalkoxide and a hydroxyl compound are previously used.
  • a reaction method for example, described in JP-T-2001-521957) is known.
  • a method for obtaining a polyoxyalkylene polyol having a very high isotacticity a method using a salen complex as a catalyst (for example, Journal of the American Chemical Society, 2005, Vol. 127, No. 33, p. 11566-). 11567) is known.
  • a polyoxyalkylene glycol having a hydroxyl group at the terminal and having an isotacticity of 50% or more can be obtained.
  • the polyoxyalkylene glycol having an isotacticity of 50% or more may be modified such that its terminal is, for example, a carboxyl group. If the isotacticity is 50% or more, the crystallinity is usually obtained.
  • the glycol include the carboxylic acid used for carboxy modification of the diol component and the like, and the dicarboxylic acid component and the like.
  • AO used for the production of the crystalline polyoxyalkylene polyol include those having 3 to 9 carbon atoms, such as the following compounds.
  • C3 AO [PO, 1-chlorooxetane, 2-chlorooxetane, 1,2-dichlorooxetane, epichlorohydrin, epibromohydrin];
  • C4 AO [1,2-BO, methylglycidyl ether];
  • C6 AO [cyclohexene oxide, 1,2-hexylene oxide , 3-methyl-1,2-pentylene oxide, 2,3-hexylene oxide, 4-methyl-2,3-pentylene oxide, allyl glycidyl ether];
  • AO 1,2-heptyl having 7 carbon atoms] Ren oxide];
  • AOs Of these AOs, PO, 1,2-BO, styrene oxide and cyclohexene oxide are preferred. More preferred are PO, 1,2-BO and cyclohexene oxide. From the viewpoint of the polymerization rate, PO is most preferable. These AOs can be used alone or in combination of two or more.
  • the isotacticity of the crystalline polyoxyalkylene polyol is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, and most preferably from the viewpoint of high crystallinity of the obtained crystalline polyether resin. 95% or more.
  • Isotacticity is described in Macromolecules, vol. 35, no. 6, 2389-2392 (2002), and can be calculated as follows. About 30 mg of a measurement sample is weighed into a 13 C-NMR sample tube having a diameter of 5 mm, and about 0.5 ml of deuterated solvent is added and dissolved to obtain an analysis sample.
  • the deuterated solvent is deuterated chloroform, deuterated toluene, deuterated dimethyl sulfoxide, deuterated dimethylformamide, or the like, and a solvent capable of dissolving the sample is appropriately selected.
  • Isotacticity [I / (I + S + H)] ⁇ 100 (1) Where I is the integrated value of the isotactic signal; S is the integrated value of the syndiotactic signal; and H is the integrated value of the heterotactic signal.
  • the crystalline resin in the present invention may be a block polymer using the crystalline resin as the crystalline part (b), and using the crystalline part (b) and the amorphous part (c) described below.
  • the resin used for forming the amorphous part (c) include polyester resin, polyurethane resin, polyurea resin, polyamide resin, polyether resin, acrylic resin (polystyrene, styrene acrylic polymer, etc.), and amorphous such as polyepoxy.
  • the resin used for forming the crystalline part (b) is preferably a polyester resin, a polyurethane resin, a polyurea resin, a polyamide resin, or a polyether resin.
  • the resin used for forming the crystalline part (c) is also preferably a polyester resin, a polyurethane resin, a polyurea resin, a polyamide resin, a polyether resin, and a composite resin thereof. More preferred are polyurethane resins and polyester resins.
  • the polyester resin is a heavy resin synthesized from an alcohol (diol) component and an acid (dicarboxylic acid) component.
  • a condensed polyester resin is preferred.
  • a tri- or higher functional alcohol (trivalent or higher polyol) component or an acid (trivalent or higher polycarboxylic acid) component may be used as necessary.
  • the polyurethane resin include a polyurethane resin synthesized from an alcohol (diol) component and an isocyanate (diisocyanate) component.
  • a tri- or higher functional alcohol (trivalent or higher polyol) component or an isocyanate (trivalent or higher polyisocyanate) component may be used as necessary.
  • the polyurea resin include a polyurea resin synthesized from an amine (diamine) component and an isocyanate (diisocyanate) component.
  • a tri- or higher functional amine (trivalent or higher polyamine) component or an isocyanate (trivalent or higher polyisocyanate) component may be used as necessary.
  • the polyamide resin include a polyamide resin synthesized from an amine (diamine) component and an acid (dicarboxylic acid) component.
  • a tri- or higher functional amine (trivalent or higher polyamine) component or an acid (trivalent or higher polycarboxylic acid) component may be used as necessary.
  • the polyether resin include polyoxyalkylene polyols obtained by adding AO to an alcohol (diol) component.
  • the monomers used in these amorphous polyester resin, amorphous polyurethane resin, amorphous polyamide resin, amorphous polyurea resin, and amorphous polyether resin are the diol component, the trivalent or higher polyol component, Specific examples include the dicarboxylic acid component, the trivalent or higher polycarboxylic acid component, the diisocyanate component, the trivalent or higher polyisocyanate component, the diamine component, the trivalent or higher polyamine component, and the AO. Any combination is possible as long as it is a crystalline resin.
  • the use or non-use of the binder is selected in consideration of the reactivity of the respective terminal functional groups.
  • the reaction between the terminal functional group of the resin that forms the crystalline part (b) and the terminal functional group of the resin that forms the amorphous part (c) is advanced while heating and decompressing as necessary.
  • reaction temperature is preferably 180 to 230 ° C.
  • various binders can be used.
  • a crystalline resin as a block polymer can be obtained by performing a dehydration reaction or an addition reaction using a polyvalent carboxylic acid, a polyhydric alcohol, a polyvalent isocyanate, a polyfunctional epoxy, an acid anhydride, or the like as a binder.
  • Examples of the polyvalent carboxylic acid and acid anhydride include the same dicarboxylic acid component and trivalent or higher polycarboxylic acid component.
  • Examples of the polyhydric alcohol include the same diol component and trivalent or higher polyol component.
  • Examples of the polyvalent isocyanate include the same diisocyanate components and trivalent or higher polyisocyanate components.
  • bisphenol A type and F type epoxy compounds As the polyfunctional epoxy, bisphenol A type and F type epoxy compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds, hydrogenated bisphenol A type epoxy compounds, bisphenol A or F AO adduct diglycidyl ether, hydrogenated Diglycidyl ethers of bisphenol A AO adducts, diols (ethylene glycol, propylene glycol, neopentyl glycol, butanediol, hexanediol, cyclohexanedimethanol, polyethylene glycol, polypropylene glycol, etc.) diglycidyl ethers, trimethylolpropane di Or triglycidyl ether, pentaerythritol tri- or tetraglycidyl ether, sorbitol hepta or hexaglycidyl ether, Sol Shinji glycidyl ether, dicyclopentadiene
  • examples of the dehydration reaction include both the crystalline part (b) and the amorphous part (c) being alcohol resins at both ends.
  • Reaction with a binder for example, polyvalent carboxylic acid.
  • the reaction is performed at a reaction temperature of 180 ° C. to 230 ° C. in the absence of a solvent to obtain a crystalline resin.
  • Examples of the addition reaction include a resin having a hydroxyl group at both ends of the crystalline part (b) and the amorphous part (c), a reaction in which these are bonded with a binder (for example, a polyvalent isocyanate), and crystalline
  • a binder for example, a polyvalent isocyanate
  • crystalline for example, a polyvalent isocyanate
  • the crystalline part (b) and the amorphous part (c) are both dissolved in a soluble solvent, and if necessary, a binder is added and reacted at a reaction temperature of 80 ° C. to 150 ° C. A crystalline resin is obtained.
  • a crystalline vinyl resin is also preferable as the crystalline resin.
  • a crystalline vinyl resin what has a vinyl monomer (m) which has a crystalline group, and the vinyl monomer which does not have a crystalline group mentioned later as a structural unit if necessary is preferable.
  • the vinyl monomer (m) examples include linear alkyl (meth) acrylate (m1) having an alkyl group having 12 to 50 carbon atoms (the linear alkyl group having 12 to 50 carbon atoms is a crystalline group), and the crystal And vinyl monomer (m2) having a unit of the sex part (b).
  • the crystalline vinyl resin it is more preferable that the vinyl monomer (m) contains a linear alkyl (meth) acrylate (m1) having an alkyl group having 12 to 50 carbon atoms (preferably 16 to 30).
  • alkyl (meth) acrylate (m1) having 12 to 50 carbon atoms in the alkyl group
  • each alkyl group is linear, lauryl (meth) acrylate, tetradecyl (meth) acrylate, stearyl (meta) ) Acrylate, eicosyl (meth) acrylate, and behenyl (meth) acrylate.
  • alkyl (meth) acrylate means alkyl acrylate and / or alkyl methacrylate, and the same description method is used hereinafter.
  • the method of introducing the unit of the crystalline part (b) into the vinyl monomer takes into account the reactivity of each terminal functional group, and the binder ( (Coupling agent) is used or not, and when it is used, the binder suitable for the terminal functional group is selected, and the crystalline part (b) is bonded to the vinyl monomer, and the crystalline part (b ) Units of vinyl monomer (m2).
  • the terminal functional group of the crystalline part (b) and the terminal functional group of the vinyl monomer are heated and decompressed as necessary. Advance the reaction. Especially when the terminal functional group is a reaction between a carboxyl group and a hydroxyl group, or a reaction between a carboxyl group and an amino group, if the acid value of one resin is high and the hydroxyl value or amine value of the other resin is high, Progresses smoothly.
  • the reaction temperature is preferably 180 to 230 ° C.
  • various binders can be used according to the kind of the functional group at the terminal.
  • Specific examples of the binder and a method for producing the vinyl monomer (m2) using the binder include the same methods as those for producing the block polymer.
  • vinyl resin polyester resin, polyurethane resin, and epoxy resin, which are preferable resins as the amorphous resin, will be described in detail.
  • the vinyl resin used as the amorphous resin is a polymer obtained by homopolymerizing or copolymerizing a vinyl monomer having no crystalline group.
  • the vinyl monomer include the following (1) to (10).
  • Alicyclic vinyl hydrocarbon Mono- or di-cycloalkenes and alkadienes such as cyclohexene, (di) cyclopentadiene, vinylcyclohexene, ethylidenebicycloheptene and the like; terpenes such as pinene and limonene.
  • Aromatic vinyl hydrocarbon Styrene and its hydrocarbyl (alkyl, cycloalkyl, aralkyl and / or alkenyl) substitutes such as ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, cyclohexyl Styrene, benzylstyrene, crotylbenzene, divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, etc .; indene and vinylnaphthalene.
  • Carboxyl group-containing vinyl monomer and metal salt thereof C3-C30 unsaturated monocarboxylic acids, unsaturated dicarboxylic acids and anhydrides thereof and monoalkyl (C1-C24) esters such as (meth) acrylic acid, (meth) acrylic acid alkyl esters, (anhydrous ) Maleic acid, maleic acid monoalkyl ester, fumaric acid, fumaric acid monoalkyl ester, crotonic acid, itaconic acid, itaconic acid monoalkyl ester, itaconic acid glycol monoether, citraconic acid, citraconic acid monoalkyl ester, cinnamic acid, etc. Carboxyl group-containing vinyl monomers; and metal salts thereof.
  • R 1 and R 2 are each independently an alkyl group having 1 to 15 carbon atoms
  • A is an alkylene group having 2 to 4 carbon atoms
  • n is plural
  • (AO) may be the same or different. If different, they may be random or block
  • Ar represents a benzene ring
  • m and n each independently represents an integer of 1 to 50
  • R ′ represents the number of carbon atoms optionally substituted by a fluorine atom.
  • Phosphoric acid group-containing vinyl monomer and salt thereof (Meth) acryloyloxyalkyl (carbon number 1 to 24) phosphoric acid monoester, for example, 2-hydroxyethyl (meth) acryloyl phosphate, phenyl-2-acryloyloxyethyl phosphate, (meth) acryloyloxyalkyl (carbon number 1 to 24) Phosphonic acids, such as 2-acryloyloxyethylphosphonic acid; and their salts.
  • phosphoric acid monoester for example, 2-hydroxyethyl (meth) acryloyl phosphate, phenyl-2-acryloyloxyethyl phosphate, (meth) acryloyloxyalkyl (carbon number 1 to 24)
  • Phosphonic acids such as 2-acryloyloxyethylphosphonic acid; and their salts.
  • the salts (organic acid salts) of (2) to (4) above include metal salts, ammonium salts, and amine salts (including quaternary ammonium salts).
  • metal salts include Al, Ti, Cr, Mn, Fe, Zn, Ba, Zr, Ca, Mg, Na, and K.
  • alkali metal salts and amine salts are preferable, and sodium salts and tertiary monoamine salts having 3 to 20 carbon atoms are more preferable.
  • Hydroxyl group-containing vinyl monomer Hydroxystyrene, N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, (meth) allyl alcohol, crotyl alcohol, isocrotyl alcohol, 1- Buten-3-ol, 2-buten-1-ol, 2-butene-1,4-diol, propargyl alcohol, 2-hydroxyethylpropenyl ether, sucrose allyl ether, and the like.
  • Nitrogen-containing vinyl monomer (6-1) Amino group-containing vinyl monomer: Aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, t-butylaminoethyl methacrylate, N-aminoethyl (meth) acrylamide, (meth) allylamine, morpholinoethyl (meth) acrylate, 4-vinylpyridine, 2-vinylpyridine, crotylamine, N, N-dimethylaminostyrene, methyl ⁇ -acetaminoacrylate, vinylimidazole, N-vinylpyrrole, N-vinylthiopyrrolidone, N-arylphenylenediamine, aminocarbazole, Aminothiazole, aminoindole, aminopyrrole, aminoimidazole, aminomercaptothiazo
  • (6-2) Amide group-containing vinyl monomer: (Meth) acrylamide, N-methyl (meth) acrylamide, N-butyl acrylamide, diacetone acrylamide, N-methylol (meth) acrylamide, N, N′-methylene-bis (meth) acrylamide, cinnamic amide, N, N -Dimethylacrylamide, N, N-dibenzylacrylamide, methacrylformamide, N-methyl N-vinylacetamide, N-vinylpyrrolidone and the like.
  • Nitrile group-containing vinyl monomer (Meth) acrylonitrile, cyanostyrene, cyanoacrylate and the like.
  • Quaternary ammonium cation group-containing vinyl monomer Quaternized products of tertiary amine group-containing vinyl monomers such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylamide, diethylaminoethyl (meth) acrylamide and diallylamine (methyl chloride, dimethyl sulfate) Quaternized with a quaternizing agent such as benzyl chloride or dimethyl carbonate).
  • Nitro group-containing vinyl monomer Nitrostyrene etc.
  • Epoxy group-containing vinyl monomer Glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, p-vinylphenylphenyl oxide and the like.
  • Halogen element-containing vinyl monomer Vinyl chloride, vinyl bromide, vinylidene chloride, allyl chloride, chlorostyrene, bromostyrene, dichlorostyrene, chloromethylstyrene, tetrafluorostyrene, chloroprene and the like.
  • Vinyl esters, vinyl (thio) ethers, vinyl ketones, vinyl sulfones (9-1) Vinyl esters such as vinyl acetate, vinyl butyrate, vinyl propionate, vinyl butyrate, diallyl phthalate, diallyl adipate, isopropenyl acetate, vinyl methacrylate, methyl 4-vinylbenzoate, cyclohexyl methacrylate, benzyl methacrylate, phenyl (Meth) acrylate, vinyl methoxyacetate, vinyl benzoate, ethyl ⁇ -ethoxy acrylate, alkyl (meth) acrylate having an alkyl group having 1 to 11 carbon atoms [methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc.], dialkyl fumarate (the two alkyl
  • Vinyl (thio) ether such as vinyl methyl ether, vinyl ethyl ether, vinyl propyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, vinyl phenyl ether, vinyl 2-methoxyethyl ether, methoxybutadiene, vinyl 2- Butoxyethyl ether, 3,4-dihydro1,2-pyran, 2-butoxy-2′-vinyloxydiethyl ether, vinyl 2-ethylmercaptoethyl ether, acetoxystyrene, phenoxystyrene, and the like.
  • Vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone, vinyl phenyl ketone.
  • Vinyl sulfone such as divinyl sulfide, p-vinyl diphenyl sulfide, vinyl ethyl sulfide, vinyl ethyl sulfone, divinyl sulfone, divinyl sulfoxide and the like.
  • Other vinyl monomers (10-1) Isocyanatoethyl (meth) acrylate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate and the like.
  • (10-2) Monomer having a dimethylsiloxane group: Methacryl-modified silicone is preferred, and examples thereof include those having a structure represented by the following formula. (CH 3 ) 3 SiO ((CH 3 ) 2 SiO) a Si (CH 3 ) 2 R (where a is an average value of 15 to 45, and R is an organically modified group containing a methacryl group)
  • An example of R includes C 3 H 6 OCOC (CH 3 ) ⁇ CH 2 .
  • Fluorine-containing monomer Perfluoroolefins such as tetrafluoroethylene (TFE), hexafluoropropylene (HFP), chlorotrifluoroethylene (CTFE); perfluoro (alkyl vinyl ether) (PFAVE), perfluoro (1,3-dioxole), perfluoro ( 2,2-dimethyl-1,3-dioxole) (PFDD), perfluoro- (2-methylene-4-methyl-1,3-dioxolane) (MMD), perfluorobutenyl vinyl ether (PFBVE) and other perfluoro Vinyl ether; vinylidene fluoride (VdF), trifluoroethylene, 1,2-difluoroethylene, vinyl fluoride, trifluoropropylene, 3,3,3-trifluoro-2-trifluoromethylpropene, 3,3,3- Trifluoropropene, Hydrogen atom-containing fluoroolefins such as
  • this resin may be, for example, Al, Ti, Cr, among the salts of the monomers (2) to (4) as at least a part of the vinyl monomer. It can be obtained by using one or more metal salts selected from Mn, Fe, Zn, Ba, and Zr.
  • the amount of these organic acid salts used in all monomers used for the polymerization is preferably 5 to 60% by weight. The lower limit is more preferably 10% by weight, and the upper limit is more preferably 50% by weight.
  • Examples of the copolymer of vinyl monomers include polymers obtained by copolymerizing any of the above monomers (1) to (10) in a binary or higher number at an arbitrary ratio.
  • polyester resin used as the amorphous resin examples include polycondensates of polyols with polycarboxylic acids or acid anhydrides or lower alkyl esters thereof, and metal salts of these polycondensates.
  • the polyol is a diol (11) and a polyol (12) having a valence of 3 to 8 or higher
  • the polycarboxylic acid or its acid anhydride or its lower alkyl ester is a dicarboxylic acid (13) or 3 to 6
  • examples thereof include polycarboxylic acids (14) having a valence of 1 or higher and acid anhydrides or lower alkyl esters thereof.
  • the ratio of the polyol and the polycarboxylic acid is preferably 2/1 to 1/5, more preferably 1.5 / 1 to the equivalent ratio [OH] / [COOH] of the hydroxyl group [OH] and the carboxyl group [COOH]. 1/4, particularly preferably from 1 / 1.3 to 1/3.
  • the polyester having an excess of hydroxyl groups may be treated with polycarboxylic acid.
  • diol (11) examples include alkylene glycols having 2 to 36 carbon atoms (ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, octanediol, Decanediol, dodecanediol, tetradecandiol, neopentyl glycol, 2,2-diethyl-1,3-propanediol, etc.); alkylene ether glycols having 4 to 36 carbon atoms (diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol) Polypropylene glycol, polytetramethylene ether glycol, etc.); alicyclic diols having 4 to 36 carbon atoms (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.); Or alicyclic diol alkylene oxide (AO) [EO,
  • a diol (11a) having another functional group may be used.
  • the diol (11a) having a functional group other than a hydroxyl group include a diol having a carboxyl group, a diol having a sulfonic acid group or a sulfamic acid group, and salts thereof.
  • Diols having a carboxyl group include dialkylol alkanoic acids [having 6 to 24 carbon atoms, such as 2,2-dimethylolpropionic acid (DMPA), 2,2-dimethylolbutanoic acid, 2,2-dimethylol.
  • Examples of the diol having a sulfonic acid group or a sulfamic acid group include a sulfamic acid diol [N, N-bis (2-hydroxyalkyl) sulfamic acid (alkyl group having 1 to 6 carbon atoms) or an AO adduct (EO as AO).
  • PO such as PO, such as N, N-bis (2-hydroxyethyl) sulfamic acid and N, N-bis (2-hydroxyethyl) sulfamic acid PO2 molar adduct, etc.]; (2-hydroxyethyl) phosphate and the like.
  • Examples of the salt of the diol having a functional group other than the hydroxyl group include salts of the functional group with the tertiary amine having 3 to 30 carbon atoms (such as triethylamine) and / or alkali metal (such as sodium). It is done. Among these, preferred are alkylene glycols having 2 to 12 carbon atoms, diols having a carboxyl group, AO adducts of bisphenols, and combinations thereof.
  • Examples of the polyol (12) having a valence of 3 to 8 or higher include polyhydric aliphatic alcohols having a valence of 3 to 8 or more having 3 to 36 carbon atoms (alkane polyol and its intramolecular or intermolecular).
  • Dehydrates such as glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, sorbitan, and polyglycerin; sugars and derivatives thereof such as sucrose and methylglucoside); AO adducts of polyhydric fatty alcohols (addition) AO adducts of trisphenols (trisphenol PA, etc.) (addition moles 2-30); AO adducts of novolak resins (phenol novolac, cresol novolac, etc.) (addition moles 2-30) ); Acrylic polyol [hydroxyethyl (meth) acrylate and other vinyl Copolymerization products of Rumonoma]; and the like.
  • preferred are trivalent to octavalent or higher valent polyhydric aliphatic alcohols and novolak resin AO adducts, and more preferred are novolak resin AO adducts.
  • dicarboxylic acid (13) examples include alkane dicarboxylic acids having 4 to 36 carbon atoms (succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, decylsuccinic acid, etc.) and alkenyl succinic acids (dodecenyl succinic acid, Pentadecenyl succinic acid, octadecenyl succinic acid, etc.); alicyclic dicarboxylic acid having 6 to 40 carbon atoms (dimer acid (dimerized linoleic acid) etc.), alkenedicarboxylic acid having 4 to 36 carbon atoms (maleic acid) Acid, fumaric acid, citraconic acid, etc.); aromatic dicarboxylic acids having 8 to 36 carbon atoms (phthalic acid, isophthalic acid, terephthalic acid,
  • alkene dicarboxylic acids having 4 to 20 carbon atoms and aromatic dicarboxylic acids having 8 to 20 carbon atoms are preferable.
  • the polycarboxylic acid (14) having a valence of 3 to 6 or higher include aromatic polycarboxylic acids having 9 to 20 carbon atoms (trimellitic acid, pyromellitic acid, etc.).
  • the dicarboxylic acid (13) or the polycarboxylic acid (14) having a valence of 3 to 6 or higher include the above acid anhydrides or lower alkyl esters having 1 to 4 carbon atoms (methyl ester, ethyl ester). , Isopropyl ester, etc.) may be used.
  • this resin is synthesized, for example, by synthesizing a polyester having an COOH residue (acid value is preferably 1 to 100, more preferably 5 to 50),
  • the at least one COOH group can be obtained by converting it into a salt of at least one metal selected from Al, Ti, Cr, Mn, Fe, Zn, Ba, and Zr.
  • a method for forming a metal salt for example, it is obtained by reacting a polyester having a COOH group with a hydroxide of the corresponding metal.
  • polyurethane resin used as the amorphous resin examples include polyisocyanate (15) and active hydrogen-containing compound ⁇ water, polyol [including diol (11) [including diol (11a) having a functional group other than hydroxyl group]], and Polyhydric acid having a valence of 3 to 8 or higher (12)], polycarboxylic acid [dicarboxylic acid (13), and polycarboxylic acid having a valence of 3 to 6 or higher (14)], polyol and poly Polyester polyols obtained by polycondensation of carboxylic acids, ring-opening polymers of lactones having 6 to 12 carbon atoms, polyadditions of polyamines (16), polythiols (17), and combinations thereof ⁇ , and polyisocyanates (15 ) And an active hydrogen-containing compound, a terminal isocyanate group prepolymer, and an isocyanate of the prepolymer Obtained by reacting an equivalent amount of primary and / or secondary monoamines (18) to the base
  • polyisocyanate (15) examples include aromatic polyisocyanates having 6 to 20 carbon atoms (excluding carbon in the NCO group, the same shall apply hereinafter), aliphatic polyisocyanates having 2 to 18 carbon atoms, and alicyclic rings having 4 to 15 carbon atoms.
  • aromatic polyisocyanate examples include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), crude TDI, 2,4′- or 4, 4'-diphenylmethane diisocyanate (MDI), crude MDI [crude diaminophenylmethane [condensation product of formaldehyde and aromatic amine (aniline) or a mixture thereof; trifunctional or more of diaminodiphenylmethane and a small amount (for example, 5 to 20% by weight)]
  • PAPI polyallyl polyisocyanate
  • PAPI poly
  • aliphatic polyisocyanate examples include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, Lysine diisocyanate, 2,6-diisocyanatomethyl caproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate Aliphatic polyisocyanates such as Specific examples of the alicyclic polyisocyanate include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methyl
  • araliphatic polyisocyanate examples include m- or p-xylylene diisocyanate (XDI), ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate (TMXDI) and the like.
  • modified polyisocyanate examples include urethane group, carbodiimide group, allophanate group, urea group, burette group, uretdione group, uretoimine group, isocyanurate group, and oxazolidone group-containing modified product.
  • modified MDI urethane-modified MDI, carbodiimide-modified MDI, trihydrocarbyl phosphate-modified MDI, etc.
  • modified polyisocyanates such as urethane-modified TDI, and mixtures of two or more thereof (for example, modified MDI and urethane-modified TDI).
  • modified MDI and urethane-modified TDI Combined use with an isocyanate-containing prepolymer
  • 6-15 aromatic polyisocyanates aliphatic polyisocyanates having 4-12 carbon atoms
  • alicyclic polyisocyanates having 4-15 carbon atoms and particularly preferred are TDI, MDI, HDI, hydrogenated MDI, and IPDI.
  • polyamine (16) examples include Aliphatic polyamines (2 to 18 carbon atoms): [1] Aliphatic polyamine ⁇ 2 to 6 carbon atoms alkylenediamine (ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, etc.), polyalkylene (carbon 2-6) polyamines [diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc.] ⁇ ; [2] these alkyls (1 to 4 carbon atoms) Or substituted with hydroxyalkyl (2 to 4 carbon atoms) [dialkyl (1 to 3 carbon atoms) aminopropylamine, trimethylhexamethylenediamine, aminoethylethanolamine, 2,5-dimethyl-2,5-hexamethylenediamine, methyl ester Nobispropylamine etc.]; [3]
  • Heterocyclic polyamines (4 to 15 carbon atoms): piperazine, N-aminoethylpiperazine, 1,4-diaminoethylpiperazine, 1,4bis (2-amino-2-methylpropyl) piperazine, etc.
  • Aromatic polyamines (6 to 20 carbon atoms): [1] unsubstituted aromatic polyamine 1,2-, 1,3- or 1,4-phenylenediamine, 2,4'- or 4,4'-diphenylmethanediamine , Crude diphenylmethanediamine (polyphenylpolymethylenepolyamine), diaminodiphenylsulfone, benzidine, thiodianiline, bis (3,4-diaminophenyl) sulfone, 2,6-diaminopyridine, m-aminobenzylamine, triphenylmethane-4, 4 ′, 4 ′′ -triamine, naphthylenediamine, etc .; [2] aromatic polyamines having a nucleus-substituted alkyl group (C1-C4 alkyl group such as methyl, ethyl, n- or i-propyl, butyl, etc.), for example 2,4- or
  • polythiol (17) examples include alkanedithiols having 2 to 36 carbon atoms (ethylene dithiol, 1,4-butanedithiol, 1,6-hexanedithiol, etc.).
  • Examples of the primary and / or secondary monoamine (18) include alkylamines having 2 to 24 carbon atoms (ethylamine, n-butylamine, isobutylamine, etc.) and the like.
  • Examples of the epoxy resin include a ring-opening polymer of polyepoxide (19), polyepoxide (19) and active hydrogen group-containing compound (T) ⁇ water, polyol [the diol (11) and trivalent or higher polyol (12)], dicarboxylic acid) Acid (13), trivalent or higher polycarboxylic acid (14), polyamine (16), polythiol (17), etc. ⁇ polyaddition product, or polyepoxide (19) and dicarboxylic acid (13) or trivalent or higher polyvalent Examples thereof include a cured product of the carboxylic acid (14) with an acid anhydride.
  • the polyepoxide (19) used for this invention will not be specifically limited if it has two or more epoxy groups in a molecule
  • a preferable polyepoxide (19) is one having 2 to 6 epoxy groups in the molecule from the viewpoint of mechanical properties of the cured product.
  • the epoxy equivalent of the polyepoxide (19) (molecular weight per epoxy group) is usually from 65 to 1,000, and preferably from 90 to 500. When the epoxy equivalent exceeds 1000, the cross-linked structure becomes loose and the physical properties such as water resistance, chemical resistance and mechanical strength of the cured product are deteriorated. On the other hand, it is difficult to synthesize an epoxy equivalent of less than 65. is there.
  • polyepoxide (19) examples include aromatic polyepoxy compounds, heterocyclic polyepoxy compounds, alicyclic polyepoxy compounds, and aliphatic polyepoxy compounds.
  • aromatic polyepoxy compounds include glycidyl ethers and glycidyl ethers of polyhydric phenols, glycidyl aromatic polyamines, and glycidylated products of aminophenols.
  • glycidyl ethers of polyphenols include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, bisphenol B diglycidyl ether, bisphenol AD diglycidyl ether, bisphenol S diglycidyl ether, halogenated bisphenol A diglycidyl, and tetrachlorobisphenol A.
  • Diglycidyl ether catechin diglycidyl ether, resorcinol diglycidyl ether, hydroquinone diglycidyl ether, pyrogallol triglycidyl ether, 1,5-dihydroxynaphthalene diglycidyl ether, dihydroxybiphenyl diglycidyl ether, octachloro-4,4'-dihydroxybiphenyl di Glycidyl ether, tetramethylbiphenyl diglycidyl ester Ter, dihydroxynaphthylcresol triglycidyl ether, tris (hydroxyphenyl) methane triglycidyl ether, dinaphthyltriol triglycidyl ether, tetrakis (4-hydroxyphenyl) ethanetetraglycidyl ether, p-glycidylphenyldimethyltolylbisphenol A glycidyl
  • Examples of the glycidyl ester of polyhydric phenol include diglycidyl phthalate, diglycidyl isophthalate, and diglycidyl terephthalate.
  • Examples of the glycidyl aromatic polyamine include N, N-diglycidylaniline, N, N, N ′, N′-tetraglycidylxylylenediamine, N, N, N ′, N′-tetraglycidyldiphenylmethanediamine and the like.
  • triglycidyl ether of p-aminophenol, tolylene diisocyanate or diglycidyl urethane compound obtained by addition reaction of diphenylmethane diisocyanate and glycidol, obtained by reacting a polyol with the above two reactants obtained by reacting a polyol with the above two reactants.
  • the glycidyl group-containing polyurethane (pre) polymer and an alkylene oxide (ethylene oxide or propylene oxide) adduct of bisphenol A are also included.
  • the heterocyclic polyepoxy compound include trisglycidylmelamine.
  • Examples of the alicyclic polyepoxy compounds include vinylcyclohexene dioxide, limonene dioxide, dicyclopentadiene dioxide, bis (2,3-epoxycyclopentyl) ether, ethylene glycol bisepoxy dicyclopentyl ether, 3,4-epoxy- 6-methylcyclohexylmethyl-3 ′, 4′-epoxy-6′-methylcyclohexanecarboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, and bis (3,4-epoxy-6-methyl) (Cyclohexylmethyl) butylamine, dimer acid diglycidyl ester and the like.
  • the alicyclic polyepoxy compound also includes a nuclear hydrogenated product of the aromatic polyepoxide compound.
  • the aliphatic polyepoxy compound include polyglycidyl ethers of polyhydric aliphatic alcohols, polyglycidyl esters of polyhydric fatty acids, and glycidyl aliphatic amines.
  • Polyglycidyl ethers of polyhydric aliphatic alcohols include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol Examples include diglycidyl ether, polytetramethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, sorbitol polyglycidyl ether and polyglycerol polyglycidyl ether.
  • polyglycidyl ester of polyvalent fatty acid examples include diglycidyl oxalate, diglycidyl malate, diglycidyl succinate, diglycidyl glutarate, diglycidyl adipate, diglycidyl pimelate and the like.
  • examples of the glycidyl aliphatic amine include N, N, N ′, N′-tetraglycidylhexamethylenediamine.
  • the aliphatic polyepoxy compound includes a (co) polymer of diglycidyl ether and glycidyl (meth) acrylate. Of these, preferred are aliphatic polyepoxy compounds and aromatic polyepoxy compounds. Two or more of the polyepoxides of the present invention may be used in combination.
  • the method for producing the crystalline resin and the amorphous resin is not particularly limited, and a desired resin having a melting point or a softening point can be produced by appropriately setting the kind and amount of the above-described monomer.
  • the method for producing the dispersion liquid (L) of the present invention includes a step of volume expansion of a mixture (X) containing the dispersoid (A), the solvent (S), and the compressive fluid (F). ) Containing particles (C) dispersed in a solvent (S), wherein the dispersoid (A) is a solvent (A) at a temperature below the melting point or softening point of the dispersoid (A). S) and / or the volume of the mixture (X) is expanded below the melting point or softening point of the dispersoid (A) in the state of being dissolved in the compressive fluid (F), and the median diameter of the particles (C) is 3. It is 0 ⁇ m or less.
  • the solvent (S) is, for example, a ketone solvent (such as acetone and methyl ethyl ketone), an ether solvent (such as tetrahydrofuran, diethyl ether, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, and cyclic ether), an ester solvent ( Acetic acid esters such as ethyl acetate, pyruvate, 2-hydroxyisobutyric acid, and lactic acid esters), amide solvents (such as dimethylformamide), alcohol solvents (such as methanol, ethanol, isopropanol, and fluorine-containing alcohols), aromatic Examples include hydrocarbon solvents (toluene, xylene, etc.), aliphatic hydrocarbon solvents (octane, decane, etc.), water, etc., and mixed solvents thereof.
  • a ketone solvent such as acetone and methyl ethyl ketone
  • the particles (C) are particles containing the dispersoid (A).
  • the compressible fluid means a fluid compressed at a normal temperature or higher pressure at room temperature.
  • the pressure of the compressive fluid (F) is preferably 1 MPa or more, more preferably 2 MPa or more, still more preferably 3 MPa or more, and particularly preferably 4 MPa or more.
  • the compressive fluid (F) may be methane, ethylene, chlorofluorocarbon alternative, etc., but is preferably carbon dioxide from the viewpoint of safety and ease of handling, and more preferably liquid carbon dioxide, Critical carbon dioxide or supercritical carbon dioxide is preferred.
  • the mixture (X) is a mixture containing the dispersoid (A), the solvent (S), and the compressive fluid (F).
  • the dispersoid (A) is liquid, and the dispersoid (A) is a solvent (S) and / or compressible at a temperature below the melting point or softening point of the dispersoid (A).
  • Dissolved in fluid (F) In the present invention, the mixture (X) is volume-expanded below the melting point or softening point of the dispersoid (A).
  • condition 1 When the dispersoid (A) has a melting point, the following condition 1 is preferably satisfied.
  • the condition 1 When the condition 1 is not satisfied, the temperature after volume expansion is high, and the dispersoid (A) is insufficiently precipitated, or the particles (C) formed by precipitation are unstable. Moreover, when the state of the dispersoid (A) before the volume expansion of the mixture (X) is not in a liquid state but in a precipitated state, it may be difficult to obtain a dispersion of fine particles (C).
  • the dispersoid (A) is dissolved in the solvent (S) and / or the compressible fluid (F).
  • the dispersoid (A) is preferably melted (in a liquid state) at a temperature not higher than the melting point of the dispersoid (A), and the dispersoid (A) It is preferable that at least one liquid selected from the group consisting of the solvent (S) and the compressive fluid (F) is subjected to liquid-liquid two-phase separation.
  • the dispersoid (A) is melted (in a liquid state), and the dispersoid (A) and the solvent (S) or the compressive fluid (F) are separated into two liquid-liquid phases. More preferably.
  • the dispersoid (A) is dissolved in the solvent (S), and the compressibility is reduced.
  • Examples include a form in which the fluid (F) and liquid-liquid two-phase separation are performed, and a form in which the dispersoid (A) is dissolved in the compressive fluid (F) and the liquid (liquid-liquid two-phase separation) is performed.
  • the dispersoid (A) is dissolved in the compressible fluid (F) at a temperature not higher than the melting point of the dispersoid (A) (preferably temperature T2), and the liquid (liquid / liquid) two-phase separation is performed. It is particularly preferable.
  • the state of the dispersoid (A) before volumetric expansion of the mixture (X) may be any of the above states, and other dispersants and physical properties (viscosity, diffusion coefficient, dielectric constant, solubility, interface, etc.) In order to adjust tension etc.), you may use together the inert gas etc. which are mentioned later.
  • condition 2 T3 + 10 ⁇ T1
  • T1 Exothermic peak temperature derived from the dispersoid (A) when the dispersion (L) was measured for DSC temperature drop
  • T3 Temperature of the dispersion (L) immediately after volumetric expansion of the mixture (X) Perform under the following conditions. Using a differential scanning calorimeter ⁇ for example, DSC210 manufactured by Seiko Denshi Kogyo Co., Ltd.], the measurement sample is heated to 200 ° C., and then cooled to 0 ° C. at a cooling rate of 10 ° C./min.
  • T1 is the maximum peak temperature of exotherm derived from the dispersoid (A) appearing at this time.
  • the dispersoid (A) contained in the mixture (X) is an amorphous material
  • the dispersoid (A) is a solvent (S) at a temperature below the softening point of the dispersoid (A). And / or dissolved in the compressible fluid (F).
  • the dispersoid (A) is separated into at least one liquid selected from the group consisting of a solvent (S) and a compressive fluid (F) and a liquid-liquid two-phase separation. It is preferable that the dispersoid (A) and the solvent (S) or the compressive fluid (F) are more preferably liquid-liquid two-phase separated in the mixture (X).
  • a mixture (X) for example, in the mixture (X) having a temperature equal to or lower than the softening point of the dispersoid (A), the dispersoid (A) is dissolved in the solvent (S), and the compressive fluid (F) A form in which liquid-liquid two-phase separation is performed, and a form in which the dispersoid (A) is dissolved in the compressive fluid (F) and liquid-liquid two-phase separation is performed with the solvent (S).
  • the dispersoid (A) is dissolved in the compressible fluid (F) at a temperature equal to or lower than the softening point of the dispersoid (A), and the liquid (liquid and liquid) is separated into two phases. Particularly preferred.
  • the state of the dispersoid (A) before volumetric expansion of the mixture (X) may be any of the above states, and other dispersants and physical properties (viscosity, diffusion coefficient, dielectric constant, solubility, interface, etc.)
  • An inert gas or the like may be used in combination for adjusting the tension.
  • the mixture (X) may contain a dispersant, and the dispersant is not particularly limited, and a known one can be used, and a unit having high compatibility with the dispersoid (A) And a polymer or oligomer in which a unit having high compatibility with the solvent (S) is present as a block body.
  • the dispersoid (A) has a high hydrocarbon ratio such as wax, a polymer or oligomer in which one of the unit having high compatibility with the hydrocarbon and the unit having high compatibility with the resin is grafted on the other [for example, , Obtained by polymerizing vinyl monomer in the presence of wax), unsaturated hydrocarbon (ethylene, propylene, butene, styrene, ⁇ -methylstyrene, etc.) and ⁇ , ⁇ -unsaturated carboxylic acid or ester thereof Or a copolymer with an anhydride thereof (acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, esters thereof, itaconic anhydride, etc.), block or graft copolymer of vinyl resin and polyester resin, etc. Is mentioned.
  • a high hydrocarbon ratio such as wax, a polymer or oligomer in which one of the unit having high compatibility with the hydrocarbon and the unit having high compatibil
  • inert gases examples include inert gases such as nitrogen, helium, argon, and air.
  • inert gases such as nitrogen, helium, argon, and air.
  • the weight fraction of carbon dioxide in the total of carbon dioxide and other inert gas is preferably 70% by weight or more, more preferably 80% by weight or more, and particularly preferably Is 90% by weight or more.
  • the median diameter of the particles (C) contained in the dispersion (L) obtained in the present invention is 3.0 ⁇ m or less, preferably 0.05 ⁇ m to 3.0 ⁇ m, more preferably 0.06 ⁇ m to 1.
  • the thickness is 0 ⁇ m, more preferably 0.07 ⁇ m to 0.7 ⁇ m, and particularly preferably 0.08 ⁇ m to 0.4 ⁇ m.
  • the median diameter is larger than 3.0 ⁇ m, there arises a problem that the smoothness of the coated surface is impaired when, for example, the dispersion liquid (L) is blended and applied to the paint, and the particles (C) are contained in the particles. In the case of producing resin particles containing, the particle size distribution of the resin particles is deteriorated.
  • the median diameter is a median diameter based on the volume distribution. The median diameter is measured by a laser type particle size distribution measuring device (LA-920: manufactured by Horiba, Ltd.). The coarse particle amount can also be measured using the same apparatus.
  • the amount of coarse particles (C) in the dispersion (L) obtained by the present invention is preferably 1.0% by volume or less, more preferably 0.5% by volume or less, and still more preferably 0.1% by volume. % Or less, particularly preferably 0.01% by volume or less.
  • the amount of coarse particles exceeds 1% by volume, for example, there is a problem that the smoothness of the coated surface is impaired when the dispersion liquid (L) is blended and applied to the paint, and the particles (C) in the particles.
  • the resin particles containing the resin are produced, the particle size distribution of the resin particles is deteriorated.
  • Coarse particles are particles of (median diameter ⁇ 3) ⁇ m or more. However, when (median diameter ⁇ 3) ⁇ 1.0, particles of 1.0 ⁇ m or more are coarse particles.
  • the stability during storage of the particles (C) in the dispersion liquid (L) is good.
  • Good stability means that there is no change in the median diameter of the particles during storage and there is no increase in the amount of coarse particles.
  • the rate of change of the median diameter during storage of the particles (C) in the dispersion (L) obtained by the present invention is 100% or less, preferably 50% or less, more preferably 25, within a range not exceeding 3 ⁇ m. % Or less, particularly preferably 10% or less.
  • the rate of change exceeds 100%, when producing resin particles containing particles (C) in the particles, the production becomes unstable and the particle size distribution deteriorates.
  • the amount of increase in the amount of coarse particles in the dispersion liquid (L) of the present invention is 0.5% by volume or less, more preferably 0.1% by volume within a range where the absolute value of the amount of coarse particles does not exceed 1% by volume.
  • it is more preferably 0.01% by volume or less.
  • the smaller the increase the more stable the dispersion during storage.
  • the increase exceeds 0.5% by volume, when the resin particles containing particles (C) are produced, the resin particles are produced. It becomes unstable and the particle size distribution deteriorates.
  • the dispersion was allowed to stand at 10 ° C. for 24 hours, and the median diameter and the amount of coarse particles before and after standing were measured by the above-mentioned methods, and the median diameter change rate and coarse particles were measured. The amount of increase is calculated.
  • the change rate of the median diameter is obtained by the following calculation.
  • Formula 1 B / A ⁇ 100-100 Change rate of median diameter (%) Measured value A: median diameter of dispersion liquid left to stand at 10 ° C. for 24 hours Measured value B: median diameter in dispersion liquid within one hour after production
  • the rate of increase in the amount of coarse particles is determined by the following calculation.
  • the median diameter and the amount of coarse particles before and after standing are measured by the above method, and the median diameter change rate and the amount of increase in coarse particles are calculated, A dispersion in which the rate of change in the median diameter of the particles (C) contained in the dispersion and the amount of increase in coarse particles are in the above-described ranges can be produced.
  • the dispersion (L) can be obtained by volume expansion of the mixture (X) of the dispersoid (A), the solvent (S), and the compressive fluid (F). .
  • the dispersoid (A) is dissolved in the solvent (S) and / or the compressible fluid (F) at a temperature below the melting point or softening point of the dispersoid (A).
  • the mixture (X) is volume-expanded below the melting point or softening point of the dispersoid (A).
  • the mixture (X) having a temperature below the melting point or softening point of the dispersoid (A) is volume-expanded.
  • the dispersoid (A) is in a state dissolved in the solvent (S) and / or the compressible fluid (F).
  • the dispersoid (A) contains at least one selected from the group consisting of fluorine, silicone group, ether group, carbonyl group and hydrocarbon chain. It is preferable.
  • the volume ratio of the dispersoid (A), the compressive fluid (F), and the solvent (S) in the mixture (X) is any ratio as long as the dispersion liquid (L) after volume expansion reaches the target temperature.
  • the compressible fluid (F) is a good solvent for the dispersoid (A)
  • the higher the ratio of the compressible fluid (F), the lower the viscosity, and the smaller the particle size of the particles (C), and the more stable dispersion. (L) is easily obtained.
  • the mixture (X) is volume-expanded at a temperature not higher than the melting point of the dispersoid (A) so that the particles (C) of the dispersoid (A) are contained in the solvent (S).
  • a dispersed dispersion (L) is obtained.
  • the method of the present invention may comprise a step of preparing the mixture (X).
  • the preparation method of mixture (X) is not specifically limited, For example, it can prepare by mixing a dispersoid (A), a solvent (S), and a compressive fluid (F).
  • the solvent (S), the dispersoid (A), and the compressive fluid (F) are mixed at a temperature equal to or higher than the melting point (T0) of the dispersoid (A) (at a temperature that can maintain the liquid state).
  • a mixture (X) When carbon dioxide is used as the compressive fluid (F), it is preferable to use carbon dioxide having a pressure of 0.5 MPa or more.
  • the mixture (X) is adjusted to a temperature (T2) below the melting point of the dispersoid (A), and then the volume is expanded to vaporize and remove the compressible fluid (F).
  • T3 below the precipitation temperature (T1), a dispersion (L) in which the dispersoid (A) is dispersed as particles (C) in the solvent (S) is obtained.
  • the mixture (X) is volume-expanded at a temperature below the softening point of the dispersoid (A) so that the particles (C) of the dispersoid (A) A dispersion liquid (L) dispersed in (S) is obtained.
  • the mixture (X) in the case of using a dispersoid (A) that does not have a melting point (amorphous material) is not particularly limited.
  • the temperature above the softening point of the dispersoid (A) (maintains a liquid state).
  • the solvent (S), the dispersoid (A), and the compressive fluid (F) are mixed at a temperature higher than or equal to a temperature where the mixture (X) can be produced.
  • carbon dioxide is used as the compressive fluid (F)
  • the mixture (X) is temperature-controlled to a temperature below the softening point of the dispersoid (A), and then volume-expanded to vaporize and remove the compressible fluid (F), thereby precipitating the dispersoid (A).
  • the dispersion (L) in which the dispersoid (A) is dispersed as particles (C) in the solvent (S) can be obtained by cooling below the temperature.
  • the dispersoid (A) and the solvent (S) are mixed with the solvent in advance from the viewpoint of ease of handling.
  • the amount of the solvent (S) is preferably 1 to 100% by weight based on the dispersoid (A), more preferably 5 to 80% by weight, particularly preferably 10 to 60% by weight. Within this range, the dispersion can be obtained with a viscosity that is easy to handle.
  • the mixture may be heated after mixing the normal temperature dispersoid (A) and the solvent (S), or the other may be introduced into the heated dispersoid (A) or the solvent (S).
  • additives such as said dispersing agent, adding to this mixture is preferable.
  • the dispersoid (A) when the primary particles of the particles (C) containing the dispersoid (A) are already the target size and only have secondary aggregation, the dispersoid (A) Therefore, in this case, in addition to the above method, for example, when carbon dioxide is used as the compressive fluid (F), the compressive fluid (F) having a pressure of 0.5 MPa or more is used. Dispersed in which the dispersoid (A) is dispersed in the solvent (S) by mixing and then rapidly expanding under reduced pressure, vaporizing the compressive fluid (F) and mixing with the solvent (S). A liquid (L) is obtained.
  • the solvent (S) may be mixed at any stage of the above process, or may be previously mixed with the dispersoid (A).
  • the pressure immediately before volumetric expansion of the mixture (X) is preferably 2 to 15 MPa, more preferably 2.5 to 12 MPa, particularly preferably from the viewpoint of obtaining a dispersion having a small particle size and few coarse particles. Is 3.5 to 10 MPa. Further, the pressure after volume expansion of the mixture (X) is preferably ⁇ 0.1 to 2 MPa, more preferably 0 to 1 MPa from the viewpoint of obtaining a dispersion having a small particle size and few coarse particles. Particularly preferred is 0.1 to 0.5 MPa.
  • a compressible fluid (F) such as carbon dioxide having a pressure of 0.5 MPa or more
  • the (A) containing mixture is charged into the pressure resistant container,
  • the dispersoid (A) is liquefied by heating.
  • the dispersoid (A) can be melted at a temperature equal to or higher than the melting point of the dispersoid (A).
  • a compressive fluid (until the desired pressure is reached by a pressurizing means such as a pump provided in the pressure vessel while adjusting to a temperature below the melting point of the dispersoid (A).
  • F is introduced into the container and mixed with the mixture containing (A). Since the volume of the (A) -containing mixture expands by introducing the compressive fluid (F), the initial charge amount of the (A) -containing mixture is preferably 5 to 70% by volume with respect to the volume of the container.
  • the pressure vessel used in the method for producing a dispersion of the present invention can withstand a maximum pressure of 0.5 MPa or more when, for example, carbon dioxide or the like is used as the compressive fluid (F). It is preferable to equip the equipment which can stir and mix the mixture and the compressive fluid (F) with a nozzle for taking out the mixture (A) at the bottom of the container.
  • the nozzle may be any nozzle that allows liquid substances to pass through, for example, opening and closing a needle valve or a ball valve having a diameter of about 0.1 to 5.0 mm (A) after mixing of compressive fluid (F) (A )
  • the mixed liquid can be ejected from the high pressure state into the atmosphere at once.
  • the stirring time may be the minimum time that the mixture (A) is sufficiently mixed with the entire compressive fluid (F), and is preferably stirred for about 10 to 30 minutes.
  • the temperature during the stirring and mixing of the (A) -containing mixture and the compressive fluid (F) is preferably from the viewpoint of preventing aggregation of dispersoids due to excessive temperature rise, adjusting the temperature of the (A) -containing mixture during discharge, and the like. Is 20 to 180 ° C, more preferably 30 to 120 ° C, still more preferably 35 to 100 ° C, and particularly preferably 40 to 85 ° C.
  • the valve is opened from the nozzle at the bottom of the container and the mixture (A) is expanded under reduced pressure to atmospheric pressure all at once.
  • the temperature of the (A) -containing mixture is drastically decreased, and the dissolved dispersoid (A) is deposited below the temperature at which the dispersoid (A) is precipitated.
  • a dispersion (L) in which the dispersoid (A) is dispersed in the solvent (S) is obtained.
  • the temperature and pressure of the (A) -containing mixture before decompression are set to appropriate conditions. Should be set from the enthalpy diagram.
  • A Mixing of the mixture and the compressive fluid (F) may be performed continuously by a line blend (in-line mixing) method, in addition to the method in the pressure vessel described above, to improve productivity and to make the quality constant. This is preferable from the standpoints of manufacturing and reduction of manufacturing space.
  • Specific examples of the apparatus used for the line blending method include static in-line mixers such as static mixers, in-line mixers, ramond super mixers, and sulzer mixers, and stirring-type in-line mixers such as vibrator mixers and turbo mixers. It is done. There is no limitation on the length and pipe diameter of the mixer part of the device, and the number of mixing devices (elements).
  • the compressible fluid (F) when carbon dioxide is used as the compressible fluid (F), it can withstand a maximum pressure of 0.5 MPa or more. It must be obtained.
  • the outlet of the apparatus used for the line blending method is preferably provided with a nozzle for taking out the mixture, similar to the pressure vessel.
  • the compressive fluid (F) is introduced into an apparatus for performing line blending and adjusted so that the pressure becomes 0.5 MPa or more, and then (A) It is preferable to introduce the containing mixture into the compressive fluid (F).
  • the pressure of the compressive fluid (F) is preferably the same pressure as that used in the pressure vessel.
  • the temperature at which line blending is performed is the same as in the case of mixing using the above-described pressure vessel.
  • the residence time in the apparatus is not particularly limited as long as the mixing is sufficiently performed, but is preferably 0.1 to 1800 seconds.
  • Dispersion liquid in which particles (C) containing dispersoid (A) are dispersed in solvent (S) by expanding the mixture after line blending under reduced pressure to atmospheric pressure and vaporizing and removing compressive fluid (F) (L) is obtained.
  • FIG. 1 is a flowchart of an experimental apparatus used for producing a dispersion in the mixing method by line blending in the present invention.
  • the compressive fluid (F) in the present invention is not limited to this.
  • the compressive fluid (F) is line blended from the carbon dioxide cylinder B1 through the carbon dioxide pump P2.
  • dispersoid (A) and solvent (S) The solution to be contained is preferably introduced into the liquid or supercritical carbon dioxide from the dissolution tank T1 through the solution pump P1. Subsequently, the dispersoid (A), the solvent (S), and the compressive fluid (F) are line-blended with the static mixer M1 while maintaining the pressure and temperature to obtain a mixture (X).
  • the solution containing the dispersoid (A) and the solvent (S) can be prepared by charging the dispersoid (A) and the solvent (S) in the dissolution tank T1, and sealingly mixing them.
  • the method for producing a dispersion of the present invention is preferably a method including a step of mixing the dispersoid (A) and the compressible fluid (F) by line blending.
  • the nozzle having the same diameter that can transfer the mixture (X) and the receiving container are the same.
  • a regulator that keeps the pressure is needed. However, in the latter case, a regulator is not required if the pressure in the receiving container is atmospheric pressure.
  • the dispersion (L) produced by the method for producing a dispersion of the present invention is also included in the present invention.
  • particles (C) containing the dispersoid (A) are dispersed in a solvent (S), and the median diameter of the particles (C) is 3.0 ⁇ m or less.
  • the application of the dispersion liquid of the present invention is not particularly limited, and can be used for various applications depending on the types of the dispersoid (A) and the solvent (S). For example, it can be suitably used for various applications such as paints, inks, cosmetics, foods, pharmaceuticals and the like.
  • the weight average molecular weight of [Dispersant 1] was 5200.
  • the weight average molecular weight is measured by gel permeation chromatography (GPC) and hereinafter abbreviated as Mw.
  • GPC gel permeation chromatography
  • Mw The measurement conditions for GPC are shown below. It measured similarly about the subsequent manufacture examples.
  • ⁇ Production Example 10 50 parts of 1,9-nonanediol and 38 parts of diethylene glycol were placed in a reaction vessel, 0.1 part of a 25 wt% methanol solution of sodium methoxide was added with stirring, and the temperature was raised to 160 ° C. After completion of the temperature elevation, 51 parts of dimethyl carbonate was added dropwise, and after 5 hours from the end of the addition, the mixture was cooled to 80 ° C. In order to remove the catalyst, an adsorbent was added and stirred for 1 hour, followed by filtration.
  • ⁇ Production Example 12 200 parts of xylene and 2 parts of di-t-butylperoxyhexahydroterephthalate are charged into a pressure-resistant reaction vessel equipped with a stir bar and a thermometer. After purging with nitrogen, the temperature is raised to 170 ° C. and dissolved sufficiently.
  • [Amorphous resin 1] had a weight average molecular weight of 5,200.
  • the softening point measured by the following method with a descent type flow tester (manufactured by Shimadzu Corporation, CFT-500D) was 75 ° C. While heating 1 g of [Amorphous Resin 1] at a heating rate of 6 ° C./min, a load of 1.96 MPa was applied by a plunger and extruded from a nozzle having a diameter of 1 mm and a length of 1 mm. (Flow value) ”and“ Temperature ”are drawn, and the temperature corresponding to 1/2 of the maximum value of the plunger drop is read from the graph. This value (temperature when half of the measured sample flows out) was the softening point.
  • T1 is derived from the dispersoid (crystalline material such as crystalline resin) contained in the dispersion when the obtained dispersion is subjected to DSC temperature drop measurement under the following conditions. Exothermic peak temperature. DSC measurement conditions Using a differential scanning calorimeter ⁇ for example, DSC210, manufactured by Seiko Denshi Kogyo Co., Ltd.], the sample to be measured was heated to 200 ° C., cooled to 0 ° C. at a cooling rate of 10 ° C./min, and then heated. The temperature was increased at a rate of 20 ° C./min, and the endothermic change was measured.
  • DSC measurement conditions Using a differential scanning calorimeter ⁇ for example, DSC210, manufactured by Seiko Denshi Kogyo Co., Ltd.], the sample to be measured was heated to 200 ° C., cooled to 0 ° C. at a cooling rate of 10 ° C./min, and then heated. The temperature was increased at a rate of 20 °
  • the median diameter was measured with a laser particle size distribution measuring device (LA-920, manufactured by Horiba, Ltd., hereinafter simply referred to as “LA-920”).
  • LA-920 Laser particle size distribution measuring device
  • the change rate of the median diameter was obtained by the following calculation.
  • Formula 1 B / A ⁇ 100-100 Change rate of median diameter (%) Measured value A: median diameter of dispersion liquid left to stand at 10 ° C. for 24 hours
  • Measured value B median diameter in dispersion liquid within one hour after production
  • Example 1 A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 40 ° C.
  • T2 while maintaining 6 MPa, the nozzle attached to the bottom of the container was fully opened, and the atmosphere (0.1 MPa)
  • the crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-1) in which particles (C-1) containing [crystalline resin 1] were dispersed.
  • the temperature (T3) of the dispersion (L-1) immediately after volume expansion is 4 ° C.
  • the median diameter of the particles (C-1) by LA-920 is 0.52 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-1) after standing at 10 ° C. for 24 hours was 0.54 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the change rate of the median type was 3.8%, and the increase amount of coarse particles was 0.0% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 2 A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 2] (T0 (melting point): 65 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 40 ° C.
  • T2 while maintaining 6 MPa, the nozzle attached to the bottom of the container was fully opened, and the atmosphere (0.1 MPa)
  • the crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-2) in which particles (C-2) containing [crystalline resin 2] were dispersed.
  • the temperature (T3) of the dispersion (L-2) immediately after volume expansion is 4 ° C.
  • the median diameter of the particles (C-2) by LA-920 is 0.50 ⁇ m
  • the amount of coarse particles is 0.0 volume.
  • %Met The median diameter of the particles (C-2) after standing at 10 ° C. for 24 hours was 0.54 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the rate of change in median diameter was 8.0%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 3 A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 3] (T0 (melting point): 99 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 99 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 75 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • T0 melting point
  • the crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-3) in which particles (C-3) containing [crystalline resin 3] were dispersed. .
  • the temperature (T3) of the dispersion (L-3) immediately after volume expansion is 38 ° C.
  • the median diameter of the particles (C-3) by LA-920 is 0.45 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-3) after standing at 10 ° C. for 24 hours was 0.47 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the rate of change in median diameter was 4.4%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 54 degreeC from the measurement by DSC.
  • Example 4 A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 4] (T0 (melting point): 77 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 77 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 45 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • T0 melting point
  • the crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-4) in which particles (C-4) containing [crystalline resin 4] were dispersed. .
  • the temperature (T3) of the dispersion liquid (L-4) immediately after volume expansion is 10 ° C.
  • the median diameter of the particles (C-4) by LA-920 is 0.72 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of particles (C-4) after standing at 10 ° C. for 24 hours was 0.75 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the rate of change in median diameter was 4.2%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 30 degreeC from the measurement by DSC.
  • Example 5 Into a pressure-resistant reaction vessel equipped with a stir bar and a thermometer, 196.8 parts of acetone and 43.2 parts of [crystalline resin 5] (T0 (melting point): 58 ° C.) are charged to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring to raise the temperature in the system to 58 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 30 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • T0 melting point
  • the crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-5) in which particles (C-5) containing [crystalline resin 5] were dispersed. .
  • the temperature (T3) of the dispersion (L-5) immediately after volume expansion is 0 ° C.
  • the median diameter of the particles (C-5) by LA-920 is 0.66 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-5) after standing at 10 ° C. for 24 hours was 0.66 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the rate of change in median diameter was 0.0%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 16 degreeC from the measurement by DSC.
  • Example 6> A pressure-resistant reaction vessel equipped with a stir bar and a thermometer is charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 6] (T0 (melting point): 57 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 57 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 30 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • T0 melting point
  • the crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-6) in which particles (C-6) containing [crystalline resin 6] were dispersed. .
  • the temperature (T3) of the dispersion (L-6) immediately after volume expansion is -1 ° C.
  • the median diameter of the particles (C-6) by LA-920 is 0.42 ⁇ m
  • the amount of coarse particles is 0.0 % By volume.
  • the amount of coarse particles was 0.0% by volume.
  • the median diameter of the particles (C-6) after standing at 10 ° C. for 24 hours was 0.45 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the rate of change in median diameter was 7.1%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 15 degreeC from the measurement by DSC.
  • Example 7 A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 7] (T0 (melting point): 75 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 75 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 45 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • T0 melting point
  • the crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-7) in which particles (C-7) containing [crystalline resin 7] were dispersed. .
  • the temperature (T3) of the dispersion (L-7) immediately after volume expansion is 0 ° C.
  • the median diameter of the particles (C-7) by LA-920 is 0.53 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-7) after standing at 10 ° C. for 24 hours was 0.54 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the rate of change in median diameter was 1.9%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 29 degreeC from the measurement by DSC.
  • Example 8> A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 8] (T0 (melting point): 60 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 60 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 30 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • T0 melting point
  • the crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-8) in which particles (C-8) containing [crystalline resin 8] were dispersed. .
  • the temperature (T3) of the dispersion (L-8) immediately after the volume expansion is -5 ° C.
  • the median diameter of the particles (C-8) by LA-920 is 0.62 ⁇ m
  • the amount of coarse particles is 0.0 % By volume.
  • the median diameter of the particles (C-8) after standing at 10 ° C. for 24 hours was 0.65 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the change rate of the median type was 4.8%, and the increase amount of coarse particles was 0.0% by volume.
  • T1 was 17 degreeC from the measurement by DSC.
  • Example 9 A pressure-resistant reaction vessel equipped with a stirring bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [Crystalline Resin 9] (T0 (melting point): 54 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 54 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 30 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • the crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-9) in which particles (C-9) containing [crystalline resin 9] were dispersed.
  • the temperature (T3) of the dispersion (L-9) immediately after volume expansion was ⁇ 2 ° C.
  • the median diameter of the particles (C-9) by LA-920 was 0.41 ⁇ m
  • the amount of coarse particles was 0.0 % By volume.
  • the median diameter of the particles (C-9) after standing at 10 ° C. for 24 hours was 0.44 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the rate of change in median diameter was 7.3%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 10 A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [Crystalline Resin 10] (T0 (melting point): 61 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring to raise the temperature in the system to 61 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 30 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • the crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-10) in which particles (C-10) containing [crystalline resin 10] were dispersed. .
  • the temperature (T3) of the dispersion (L-10) immediately after the volume expansion is -1 ° C.
  • the median diameter of the particles (C-10) by LA-920 is 0.52 ⁇ m
  • the amount of coarse particles is 0.0 % By volume.
  • the median diameter of the particles (C-10) after standing at 10 ° C. for 24 hours was 0.52 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the rate of change in median diameter was 0.0%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 16 degreeC from the measurement by DSC.
  • Example 11 In a pressure-resistant reaction vessel equipped with a stirring bar and a thermometer, 196.8 parts of acetone and 43.2 parts of [Amorphous Resin 1] (T0 (softening point): 75 ° C.) were added to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 75 ° C. After the temperature rise, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the temperature inside the system was lowered to 45 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • T0 softening point
  • a dispersion liquid (L-11) in which particles (C-11) containing [amorphous resin 1] are dispersed. It was.
  • the temperature (T3) of the dispersion (L-11) immediately after volume expansion is 10 ° C.
  • the median diameter of the particles (C-11) by LA-920 is 0.39 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of particles (C-11) after standing at 10 ° C. for 24 hours was 0.40 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the rate of change in median diameter was 2.6%, and the increase in coarse particles was 0.0% by volume.
  • Example 12 In a pressure-resistant reaction vessel equipped with a stirring bar and a thermometer, 196.8 parts of ethyl acetate and 43.2 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) are added to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed, heated and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 40 ° C.
  • T0 melting point
  • T2 while maintaining 6 MPa, the nozzle attached to the bottom of the container was fully opened, and the atmosphere (0.1 MPa)
  • the crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-12) in which particles (C-12) containing [crystalline resin 1] were dispersed.
  • the temperature (T3) of the dispersion (L-12) immediately after the volume expansion is 4 ° C.
  • the median diameter of the particles (C-12) by LA-920 is 0.50 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-12) after standing at 10 ° C. for 24 hours was 0.52 ⁇ m, and the amount of coarse particles was 0.0 vol%.
  • the rate of change in median diameter was 4.0%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 13 Into a pressure-resistant reaction vessel equipped with a stirring bar and a thermometer, 196.8 parts of methyl ethyl ketone and 43.2 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) are charged to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 40 ° C.
  • T2 while maintaining 6 MPa, the nozzle attached to the bottom of the container was fully opened, and the atmosphere (0.1 MPa)
  • the crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-13) in which particles (C-13) containing [crystalline resin 1] were dispersed.
  • the temperature (T3) of the dispersion (L-13) immediately after volume expansion is 4 ° C.
  • the median diameter of the particles (C-13) by LA-920 is 0.51 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-13) after standing at 10 ° C. for 24 hours was 0.51 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the rate of change in median diameter was 0.0%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 14 Into a pressure-resistant reaction vessel equipped with a stirrer and a thermometer, 196.8 parts of water and 43.2 parts of [Crystalline Resin 1] (T0 (melting point): 65 ° C.) are charged to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. Further, after maintaining the temperature at 65 ° C. to supply carbon dioxide to 6 MPa, the inside of the kettle was observed again from the observation window. The crystalline resin 1 dissolved in carbon dioxide, but separated from water, It was confirmed that two phases were formed. Further, stirring is performed to suspend the crystal resin carbon dioxide solution in water, the temperature inside the system is lowered to 40 ° C.
  • T2 while maintaining 6 MPa, the nozzle attached to the lower part of the container is fully opened, and the atmosphere (0.1 MPa)
  • the crystalline resin was precipitated, and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-14) in which particles (C-14) containing [crystalline resin 1] were dispersed.
  • the temperature (T3) of the dispersion (L-14) immediately after the volume expansion is 7 ° C.
  • the median diameter of the particles (C-14) by LA-920 is 0.53 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of particles (C-14) after standing at 10 ° C. for 24 hours was 0.54 ⁇ m, and the amount of coarse particles was 0.0 vol%.
  • the rate of change in median diameter was 1.9%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 15 A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After raising the temperature, carbon dioxide was supplied to 10 MPa, and the mixture was stirred for 10 minutes. The system temperature was lowered to 40 ° C. (T2) while maintaining 10 MPa, and the nozzle attached to the bottom of the container was fully opened to the atmosphere (0.1 MPa).
  • the crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-15) in which particles (C-15) containing [crystalline resin 1] were dispersed. .
  • the temperature (T3) of the dispersion (L-15) immediately after volume expansion is 0 ° C.
  • the median diameter of the particles (C-15) by LA-920 is 0.45 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-15) after standing at 10 ° C. for 24 hours was 0.46 ⁇ m
  • the amount of coarse particles was 0.0 vol%.
  • the rate of change in median diameter was 2.2%, and the increase in coarse particles was 0.0% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 16> A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa, and the mixture was stirred for 10 minutes. Then, the system temperature was lowered to 25 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • T0 melting point
  • the crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-16) in which particles (C-16) containing [crystalline resin 1] were dispersed. .
  • the temperature (T3) of the dispersion (L-16) immediately after the volume expansion was ⁇ 10 ° C.
  • the median diameter of the particles (C-16) by LA-920 was 0.41 ⁇ m
  • the amount of coarse particles was 0.0 % By volume.
  • the median diameter of the particles (C-16) after standing at 10 ° C. for 24 hours was 0.41 ⁇ m
  • the change rate of the median diameter was 0%
  • the increase in coarse particles was 0.0% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 17 A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [Crystalline Resin 1] (T0 (melting point): 65 ° C.) to 30% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa, and the mixture was stirred for 10 minutes. Then, the internal temperature was lowered to 40 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • the crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-17) in which particles (C-17) containing [crystalline resin 1] were dispersed. .
  • the temperature (T3) of the dispersion (L-17) immediately after volume expansion is 4 ° C.
  • the median diameter of the particles (C-17) by LA-920 is 0.50 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of particles (C-17) after standing at 10 ° C. for 24 hours was 0.51 ⁇ m
  • the change rate of the median diameter was 2.0%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 18 A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 175.0 parts of acetone and 75.0 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) to 30% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 40 ° C.
  • T2 while maintaining 6 MPa, the nozzle attached to the bottom of the container was fully opened, and the atmosphere (0.1 MPa)
  • the crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-18) in which particles (C-18) containing [crystalline resin 1] were dispersed.
  • the temperature (T3) of the dispersion (L-18) immediately after volume expansion is 4 ° C.
  • the median diameter of the particles (C-18) by LA-920 is 0.57 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-18) after standing at 10 ° C. for 24 hours was 0.58 ⁇ m
  • the change rate of the median diameter was 1.8%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 19> In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 196.8 parts of acetone and 43.2 parts of [Crystalline resin 1] (T0 (melting point): 65 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 65 ° C. A solution of was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa.
  • the solution of the crystalline resin 1 is introduced at a flow rate of 0.5 L / h from the dissolution tank (tank) T1 and the pump P1, and the mixed solution is line-blended with M1 while maintaining 6 MPa and 40 ° C. (T2). Is released from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), thereby precipitating the crystalline resin 1, vaporizing and removing carbon dioxide, and particles (C-19) containing the crystalline resin 1 are obtained. A dispersed dispersion (L-19) was obtained.
  • the temperature (T3) of the dispersion (L-19) immediately after volume expansion was 4 ° C.
  • the median diameter of the particles (C-19) by LA-920 was 0.39 ⁇ m
  • the amount of coarse particles was 0.0 volume. %Met.
  • the median diameter of the particles (C-19) after standing at 10 ° C. for 24 hours was 0.39 ⁇ m
  • the change rate of the median diameter was 0%
  • the increase amount of coarse particles was 0.0% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 20> In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 196.8 parts of acetone and 43.2 parts of [Crystalline Resin 10] (T0 (melting point): 61 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 61 ° C. A solution of was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • a solution of crystalline resin 10 is introduced at a flow rate of 0.5 L / h from a dissolution tank (tank) and pump P1, and mixed by line blending with a static mixer M1 while maintaining 6 MPa and 30 ° C. (T2).
  • T2 6 MPa and 30 ° C.
  • the temperature (T3) of the dispersion (L-20) immediately after volume expansion is -1 ° C.
  • the median diameter of the particles (C-20) by LA-920 is 0.35 ⁇ m
  • the amount of coarse particles is 0.0 % By volume.
  • the median diameter of the particles (C-20) after standing at 10 ° C. for 24 hours was 0.36 ⁇ m
  • the change rate of the median diameter was 2.9%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 16 degreeC from the measurement by DSC.
  • Example 21 In an experimental apparatus using the line blending method shown in FIG. 1 (as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, number of elements 27) was used), first, in a dissolution tank (tank) T1 196.8 parts of ethyl acetate and 43.2 parts of [Crystalline Resin 1] (T0 (melting point): 65 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 65 ° C. 1 solution was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, number of elements 27
  • the solution of the crystalline resin 1 is introduced at a flow rate of 0.5 L / h from the dissolution tank (tank) T1 and the pump P1, and the mixed solution is line-blended with M1 while maintaining 6 MPa and 40 ° C. (T2). Is released from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), thereby precipitating the crystalline resin 1, vaporizing and removing carbon dioxide, and particles (C-21) containing the crystalline resin 1 are obtained. A dispersed dispersion (L-21) was obtained.
  • the temperature (T3) of the dispersion (L-21) immediately after volume expansion is 4 ° C.
  • the median diameter of the particles (C-21) by LA-920 is 0.31 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-21) after standing at 10 ° C. for 24 hours was 0.32 ⁇ m
  • the change rate of the median diameter was 3.2%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 22> In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] , 196.8 parts of water and 43.2 parts of [Crystalline resin 1] (T0 (melting point): 65 ° C.) were sealed, heated with stirring, and the system temperature was raised to 65 ° C. 1 solution was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • the solution of the crystalline resin 1 is introduced from the tank T1 and the pump P1 at a flow rate of 0.5 L / h, and while maintaining 6 MPa and 40 ° C. (T2), the mixed liquid line-blended with M1 is dispersed from the nozzle.
  • a liquid (L-22) was obtained.
  • the temperature (T3) of the dispersion (L-22) immediately after volume expansion is 4 ° C.
  • the median diameter of the particles (C-22) by LA-920 is 0.39 ⁇ m
  • the amount of coarse particles is 0.0 volume.
  • the median diameter of the particles (C-22) after standing at 10 ° C. for 24 hours was 0.39 ⁇ m
  • the change rate of the median diameter was 0%
  • the increase in coarse particles was 0.0% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 23 In an experimental apparatus using the line blending method shown in FIG. 1 (as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, number of elements 27) was used), first, in a dissolution tank (tank) T1 196.8 parts of acetone and 43.2 parts of [Crystalline Resin 1] (T0 (melting point): 65 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 65 ° C. 1 solution was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.7 L / h, and the valve V1 was adjusted to 10 MPa.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, number of elements 27
  • the solution of the crystalline resin 1 is introduced from the dissolution tank (tank) T1 and the pump P1 at a flow rate of 0.83 L / h, and the liquid mixture is line-blended with M1 while maintaining 10 MPa and 40 ° C. (T2). Is released from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), thereby precipitating the crystalline resin 1, vaporizing and removing carbon dioxide, and particles (C-23) containing the crystalline resin 1 are obtained. A dispersed dispersion (L-23) was obtained.
  • the temperature (T3) of the dispersion (L-23) immediately after volume expansion is 0 ° C.
  • the median diameter of the particles (C-23) by LA-920 is 0.30 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of particles (C-23) after standing at 10 ° C. for 24 hours was 0.31 ⁇ m
  • the change rate of the median diameter was 3.3%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 24 In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 196.8 parts of acetone and 43.2 parts of [Crystalline resin 1] (T0 (melting point): 65 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 65 ° C. A solution of was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • the solution of the crystalline resin 1 is introduced at a flow rate of 0.5 L / h from the dissolution tank (tank) T1 and the pump P1, and the mixed solution is line-blended with M1 while maintaining 6 MPa and 25 ° C. (T2). Is released from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), thereby precipitating the crystalline resin 1, vaporizing and removing carbon dioxide, and particles (C-24) containing the crystalline resin 1 are obtained. A dispersed dispersion (L-24) was obtained.
  • the temperature (T3) of the dispersion (L-24) immediately after volume expansion is ⁇ 10 ° C.
  • the median diameter of the particles (C-24) by LA-920 is 0.35 ⁇ m
  • the amount of coarse particles is 0.0 % By volume.
  • the median diameter of the particles (C-24) after standing at 10 ° C. for 24 hours was 0.36 ⁇ m
  • the change rate of the median diameter was 2.9%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 25> In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 175.0 parts of acetone and 75.0 parts of [Crystalline resin 1] (T0 (melting point): 65 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 65 ° C. A solution of was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • the solution of the crystalline resin 1 is introduced at a flow rate of 0.5 L / h from the dissolution tank (tank) T1 and the pump P1, and the mixed solution is line-blended with M1 while maintaining 6 MPa and 40 ° C. (T2). Is released from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), thereby precipitating the crystalline resin 1, vaporizing and removing carbon dioxide, and particles (C-25) containing the crystalline resin 1 are obtained. A dispersed dispersion (L-25) was obtained.
  • the temperature (T3) of the dispersion (L-25) immediately after volume expansion is 4 ° C.
  • the median diameter of the particles (C-25) by LA-920 is 0.37 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of particles (C-25) after standing at 10 ° C. for 24 hours was 0.39 ⁇ m
  • the change rate of the median diameter was 5.4%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 27 In a pressure-resistant reaction vessel equipped with a stir bar and a thermometer, 24.0 parts of [Dispersant 1] obtained in Production Example 1, carnauba wax (H1-100, T0 (melting point): 83 ° C., manufactured by Dainichi Chemical Co., Ltd.) 48.0 parts, 168 parts of acetone, 40% of the volume of the pressure-resistant reaction vessel were charged, sealed and heated with stirring, and the system temperature was raised to 83 ° C. After the temperature rise, carbon dioxide was supplied to 8 MPa, the temperature was lowered to 75 ° C.
  • Example 28> In a pressure-resistant reaction vessel equipped with a stir bar and a thermometer, 24.0 parts of [Dispersant 1] obtained in Production Example 1, polyolefin wax (ACCUM ELT100, T0 (melting point): 102 ° C.) 48.0 parts, acetone 168 parts, charged to 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 102 ° C. After the temperature rise, carbon dioxide was supplied to 8 MPa. While maintaining 8 MPa, the temperature was lowered to 90 ° C. (T2), stirred for 10 minutes, and then the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • [Dispersant 1] obtained in Production Example 1, polyolefin wax (ACCUM ELT100, T0 (melting point): 102 ° C.) 48.0 parts, acetone 168 parts, charged to 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to
  • the polyolefin wax was precipitated, and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-28) in which particles (C-28) containing the polyolefin wax were dispersed.
  • the temperature (T3) of the dispersion (L-28) immediately after the volume expansion was 32 ° C.
  • the median diameter of the particles (C-28) by LA-920 was 0.66 ⁇ m
  • the ratio of the coarse particle amount was 0.00. It was 0% by volume.
  • the median diameter of the particles (C-28) after standing at 10 ° C. for 24 hours was 0.68 ⁇ m
  • the change rate of the median diameter was 3.0%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 62 degreeC from the measurement by DSC.
  • Example 29> [Dispersant 1] obtained in Production Example 1 24.0 parts, stearyl stearate (Exepal SS, T0 (melting point): 56 ° C.) 48.0 parts, The mixture was charged to 168 parts of acetone and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 56 ° C. After the temperature rise, carbon dioxide was supplied to 8 MPa. While maintaining 8 MPa, the temperature was lowered to 40 ° C. (T2), stirred for 10 minutes, and then the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa).
  • dispersion liquid (L-29) in which particles (C-29) containing stearyl stearate were dispersed.
  • the temperature (T3) of the dispersion liquid (L-29) immediately after volume expansion is ⁇ 7 ° C.
  • the median diameter of the particles (C-29) by LA-920 is 0.54 ⁇ m
  • the ratio of the coarse particle amount is 0. 0.0% by volume.
  • the median diameter of the particles (C-29) after standing at 10 ° C. for 24 hours was 0.56 ⁇ m
  • the change rate of the median diameter was 3.7%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 19 degreeC from the measurement by DSC.
  • Example 30 [Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, ethyl acetate 168 parts, and 40% of the pressure-resistant reaction vessel volume, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature rise, carbon dioxide was supplied to 8 MPa. Further, while maintaining 8 MPa, the temperature was lowered to 70 ° C. (T2) and stirred for 10 minutes.
  • the paraffin wax was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-30) in which particles (C-30) containing paraffin wax were dispersed.
  • the temperature (T3) of the dispersion (L-30) immediately after the volume expansion was 13 ° C.
  • the median diameter of the particles (C-30) by LA-920 was 0.52 ⁇ m
  • the ratio of the coarse particle amount was 0.00. It was 0% by volume.
  • the median diameter of the particles (C-30) after standing at 10 ° C. for 24 hours was 0.52 ⁇ m
  • the change rate of the median diameter was 0.0%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 29 degreeC from the measurement by DSC.
  • T2 while maintaining 8 MPa, and after stirring for 10 minutes, it was confirmed from the observation window that the paraffin wax carbon dioxide container was dispersed in water.
  • the temperature (T3) of the dispersion (L-32) immediately after the volume expansion was 13 ° C.
  • the median diameter of the particles (C-31) by LA-920 was 0.58 ⁇ m
  • the ratio of the coarse particle amount was 0.00. It was 0% by volume.
  • the median diameter of the particles (C-32) after standing at 10 ° C. for 24 hours was 0.59 ⁇ m
  • the change rate of the median diameter was 1.7%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 29 degreeC from the measurement by DSC.
  • Example 33 [Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, 168 parts of acetone, and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature increase, carbon dioxide was supplied to 10 MPa. The temperature was lowered to 70 ° C. (T2) while maintaining 10 MPa, and the mixture was stirred for 10 minutes. Then, the nozzle attached to the lower part of the container was fully opened and opened to the atmosphere (0.1 MPa) to precipitate paraffin wax, and carbon dioxide.
  • paraffin wax HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa
  • the mixture was charged to 48.0 parts, 168 parts of acetone, and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system
  • Example 34 [Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, 168 parts of acetone, and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature increase, carbon dioxide was supplied to 8 MPa. The temperature was further lowered to 60 ° C. (T2) while maintaining 8 MPa, and after stirring for 10 minutes, the nozzle attached to the bottom of the container was fully opened and opened to the atmosphere (0.1 MPa), thereby precipitating paraffin wax.
  • Carbon dioxide was evaporated and removed to obtain a dispersion liquid (L-34) in which particles (C-34) containing paraffin wax were dispersed.
  • the temperature (T3) of the dispersion (L-34) immediately after the volume expansion was 0 ° C.
  • the median diameter of the particles (C-34) by LA-920 was 0.39 ⁇ m
  • the ratio of the coarse particle amount was 0.00. It was 0% by volume.
  • the median diameter of the particles (C-34) after standing at 10 ° C. for 24 hours was 0.41 ⁇ m
  • the change rate of the median diameter was 5.1%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 29 degreeC from the measurement by DSC.
  • Example 35 [Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, 168 parts of acetone, and 30% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature increase, carbon dioxide was supplied to 8 MPa. The temperature was lowered to 70 ° C. (T2) while maintaining 8 MPa, and the mixture was stirred for 10 minutes. Then, the nozzle attached to the lower part of the container was fully opened and opened to the atmosphere (0.1 MPa) to precipitate paraffin wax, and carbon dioxide.
  • Example 36 32.0 parts of [Dispersant 1] obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) in a pressure-resistant reaction vessel equipped with a stirring bar and a thermometer The mixture was charged to 64.0 parts, 168 parts of acetone, and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After raising the temperature, carbon dioxide was supplied to 8 MPa, and the temperature was further lowered to 70 ° C. (T2). After stirring for 10 minutes, the nozzle attached to the bottom of the container was fully opened and opened to the atmosphere (0.1 MPa).
  • Example 37 In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of acetone, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., Nippon Seiwa) were charged and sealed. Then, the mixture was heated with stirring, and the temperature in the system was raised to 76 ° C. to prepare a paraffin wax solution.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa.
  • the paraffin wax solution was introduced at a flow rate of 0.65 L / h from the dissolution tank (tank) T1 and the pump P1, and the liquid mixture line-blended with M1 was maintained at 8 MPa at 70 ° C. (T2).
  • T2 0.1 MPa
  • the temperature (T3) of the dispersion (L-37) immediately after volume expansion is 13 ° C.
  • the median diameter of the particles (C-37) by LA-920 is 0.45 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-37) after standing at 10 ° C. for 24 hours was 0.46 ⁇ m
  • the change rate of the median diameter was 2.2%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 29 degreeC from the measurement by DSC.
  • Example 38> In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of acetone, 24.0 parts of [Dispersant 1] obtained in Production Example 1 and 48.0 parts of stearyl stearate (Exepal SS, T0 (melting point): 56 ° C.) were charged and sealed while stirring. The mixture was heated and the temperature in the system was raised to 56 ° C. to prepare a stearyl stearate solution.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa.
  • the stearyl stearate solution was introduced at a flow rate of 0.65 L / h from the dissolution tank (tank) T1 and the pump P1, and the liquid mixture line-blended with M1 was maintained at 8 MPa and 40 ° C. (T2).
  • T2 By opening from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), stearyl stearate was precipitated and carbon dioxide was vaporized and removed to disperse particles (C-38) containing stearyl stearate. A dispersion (L-38) was obtained.
  • the temperature (T3) of the dispersion (L-38) immediately after the volume expansion is -7 ° C.
  • the median diameter of the particles (C-38) by LA-920 is 0.41 ⁇ m
  • the amount of coarse particles is 0.0 % By volume.
  • the median diameter of the particles (C-38) after standing at 10 ° C. for 24 hours was 0.41 ⁇ m
  • the change rate of the median diameter was 0.0%
  • the increase in coarse particles was 0.0% by volume. It was.
  • T1 was 19 degreeC from the measurement by DSC.
  • Example 39 In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] Charge 168.0 parts of ethyl acetate, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa). The mixture was sealed and heated with stirring, and the system temperature was raised to 76 ° C. to prepare a paraffin wax solution.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa.
  • the paraffin wax solution was introduced at a flow rate of 0.65 L / h from the dissolution tank (tank) T1 and the pump P1, and the liquid mixture line-blended with M1 was maintained at 8 MPa at 70 ° C. (T2).
  • T2 0.1 MPa
  • the temperature (T3) of the dispersion (L-37) immediately after volume expansion is 13 ° C.
  • the median diameter of the particles (C-39) by LA-920 is 0.46 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-39) after standing at 10 ° C. for 24 hours was 0.46 ⁇ m
  • the change in median diameter was 0.0%
  • the increase in coarse particles was 0.0% by volume.
  • T1 was 29 degreeC from the measurement by DSC.
  • Example 40> In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of water, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., Nippon Seiwa) were charged and sealed. Then, the mixture was heated with stirring, and the temperature in the system was raised to 76 ° C. to prepare a paraffin wax solution.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa.
  • the paraffin wax solution was introduced at a flow rate of 0.65 L / h from the dissolution tank (tank) T1 and the pump P1, and the liquid mixture line-blended with M1 was maintained at 8 MPa at 70 ° C. (T2).
  • T2 0.1 MPa
  • the temperature (T3) of the dispersion (L-40) immediately after volume expansion is 13 ° C.
  • the median diameter of particles (C-40) by LA-920 is 0.45 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-40) after standing at 10 ° C. for 24 hours was 0.46 ⁇ m
  • the median diameter change was 2.2%
  • the increase in coarse particles was 0.0 vol%.
  • T1 was 29 degreeC from the measurement by DSC.
  • Example 41 In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of acetone, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., Nippon Seiwa) were charged and sealed. Then, the mixture was heated with stirring, and the temperature in the system was raised to 76 ° C. to prepare a paraffin wax solution.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.70 L / h, and the valve V1 was adjusted to 10 MPa.
  • a paraffin wax solution is introduced at a flow rate of 0.83 L / h from a dissolution tank (tank) T1 and a pump P1, and the mixture liquid line-blended with M1 is maintained at 10 MPa at 70 ° C. (T2).
  • T2 0.1 MPa
  • the temperature (T3) of the dispersion (L-41) immediately after volume expansion is 13 ° C.
  • the median diameter of the particles (C-41) by LA-920 is 0.39 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-41) after standing at 10 ° C. for 24 hours was 0.39 ⁇ m
  • the change in median diameter was 0.0%
  • the increase in coarse particles was 0.0% by volume.
  • T1 was 29 degreeC from the measurement by DSC.
  • Example 42 In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of acetone, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., Nippon Seiwa) were charged and sealed. Then, the mixture was heated with stirring, and the temperature in the system was raised to 76 ° C. to prepare a paraffin wax solution.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa.
  • a paraffin wax solution was introduced from the tank T1 and the pump P1 at a flow rate of 0.65 L / h, and the liquid mixture line-blended with M1 was received from the nozzle while maintaining 8 MPa and 60 ° C. (T2).
  • the temperature (T3) of the dispersion (L-42) immediately after the volume expansion is 1 ° C.
  • the median diameter of the particles (C-42) by LA-920 is 0.38 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-42) after standing at 10 ° C. for 24 hours was 0.39 ⁇ m
  • the median diameter change was 2.6%
  • the increase in coarse particles was 0.0 vol%.
  • T1 was 29 degreeC from the measurement by DSC.
  • Example 43 In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of acetone, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., Nippon Seiwa) were charged and sealed. Then, the mixture was heated with stirring, and the temperature in the system was raised to 76 ° C. to prepare a paraffin wax solution.
  • a static mixer M1 manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27
  • Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa.
  • the paraffin wax solution was introduced at a flow rate of 0.65 L / h from the dissolution tank (tank) T1 and the pump P1, and the liquid mixture line-blended with M1 was maintained at 8 MPa at 70 ° C. (T2).
  • T2 0.1 MPa
  • the temperature (T3) of the dispersion (L-43) immediately after volume expansion is 13 ° C.
  • the median diameter of the particles (C-43) by LA-920 is 0.51 ⁇ m
  • the amount of coarse particles is 0.0 volume. %Met.
  • the median diameter of the particles (C-43) after standing at 10 ° C. for 24 hours was 0.52 ⁇ m
  • the change in median diameter was 2.0%
  • the increase in coarse particles was 0.0% by volume.
  • T1 was 29 degreeC from the measurement by DSC.
  • Example 1 The same procedure as in Example 1 was carried out except that T2 was set to 70 ° C. and T3 was set to 25 ° C. to obtain a dispersion liquid (RL-1) in which comparative particles (RC-1) were dispersed.
  • the median diameter of the particles (RC-1) by LA-920 was 8.90 ⁇ m, and the amount of coarse particles was 3.2% by volume.
  • the median diameter of the particles (RC-1) after standing at 10 ° C. for 24 hours was 10.20 ⁇ m, and the amount of coarse particles was 3.4% by volume.
  • the change rate of the median diameter was 14.6%, and the increase amount of coarse particles was 0.2% by volume.
  • ⁇ Comparative example 2> The same procedure as in Example 1 was conducted except that T2 was set to 70 ° C. and the pre-expansion pressure was set to 10 MPa to obtain a dispersion liquid (RL-2) in which comparative particles (RC-2) were dispersed.
  • the median diameter of the particles (RC-2) by LA-920 was 0.51 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the median diameter of the particles (RC-2) after standing at 10 ° C. for 24 hours was 3.62 ⁇ m, and the amount of coarse particles was 1.5% by volume.
  • the change rate of the median diameter was 609.8%, and the increase amount of coarse particles was 1.5% by volume.
  • Example 3 The same procedure as in Example 1 was performed except that the pre-expansion pressure was 1 MPa and T3 was 19 ° C., to obtain a dispersion liquid (RL-3) in which comparative particles (RC-3) were dispersed.
  • the median particle size of RC-920 particles (RC-3) was 5.40 ⁇ m, and the amount of coarse particles was 3.2% by volume.
  • the median diameter of the particles (RC-3) after standing at 10 ° C. for 24 hours was 7.30 ⁇ m, and the amount of coarse particles was 4.5 vol%.
  • the rate of change in median diameter was 35.2%, and the increase in coarse particles was 1.3% by volume.
  • ⁇ Comparative example 4> The same procedure as in Example 1 was performed except that the pressure after expansion was 3 MPa and T3 was 25 ° C., to obtain a dispersion liquid (RL-4) in which comparative particles (RC-4) were dispersed.
  • the median diameter of particles (RC-4) by LA-920 was 5.70 ⁇ m, and the amount of coarse particles was 2.1% by volume.
  • the median diameter of the particles (RC-4) after standing at 10 ° C. for 24 hours was 8.48 ⁇ m, and the amount of coarse particles was 5.5% by volume.
  • the change rate of the median diameter was 48.8%, and the increase amount of coarse particles was 3.4% by volume.
  • Example 5 The same procedure as in Example 26 was carried out except that T2 was 90 ° C. and T3 was 33 ° C., to obtain a dispersion liquid (RL-5) in which comparative particles (RC-5) were dispersed.
  • the median particle size of RC-920 particles (RC-5) was 7.60 ⁇ m, and the amount of coarse particles was 3.2% by volume.
  • the median diameter of the particles (RC-5) after standing at 10 ° C. for 24 hours was 11.30 ⁇ m, and the amount of coarse particles was 3.5% by volume.
  • the change rate of the median diameter was 48.7%, and the increase amount of coarse particles was 0.3% by volume.
  • Example 6 The same procedure as in Example 26 was carried out except that T2 was 90 ° C. and the pre-expansion pressure was 10 MPa, to obtain a dispersion liquid (RL-6) in which comparative particles (RC-6) were dispersed.
  • the median particle size of RC-920 particles (RC-6) was 0.45 ⁇ m, and the amount of coarse particles was 0.2% by volume.
  • the median diameter of the particles (RC-6) after standing at 10 ° C. for 24 hours was 1.62 ⁇ m, and the amount of coarse particles was 4.3% by volume.
  • the rate of change in median diameter was 260.0%, and the increase in coarse particles was 4.1% by volume.
  • Example 7 The same procedure as in Example 26 was performed except that the pre-expansion pressure was 1 MPa and the post-expansion temperature (T3) was 25 ° C., to obtain a dispersion liquid (RL-7) in which comparative particles (RC-7) were dispersed.
  • the median diameter of particles (RC-7) by LA-920 was 5.61 ⁇ m, and the amount of coarse particles was 4.1% by volume.
  • the median diameter of the particles (RC-7) after standing at 10 ° C. for 24 hours was 7.61 ⁇ m, and the amount of coarse particles was 5.1% by volume.
  • the rate of change in median diameter was 35.7%, and the increase in coarse particles was 1.0% by volume.
  • Example 8 The same procedure as in Example 26 was performed except that the pre-expansion pressure was 8 MPa and the post-expansion pressure was 5 MPa, to obtain a dispersion liquid (RL-8) in which comparative particles (RC-8) were dispersed.
  • the median diameter of the particles by RC-920 (RC-8) was 4.32 ⁇ m, and the amount of coarse particles was 3.5% by volume.
  • the median diameter of the particles (RC-8) after standing at 10 ° C. for 24 hours was 4.53 ⁇ m, and the amount of coarse particles was 4.1% by volume.
  • the rate of change in median diameter was 4.9%, and the increase in coarse particles was 0.6% by volume.
  • Example 19 was carried out in the same manner except that T2 was set to 70 ° C. and T3 was set to 25 ° C., to obtain a dispersion liquid (RL-9) in which comparative particles (RC-9) were dispersed.
  • the median particle size of RC-920 particles (RC-9) was 9.50 ⁇ m, and the amount of coarse particles was 2.9% by volume.
  • the median diameter of the particles (RC-9) after standing at 10 ° C. for 24 hours was 11.50 ⁇ m, and the amount of coarse particles was 4.3% by volume.
  • the rate of change in median diameter was 21.1%, and the increase in coarse particles was 1.4% by volume.
  • ⁇ Comparative Example 10> A dispersion (RL-10) in which comparative particles (RC-10) were dispersed was obtained in the same manner as in Example 19 except that T2 was set at 70 ° C., T3 was set at 4 ° C., and the pressure before expansion was 10 MPa.
  • the median particle size of RC-920 particles (RC-10) was 0.41 ⁇ m, and the amount of coarse particles was 0.0% by volume.
  • the median diameter of the particles (RC-10) after standing at 10 ° C. for 24 hours was 3.21 ⁇ m, and the amount of coarse particles was 1.5% by volume.
  • the change rate of the median diameter was 682.9%, and the increase amount of coarse particles was 1.5% by volume.
  • Example 11 The same procedure as in Example 19 was carried out except that T3 was 25 ° C. and the pre-expansion pressure was 1 MPa to obtain a dispersion liquid (RL-11) in which comparative particles (RC-11) were dispersed.
  • the median diameter of the particles by RC-920 (RC-11) was 4.30 ⁇ m, and the amount of coarse particles was 1.7% by volume.
  • the median diameter of the particles (RC-11) after standing at 10 ° C. for 24 hours was 5.37 ⁇ m, and the amount of coarse particles was 4.5 vol%.
  • the change rate of the median diameter was 24.9%, and the increase amount of coarse particles was 2.8% by volume.
  • Example 12 The same procedure as in Example 19 was carried out except that T3 was 25 ° C. and the post-expansion pressure was 3 MPa to obtain a dispersion liquid (RL-12) in which comparative particles (RC-12) were dispersed.
  • the median diameter of the particles by RC-920 (RC-12) was 6.10 ⁇ m, and the amount of coarse particles was 3.8% by volume.
  • the median diameter of the particles (RC-12) after standing at 10 ° C. for 24 hours was 8.45 ⁇ m, and the amount of coarse particles was 5.1% by volume.
  • the rate of change in median diameter was 38.5%, and the increase in coarse particles was 1.3% by volume.
  • Example 13 The same procedure as in Example 37 was conducted except that T2 was 80 ° C. and T3 was 33 ° C., to obtain a dispersion liquid (RL-13) in which comparative particles (RC-13) were dispersed.
  • the median diameter of the particles by RC-920 (RC-13) was 5.60 ⁇ m, and the amount of coarse particles was 3.5% by volume.
  • the median diameter of the particles (RC-13) after standing at 10 ° C. for 24 hours was 10.54 ⁇ m, and the amount of coarse particles was 4.1% by volume.
  • the rate of change in median diameter was 88.2%, and the increase in coarse particles was 0.6% by volume.
  • ⁇ Comparative example 14> The same procedure as in Example 37 was carried out except that T2 was 80 ° C. and the pre-expansion pressure was 10 MPa, to obtain a dispersion liquid (RL-14) in which comparative particles (RC-14) were dispersed.
  • the median particle size of RC-920 particles (RC-14) was 0.41 ⁇ m, and the amount of coarse particles was 0.1% by volume.
  • the median diameter of the particles (RC-14) after standing at 10 ° C. for 24 hours was 3.24 ⁇ m, and the amount of coarse particles was 3.5% by volume.
  • the rate of change in median diameter was 690.2%, and the increase in coarse particles was 3.4% by volume.
  • T1 was 20 degreeC from the measurement by DSC.
  • Example 15 The same procedure as in Example 37 was performed except that the pre-expansion pressure was 1 MPa and T2 was 40 ° C., to obtain a dispersion liquid (RL-15) in which comparative particles (RC-15) were dispersed.
  • the median particle size of RC-920 particles (RC-15) was 4.65 ⁇ m, and the amount of coarse particles was 4.5% by volume.
  • the median diameter of the particles (RC-15) after standing at 10 ° C. for 24 hours was 5.65 ⁇ m, and the amount of coarse particles was 4.7% by volume.
  • the change rate of the median diameter was 21.5%, and the increase amount of coarse particles was 0.2% by volume.
  • Example 16 The same procedure as in Example 37 was performed except that the pressure after expansion was 5 MPa and T2 was 40 ° C., to obtain a dispersion liquid (RL-16) in which comparative particles (RC-16) were dispersed.
  • the median particle size of RC-920 particles (RC-16) was 3.32 ⁇ m, and the amount of coarse particles was 3.8% by volume.
  • the median diameter of the particles (RC-16) after standing at 10 ° C. for 24 hours was 5.57 ⁇ m, and the amount of coarse particles was 4.8% by volume.
  • the rate of change in median diameter was 67.8%, and the increase in coarse particles was 1.0% by volume.
  • Tables 1 to 6 show the evaluation results of the dispersions in Examples 1 to 43 and Comparative Examples 1 to 16.
  • the dispersion liquid of the example is a dispersion liquid in which particles containing a dispersoid are finely and stably dispersed in a solvent as compared with the dispersion liquid of the comparative example.
  • the dispersion of fine particles can be rapidly obtained by the method for producing a dispersion of the present invention.
  • the dispersion produced by the production method of the present invention is suitable for various uses such as paints, inks, cosmetics, foods, pharmaceuticals and the like.
  • T1 Dissolution tank (maximum operating pressure 20 MPa, maximum operating temperature 200 ° C., with stirrer)
  • T2 Dispersion tank B1: Carbon dioxide cylinder P1: Solution pump P2: Carbon dioxide pump M1: Static mixer V1: Valve

Abstract

The purpose of the present invention is to provide a dispersion production method with which it is possible to obtain, quickly and with small power, a dispersion in which a dispersoid, such as solid particles, is dispersed in a dispersion solvent finely and stably. This method for producing a dispersion (L) is a method for producing a dispersion (L) in which particles (C), including a dispersoid (A), are dispersed in a solvent (S), the method comprising a step for expanding the volume of a mixture (X) including the dispersoid (A), the solvent (S), and a compressible fluid (F), the method being characterized in that: the volume of the mixture (X) is expanded at a temperature lower than or equal to the boiling point or the softening point of the dispersoid (A) in a state where the dispersoid (A) is dissolved in the solvent (S) and/or the compressible fluid (F) at a temperature lower than or equal to the boiling point or the softening point of the dispersoid (A); and the median diameter of the particles (C) is less than or equal to 3.0 µm.

Description

分散液の製造方法及び分散液Dispersion production method and dispersion
 本発明は、分散液の製造方法及び分散液に関する。詳しくは固体粒子等の各種微粒子が溶剤に分散された分散液の製造方法及び分散液に関するものである。 The present invention relates to a method for producing a dispersion and a dispersion. Specifically, the present invention relates to a method for producing a dispersion in which various fine particles such as solid particles are dispersed in a solvent, and the dispersion.
 塗料、インキ、化粧品、食品、医薬品その他の各種の製造工程において、固体粒子等の材料を微細化し、この微粒子を水、有機溶剤等の分散溶剤に分散させて分散液を作製する工程が含まれているが、従来の方法、装置では固体粒子等の微粒子を溶剤に分散するために長い時間と多くの動力を必要とした。
 また、上述のような方法を改良するものとして、分散質と溶剤を混合した混合物を超臨界容器に供給し超臨界状態とした後、超臨界状態の混合物を大気中に解放し、衝突部に衝突させることにより分散質を溶剤中に微粒子化して分散する方法や(例えば特許文献1参照)、晶析により分散質を微粒子化する方法として、分散質が溶解した超臨界流体をノズルより噴出させて分散質を析出させる超臨界急速膨張法、又は分散質を溶解した溶液を、超臨界流体中にノズルより噴出、或いは超臨界流体を、溶質を溶解した溶液中にノズルより噴出させ、溶質を析出させる超臨界貧溶剤法等も提案されているが(例えば特許文献2参照)、分散質の溶剤への分散性が不充分であるという問題があった。
 更に分散質と圧縮性流体の混合液を分散質の融点以上の温度から減圧膨張させる方法が提案されているが(特許文献3)、減圧膨張後の分散液の安定性が不充分であるという問題があり、また、融点を有する結晶性材料しか取り扱えない問題があった。
In various manufacturing processes such as paints, inks, cosmetics, foods, pharmaceuticals, etc., the process includes the step of making materials such as solid particles fine and dispersing the fine particles in a dispersion solvent such as water or organic solvent to produce a dispersion. However, the conventional method and apparatus require a long time and a lot of power to disperse the fine particles such as solid particles in the solvent.
In order to improve the method as described above, after supplying a mixture of a dispersoid and a solvent to a supercritical container to be in a supercritical state, the mixture in the supercritical state is released into the atmosphere, and is put into a collision part. As a method of dispersing the dispersoid in a solvent by making it collide (for example, see Patent Document 1) or a method of turning the dispersoid into a fine particle by crystallization, a supercritical fluid in which the dispersoid is dissolved is ejected from a nozzle. The supercritical rapid expansion method for precipitating the dispersoid or the solution in which the dispersoid is dissolved is ejected from the nozzle into the supercritical fluid, or the supercritical fluid is ejected from the nozzle in the solution in which the solute is dissolved. Although a supercritical poor solvent method for precipitation has been proposed (see, for example, Patent Document 2), there is a problem that dispersibility of the dispersoid in the solvent is insufficient.
Furthermore, although a method has been proposed in which a mixture of a dispersoid and a compressive fluid is expanded under reduced pressure from a temperature equal to or higher than the melting point of the dispersoid (Patent Document 3), the stability of the dispersion after expansion under reduced pressure is insufficient. There is a problem that only a crystalline material having a melting point can be handled.
特開平10-192670号公報Japanese Patent Laid-Open No. 10-192670 特開2006-181553号公報JP 2006-181553 A 特開2011-115780号公報JP 2011-115780 A
本発明の解決課題は、固体粒子等の分散質が分散溶剤中に微細にかつ安定に分散された分散液を、迅速に、かつ少ない動力で得ることができる分散液の製造方法を提供することである。 The problem to be solved by the present invention is to provide a method for producing a dispersion, in which a dispersoid such as solid particles is finely and stably dispersed in a dispersion solvent can be obtained quickly and with little power. It is.
 本発明によれば、分散質(A)と溶剤(S)と圧縮性流体(F)とを含む混合物(X)を、体積膨張させる工程を含む、分散質(A)を含む粒子(C)が溶剤(S)に分散された分散液(L)の製造方法であって、分散質(A)の融点又は軟化点以下の温度で分散質(A)が溶剤(S)及び/又は圧縮性流体(F)に溶解した状態で、分散質(A)の融点又は軟化点以下で混合物(X)を体積膨張させること、並びに粒子(C)のメジアン径が3.0μm以下である分散液(L)を製造する方法が提供され、上記課題が解決される。 According to the present invention, the particles (C) containing the dispersoid (A), including the step of expanding the volume of the mixture (X) containing the dispersoid (A), the solvent (S), and the compressive fluid (F). Is a process for producing a dispersion (L) in which the dispersoid (A) is dispersed in the solvent (S) at a temperature below the melting point or softening point of the dispersoid (A). In a state dissolved in the fluid (F), the mixture (X) is volume-expanded below the melting point or softening point of the dispersoid (A), and a dispersion liquid in which the median diameter of the particles (C) is 3.0 μm or less ( A method for producing L) is provided to solve the above problems.
 本発明により、分散質の効果的な分散を行う事ができ、迅速に、かつ少ない動力で、分散質のメジアン径が微細で安定である分散液を得る事ができる。 According to the present invention, it is possible to effectively disperse the dispersoid, and it is possible to obtain a dispersion liquid in which the median diameter of the dispersoid is fine and stable quickly and with less power.
本発明における、ラインブレンドによる混合方法での分散液の作製に用いる実験装置のフローチャートである。It is a flowchart of the experimental apparatus used for preparation of the dispersion liquid by the mixing method by line blend in this invention.
 以下に本発明を詳述する。
 本発明に用いられる分散質(A)としては、特に限定されず有機物及び/又は無機物であってもよい。例えば、ワックス、樹脂(結晶性樹脂、非晶質樹脂)、染料、顔料、充填剤、帯電防止剤、荷電制御剤、紫外線吸収剤、酸化防止剤、ブロッキング防止剤、耐熱安定剤、及び難燃剤等が挙げられ、また上記の2種以上を併用しても差し支えない。
 分散質(A)が融点を有する場合は微粒子化効果がより大きい点で、ワックス及び結晶性樹脂が好ましい。分散質(A)が非晶質材料である場合、好ましいのは、圧縮性流体(F)と溶剤(S)の混合液において溶剤(S)及び/又は圧縮性流体(F)に溶解し、分散質(A)が液状であるという観点から、非晶質樹脂が好ましく、例えば、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂等及びそれらの併用である。
The present invention is described in detail below.
The dispersoid (A) used in the present invention is not particularly limited and may be an organic substance and / or an inorganic substance. For example, wax, resin (crystalline resin, amorphous resin), dye, pigment, filler, antistatic agent, charge control agent, ultraviolet absorber, antioxidant, antiblocking agent, heat stabilizer, and flame retardant In addition, two or more of the above may be used in combination.
When the dispersoid (A) has a melting point, a wax and a crystalline resin are preferable in that the effect of atomization is greater. When the dispersoid (A) is an amorphous material, it is preferable that the dispersoid (A) is dissolved in the solvent (S) and / or the compressive fluid (F) in a mixture of the compressive fluid (F) and the solvent (S). From the viewpoint that the dispersoid (A) is in a liquid state, an amorphous resin is preferable, for example, a vinyl resin, a polyester resin, a polyurethane resin, an epoxy resin, and the like, and combinations thereof.
 ワックスとしては、ポリオレフィンワックス、天然ワックス、炭素数30~50の脂肪族アルコール、炭素数30~50の脂肪酸、炭素数30~50の脂肪酸エステル及びこれらの混合物等が挙げられる。
 ポリオレフィンワックスとしては、オレフィン(例えばエチレン、プロピレン、1-ブテン、イソブチレン、1-ヘキセン、1-ドデセン、1-オクタデセン及びこれらの混合物等)の(共)重合体[(共)重合により得られるもの及び熱減成型ポリオレフィンを含む]、オレフィンの(共)重合体の酸素及び/又はオゾンによる酸化物、オレフィンの(共)重合体のマレイン酸変性物[例えばマレイン酸及びその誘導体(無水マレイン酸、マレイン酸モノメチル、マレイン酸モノブチル及びマレイン酸ジメチル等)変性物]、オレフィンと不飽和カルボン酸[(メタ)アクリル酸、イタコン酸及び無水マレイン酸等]及び/又は不飽和カルボン酸アルキルエステル[(メタ)アクリル酸アルキル(アルキルの炭素数1~18)エステル及びマレイン酸アルキル(アルキルの炭素数1~18)エステル等]等との共重合体、及びサゾールワックス等が挙げられる。
 天然ワックスとしては、例えばカルナバワックス、モンタンワックス、パラフィンワックス及びライスワックスが挙げられる。
 炭素数30~50の脂肪族アルコールとしては、例えばトリアコンタノールが挙げられる。炭素数30~50の脂肪酸としては、例えばトリアコンタンカルボン酸が挙げられる。炭素数30~50の脂肪酸エステルとしては、例えばステアリン酸ステアリルが挙げられる。
 本発明の分散液の製造方法を用いるのに適した分散質(A)は、融点又は軟化点を有する。分散質(A)の融点又は軟化点は好ましくは30~120℃、より好ましくは40~110℃、更に好ましくは50℃~100℃、特に好ましくは55℃~90℃、最も好ましくは60~80℃である。
 本発明における融点は、分散質(A)が結晶性材料である場合に用い、示差走査熱量測定(以下、DSCと記載する)における吸熱ピークより求めたものである。
 本発明における軟化点は、分散質(A)が非晶質材料である場合に用い、降下式フローテスターを用いて測定され、求めたものである。
 本発明において、非晶質とは、以下の結晶の特徴をしめさないもののことであり、以下に結晶性の定義をする。「結晶性」とは示差走査熱量測定(DSC)において、階段状の吸熱量変化ではなく、明確な吸熱ピークを有することを指し、かつそのピーク温度と軟化温度との絶対温度比(軟化温度/吸熱ピーク温度)が0.93~1.07であることを示す。
 また、本発明における軟化点は降下式フローテスター{例えば、(株)島津製作所製、CFT-500D}を用いて測定され、1gの測定試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出して、「プランジャー降下量(流れ値)」と「温度」とのグラフを描き、プランジャーの降下量の最大値の1/2に対応する温度をグラフから読み取り、この値(測定試料の半分が流出したときの温度)を軟化点とする。
Examples of the wax include polyolefin wax, natural wax, aliphatic alcohol having 30 to 50 carbon atoms, fatty acid having 30 to 50 carbon atoms, fatty acid ester having 30 to 50 carbon atoms, and a mixture thereof.
Polyolefin waxes include (co) polymers [obtained by (co) polymerization] of olefins (for example, ethylene, propylene, 1-butene, isobutylene, 1-hexene, 1-dodecene, 1-octadecene, and mixtures thereof). And olefin (co) polymer oxides by oxygen and / or ozone, maleic acid modifications of olefin (co) polymers [eg maleic acid and its derivatives (maleic anhydride, Modified products such as monomethyl maleate, monobutyl maleate and dimethyl maleate), olefins and unsaturated carboxylic acids [(meth) acrylic acid, itaconic acid and maleic anhydride, etc.] and / or unsaturated carboxylic acid alkyl esters [(meta ) Alkyl acrylate (alkyl of 1 to 18 carbon atoms) ester and Copolymers of maleic acid alkyl (number of carbon atoms in the alkyl 1-18) ester, etc.] or the like, and Sasol wax.
Examples of natural waxes include carnauba wax, montan wax, paraffin wax, and rice wax.
Examples of the aliphatic alcohol having 30 to 50 carbon atoms include triacontanol. Examples of the fatty acid having 30 to 50 carbon atoms include triacontane carboxylic acid. Examples of the fatty acid ester having 30 to 50 carbon atoms include stearyl stearate.
The dispersoid (A) suitable for using the method for producing a dispersion of the present invention has a melting point or a softening point. The melting point or softening point of the dispersoid (A) is preferably 30 to 120 ° C, more preferably 40 to 110 ° C, still more preferably 50 ° C to 100 ° C, particularly preferably 55 ° C to 90 ° C, most preferably 60 to 80 ° C. ° C.
The melting point in the present invention is used when the dispersoid (A) is a crystalline material, and is determined from an endothermic peak in differential scanning calorimetry (hereinafter referred to as DSC).
The softening point in the present invention is obtained when the dispersoid (A) is an amorphous material, and is measured and determined using a descending flow tester.
In the present invention, the term “amorphous” means a material that does not exhibit the following crystal characteristics, and the crystallinity is defined below. “Crystallinity” means that in differential scanning calorimetry (DSC), it has a clear endothermic peak, not a step-like endothermic change, and an absolute temperature ratio between the peak temperature and the softening temperature (softening temperature / (Endothermic peak temperature) is 0.93 to 1.07.
In addition, the softening point in the present invention is measured using a descending flow tester {for example, CFT-500D, manufactured by Shimadzu Corporation), while 1 g of a measurement sample is heated at a heating rate of 6 ° C./min. Apply a load of 1.96 MPa with a jar, push out from a nozzle with a diameter of 1 mm and a length of 1 mm, draw a graph of “plunger drop (flow value)” and “temperature”, and the maximum value of plunger drop The temperature corresponding to 1/2 of the sample is read from the graph, and this value (temperature when half of the measurement sample flows out) is taken as the softening point.
 樹脂としては、結晶性樹脂及び非晶質樹脂が挙げられる。 Resins include crystalline resins and amorphous resins.
 結晶性樹脂としては、特に組成は限定されないが、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、及びビニル樹脂等の結晶性樹脂並びにそれらの複合樹脂が挙げられる。
 非晶質樹脂としては、ビニル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ケイ素系樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、及びポリカーボネート樹脂等の非晶質樹脂並びにそれらの複合樹脂が挙げられる。
The composition of the crystalline resin is not particularly limited, and examples thereof include crystalline resins such as polyester resins, polyurethane resins, polyurea resins, polyamide resins, polyether resins, polycarbonate resins, and vinyl resins, and composite resins thereof.
Amorphous resins include vinyl resins, epoxy resins, polyester resins, polyamide resins, polyimide resins, silicon resins, phenol resins, melamine resins, urea resins, aniline resins, ionomer resins, and polycarbonate resins. And composite resins thereof.
 上記結晶性樹脂のうち、ポリエステル樹脂としては、アルコール(ジオール)成分と酸(ジカルボン酸)成分とから合成される重縮合ポリエステル樹脂であることが、結晶性の点から好ましい。ただし、必要に応じて3官能以上のアルコール(3価以上のポリオール)成分や酸(3価以上のポリカルボン酸)成分を用いてもよい。またポリウレタン樹脂としては、アルコール(ジオール)成分とイソシアネート(ジイソシアネート)成分とから合成されるポリウレタン樹脂等が挙げられる。ただし、必要に応じて3官能以上のアルコール(3価以上のポリオール)成分やイソシアネート(3価以上のポリイソシアネート)成分を用いてもよい。ポリアミド樹脂としては、アミン(ジアミン)成分と酸(ジカルボン酸)成分とから合成されるポリアミド樹脂等が挙げられる。ただし、必要に応じて3官能以上のアミン(3価以上のポリアミン)成分や酸(3価以上のポリカルボン酸)成分を用いてもよい。ポリウレア樹脂としては、アミン(ジアミン)成分とイソシアネート(ジイソシアネート)成分とから合成されるポリウレア樹脂等が挙げられる。ただし、必要に応じて3官能以上のアミン(3価以上のポリアミン)成分やイソシアネート(3価以上のポリイソシアネート)成分を用いてもよい。なお、ポリエステル樹脂としては、重縮合ポリエステル樹脂以外に、ラクトン開環重合物及びポリヒドロキシカルボン酸も同様に好ましい。ポリカーボネート樹脂としては、ジオール成分とホスゲンやジメチルカーボネートとから合成されるポリカーボネート樹脂等が挙げられる。 Among the above crystalline resins, the polyester resin is preferably a polycondensed polyester resin synthesized from an alcohol (diol) component and an acid (dicarboxylic acid) component from the viewpoint of crystallinity. However, a tri- or higher functional alcohol (trivalent or higher polyol) component or an acid (trivalent or higher polycarboxylic acid) component may be used as necessary. Examples of the polyurethane resin include a polyurethane resin synthesized from an alcohol (diol) component and an isocyanate (diisocyanate) component. However, if necessary, a tri- or higher functional alcohol (trivalent or higher polyol) component or an isocyanate (trivalent or higher polyisocyanate) component may be used. Examples of the polyamide resin include a polyamide resin synthesized from an amine (diamine) component and an acid (dicarboxylic acid) component. However, a tri- or higher functional amine (trivalent or higher polyamine) component or an acid (trivalent or higher polycarboxylic acid) component may be used as necessary. Examples of the polyurea resin include a polyurea resin synthesized from an amine (diamine) component and an isocyanate (diisocyanate) component. However, a tri- or higher functional amine (trivalent or higher polyamine) component or an isocyanate (trivalent or higher polyisocyanate) component may be used as necessary. As the polyester resin, in addition to the polycondensation polyester resin, a lactone ring-opening polymer and polyhydroxycarboxylic acid are also preferable. Examples of the polycarbonate resin include a polycarbonate resin synthesized from a diol component and phosgene or dimethyl carbonate.
 以降の説明において、まず、これら結晶性重縮合ポリエステル樹脂、結晶性ポリウレタン樹脂、結晶性ポリアミド樹脂、結晶性ポリウレア樹脂に用いられるジオール成分、3価以上のポリオール成分、ジカルボン酸成分、3価以上のポリカルボン酸成分、ジイソシアネート成分、3価以上のポリオール成分、ジアミン成分及び3価以上のポリアミン成分についてそれぞれ示す。
 -ジオール成分-
 ジオール成分としては、脂肪族ジオールが好ましく、鎖炭素数が2~36の範囲であることが好ましい。また直鎖型脂肪族ジオールがより好ましい。
 脂肪族ジオールが分岐型では、ポリエステル樹脂の結晶性が低下し、融点が降下するため、例えば、得られる分散液(L)の耐トナーブロッキング性、画像保存性、及び、低温定着性が悪化してしまう場合がある。また、炭素数が36を超えると、実用上の材料の入手が困難な場合がある。
In the following description, first, a diol component, a trivalent or higher polyol component, a dicarboxylic acid component, a trivalent or higher valent component used in the crystalline polycondensation polyester resin, the crystalline polyurethane resin, the crystalline polyamide resin, and the crystalline polyurea resin. The polycarboxylic acid component, diisocyanate component, trivalent or higher polyol component, diamine component, and trivalent or higher polyamine component will be described.
-Diol component-
As the diol component, an aliphatic diol is preferable, and the chain carbon number is preferably in the range of 2 to 36. A linear aliphatic diol is more preferred.
When the aliphatic diol is branched, the crystallinity of the polyester resin is lowered and the melting point is lowered. For example, toner blocking resistance, image storage stability, and low-temperature fixability of the resulting dispersion (L) are deteriorated. May end up. On the other hand, when the number of carbon atoms exceeds 36, it may be difficult to obtain practical materials.
 ジオール成分は、直鎖型脂肪族ジオールの含有量が使用ジオール成分の80モル%以上であることが好ましく、より好ましくは90モル%以上である。必要に応じてその他の成分が含まれても構わない。
 直鎖型脂肪族ジオールの含有量が80モル%以上では、ポリエステル樹脂の結晶性が向上するため、小粒子化が容易になる。
The content of the linear aliphatic diol in the diol component is preferably 80 mol% or more of the diol component used, and more preferably 90 mol% or more. Other components may be included as necessary.
When the content of the linear aliphatic diol is 80 mol% or more, the crystallinity of the polyester resin is improved, so that the particle size can be easily reduced.
 直鎖型脂肪族ジオールとしては、具体的には、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、1,13-トリデカンジオール、1,14-テトラデカンジオール、1,18-オクタデカンジオール、1,20-エイコサンジオール等が挙げられるが、これらに限定されるものではない。これらのうち、入手容易性を考慮するとエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオールが好ましい。 Specific examples of the linear aliphatic diol include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7. -Heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14 -Tetradecanediol, 1,18-octadecanediol, 1,20-eicosanediol, and the like, but are not limited thereto. Of these, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol are preferable in view of availability.
 その他必要に応じて使用されるジオールとしては、炭素数2~36の上記以外の脂肪族ジオール(1,2-プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、テトラデカンジオール、ネオペンチルグリコール、2,2-ジエチル-1,3-プロパンジオール等);炭素数4~36のアルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等);炭素数4~36の脂環式ジオール(1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA等);上記脂環式ジオールのアルキレンオキサイド(以下AOと略記する)〔エチレンオキサイド(以下EOと略記する)、プロピレンオキサイド(以下POと略記する)、ブチレンオキサイド(以下BOと略記する)等〕付加物(付加モル数1~30);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS等)のAO(EO、PO、BO等)付加物(付加モル数2~30);ポリラクトンジオール(ポリε-カプロラクトンジオール等);及びポリブタジエンジオール等が挙げられる。 Other diols used as necessary include aliphatic diols other than those having 2 to 36 carbon atoms (1,2-propylene glycol, butanediol, hexanediol, octanediol, decanediol, dodecanediol, tetradecanediol, Neopentyl glycol, 2,2-diethyl-1,3-propanediol, etc.); C4-C36 alkylene ether glycol (diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol) Alicyclic diol having 4 to 36 carbon atoms (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.); alkylene oxide of the alicyclic diol (hereinafter abbreviated as AO) [Ethylene oxide (hereinafter abbreviated as EO), propylene oxide (hereinafter abbreviated as PO), butylene oxide (hereinafter abbreviated as BO), etc.] Adducts (addition moles 1-30); Bisphenols (bisphenol A, bisphenol) F, bisphenol S, etc.) AO (EO, PO, BO, etc.) adducts (addition moles 2-30); polylactone diols (poly ε-caprolactone diol, etc.); and polybutadiene diols.
 更にその他必要に応じて使用されるジオールとしては、上記のヒドロキシル基以外の官能基を有しないジオール以外に、他の官能基を有するジオールを用いてもよい。ヒドロキシル基以外の官能基を有するジオールとしては、カルボキシル基を有するジオール、スルホン酸基もしくはスルファミン酸基を有するジオール、及びこれらの塩等が挙げられる。
 カルボキシル基を有するジオールとしては、ジアルキロールアルカン酸[炭素数6~24のもの、例えば2,2-ジメチロールプロピオン酸(DMPA)、2,2-ジメチロールブタン酸、2,2-ジメチロールヘプタン酸、2,2-ジメチロールオクタン酸等]が挙げられる。
 スルホン酸基もしくはスルファミン酸基を有するジオールとしては、スルファミン酸ジオール[N,N-ビス(2-ヒドロキシアルキル)スルファミン酸(アルキル基が炭素数1~6)又はそのAO付加物(AOとしてはEO又はPO等、AOの付加モル数1~6):例えばN,N-ビス(2-ヒドロキシエチル)スルファミン酸及びN,N-ビス(2-ヒドロキシエチル)スルファミン酸PO2モル付加物等];ビス(2-ヒドロキシエチル)ホスフェート等が挙げられる。
 これらのヒドロキシル基以外の官能基を有するジオールの塩としては、該官能基と、例えば前記炭素数3~30の3級アミン(トリエチルアミン等)及び/又はアルカリ金属(ナトリウム等)との塩が挙げられる。
 これらのうち好ましいものは、炭素数2~12のアルキレングリコール、カルボキシル基を有するジオール、ビスフェノール類のAO付加物、及びこれらの併用である。
Furthermore, as a diol used as necessary, a diol having another functional group may be used in addition to the diol having no functional group other than the above hydroxyl group. Examples of the diol having a functional group other than a hydroxyl group include a diol having a carboxyl group, a diol having a sulfonic acid group or a sulfamic acid group, and salts thereof.
Diols having a carboxyl group include dialkylol alkanoic acids [having 6 to 24 carbon atoms, such as 2,2-dimethylolpropionic acid (DMPA), 2,2-dimethylolbutanoic acid, 2,2-dimethylol. Heptanoic acid, 2,2-dimethyloloctanoic acid, etc.].
Examples of the diol having a sulfonic acid group or a sulfamic acid group include a sulfamic acid diol [N, N-bis (2-hydroxyalkyl) sulfamic acid (the alkyl group has 1 to 6 carbon atoms) or an AO adduct thereof (EO as AO). Or PO, such as PO, such as N, N-bis (2-hydroxyethyl) sulfamic acid and N, N-bis (2-hydroxyethyl) sulfamic acid PO2 molar adduct, etc.]; (2-hydroxyethyl) phosphate and the like.
Examples of the salt of the diol having a functional group other than the hydroxyl group include salts of the functional group with the tertiary amine having 3 to 30 carbon atoms (such as triethylamine) and / or alkali metal (such as sodium). It is done.
Among these, preferred are alkylene glycols having 2 to 12 carbon atoms, diols having a carboxyl group, AO adducts of bisphenols, and combinations thereof.
 必要により用いられる3価以上のポリオールとして、3~8価又はそれ以上の価数のポリオールが挙げられる。3~8価又はそれ以上の価数のポリオールとしては、炭素数3~36の3~8価又はそれ以上の価数の多価脂肪族アルコール(アルカンポリオール及びその分子内もしくは分子間脱水物、例えばグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ソルビタン、及びポリグリセリン;糖類及びその誘導体、例えばショ糖、及びメチルグルコシド);トリスフェノール類(トリスフェノールPA等)のAO付加物(付加モル数2~30);ノボラック樹脂(フェノールノボラック、クレゾールノボラック等)のAO付加物(付加モル数2~30);アクリルポリオール[ヒドロキシエチル(メタ)アクリレートと他のビニルモノマーの共重合物等];等が挙げられる。
 これらのうち好ましいものは、3~8価又はそれ以上の価数の多価脂肪族アルコール及びノボラック樹脂のAO付加物であり、更に好ましいものはノボラック樹脂のAO付加物である。
Examples of trihydric or higher polyols that are used as needed include trihydric to octahydric or higher polyols. Examples of the polyol having a valence of 3 to 8 or more include polyhydric aliphatic alcohols having a valence of 3 to 8 or more having 3 to 36 carbon atoms (an alkane polyol and an intramolecular or intermolecular dehydration product thereof). For example, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, sorbitan, and polyglycerin; sugars and derivatives thereof such as sucrose and methylglucoside); AO adducts of trisphenols (such as trisphenol PA) ( Addition mole number 2-30); AO addition product (addition mole number 2-30) of novolak resin (phenol novolak, cresol novolak, etc.); acrylic polyol [copolymer of hydroxyethyl (meth) acrylate and other vinyl monomers, etc. ]; Etc. are mentioned.
Among these, preferred are trivalent to octavalent or higher valent polyhydric aliphatic alcohols and novolak resin AO adducts, and more preferred are novolak resin AO adducts.
-ジカルボン酸及び3価以上のポリカルボン酸成分-
 ジカルボン酸成分としては、種々のジカルボン酸が挙げられるが、脂肪族ジカルボン酸及び芳香族ジカルボン酸が好ましく、脂肪族ジカルボン酸は直鎖型のカルボン酸がより好ましい。3価以上のポリカルボン酸成分としては、3~6価又はそれ以上の価数のポリカルボン酸が挙げられる。
-Dicarboxylic acid and trivalent or higher polycarboxylic acid components-
Examples of the dicarboxylic acid component include various dicarboxylic acids, but aliphatic dicarboxylic acids and aromatic dicarboxylic acids are preferable, and the aliphatic dicarboxylic acids are more preferably linear carboxylic acids. Examples of the trivalent or higher polycarboxylic acid component include polycarboxylic acids having a valence of 3 to 6 or higher.
 ジカルボン酸としては、炭素数4~36のアルカンジカルボン酸(コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸、デシルコハク酸等);炭素数6~40の脂環式ジカルボン酸〔ダイマー酸(2量化リノール酸)等〕、炭素数4~36のアルケンジカルボン酸(ドデセニルコハク酸、ペンタデセニルコハク酸、オクタデセニルコハク酸等のアルケニルコハク酸、マレイン酸、フマル酸、シトラコン酸等);炭素数8~36の芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、t-ブチルイソフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸等)等が挙げられる。
 なお、ジカルボン酸又は3~6価又はそれ以上の価数のポリカルボン酸としては、上述のものの酸無水物又は炭素数1~4の低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステル等)を用いてもよい。
 これらジカルボン酸の中では、脂肪族ジカルボン酸(特に直鎖型のカルボン酸)を単独で用いるのが特に好ましいが、脂肪族ジカルボン酸と共に芳香族ジカルボン酸(テレフタル酸、イソフタル酸、t-ブチルイソフタル酸、及び、これらの低級アルキルエステル類が好ましい)を共重合したものも同様に好ましい。芳香族ジカルボン酸の共重合量としては20モル%以下が好ましい。
 ジカルボン酸成分としては、主には上記のカルボン酸が挙げられるが、この限りではない。これらのうち、結晶性や入手容易性を考慮すると、アジピン酸、セバシン酸、ドデカンジカルボン酸、テレフタル酸、及びイソフタル酸が好ましい。
Examples of the dicarboxylic acid include alkane dicarboxylic acids having 4 to 36 carbon atoms (succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, decylsuccinic acid, etc.); alicyclic dicarboxylic acids having 6 to 40 carbon atoms Acid [dimer acid (dimerized linoleic acid), etc.], alkene dicarboxylic acid having 4 to 36 carbon atoms (alkenyl succinic acid such as dodecenyl succinic acid, pentadecenyl succinic acid, octadecenyl succinic acid, maleic acid, fumaric acid) C8-36 aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid, t-butylisophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, etc.) Etc.
As the dicarboxylic acid or the polycarboxylic acid having 3 to 6 or more valences, the above acid anhydrides or lower alkyl esters having 1 to 4 carbon atoms (methyl ester, ethyl ester, isopropyl ester, etc.) can be used. It may be used.
Among these dicarboxylic acids, it is particularly preferable to use an aliphatic dicarboxylic acid (particularly a straight-chain carboxylic acid) alone, but an aromatic dicarboxylic acid (terephthalic acid, isophthalic acid, t-butylisophthalic acid) together with the aliphatic dicarboxylic acid. Those obtained by copolymerizing acids and these lower alkyl esters are preferred as well. The copolymerization amount of the aromatic dicarboxylic acid is preferably 20 mol% or less.
Examples of the dicarboxylic acid component include, but are not limited to, the above carboxylic acids. Of these, adipic acid, sebacic acid, dodecanedicarboxylic acid, terephthalic acid, and isophthalic acid are preferable in consideration of crystallinity and availability.
-ジイソシアネート及び3価以上のポリイソシアネート成分-
 ジイソシアネートとしては、炭素数(NCO基中の炭素を除く、以下同様)6~20の芳香族ジイソシアネート、炭素数2~18の脂肪族ジイソシアネート、炭素数4~15の脂環式ジイソシアネート、炭素数8~15の芳香脂肪族ジイソシアネート及びこれらのジイソシアネートの変性物(ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物等)及びこれらの2種以上の混合物が挙げられる。また、必要により、3価以上のポリイソシアネートを併用してもよい。
-Diisocyanate and tri- or higher polyisocyanate component-
Examples of the diisocyanate include aromatic diisocyanates having 6 to 20 carbon atoms (excluding carbon in the NCO group, the same shall apply hereinafter), aliphatic diisocyanates having 2 to 18 carbon atoms, alicyclic diisocyanates having 4 to 15 carbon atoms, and 8 carbon atoms. ~ 15 araliphatic diisocyanates and modified products of these diisocyanates (urethane groups, carbodiimide groups, allophanate groups, urea groups, burette groups, uretdione groups, uretoimine groups, isocyanurate groups, oxazolidone group-containing modified products) and the like The mixture of 2 or more types of these is mentioned. Moreover, you may use together polyisocyanate more than trivalence as needed.
 上記炭素数6~20の芳香族ジイソシアネート及び3価以上の芳香族ポリイソシアネートの具体例としては、1,3-又は1,4-フェニレンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート(TDI)、粗製TDI、2,4’-又は4,4’-ジフェニルメタンジイソシアネート(MDI)、粗製MDI[粗製ジアミノフェニルメタン〔ホルムアルデヒドと芳香族アミン(アニリン)又はその混合物との縮合生成物;ジアミノジフェニルメタンと少量(例えば5~20重量%)の3官能以上のポリアミンとの混合物〕のホスゲン化物:ポリアリルポリイソシアネート(PAPI)]、1,5-ナフチレンジイソシアネート、4,4’,4”-トリフェニルメタントリイソシアネート、m-又はp-イソシアナトフェニルスルホニルイソシアネート等が挙げられる。
 上記炭素数2~18の脂肪族ジイソシアネート及び3価以上の脂肪族ポリイソシアネートの具体例としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,6,11-ウンデカントリイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート等が挙げられる。
 上記炭素数4~15の脂環式ジイソシアネートの具体例としては、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水添TDI)、ビス(2-イソシアナトエチル)-4-シクロヘキセン-1,2-ジカルボキシレート、2,5-又は2,6-ノルボルナンジイソシアネート等が挙げられる。
 上記炭素数8~15の芳香脂肪族ジイソシアネートの具体例としては、m-又はp-キシリレンジイソシアネート(XDI)、α,α,α’,α’-テトラメチルキシリレンジイソシアネート(TMXDI)等が挙げられる。
 また、上記ジイソシアネート及び3価以上のポリイソシアネートの変性物には、ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物等が挙げられる。
 具体的には、変性MDI(ウレタン変性MDI、カルボジイミド変性MDI、トリヒドロカルビルホスフェート変性MDI等)、ウレタン変性TDI等のジイソシアネートの変性物及びこれらの2種以上の混合物[例えば変性MDIとウレタン変性TDI(イソシアネート含有プレポリマー)との併用]が含まれる。
 これらのうちで好ましいものは炭素数6~15の芳香族ジイソシアネート、炭素数4~12の脂肪族ジイソシアネート、及び炭素数4~15の脂環式ジイソシアネートであり、特に好ましいものはTDI、MDI、HDI、水添MDI、及びIPDIである。
Specific examples of the aromatic diisocyanate having 6 to 20 carbon atoms and the trivalent or higher aromatic polyisocyanate include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate ( TDI), crude TDI, 2,4′- or 4,4′-diphenylmethane diisocyanate (MDI), crude MDI [crude diaminophenylmethane [condensation product of formaldehyde with an aromatic amine (aniline) or a mixture thereof; diaminodiphenylmethane] And a small amount (for example, 5 to 20% by weight) of a trifunctional or higher functional polyamine] phosgenation product: polyallyl polyisocyanate (PAPI)], 1,5-naphthylene diisocyanate, 4,4 ′, 4 ″ -tri Phenylmethane triisocyanate, m- or p-isocyanatophenylsulfur Isocyanate, and the like.
Specific examples of the aliphatic diisocyanate having 2 to 18 carbon atoms and the trivalent or higher aliphatic polyisocyanate include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,6,11-undecane. Triisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2- And isocyanatoethyl-2,6-diisocyanatohexanoate.
Specific examples of the alicyclic diisocyanate having 4 to 15 carbon atoms include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated TDI). ), Bis (2-isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate, 2,5- or 2,6-norbornane diisocyanate, and the like.
Specific examples of the araliphatic diisocyanate having 8 to 15 carbon atoms include m- or p-xylylene diisocyanate (XDI), α, α, α ′, α′-tetramethylxylylene diisocyanate (TMXDI), and the like. It is done.
Examples of the modified products of diisocyanate and polyisocyanate having 3 or more valences include urethane group, carbodiimide group, allophanate group, urea group, burette group, uretdione group, uretoimine group, isocyanurate group, and oxazolidone group-containing modified product. Can be mentioned.
Specifically, modified MDI (urethane-modified MDI, carbodiimide-modified MDI, trihydrocarbyl phosphate-modified MDI, etc.), modified products of diisocyanates such as urethane-modified TDI, and mixtures of two or more thereof (for example, modified MDI and urethane-modified TDI ( In combination with an isocyanate-containing prepolymer).
Among these, preferred are aromatic diisocyanates having 6 to 15 carbon atoms, aliphatic diisocyanates having 4 to 12 carbon atoms, and alicyclic diisocyanates having 4 to 15 carbon atoms, and particularly preferred are TDI, MDI and HDI. , Hydrogenated MDI, and IPDI.
-ジアミン及び3価以上のポリアミン成分-
 ジアミン及び3価以上のポリアミンの例として、炭素数2~18の脂肪族ジアミン類及び3価以上の脂肪族ポリアミン類、炭素数6~20の芳香族ジアミン類及び3価以上の芳香族ポリアミン類が挙げられる。
 上記脂肪族ジアミン類及び3価以上の脂肪族ポリアミン類(炭素数2~18)としては、〔1〕脂肪族ジアミン及び3価以上の脂肪族ポリアミン{炭素数2~6のアルキレンジアミン(エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等)、ポリアルキレン(炭素数2~6)ジアミン〔ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン,トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等〕};〔2〕これらのアルキル(炭素数1~4)又はヒドロキシアルキル(炭素数2~4)置換体〔ジアルキル(炭素数1~3)アミノプロピルアミン、トリメチルヘキサメチレンジアミン、アミノエチルエタノールアミン、2,5-ジメチル-2,5-ヘキサメチレンジアミン、メチルイミノビスプロピルアミン等〕;〔3〕脂環又は複素環含有脂肪族ジアミン及び3価以上の脂環又は複素環含有脂肪族ポリアミン{脂環式ジアミン(炭素数4~15)〔1,3-ジアミノシクロヘキサン、イソホロンジアミン、メンセンジアミン、4,4´-メチレンジシクロヘキサンジアミン(水添メチレンジアニリン)等〕、複素環式ジアミン(炭素数4~15)〔ピペラジン、N-アミノエチルピペラジン、1,4-ジアミノエチルピペラジン、1,4ビス(2-アミノ-2-メチルプロピル)ピペラジン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等〕;〔4〕芳香環含有脂肪族アミン類(炭素数8~15)(キシリレンジアミン、テトラクロル-p-キシリレンジアミン等)、等が挙げられる。
-Diamine and triamine or higher polyamine component-
Examples of diamines and trivalent or higher polyamines include aliphatic diamines having 2 to 18 carbon atoms and aliphatic polyamines having 3 or more carbon atoms, aromatic diamines having 6 to 20 carbon atoms, and aromatic polyamines having 3 or more carbon atoms. Is mentioned.
Examples of the aliphatic diamines and trivalent or higher aliphatic polyamines (2 to 18 carbon atoms) include [1] aliphatic diamines and trivalent or higher aliphatic polyamines {C 2-6 alkylene diamines (ethylenediamine, Propylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, etc.), polyalkylene (2 to 6 carbon atoms) diamine [diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine , Pentaethylenehexamine, etc.] ;; [2] These alkyl (carbon number 1 to 4) or hydroxyalkyl (carbon number 2 to 4) substitutes [dialkyl (carbon number 1 to 3) aminopropylamine, trimethylhexamethylenediamine Aminoethyl etano Lumin, 2,5-dimethyl-2,5-hexamethylenediamine, methyliminobispropylamine, etc.]; [3] Aliphatic or heterocyclic containing aliphatic diamine and trivalent or higher alicyclic or heterocyclic containing aliphatic polyamine {Cycloaliphatic diamines (4 to 15 carbon atoms) [1,3-diaminocyclohexane, isophorone diamine, mensen diamine, 4,4'-methylene dicyclohexane diamine (hydrogenated methylene dianiline), etc.], heterocyclic diamines (C4-C15) [piperazine, N-aminoethylpiperazine, 1,4-diaminoethylpiperazine, 1,4bis (2-amino-2-methylpropyl) piperazine, 3,9-bis (3-aminopropyl) ) -2,4,8,10-tetraoxaspiro [5,5] undecane etc.]; [4] Aromatic ring-containing aliphatic amines (8 carbon atoms) To 15) (xylylenediamine, tetrachloro-p-xylylenediamine, etc.), and the like.
 芳香族ジアミン類及び3価以上の芳香族ポリアミン類(炭素数6~20)としては、〔1〕非置換芳香族ジアミン及び3価以上の非置換芳香族ポリアミン〔1,2-、1,3-又は1,4-フェニレンジアミン、2,4´-又は4,4´-ジフェニルメタンジアミン、クルードジフェニルメタンジアミン(ポリフェニルポリメチレンポリアミン)、ジアミノジフェニルスルホン、ベンジジン、チオジアニリン、ビス(3,4-ジアミノフェニル)スルホン、2,6-ジアミノピリジン、m-アミノベンジルアミン、トリフェニルメタン-4,4´,4”-トリアミン、ナフチレンジアミン等〕;〔2〕核置換アルキル基(メチル、エチル、n-又はi-プロピル、ブチル等の炭素数1~4アルキル基)を有する芳香族ジアミン及び3価以上の芳香族ポリアミン、例えば2,4-又は2,6-トリレンジアミン、クルードトリレンジアミン、ジエチルトリレンジアミン、4,4´-ジアミノ-3,3´-ジメチルジフェニルメタン、4,4´-ビス(o-トルイジン)、ジアニシジン、ジアミノジトリルスルホン、1,3-ジメチル-2,4-ジアミノベンゼン、1,3-ジメチル-2,6-ジアミノベンゼン、1,4-ジイソプロピル-2,5-ジアミノベンゼン、2,4-ジアミノメシチレン、1-メチル-3,5-ジエチル-2,4-ジアミノベンゼン、2,3-ジメチル-1,4-ジアミノナフタレン、2,6-ジメチル-1,5-ジアミノナフタレン、3,3´,5,5´-テトラメチルベンジジン、3,3´,5,5´-テトラメチル-4,4´-ジアミノジフェニルメタン、3,5-ジエチル-3´-メチル-2´,4-ジアミノジフェニルメタン、3,3´-ジエチル-2,2´-ジアミノジフェニルメタン、4,4´-ジアミノ-3,3´-ジメチルジフェニルメタン、3,3´,5,5´-テトラエチル-4,4´-ジアミノベンゾフェノン、3,3´,5,5´-テトラエチル-4,4´-ジアミノジフェニルエーテル、3,3´,5,5´-テトライソプロピル-4,4´-ジアミノジフェニルスルホン等、及びこれらの異性体の種々の割合の混合物;〔3〕核置換電子吸引基(Cl,Br,I,F等のハロゲン;メトキシ、エトキシ等のアルコキシ基;ニトロ基等)を有する芳香族ジアミン及び3価以上の芳香族ポリアミン〔メチレンビス-o-クロロアニリン、4-クロロ-o-フェニレンジアミン、2-クロル-1,4-フェニレンジアミン、3-アミノ-4-クロロアニリン、4-ブロモ-1,3-フェニレンジアミン、2,5-ジクロル-1,4-フェニレンジアミン、5-ニトロ-1,3-フェニレンジアミン、3-ジメトキシ-4-アミノアニリン;4,4´-ジアミノ-3,3´-ジメチル-5,5´-ジブロモ-ジフェニルメタン、3,3´-ジクロロベンジジン、3,3´-ジメトキシベンジジン、ビス(4-アミノ-3-クロロフェニル)オキシド、ビス(4-アミノ-2-クロロフェニル)プロパン、ビス(4-アミノ-2-クロロフェニル)スルホン、ビス(4-アミノ-3-メトキシフェニル)デカン、ビス(4-アミノフェニル)スルフィド、ビス(4-アミノフェニル)テルリド、ビス(4-アミノフェニル)セレニド、ビス(4-アミノ-3-メトキシフェニル)ジスルフィド、4,4´-メチレンビス(2-ヨードアニリン)、4,4´-メチレンビス(2-ブロモアニリン)、4,4´-メチレンビス(2-フルオロアニリン)、4-アミノフェニル-2-クロロアニリン等〕;〔4〕2級アミノ基を有する芳香族ジアミン及び3価以上の芳香族ポリアミン〔上記〔1〕~〔3〕の芳香族ジアミン及び3価以上の芳香族ポリアミンの-NHの一部又は全部が-NH-R´(R´はアルキル基例えばメチル、エチル等の低級アルキル基)で置き換ったもの〕〔4,4´-ジ(メチルアミノ)ジフェニルメタン、1-メチル-2-メチルアミノ-4-アミノベンゼン等〕が挙げられる。 Examples of aromatic diamines and trivalent or higher aromatic polyamines (6 to 20 carbon atoms) include [1] unsubstituted aromatic diamines and trivalent or higher unsubstituted aromatic polyamines [1,2-, 1,3. -Or 1,4-phenylenediamine, 2,4'- or 4,4'-diphenylmethanediamine, crude diphenylmethanediamine (polyphenylpolymethylenepolyamine), diaminodiphenylsulfone, benzidine, thiodianiline, bis (3,4-diaminophenyl) ) Sulfone, 2,6-diaminopyridine, m-aminobenzylamine, triphenylmethane-4,4 ′, 4 ″ -triamine, naphthylenediamine, etc.]; [2] nucleus-substituted alkyl groups (methyl, ethyl, n- Or an aromatic diamine having 1 to 4 carbon atoms such as i-propyl and butyl) and a trivalent or higher aromatic diamine. Group polyamines such as 2,4- or 2,6-tolylenediamine, crude tolylenediamine, diethyltolylenediamine, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-bis (o -Toluidine), dianisidine, diaminoditolyl sulfone, 1,3-dimethyl-2,4-diaminobenzene, 1,3-dimethyl-2,6-diaminobenzene, 1,4-diisopropyl-2,5-diaminobenzene, 2,4-diaminomesitylene, 1-methyl-3,5-diethyl-2,4-diaminobenzene, 2,3-dimethyl-1,4-diaminonaphthalene, 2,6-dimethyl-1,5-diaminonaphthalene, 3,3 ′, 5,5′-tetramethylbenzidine, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane, 3, 5-diethyl-3'-methyl-2 ', 4-diaminodiphenylmethane, 3,3'-diethyl-2,2'-diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 3,3 ', 5,5'-tetraethyl-4,4'-diaminobenzophenone, 3,3', 5,5'-tetraethyl-4,4'-diaminodiphenyl ether, 3,3 ', 5,5'-tetraisopropyl- 4,4'-diaminodiphenylsulfone, and the like, and mixtures of these isomers in various proportions; [3] Nuclear-substituted electron withdrawing groups (halogens such as Cl, Br, I, and F; alkoxy groups such as methoxy and ethoxy; Aromatic diamines having a nitro group and the like and trivalent or higher aromatic polyamines [methylene bis-o-chloroaniline, 4-chloro-o-phenylenediamine, 2-chloro 1,4-phenylenediamine, 3-amino-4-chloroaniline, 4-bromo-1,3-phenylenediamine, 2,5-dichloro-1,4-phenylenediamine, 5-nitro-1,3-phenylenediamine 3-dimethoxy-4-aminoaniline; 4,4′-diamino-3,3′-dimethyl-5,5′-dibromo-diphenylmethane, 3,3′-dichlorobenzidine, 3,3′-dimethoxybenzidine, bis (4-amino-3-chlorophenyl) oxide, bis (4-amino-2-chlorophenyl) propane, bis (4-amino-2-chlorophenyl) sulfone, bis (4-amino-3-methoxyphenyl) decane, bis ( 4-aminophenyl) sulfide, bis (4-aminophenyl) telluride, bis (4-aminophenyl) selenide, bis 4-amino-3-methoxyphenyl) disulfide, 4,4′-methylenebis (2-iodoaniline), 4,4′-methylenebis (2-bromoaniline), 4,4′-methylenebis (2-fluoroaniline), 4-aminophenyl-2-chloroaniline, etc.]; [4] Aromatic diamines having secondary amino groups and trivalent or higher aromatic polyamines [Aromatic diamines of [1] to [3] above and trivalent or higher Aromatic polyamines in which part or all of —NH 2 is replaced by —NH—R ′ (where R ′ is an alkyl group such as a lower alkyl group such as methyl or ethyl)] [4,4′-di (methyl Amino) diphenylmethane, 1-methyl-2-methylamino-4-aminobenzene and the like.
 ジアミン又は3価以上のポリアミン成分としては、これらの他、ポリアミドポリアミン〔ジカルボン酸(ダイマー酸等)と過剰の(酸1モル当り2モル以上の)ポリアミン類(上記アルキレンジアミン,ポリアルキレンポリアミン等)との縮合により得られる低分子量ポリアミドポリアミン等〕、ポリエーテルポリアミン〔ポリエーテルポリオール(ポリアルキレングリコール等)のシアノエチル化物の水素化物等〕等が挙げられる。 In addition to these, diamine or triamine or higher polyamine components include polyamide polyamines [dicarboxylic acid (dimer acid, etc.) and excess polyamines (more than 2 mol per mol of acid) (the above alkylenediamine, polyalkylenepolyamine, etc.) Low-molecular-weight polyamide polyamines obtained by condensation with polyamines], polyether polyamines [hydrides of cyanoethylated polyether polyols (polyalkylene glycols, etc.)], and the like.
 結晶性ポリエステル樹脂のうち、ラクトン開環重合物は、例えば、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン等の炭素数3~12のモノラクトン(環中のエステル基数1個)等のラクトン類を金属酸化物、有機金属化合物等の触媒を用いて、開環重合させることにより得ることができる。これらのうち、好ましいラクトンは、結晶性の観点からε-カプロラクトンである。
 開始剤として、グリコールを用いると、末端にヒドロキシル基を有するラクトン開環重合物が得られる。このようなラクトン開環重合物は、例えば、上記ラクトン類とエチレングリコール、ジエチレングリコール等の前記ジオール成分を触媒の存在下で反応させることにより得ることができる。触媒としては、有機スズ化合物、有機チタン化合物、有機ハロゲン化スズ化合物等が一般的であり、反応溶液中に0.1~5000ppm程度の割合で添加して、100~230℃で、好ましくは不活性雰囲気下に重合させることによって、ラクトン開環重合物を得ることができる。ラクトン開環重合物は、その末端を例えばカルボキシル基になるように変性したものであってもよい。ラクトン開環重合物は、結晶性の高い熱可塑性脂肪族ポリエステル樹脂である。ラクトン開環重合物は、市販品を用いてもよく、例えば、ダイセル株式会社製のPLACCELシリーズのH1P、H4、H5、H7等(いずれも、融点=約60℃、Tg=約-60℃の高結晶性ポリカプロラクトン)が挙げられる。
Among crystalline polyester resins, lactone ring-opening polymerization products are monolactones having 3 to 12 carbon atoms (number of ester groups in the ring) such as β-propiolactone, γ-butyrolactone, δ-valerolactone, and ε-caprolactone. Lactones such as one) can be obtained by ring-opening polymerization using a catalyst such as a metal oxide or an organometallic compound. Of these, a preferred lactone is ε-caprolactone from the viewpoint of crystallinity.
When glycol is used as the initiator, a lactone ring-opening polymer having a hydroxyl group at the terminal is obtained. Such a lactone ring-opening polymer can be obtained, for example, by reacting the lactone with the diol component such as ethylene glycol or diethylene glycol in the presence of a catalyst. As the catalyst, an organic tin compound, an organic titanium compound, an organic tin halide compound, or the like is generally used, and is added to the reaction solution at a rate of about 0.1 to 5000 ppm, and preferably at 100 to 230 ° C. By polymerizing in an active atmosphere, a lactone ring-opening polymer can be obtained. The lactone ring-opening polymer may be modified at its terminal so as to be, for example, a carboxyl group. The lactone ring-opening polymer is a thermoplastic aliphatic polyester resin having high crystallinity. As the lactone ring-opening polymer, commercially available products may be used, for example, H1P, H4, H5, H7, etc. of PLACEL series manufactured by Daicel Corporation (all of which melting point = about 60 ° C., Tg = about −60 ° C. Highly crystalline polycaprolactone).
 結晶性ポリエステル樹脂のうち、ポリヒドロキシカルボン酸は、グリコール酸、乳酸(L体、D体、ラセミ体)等のヒドロキシカルボン酸を直接脱水縮合することで得られるが、グリコリド、ラクチド(L体、D体、ラセミ体)等のヒドロキシカルボン酸の2分子間もしくは3分子間脱水縮合物に相当する炭素数4~12の環状エステル(環中のエステル基数2~3個)を金属酸化物、有機金属化合物等の触媒を用いて、開環重合する方が分子量の調整の観点から好ましい。これらのうち、好ましい環状エステルは、結晶性の観点からL-ラクチド、及びD-ラクチドである。
 開始剤として、グリコールを用いると、末端にヒドロキシル基を有するポリヒドロキシカルボン酸骨格が得られる。このような末端にヒドロキシル基を有するポリヒドロキシカルボン酸骨格を有する化合物は、例えば、上記環状エステルとエチレングリコール、ジエチレングリコール等の前記ジオール成分を触媒の存在下で反応させることにより得ることができる。触媒としては、有機スズ化合物、有機チタン化合物、有機ハロゲン化スズ化合物等が一般的であり、反応溶液中に0.1~5000ppm程度の割合で添加して、100~230℃で、好ましくは不活性雰囲気下に重合させることによって、ポリヒドロキシカルボン酸を得ることができる。ポリヒドロキシカルボン酸は、その末端を例えばカルボキシル基になるように変性したものであってもよい。
Among crystalline polyester resins, polyhydroxycarboxylic acid can be obtained by directly dehydrating and condensing hydroxycarboxylic acid such as glycolic acid and lactic acid (L-form, D-form, racemic form), but glycolide, lactide (L-form, A cyclic ester having 4 to 12 carbon atoms (2 to 3 ester groups in the ring) corresponding to a dehydration condensate of two or three molecules of a hydroxycarboxylic acid such as D-form or racemate) as a metal oxide or organic Ring-opening polymerization using a catalyst such as a metal compound is preferred from the viewpoint of adjusting the molecular weight. Of these, preferred cyclic esters are L-lactide and D-lactide from the viewpoint of crystallinity.
When glycol is used as an initiator, a polyhydroxycarboxylic acid skeleton having a hydroxyl group at the terminal is obtained. Such a compound having a polyhydroxycarboxylic acid skeleton having a hydroxyl group at the terminal can be obtained, for example, by reacting the cyclic ester with the diol component such as ethylene glycol or diethylene glycol in the presence of a catalyst. As the catalyst, an organic tin compound, an organic titanium compound, an organic tin halide compound, or the like is generally used, and is added to the reaction solution at a rate of about 0.1 to 5000 ppm, and preferably at 100 to 230 ° C. A polyhydroxycarboxylic acid can be obtained by polymerization in an active atmosphere. The polyhydroxycarboxylic acid may have a terminal modified so as to be, for example, a carboxyl group.
 ポリエーテル樹脂としては、結晶性ポリオキシアルキレンポリオール等が挙げられる。
 結晶性ポリオキシアルキレンポリオールの製造方法としては特に限定されず、従来より公知のいずれの方法でもよい。
 例えば、キラル体のAOを、通常AOの重合で使用される触媒で開環重合させる方法(例えば、Journal of the American Chemical Society、1956年、第78巻、第18号、p.4787-4792 に記載)や、安価なラセミ体のAOを立体的に嵩高い特殊な化学構造の錯体を触媒として用いて、開環重合させる方法が知られている。
 特殊な錯体を用いる方法としては、ランタノイド錯体と有機アルミニウムを接触させた化合物を触媒として用いる方法(例えば、特開平11-12353号公報に記載)やバイメタルμ-オキソアルコキサイドとヒドロキシル化合物をあらかじめ反応させる方法(例えば、特表2001-521957号公報に記載)等が知られている。
 また、非常にアイソタクティシティの高いポリオキシアルキレンポリオールを得る方法として、サレン錯体を触媒として用いる方法(例えば、Journal of the American Chemical Society、2005年、第127巻、第33号、p.11566-11567 に記載)が知られている。
Examples of the polyether resin include crystalline polyoxyalkylene polyols.
The method for producing the crystalline polyoxyalkylene polyol is not particularly limited, and any conventionally known method may be used.
For example, a method of ring-opening polymerization of a chiral AO with a catalyst usually used in the polymerization of AO (for example, Journal of the American Chemical Society, 1956, Vol. 18, No. 18, p. 4787-4792) And a method of ring-opening polymerization of inexpensive racemic AO using a sterically bulky complex having a special chemical structure as a catalyst.
As a method using a special complex, a method in which a compound obtained by contacting a lanthanoid complex and organoaluminum is used as a catalyst (for example, described in JP-A-11-12353), or bimetal μ-oxoalkoxide and a hydroxyl compound are previously used. A reaction method (for example, described in JP-T-2001-521957) is known.
Further, as a method for obtaining a polyoxyalkylene polyol having a very high isotacticity, a method using a salen complex as a catalyst (for example, Journal of the American Chemical Society, 2005, Vol. 127, No. 33, p. 11566-). 11567) is known.
 例えば、キラル体のAOを用い、その開環重合時に、開始剤として、グリコール又は水を用いると、末端にヒドロキシル基を有するアイソタクティシティが50%以上であるポリオキシアルキレングリコールが得られる。アイソタクティシティが50%以上であるポリオキシアルキレングリコールは、その末端を例えば、カルボキシル基になるように変性したものであってもよい。なお、アイソタクティシティが50%以上であると、通常結晶性となる。
 上記グリコールとしては、前記ジオール成分等が、カルボキシ変性するのに用いるカルボン酸としては、前記ジカルボン酸成分等が挙げられる。
For example, when a chiral AO is used and glycol or water is used as an initiator during the ring-opening polymerization, a polyoxyalkylene glycol having a hydroxyl group at the terminal and having an isotacticity of 50% or more can be obtained. The polyoxyalkylene glycol having an isotacticity of 50% or more may be modified such that its terminal is, for example, a carboxyl group. If the isotacticity is 50% or more, the crystallinity is usually obtained.
Examples of the glycol include the carboxylic acid used for carboxy modification of the diol component and the like, and the dicarboxylic acid component and the like.
 結晶性ポリオキシアルキレンポリオールの製造に用いるAOとしては、炭素数3~9のものが挙げられ、例えば以下の化合物が挙げられる。
 炭素数3のAO[PO、1-クロロオキセタン、2-クロロオキセタン、1,2-ジクロロオキセタン、エピクロルヒドリン、エピブロモヒドリン];炭素数4のAO[1,2-BO、メチルグリシジルエーテル];炭素数5のAO[1,2-ペンチレンオキサイド、2,3-ペンチレンオキサイド、3-メチル-1,2-ブチレンオキサイド];炭素数6のAO[シクロヘキセンオキサイド、1,2-へキシレンオキサイド、3-メチル-1,2-ペンチレンオキサイド、2,3-ヘキシレンオキサイド、4-メチル-2,3-ペンチレンオキサイド、アリルグリシジルエーテル];炭素数7のAO[1,2-へプチレンオキサイド];炭素数8のAO[スチレンオキサイド];炭素数9のAO[フェニルグリシジルエーテル]等である。
Examples of AO used for the production of the crystalline polyoxyalkylene polyol include those having 3 to 9 carbon atoms, such as the following compounds.
C3 AO [PO, 1-chlorooxetane, 2-chlorooxetane, 1,2-dichlorooxetane, epichlorohydrin, epibromohydrin]; C4 AO [1,2-BO, methylglycidyl ether]; C5 AO [1,2-pentylene oxide, 2,3-pentylene oxide, 3-methyl-1,2-butylene oxide]; C6 AO [cyclohexene oxide, 1,2-hexylene oxide , 3-methyl-1,2-pentylene oxide, 2,3-hexylene oxide, 4-methyl-2,3-pentylene oxide, allyl glycidyl ether]; AO [1,2-heptyl having 7 carbon atoms] Ren oxide]; AO having 8 carbon atoms [styrene oxide]; AO having 9 carbon atoms [phenyl glycidyl ether] and the like.
 これらのAOのうち、PO、1,2-BO、スチレンオキサイド及びシクロへキセンオキサイドが好ましい。更に好ましくはPO、1,2-BO及びシクロへキセンオキサイドである。重合速度の観点から、最も好ましくはPOである。
 これらのAOは、単独で、又は、2種類以上を使用することができる。
Of these AOs, PO, 1,2-BO, styrene oxide and cyclohexene oxide are preferred. More preferred are PO, 1,2-BO and cyclohexene oxide. From the viewpoint of the polymerization rate, PO is most preferable.
These AOs can be used alone or in combination of two or more.
 結晶性ポリオキシアルキレンポリオールのアイソタクティシティは、得られる結晶性ポリエーテル樹脂の高結晶化度の観点から70%以上が好ましく、より好ましくは80%以上、更に好ましくは90%以上、最も好ましくは95%以上である。 The isotacticity of the crystalline polyoxyalkylene polyol is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, and most preferably from the viewpoint of high crystallinity of the obtained crystalline polyether resin. 95% or more.
 アイソタクティシティは、Macromolecules、vol.35、No.6、2389-2392頁(2002年)に記載の方法で算出することができ、以下のようにして求める。
 測定試料約30mgを直径5mmの13C-NMR用試料管に秤量し、約0.5mlの重水素化溶剤を加えて溶解させ、分析用試料とする。ここで重水素化溶剤は、重水素化クロロホルム、重水素化トルエン、重水素化ジメチルスルホキシド、重水素化ジメチルホルムアミド等であり、試料を溶解させることのできる溶剤を適宜選択する。
Isotacticity is described in Macromolecules, vol. 35, no. 6, 2389-2392 (2002), and can be calculated as follows.
About 30 mg of a measurement sample is weighed into a 13 C-NMR sample tube having a diameter of 5 mm, and about 0.5 ml of deuterated solvent is added and dissolved to obtain an analysis sample. Here, the deuterated solvent is deuterated chloroform, deuterated toluene, deuterated dimethyl sulfoxide, deuterated dimethylformamide, or the like, and a solvent capable of dissolving the sample is appropriately selected.
 13C-NMRの3種類のメチン基由来の信号は、それぞれシンジオタクチック値(S)75.1ppm付近とヘテロタクチック値(H)75.3ppm付近とアイソタクチック値(I)75.5ppm付近に観測される。アイソタクティシティを次の計算式(1)により算出する。   
 アイソタクティシティ(%)=[I/(I+S+H)]×100    (1)
 但し、式中、Iはアイソタクチック信号の積分値;Sはシンジオタクチック信号の積分値;Hはヘテロタクチック信号の積分値である。
Signals derived from three methine groups in 13C-NMR are syndiotactic (S) around 75.1 ppm, heterotactic (H) around 75.3 ppm, and isotactic (I) around 75.5 ppm, respectively. Observed at. Isotacticity is calculated by the following calculation formula (1).
Isotacticity (%) = [I / (I + S + H)] × 100 (1)
Where I is the integrated value of the isotactic signal; S is the integrated value of the syndiotactic signal; and H is the integrated value of the heterotactic signal.
 本発明における結晶性樹脂は、上記結晶性樹脂を結晶性部(b)とし、該結晶性部(b)と、これから述べる非晶質部(c)とを用いたブロックポリマーでもよい。非晶質部(c)の形成に用いられる樹脂としては、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂、アクリル樹脂(ポリスチレン、スチレンアクリル系ポリマー等)、ポリエポキシ等の非晶質樹脂が挙げられるが、その限りではない。
 ただし、上記結晶性部(b)の形成に用いられる樹脂が、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂であることが好ましいので、加熱時に相溶することを考慮すると、非晶質部(c)の形成に用いられる樹脂もポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂及びそれらの複合樹脂であることが好ましい。さらに好ましくはポリウレタン樹脂及びポリエステル樹脂である。
The crystalline resin in the present invention may be a block polymer using the crystalline resin as the crystalline part (b), and using the crystalline part (b) and the amorphous part (c) described below. Examples of the resin used for forming the amorphous part (c) include polyester resin, polyurethane resin, polyurea resin, polyamide resin, polyether resin, acrylic resin (polystyrene, styrene acrylic polymer, etc.), and amorphous such as polyepoxy. However, this is not the case.
However, the resin used for forming the crystalline part (b) is preferably a polyester resin, a polyurethane resin, a polyurea resin, a polyamide resin, or a polyether resin. The resin used for forming the crystalline part (c) is also preferably a polyester resin, a polyurethane resin, a polyurea resin, a polyamide resin, a polyether resin, and a composite resin thereof. More preferred are polyurethane resins and polyester resins.
 -非晶質樹脂の製法-
 非晶質部(c)として用いられる非晶質樹脂としては、前記結晶性部(b)と同様に、ポリエステル樹脂は、アルコール(ジオール)成分と酸(ジカルボン酸)成分とから合成される重縮合ポリエステル樹脂であるのが好ましい。ただし、必要に応じて3官能以上のアルコール(3価以上のポリオール)成分や酸(3価以上のポリカルボン酸)成分を用いてもよい。またポリウレタン樹脂としては、アルコール(ジオール)成分とイソシアネート(ジイソシアネート)成分とから合成されるポリウレタン樹脂等が挙げられる。ただし、必要に応じて3官能以上のアルコール(3価以上のポリオール)成分やイソシアネート(3価以上のポリイソシアネート)成分を用いてもよい。ポリウレア樹脂としては、アミン(ジアミン)成分とイソシアネート(ジイソシアネート)成分とから合成されるポリウレア樹脂等が挙げられる。ただし、必要に応じて3官能以上のアミン(3価以上のポリアミン)成分やイソシアネート(3価以上のポリイソシアネート)成分を用いてもよい。ポリアミド樹脂としては、アミン(ジアミン)成分と酸(ジカルボン酸)成分とから合成されるポリアミド樹脂等が挙げられる。ただし、必要に応じて3官能以上のアミン(3価以上のポリアミン)成分や酸(3価以上のポリカルボン酸)成分を用いてもよい。ポリエーテル樹脂としては、アルコール(ジオール)成分にAOを付加して得られるポリオキシアルキレンポリオール等が挙げられる。
 これら非晶質ポリエステル樹脂、非晶質ポリウレタン樹脂、非晶質ポリアミド樹脂、非晶質ポリウレア樹脂、及び非晶質ポリエーテル樹脂に用いられるモノマーは、前記ジオール成分、前記3価以上のポリオール成分、前記ジカルボン酸成分、前記3価以上のポリカルボン酸成分、前記ジイソシアネート成分、前記3価以上のポリイソシアネート成分、前記ジアミン成分、前記3価以上のポリアミン成分及び前記AOが具体例として挙げられ、非晶質樹脂となるものであれば、いかなる組合せでも構わない。
-Manufacturing method of amorphous resin-
As the amorphous resin used as the amorphous part (c), like the crystalline part (b), the polyester resin is a heavy resin synthesized from an alcohol (diol) component and an acid (dicarboxylic acid) component. A condensed polyester resin is preferred. However, a tri- or higher functional alcohol (trivalent or higher polyol) component or an acid (trivalent or higher polycarboxylic acid) component may be used as necessary. Examples of the polyurethane resin include a polyurethane resin synthesized from an alcohol (diol) component and an isocyanate (diisocyanate) component. However, a tri- or higher functional alcohol (trivalent or higher polyol) component or an isocyanate (trivalent or higher polyisocyanate) component may be used as necessary. Examples of the polyurea resin include a polyurea resin synthesized from an amine (diamine) component and an isocyanate (diisocyanate) component. However, a tri- or higher functional amine (trivalent or higher polyamine) component or an isocyanate (trivalent or higher polyisocyanate) component may be used as necessary. Examples of the polyamide resin include a polyamide resin synthesized from an amine (diamine) component and an acid (dicarboxylic acid) component. However, a tri- or higher functional amine (trivalent or higher polyamine) component or an acid (trivalent or higher polycarboxylic acid) component may be used as necessary. Examples of the polyether resin include polyoxyalkylene polyols obtained by adding AO to an alcohol (diol) component.
The monomers used in these amorphous polyester resin, amorphous polyurethane resin, amorphous polyamide resin, amorphous polyurea resin, and amorphous polyether resin are the diol component, the trivalent or higher polyol component, Specific examples include the dicarboxylic acid component, the trivalent or higher polycarboxylic acid component, the diisocyanate component, the trivalent or higher polyisocyanate component, the diamine component, the trivalent or higher polyamine component, and the AO. Any combination is possible as long as it is a crystalline resin.
-ブロックポリマーの製法-
 結晶性部(b)と非晶質部(c)とで構成されるブロックポリマーは、それぞれの末端官能基の反応性を考慮して結合剤の使用、非使用を選択し、また使用の際は末端官能基にあった結合剤種を選択し、結晶性部(b)と非晶質部(c)を結合させ、ブロックポリマーとすることが出来る。
 結合剤を使わない場合、必要により加熱減圧しつつ、結晶性部(b)を形成する樹脂の末端官能基と非晶質部(c)を形成する樹脂の末端官能基の反応を進める。特に酸とアルコールとの反応や酸とアミンとの反応の場合、片方の樹脂の酸価が高く、もう一方の樹脂の水酸基価やアミン価が高い場合、反応がスムーズに進行する。反応温度は180℃~230℃で行うのが好ましい。
 結合剤を使う場合は、種々の結合剤が使用できる。結合剤として、多価カルボン酸、多価アルコール、多価イソシアネート、多官能エポキシ、酸無水物等を用いて、脱水反応や、付加反応を行うことでブロックポリマーである結晶性樹脂が得られる。
 多価カルボン酸及び酸無水物としては、前記ジカルボン酸成分及び3価以上のポリカルボン酸成分と同様のものが挙げられる。多価アルコールとしては、前記ジオール成分及び3価以上のポリオール成分と同様のものが挙げられる。多価イソシアネートとしては、前記ジイソシアネート成分及び3価以上のポリイソシアネート成分と同様のものが挙げられる。多官能エポキシとしては、ビスフェノールA型及びF型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、水添ビスフェノールA型エポキシ化合物、ビスフェノールA又はFのAO付加体のジグリシジルエーテル、水添ビスフェノールAのAO付加体のジグリシジルエーテル、ジオール(エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ブタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、ポリエチレングリコール及びポリプロピレングリコール等)の各ジグリシジルエーテル、トリメチロールプロパンジ又はトリグリシジルエーテル、ペンタエリスリトールトリ又はテトラグリシジルエーテル、ソルビトールヘプタ又はヘキサグリシジルエーテル、レゾルシンジグリシジルエーテル、ジシクロペンタジエン・フェノール付加型グリシジルエーテル、メチレンビス(2,7-ジヒドロキシナフタレン)テトラグリシジルエーテル、1,6-ジヒドロキシナフタレンジグリシジルエーテル、ポリブタジエンジグリシジルエーテル等が挙げられる。
-Manufacturing method of block polymer-
For the block polymer composed of the crystalline part (b) and the amorphous part (c), the use or non-use of the binder is selected in consideration of the reactivity of the respective terminal functional groups. Can select a binder type suitable for the terminal functional group and bond the crystalline part (b) and the amorphous part (c) to form a block polymer.
When the binder is not used, the reaction between the terminal functional group of the resin that forms the crystalline part (b) and the terminal functional group of the resin that forms the amorphous part (c) is advanced while heating and decompressing as necessary. In particular, in the case of a reaction between an acid and an alcohol or a reaction between an acid and an amine, the reaction proceeds smoothly when the acid value of one resin is high and the hydroxyl value or amine value of the other resin is high. The reaction temperature is preferably 180 to 230 ° C.
When a binder is used, various binders can be used. A crystalline resin as a block polymer can be obtained by performing a dehydration reaction or an addition reaction using a polyvalent carboxylic acid, a polyhydric alcohol, a polyvalent isocyanate, a polyfunctional epoxy, an acid anhydride, or the like as a binder.
Examples of the polyvalent carboxylic acid and acid anhydride include the same dicarboxylic acid component and trivalent or higher polycarboxylic acid component. Examples of the polyhydric alcohol include the same diol component and trivalent or higher polyol component. Examples of the polyvalent isocyanate include the same diisocyanate components and trivalent or higher polyisocyanate components. As the polyfunctional epoxy, bisphenol A type and F type epoxy compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds, hydrogenated bisphenol A type epoxy compounds, bisphenol A or F AO adduct diglycidyl ether, hydrogenated Diglycidyl ethers of bisphenol A AO adducts, diols (ethylene glycol, propylene glycol, neopentyl glycol, butanediol, hexanediol, cyclohexanedimethanol, polyethylene glycol, polypropylene glycol, etc.) diglycidyl ethers, trimethylolpropane di Or triglycidyl ether, pentaerythritol tri- or tetraglycidyl ether, sorbitol hepta or hexaglycidyl ether, Sol Shinji glycidyl ether, dicyclopentadiene-phenol addition type glycidyl ether, methylenebis (2,7-dihydroxynaphthalene) tetraglycidyl ether, 1,6-dihydroxynaphthalene diglycidyl ether, polybutadiene diglycidyl ether, and the like.
 結晶性部(b)と非晶質部(c)を結合させる方法のうち、脱水反応の例としては、結晶性部(b)、非晶質部(c)とも両末端アルコール樹脂で、これらを結合剤(例えば多価カルボン酸)で結合する反応が挙げられる。この場合、例えば、無溶剤下、反応温度180℃~230℃で反応し、結晶性樹脂が得られる。
 付加反応の例としては、結晶性部(b)、非晶質部(c)とも末端に水酸基を有する樹脂であり、これらを結合剤(例えば多価イソシアネート)で結合する反応や、また結晶性部(b)、非晶質部(c)の片方が末端に水酸基を有する樹脂で、もう一方が末端にイソシアネート基を有する樹脂の場合、結合剤を用いずにこれらを結合する反応が挙げられる。この場合、例えば、結晶性部(b)、非晶質部(c)ともに溶解可能な溶剤に溶解させ、これに必要であるなら結合剤を投入し、反応温度80℃~150℃で反応し、結晶性樹脂が得られる。
Among the methods for bonding the crystalline part (b) and the amorphous part (c), examples of the dehydration reaction include both the crystalline part (b) and the amorphous part (c) being alcohol resins at both ends. Reaction with a binder (for example, polyvalent carboxylic acid). In this case, for example, the reaction is performed at a reaction temperature of 180 ° C. to 230 ° C. in the absence of a solvent to obtain a crystalline resin.
Examples of the addition reaction include a resin having a hydroxyl group at both ends of the crystalline part (b) and the amorphous part (c), a reaction in which these are bonded with a binder (for example, a polyvalent isocyanate), and crystalline In the case where one of the part (b) and the amorphous part (c) is a resin having a hydroxyl group at the terminal and the other is a resin having an isocyanate group at the terminal, there is a reaction of bonding them without using a binder. . In this case, for example, the crystalline part (b) and the amorphous part (c) are both dissolved in a soluble solvent, and if necessary, a binder is added and reacted at a reaction temperature of 80 ° C. to 150 ° C. A crystalline resin is obtained.
 また結晶性樹脂として結晶性ビニル樹脂も好ましい樹脂として挙げられる。
 結晶性ビニル樹脂としては、結晶性基を有するビニルモノマー(m)と、必要により後述する結晶性基を有しないビニルモノマーを構成単位として有するものが好ましい。
In addition, a crystalline vinyl resin is also preferable as the crystalline resin.
As a crystalline vinyl resin, what has a vinyl monomer (m) which has a crystalline group, and the vinyl monomer which does not have a crystalline group mentioned later as a structural unit if necessary is preferable.
 ビニルモノマー(m)としては、アルキル基の炭素数が12~50の直鎖アルキル(メタ)アクリレート(m1)(炭素数12~50の直鎖アルキル基が結晶性基である)、及び前記結晶性部(b)の単位を有するビニルモノマー(m2)等が挙げられる。
 結晶性ビニル樹脂としては、ビニルモノマー(m)として、アルキル基の炭素数が12~50(好ましくは16~30)の直鎖アルキル(メタ)アクリレート(m1)を含有するものが更に好ましい。
 上記アルキル基の炭素数が12~50の直鎖アルキル(メタ)アクリレート(m1)としては、各アルキル基がいずれも直鎖状の、ラウリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、及びベヘニル(メタ)アクリレート等が挙げられる。
 なお、本発明において、アルキル(メタ)アクリレートとは、アルキルアクリレート及び/又はアルキルメタアクリレートを意味し、以下同様の記載法を用いる。
Examples of the vinyl monomer (m) include linear alkyl (meth) acrylate (m1) having an alkyl group having 12 to 50 carbon atoms (the linear alkyl group having 12 to 50 carbon atoms is a crystalline group), and the crystal And vinyl monomer (m2) having a unit of the sex part (b).
As the crystalline vinyl resin, it is more preferable that the vinyl monomer (m) contains a linear alkyl (meth) acrylate (m1) having an alkyl group having 12 to 50 carbon atoms (preferably 16 to 30).
As the linear alkyl (meth) acrylate (m1) having 12 to 50 carbon atoms in the alkyl group, each alkyl group is linear, lauryl (meth) acrylate, tetradecyl (meth) acrylate, stearyl (meta) ) Acrylate, eicosyl (meth) acrylate, and behenyl (meth) acrylate.
In the present invention, alkyl (meth) acrylate means alkyl acrylate and / or alkyl methacrylate, and the same description method is used hereinafter.
 結晶性部(b)の単位を有するビニルモノマー(m2)において、結晶性部(b)の単位をビニルモノマーに導入する方法は、それぞれの末端官能基の反応性を考慮して、結合剤(カップリング剤)を使用するかしないかを選択し、また使用する場合は、末端官能基にあった結合剤を選択し、結晶性部(b)とビニルモノマーを結合させ、結晶性部(b)の単位を有するビニルモノマー(m2)とすることができる。 In the vinyl monomer (m2) having a unit of the crystalline part (b), the method of introducing the unit of the crystalline part (b) into the vinyl monomer takes into account the reactivity of each terminal functional group, and the binder ( (Coupling agent) is used or not, and when it is used, the binder suitable for the terminal functional group is selected, and the crystalline part (b) is bonded to the vinyl monomer, and the crystalline part (b ) Units of vinyl monomer (m2).
 結晶性部(b)の単位を有するビニルモノマー(m2)の作製時に結合剤を使わない場合、必要により加熱減圧しつつ、結晶性部(b)の末端官能基とビニルモノマーの末端官能基の反応を進める。特に末端の官能基がカルボキシル基と水酸基との反応や、カルボキシル基とアミノ基との反応の場合、片方の樹脂の酸価が高く、もう一方の樹脂の水酸基価やアミン価が高い場合、反応がスムーズに進行する。反応温度は180℃~230℃で行うのが好ましい。 When a binder is not used in the production of the vinyl monomer (m2) having the unit of the crystalline part (b), the terminal functional group of the crystalline part (b) and the terminal functional group of the vinyl monomer are heated and decompressed as necessary. Advance the reaction. Especially when the terminal functional group is a reaction between a carboxyl group and a hydroxyl group, or a reaction between a carboxyl group and an amino group, if the acid value of one resin is high and the hydroxyl value or amine value of the other resin is high, Progresses smoothly. The reaction temperature is preferably 180 to 230 ° C.
 結合剤を使う場合は、末端の官能基の種類に合わせて、種々の結合剤が使用できる。
 結合剤の具体例、及び結合剤を用いたビニルモノマー(m2)の作製法としては、前記のブロックポリマーの製法と同様の方法が挙げられる。
When using a binder, various binders can be used according to the kind of the functional group at the terminal.
Specific examples of the binder and a method for producing the vinyl monomer (m2) using the binder include the same methods as those for producing the block polymer.
 以下、非晶質樹脂として好ましい樹脂である、ビニル樹脂、ポリエステル樹脂、ポリウレタン樹脂及びエポキシ樹脂につき、詳細に説明する。 Hereinafter, vinyl resin, polyester resin, polyurethane resin, and epoxy resin, which are preferable resins as the amorphous resin, will be described in detail.
 非晶質樹脂として用いられるビニル樹脂は、結晶性基を有しないビニルモノマーを単独重合又は共重合したポリマーである。ビニルモノマーとしては、下記(1)~(10)が挙げられる。
(1)ビニル炭化水素:
(1-1)脂肪族ビニル炭化水素:
 アルケン類、例えばエチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセン、前記以外のα-オレフィン等;アルカジエン類、例えばブタジエン、イソプレン、1,4-ペンタジエン、1,6-ヘキサジエン、1,7-オクタジエン。
(1-2)脂環式ビニル炭化水素:
 モノ-もしくはジ-シクロアルケン及びアルカジエン類、例えばシクロヘキセン、(ジ)シクロペンタジエン、ビニルシクロヘキセン、エチリデンビシクロヘプテン等;テルペン類、例えばピネン、リモネン等。
(1-3)芳香族ビニル炭化水素:
 スチレン及びそのハイドロカルビル(アルキル、シクロアルキル、アラルキル及び/又はアルケニル)置換体、例えばα-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン、クロチルベンゼン、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、トリビニルベンゼン等;インデン及びビニルナフタレン。
The vinyl resin used as the amorphous resin is a polymer obtained by homopolymerizing or copolymerizing a vinyl monomer having no crystalline group. Examples of the vinyl monomer include the following (1) to (10).
(1) Vinyl hydrocarbon:
(1-1) Aliphatic vinyl hydrocarbon:
Alkenes such as ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, other α-olefins, etc .; alkadienes such as butadiene, isoprene, 1,4-pentadiene, 1,6 -Hexadiene, 1,7-octadiene.
(1-2) Alicyclic vinyl hydrocarbon:
Mono- or di-cycloalkenes and alkadienes such as cyclohexene, (di) cyclopentadiene, vinylcyclohexene, ethylidenebicycloheptene and the like; terpenes such as pinene and limonene.
(1-3) Aromatic vinyl hydrocarbon:
Styrene and its hydrocarbyl (alkyl, cycloalkyl, aralkyl and / or alkenyl) substitutes such as α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, cyclohexyl Styrene, benzylstyrene, crotylbenzene, divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, etc .; indene and vinylnaphthalene.
(2)カルボキシル基含有ビニルモノマー及びその金属塩:
 炭素数3~30の不飽和モノカルボン酸、不飽和ジカルボン酸ならびにその無水物及びそのモノアルキル(炭素数1~24)エステル、例えば(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(無水)マレイン酸、マレイン酸モノアルキルエステル、フマル酸、フマル酸モノアルキルエステル、クロトン酸、イタコン酸、イタコン酸モノアルキルエステル、イタコン酸グリコールモノエーテル、シトラコン酸、シトラコン酸モノアルキルエステル、桂皮酸等のカルボキシル基含有ビニルモノマー;及びこれらの金属塩。
(2) Carboxyl group-containing vinyl monomer and metal salt thereof:
C3-C30 unsaturated monocarboxylic acids, unsaturated dicarboxylic acids and anhydrides thereof and monoalkyl (C1-C24) esters such as (meth) acrylic acid, (meth) acrylic acid alkyl esters, (anhydrous ) Maleic acid, maleic acid monoalkyl ester, fumaric acid, fumaric acid monoalkyl ester, crotonic acid, itaconic acid, itaconic acid monoalkyl ester, itaconic acid glycol monoether, citraconic acid, citraconic acid monoalkyl ester, cinnamic acid, etc. Carboxyl group-containing vinyl monomers; and metal salts thereof.
(3)スルホン基含有ビニルモノマー、ビニル硫酸モノエステル化物及びこれらの塩:
 炭素数2~14のアルケンスルホン酸、例えばビニルスルホン酸、(メタ)アリルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸;及びその炭素数2~24のアルキル誘導体、例えばα-メチルスチレンスルホン酸等;スルホ(ヒドロキシ)アルキル-(メタ)アクリレートもしくは(メタ)アクリルアミド、例えば、スルホプロピル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロキシプロピルスルホン酸、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸、2-(メタ)アクリロイルオキシエタンスルホン酸、3-(メタ)アクリロイルオキシ-2-ヒドロキシプロパンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、3-(メタ)アクリルアミド-2-ヒドロキシプロパンスルホン酸、アルキル(炭素数3~18)アリルスルホコハク酸、ポリ(n=2~30)オキシアルキレン(エチレン、プロピレン、ブチレン:単独、ランダム、ブロックでもよい)モノ(メタ)アクリレートの硫酸エステル[ポリ(n=5~15)オキシプロピレンモノメタクリレート硫酸エステル等]、ポリオキシエチレン多環フェニルエーテル硫酸エステル、及び下記一般式(1-1)~(1-3)で示される硫酸エステルもしくはスルホン酸基含有モノマー;ならびそれらの塩等。
(3) Sulfone group-containing vinyl monomer, vinyl sulfate monoester product and salts thereof:
Alkene sulfonic acids having 2 to 14 carbon atoms such as vinyl sulfonic acid, (meth) allyl sulfonic acid, methyl vinyl sulfonic acid, styrene sulfonic acid; and alkyl derivatives thereof having 2 to 24 carbon atoms such as α-methyl styrene sulfonic acid Sulfo (hydroxy) alkyl- (meth) acrylate or (meth) acrylamide, such as sulfopropyl (meth) acrylate, 2-hydroxy-3- (meth) acryloxypropylsulfonic acid, 2- (meth) acryloylamino-2 , 2-dimethylethanesulfonic acid, 2- (meth) acryloyloxyethanesulfonic acid, 3- (meth) acryloyloxy-2-hydroxypropanesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, 3- (Meth) acrylamide-2-hi Roxypropanesulfonic acid, alkyl (C3-18) allylsulfosuccinic acid, poly (n = 2-30) oxyalkylene (ethylene, propylene, butylene: single, random, block may be) mono (meth) acrylate sulfate [Poly (n = 5 to 15) oxypropylene monomethacrylate sulfate, etc.], polyoxyethylene polycyclic phenyl ether sulfate, and sulfate or sulfone represented by the following general formulas (1-1) to (1-3) Acid group-containing monomers; and salts thereof.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (式中、R及びRはそれぞれ独立して炭素数1~15のアルキル基、Aは炭素数2~4のアルキレン基を示し、nが複数の場合、(AO)は同一でも異なっていてもよく、異なる場合はランダムでもブロックでもよい。Arはベンゼン環を示し、m及びnはそれぞれ独立して1~50の整数を示し、R’はフッ素原子で置換されていてもよい炭素数1~15のアルキル基を示す。) (In the formula, R 1 and R 2 are each independently an alkyl group having 1 to 15 carbon atoms, A is an alkylene group having 2 to 4 carbon atoms, and when n is plural, (AO) may be the same or different. If different, they may be random or block, Ar represents a benzene ring, m and n each independently represents an integer of 1 to 50, and R ′ represents the number of carbon atoms optionally substituted by a fluorine atom. Represents an alkyl group of 1 to 15.)
(4)燐酸基含有ビニルモノマー及びその塩:
 (メタ)アクリロイルオキシアルキル(炭素数1~24)燐酸モノエステル、例えば、2-ヒドロキシエチル(メタ)アクリロイルホスフェート、フェニル-2-アクリロイロキシエチルホスフェート、(メタ)アクリロイルオキシアルキル(炭素数1~24)ホスホン酸類、例えば2-アクリロイルオキシエチルホスホン酸;及びこれらの塩。
(4) Phosphoric acid group-containing vinyl monomer and salt thereof:
(Meth) acryloyloxyalkyl (carbon number 1 to 24) phosphoric acid monoester, for example, 2-hydroxyethyl (meth) acryloyl phosphate, phenyl-2-acryloyloxyethyl phosphate, (meth) acryloyloxyalkyl (carbon number 1 to 24) Phosphonic acids, such as 2-acryloyloxyethylphosphonic acid; and their salts.
 なお、上記(2)~(4)の塩(有機酸の塩)としては、金属塩、アンモニウム塩、及びアミン塩(4級アンモニウム塩を含む)が挙げられる。金属塩を形成する金属としては、Al、Ti、Cr、Mn、Fe、Zn、Ba、Zr、Ca、Mg、Na、及びK等が挙げられる。これらの内、好ましくはアルカリ金属塩、及びアミン塩であり、更に好ましくは、ナトリウム塩及び炭素数3~20の3級モノアミンの塩である。 The salts (organic acid salts) of (2) to (4) above include metal salts, ammonium salts, and amine salts (including quaternary ammonium salts). Examples of the metal forming the metal salt include Al, Ti, Cr, Mn, Fe, Zn, Ba, Zr, Ca, Mg, Na, and K. Of these, alkali metal salts and amine salts are preferable, and sodium salts and tertiary monoamine salts having 3 to 20 carbon atoms are more preferable.
(5)ヒドロキシル基含有ビニルモノマー:
 ヒドロキシスチレン、N-メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、(メタ)アリルアルコール、クロチルアルコール、イソクロチルアルコール、1-ブテン-3-オール、2-ブテン-1-オール、2-ブテン-1,4-ジオール、プロパルギルアルコール、2-ヒドロキシエチルプロペニルエーテル、庶糖アリルエーテル等。
(5) Hydroxyl group-containing vinyl monomer:
Hydroxystyrene, N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, (meth) allyl alcohol, crotyl alcohol, isocrotyl alcohol, 1- Buten-3-ol, 2-buten-1-ol, 2-butene-1,4-diol, propargyl alcohol, 2-hydroxyethylpropenyl ether, sucrose allyl ether, and the like.
(6)含窒素ビニルモノマー:
(6-1)アミノ基含有ビニルモノマー:
 アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチルメタクリレート、N-アミノエチル(メタ)アクリルアミド、(メタ)アリルアミン、モルホリノエチル(メタ)アクリレート、4-ビニルピリジン、2-ビニルピリジン、クロチルアミン、N,N-ジメチルアミノスチレン、メチルα-アセトアミノアクリレート、ビニルイミダゾール、N-ビニルピロール、N-ビニルチオピロリドン、N-アリールフェニレンジアミン、アミノカルバゾール、アミノチアゾール、アミノインドール、アミノピロール、アミノイミダゾール、アミノメルカプトチアゾール、これらの塩等。
(6-2)アミド基含有ビニルモノマー:
 (メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-ブチルアクリルアミド、ジアセトンアクリルアミド、N-メチロール(メタ)アクリルアミド、N,N’-メチレン-ビス(メタ)アクリルアミド、桂皮酸アミド、N,N-ジメチルアクリルアミド、N,N-ジベンジルアクリルアミド、メタクリルホルムアミド、N-メチルN-ビニルアセトアミド、N-ビニルピロリドン等。
(6-3)ニトリル基含有ビニルモノマー:
 (メタ)アクリロニトリル、シアノスチレン、シアノアクリレート等。
(6-4)4級アンモニウムカチオン基含有ビニルモノマー:
 ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリルアミド、ジアリルアミン等の3級アミン基含有ビニルモノマーの4級化物(メチルクロライド、ジメチル硫酸、ベンジルクロライド、ジメチルカーボネート等の4級化剤を用いて4級化したもの)。
(6-5)ニトロ基含有ビニルモノマー:
 ニトロスチレン等。
(6) Nitrogen-containing vinyl monomer:
(6-1) Amino group-containing vinyl monomer:
Aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, t-butylaminoethyl methacrylate, N-aminoethyl (meth) acrylamide, (meth) allylamine, morpholinoethyl (meth) acrylate, 4-vinylpyridine, 2-vinylpyridine, crotylamine, N, N-dimethylaminostyrene, methyl α-acetaminoacrylate, vinylimidazole, N-vinylpyrrole, N-vinylthiopyrrolidone, N-arylphenylenediamine, aminocarbazole, Aminothiazole, aminoindole, aminopyrrole, aminoimidazole, aminomercaptothiazole, salts thereof and the like.
(6-2) Amide group-containing vinyl monomer:
(Meth) acrylamide, N-methyl (meth) acrylamide, N-butyl acrylamide, diacetone acrylamide, N-methylol (meth) acrylamide, N, N′-methylene-bis (meth) acrylamide, cinnamic amide, N, N -Dimethylacrylamide, N, N-dibenzylacrylamide, methacrylformamide, N-methyl N-vinylacetamide, N-vinylpyrrolidone and the like.
(6-3) Nitrile group-containing vinyl monomer:
(Meth) acrylonitrile, cyanostyrene, cyanoacrylate and the like.
(6-4) Quaternary ammonium cation group-containing vinyl monomer:
Quaternized products of tertiary amine group-containing vinyl monomers such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylamide, diethylaminoethyl (meth) acrylamide and diallylamine (methyl chloride, dimethyl sulfate) Quaternized with a quaternizing agent such as benzyl chloride or dimethyl carbonate).
(6-5) Nitro group-containing vinyl monomer:
Nitrostyrene etc.
(7)エポキシ基含有ビニルモノマー:
 グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、p-ビニルフェニルフェニルオキサイド等。
(7) Epoxy group-containing vinyl monomer:
Glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, p-vinylphenylphenyl oxide and the like.
(8)ハロゲン元素含有ビニルモノマー:
 塩化ビニル、臭化ビニル、塩化ビニリデン、アリルクロライド、クロルスチレン、ブロムスチレン、ジクロルスチレン、クロロメチルスチレン、テトラフルオロスチレン、クロロプレン等。
(8) Halogen element-containing vinyl monomer:
Vinyl chloride, vinyl bromide, vinylidene chloride, allyl chloride, chlorostyrene, bromostyrene, dichlorostyrene, chloromethylstyrene, tetrafluorostyrene, chloroprene and the like.
(9)ビニルエステル、ビニル(チオ)エーテル、ビニルケトン、ビニルスルホン類:
(9-1)ビニルエステル、例えば、酢酸ビニル、ビニルブチレート、プロピオン酸ビニル、酪酸ビニル、ジアリルフタレート、ジアリルアジペート、イソプロペニルアセテート、ビニルメタクリレート、メチル4-ビニルベンゾエート、シクロヘキシルメタクリレート、ベンジルメタクリレート、フェニル(メタ)アクリレート、ビニルメトキシアセテート、ビニルベンゾエート、エチルα-エトキシアクリレート、炭素数1~11のアルキル基を有するアルキル(メタ)アクリレート[メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等]、ジアルキルフマレート(2個のアルキル基は、炭素数2~8の、直鎖、分枝鎖もしくは脂環式の基である)、ジアルキルマレエート(2個のアルキル基は、炭素数2~8の、直鎖、分枝鎖もしくは脂環式の基である)、ポリ(メタ)アリロキシアルカン類[ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシエタン、テトラアリロキシプロパン、テトラアリロキシブタン、テトラメタアリロキシエタン等]等、ポリアルキレングリコール鎖を有するビニルモノマー[ポリエチレングリコール(分子量300)モノ(メタ)アクリレート、ポリプロピレングリコール(分子量500)モノアクリレート、メチルアルコールEO10モル付加物(メタ)アクリレート等]、ポリ(メタ)アクリレート類[多価アルコール類のポリ(メタ)アクリレート:エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等]等。
(9-2)ビニル(チオ)エーテル、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテル、ビニルブチルエーテル、ビニル2-エチルヘキシルエーテル、ビニルフェニルエーテル、ビニル2-メトキシエチルエーテル、メトキシブタジエン、ビニル2-ブトキシエチルエーテル、3,4-ジヒドロ1,2-ピラン、2-ブトキシ-2’-ビニロキシジエチルエーテル、ビニル2-エチルメルカプトエチルエーテル、アセトキシスチレン、フェノキシスチレン等。
(9-3)ビニルケトン、例えばビニルメチルケトン、ビニルエチルケトン、ビニルフェニルケトン。
(9-4)ビニルスルホン、例えばジビニルサルファイド、p-ビニルジフェニルサルファイド、ビニルエチルサルファイド、ビニルエチルスルフォン、ジビニルスルフォン、ジビニルスルフォキサイド等。
(9) Vinyl esters, vinyl (thio) ethers, vinyl ketones, vinyl sulfones:
(9-1) Vinyl esters such as vinyl acetate, vinyl butyrate, vinyl propionate, vinyl butyrate, diallyl phthalate, diallyl adipate, isopropenyl acetate, vinyl methacrylate, methyl 4-vinylbenzoate, cyclohexyl methacrylate, benzyl methacrylate, phenyl (Meth) acrylate, vinyl methoxyacetate, vinyl benzoate, ethyl α-ethoxy acrylate, alkyl (meth) acrylate having an alkyl group having 1 to 11 carbon atoms [methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc.], dialkyl fumarate (the two alkyl groups are linear, branched, having 2 to 8 carbon atoms) Or an alicyclic group), a dialkyl maleate (two alkyl groups are linear, branched or alicyclic groups having 2 to 8 carbon atoms), poly (meth) allyloxy Alkanes [diallyloxyethane, triaryloxyethane, tetraallyloxyethane, tetraallyloxypropane, tetraallyloxybutane, tetrametaallyloxyethane, etc.] vinyl monomers having a polyalkylene glycol chain [polyethylene glycol (molecular weight 300) mono (meth) acrylate, polypropylene glycol (molecular weight 500) monoacrylate, methyl alcohol EO 10 mol adduct (meth) acrylate, etc.], poly (meth) acrylates [poly (meth) acrylate of polyhydric alcohols: ethylene glycol Di (meth) acrylate, propylene Glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, polyethylene glycol di (meth) acrylate, etc.].
(9-2) Vinyl (thio) ether, such as vinyl methyl ether, vinyl ethyl ether, vinyl propyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, vinyl phenyl ether, vinyl 2-methoxyethyl ether, methoxybutadiene, vinyl 2- Butoxyethyl ether, 3,4-dihydro1,2-pyran, 2-butoxy-2′-vinyloxydiethyl ether, vinyl 2-ethylmercaptoethyl ether, acetoxystyrene, phenoxystyrene, and the like.
(9-3) Vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone, vinyl phenyl ketone.
(9-4) Vinyl sulfone such as divinyl sulfide, p-vinyl diphenyl sulfide, vinyl ethyl sulfide, vinyl ethyl sulfone, divinyl sulfone, divinyl sulfoxide and the like.
(10)その他のビニルモノマー:
(10-1)イソシアナトエチル(メタ)アクリレート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等。
(10-2)ジメチルシロキサン基を有するモノマー:
 メタクリル変性シリコーンが好ましく、次式に示す構造を持つものが挙げられる。
 (CHSiO((CHSiO)Si(CHR(但しaは、平均値で15~45であり、Rはメタクリル基を含む有機変性基である。) 
Rの例としては、COCOC(CH)=CHが挙げられる。
(10) Other vinyl monomers:
(10-1) Isocyanatoethyl (meth) acrylate, m-isopropenyl-α, α-dimethylbenzyl isocyanate and the like.
(10-2) Monomer having a dimethylsiloxane group:
Methacryl-modified silicone is preferred, and examples thereof include those having a structure represented by the following formula.
(CH 3 ) 3 SiO ((CH 3 ) 2 SiO) a Si (CH 3 ) 2 R (where a is an average value of 15 to 45, and R is an organically modified group containing a methacryl group)
An example of R includes C 3 H 6 OCOC (CH 3 ) ═CH 2 .
(10-3)フッ素を含有するモノマー:
 テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)等のパーフルオロオレフィン;パーフルオロ(アルキルビニルエーテル)(PFAVE)、パーフルオロ(1,3-ジオキソール)、パーフルオロ(2,2-ジメチル-1,3-ジオキソール)(PFDD)、パーフルオロ-(2-メチレン-4-メチル-1,3-ジオキソラン)(MMD)、パーフルオロブテニルビニルエーテル(PFBVE)等のパーフルオロビニルエーテル;ビニリデンフルオライド(VdF)、トリフルオロエチレン、1,2-ジフルオロエチレン、フッ化ビニル、トリフルオロプロピレン、3,3,3-トリフルオロ-2-トリフルオロメチルプロペン、3,3,3-トリフルオロプロペン、パーフルオロ(ブチル)エチレン(PFBE)等の水素原子含有フルオロオレフィン;1,1-ジヒドロパーフルオロオクチルアクリレート(DPFOA)、1,1-ジヒドロパーフルオロオクチルメタクリレート(DPFOMA)、2-(パーフルオロヘキシル)エチルアクリレート、2-(パーフルオロオクチル)エチルアクリレート(PFOEA)、2-(パーフルオロオクチル)エチルメタクリレート(PFOEMA)、2-(パーフルオロヘキシル)エチルメタクリレート(PFHEMA)、2-(パーフルオロブチル)エチルメタクリレート(PFBEMA)等のポリフルオロアルキル(メタ)アクリレート;α-フルオロスチレン、β-フルオロスチレン、α,β-ジフルオロスチレン、β,β-ジフルオロスチレン、α,β,β-トリフルオロスチレン、α-トリフルオロメチルスチレン、2,4,6-トリ(トリフルオロメチル)スチレン、2,3,4,5,6-ペンタフルオロスチレン、2,3,4,5,6-ペンタフルオロ-α-メチルスチレン、2,3,4,5,6-ペンタフルオロ-β-メチルスチレン等のフルオロスチレン等が挙げられる。
(10-3) Fluorine-containing monomer:
Perfluoroolefins such as tetrafluoroethylene (TFE), hexafluoropropylene (HFP), chlorotrifluoroethylene (CTFE); perfluoro (alkyl vinyl ether) (PFAVE), perfluoro (1,3-dioxole), perfluoro ( 2,2-dimethyl-1,3-dioxole) (PFDD), perfluoro- (2-methylene-4-methyl-1,3-dioxolane) (MMD), perfluorobutenyl vinyl ether (PFBVE) and other perfluoro Vinyl ether; vinylidene fluoride (VdF), trifluoroethylene, 1,2-difluoroethylene, vinyl fluoride, trifluoropropylene, 3,3,3-trifluoro-2-trifluoromethylpropene, 3,3,3- Trifluoropropene, Hydrogen atom-containing fluoroolefins such as fluoro (butyl) ethylene (PFBE); 1,1-dihydroperfluorooctyl acrylate (DPFOA), 1,1-dihydroperfluorooctyl methacrylate (DPFOMA), 2- (perfluorohexyl) ethyl Acrylate, 2- (perfluorooctyl) ethyl acrylate (PFOEA), 2- (perfluorooctyl) ethyl methacrylate (PFOEMA), 2- (perfluorohexyl) ethyl methacrylate (PFHEMA), 2- (perfluorobutyl) ethyl methacrylate Polyfluoroalkyl (meth) acrylates such as (PFBEMA); α-fluorostyrene, β-fluorostyrene, α, β-difluorostyrene, β, β-difluorostyrene, α, β, β- Trifluorostyrene, α-trifluoromethylstyrene, 2,4,6-tri (trifluoromethyl) styrene, 2,3,4,5,6-pentafluorostyrene, 2,3,4,5,6-penta Examples thereof include fluorostyrene such as fluoro-α-methylstyrene and 2,3,4,5,6-pentafluoro-β-methylstyrene.
 ビニルモノマーとして有機酸の塩を含有するビニル樹脂を用いる場合、この樹脂は、例えば、ビニルモノマーの少なくとも一部として、上記モノマー(2)~(4)の塩のうち、Al、Ti、Cr、Mn、Fe、Zn、Ba、及びZrから選ばれる金属の塩を、1種以上用いることにより得られる。これらの有機酸の塩の、重合に用いる全モノマー中の使用量は、好ましくは5~60重量%である。下限は更に好ましくは10重量%であり、上限は更に好ましくは50重量%である。 When a vinyl resin containing a salt of an organic acid is used as the vinyl monomer, this resin may be, for example, Al, Ti, Cr, among the salts of the monomers (2) to (4) as at least a part of the vinyl monomer. It can be obtained by using one or more metal salts selected from Mn, Fe, Zn, Ba, and Zr. The amount of these organic acid salts used in all monomers used for the polymerization is preferably 5 to 60% by weight. The lower limit is more preferably 10% by weight, and the upper limit is more preferably 50% by weight.
 ビニルモノマーの共重合体としては、上記(1)~(10)の任意のモノマー同士を、2元又はそれ以上の個数で、任意の割合で共重合したポリマーが挙げられるが、例えば、スチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸共重合体、スチレン-ブタジエン-(メタ)アクリル酸共重合体、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、スチレン-アクリロニトリル-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸-ジビニルベンゼン共重合体、スチレン-スチレンスルホン酸-(メタ)アクリル酸エステル共重合体、及びこれらの共重合体の塩等が挙げられる。 Examples of the copolymer of vinyl monomers include polymers obtained by copolymerizing any of the above monomers (1) to (10) in a binary or higher number at an arbitrary ratio. (Meth) acrylic acid ester- (meth) acrylic acid copolymer, styrene-butadiene- (meth) acrylic acid copolymer, (meth) acrylic acid- (meth) acrylic acid ester copolymer, styrene-acrylonitrile- ( (Meth) acrylic acid copolymer, styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid-divinylbenzene copolymer, styrene-styrenesulfonic acid- (meth) acrylic acid ester copolymer, and Examples thereof include salts of these copolymers.
 非晶質樹脂として用いられるポリエステル樹脂としては、ポリオールと、ポリカルボン酸又はその酸無水物又はその低級アルキルエステルとの重縮合物、及びこれらの重縮合物の金属塩等が挙げられる。ポリオールとしてはジオール(11)及び3~8価又はそれ以上の価数のポリオール(12)が、ポリカルボン酸又はその酸無水物又はその低級アルキルエステルとしては、ジカルボン酸(13)及び3~6価又はそれ以上の価数のポリカルボン酸(14)及びこれらの酸無水物又は低級アルキルエステルが挙げられる。
 ポリオールとポリカルボン酸の比率は、水酸基[OH]とカルボキシル基[COOH]の当量比[OH]/[COOH]として、好ましくは2/1~1/5、更に好ましくは1.5/1~1/4、特に好ましくは1/1.3~1/3である。
 カルボキシル基の含有量を前記の好ましい範囲内とするために、水酸基が過剰なポリエステルをポリカルボン酸で処理してもよい。
Examples of the polyester resin used as the amorphous resin include polycondensates of polyols with polycarboxylic acids or acid anhydrides or lower alkyl esters thereof, and metal salts of these polycondensates. The polyol is a diol (11) and a polyol (12) having a valence of 3 to 8 or higher, and the polycarboxylic acid or its acid anhydride or its lower alkyl ester is a dicarboxylic acid (13) or 3 to 6 Examples thereof include polycarboxylic acids (14) having a valence of 1 or higher and acid anhydrides or lower alkyl esters thereof.
The ratio of the polyol and the polycarboxylic acid is preferably 2/1 to 1/5, more preferably 1.5 / 1 to the equivalent ratio [OH] / [COOH] of the hydroxyl group [OH] and the carboxyl group [COOH]. 1/4, particularly preferably from 1 / 1.3 to 1/3.
In order to keep the carboxyl group content within the above preferred range, the polyester having an excess of hydroxyl groups may be treated with polycarboxylic acid.
 ジオール(11)としては、炭素数2~36のアルキレングリコール(エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、テトラデカンジオール、ネオペンチルグリコール、2,2-ジエチル-1,3-プロパンジオール等);炭素数4~36のアルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等);炭素数4~36の脂環式ジオール(1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA等);上記アルキレングリコール又は脂環式ジオールのアルキレンオキサイド(AO)〔EO、PO、BO等〕付加物(付加モル数1~120);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS等)のAO(EO、PO、BO等)付加物(付加モル数2~30);ポリラクトンジオール(ポリε-カプロラクトンジオール等);及びポリブタジエンジオール等が挙げられる。 Examples of the diol (11) include alkylene glycols having 2 to 36 carbon atoms (ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, octanediol, Decanediol, dodecanediol, tetradecandiol, neopentyl glycol, 2,2-diethyl-1,3-propanediol, etc.); alkylene ether glycols having 4 to 36 carbon atoms (diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol) Polypropylene glycol, polytetramethylene ether glycol, etc.); alicyclic diols having 4 to 36 carbon atoms (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.); Or alicyclic diol alkylene oxide (AO) [EO, PO, BO, etc.] adducts (addition mole number 1 to 120); bisphenols (bisphenol A, bisphenol F, bisphenol S, etc.) AO (EO, PO, BO, etc.) adducts (added mole number 2-30); polylactone diols (poly ε-caprolactone diol, etc.); and polybutadiene diols.
 ジオール(11)としては、上記のヒドロキシル基以外の官能基を有しないジオール以外に、他の官能基を有するジオール(11a)を用いてもよい。ヒドロキシル基以外の官能基を有するジオール(11a)としては、カルボキシル基を有するジオール、スルホン酸基もしくはスルファミン酸基を有するジオール、及びこれらの塩等が挙げられる。
 カルボキシル基を有するジオールとしては、ジアルキロールアルカン酸[炭素数6~24のもの、例えば2,2-ジメチロールプロピオン酸(DMPA)、2,2-ジメチロールブタン酸、2,2-ジメチロールヘプタン酸、2,2-ジメチロールオクタン酸等]が挙げられる。
 スルホン酸基もしくはスルファミン酸基を有するジオールとしては、スルファミン酸ジオール[N,N-ビス(2-ヒドロキシアルキル)スルファミン酸(アルキル基の炭素数1~6)又はそのAO付加物(AOとしてはEO又はPO等、AOの付加モル数1~6):例えばN,N-ビス(2-ヒドロキシエチル)スルファミン酸及びN,N-ビス(2-ヒドロキシエチル)スルファミン酸PO2モル付加物等];ビス(2-ヒドロキシエチル)ホスフェート等が挙げられる。
 これらのヒドロキシル基以外の官能基を有するジオールの塩としては、該官能基と、例えば前記炭素数3~30の3級アミン(トリエチルアミン等)及び/又はアルカリ金属(ナトリウム等)との塩が挙げられる。
 これらのうち好ましいものは、炭素数2~12のアルキレングリコール、カルボキシル基を有するジオール、ビスフェノール類のAO付加物、及びこれらの併用である。
As the diol (11), in addition to the diol having no functional group other than the above hydroxyl group, a diol (11a) having another functional group may be used. Examples of the diol (11a) having a functional group other than a hydroxyl group include a diol having a carboxyl group, a diol having a sulfonic acid group or a sulfamic acid group, and salts thereof.
Diols having a carboxyl group include dialkylol alkanoic acids [having 6 to 24 carbon atoms, such as 2,2-dimethylolpropionic acid (DMPA), 2,2-dimethylolbutanoic acid, 2,2-dimethylol. Heptanoic acid, 2,2-dimethyloloctanoic acid, etc.].
Examples of the diol having a sulfonic acid group or a sulfamic acid group include a sulfamic acid diol [N, N-bis (2-hydroxyalkyl) sulfamic acid (alkyl group having 1 to 6 carbon atoms) or an AO adduct (EO as AO). Or PO, such as PO, such as N, N-bis (2-hydroxyethyl) sulfamic acid and N, N-bis (2-hydroxyethyl) sulfamic acid PO2 molar adduct, etc.]; (2-hydroxyethyl) phosphate and the like.
Examples of the salt of the diol having a functional group other than the hydroxyl group include salts of the functional group with the tertiary amine having 3 to 30 carbon atoms (such as triethylamine) and / or alkali metal (such as sodium). It is done.
Among these, preferred are alkylene glycols having 2 to 12 carbon atoms, diols having a carboxyl group, AO adducts of bisphenols, and combinations thereof.
 3~8価又はそれ以上の価数のポリオール(12)としては、炭素数3~36の3~8価又はそれ以上の価数の多価脂肪族アルコール(アルカンポリオール及びその分子内もしくは分子間脱水物、例えばグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ソルビタン、及びポリグリセリン;糖類及びその誘導体、例えばショ糖、及びメチルグルコシド);多価脂肪族アルコールのAO付加物(付加モル数2~120);トリスフェノール類(トリスフェノールPA等)のAO付加物(付加モル数2~30);ノボラック樹脂(フェノールノボラック、クレゾールノボラック等)のAO付加物(付加モル数2~30);アクリルポリオール[ヒドロキシエチル(メタ)アクリレートと他のビニルモノマーの共重合物等];等が挙げられる。
 これらのうち好ましいものは、3~8価又はそれ以上の価数の多価脂肪族アルコール及びノボラック樹脂のAO付加物であり、更に好ましいものはノボラック樹脂のAO付加物である。
Examples of the polyol (12) having a valence of 3 to 8 or higher include polyhydric aliphatic alcohols having a valence of 3 to 8 or more having 3 to 36 carbon atoms (alkane polyol and its intramolecular or intermolecular). Dehydrates such as glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, sorbitan, and polyglycerin; sugars and derivatives thereof such as sucrose and methylglucoside); AO adducts of polyhydric fatty alcohols (addition) AO adducts of trisphenols (trisphenol PA, etc.) (addition moles 2-30); AO adducts of novolak resins (phenol novolac, cresol novolac, etc.) (addition moles 2-30) ); Acrylic polyol [hydroxyethyl (meth) acrylate and other vinyl Copolymerization products of Rumonoma]; and the like.
Among these, preferred are trivalent to octavalent or higher valent polyhydric aliphatic alcohols and novolak resin AO adducts, and more preferred are novolak resin AO adducts.
 ジカルボン酸(13)としては、炭素数4~36のアルカンジカルボン酸(コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸、デシルコハク酸等)及びアルケニルコハク酸(ドデセニルコハク酸、ペンタデセニルコハク酸、オクタデセニルコハク酸等);炭素数6~40の脂環式ジカルボン酸〔ダイマー酸(2量化リノール酸)等〕、炭素数4~36のアルケンジカルボン酸(マレイン酸、フマル酸、シトラコン酸等);炭素数8~36の芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸等)等が挙げられる。これらのうち好ましいものは、炭素数4~20のアルケンジカルボン酸、及び炭素数8~20の芳香族ジカルボン酸である。
 3~6価又はそれ以上の価数のポリカルボン酸(14)としては、炭素数9~20の芳香族ポリカルボン酸(トリメリット酸、ピロメリット酸等)等が挙げられる。
 なお、ジカルボン酸(13)又は3~6価又はそれ以上の価数のポリカルボン酸(14)としては、上述のものの酸無水物又は炭素数1~4の低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステル等)を用いてもよい。
Examples of the dicarboxylic acid (13) include alkane dicarboxylic acids having 4 to 36 carbon atoms (succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, decylsuccinic acid, etc.) and alkenyl succinic acids (dodecenyl succinic acid, Pentadecenyl succinic acid, octadecenyl succinic acid, etc.); alicyclic dicarboxylic acid having 6 to 40 carbon atoms (dimer acid (dimerized linoleic acid) etc.), alkenedicarboxylic acid having 4 to 36 carbon atoms (maleic acid) Acid, fumaric acid, citraconic acid, etc.); aromatic dicarboxylic acids having 8 to 36 carbon atoms (phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, etc.). Of these, alkene dicarboxylic acids having 4 to 20 carbon atoms and aromatic dicarboxylic acids having 8 to 20 carbon atoms are preferable.
Examples of the polycarboxylic acid (14) having a valence of 3 to 6 or higher include aromatic polycarboxylic acids having 9 to 20 carbon atoms (trimellitic acid, pyromellitic acid, etc.).
Examples of the dicarboxylic acid (13) or the polycarboxylic acid (14) having a valence of 3 to 6 or higher include the above acid anhydrides or lower alkyl esters having 1 to 4 carbon atoms (methyl ester, ethyl ester). , Isopropyl ester, etc.) may be used.
 有機酸の塩の構成単位を含有するポリエステル樹脂を用いる場合、この樹脂は、例えば、COOHの残基を有するポリエステル(酸価が好ましくは1~100、更に好ましくは5~50)を合成し、その少なくとも1部のCOOH基を、Al、Ti、Cr、Mn、Fe、Zn、Ba、及びZrから選ばれる少なくとも1種の金属の塩とすることにより得られる。
 金属塩とする方法としては、例えば、COOH基を有するポリエステルと該当する金属の水酸化物とを反応することにより得られる。
When a polyester resin containing a structural unit of an organic acid salt is used, this resin is synthesized, for example, by synthesizing a polyester having an COOH residue (acid value is preferably 1 to 100, more preferably 5 to 50), The at least one COOH group can be obtained by converting it into a salt of at least one metal selected from Al, Ti, Cr, Mn, Fe, Zn, Ba, and Zr.
As a method for forming a metal salt, for example, it is obtained by reacting a polyester having a COOH group with a hydroxide of the corresponding metal.
 非晶質樹脂として用いられるポリウレタン樹脂としては、ポリイソシアネート(15)と活性水素含有化合物{水、ポリオール[前記ジオール(11)〔ヒドロキシル基以外の官能基を有するジオール(11a)を含む〕、及び3~8価又はそれ以上の価数のポリオール(12)]、ポリカルボン酸[ジカルボン酸(13)、及び3~6価又はそれ以上の価数のポリカルボン酸(14)]、ポリオールとポリカルボン酸の重縮合により得られるポリエステルポリオール、炭素数6~12のラクトンの開環重合体、ポリアミン(16)、ポリチオール(17)、及びこれらの併用等}の重付加物、並びにポリイソシアネート(15)と活性水素含有化合物を反応させてなる末端イソシアネート基プレポリマーと、該プレポリマーのイソシアネート基に対して等量の1級及び/又は2級モノアミン(18)とを反応させて得られる、アミノ基含有ポリウレタン樹脂が挙げられる。
 ポリウレタン樹脂中のカルボキシル基の含有量は、0.1~10重量%が好ましい。
Examples of the polyurethane resin used as the amorphous resin include polyisocyanate (15) and active hydrogen-containing compound {water, polyol [including diol (11) [including diol (11a) having a functional group other than hydroxyl group]], and Polyhydric acid having a valence of 3 to 8 or higher (12)], polycarboxylic acid [dicarboxylic acid (13), and polycarboxylic acid having a valence of 3 to 6 or higher (14)], polyol and poly Polyester polyols obtained by polycondensation of carboxylic acids, ring-opening polymers of lactones having 6 to 12 carbon atoms, polyadditions of polyamines (16), polythiols (17), and combinations thereof}, and polyisocyanates (15 ) And an active hydrogen-containing compound, a terminal isocyanate group prepolymer, and an isocyanate of the prepolymer Obtained by reacting an equivalent amount of primary and / or secondary monoamines (18) to the base, and amino group-containing polyurethane resins.
The content of carboxyl groups in the polyurethane resin is preferably 0.1 to 10% by weight.
 ポリイソシアネート(15)としては、炭素数(NCO基中の炭素を除く、以下同様)6~20の芳香族ポリイソシアネート、炭素数2~18の脂肪族ポリイソシアネート、炭素数4~15の脂環式ポリイソシアネート、炭素数8~15の芳香脂肪族ポリイソシアネート及びこれらのポリイソシアネートの変性物(ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物等)及びこれらの2種以上の混合物が挙げられる。 Examples of the polyisocyanate (15) include aromatic polyisocyanates having 6 to 20 carbon atoms (excluding carbon in the NCO group, the same shall apply hereinafter), aliphatic polyisocyanates having 2 to 18 carbon atoms, and alicyclic rings having 4 to 15 carbon atoms. Formula polyisocyanates, araliphatic polyisocyanates having 8 to 15 carbon atoms and modified products of these polyisocyanates (urethane groups, carbodiimide groups, allophanate groups, urea groups, burette groups, uretdione groups, uretoimine groups, isocyanurate groups, Oxazolidone group-containing modified products) and mixtures of two or more thereof.
 上記芳香族ポリイソシアネートの具体例としては、1,3-又は1,4-フェニレンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート(TDI)、粗製TDI、2,4’-又は4,4’-ジフェニルメタンジイソシアネート(MDI)、粗製MDI[粗製ジアミノフェニルメタン〔ホルムアルデヒドと芳香族アミン(アニリン)又はその混合物との縮合生成物;ジアミノジフェニルメタンと少量(例えば5~20重量%)の3官能以上のポリアミンとの混合物〕のホスゲン化物:ポリアリルポリイソシアネート(PAPI)]、1,5-ナフチレンジイソシアネート、4,4’,4”-トリフェニルメタントリイソシアネート、m-又はp-イソシアナトフェニルスルホニルイソシアネート等が挙げられる。
 上記脂肪族ポリイソシアネートの具体例としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,6,11-ウンデカントリイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート等の脂肪族ポリイソシアネート等が挙げられる。
 上記脂環式ポリイソシアネートの具体例としては、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水添TDI)、ビス(2-イソシアナトエチル)-4-シクロヘキセン-1,2-ジカルボキシレート、2,5-又は2,6-ノルボルナンジイソシアネート等が挙げられる。
 上記芳香脂肪族ポリイソシアネートの具体例としては、m-又はp-キシリレンジイソシアネート(XDI)、α,α,α’,α’-テトラメチルキシリレンジイソシアネート(TMXDI)等が挙げられる。
 また、上記ポリイソシアネートの変性物には、ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物等が挙げられる。
 具体的には、変性MDI(ウレタン変性MDI、カルボジイミド変性MDI、トリヒドロカルビルホスフェート変性MDI等)、ウレタン変性TDI等のポリイソシアネートの変性物及びこれらの2種以上の混合物[例えば変性MDIとウレタン変性TDI(イソシアネート含有プレポリマー)との併用]が含まれる。
 これらのうちで好ましいものは6~15の芳香族ポリイソシアネート、炭素数4~12の脂肪族ポリイソシアネート、及び炭素数4~15の脂環式ポリイソシアネートであり、特に好ましいものはTDI、MDI、HDI、水添MDI、及びIPDIである。
Specific examples of the aromatic polyisocyanate include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), crude TDI, 2,4′- or 4, 4'-diphenylmethane diisocyanate (MDI), crude MDI [crude diaminophenylmethane [condensation product of formaldehyde and aromatic amine (aniline) or a mixture thereof; trifunctional or more of diaminodiphenylmethane and a small amount (for example, 5 to 20% by weight)] A mixture of polyamine and polyamine]: polyallyl polyisocyanate (PAPI)], 1,5-naphthylene diisocyanate, 4,4 ′, 4 ″ -triphenylmethane triisocyanate, m- or p-isocyanatophenylsulfonyl An isocyanate etc. are mentioned.
Specific examples of the aliphatic polyisocyanate include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, Lysine diisocyanate, 2,6-diisocyanatomethyl caproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate Aliphatic polyisocyanates such as
Specific examples of the alicyclic polyisocyanate include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated TDI), bis (2 -Isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate, 2,5- or 2,6-norbornane diisocyanate and the like.
Specific examples of the araliphatic polyisocyanate include m- or p-xylylene diisocyanate (XDI), α, α, α ′, α′-tetramethylxylylene diisocyanate (TMXDI) and the like.
Examples of the modified polyisocyanate include urethane group, carbodiimide group, allophanate group, urea group, burette group, uretdione group, uretoimine group, isocyanurate group, and oxazolidone group-containing modified product.
Specifically, modified MDI (urethane-modified MDI, carbodiimide-modified MDI, trihydrocarbyl phosphate-modified MDI, etc.), modified polyisocyanates such as urethane-modified TDI, and mixtures of two or more thereof (for example, modified MDI and urethane-modified TDI). (Combined use with an isocyanate-containing prepolymer)] is included.
Among these, preferred are 6-15 aromatic polyisocyanates, aliphatic polyisocyanates having 4-12 carbon atoms, and alicyclic polyisocyanates having 4-15 carbon atoms, and particularly preferred are TDI, MDI, HDI, hydrogenated MDI, and IPDI.
 ポリアミン(16)の例としては、
脂肪族ポリアミン類(炭素数2~18):〔1〕脂肪族ポリアミン{炭素数2~6アルキレンジアミン(エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等)、ポリアルキレン(炭素数2~6)ポリアミン〔ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン,トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等〕};〔2〕これらのアルキル(炭素数1~4)又はヒドロキシアルキル(炭素数2~4)置換体〔ジアルキル(炭素数1~3)アミノプロピルアミン、トリメチルヘキサメチレンジアミン、アミノエチルエタノールアミン、2,5-ジメチル-2,5-ヘキサメチレンジアミン、メチルイミノビスプロピルアミン等〕;〔3〕脂環又は複素環含有脂肪族ポリアミン〔3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等〕;〔4〕芳香環含有脂肪族アミン類(炭素数8~15)(キシリレンジアミン、テトラクロル-p-キシリレンジアミン等)、脂環式ポリアミン(炭素数4~15):1,3-ジアミノシクロヘキサン、イソホロンジアミン、メンセンジアミン、4,4´-メチレンジシクロヘキサンジアミン(水添メチレンジアニリン)等、
複素環式ポリアミン(炭素数4~15):ピペラジン、N-アミノエチルピペラジン、1,4-ジアミノエチルピペラジン、1,4ビス(2-アミノ-2-メチルプロピル)ピペラジン等、
芳香族ポリアミン類(炭素数6~20):〔1〕非置換芳香族ポリアミン1,2-、1,3-又は1,4-フェニレンジアミン、2,4´-又は4,4´-ジフェニルメタンジアミン、クルードジフェニルメタンジアミン(ポリフェニルポリメチレンポリアミン)、ジアミノジフェニルスルホン、ベンジジン、チオジアニリン、ビス(3,4-ジアミノフェニル)スルホン、2,6-ジアミノピリジン、m-アミノベンジルアミン、トリフェニルメタン-4,4´,4”-トリアミン、ナフチレンジアミン等;〔2〕核置換アルキル基(メチル、エチル、n-又はi-プロピル、ブチル等の炭素数1~4アルキル基)を有する芳香族ポリアミン、例えば2,4-又は2,6-トリレンジアミン、クルードトリレンジアミン、ジエチルトリレンジアミン、4,4´-ジアミノ-3,3´-ジメチルジフェニルメタン、4,4´-ビス(o-トルイジン)、ジアニシジン、ジアミノジトリルスルホン、1,3-ジメチル-2,4-ジアミノベンゼン、1,3-ジメチル-2,6-ジアミノベンゼン、1,4-ジイソプロピル-2,5-ジアミノベンゼン、2,4-ジアミノメシチレン、1-メチル-3,5-ジエチル-2,4-ジアミノベンゼン、2,3-ジメチル-1,4-ジアミノナフタレン、2,6-ジメチル-1,5-ジアミノナフタレン、3,3´,5,5´-テトラメチルベンジジン、3,3´,5,5´-テトラメチル-4,4´-ジアミノジフェニルメタン、3,5-ジエチル-3´-メチル-2´,4-ジアミノジフェニルメタン、3,3´-ジエチル-2,2´-ジアミノジフェニルメタン、4,4´-ジアミノ-3,3´-ジメチルジフェニルメタン、3,3´,5,5´-テトラエチル-4,4´-ジアミノベンゾフェノン、3,3´,5,5´-テトラエチル-4,4´-ジアミノジフェニルエーテル、3,3´,5,5´-テトライソプロピル-4,4´-ジアミノジフェニルスルホン等、及びこれらの異性体の種々の割合の混合物;〔3〕核置換電子吸引基(Cl、Br、I、F等のハロゲン;メトキシ、エトキシ等のアルコキシ基;ニトロ基等)を有する芳香族ポリアミン〔メチレンビス-o-クロロアニリン、4-クロロ-o-フェニレンジアミン、2-クロル-1,4-フェニレンジアミン、3-アミノ-4-クロロアニリン、4-ブロモ-1,3-フェニレンジアミン、2,5-ジクロル-1,4-フェニレンジアミン、5-ニトロ-1,3-フェニレンジアミン、3-ジメトキシ-4-アミノアニリン;4,4´-ジアミノ-3,3´-ジメチル-5,5´-ジブロモ-ジフェニルメタン、3,3´-ジクロロベンジジン、3,3´-ジメトキシベンジジン、ビス(4-アミノ-3-クロロフェニル)オキシド、ビス(4-アミノ-2-クロロフェニル)プロパン、ビス(4-アミノ-2-クロロフェニル)スルホン、ビス(4-アミノ-3-メトキシフェニル)デカン、ビス(4-アミノフェニル)スルフィド、ビス(4-アミノフェニル)テルリド、ビス(4-アミノフェニル)セレニド、ビス(4-アミノ-3-メトキシフェニル)ジスルフィド、4,4´-メチレンビス(2-ヨードアニリン)、4,4´-メチレンビス(2-ブロモアニリン)、4,4´-メチレンビス(2-フルオロアニリン)、4-アミノフェニル-2-クロロアニリン等〕;〔4〕2級アミノ基を有する芳香族ポリアミン〔上記〔1〕~〔3〕の芳香族ポリアミンの-NHの一部又は全部が-NH-R´(R´はアルキル基例えばメチル,エチル等の低級アルキル基)で置き換ったもの〕〔4,4´-ジ(メチルアミノ)ジフェニルメタン、1-メチル-2-メチルアミノ-4-アミノベンゼン等〕、ポリアミドポリアミン:ジカルボン酸(ダイマー酸等)と過剰の(酸1モル当り2モル以上の)ポリアミン類(上記アルキレンジアミン,ポリアルキレンポリアミン等)との縮合により得られる低分子量ポリアミドポリアミン等、ポリエーテルポリアミン:ポリエーテルポリオール(ポリアルキレングリコール等)のシアノエチル化物の水素化物等が挙げられる。
Examples of polyamine (16) include
Aliphatic polyamines (2 to 18 carbon atoms): [1] Aliphatic polyamine {2 to 6 carbon atoms alkylenediamine (ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, etc.), polyalkylene (carbon 2-6) polyamines [diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc.]}; [2] these alkyls (1 to 4 carbon atoms) Or substituted with hydroxyalkyl (2 to 4 carbon atoms) [dialkyl (1 to 3 carbon atoms) aminopropylamine, trimethylhexamethylenediamine, aminoethylethanolamine, 2,5-dimethyl-2,5-hexamethylenediamine, methyl ester Nobispropylamine etc.]; [3] Alicyclic or heterocyclic aliphatic polyamines [3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane etc.] [4] Aromatic ring-containing aliphatic amines (C8-15) (xylylenediamine, tetrachloro-p-xylylenediamine, etc.), alicyclic polyamines (C4-15): 1,3-diamino; Cyclohexane, isophoronediamine, mensendiamine, 4,4'-methylenedicyclohexanediamine (hydrogenated methylenedianiline), etc.
Heterocyclic polyamines (4 to 15 carbon atoms): piperazine, N-aminoethylpiperazine, 1,4-diaminoethylpiperazine, 1,4bis (2-amino-2-methylpropyl) piperazine, etc.
Aromatic polyamines (6 to 20 carbon atoms): [1] unsubstituted aromatic polyamine 1,2-, 1,3- or 1,4-phenylenediamine, 2,4'- or 4,4'-diphenylmethanediamine , Crude diphenylmethanediamine (polyphenylpolymethylenepolyamine), diaminodiphenylsulfone, benzidine, thiodianiline, bis (3,4-diaminophenyl) sulfone, 2,6-diaminopyridine, m-aminobenzylamine, triphenylmethane-4, 4 ′, 4 ″ -triamine, naphthylenediamine, etc .; [2] aromatic polyamines having a nucleus-substituted alkyl group (C1-C4 alkyl group such as methyl, ethyl, n- or i-propyl, butyl, etc.), for example 2,4- or 2,6-tolylenediamine, crude tolylenediamine, diethyltolylenediamine 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-bis (o-toluidine), dianisidine, diaminoditolyl sulfone, 1,3-dimethyl-2,4-diaminobenzene, , 3-Dimethyl-2,6-diaminobenzene, 1,4-diisopropyl-2,5-diaminobenzene, 2,4-diaminomesitylene, 1-methyl-3,5-diethyl-2,4-diaminobenzene, 2 , 3-Dimethyl-1,4-diaminonaphthalene, 2,6-dimethyl-1,5-diaminonaphthalene, 3,3 ′, 5,5′-tetramethylbenzidine, 3,3 ′, 5,5′-tetra Methyl-4,4′-diaminodiphenylmethane, 3,5-diethyl-3′-methyl-2 ′, 4-diaminodiphenylmethane, 3,3′-diethyl-2,2′-diaminodi Phenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 3,3 ', 5,5'-tetraethyl-4,4'-diaminobenzophenone, 3,3', 5,5'-tetraethyl-4 , 4'-diaminodiphenyl ether, 3,3 ', 5,5'-tetraisopropyl-4,4'-diaminodiphenylsulfone, and the like, and mixtures of these isomers in various proportions; [3] Nuclear-substituted electron withdrawing groups Aromatic polyamines [Methylenebis-o-chloroaniline, 4-chloro-o-phenylenediamine, 2-chloro-, etc.] (Halogens such as Cl, Br, I, F; alkoxy groups such as methoxy, ethoxy, etc .; nitro groups, etc.) 1,4-phenylenediamine, 3-amino-4-chloroaniline, 4-bromo-1,3-phenylenediamine, 2,5-dichloro-1,4-phen Range amine, 5-nitro-1,3-phenylenediamine, 3-dimethoxy-4-aminoaniline; 4,4'-diamino-3,3'-dimethyl-5,5'-dibromo-diphenylmethane, 3,3 ' -Dichlorobenzidine, 3,3'-dimethoxybenzidine, bis (4-amino-3-chlorophenyl) oxide, bis (4-amino-2-chlorophenyl) propane, bis (4-amino-2-chlorophenyl) sulfone, bis ( 4-amino-3-methoxyphenyl) decane, bis (4-aminophenyl) sulfide, bis (4-aminophenyl) telluride, bis (4-aminophenyl) selenide, bis (4-amino-3-methoxyphenyl) disulfide 4,4'-methylenebis (2-iodoaniline), 4,4'-methylenebis (2-bromoaniline) ), 4,4′-methylenebis (2-fluoroaniline), 4-aminophenyl-2-chloroaniline, etc.]; [4] Aromatic polyamines having secondary amino groups [the above [1] to [3] Aromatic polyamines in which part or all of —NH 2 is replaced by —NH—R ′ (where R ′ is an alkyl group such as a lower alkyl group such as methyl or ethyl)] [4,4′-di (methyl Amino) diphenylmethane, 1-methyl-2-methylamino-4-aminobenzene, etc.], polyamide polyamine: dicarboxylic acid (dimer acid, etc.) and excess (more than 2 moles per mole of acid) polyamines (the above alkylenediamine, Low molecular weight polyamide polyamines obtained by condensation with polyalkylene polyamines, etc., polyether polyamines: polyether polyols (polyalkylene glycols) Hydrides of cyanoethylation products of Lumpur, etc.).
 ポリチオール(17)としては、炭素数2~36のアルカンジチオール(エチレンジチオール、1,4-ブタンジチオール、1,6-ヘキサンジチオール等)等が挙げられる。 Examples of the polythiol (17) include alkanedithiols having 2 to 36 carbon atoms (ethylene dithiol, 1,4-butanedithiol, 1,6-hexanedithiol, etc.).
 1級及び/又は2級モノアミン(18)としては、炭素数2~24のアルキルアミン(エチルアミン、n-ブチルアミン、イソブチルアミン等)等が挙げられる。 Examples of the primary and / or secondary monoamine (18) include alkylamines having 2 to 24 carbon atoms (ethylamine, n-butylamine, isobutylamine, etc.) and the like.
 エポキシ樹脂としては、ポリエポキシド(19)の開環重合物、ポリエポキシド(19)と活性水素基含有化合物(T){水、ポリオール[前記ジオール(11)及び3価以上のポリオール(12)]、ジカルボン酸(13)、3価以上のポリカルボン酸(14)、ポリアミン(16)、ポリチオール(17)等}との重付加物、又はポリエポキシド(19)とジカルボン酸(13)又は3価以上のポリカルボン酸(14)の酸無水物との硬化物等が挙げられる。
 本発明に用いるポリエポキシド(19)は、分子中に2個以上のエポキシ基を有していれば、特に限定されない。ポリエポキシド(19)として好ましいものは、硬化物の機械的性質の観点から分子中にエポキシ基を2~6個有するものである。ポリエポキシド(19)のエポキシ当量(エポキシ基1個当たりの分子量)は、通常65~1000であり、好ましいのは90~500である。エポキシ当量が1000を超えると、架橋構造がルーズになり硬化物の耐水性、耐薬品性、機械的強度等の物性が悪くなり、一方、エポキシ当量が65未満のものを合成するのは困難である。
Examples of the epoxy resin include a ring-opening polymer of polyepoxide (19), polyepoxide (19) and active hydrogen group-containing compound (T) {water, polyol [the diol (11) and trivalent or higher polyol (12)], dicarboxylic acid) Acid (13), trivalent or higher polycarboxylic acid (14), polyamine (16), polythiol (17), etc.} polyaddition product, or polyepoxide (19) and dicarboxylic acid (13) or trivalent or higher polyvalent Examples thereof include a cured product of the carboxylic acid (14) with an acid anhydride.
The polyepoxide (19) used for this invention will not be specifically limited if it has two or more epoxy groups in a molecule | numerator. A preferable polyepoxide (19) is one having 2 to 6 epoxy groups in the molecule from the viewpoint of mechanical properties of the cured product. The epoxy equivalent of the polyepoxide (19) (molecular weight per epoxy group) is usually from 65 to 1,000, and preferably from 90 to 500. When the epoxy equivalent exceeds 1000, the cross-linked structure becomes loose and the physical properties such as water resistance, chemical resistance and mechanical strength of the cured product are deteriorated. On the other hand, it is difficult to synthesize an epoxy equivalent of less than 65. is there.
 ポリエポキシド(19)の例としては、芳香族系ポリエポキシ化合物、複素環系ポリエポキシ化合物、脂環族系ポリエポキシ化合物あるいは脂肪族系ポリエポキシ化合物が挙げられる。芳香族系ポリエポキシ化合物としては、多価フェノール類のグリシジルエーテル体及びグリシジルエステル体、グリシジル芳香族ポリアミン、並びに、アミノフェノールのグリシジル化物等が挙げられる。多価フェノールのグリシジルエーテル体としては、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールBジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ハロゲン化ビスフェノールAジグリシジル、テトラクロロビスフェノールAジグリシジルエーテル、カテキンジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ハイドロキノンジグリシジルエーテル、ピロガロールトリグリシジルエーテル、1,5-ジヒドロキシナフタリンジグリシジルエーテル、ジヒドロキシビフェニルジグリシジルエーテル、オクタクロロ-4,4’-ジヒドロキシビフェニルジグリシジルエーテル、テトラメチルビフェニルジグリシジルエーテル、ジヒドロキシナフチルクレゾールトリグリシジルエーテル、トリス(ヒドロキシフェニル)メタントリグリシジルエーテル、ジナフチルトリオールトリグリシジルエーテル、テトラキス(4-ヒドロキシフェニル)エタンテトラグリシジルエーテル、p-グリシジルフェニルジメチルトリールビスフェノールAグリシジルエーテル、トリスメチル-tret-ブチル-ブチルヒドロキシメタントリグリシジルエーテル、9,9’-ビス(4-ヒドキシフェニル)フロオレンジグリシジルエーテル、4,4’-オキシビス(1,4-フェニルエチル)テトラクレゾールグリシジルエーテル、4,4’-オキシビス(1,4-フェニルエチル)フェニルグリシジルエーテル、ビス(ジヒドロキシナフタレン)テトラグリシジルエーテル、フェノール又はクレゾールノボラック樹脂のグリシジルエーテル体、リモネンフェノールノボラック樹脂のグリシジルエーテル体、ビスフェノールA2モルとエピクロロヒドリン3モルの反応から得られるジグリシジルエーテル体、フェノールとグリオキザール、グルタールアルデヒド、又はホルムアルデヒドの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体、及びレゾルシンとアセトンの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体等が挙げられる。多価フェノールのグリシジルエステル体としては、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル等が挙げられる。グリシジル芳香族ポリアミンとしては、N,N-ジグリシジルアニリン、N,N,N’,N’-テトラグリシジルキシリレンジアミン、N,N,N’,N’-テトラグリシジルジフェニルメタンジアミン等が挙げられる。更に、本発明において前記芳香族系として、p-アミノフェノールのトリグリシジルエーテル、トリレンジイソシアネート又はジフェニルメタンジイソシアネートとグリシドールの付加反応によって得られるジグリシジルウレタン化合物、前記2反応物にポリオールも反応させて得られるグリシジル基含有ポリウレタン(プレ)ポリマー及びビスフェノールAのアルキレンオキシド(エチレンオキシド又はプロピレンオキシド)付加物のジグリシジルエーテル体も含む。複素環系ポリエポキシ化合物としては、トリスグリシジルメラミンが挙げられる。脂環族系ポリエポキシ化合物としては、ビニルシクロヘキセンジオキシド、リモネンジオキシド、ジシクロペンタジエンジオキシド、ビス(2,3-エポキシシクロペンチル)エーテル、エチレングリコールビスエポキシジシクロペンチルエーテル、3,4-エポキシ-6-メチルシクロヘキシルメチル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、及びビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)ブチルアミン、ダイマー酸ジグリシジルエステル等が挙げられる。また、脂環族系ポリエポキシ化合物としては、前記芳香族系ポリエポキシド化合物の核水添化物も含む。脂肪族系ポリエポキシ化合物としては、多価脂肪族アルコールのポリグリシジルエーテル体、多価脂肪酸のポリグリシジルエステル体、及びグリシジル脂肪族アミンが挙げられる。多価脂肪族アルコールのポリグリシジルエーテル体としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル及びポリグリセロールポリグリシジルエーテル等が挙げられる。多価脂肪酸のポリグリシジルエステル体としては、ジグリシジルオキサレート、ジグリシジルマレート、ジグリシジルスクシネート、ジグリシジルグルタレート、ジグリシジルアジペート、ジグリシジルピメレート等が挙げられる。グリシジル脂肪族アミンとしては、N,N,N’,N’-テトラグリシジルヘキサメチレンジアミンが挙げられる。また、本発明において脂肪族系ポリエポキシ化合物としては、ジグリシジルエーテル、グリシジル(メタ)アクリレートの(共)重合体も含む。これらのうち、好ましいのは、脂肪族系ポリエポキシ化合物及び芳香族系ポリエポキシ化合物である。本発明のポリエポキシドは、2種以上併用しても差し支えない。 Examples of the polyepoxide (19) include aromatic polyepoxy compounds, heterocyclic polyepoxy compounds, alicyclic polyepoxy compounds, and aliphatic polyepoxy compounds. Examples of aromatic polyepoxy compounds include glycidyl ethers and glycidyl ethers of polyhydric phenols, glycidyl aromatic polyamines, and glycidylated products of aminophenols. Examples of glycidyl ethers of polyphenols include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, bisphenol B diglycidyl ether, bisphenol AD diglycidyl ether, bisphenol S diglycidyl ether, halogenated bisphenol A diglycidyl, and tetrachlorobisphenol A. Diglycidyl ether, catechin diglycidyl ether, resorcinol diglycidyl ether, hydroquinone diglycidyl ether, pyrogallol triglycidyl ether, 1,5-dihydroxynaphthalene diglycidyl ether, dihydroxybiphenyl diglycidyl ether, octachloro-4,4'-dihydroxybiphenyl di Glycidyl ether, tetramethylbiphenyl diglycidyl ester Ter, dihydroxynaphthylcresol triglycidyl ether, tris (hydroxyphenyl) methane triglycidyl ether, dinaphthyltriol triglycidyl ether, tetrakis (4-hydroxyphenyl) ethanetetraglycidyl ether, p-glycidylphenyldimethyltolylbisphenol A glycidyl ether, trismethyl -Tret-butyl-butylhydroxymethane triglycidyl ether, 9,9'-bis (4-hydroxyphenyl) furorange glycidyl ether, 4,4'-oxybis (1,4-phenylethyl) tetracresol glycidyl ether, 4 , 4′-oxybis (1,4-phenylethyl) phenylglycidyl ether, bis (dihydroxynaphthalene) tetraglycidyl ether, Glycidyl ether form of enol or cresol novolac resin, glycidyl ether form of limonene phenol novolak resin, diglycidyl ether form obtained from the reaction of 2 mol of bisphenol A and 3 mol of epichlorohydrin, phenol and glyoxal, glutaraldehyde, or formaldehyde Examples thereof include polyglycidyl ethers of polyphenols obtained by a condensation reaction and polyglycidyl ethers of polyphenols obtained by a condensation reaction of resorcin and acetone. Examples of the glycidyl ester of polyhydric phenol include diglycidyl phthalate, diglycidyl isophthalate, and diglycidyl terephthalate. Examples of the glycidyl aromatic polyamine include N, N-diglycidylaniline, N, N, N ′, N′-tetraglycidylxylylenediamine, N, N, N ′, N′-tetraglycidyldiphenylmethanediamine and the like. Further, in the present invention, as the aromatic system, triglycidyl ether of p-aminophenol, tolylene diisocyanate or diglycidyl urethane compound obtained by addition reaction of diphenylmethane diisocyanate and glycidol, obtained by reacting a polyol with the above two reactants. The glycidyl group-containing polyurethane (pre) polymer and an alkylene oxide (ethylene oxide or propylene oxide) adduct of bisphenol A are also included. Examples of the heterocyclic polyepoxy compound include trisglycidylmelamine. Examples of the alicyclic polyepoxy compounds include vinylcyclohexene dioxide, limonene dioxide, dicyclopentadiene dioxide, bis (2,3-epoxycyclopentyl) ether, ethylene glycol bisepoxy dicyclopentyl ether, 3,4-epoxy- 6-methylcyclohexylmethyl-3 ′, 4′-epoxy-6′-methylcyclohexanecarboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, and bis (3,4-epoxy-6-methyl) (Cyclohexylmethyl) butylamine, dimer acid diglycidyl ester and the like. The alicyclic polyepoxy compound also includes a nuclear hydrogenated product of the aromatic polyepoxide compound. Examples of the aliphatic polyepoxy compound include polyglycidyl ethers of polyhydric aliphatic alcohols, polyglycidyl esters of polyhydric fatty acids, and glycidyl aliphatic amines. Polyglycidyl ethers of polyhydric aliphatic alcohols include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol Examples include diglycidyl ether, polytetramethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, sorbitol polyglycidyl ether and polyglycerol polyglycidyl ether. It is done. Examples of polyglycidyl ester of polyvalent fatty acid include diglycidyl oxalate, diglycidyl malate, diglycidyl succinate, diglycidyl glutarate, diglycidyl adipate, diglycidyl pimelate and the like. Examples of the glycidyl aliphatic amine include N, N, N ′, N′-tetraglycidylhexamethylenediamine. In the present invention, the aliphatic polyepoxy compound includes a (co) polymer of diglycidyl ether and glycidyl (meth) acrylate. Of these, preferred are aliphatic polyepoxy compounds and aromatic polyepoxy compounds. Two or more of the polyepoxides of the present invention may be used in combination.
 結晶性樹脂及び非晶質樹脂の製造方法は特に限定されず、上述したモノマーの種類及び量等を適宜設定することにより、融点又は軟化点を有する所望の樹脂を製造することができる。 The method for producing the crystalline resin and the amorphous resin is not particularly limited, and a desired resin having a melting point or a softening point can be produced by appropriately setting the kind and amount of the above-described monomer.
 本発明の分散液(L)の製造方法は、分散質(A)と溶剤(S)と圧縮性流体(F)とを含む混合物(X)を、体積膨張させる工程を含む、分散質(A)を含む粒子(C)が溶剤(S)に分散された分散液(L)の製造方法であって、分散質(A)の融点又は軟化点以下の温度で分散質(A)が溶剤(S)及び/又は圧縮性流体(F)に溶解した状態で、分散質(A)の融点又は軟化点以下で混合物(X)を体積膨張させること、並びに粒子(C)のメジアン径が3.0μm以下であることを特徴とする。 The method for producing the dispersion liquid (L) of the present invention includes a step of volume expansion of a mixture (X) containing the dispersoid (A), the solvent (S), and the compressive fluid (F). ) Containing particles (C) dispersed in a solvent (S), wherein the dispersoid (A) is a solvent (A) at a temperature below the melting point or softening point of the dispersoid (A). S) and / or the volume of the mixture (X) is expanded below the melting point or softening point of the dispersoid (A) in the state of being dissolved in the compressive fluid (F), and the median diameter of the particles (C) is 3. It is 0 μm or less.
 本発明において、溶剤(S)は、例えばケトン溶剤(アセトン、及びメチルエチルケトン等)、エーテル溶剤(テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、及び環状エーテル等)、エステル溶剤(酢酸エチル等の酢酸エステル、ピルビン酸エステル、2-ヒドロキシイソ酪酸エステル、及び乳酸エステル等)、アミド溶剤(ジメチルホルムアミド等)、アルコール溶剤(メタノール、エタノール、イソプロパノール、及びフッ素含有アルコール等)、芳香族炭化水素溶剤(トルエン、キシレン等)、及び脂肪族炭化水素溶剤(オクタン、及びデカン等)、水等が挙げられ、これらの混合溶剤であっても構わない。 In the present invention, the solvent (S) is, for example, a ketone solvent (such as acetone and methyl ethyl ketone), an ether solvent (such as tetrahydrofuran, diethyl ether, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, and cyclic ether), an ester solvent ( Acetic acid esters such as ethyl acetate, pyruvate, 2-hydroxyisobutyric acid, and lactic acid esters), amide solvents (such as dimethylformamide), alcohol solvents (such as methanol, ethanol, isopropanol, and fluorine-containing alcohols), aromatic Examples include hydrocarbon solvents (toluene, xylene, etc.), aliphatic hydrocarbon solvents (octane, decane, etc.), water, etc., and mixed solvents thereof.
 本発明において、粒子(C)は、分散質(A)を含む粒子である。 In the present invention, the particles (C) are particles containing the dispersoid (A).
 本発明において、圧縮性流体とは、常温で常圧以上の圧力により圧縮されている流体のことを意味する。圧縮性流体(F)の圧力は1MPa以上であることが好ましく、より好ましくは2MPa以上、さらに好ましくは3MPa以上、特に好ましくは4MPa以上である。
 本発明において、圧縮性流体(F)は、メタン、エチレン、代替フロン等でもよいが、安全性や取り扱いの容易さ等の点から、好ましくは二酸化炭素であり、更に好ましくは液体二酸化炭素、亜臨界二酸化炭素又は超臨界二酸化炭素が好ましい。
 本発明において、液体二酸化炭素とは、二酸化炭素の温度軸と圧力軸とで表す相図上において、二酸化炭素の三重点(温度=-57℃、圧力0.5MPa)と二酸化炭素の臨界点(温度=31℃、圧力=7.4MPa)を通る気液境界線、臨界温度の等温線、及び固液境界線に囲まれた部分の温度・圧力条件である二酸化炭素を表し、超臨界二酸化炭素とは、臨界温度以上の温度・圧力条件である二酸化炭素を表す(ただし、圧力は、2成分以上の混合ガスの場合、全圧を表す)。
In the present invention, the compressible fluid means a fluid compressed at a normal temperature or higher pressure at room temperature. The pressure of the compressive fluid (F) is preferably 1 MPa or more, more preferably 2 MPa or more, still more preferably 3 MPa or more, and particularly preferably 4 MPa or more.
In the present invention, the compressive fluid (F) may be methane, ethylene, chlorofluorocarbon alternative, etc., but is preferably carbon dioxide from the viewpoint of safety and ease of handling, and more preferably liquid carbon dioxide, Critical carbon dioxide or supercritical carbon dioxide is preferred.
In the present invention, liquid carbon dioxide refers to a triple point of carbon dioxide (temperature = −57 ° C., pressure 0.5 MPa) and a critical point of carbon dioxide (temperature = −57 ° C.) on a phase diagram represented by a temperature axis and a pressure axis of carbon dioxide. Supercritical carbon dioxide, which represents carbon dioxide, which is the temperature / pressure condition of the portion surrounded by the gas-liquid boundary line passing through (temperature = 31 ° C., pressure = 7.4 MPa), the isotherm of the critical temperature, and the solid-liquid boundary line Represents carbon dioxide which is a temperature / pressure condition above the critical temperature (however, the pressure represents the total pressure in the case of a mixed gas of two or more components).
 本発明において混合物(X)は、分散質(A)と溶剤(S)と圧縮性流体(F)を含む混合物である。
 体積膨張させる前の混合物(X)において、分散質(A)は液状であり、分散質(A)の融点又は軟化点以下の温度で分散質(A)が溶剤(S)及び/又は圧縮性流体(F)に溶解している。また本発明においては、分散質(A)の融点又は軟化点以下で混合物(X)を体積膨張させる。
In the present invention, the mixture (X) is a mixture containing the dispersoid (A), the solvent (S), and the compressive fluid (F).
In the mixture (X) before volume expansion, the dispersoid (A) is liquid, and the dispersoid (A) is a solvent (S) and / or compressible at a temperature below the melting point or softening point of the dispersoid (A). Dissolved in fluid (F). In the present invention, the mixture (X) is volume-expanded below the melting point or softening point of the dispersoid (A).
 分散質(A)が融点を有している場合、以下の条件1を満たすことが好ましい。
 条件1
 T3<T1<T2<T0 
 T0:分散質(A)の融点
 T1:分散液(L)をDSC降温測定した際の、分散質(A)由来の発熱ピーク温度
 T2:体積膨張させる直前の混合物(X)の温度
 T3:混合物(X)を体積膨張した直後の分散液(L)の温度
When the dispersoid (A) has a melting point, the following condition 1 is preferably satisfied.
Condition 1
T3 <T1 <T2 <T0
T0: Melting point of dispersoid (A) T1: Exothermic peak temperature derived from dispersoid (A) when DSC temperature drop measurement of dispersion (L) T2: Temperature of mixture (X) immediately before volume expansion T3: Mixture Temperature of dispersion liquid (L) immediately after volume expansion of (X)
 条件1を満たさない場合、体積膨張後の温度が高く、分散質(A)が析出不充分であったり、析出して形成された粒子(C)が不安定であったりする。また混合物(X)の体積膨張する前の分散質(A)の状態が液状でなく、析出した状態である場合、微細な粒子(C)の分散液を得難くなる場合もある。 When the condition 1 is not satisfied, the temperature after volume expansion is high, and the dispersoid (A) is insufficiently precipitated, or the particles (C) formed by precipitation are unstable. Moreover, when the state of the dispersoid (A) before the volume expansion of the mixture (X) is not in a liquid state but in a precipitated state, it may be difficult to obtain a dispersion of fine particles (C).
 更に、温度T2における混合物(X)において、分散質(A)が溶剤(S)及び/又は圧縮性流体(F)に溶解していることがより好ましい。
 また、別の形態として、混合物(X)においては、分散質(A)の融点以下の温度で分散質(A)が溶融している(液状である)ことが好ましく、分散質(A)が溶剤(S)及び圧縮性流体(F)からなる群より選択される少なくとも1種の液と液液二相分離していることが好ましい。また、温度T2における混合物(X)において、分散質(A)が溶融し(液状であり)、分散質(A)と溶剤(S)又は圧縮性流体(F)とが液液二相分離していることがより好ましい。このような混合物(X)として、例えば、分散質(A)の融点以下の温度(好ましくは温度T2)の混合物(X)において、分散質(A)が溶剤(S)に溶解し、圧縮性流体(F)と液液二相分離している形態、分散質(A)が圧縮性流体(F)に溶解し、溶剤(S)と液液二相分離している形態が挙げられる。混合物(X)においては、分散質(A)の融点以下の温度(好ましくは温度T2)で分散質(A)が圧縮性流体(F)に溶解し、溶剤(S)と液液二相分離していることが特に好ましい。
 本発明においては、混合物(X)を体積膨張する前の分散質(A)の状態が上記の状態であればよく、他に分散剤や物性値(粘度、拡散係数、誘電率、溶解度、界面張力等)を調整するために後述する不活性気体等を併用してもよい。
Further, in the mixture (X) at the temperature T2, it is more preferable that the dispersoid (A) is dissolved in the solvent (S) and / or the compressible fluid (F).
As another form, in the mixture (X), the dispersoid (A) is preferably melted (in a liquid state) at a temperature not higher than the melting point of the dispersoid (A), and the dispersoid (A) It is preferable that at least one liquid selected from the group consisting of the solvent (S) and the compressive fluid (F) is subjected to liquid-liquid two-phase separation. Further, in the mixture (X) at the temperature T2, the dispersoid (A) is melted (in a liquid state), and the dispersoid (A) and the solvent (S) or the compressive fluid (F) are separated into two liquid-liquid phases. More preferably. As such a mixture (X), for example, in the mixture (X) having a temperature not higher than the melting point of the dispersoid (A) (preferably temperature T2), the dispersoid (A) is dissolved in the solvent (S), and the compressibility is reduced. Examples include a form in which the fluid (F) and liquid-liquid two-phase separation are performed, and a form in which the dispersoid (A) is dissolved in the compressive fluid (F) and the liquid (liquid-liquid two-phase separation) is performed. In the mixture (X), the dispersoid (A) is dissolved in the compressible fluid (F) at a temperature not higher than the melting point of the dispersoid (A) (preferably temperature T2), and the liquid (liquid / liquid) two-phase separation is performed. It is particularly preferable.
In the present invention, the state of the dispersoid (A) before volumetric expansion of the mixture (X) may be any of the above states, and other dispersants and physical properties (viscosity, diffusion coefficient, dielectric constant, solubility, interface, etc.) In order to adjust tension etc.), you may use together the inert gas etc. which are mentioned later.
 混合物(X)において、以下の条件2を満たすことが、特に好ましい。
 条件2
 T3+10<T1
 T1:分散液(L)をDSC降温測定した際の、分散質(A)由来の発熱ピーク温度
 T3:混合物(X)を体積膨張した直後の分散液(L)の温度
 上記DSC降温測定は、以下の条件で行う。
 示差走査熱量計{例えば、セイコー電子工業社製、DSC210}を用いて、測定試料を200℃まで昇温してから、降温速度10℃/分で0℃まで冷却して行う。T1は、この際に現れる分散質(A)由来の発熱の最大ピーク温度である。
In the mixture (X), it is particularly preferable that the following condition 2 is satisfied.
Condition 2
T3 + 10 <T1
T1: Exothermic peak temperature derived from the dispersoid (A) when the dispersion (L) was measured for DSC temperature drop T3: Temperature of the dispersion (L) immediately after volumetric expansion of the mixture (X) Perform under the following conditions.
Using a differential scanning calorimeter {for example, DSC210 manufactured by Seiko Denshi Kogyo Co., Ltd.], the measurement sample is heated to 200 ° C., and then cooled to 0 ° C. at a cooling rate of 10 ° C./min. T1 is the maximum peak temperature of exotherm derived from the dispersoid (A) appearing at this time.
 混合物(X)に含まれる分散質(A)が非晶質材料である場合、混合物(X)においては、分散質(A)の軟化点以下の温度で分散質(A)が溶剤(S)及び/又は圧縮性流体(F)に溶解している。また、別の形態として、混合物(X)において、分散質(A)が溶剤(S)及び圧縮性流体(F)からなる群より選択される少なくとも1種の液と液液二相分離していることが好ましく、混合物(X)において分散質(A)と溶剤(S)又は圧縮性流体(F)とが液液二相分離していることがより好ましい。このような混合物(X)として、例えば、分散質(A)の軟化点以下の温度の混合物(X)において、分散質(A)が溶剤(S)に溶解し、圧縮性流体(F)と液液二相分離している形態、分散質(A)が圧縮性流体(F)に溶解し、溶剤(S)と液液二相分離している形態が挙げられる。混合物(X)においては、分散質(A)の軟化点以下の温度で分散質(A)が圧縮性流体(F)に溶解し、溶剤(S)と液液二相分離していることが特に好ましい。
 本発明においては、混合物(X)を体積膨張する前の分散質(A)の状態が上記の状態であればよく、他に分散剤や物性値(粘度、拡散係数、誘電率、溶解度、界面張力等)を調整するために不活性気体等を併用してもよい。
When the dispersoid (A) contained in the mixture (X) is an amorphous material, in the mixture (X), the dispersoid (A) is a solvent (S) at a temperature below the softening point of the dispersoid (A). And / or dissolved in the compressible fluid (F). As another form, in the mixture (X), the dispersoid (A) is separated into at least one liquid selected from the group consisting of a solvent (S) and a compressive fluid (F) and a liquid-liquid two-phase separation. It is preferable that the dispersoid (A) and the solvent (S) or the compressive fluid (F) are more preferably liquid-liquid two-phase separated in the mixture (X). As such a mixture (X), for example, in the mixture (X) having a temperature equal to or lower than the softening point of the dispersoid (A), the dispersoid (A) is dissolved in the solvent (S), and the compressive fluid (F) A form in which liquid-liquid two-phase separation is performed, and a form in which the dispersoid (A) is dissolved in the compressive fluid (F) and liquid-liquid two-phase separation is performed with the solvent (S). In the mixture (X), the dispersoid (A) is dissolved in the compressible fluid (F) at a temperature equal to or lower than the softening point of the dispersoid (A), and the liquid (liquid and liquid) is separated into two phases. Particularly preferred.
In the present invention, the state of the dispersoid (A) before volumetric expansion of the mixture (X) may be any of the above states, and other dispersants and physical properties (viscosity, diffusion coefficient, dielectric constant, solubility, interface, etc.) An inert gas or the like may be used in combination for adjusting the tension.
 混合物(X)には、分散剤が含まれていてもよく、分散剤としては、特に限定はなく、公知のものを使用することができ、分散質(A)との相溶性の高いユニットと、溶剤(S)との相性の高いユニットがブロック体として存在するポリマーやオリゴマー等が挙げられる。
 分散質(A)がワックスのように炭化水素比率が高い場合、炭化水素との相溶性の高いユニットと樹脂との相溶性の高いユニットのうち一方に他方がグラフトしているポリマーもしくはオリゴマー〔例えば、ワックスの存在下、ビニルモノマーを重合させて得られるもの〕、不飽和炭化水素(エチレン、プロピレン、ブテン、スチレン、及びα-メチルスチレン等)と、α,β-不飽和カルボン酸又はそのエステルもしくはその無水物(アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、これらのエステル及び無水イタコン酸等)との共重合体、ビニル樹脂とポリエステル樹脂とのブロックもしくはグラフト共重合体等が挙げられる。
The mixture (X) may contain a dispersant, and the dispersant is not particularly limited, and a known one can be used, and a unit having high compatibility with the dispersoid (A) And a polymer or oligomer in which a unit having high compatibility with the solvent (S) is present as a block body.
When the dispersoid (A) has a high hydrocarbon ratio such as wax, a polymer or oligomer in which one of the unit having high compatibility with the hydrocarbon and the unit having high compatibility with the resin is grafted on the other [for example, , Obtained by polymerizing vinyl monomer in the presence of wax), unsaturated hydrocarbon (ethylene, propylene, butene, styrene, α-methylstyrene, etc.) and α, β-unsaturated carboxylic acid or ester thereof Or a copolymer with an anhydride thereof (acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, esters thereof, itaconic anhydride, etc.), block or graft copolymer of vinyl resin and polyester resin, etc. Is mentioned.
 不活性気体としては、窒素、ヘリウム、アルゴン、空気等の不活性気体等が挙げられる。圧縮性流体(F)として二酸化炭素を用いる場合、二酸化炭素と他の不活性気体の合計中の二酸化炭素の重量分率は、好ましくは70重量%以上、更に好ましくは80重量%以上、特に好ましくは90重量%以上である。 Examples of inert gases include inert gases such as nitrogen, helium, argon, and air. When carbon dioxide is used as the compressive fluid (F), the weight fraction of carbon dioxide in the total of carbon dioxide and other inert gas is preferably 70% by weight or more, more preferably 80% by weight or more, and particularly preferably Is 90% by weight or more.
 本発明において得られる分散液(L)に含まれる粒子(C)のメジアン径は、3.0μm以下であり、好ましくは0.05μm~3.0μmであり、より好ましくは0.06μm~1.0μm、更に好ましくは0.07μm~0.7μm、特に好ましくは0.08μm~0.4μmである。一方メジアン径が3.0μmより大きい場合、例えば分散液(L)を塗料に配合して塗布したときのコート面の平滑性が損なわれる問題が発生することや、また粒子中に粒子(C)を含有した樹脂粒子を製造する場合、樹脂粒子の粒度分布の悪化が発生する。メジアン径とは、体積分布に基づくメジアン径である。メジアン径はレーザー式粒度分布測定装置(LA-920:堀場製作所製)によって測定される。なお、粗大粒子量も同じ装置を用いて測定できる。 The median diameter of the particles (C) contained in the dispersion (L) obtained in the present invention is 3.0 μm or less, preferably 0.05 μm to 3.0 μm, more preferably 0.06 μm to 1. The thickness is 0 μm, more preferably 0.07 μm to 0.7 μm, and particularly preferably 0.08 μm to 0.4 μm. On the other hand, when the median diameter is larger than 3.0 μm, there arises a problem that the smoothness of the coated surface is impaired when, for example, the dispersion liquid (L) is blended and applied to the paint, and the particles (C) are contained in the particles. In the case of producing resin particles containing, the particle size distribution of the resin particles is deteriorated. The median diameter is a median diameter based on the volume distribution. The median diameter is measured by a laser type particle size distribution measuring device (LA-920: manufactured by Horiba, Ltd.). The coarse particle amount can also be measured using the same apparatus.
 本発明により得られる分散液(L)中の粒子(C)の粗大粒子量は、好ましくは1.0体積%以下であり、より好ましくは0.5体積%以下、更に好ましくは0.1体積%以下、特に好ましくは0.01体積%以下である。粗大粒子量が1体積%を超える場合、例えば分散液(L)を塗料に配合して塗布したときのコート面の平滑性が損なわれる問題が発生することや、また粒子中に粒子(C)を含有させた樹脂粒子を製造する際には樹脂粒子の粒度分布の悪化が発生する。
 なお粗大粒子とは(メジアン径×3)μm以上の粒子のことである。ただし(メジアン径×3)≦1.0の場合は1.0μm以上の粒子を粗大粒子とする。
The amount of coarse particles (C) in the dispersion (L) obtained by the present invention is preferably 1.0% by volume or less, more preferably 0.5% by volume or less, and still more preferably 0.1% by volume. % Or less, particularly preferably 0.01% by volume or less. When the amount of coarse particles exceeds 1% by volume, for example, there is a problem that the smoothness of the coated surface is impaired when the dispersion liquid (L) is blended and applied to the paint, and the particles (C) in the particles. When the resin particles containing the resin are produced, the particle size distribution of the resin particles is deteriorated.
Coarse particles are particles of (median diameter × 3) μm or more. However, when (median diameter × 3) ≦ 1.0, particles of 1.0 μm or more are coarse particles.
 本発明により得られる分散液(L)では、分散液(L)中の粒子(C)の保管中における安定性が良好である。
 安定性が良好とは、保管中の粒子のメジアン径の変化が無く、粗大粒子量の増加がないことを意味する。
In the dispersion liquid (L) obtained by the present invention, the stability during storage of the particles (C) in the dispersion liquid (L) is good.
Good stability means that there is no change in the median diameter of the particles during storage and there is no increase in the amount of coarse particles.
 本発明により得られる分散液(L)中の粒子(C)の保管中におけるメジアン径の変化率としては、3μmを超えない範囲で100%以下であり、好ましくは50%以下、より好ましくは25%以下、特に好ましくは10%以下である。変化率が100%を超える場合、粒子中に粒子(C)を含有した樹脂粒子を製造する場合、製造が不安定となり、粒度分布の悪化が発生する。 The rate of change of the median diameter during storage of the particles (C) in the dispersion (L) obtained by the present invention is 100% or less, preferably 50% or less, more preferably 25, within a range not exceeding 3 μm. % Or less, particularly preferably 10% or less. When the rate of change exceeds 100%, when producing resin particles containing particles (C) in the particles, the production becomes unstable and the particle size distribution deteriorates.
 また、本発明の分散液(L)における粗大粒子量の増加量としては、粗大粒子量の絶対値が1体積%を超えない範囲で0.5体積%以下、より好ましくは0.1体積%以下、更に好ましくは0.01体積%以下である。増加量が少ないほど、保管中における分散液が安定であり、増加量が0.5体積%を超える場合、粒子中に粒子(C)を含有した樹脂粒子の製造する場合、樹脂粒子の製造が不安定となり、粒度分布の悪化が発生する。 In addition, the amount of increase in the amount of coarse particles in the dispersion liquid (L) of the present invention is 0.5% by volume or less, more preferably 0.1% by volume within a range where the absolute value of the amount of coarse particles does not exceed 1% by volume. Hereinafter, it is more preferably 0.01% by volume or less. The smaller the increase, the more stable the dispersion during storage. When the increase exceeds 0.5% by volume, when the resin particles containing particles (C) are produced, the resin particles are produced. It becomes unstable and the particle size distribution deteriorates.
 保管中の粒子の安定性としては、分散液を10℃下で24時間静置し、静置前後でのメジアン径及び粗大粒子量を上記の方法で測定し、メジアン径の変化率及び粗大粒子の増加量を算出する。 As the stability of the particles during storage, the dispersion was allowed to stand at 10 ° C. for 24 hours, and the median diameter and the amount of coarse particles before and after standing were measured by the above-mentioned methods, and the median diameter change rate and coarse particles were measured. The amount of increase is calculated.
 メジアン径の変化率は以下の通りの計算で求める。
 計算式1 B/A×100-100=メジアン径の変化率(%)
 測定値A:10℃、24時間静置した分散液のメジアン径
 測定値B:製造後一時間以内の分散液中のメジアン径
The change rate of the median diameter is obtained by the following calculation.
Formula 1 B / A × 100-100 = Change rate of median diameter (%)
Measured value A: median diameter of dispersion liquid left to stand at 10 ° C. for 24 hours Measured value B: median diameter in dispersion liquid within one hour after production
 粗大粒子量の増加率は以下の通りの計算で求める。
 計算式2 C-D=粗大粒子量の増加率(%)
 測定値C:10℃、24時間静置した分散液中の粗大粒子量
 測定値D:製造後一時間以内の分散液中の粗大粒子量
 本発明の分散液(L)の製造方法によれば、分散液を10℃下で24時間静置し、静置前後でのメジアン径及び粗大粒子量を上記の方法で測定し、メジアン径の変化率及び粗大粒子の増加量を算出した場合に、分散液に含まれる粒子(C)のメジアン径の変化率及び粗大粒子の増加量が上述した範囲となる分散液を製造することができる。
The rate of increase in the amount of coarse particles is determined by the following calculation.
Calculation formula 2 CD = Increase rate of coarse particle amount (%)
Measured value C: Coarse particle amount in dispersion at 10 ° C. for 24 hours Measured value D: Coarse particle amount in dispersion within 1 hour after production According to the method for producing the dispersion (L) of the present invention. When the dispersion is allowed to stand at 10 ° C. for 24 hours, the median diameter and the amount of coarse particles before and after standing are measured by the above method, and the median diameter change rate and the amount of increase in coarse particles are calculated, A dispersion in which the rate of change in the median diameter of the particles (C) contained in the dispersion and the amount of increase in coarse particles are in the above-described ranges can be produced.
 本発明の分散液の製造方法においては、分散質(A)と溶剤(S)と圧縮性流体(F)との混合物(X)を体積膨張することによって分散液(L)を得ることができる。
 本発明の分散液の製造方法においては、分散質(A)の融点又は軟化点以下の温度で分散質(A)が溶剤(S)及び/又は圧縮性流体(F)に溶解した状態で、分散質(A)の融点又は軟化点以下で混合物(X)を体積膨張させる。
 本発明の分散液の製造方法においては、分散質(A)の融点又は軟化点以下の温度の混合物(X)を体積膨張させる。この分散質(A)の融点又は軟化点以下の温度の混合物(X)において、分散質(A)は溶剤(S)及び/又は圧縮性流体(F)に溶解した状態である。
In the method for producing a dispersion of the present invention, the dispersion (L) can be obtained by volume expansion of the mixture (X) of the dispersoid (A), the solvent (S), and the compressive fluid (F). .
In the method for producing a dispersion of the present invention, the dispersoid (A) is dissolved in the solvent (S) and / or the compressible fluid (F) at a temperature below the melting point or softening point of the dispersoid (A). The mixture (X) is volume-expanded below the melting point or softening point of the dispersoid (A).
In the method for producing a dispersion of the present invention, the mixture (X) having a temperature below the melting point or softening point of the dispersoid (A) is volume-expanded. In the mixture (X) having a temperature equal to or lower than the melting point or softening point of the dispersoid (A), the dispersoid (A) is in a state dissolved in the solvent (S) and / or the compressible fluid (F).
 なお圧縮性流体(F)として二酸化炭素が用いられる際は、分散質(A)にフッ素、シリコーン基、エーテル基、カルボニル基及び炭化水素鎖からなる群より選択される少なくとも1種が含有されることが好ましい。 When carbon dioxide is used as the compressible fluid (F), the dispersoid (A) contains at least one selected from the group consisting of fluorine, silicone group, ether group, carbonyl group and hydrocarbon chain. It is preferable.
 混合物(X)における分散質(A)と圧縮性流体(F)と溶剤(S)との体積比率は、体積膨張後の分散液(L)が目的の温度になるならば、いかなる比率であっても構わないが、圧縮性流体(F)の比率が高いほど体積膨張後の温度が下がり、粒子(C)の粒径が小さくまた安定な分散液(L)が得られやすい。また、圧縮性流体(F)が分散質(A)にとって良溶媒であるならば圧縮性流体(F)の比率が高いほど粘度が下がり、粒子(C)の粒径が小さくまた安定な分散液(L)が得られやすい。   The volume ratio of the dispersoid (A), the compressive fluid (F), and the solvent (S) in the mixture (X) is any ratio as long as the dispersion liquid (L) after volume expansion reaches the target temperature. However, the higher the ratio of the compressible fluid (F), the lower the temperature after volume expansion, and the smaller the particle size of the particles (C), the more easily a stable dispersion (L) can be obtained. If the compressible fluid (F) is a good solvent for the dispersoid (A), the higher the ratio of the compressible fluid (F), the lower the viscosity, and the smaller the particle size of the particles (C), and the more stable dispersion. (L) is easily obtained. *
 混合物(X)における分散質(A)と圧縮性流体(F)と溶剤(S)の混合は、分散質(A)が液状であり、撹拌されて均一溶解、又は均一分散されているなら充分である。ただし、不均一であるなら、分散液(L)に温度分布が発生し、粒子(C)の粒度分布が悪化する。 Mixing of the dispersoid (A), the compressible fluid (F) and the solvent (S) in the mixture (X) is sufficient if the dispersoid (A) is in a liquid state and is uniformly dissolved or uniformly dispersed by stirring. It is. However, if it is not uniform, a temperature distribution is generated in the dispersion liquid (L), and the particle size distribution of the particles (C) is deteriorated.
 分散質(A)が融点を有する場合の分散液(L)の製造方法について詳細に説明する。
 本発明の分散液の製造方法においては、分散質(A)の融点以下の温度で混合物(X)を体積膨張して、分散質(A)の粒子(C)が、溶剤(S)中に分散された分散液(L)を得る。本発明の方法は、混合物(X)を調製する工程を含んでもよい。混合物(X)の調製方法は特に限定されず、例えば、分散質(A)、溶剤(S)及び圧縮性流体(F)を混合することにより調製することができる。
 また、好ましい形態としては、分散質(A)の融点(T0)以上の温度(液状を維持できる温度以上)で、溶剤(S)と分散質(A)と、圧縮性流体(F)を混合し、混合物(X)を作製する。圧縮性流体(F)として二酸化炭素を用いる場合には、圧力が0.5MPa以上である二酸化炭素を用いることが好ましい。
 その後、混合物(X)を分散質(A)の融点以下の温度(T2)に温調し、その後体積膨張して圧縮性流体(F)を気化させて除去することで、分散質(A)の析出温度(T1)以下に冷却(T3)することで、分散質(A)が、溶剤(S)中に粒子(C)として分散された分散液(L)を得る。
A method for producing the dispersion liquid (L) when the dispersoid (A) has a melting point will be described in detail.
In the method for producing a dispersion of the present invention, the mixture (X) is volume-expanded at a temperature not higher than the melting point of the dispersoid (A) so that the particles (C) of the dispersoid (A) are contained in the solvent (S). A dispersed dispersion (L) is obtained. The method of the present invention may comprise a step of preparing the mixture (X). The preparation method of mixture (X) is not specifically limited, For example, it can prepare by mixing a dispersoid (A), a solvent (S), and a compressive fluid (F).
Further, as a preferred form, the solvent (S), the dispersoid (A), and the compressive fluid (F) are mixed at a temperature equal to or higher than the melting point (T0) of the dispersoid (A) (at a temperature that can maintain the liquid state). To prepare a mixture (X). When carbon dioxide is used as the compressive fluid (F), it is preferable to use carbon dioxide having a pressure of 0.5 MPa or more.
Thereafter, the mixture (X) is adjusted to a temperature (T2) below the melting point of the dispersoid (A), and then the volume is expanded to vaporize and remove the compressible fluid (F). By cooling (T3) below the precipitation temperature (T1), a dispersion (L) in which the dispersoid (A) is dispersed as particles (C) in the solvent (S) is obtained.
 分散質(A)が融点を有さない場合には、分散質(A)の軟化点以下の温度で混合物(X)を体積膨張して、分散質(A)の粒子(C)が、溶剤(S)中に分散された分散液(L)を得る。
 分散質(A)として融点を有さないもの(非晶質材料)を使用する場合の混合物(X)も特に限定されないが、例えば、分散質(A)の軟化点以上の温度(液状を維持できる温度以上)で、溶剤(S)と分散質(A)と圧縮性流体(F)とを混合し、混合物(X)を作製することが好ましい。圧縮性流体(F)として二酸化炭素を用いる場合には、圧力が0.5MPa以上である二酸化炭素を用いることが好ましい。
 その後、混合物(X)を分散質(A)の軟化点以下の温度に温調し、その後体積膨張して圧縮性流体(F)を気化させて除去することで、分散質(A)の析出温度以下に冷却し、分散質(A)が、溶剤(S)中に粒子(C)として分散された分散液(L)を得ることができる。
When the dispersoid (A) does not have a melting point, the mixture (X) is volume-expanded at a temperature below the softening point of the dispersoid (A) so that the particles (C) of the dispersoid (A) A dispersion liquid (L) dispersed in (S) is obtained.
The mixture (X) in the case of using a dispersoid (A) that does not have a melting point (amorphous material) is not particularly limited. For example, the temperature above the softening point of the dispersoid (A) (maintains a liquid state). It is preferable to mix the solvent (S), the dispersoid (A), and the compressive fluid (F) at a temperature higher than or equal to a temperature where the mixture (X) can be produced. When carbon dioxide is used as the compressive fluid (F), it is preferable to use carbon dioxide having a pressure of 0.5 MPa or more.
Thereafter, the mixture (X) is temperature-controlled to a temperature below the softening point of the dispersoid (A), and then volume-expanded to vaporize and remove the compressible fluid (F), thereby precipitating the dispersoid (A). The dispersion (L) in which the dispersoid (A) is dispersed as particles (C) in the solvent (S) can be obtained by cooling below the temperature.
 上記のように分散質(A)と溶剤(S)の混合について、取扱い安さの観点から予め溶剤と混ぜ合わされるほうが好ましい。溶剤(S)の量は、分散質(A)に対して1~100重量%使用するのが好ましく、更に好ましくは5~80重量%、特に好ましくは10~60重量%である。この範囲内において分散液を、取り扱いしやすい粘度で得ることができる。
 分散質(A)と溶剤(S)を混合し、分散質(A)が析出しない温度以上の混合物〔好ましくは分散質(A)の溶剤(S)溶液〕とする手順としては特に制限はなく、常温の分散質(A)と溶剤(S)を混合した後に加熱しても、加熱した分散質(A)あるいは溶剤(S)にもう一方を導入しても、どちらでもよい。なお、前記の分散剤等の添加剤を用いる場合、この混合物中に添加するのが好ましい。
As described above, it is preferable that the dispersoid (A) and the solvent (S) are mixed with the solvent in advance from the viewpoint of ease of handling. The amount of the solvent (S) is preferably 1 to 100% by weight based on the dispersoid (A), more preferably 5 to 80% by weight, particularly preferably 10 to 60% by weight. Within this range, the dispersion can be obtained with a viscosity that is easy to handle.
There is no particular limitation on the procedure for mixing the dispersoid (A) and the solvent (S) and making the mixture at a temperature higher than the temperature at which the dispersoid (A) does not precipitate [preferably the solvent (S) solution of the dispersoid (A)]. The mixture may be heated after mixing the normal temperature dispersoid (A) and the solvent (S), or the other may be introduced into the heated dispersoid (A) or the solvent (S). In addition, when using additives, such as said dispersing agent, adding to this mixture is preferable.
 本発明の分散液の製造方法においては、分散質(A)を含む粒子(C)の一次粒子がすでに狙いのサイズであり、二次凝集をしているだけの場合は、分散質(A)を液状にする必要はなく、そのためこの場合は更に上記の方法以外として、例えば圧縮性流体(F)として二酸化炭素を用いる場合には、圧力が0.5MPa以上である圧縮性流体(F)を混合し、その後、急激な減圧膨張し、共に圧縮性流体(F)を気化させて溶剤(S)と混合されることで、分散質(A)が、溶剤(S)中に分散された分散液(L)を得る。
 なお溶剤(S)は上記工程のどの段階で混ぜ合わされてもよく、予め分散質(A)と混合されていても良い。
In the method for producing a dispersion according to the present invention, when the primary particles of the particles (C) containing the dispersoid (A) are already the target size and only have secondary aggregation, the dispersoid (A) Therefore, in this case, in addition to the above method, for example, when carbon dioxide is used as the compressive fluid (F), the compressive fluid (F) having a pressure of 0.5 MPa or more is used. Dispersed in which the dispersoid (A) is dispersed in the solvent (S) by mixing and then rapidly expanding under reduced pressure, vaporizing the compressive fluid (F) and mixing with the solvent (S). A liquid (L) is obtained.
The solvent (S) may be mixed at any stage of the above process, or may be previously mixed with the dispersoid (A).
 体積膨張させる手段としては、圧縮性流体の加熱操作や減圧操作があるが、効率よく粉砕、解砕するためには減圧操作による体積膨張が好ましい。
 混合物(X)を体積膨張する直前の圧力としては、小粒径かつ粗大粒子の少ない分散液を得るという観点から好ましくは2~15MPaであり、更に好ましくは2.5~12MPaであり、特に好ましくは3.5~10MPaである。また、混合物(X)を体積膨張後の圧力としては、小粒径かつ粗大粒子の少ない分散液を得るという観点から好ましくは-0.1~2MPaであり、更に好ましくは0~1MPaであり、特に好ましくは0.1~0.5MPaである。
As means for expanding the volume, there are heating operation of the compressive fluid and decompression operation, but volume expansion by the decompression operation is preferable for efficient pulverization and pulverization.
The pressure immediately before volumetric expansion of the mixture (X) is preferably 2 to 15 MPa, more preferably 2.5 to 12 MPa, particularly preferably from the viewpoint of obtaining a dispersion having a small particle size and few coarse particles. Is 3.5 to 10 MPa. Further, the pressure after volume expansion of the mixture (X) is preferably −0.1 to 2 MPa, more preferably 0 to 1 MPa from the viewpoint of obtaining a dispersion having a small particle size and few coarse particles. Particularly preferred is 0.1 to 0.5 MPa.
 分散質(A)と溶剤(S)との混合物〔以下、(A)含有混合物と呼ぶ〕と、例えば圧力が0.5MPa以上である二酸化炭素等の圧縮性流体(F)を混合する方法は特に限定されないが、好ましい具体的な方法としては、(A)含有混合物と圧縮性流体(F)の混合を耐圧式の容器で行う場合、(A)含有混合物を耐圧式の容器に仕込み、(A)含有混合物の温度が低く分散質(A)が析出している場合は、加熱し分散質(A)を液状にする。分散質(A)の融点以上の温度で分散質(A)を融解させることができる。分散質(A)が完全に融解した後、分散質(A)の融点以下の温度に調整しながら、耐圧容器に備え付けたポンプ等の加圧手段により、所望の圧力に達するまで圧縮性流体(F)を容器内に導入し、(A)含有混合物と混合する。圧縮性流体(F)を導入することで(A)含有混合物の体積が膨張するため、(A)含有混合物の初期仕込み量は、容器の容積に対して5~70体積%が好ましい。 A method of mixing a mixture of a dispersoid (A) and a solvent (S) (hereinafter referred to as (A) -containing mixture) and a compressible fluid (F) such as carbon dioxide having a pressure of 0.5 MPa or more, for example, Although not particularly limited, as a preferred specific method, when mixing the (A) containing mixture and the compressive fluid (F) in a pressure resistant container, the (A) containing mixture is charged into the pressure resistant container, ( A) When the temperature of the containing mixture is low and the dispersoid (A) is precipitated, the dispersoid (A) is liquefied by heating. The dispersoid (A) can be melted at a temperature equal to or higher than the melting point of the dispersoid (A). After the dispersoid (A) is completely melted, a compressive fluid (until the desired pressure is reached by a pressurizing means such as a pump provided in the pressure vessel while adjusting to a temperature below the melting point of the dispersoid (A). F) is introduced into the container and mixed with the mixture containing (A). Since the volume of the (A) -containing mixture expands by introducing the compressive fluid (F), the initial charge amount of the (A) -containing mixture is preferably 5 to 70% by volume with respect to the volume of the container.
 本発明の分散液の製造方法に用いる耐圧容器は、例えば圧縮性流体(F)として二酸化炭素等を用いる場合には、0.5MPa以上の最大圧力に耐え得るものであり、容器内で(A)含有混合物と圧縮性流体(F)を攪拌混合できる設備を備え付けたもので、更に容器下部に(A)含有混合物取り出し用のノズルを備えているものが好ましい。ノズルは液状物質が通ることが出来るものであるならいかなるノズルでもかまわず、例えば口径0.1~5.0mm程度のニードルバルブあるいはボールバルブの開閉でも、圧縮性流体(F)混合後の(A)含有混合液を高圧状態から大気中に一気に噴出させることができる。 The pressure vessel used in the method for producing a dispersion of the present invention can withstand a maximum pressure of 0.5 MPa or more when, for example, carbon dioxide or the like is used as the compressive fluid (F). It is preferable to equip the equipment which can stir and mix the mixture and the compressive fluid (F) with a nozzle for taking out the mixture (A) at the bottom of the container. The nozzle may be any nozzle that allows liquid substances to pass through, for example, opening and closing a needle valve or a ball valve having a diameter of about 0.1 to 5.0 mm (A) after mixing of compressive fluid (F) (A ) The mixed liquid can be ejected from the high pressure state into the atmosphere at once.
 圧縮性流体(F)の導入後、しばらく攪拌することで圧縮性流体(F)を充分(A)含有混合物に浸透させる。攪拌時間は、(A)含有混合物が圧縮性流体(F)全体に充分混合される、最低限度の時間でよく、10~30分程度攪拌するのが好ましい。圧縮性流体(F)を充分混合することにより(A)含有混合物の粘度を下げ、次工程の減圧膨張による分散質(A)の微粒子化を効果的に行うことができる。
 また、(A)含有混合物と圧縮性流体(F)の攪拌混合時の温度は、過昇温による分散質の凝集防止や、吐出時の(A)含有混合物の温度調整等の点から、好ましくは20~180℃、より好ましくは30~120℃、更に好ましくは35~100℃、特に好ましくは40~85℃である。
After introducing the compressive fluid (F), the mixture is sufficiently stirred to allow the compressive fluid (F) to sufficiently permeate the mixture containing (A). The stirring time may be the minimum time that the mixture (A) is sufficiently mixed with the entire compressive fluid (F), and is preferably stirred for about 10 to 30 minutes. By sufficiently mixing the compressive fluid (F), the viscosity of the (A) -containing mixture can be lowered, and the dispersoid (A) can be effectively made into fine particles by decompression expansion in the next step.
In addition, the temperature during the stirring and mixing of the (A) -containing mixture and the compressive fluid (F) is preferably from the viewpoint of preventing aggregation of dispersoids due to excessive temperature rise, adjusting the temperature of the (A) -containing mixture during discharge, and the like. Is 20 to 180 ° C, more preferably 30 to 120 ° C, still more preferably 35 to 100 ° C, and particularly preferably 40 to 85 ° C.
 攪拌後、容器下部ノズルよりバルブを開けて(A)含有混合物を一気に大気圧まで減圧膨張させる。これにより(A)含有混合物の温度が急激に下がり、分散質(A)が析出する温度以下となり溶解した分散質(A)が析出する。更に圧縮性流体(F)を気化させて除くことで、分散質(A)が溶剤(S)中に分散された分散液(L)が得られる。この減圧膨張により(A)含有混合物の温度を充分に下げ、分散質(A)を充分に析出させるために、減圧膨張前の(A)含有混合物の温度及び圧力は適正な条件に設定されるべきで、これはエンタルピー線図から設定されることが好ましい。また、(A)含有混合物を一気に減圧膨張させる方法としては、ノズルに取り付けたニードルバルブあるいはボールバルブの開閉により、高圧下から吐出させるのが好ましい。 After stirring, the valve is opened from the nozzle at the bottom of the container and the mixture (A) is expanded under reduced pressure to atmospheric pressure all at once. As a result, the temperature of the (A) -containing mixture is drastically decreased, and the dissolved dispersoid (A) is deposited below the temperature at which the dispersoid (A) is precipitated. Further, by removing the compressible fluid (F) by vaporization, a dispersion (L) in which the dispersoid (A) is dispersed in the solvent (S) is obtained. In order to sufficiently lower the temperature of the (A) -containing mixture by this decompression and to sufficiently precipitate the dispersoid (A), the temperature and pressure of the (A) -containing mixture before decompression are set to appropriate conditions. Should be set from the enthalpy diagram. Moreover, as a method of decompressing and expanding the (A) containing mixture at once, it is preferable to discharge from a high pressure by opening and closing a needle valve or a ball valve attached to the nozzle.
 (A)含有混合物と圧縮性流体(F)の混合は、上記の耐圧容器内で行う方法以外に、ラインブレンド(インライン混合)方法により連続的に行うことが、生産性の向上、品質の一定化、製造スペースの縮小化等の面から好ましい。ラインブレンド方法に用いる装置の具体例として、スタティックミキサー、インラインミキサー、ラモンドスーパーミキサー、スルザーミキサーのような静止型インライン混合機や、バイブミキサー、ターボミキサーのような撹拌型インライン混合機等が挙げられる。装置のミキサー部分の長さ及び配管径、ミキシング装置(エレメント)数に何ら限定はないが、例えば圧縮性流体(F)として二酸化炭素を用いる場合等には、0.5MPa以上の最大圧力に耐え得るものでなければならない。
 ラインブレンド方法に用いる装置の出口には、耐圧容器と同様の、混合物取り出し用のノズルを備えているのが好ましい。
(A) Mixing of the mixture and the compressive fluid (F) may be performed continuously by a line blend (in-line mixing) method, in addition to the method in the pressure vessel described above, to improve productivity and to make the quality constant. This is preferable from the standpoints of manufacturing and reduction of manufacturing space. Specific examples of the apparatus used for the line blending method include static in-line mixers such as static mixers, in-line mixers, ramond super mixers, and sulzer mixers, and stirring-type in-line mixers such as vibrator mixers and turbo mixers. It is done. There is no limitation on the length and pipe diameter of the mixer part of the device, and the number of mixing devices (elements). For example, when carbon dioxide is used as the compressible fluid (F), it can withstand a maximum pressure of 0.5 MPa or more. It must be obtained.
The outlet of the apparatus used for the line blending method is preferably provided with a nozzle for taking out the mixture, similar to the pressure vessel.
 (A)含有混合物と圧縮性流体(F)の混合方法としては、まず、圧縮性流体(F)をラインブレンドを行う装置内に導入して圧力が0.5MPa以上となるよう調整し、次いで(A)含有混合物を圧縮性流体(F)に導入するのが好ましい。上記圧縮性流体(F)の圧力は、耐圧容器内で行う方法と同様の圧力が好ましい。
 ラインブレンドを行う温度は、前記の耐圧容器を用いて混合する場合と同様である。また、装置内の滞留時間は、混合が充分行われるのであれば特に限定されないが、0.1~1800秒が好ましい。
 ラインブレンド後の混合物を大気圧まで減圧膨張させ、圧縮性流体(F)を気化させて除くことで、分散質(A)を含む粒子(C)が溶剤(S)中に分散された分散液(L)が得られる。
(A) As a mixing method of the containing mixture and the compressive fluid (F), first, the compressive fluid (F) is introduced into an apparatus for performing line blending and adjusted so that the pressure becomes 0.5 MPa or more, and then (A) It is preferable to introduce the containing mixture into the compressive fluid (F). The pressure of the compressive fluid (F) is preferably the same pressure as that used in the pressure vessel.
The temperature at which line blending is performed is the same as in the case of mixing using the above-described pressure vessel. The residence time in the apparatus is not particularly limited as long as the mixing is sufficiently performed, but is preferably 0.1 to 1800 seconds.
Dispersion liquid in which particles (C) containing dispersoid (A) are dispersed in solvent (S) by expanding the mixture after line blending under reduced pressure to atmospheric pressure and vaporizing and removing compressive fluid (F) (L) is obtained.
 このようなラインブレンド方法に用いる装置の一例について図面を用いて説明する。
 図1は、本発明における、ラインブレンドによる混合方法での分散液の作製に用いる実験装置のフローチャートである。なお、以下では圧縮性流体(F)として二酸化炭素を用いる場合を例としているが、本発明における圧縮性流体(F)はこれに限定されない。
 分散質(A)と溶剤(S)と圧縮性流体(F)とを混合する方法としては、例えば、まず圧縮性流体(F)を、二酸化炭素ボンベB1から二酸化炭素ポンプP2を通じてラインブレンドを行う装置内(スタティックミキサーM1)に導入し、例えば二酸化炭素が液状又は超臨界状態となる圧力(0.5MPa以上)及び温度となるよう調整し、次いで分散質(A)と溶剤(S)とを含む溶液を、溶解槽T1から溶液ポンプP1を通じて液状又は超臨界状態の二酸化炭素に導入するのが好ましい。次いで、スタティックミキサーM1で分散質(A)と溶剤(S)と圧縮性流体(F)とを、圧力及び温度を維持しながらラインブレンドして混合物(X)を得る。分散質(A)と溶剤(S)とを含む溶液は、溶解槽T1に分散質(A)と溶剤(S)とを仕込み、密閉して混合することにより調製することができる。この混合の際には、撹拌及び加熱を行うことが好ましい。
 次に、分散液受け槽T2に通じるバルブV1を開くことによりラインブレンド後の混合物(X)を大気圧まで減圧膨張させ、圧縮性流体(F)を気化させて除くことで、分散質(A)を含む粒子(C)が溶剤(S)に分散された分散液(L)が得られる。
An example of an apparatus used for such a line blending method will be described with reference to the drawings.
FIG. 1 is a flowchart of an experimental apparatus used for producing a dispersion in the mixing method by line blending in the present invention. In the following, the case where carbon dioxide is used as the compressive fluid (F) is taken as an example, but the compressive fluid (F) in the present invention is not limited to this.
As a method of mixing the dispersoid (A), the solvent (S), and the compressive fluid (F), for example, first, the compressive fluid (F) is line blended from the carbon dioxide cylinder B1 through the carbon dioxide pump P2. Introduced into the apparatus (static mixer M1), for example, adjusted so that carbon dioxide is in a liquid or supercritical state pressure (0.5 MPa or more) and temperature, then dispersoid (A) and solvent (S) The solution to be contained is preferably introduced into the liquid or supercritical carbon dioxide from the dissolution tank T1 through the solution pump P1. Subsequently, the dispersoid (A), the solvent (S), and the compressive fluid (F) are line-blended with the static mixer M1 while maintaining the pressure and temperature to obtain a mixture (X). The solution containing the dispersoid (A) and the solvent (S) can be prepared by charging the dispersoid (A) and the solvent (S) in the dissolution tank T1, and sealingly mixing them. In this mixing, it is preferable to perform stirring and heating.
Next, by opening the valve V1 leading to the dispersion liquid receiving tank T2, the mixture (X) after the line blending is expanded under reduced pressure to atmospheric pressure, and the compressive fluid (F) is vaporized and removed, whereby the dispersoid (A ) Containing particles (C) are dispersed in the solvent (S).
 また、本発明の分散液の製造方法は、分散質(A)と圧縮性流体(F)をラインブレンドにより混合する工程を含む方法であることが好ましい。 Further, the method for producing a dispersion of the present invention is preferably a method including a step of mixing the dispersoid (A) and the compressible fluid (F) by line blending.
 また、混合物(X)が調製される耐圧容器から混合物(X)を目的の圧力に調製された別の受け容器へ移送する場合は、混合物(X)を移送できる口径のノズルと受け容器を同じ圧力に保つレギュレーターが必要である。ただし、後者の場合、受け容器の圧力を大気圧とするのであれば、レギュレーターは不要である。 In addition, when the mixture (X) is transferred from the pressure resistant container in which the mixture (X) is prepared to another receiving container prepared at the target pressure, the nozzle having the same diameter that can transfer the mixture (X) and the receiving container are the same. A regulator that keeps the pressure is needed. However, in the latter case, a regulator is not required if the pressure in the receiving container is atmospheric pressure.
 本発明の分散液の製造方法で製造された分散液(L)も、本発明に包含される。
 本発明の分散液は、上記分散質(A)を含む粒子(C)が溶剤(S)に分散されているものであり、該粒子(C)のメジアン径は3.0μm以下である。
 本発明の分散液の用途は特に限定されず、分散質(A)及び溶剤(S)の種類等に応じて種々の用途に使用することができるものである。例えば、塗料、インキ、化粧品、食品、医薬品その他の各種の用途に好適に使用することができる。
The dispersion (L) produced by the method for producing a dispersion of the present invention is also included in the present invention.
In the dispersion of the present invention, particles (C) containing the dispersoid (A) are dispersed in a solvent (S), and the median diameter of the particles (C) is 3.0 μm or less.
The application of the dispersion liquid of the present invention is not particularly limited, and can be used for various applications depending on the types of the dispersoid (A) and the solvent (S). For example, it can be suitably used for various applications such as paints, inks, cosmetics, foods, pharmaceuticals and the like.
 以下実施例により本発明を更に説明するが、本発明はこれに限定されるものではない。以下の記載において「部」は重量部を示す。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto. In the following description, “parts” indicates parts by weight.
<製造例1> 分散剤の製造
 攪拌棒及び温度計を備えた耐圧反応容器に、キシレン454部、低分子量ポリエチレン〔三洋化成工業製 サンワックス LEL-400:軟化点128℃〕150部を投入し、窒素置換後170℃に昇温して充分溶解し、スチレン716部、アクリル酸ブチル46部、アクリロニトリル88部、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート34部、及びキシレン119部の混合溶液を、170℃で3時間で滴下して重合し、更にこの温度で30分間保持した。次いで脱溶剤を行い、[分散剤1]を得た。[分散剤1]の重量平均分子量は5200であった。重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)にて測定、以下Mwと略記する。GPCの測定条件を、以下に示す。以降の製造例についても同様に測定した。
(GPC測定条件)
 装置(一例) :東ソー(株)製 HLC-8120
 カラム(一例):TSK GEL GMH6 2本 〔東ソー(株)製〕
 測定温度   :40℃
 試料溶液   :0.25重量%のTHF溶液
 溶液注入量  :100μL
 検出装置   :屈折率検出器
 基準物質   :東ソー製 標準ポリスチレン(TSKstandard POLY STYRENE)12点(分子量 500、1050、2800、9100、18100、37900、96400、190000、355000、1090000、2890000)
<Production Example 1> Production of Dispersant 454 parts of xylene and 150 parts of low molecular weight polyethylene [Sanwax LEL-400 manufactured by Sanyo Chemical Industries, Ltd., softening point 128 ° C.] 150 parts were charged into a pressure-resistant reaction vessel equipped with a stir bar and a thermometer. After the nitrogen substitution, the temperature was raised to 170 ° C. and dissolved sufficiently, and a mixed solution of 716 parts of styrene, 46 parts of butyl acrylate, 88 parts of acrylonitrile, 34 parts of di-t-butylperoxyhexahydroterephthalate, and 119 parts of xylene was obtained. The solution was dropped at 170 ° C. for 3 hours to polymerize, and further kept at this temperature for 30 minutes. Next, the solvent was removed to obtain [Dispersant 1]. The weight average molecular weight of [Dispersant 1] was 5200. The weight average molecular weight is measured by gel permeation chromatography (GPC) and hereinafter abbreviated as Mw. The measurement conditions for GPC are shown below. It measured similarly about the subsequent manufacture examples.
(GPC measurement conditions)
Device (example): HLC-8120 manufactured by Tosoh Corporation
Column (example): TSK GEL GMH6 2 [Tosoh Corporation]
Measurement temperature: 40 ° C
Sample solution: 0.25 wt% THF solution Solution injection amount: 100 μL
Detection device: Refractive index detector Reference material: 12 standard polystyrene (TSK standard POLY STYRENE) manufactured by Tosoh (molecular weight 500, 1050, 2800, 9100, 18100, 37900, 96400, 190000, 355000, 900000, 2890000)
<製造例2>
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、1,6-ヘキサンジオール16部、セバシン酸16部、及び縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)0.05部を入れ、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで225℃まで徐々に昇温しながら、窒素気流下に、生成する水及び1,6-ヘキサンジオールを留去しながら4時間反応させ、更に5~20mmHgの減圧下に反応させ、Mwが6000になった時点で取り出し[結晶性樹脂1]を得た。[結晶性樹脂1]の融点は65℃であった。
<Production Example 2>
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introducing tube, 16 parts of 1,6-hexanediol, 16 parts of sebacic acid, and 0.05 part of titanium dihydroxybis (triethanolaminate) as a condensation catalyst are placed. The reaction was carried out for 8 hours at 180 ° C. while distilling off the water produced under a nitrogen stream. Next, while gradually raising the temperature to 225 ° C., the reaction was carried out for 4 hours while distilling off the generated water and 1,6-hexanediol under a nitrogen stream, and the reaction was further carried out under a reduced pressure of 5 to 20 mmHg. [Crystalline Resin 1] was obtained. [Crystalline resin 1] had a melting point of 65 ° C.
<製造例3>
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、1,6-ヘキサンジオール159部、ドデカン二酸286部、及び縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、170℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水を留去しながら4時間反応させ、更に5~20mmHgの減圧下に反応させ取り出した。取り出し[結晶性樹脂2]を得た。[結晶性樹脂2]の融点は65℃、Mwが10000であった。
<Production Example 3>
In a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe, 159 parts of 1,6-hexanediol, 286 parts of dodecanedioic acid, and 1 part of titanium dihydroxybis (triethanolaminate) as a condensation catalyst were added. The reaction was carried out for 8 hours at 170 ° C. while distilling off the water produced under a nitrogen stream. Next, while gradually raising the temperature to 220 ° C., the reaction was carried out for 4 hours while distilling off the generated water under a nitrogen stream, and the reaction was further carried out under reduced pressure of 5 to 20 mmHg. Removal [Crystalline Resin 2] was obtained. [Crystalline resin 2] had a melting point of 65 ° C. and Mw of 10,000.
<製造例4>
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、1,6-ヘキサンジオール100部、イソフタル酸30部、テレフタル酸70部、及び縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、170℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水を留去しながら4時間反応させ、更に5~20mmHgの減圧下に反応させ取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し分散質[結晶性樹脂3]を得た。[結晶性樹脂3]の融点は99℃、Mwが6000であった。
<Production Example 4>
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 100 parts of 1,6-hexanediol, 30 parts of isophthalic acid, 70 parts of terephthalic acid, and titanium dihydroxybis (triethanolaminate) 1 as a condensation catalyst The reaction was allowed to proceed for 8 hours at 170 ° C. under a nitrogen stream while distilling off the water produced. Next, while gradually raising the temperature to 220 ° C., the reaction was carried out for 4 hours while distilling off the generated water under a nitrogen stream, and the reaction was further carried out under reduced pressure of 5 to 20 mmHg. The taken-out resin was cooled to room temperature, and then pulverized and granulated to obtain a dispersoid [crystalline resin 3]. [Crystalline resin 3] had a melting point of 99 ° C. and Mw of 6000.
<製造例5>
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、イソフタル酸100部、1,6-ヘキサンジオール100部及び縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、170℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水を留去しながら4時間反応させ、更に5~20mmHgの減圧下に反応させ取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し[結晶性樹脂4]を得た。[結晶性樹脂4]の融点は77℃、Mwが5430であった。
<Production Example 5>
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 100 parts of isophthalic acid, 100 parts of 1,6-hexanediol and 1 part of titanium dihydroxybis (triethanolaminate) as a condensation catalyst were placed at 170 ° C. The reaction was carried out for 8 hours while distilling off the water produced under a nitrogen stream. Next, while gradually raising the temperature to 220 ° C., the reaction was carried out for 4 hours while distilling off the generated water under a nitrogen stream, and the reaction was further carried out under reduced pressure of 5 to 20 mmHg. The taken-out resin was cooled to room temperature and then pulverized into particles to obtain [Crystalline Resin 4]. [Crystalline resin 4] had a melting point of 77 ° C. and Mw of 5430.
<製造例6>
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、セバシン酸15部、アジピン酸2部、1,4-ブタンジオール16部、及び縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)0.05部を入れ、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで225℃まで徐々に昇温しながら、窒素気流下に、生成する水及び1,6-ヘキサンジオールを留去しながら4時間反応させ、更に5~20mmHgの減圧下に反応させ、取り出し[結晶性樹脂5]を得た。[結晶性樹脂5]の融点は58℃、Mwがおよそ6000であった。
<Production Example 6>
In a reaction vessel equipped with a condenser, a stirrer and a nitrogen inlet tube, 15 parts of sebacic acid, 2 parts of adipic acid, 16 parts of 1,4-butanediol, and titanium dihydroxybis (triethanolaminate) 0 as a condensation catalyst .05 parts was added and reacted at 180 ° C. under a nitrogen stream for 8 hours while distilling off generated water. Next, while gradually raising the temperature to 225 ° C., the reaction was carried out for 4 hours while distilling off the generated water and 1,6-hexanediol under a nitrogen stream, and the reaction was further carried out under a reduced pressure of 5 to 20 mmHg. Resin 5] was obtained. [Crystalline resin 5] had a melting point of 58 ° C. and Mw of about 6000.
<製造例7>
 攪拌棒及び温度計をセットした反応容器に、1,4-ブタンジオール66部、1,6-ヘキサンジオール86部、及びメチルエチルケトン(MEK)40部を仕込んだ。この溶液にヘキサメチレンジイソシアネート(HDI)248部を仕込み80℃で5時間反応し、[結晶性樹脂6]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂6]の融点は57℃、Mwが9700であった。
<Production Example 7>
A reaction vessel equipped with a stir bar and a thermometer was charged with 66 parts of 1,4-butanediol, 86 parts of 1,6-hexanediol, and 40 parts of methyl ethyl ketone (MEK). This solution was charged with 248 parts of hexamethylene diisocyanate (HDI) and reacted at 80 ° C. for 5 hours to obtain a MEK solution of [crystalline resin 6]. After removing the solvent, [Crystalline Resin 6] had a melting point of 57 ° C. and Mw of 9700.
<製造例8>
 攪拌装置及び脱溶剤装置のついた反応容器に、メチルエチルケトン1000部、1,6-ヘキサンジオール430部、ヘキサメチレンジイソシアネート570部を投入し、80℃で7時間反応を行い、80℃、20kPaで脱溶剤し、[結晶性樹脂7]を得た。[結晶性樹脂7]はMw7,500、融点75℃であった。
<Production Example 8>
Into a reaction vessel equipped with a stirrer and a desolventizer, 1000 parts of methyl ethyl ketone, 430 parts of 1,6-hexanediol and 570 parts of hexamethylene diisocyanate are added and reacted at 80 ° C. for 7 hours, followed by desorption at 80 ° C. and 20 kPa. Solvent was used to obtain [Crystalline Resin 7]. [Crystalline resin 7] had an Mw of 7,500 and a melting point of 75 ° C.
<製造例9>
 攪拌装置及び脱溶剤装置のついた反応容器に、メチルエチルケトン1000部、1,6-ヘキサンジオール210部、1,6-ヘキサンジオールとセバシン酸からなるポリエステルジオール(豊国製油(株)製、商品名「HS 2H-200S」、水酸基価56)500部、ヘキサメチレンジイソシアネート290部を投入し、80℃で7時間反応を行い、80℃、20kPaで脱溶剤し、[結晶性樹脂8]を得た。[結晶性樹脂8]はMw9,000、融点60℃であった。
<Production Example 9>
In a reaction vessel equipped with a stirrer and a solvent removal apparatus, 1000 parts of methyl ethyl ketone, 210 parts of 1,6-hexanediol, polyester diol composed of 1,6-hexanediol and sebacic acid (manufactured by Toyokuni Oil Co., Ltd., trade name “ HS 2H-200S ”, hydroxyl value 56) 500 parts and hexamethylene diisocyanate 290 parts were added, reacted at 80 ° C. for 7 hours, and desolventized at 80 ° C. and 20 kPa to obtain [Crystalline Resin 8]. [Crystalline resin 8] had an Mw of 9,000 and a melting point of 60 ° C.
 <製造例10>
 1,9-ノナンジオール50部、及びジエチレングリコール38部を反応容器内に入れ、攪拌下ナトリウムメトキシドの25重量%メタノール溶液0.1部を添加し、160℃に昇温した。昇温終了後、ジメチルカーボネート51部を滴下し、滴下終了から5時間後80℃まで冷却した。触媒除去のために、吸着剤を添加し1時間攪拌した後、濾過を行った。得られた生成物を反応容器に戻し、240℃に昇温させ、0.5kPaに減圧し、未反応物及び溶剤を留去することにより、ポリカーボネートからなる[結晶性樹脂9]を得た。[結晶性樹脂9]は、Mw6200、融点54℃であった。
<Production Example 10>
50 parts of 1,9-nonanediol and 38 parts of diethylene glycol were placed in a reaction vessel, 0.1 part of a 25 wt% methanol solution of sodium methoxide was added with stirring, and the temperature was raised to 160 ° C. After completion of the temperature elevation, 51 parts of dimethyl carbonate was added dropwise, and after 5 hours from the end of the addition, the mixture was cooled to 80 ° C. In order to remove the catalyst, an adsorbent was added and stirred for 1 hour, followed by filtration. The obtained product was returned to the reaction vessel, heated to 240 ° C., depressurized to 0.5 kPa, and unreacted substances and the solvent were distilled off to obtain [Crystalline Resin 9] composed of polycarbonate. [Crystalline resin 9] had an Mw of 6200 and a melting point of 54 ° C.
 <製造例11>
 反応容器に、メチルエチルケトン1000部、1,4-ブタンジオール19部、及びヘキサメチレンジイソシアネート54部を投入し、80℃で7時間反応を行った後、1,6-ヘキサンジオールを成分とする結晶性ポリカーボネート(旭化成ケミカルズ(株)製、商品名「PCDL T6002」、水酸基価56)340部を投入し、80℃で7時間反応を行い、80℃、20kPaで脱溶剤し、ポリカーボネートとポリウレタンとの複合樹脂からなる[結晶性樹脂10]を得た。[結晶性樹脂10]は、Mw11000、融点61℃であった。
<Production Example 11>
Into a reaction vessel, 1000 parts of methyl ethyl ketone, 19 parts of 1,4-butanediol and 54 parts of hexamethylene diisocyanate were added and reacted at 80 ° C. for 7 hours, and then crystallinity containing 1,6-hexanediol as a component. 340 parts of polycarbonate (made by Asahi Kasei Chemicals Corporation, trade name “PCDL T6002”, hydroxyl value 56) was added, reacted at 80 ° C. for 7 hours, desolvated at 80 ° C. and 20 kPa, and composite of polycarbonate and polyurethane [Crystalline resin 10] made of resin was obtained. [Crystalline resin 10] had an Mw of 11000 and a melting point of 61 ° C.
 <製造例12>
 攪拌棒及び温度計をセットした耐圧反応容器に、キシレン200部、及びジ-t-ブチルパーオキシヘキサヒドロテレフタレート2部を投入し、窒素置換後170℃に昇温して充分溶解し、2-(パーフルオロヘキシル)エチルアクリレート(ケミノックス FAAC‐6、ユニマテックス社製)60部、メタクリル酸メチル20部、スチレン20部、及びキシレン100部の混合溶液を、170℃で3時間で滴下して重合し、更にこの温度で30分間保持した。次いで脱溶剤を行い、[非晶質樹脂1]を得た。[非晶質樹脂1]の重量平均分子量は5200であった。降下式フローテスター(島津製作所製、CFT-500D)で以下の方法により測定した軟化点は75℃であった。
1gの[非晶質樹脂1]を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出して、「プランジャー降下量(流れ値)」と「温度」とのグラフを描き、プランジャーの降下量の最大値の1/2に対応する温度をグラフから読み取り、この値(測定試料の半分が流出したときの温度)を軟化点とした。
<Production Example 12>
200 parts of xylene and 2 parts of di-t-butylperoxyhexahydroterephthalate are charged into a pressure-resistant reaction vessel equipped with a stir bar and a thermometer. After purging with nitrogen, the temperature is raised to 170 ° C. and dissolved sufficiently. (Perfluorohexyl) ethyl acrylate (cheminox FAAC-6, manufactured by Unimatex) 60 parts, methyl methacrylate 20 parts, styrene 20 parts, and xylene 100 parts mixed solution was added dropwise at 170 ° C. over 3 hours for polymerization. And kept at this temperature for 30 minutes. Next, the solvent was removed to obtain [Amorphous Resin 1]. [Amorphous resin 1] had a weight average molecular weight of 5,200. The softening point measured by the following method with a descent type flow tester (manufactured by Shimadzu Corporation, CFT-500D) was 75 ° C.
While heating 1 g of [Amorphous Resin 1] at a heating rate of 6 ° C./min, a load of 1.96 MPa was applied by a plunger and extruded from a nozzle having a diameter of 1 mm and a length of 1 mm. (Flow value) ”and“ Temperature ”are drawn, and the temperature corresponding to 1/2 of the maximum value of the plunger drop is read from the graph. This value (temperature when half of the measured sample flows out) Was the softening point.
 以下の実施例及び比較例中、「T1」は、得られた分散液を以下の条件でDSC降温測定した際の、分散液に含まれる分散質(結晶性樹脂等の結晶性材料)由来の発熱ピーク温度である。
DSC測定条件
 示差走査熱量計{例えば、セイコー電子工業社製、DSC210}を用いて、測定試料を200℃まで昇温してから、降温速度10℃/分で0℃まで冷却した後、昇温速度20℃/分で昇温して吸発熱変化を測定した。
In the following examples and comparative examples, “T1” is derived from the dispersoid (crystalline material such as crystalline resin) contained in the dispersion when the obtained dispersion is subjected to DSC temperature drop measurement under the following conditions. Exothermic peak temperature.
DSC measurement conditions Using a differential scanning calorimeter {for example, DSC210, manufactured by Seiko Denshi Kogyo Co., Ltd.], the sample to be measured was heated to 200 ° C., cooled to 0 ° C. at a cooling rate of 10 ° C./min, and then heated. The temperature was increased at a rate of 20 ° C./min, and the endothermic change was measured.
 メジアン径の測定は、レーザー式粒度分布測定装(LA-920、堀場製作所製、以下単に「LA-920」と記載する)により行った。
 メジアン径の変化率は以下の通りの計算で求めた。
 計算式1 B/A×100-100=メジアン径の変化率(%)
 測定値A:10℃、24時間静置した分散液のメジアン径
 測定値B:製造後一時間以内の分散液中のメジアン径
The median diameter was measured with a laser particle size distribution measuring device (LA-920, manufactured by Horiba, Ltd., hereinafter simply referred to as “LA-920”).
The change rate of the median diameter was obtained by the following calculation.
Formula 1 B / A × 100-100 = Change rate of median diameter (%)
Measured value A: median diameter of dispersion liquid left to stand at 10 ° C. for 24 hours Measured value B: median diameter in dispersion liquid within one hour after production
 粗大粒子増加量は以下の通りの計算で求めた。
 計算式2 C-D=粗大粒子増加量(%)
 測定値C:10℃、24時間静置した分散液中の粗大粒子量
 測定値D:製造後一時間以内の分散液中の粗大粒子量
 なお、(メジアン径×3)μm以上の粒子を粗大粒子とした。ただし(メジアン径×3)≦1.0の場合は1.0μm以上の粒子を粗大粒子とした。
The amount of increase in coarse particles was determined by the following calculation.
Formula 2 CD = Coarse particle increase (%)
Measured value C: Coarse particle amount in the dispersion that was allowed to stand for 24 hours at 10 ° C. Measured value D: Coarse particle amount in the dispersion within one hour after production. Note that (median diameter × 3) particles larger than μm are coarse. Particles were used. However, when (median diameter × 3) ≦ 1.0, particles of 1.0 μm or more were coarse particles.
<実施例1>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度65℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を40℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂1]を含む粒子(C-1)が分散された分散液(L-1)を得た。体積膨張した直後の分散液(L-1)の温度(T3)は4℃であり、LA-920による粒子(C-1)のメジアン径は0.52μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-1)のメジアン径は0.54μmで、粗大粒子量は0.0体積%であった。メジアン系の変化率は3.8%であり、粗大粒子増加量は0.0体積%であった。DSCでの測定からT1は20℃であった。 
<Example 1>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 40 ° C. (T2) while maintaining 6 MPa, the nozzle attached to the bottom of the container was fully opened, and the atmosphere (0.1 MPa) The crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-1) in which particles (C-1) containing [crystalline resin 1] were dispersed. . The temperature (T3) of the dispersion (L-1) immediately after volume expansion is 4 ° C., the median diameter of the particles (C-1) by LA-920 is 0.52 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of the particles (C-1) after standing at 10 ° C. for 24 hours was 0.54 μm, and the amount of coarse particles was 0.0% by volume. The change rate of the median type was 3.8%, and the increase amount of coarse particles was 0.0% by volume. T1 was 20 degreeC from the measurement by DSC.
<実施例2>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂2](T0(融点):65℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度65℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を40℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂2]を含む粒子(C-2)が分散された分散液(L-2)を得た。体積膨張した直後の分散液(L-2)の温度(T3)は4℃であり、LA-920による粒子(C-2)のメジアン径は0.50μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-2)のメジアン径は0.54μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は8.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった
<Example 2>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 2] (T0 (melting point): 65 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 40 ° C. (T2) while maintaining 6 MPa, the nozzle attached to the bottom of the container was fully opened, and the atmosphere (0.1 MPa) The crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-2) in which particles (C-2) containing [crystalline resin 2] were dispersed. . The temperature (T3) of the dispersion (L-2) immediately after volume expansion is 4 ° C., the median diameter of the particles (C-2) by LA-920 is 0.50 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of the particles (C-2) after standing at 10 ° C. for 24 hours was 0.54 μm, and the amount of coarse particles was 0.0% by volume. The rate of change in median diameter was 8.0%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例3>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂3](T0(融点):99℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度99℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を75℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂3]を含む粒子(C-3)が分散された分散液(L-3)を得た。体積膨張した直後の分散液(L-3)の温度(T3)は38℃であり、LA-920による粒子(C-3)のメジアン径は0.45μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-3)のメジアン径は0.47μmであり、粗大粒子量0.0体積%であった。メジアン径の変化率は4.4%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は54℃であった。
<Example 3>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 3] (T0 (melting point): 99 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 99 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 75 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-3) in which particles (C-3) containing [crystalline resin 3] were dispersed. . The temperature (T3) of the dispersion (L-3) immediately after volume expansion is 38 ° C., the median diameter of the particles (C-3) by LA-920 is 0.45 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of the particles (C-3) after standing at 10 ° C. for 24 hours was 0.47 μm, and the amount of coarse particles was 0.0% by volume. The rate of change in median diameter was 4.4%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 54 degreeC from the measurement by DSC.
<実施例4>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂4](T0(融点):77℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度77℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を45℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂4]を含む粒子(C-4)が分散された分散液(L-4)を得た。体積膨張した直後の分散液(L-4)の温度(T3)は10℃であり、LA-920による粒子(C-4)のメジアン径は0.72μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-4)のメジアン径は0.75μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は4.2%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は30℃であった。
<Example 4>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 4] (T0 (melting point): 77 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 77 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 45 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-4) in which particles (C-4) containing [crystalline resin 4] were dispersed. . The temperature (T3) of the dispersion liquid (L-4) immediately after volume expansion is 10 ° C., the median diameter of the particles (C-4) by LA-920 is 0.72 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of particles (C-4) after standing at 10 ° C. for 24 hours was 0.75 μm, and the amount of coarse particles was 0.0% by volume. The rate of change in median diameter was 4.2%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 30 degreeC from the measurement by DSC.
<実施例5>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂5](T0(融点):58℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度58℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を30℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂5]を含む粒子(C-5)が分散された分散液(L-5)を得た。体積膨張した直後の分散液(L-5)の温度(T3)は0℃であり、LA-920による粒子(C-5)のメジアン径は0.66μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-5)のメジアン径は0.66μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は0.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は16℃であった。
<Example 5>
Into a pressure-resistant reaction vessel equipped with a stir bar and a thermometer, 196.8 parts of acetone and 43.2 parts of [crystalline resin 5] (T0 (melting point): 58 ° C.) are charged to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring to raise the temperature in the system to 58 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 30 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-5) in which particles (C-5) containing [crystalline resin 5] were dispersed. . The temperature (T3) of the dispersion (L-5) immediately after volume expansion is 0 ° C., the median diameter of the particles (C-5) by LA-920 is 0.66 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of the particles (C-5) after standing at 10 ° C. for 24 hours was 0.66 μm, and the amount of coarse particles was 0.0% by volume. The rate of change in median diameter was 0.0%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 16 degreeC from the measurement by DSC.
<実施例6>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂6](T0(融点):57℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度57℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を30℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂6]を含む粒子(C-6)が分散された分散液(L-6)を得た。体積膨張した直後の分散液(L-6)の温度(T3)は-1℃であり、LA-920による粒子(C-6)のメジアン径は0.42μmで、粗大粒子量は0.0体積%であった。粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-6)のメジアン径は0.45μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は7.1%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は15℃であった。
<Example 6>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer is charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 6] (T0 (melting point): 57 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 57 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 30 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-6) in which particles (C-6) containing [crystalline resin 6] were dispersed. . The temperature (T3) of the dispersion (L-6) immediately after volume expansion is -1 ° C., the median diameter of the particles (C-6) by LA-920 is 0.42 μm, and the amount of coarse particles is 0.0 % By volume. The amount of coarse particles was 0.0% by volume. The median diameter of the particles (C-6) after standing at 10 ° C. for 24 hours was 0.45 μm, and the amount of coarse particles was 0.0% by volume. The rate of change in median diameter was 7.1%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 15 degreeC from the measurement by DSC.
<実施例7>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂7](T0(融点):75℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度75℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を45℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂7]を含む粒子(C-7)が分散された分散液(L-7)を得た。体積膨張した直後の分散液(L-7)の温度(T3)は0℃であり、LA-920による粒子(C-7)のメジアン径は0.53μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-7)のメジアン径は0.54μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は1.9%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 7>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 7] (T0 (melting point): 75 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 75 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 45 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-7) in which particles (C-7) containing [crystalline resin 7] were dispersed. . The temperature (T3) of the dispersion (L-7) immediately after volume expansion is 0 ° C., the median diameter of the particles (C-7) by LA-920 is 0.53 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of the particles (C-7) after standing at 10 ° C. for 24 hours was 0.54 μm, and the amount of coarse particles was 0.0% by volume. The rate of change in median diameter was 1.9%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例8>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂8](T0(融点):60℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度60℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を30℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂8]を含む粒子(C-8)が分散された分散液(L-8)を得た。体積膨張した直後の分散液(L-8)の温度(T3)は-5℃であり、LA-920による粒子(C-8)のメジアン径は0.62μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-8)のメジアン径は0.65μmであり、粗大粒子量は0.0体積%であった。メジアン系の変化率は4.8%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は17℃であった。
<Example 8>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 8] (T0 (melting point): 60 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 60 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 30 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-8) in which particles (C-8) containing [crystalline resin 8] were dispersed. . The temperature (T3) of the dispersion (L-8) immediately after the volume expansion is -5 ° C., the median diameter of the particles (C-8) by LA-920 is 0.62 μm, and the amount of coarse particles is 0.0 % By volume. The median diameter of the particles (C-8) after standing at 10 ° C. for 24 hours was 0.65 μm, and the amount of coarse particles was 0.0% by volume. The change rate of the median type was 4.8%, and the increase amount of coarse particles was 0.0% by volume. Moreover, T1 was 17 degreeC from the measurement by DSC.
<実施例9>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂9](T0(融点):54℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度54℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を30℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂9]を含む粒子(C-9)が分散された分散液(L-9)を得た。体積膨張した直後の分散液(L-9)の温度(T3)は-2℃であり、LA-920による粒子(C-9)のメジアン径は0.41μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-9)のメジアン径は0.44μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は7.3%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 9>
A pressure-resistant reaction vessel equipped with a stirring bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [Crystalline Resin 9] (T0 (melting point): 54 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 54 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 30 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-9) in which particles (C-9) containing [crystalline resin 9] were dispersed. . The temperature (T3) of the dispersion (L-9) immediately after volume expansion was −2 ° C., the median diameter of the particles (C-9) by LA-920 was 0.41 μm, and the amount of coarse particles was 0.0 % By volume. The median diameter of the particles (C-9) after standing at 10 ° C. for 24 hours was 0.44 μm, and the amount of coarse particles was 0.0% by volume. The rate of change in median diameter was 7.3%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例10>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂10](T0(融点):61℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度61℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を30℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂10]を含む粒子(C-10)が分散された分散液(L-10)を得た。体積膨張した直後の分散液(L-10)の温度(T3)は-1℃であり、LA-920による粒子(C-10)のメジアン径は0.52μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-10)のメジアン径は0.52μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は0.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は16℃であった。
<Example 10>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [Crystalline Resin 10] (T0 (melting point): 61 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring to raise the temperature in the system to 61 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the internal temperature was lowered to 30 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-10) in which particles (C-10) containing [crystalline resin 10] were dispersed. . The temperature (T3) of the dispersion (L-10) immediately after the volume expansion is -1 ° C., the median diameter of the particles (C-10) by LA-920 is 0.52 μm, and the amount of coarse particles is 0.0 % By volume. The median diameter of the particles (C-10) after standing at 10 ° C. for 24 hours was 0.52 μm, and the amount of coarse particles was 0.0% by volume. The rate of change in median diameter was 0.0%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 16 degreeC from the measurement by DSC.
<実施例11>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[非晶質樹脂1](T0(軟化点):75℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度75℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を45℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[非晶質樹脂1]を含む粒子(C-11)が分散された分散液(L-11)を得た。体積膨張した直後の分散液(L-11)の温度(T3)は10℃であり、LA-920による粒子(C-11)のメジアン径は0.39μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-11)のメジアン径は0.40μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は2.6%であり、粗大粒子増加量は0.0体積%であった。
<Example 11>
In a pressure-resistant reaction vessel equipped with a stirring bar and a thermometer, 196.8 parts of acetone and 43.2 parts of [Amorphous Resin 1] (T0 (softening point): 75 ° C.) were added to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 75 ° C. After the temperature rise, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the temperature inside the system was lowered to 45 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). Is released to precipitate a crystalline resin and vaporize and remove carbon dioxide to obtain a dispersion liquid (L-11) in which particles (C-11) containing [amorphous resin 1] are dispersed. It was. The temperature (T3) of the dispersion (L-11) immediately after volume expansion is 10 ° C., the median diameter of the particles (C-11) by LA-920 is 0.39 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of particles (C-11) after standing at 10 ° C. for 24 hours was 0.40 μm, and the amount of coarse particles was 0.0% by volume. The rate of change in median diameter was 2.6%, and the increase in coarse particles was 0.0% by volume.
<実施例12>
 攪拌棒及び温度計を備えた耐圧反応容器に、酢酸エチル196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度65℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を40℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂1]を含む粒子(C-12)が分散された分散液(L-12)を得た。体積膨張した直後の分散液(L-12)の温度(T3)は4℃であり、LA-920による粒子(C-12)のメジアン径は0.50μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-12)のメジアン径は0.52μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は4.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 12>
In a pressure-resistant reaction vessel equipped with a stirring bar and a thermometer, 196.8 parts of ethyl acetate and 43.2 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) are added to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed, heated and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 40 ° C. (T2) while maintaining 6 MPa, the nozzle attached to the bottom of the container was fully opened, and the atmosphere (0.1 MPa) The crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-12) in which particles (C-12) containing [crystalline resin 1] were dispersed. . The temperature (T3) of the dispersion (L-12) immediately after the volume expansion is 4 ° C., the median diameter of the particles (C-12) by LA-920 is 0.50 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of the particles (C-12) after standing at 10 ° C. for 24 hours was 0.52 μm, and the amount of coarse particles was 0.0 vol%. The rate of change in median diameter was 4.0%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例13>
 攪拌棒及び温度計を備えた耐圧反応容器に、メチルエチルケトン196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度65℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を40℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂1]を含む粒子(C-13)が分散された分散液(L-13)を得た。体積膨張した直後の分散液(L-13)の温度(T3)は4℃であり、LA-920による粒子(C-13)のメジアン径は0.51μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-13)のメジアン径は0.51μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は0.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 13>
Into a pressure-resistant reaction vessel equipped with a stirring bar and a thermometer, 196.8 parts of methyl ethyl ketone and 43.2 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) are charged to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 40 ° C. (T2) while maintaining 6 MPa, the nozzle attached to the bottom of the container was fully opened, and the atmosphere (0.1 MPa) The crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-13) in which particles (C-13) containing [crystalline resin 1] were dispersed. . The temperature (T3) of the dispersion (L-13) immediately after volume expansion is 4 ° C., the median diameter of the particles (C-13) by LA-920 is 0.51 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of the particles (C-13) after standing at 10 ° C. for 24 hours was 0.51 μm, and the amount of coarse particles was 0.0% by volume. The rate of change in median diameter was 0.0%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例14>
 攪拌棒及び温度計を備えた耐圧反応容器に、水196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度65℃まで昇温した。さらに、65℃を維持し二酸化炭素を供給し6MPaにした後、再度、釜内を観察窓から観察した、結晶性樹脂1は二酸化炭素には溶解しているが、水と分離し、液液二相が形成されていることを確認した。さらに、撹拌を加え水中に結晶樹脂二酸化炭素溶液を懸濁させ、6MPaのまま系内温度を40℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂1]を含む粒子(C-14)が分散された分散液(L-14)を得た。体積膨張した直後の分散液(L-14)の温度(T3)は7℃であり、LA-920による粒子(C-14)のメジアン径は0.53μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-14)のメジアン径は0.54μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は1.9%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 14>
Into a pressure-resistant reaction vessel equipped with a stirrer and a thermometer, 196.8 parts of water and 43.2 parts of [Crystalline Resin 1] (T0 (melting point): 65 ° C.) are charged to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. Further, after maintaining the temperature at 65 ° C. to supply carbon dioxide to 6 MPa, the inside of the kettle was observed again from the observation window. The crystalline resin 1 dissolved in carbon dioxide, but separated from water, It was confirmed that two phases were formed. Further, stirring is performed to suspend the crystal resin carbon dioxide solution in water, the temperature inside the system is lowered to 40 ° C. (T2) while maintaining 6 MPa, the nozzle attached to the lower part of the container is fully opened, and the atmosphere (0.1 MPa) The crystalline resin was precipitated, and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-14) in which particles (C-14) containing [crystalline resin 1] were dispersed. . The temperature (T3) of the dispersion (L-14) immediately after the volume expansion is 7 ° C., the median diameter of the particles (C-14) by LA-920 is 0.53 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of particles (C-14) after standing at 10 ° C. for 24 hours was 0.54 μm, and the amount of coarse particles was 0.0 vol%. The rate of change in median diameter was 1.9%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例15>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度65℃まで昇温した。昇温後二酸化炭素を供給し10MPaにして10分間攪拌した後、10MPaのまま系内温度を40℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂1]を含む粒子(C-15)が分散された分散液(L-15)を得た。体積膨張した直後の分散液(L-15)の温度(T3)は0℃であり、LA-920による粒子(C-15)のメジアン径は0.45μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-15)のメジアン径は0.46μmであり、粗大粒子量は0.0体積%であった。メジアン径の変化率は2.2%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 15>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After raising the temperature, carbon dioxide was supplied to 10 MPa, and the mixture was stirred for 10 minutes. The system temperature was lowered to 40 ° C. (T2) while maintaining 10 MPa, and the nozzle attached to the bottom of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-15) in which particles (C-15) containing [crystalline resin 1] were dispersed. . The temperature (T3) of the dispersion (L-15) immediately after volume expansion is 0 ° C., the median diameter of the particles (C-15) by LA-920 is 0.45 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of the particles (C-15) after standing at 10 ° C. for 24 hours was 0.46 μm, and the amount of coarse particles was 0.0 vol%. The rate of change in median diameter was 2.2%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例16>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度65℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を25℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂1]を含む粒子(C-16)が分散された分散液(L-16)を得た。体積膨張した直後の分散液(L-16)の温度(T3)は-10℃であり、LA-920による粒子(C-16)のメジアン径は0.41μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-16)のメジアン径は0.41μmであり、メジアン径の変化率は0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 16>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) to 40% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa, and the mixture was stirred for 10 minutes. Then, the system temperature was lowered to 25 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-16) in which particles (C-16) containing [crystalline resin 1] were dispersed. . The temperature (T3) of the dispersion (L-16) immediately after the volume expansion was −10 ° C., the median diameter of the particles (C-16) by LA-920 was 0.41 μm, and the amount of coarse particles was 0.0 % By volume. Further, the median diameter of the particles (C-16) after standing at 10 ° C. for 24 hours was 0.41 μm, the change rate of the median diameter was 0%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例17>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を、耐圧反応容器の容積の30%まで仕込み、密閉して攪拌しながら加熱し、系内温度65℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を40℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂1]を含む粒子(C-17)が分散された分散液(L-17)を得た。体積膨張した直後の分散液(L-17)の温度(T3)は4℃であり、LA-920による粒子(C-17)のメジアン径は0.50μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-17)のメジアン径は0.51μmであり、メジアン径の変化率は2.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 17>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 196.8 parts of acetone and 43.2 parts of [Crystalline Resin 1] (T0 (melting point): 65 ° C.) to 30% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa, and the mixture was stirred for 10 minutes. Then, the internal temperature was lowered to 40 ° C. (T2) while maintaining 6 MPa, and the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). The crystalline resin was precipitated and the carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-17) in which particles (C-17) containing [crystalline resin 1] were dispersed. . The temperature (T3) of the dispersion (L-17) immediately after volume expansion is 4 ° C., the median diameter of the particles (C-17) by LA-920 is 0.50 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of particles (C-17) after standing at 10 ° C. for 24 hours was 0.51 μm, the change rate of the median diameter was 2.0%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例18>
 攪拌棒及び温度計を備えた耐圧反応容器に、アセトン175.0部、[結晶性樹脂1](T0(融点):65℃)75.0部を、耐圧反応容器の容積の30%まで仕込み、密閉して攪拌しながら加熱し、系内温度65℃まで昇温した。昇温後二酸化炭素を供給し6MPaにして10分間攪拌した後、6MPaのまま系内温度を40℃(T2)まで降温し、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、結晶性樹脂を析出させ、二酸化炭素を気化させ除去して、[結晶性樹脂1]を含む粒子(C-18)が分散された分散液(L-18)を得た。体積膨張した直後の分散液(L-18)の温度(T3)は4℃であり、LA-920による粒子(C-18)のメジアン径は0.57μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-18)のメジアン径は0.58μmであり、メジアン径の変化率は1.8%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 18>
A pressure-resistant reaction vessel equipped with a stir bar and a thermometer was charged with 175.0 parts of acetone and 75.0 parts of [crystalline resin 1] (T0 (melting point): 65 ° C.) to 30% of the volume of the pressure-resistant reaction vessel. The mixture was sealed and heated with stirring, and the system temperature was raised to 65 ° C. After heating, carbon dioxide was supplied to 6 MPa and stirred for 10 minutes. Then, the system temperature was lowered to 40 ° C. (T2) while maintaining 6 MPa, the nozzle attached to the bottom of the container was fully opened, and the atmosphere (0.1 MPa) The crystalline resin was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-18) in which particles (C-18) containing [crystalline resin 1] were dispersed. . The temperature (T3) of the dispersion (L-18) immediately after volume expansion is 4 ° C., the median diameter of the particles (C-18) by LA-920 is 0.57 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of the particles (C-18) after standing at 10 ° C. for 24 hours was 0.58 μm, the change rate of the median diameter was 1.8%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例19>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1にアセトン196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を仕込み密閉して攪拌しながら加熱し、系内温度65℃まで昇温し、結晶性樹脂1の溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.4L/hの流量で導入し、バルブV1を調整し、6MPaとした。次いで、溶解槽(タンク)T1、ポンプP1より結晶性樹脂1の溶液を0.5L/hの流量で導入し、6MPa、40℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、結晶性樹脂1を析出させ、二酸化炭素を気化させ除去して、結晶性樹脂1を含む粒子(C-19)が分散された分散液(L-19)を得た。体積膨張した直後の分散液(L-19)の温度(T3)は4℃であり、LA-920による粒子(C-19)のメジアン径は0.39μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-19)のメジアン径は0.39μmであり、メジアン径の変化率は0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 19>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 196.8 parts of acetone and 43.2 parts of [Crystalline resin 1] (T0 (melting point): 65 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 65 ° C. A solution of was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa. Next, the solution of the crystalline resin 1 is introduced at a flow rate of 0.5 L / h from the dissolution tank (tank) T1 and the pump P1, and the mixed solution is line-blended with M1 while maintaining 6 MPa and 40 ° C. (T2). Is released from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), thereby precipitating the crystalline resin 1, vaporizing and removing carbon dioxide, and particles (C-19) containing the crystalline resin 1 are obtained. A dispersed dispersion (L-19) was obtained. The temperature (T3) of the dispersion (L-19) immediately after volume expansion was 4 ° C., the median diameter of the particles (C-19) by LA-920 was 0.39 μm, and the amount of coarse particles was 0.0 volume. %Met. Further, the median diameter of the particles (C-19) after standing at 10 ° C. for 24 hours was 0.39 μm, the change rate of the median diameter was 0%, and the increase amount of coarse particles was 0.0% by volume. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例20>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1にアセトン196.8部、[結晶性樹脂10](T0(融点):61℃)43.2部を仕込み密閉して攪拌しながら加熱し、系内温度61℃まで昇温し、結晶性樹脂10の溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.4L/hの流量で導入し、バルブV1を調整し、6MPaとした。次いで、溶解槽(タンク)、ポンプP1より結晶性樹脂10の溶液を0.5L/hの流量で導入し、6MPa、30℃(T2)を維持しながら、スタティックミキサーM1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、結晶性樹脂10を析出させ、二酸化炭素を気化させ除去して、結晶性樹脂10を含む粒子(C-20)が分散された分散液(L-20)を得た。体積膨張した直後の分散液(L-20)の温度(T3)は-1℃であり、LA-920による粒子(C-20)のメジアン径は0.35μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-20)のメジアン径は0.36μmであり、メジアン径の変化率は2.9%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は16℃であった。
<Example 20>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 196.8 parts of acetone and 43.2 parts of [Crystalline Resin 10] (T0 (melting point): 61 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 61 ° C. A solution of was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa. Next, a solution of crystalline resin 10 is introduced at a flow rate of 0.5 L / h from a dissolution tank (tank) and pump P1, and mixed by line blending with a static mixer M1 while maintaining 6 MPa and 30 ° C. (T2). By opening the liquid from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), the crystalline resin 10 is precipitated, and the carbon dioxide is vaporized and removed to obtain particles (C-20) containing the crystalline resin 10 A dispersion liquid (L-20) was obtained. The temperature (T3) of the dispersion (L-20) immediately after volume expansion is -1 ° C., the median diameter of the particles (C-20) by LA-920 is 0.35 μm, and the amount of coarse particles is 0.0 % By volume. Further, the median diameter of the particles (C-20) after standing at 10 ° C. for 24 hours was 0.36 μm, the change rate of the median diameter was 2.9%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 16 degreeC from the measurement by DSC.
<実施例21>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1に酢酸エチル196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を仕込み密閉して攪拌しながら加熱し、系内温度65℃まで昇温し、結晶性樹脂1の溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.4L/hの流量で導入し、バルブV1を調整し、6MPaとした。次いで、溶解槽(タンク)T1、ポンプP1より結晶性樹脂1の溶液を0.5L/hの流量で導入し、6MPa、40℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、結晶性樹脂1を析出させ、二酸化炭素を気化させ除去して、結晶性樹脂1を含む粒子(C-21)が分散された分散液(L-21)を得た。体積膨張した直後の分散液(L-21)の温度(T3)は4℃であり、LA-920による粒子(C-21)のメジアン径は0.31μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-21)のメジアン径は0.32μmであり、メジアン径の変化率は3.2%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 21>
In an experimental apparatus using the line blending method shown in FIG. 1 (as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, number of elements 27) was used), first, in a dissolution tank (tank) T1 196.8 parts of ethyl acetate and 43.2 parts of [Crystalline Resin 1] (T0 (melting point): 65 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 65 ° C. 1 solution was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa. Next, the solution of the crystalline resin 1 is introduced at a flow rate of 0.5 L / h from the dissolution tank (tank) T1 and the pump P1, and the mixed solution is line-blended with M1 while maintaining 6 MPa and 40 ° C. (T2). Is released from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), thereby precipitating the crystalline resin 1, vaporizing and removing carbon dioxide, and particles (C-21) containing the crystalline resin 1 are obtained. A dispersed dispersion (L-21) was obtained. The temperature (T3) of the dispersion (L-21) immediately after volume expansion is 4 ° C., the median diameter of the particles (C-21) by LA-920 is 0.31 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of the particles (C-21) after standing at 10 ° C. for 24 hours was 0.32 μm, the change rate of the median diameter was 3.2%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例22>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1に、水196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を仕込み密閉して攪拌しながら加熱し、系内温度65℃まで昇温し、結晶性樹脂1の溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.4L/hの流量で導入し、バルブV1を調整し、6MPaとした。次いで、タンクT1、ポンプP1より結晶性樹脂1の溶液を0.5L/hの流量で導入し、6MPa、40℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、結晶性樹脂1を析出させ、二酸化炭素を気化させ除去して、結晶性樹脂1を含む粒子(C-22)が分散された分散液(L-22)を得た。体積膨張した直後の分散液(L-22)の温度(T3)は4℃であり、LA-920による粒子(C-22)のメジアン径は0.39μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-22)のメジアン径は0.39μmであり、メジアン径の変化率は0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 22>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] , 196.8 parts of water and 43.2 parts of [Crystalline resin 1] (T0 (melting point): 65 ° C.) were sealed, heated with stirring, and the system temperature was raised to 65 ° C. 1 solution was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa. Next, the solution of the crystalline resin 1 is introduced from the tank T1 and the pump P1 at a flow rate of 0.5 L / h, and while maintaining 6 MPa and 40 ° C. (T2), the mixed liquid line-blended with M1 is dispersed from the nozzle. Dispersion in which particles (C-22) containing the crystalline resin 1 are dispersed by opening the liquid receiving tank T2 (0.1 MPa) to precipitate the crystalline resin 1 and vaporizing and removing carbon dioxide. A liquid (L-22) was obtained. The temperature (T3) of the dispersion (L-22) immediately after volume expansion is 4 ° C., the median diameter of the particles (C-22) by LA-920 is 0.39 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of the particles (C-22) after standing at 10 ° C. for 24 hours was 0.39 μm, the change rate of the median diameter was 0%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例23>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1に、アセトン196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を仕込み密閉して攪拌しながら加熱し、系内温度65℃まで昇温し、結晶性樹脂1の溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.7L/hの流量で導入し、バルブV1を調整し、10MPaとした。次いで、溶解槽(タンク)T1、ポンプP1より結晶性樹脂1の溶液を0.83L/hの流量で導入し、10MPa、40℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、結晶性樹脂1を析出させ、二酸化炭素を気化させ除去して、結晶性樹脂1を含む粒子(C-23)が分散された分散液(L-23)を得た。体積膨張した直後の分散液(L-23)の温度(T3)は0℃であり、LA-920による粒子(C-23)のメジアン径は0.30μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-23)のメジアン径は0.31μmであり、メジアン径の変化率は3.3%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 23>
In an experimental apparatus using the line blending method shown in FIG. 1 (as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, number of elements 27) was used), first, in a dissolution tank (tank) T1 196.8 parts of acetone and 43.2 parts of [Crystalline Resin 1] (T0 (melting point): 65 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 65 ° C. 1 solution was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.7 L / h, and the valve V1 was adjusted to 10 MPa. Next, the solution of the crystalline resin 1 is introduced from the dissolution tank (tank) T1 and the pump P1 at a flow rate of 0.83 L / h, and the liquid mixture is line-blended with M1 while maintaining 10 MPa and 40 ° C. (T2). Is released from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), thereby precipitating the crystalline resin 1, vaporizing and removing carbon dioxide, and particles (C-23) containing the crystalline resin 1 are obtained. A dispersed dispersion (L-23) was obtained. The temperature (T3) of the dispersion (L-23) immediately after volume expansion is 0 ° C., the median diameter of the particles (C-23) by LA-920 is 0.30 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of particles (C-23) after standing at 10 ° C. for 24 hours was 0.31 μm, the change rate of the median diameter was 3.3%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例24>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1にアセトン196.8部、[結晶性樹脂1](T0(融点):65℃)43.2部を仕込み密閉して攪拌しながら加熱し、系内温度65℃まで昇温し、結晶性樹脂1の溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.4L/hの流量で導入し、バルブV1を調整し、6MPaとした。次いで、溶解槽(タンク)T1、ポンプP1より結晶性樹脂1の溶液を0.5L/hの流量で導入し、6MPa、25℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、結晶性樹脂1を析出させ、二酸化炭素を気化させ除去して、結晶性樹脂1を含む粒子(C-24)が分散された分散液(L-24)を得た。体積膨張した直後の分散液(L-24)の温度(T3)は-10℃であり、LA-920による粒子(C-24)のメジアン径は0.35μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-24)のメジアン径は0.36μmであり、メジアン径の変化率は2.9%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 24>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 196.8 parts of acetone and 43.2 parts of [Crystalline resin 1] (T0 (melting point): 65 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 65 ° C. A solution of was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa. Next, the solution of the crystalline resin 1 is introduced at a flow rate of 0.5 L / h from the dissolution tank (tank) T1 and the pump P1, and the mixed solution is line-blended with M1 while maintaining 6 MPa and 25 ° C. (T2). Is released from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), thereby precipitating the crystalline resin 1, vaporizing and removing carbon dioxide, and particles (C-24) containing the crystalline resin 1 are obtained. A dispersed dispersion (L-24) was obtained. The temperature (T3) of the dispersion (L-24) immediately after volume expansion is −10 ° C., the median diameter of the particles (C-24) by LA-920 is 0.35 μm, and the amount of coarse particles is 0.0 % By volume. Further, the median diameter of the particles (C-24) after standing at 10 ° C. for 24 hours was 0.36 μm, the change rate of the median diameter was 2.9%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例25>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1にアセトン175.0部、[結晶性樹脂1](T0(融点):65℃)75.0部を仕込み密閉して攪拌しながら加熱し、系内温度65℃まで昇温し、結晶性樹脂1の溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.4L/hの流量で導入し、バルブV1を調整し、6MPaとした。次いで、溶解槽(タンク)T1、ポンプP1より結晶性樹脂1の溶液を0.5L/hの流量で導入し、6MPa、40℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、結晶性樹脂1を析出させ、二酸化炭素を気化させ除去して、結晶性樹脂1を含む粒子(C-25)が分散された分散液(L-25)を得た。体積膨張した直後の分散液(L-25)の温度(T3)は4℃であり、LA-920による粒子(C-25)のメジアン径は0.37μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-25)のメジアン径は0.39μmであり、メジアン径の変化率は5.4%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は20℃であった。
<Example 25>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 175.0 parts of acetone and 75.0 parts of [Crystalline resin 1] (T0 (melting point): 65 ° C.) were charged, sealed and heated with stirring, and the system temperature was raised to 65 ° C. A solution of was prepared. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.4 L / h, and the valve V1 was adjusted to 6 MPa. Next, the solution of the crystalline resin 1 is introduced at a flow rate of 0.5 L / h from the dissolution tank (tank) T1 and the pump P1, and the mixed solution is line-blended with M1 while maintaining 6 MPa and 40 ° C. (T2). Is released from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), thereby precipitating the crystalline resin 1, vaporizing and removing carbon dioxide, and particles (C-25) containing the crystalline resin 1 are obtained. A dispersed dispersion (L-25) was obtained. The temperature (T3) of the dispersion (L-25) immediately after volume expansion is 4 ° C., the median diameter of the particles (C-25) by LA-920 is 0.37 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of particles (C-25) after standing at 10 ° C. for 24 hours was 0.39 μm, the change rate of the median diameter was 5.4%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 20 degreeC from the measurement by DSC.
<実施例26>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部、アセトン168部、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度76℃まで昇温した。昇温後二酸化炭素を供給し8MPaとした、8MPaを維持したまま70℃(T2)に降温し、10分間攪拌した後、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-26)が分散された分散液(L-26)を得た。体積膨張した直後の分散液(L-26)の温度(T3)は13℃であり、LA-920による粒子(C-26)のメジアン径は0.52μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-26)のメジアン径は0.53μmであり、メジアン径の変化率は1.9%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 26>
[Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, 168 parts of acetone, and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature rise, carbon dioxide was supplied to 8 MPa. While maintaining 8 MPa, the temperature was lowered to 70 ° C. (T2), stirred for 10 minutes, and then the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). By opening, paraffin wax was precipitated and carbon dioxide was vaporized and removed to obtain dispersion liquid (L-26) in which particles (C-26) containing paraffin wax were dispersed. The temperature (T3) of the dispersion (L-26) immediately after the volume expansion was 13 ° C., the median diameter of the particles (C-26) by LA-920 was 0.52 μm, and the ratio of the coarse particle amount was 0.00. It was 0% by volume. Further, the median diameter of the particles (C-26) after standing at 10 ° C. for 24 hours was 0.53 μm, the change rate of the median diameter was 1.9%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例27>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]24.0部、カルナバワックス(H1-100、T0(融点):83℃、大日化学社製)48.0部、アセトン168部、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度83℃まで昇温した。昇温後二酸化炭素を供給し8MPaとした、8MPaを維持したまま75℃に降温(T2)し、10分間攪拌した後、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、カルナバワックスを析出させ、二酸化炭素を気化させ除去して、カルナバワックスを含む粒子(C-27)が分散された分散液(L-27)を得た。体積膨張した直後の分散液(L-27)の温度(T3)は21℃であり、LA-920による粒子(C-27)のメジアン径は0.63μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-27)のメジアン径は0.65μmであり、メジアン径の変化率は3.2%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は37℃であった。
<Example 27>
In a pressure-resistant reaction vessel equipped with a stir bar and a thermometer, 24.0 parts of [Dispersant 1] obtained in Production Example 1, carnauba wax (H1-100, T0 (melting point): 83 ° C., manufactured by Dainichi Chemical Co., Ltd.) 48.0 parts, 168 parts of acetone, 40% of the volume of the pressure-resistant reaction vessel were charged, sealed and heated with stirring, and the system temperature was raised to 83 ° C. After the temperature rise, carbon dioxide was supplied to 8 MPa, the temperature was lowered to 75 ° C. while maintaining 8 MPa (T2), and stirred for 10 minutes, and then the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa) By opening, carnauba wax was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-27) in which particles (C-27) containing carnauba wax were dispersed. The temperature (T3) of the dispersion (L-27) immediately after the volume expansion was 21 ° C., the median diameter of the particles (C-27) by LA-920 was 0.63 μm, and the ratio of the coarse particle amount was 0.00. It was 0% by volume. Further, the median diameter of particles (C-27) after standing at 10 ° C. for 24 hours was 0.65 μm, the rate of change of the median diameter was 3.2%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 37 degreeC from the measurement by DSC.
<実施例28>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]24.0部、ポリオレフィンワックス(ACCUM ELT100、T0(融点):102℃)48.0部、アセトン168部、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度102℃まで昇温した。昇温後二酸化炭素を供給し8MPaとした、8MPaを維持したまま90℃(T2)に降温し、10分間攪拌した後、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、ポリオレフィンワックスを析出させ、二酸化炭素を気化させ除去して、ポリオレフィンワックスを含む粒子(C-28)が分散された分散液(L-28)を得た。体積膨張した直後の分散液(L-28)の温度(T3)は32℃であり、LA-920による粒子(C-28)のメジアン径は0.66μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-28)のメジアン径は0.68μmであり、メジアン径の変化率は3.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は62℃であった。
<Example 28>
In a pressure-resistant reaction vessel equipped with a stir bar and a thermometer, 24.0 parts of [Dispersant 1] obtained in Production Example 1, polyolefin wax (ACCUM ELT100, T0 (melting point): 102 ° C.) 48.0 parts, acetone 168 parts, charged to 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 102 ° C. After the temperature rise, carbon dioxide was supplied to 8 MPa. While maintaining 8 MPa, the temperature was lowered to 90 ° C. (T2), stirred for 10 minutes, and then the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). By releasing, the polyolefin wax was precipitated, and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-28) in which particles (C-28) containing the polyolefin wax were dispersed. The temperature (T3) of the dispersion (L-28) immediately after the volume expansion was 32 ° C., the median diameter of the particles (C-28) by LA-920 was 0.66 μm, and the ratio of the coarse particle amount was 0.00. It was 0% by volume. The median diameter of the particles (C-28) after standing at 10 ° C. for 24 hours was 0.68 μm, the change rate of the median diameter was 3.0%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 62 degreeC from the measurement by DSC.
<実施例29>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]24.0部、ステアリン酸ステアリル(エキセパール SS、T0(融点):56℃)48.0部、アセトン168部、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度56℃まで昇温した。昇温後二酸化炭素を供給し8MPaとした、8MPaを維持したまま40℃(T2)に降温し、10分間攪拌した後、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、ステアリン酸ステアリルを析出させ、二酸化炭素を気化させ除去して、ステアリン酸ステアリルを含む粒子(C-29)が分散された分散液(L-29)を得た。体積膨張した直後の分散液(L-29)の温度(T3)は-7℃であり、LA-920による粒子(C-29)のメジアン径は0.54μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-29)のメジアン径は0.56μmであり、メジアン径の変化率は3.7%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は19℃であった。
<Example 29>
[Dispersant 1] obtained in Production Example 1 24.0 parts, stearyl stearate (Exepal SS, T0 (melting point): 56 ° C.) 48.0 parts, The mixture was charged to 168 parts of acetone and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 56 ° C. After the temperature rise, carbon dioxide was supplied to 8 MPa. While maintaining 8 MPa, the temperature was lowered to 40 ° C. (T2), stirred for 10 minutes, and then the nozzle attached to the lower part of the container was fully opened to the atmosphere (0.1 MPa). By releasing, stearyl stearate was precipitated and carbon dioxide was vaporized and removed to obtain dispersion liquid (L-29) in which particles (C-29) containing stearyl stearate were dispersed. The temperature (T3) of the dispersion liquid (L-29) immediately after volume expansion is −7 ° C., the median diameter of the particles (C-29) by LA-920 is 0.54 μm, and the ratio of the coarse particle amount is 0. 0.0% by volume. The median diameter of the particles (C-29) after standing at 10 ° C. for 24 hours was 0.56 μm, the change rate of the median diameter was 3.7%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 19 degreeC from the measurement by DSC.
<実施例30>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部、酢酸エチル168部、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度76℃まで昇温した。昇温後二酸化炭素を供給し8MPaとした、さらに8MPaを維持したまま70℃(T2)に降温し、10分間攪拌した後、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-30)が分散された分散液(L-30)を得た。体積膨張した直後の分散液(L-30)の温度(T3)は13℃であり、LA-920による粒子(C-30)のメジアン径は0.52μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-30)のメジアン径は0.52μmであり、メジアン径の変化率は0.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 30>
[Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, ethyl acetate 168 parts, and 40% of the pressure-resistant reaction vessel volume, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature rise, carbon dioxide was supplied to 8 MPa. Further, while maintaining 8 MPa, the temperature was lowered to 70 ° C. (T2) and stirred for 10 minutes. The paraffin wax was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-30) in which particles (C-30) containing paraffin wax were dispersed. The temperature (T3) of the dispersion (L-30) immediately after the volume expansion was 13 ° C., the median diameter of the particles (C-30) by LA-920 was 0.52 μm, and the ratio of the coarse particle amount was 0.00. It was 0% by volume. Further, the median diameter of the particles (C-30) after standing at 10 ° C. for 24 hours was 0.52 μm, the change rate of the median diameter was 0.0%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例31>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部、メチルエチルケトン168部、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度76℃まで昇温した。昇温後二酸化炭素を供給し8MPaとした、8MPaを維持したまま70℃(T2)に降温し、10分間攪拌した後、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-31)が分散された分散液(L-31)を得た。体積膨張した直後の分散液(L-31)の温度(T3)は13℃であり、LA-920による粒子(C-31)のメジアン径は0.55μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-31)のメジアン径は0.56μmであり、メジアン径の変化率は1.8%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 31>
[Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, methyl ethyl ketone 168 parts, and 40% of the pressure-resistant reaction vessel volume, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature rise, carbon dioxide was supplied to 8 MPa. While maintaining 8 MPa, the temperature was lowered to 70 ° C. (T2) and stirred for 10 minutes. By opening, paraffin wax was precipitated and carbon dioxide was vaporized and removed to obtain dispersion liquid (L-31) in which particles (C-31) containing paraffin wax were dispersed. The temperature (T3) of the dispersion (L-31) immediately after the volume expansion was 13 ° C., the median diameter of the particles (C-31) by LA-920 was 0.55 μm, and the ratio of the coarse particle amount was 0.00. It was 0% by volume. Further, the median diameter of particles (C-31) after standing at 10 ° C. for 24 hours was 0.56 μm, the change rate of the median diameter was 1.8%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例32>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部、水168部、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度76℃まで昇温した。昇温後二酸化炭素を供給し8MPaとした、このとき、パラフィンワックスが水に溶解せず、二酸化炭素にのみに溶解し、液液二相分離していることを確認した。8MPaを維持したまま70℃(T2)に降温し、10分間攪拌した後、パラフィンワックス二酸化炭素容器が水に分散していることを観察窓から確認した。容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-32)が分散された分散液(L-32)を得た。体積膨張した直後の分散液(L-32)の温度(T3)は13℃であり、LA-920による粒子(C-31)のメジアン径は0.58μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-32)のメジアン径は0.59μmであり、メジアン径の変化率は1.7%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 32>
[Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, 168 parts of water and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature increase, carbon dioxide was supplied to 8 MPa. At this time, it was confirmed that the paraffin wax was not dissolved in water but was dissolved only in carbon dioxide, and liquid-liquid two-phase separation was performed. The temperature was lowered to 70 ° C. (T2) while maintaining 8 MPa, and after stirring for 10 minutes, it was confirmed from the observation window that the paraffin wax carbon dioxide container was dispersed in water. By fully opening the nozzle attached to the bottom of the container and opening it to the atmosphere (0.1 MPa), paraffin wax is precipitated, carbon dioxide is vaporized and removed, and particles (C-32) containing paraffin wax are dispersed. A dispersion (L-32) was obtained. The temperature (T3) of the dispersion (L-32) immediately after the volume expansion was 13 ° C., the median diameter of the particles (C-31) by LA-920 was 0.58 μm, and the ratio of the coarse particle amount was 0.00. It was 0% by volume. Further, the median diameter of the particles (C-32) after standing at 10 ° C. for 24 hours was 0.59 μm, the change rate of the median diameter was 1.7%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例33>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部、アセトン168部、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度76℃まで昇温した。昇温後二酸化炭素を供給し10MPaとした。10MPaを維持したまま70℃(T2)に降温し、10分間攪拌した後、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-33)が分散された分散液(L-33)を得た。体積膨張した直後の分散液(L-33)の温度(T3)は6℃であり、LA-920による粒子(C-33)のメジアン径は0.36μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-33)のメジアン径は0.37μmであり、メジアン径の変化率は2.8%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 33>
[Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, 168 parts of acetone, and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature increase, carbon dioxide was supplied to 10 MPa. The temperature was lowered to 70 ° C. (T2) while maintaining 10 MPa, and the mixture was stirred for 10 minutes. Then, the nozzle attached to the lower part of the container was fully opened and opened to the atmosphere (0.1 MPa) to precipitate paraffin wax, and carbon dioxide. Carbon was vaporized and removed to obtain a dispersion liquid (L-33) in which particles (C-33) containing paraffin wax were dispersed. The temperature (T3) of the dispersion (L-33) immediately after the volume expansion was 6 ° C., the median diameter of the particles (C-33) by LA-920 was 0.36 μm, and the ratio of the coarse particle amount was 0.00. It was 0% by volume. Further, the median diameter of the particles (C-33) after standing at 10 ° C. for 24 hours was 0.37 μm, the change rate of the median diameter was 2.8%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例34>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部、アセトン168部、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度76℃まで昇温した。昇温後二酸化炭素を供給し8MPaとした。8MPaを維持したままさらに60℃(T2)に降温し、10分間攪拌した後、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-34)が分散された分散液(L-34)を得た。体積膨張した直後の分散液(L-34)の温度(T3)は0℃であり、LA-920による粒子(C-34)のメジアン径は0.39μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-34)のメジアン径は0.41μmであり、メジアン径の変化率は5.1%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 34>
[Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, 168 parts of acetone, and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature increase, carbon dioxide was supplied to 8 MPa. The temperature was further lowered to 60 ° C. (T2) while maintaining 8 MPa, and after stirring for 10 minutes, the nozzle attached to the bottom of the container was fully opened and opened to the atmosphere (0.1 MPa), thereby precipitating paraffin wax. Carbon dioxide was evaporated and removed to obtain a dispersion liquid (L-34) in which particles (C-34) containing paraffin wax were dispersed. The temperature (T3) of the dispersion (L-34) immediately after the volume expansion was 0 ° C., the median diameter of the particles (C-34) by LA-920 was 0.39 μm, and the ratio of the coarse particle amount was 0.00. It was 0% by volume. Further, the median diameter of the particles (C-34) after standing at 10 ° C. for 24 hours was 0.41 μm, the change rate of the median diameter was 5.1%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例35>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部、アセトン168部、耐圧反応容器の容積の30%まで仕込み、密閉して攪拌しながら加熱し、系内温度76℃まで昇温した。昇温後二酸化炭素を供給し8MPaとした。8MPaを維持したまま70℃(T2)に降温し、10分間攪拌した後、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-35)が分散された分散液(L-35)を得た。体積膨張した直後の分散液(L-35)の温度(T3)は13℃であり、LA-920による粒子(C-35)のメジアン径は0.43μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-35)のメジアン径は0.45μmであり、メジアン径の変化率は4.7%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 35>
[Dispersant 1] 24.0 parts obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) The mixture was charged to 48.0 parts, 168 parts of acetone, and 30% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After the temperature increase, carbon dioxide was supplied to 8 MPa. The temperature was lowered to 70 ° C. (T2) while maintaining 8 MPa, and the mixture was stirred for 10 minutes. Then, the nozzle attached to the lower part of the container was fully opened and opened to the atmosphere (0.1 MPa) to precipitate paraffin wax, and carbon dioxide. Carbon was vaporized and removed to obtain a dispersion liquid (L-35) in which particles (C-35) containing paraffin wax were dispersed. The temperature (T3) of the dispersion (L-35) immediately after the volume expansion was 13 ° C., the median diameter of the particles (C-35) by LA-920 was 0.43 μm, and the ratio of the coarse particle amount was 0.00. It was 0% by volume. Further, the median diameter of the particles (C-35) after standing at 10 ° C. for 24 hours was 0.45 μm, the change rate of the median diameter was 4.7%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例36>
 攪拌棒及び温度計をセットした耐圧反応容器に、製造例1で得られた[分散剤1]32.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)64.0部、アセトン168部、耐圧反応容器の容積の40%まで仕込み、密閉して攪拌しながら加熱し、系内温度76℃まで昇温した。昇温後二酸化炭素を供給し8MPaとした、さらに70℃(T2)に降温し、10分間攪拌した後、容器下部に取り付けたノズルを全開して大気中(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-36)が分散された分散液(L-36)を得た。体積膨張した直後の分散液(L-36)の温度(T3)は13℃であり、LA-920による粒子(C-36)のメジアン径は0.53μmで、粗大粒子量の割合が0.0体積%であった。また10℃、24h静置後の粒子(C-36)のメジアン径は0.54μmであり、メジアン径の変化率は1.9%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 36>
32.0 parts of [Dispersant 1] obtained in Production Example 1, paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa) in a pressure-resistant reaction vessel equipped with a stirring bar and a thermometer The mixture was charged to 64.0 parts, 168 parts of acetone, and 40% of the volume of the pressure-resistant reaction vessel, sealed and heated with stirring, and the system temperature was raised to 76 ° C. After raising the temperature, carbon dioxide was supplied to 8 MPa, and the temperature was further lowered to 70 ° C. (T2). After stirring for 10 minutes, the nozzle attached to the bottom of the container was fully opened and opened to the atmosphere (0.1 MPa). Then, paraffin wax was precipitated and carbon dioxide was vaporized and removed to obtain a dispersion liquid (L-36) in which particles (C-36) containing paraffin wax were dispersed. The temperature (T3) of the dispersion liquid (L-36) immediately after the volume expansion was 13 ° C., the median diameter of the particles (C-36) by LA-920 was 0.53 μm, and the ratio of the coarse particle amount was 0.00. It was 0% by volume. The median diameter of the particles (C-36) after standing at 10 ° C. for 24 hours was 0.54 μm, the change rate of the median diameter was 1.9%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例37>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1にアセトン168.0部、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部を仕込み密閉して攪拌しながら加熱し、系内温度76℃まで昇温し、パラフィンワックスの溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.55L/hの流量で導入し、バルブV1を調整し、8MPaとした。次いで、溶解槽(タンク)T1、ポンプP1よりパラフィンワックスの溶液を0.65L/hの流量で導入し、8MPa、70℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-37)が分散された分散液(L-37)を得た。体積膨張した直後の分散液(L-37)の温度(T3)は13℃であり、LA-920による粒子(C-37)のメジアン径は0.45μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-37)のメジアン径は0.46μmであり、メジアン径の変化率は2.2%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 37>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of acetone, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., Nippon Seiwa) were charged and sealed. Then, the mixture was heated with stirring, and the temperature in the system was raised to 76 ° C. to prepare a paraffin wax solution. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa. Next, the paraffin wax solution was introduced at a flow rate of 0.65 L / h from the dissolution tank (tank) T1 and the pump P1, and the liquid mixture line-blended with M1 was maintained at 8 MPa at 70 ° C. (T2). To the dispersion liquid receiving tank T2 (0.1 MPa) to precipitate paraffin wax, vaporize and remove carbon dioxide, and disperse liquid in which particles (C-37) containing paraffin wax are dispersed ( L-37) was obtained. The temperature (T3) of the dispersion (L-37) immediately after volume expansion is 13 ° C., the median diameter of the particles (C-37) by LA-920 is 0.45 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of the particles (C-37) after standing at 10 ° C. for 24 hours was 0.46 μm, the change rate of the median diameter was 2.2%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例38>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1にアセトン168.0部、製造例1で得られた[分散剤1]24.0部、ステアリン酸ステアリル(エキセパール SS、T0(融点):56℃)48.0部を仕込み密閉して攪拌しながら加熱し、系内温度56℃まで昇温し、ステアリン酸ステアリルの溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.55L/hの流量で導入し、バルブV1を調整し、8MPaとした。次いで、溶解槽(タンク)T1、ポンプP1よりステアリン酸ステアリルの溶液を0.65L/hの流量で導入し、8MPa、40℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、ステアリン酸ステアリルを析出させ、二酸化炭素を気化させ除去して、ステアリン酸ステアリルを含む粒子(C-38)が分散された分散液(L-38)を得た。体積膨張した直後の分散液(L-38)の温度(T3)は-7℃であり、LA-920による粒子(C-38)のメジアン径は0.41μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-38)のメジアン径は0.41μmであり、メジアン径の変化率は0.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は19℃であった。
<Example 38>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of acetone, 24.0 parts of [Dispersant 1] obtained in Production Example 1 and 48.0 parts of stearyl stearate (Exepal SS, T0 (melting point): 56 ° C.) were charged and sealed while stirring. The mixture was heated and the temperature in the system was raised to 56 ° C. to prepare a stearyl stearate solution. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa. Next, the stearyl stearate solution was introduced at a flow rate of 0.65 L / h from the dissolution tank (tank) T1 and the pump P1, and the liquid mixture line-blended with M1 was maintained at 8 MPa and 40 ° C. (T2). By opening from the nozzle into the dispersion liquid receiving tank T2 (0.1 MPa), stearyl stearate was precipitated and carbon dioxide was vaporized and removed to disperse particles (C-38) containing stearyl stearate. A dispersion (L-38) was obtained. The temperature (T3) of the dispersion (L-38) immediately after the volume expansion is -7 ° C., the median diameter of the particles (C-38) by LA-920 is 0.41 μm, and the amount of coarse particles is 0.0 % By volume. The median diameter of the particles (C-38) after standing at 10 ° C. for 24 hours was 0.41 μm, the change rate of the median diameter was 0.0%, and the increase in coarse particles was 0.0% by volume. It was. Moreover, T1 was 19 degreeC from the measurement by DSC.
<実施例39>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1に酢酸エチル168.0部、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部を仕込み密閉して攪拌しながら加熱し、系内温度76℃まで昇温し、パラフィンワックスの溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.55L/hの流量で導入し、バルブV1を調整し、8MPaとした。次いで、溶解槽(タンク)T1、ポンプP1よりパラフィンワックスの溶液を0.65L/hの流量で導入し、8MPa、70℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-39)が分散された分散液(L-39)を得た。体積膨張した直後の分散液(L-37)の温度(T3)は13℃であり、LA-920による粒子(C-39)のメジアン径は0.46μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-39)のメジアン径は0.46μmであり、メジアン径の変化0.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 39>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] Charge 168.0 parts of ethyl acetate, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., manufactured by Nippon Seiwa). The mixture was sealed and heated with stirring, and the system temperature was raised to 76 ° C. to prepare a paraffin wax solution. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa. Next, the paraffin wax solution was introduced at a flow rate of 0.65 L / h from the dissolution tank (tank) T1 and the pump P1, and the liquid mixture line-blended with M1 was maintained at 8 MPa at 70 ° C. (T2). To the dispersion receiving tank T2 (0.1 MPa) to precipitate the paraffin wax, vaporize and remove the carbon dioxide, and the dispersion liquid in which the particles (C-39) containing the paraffin wax are dispersed ( L-39) was obtained. The temperature (T3) of the dispersion (L-37) immediately after volume expansion is 13 ° C., the median diameter of the particles (C-39) by LA-920 is 0.46 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of the particles (C-39) after standing at 10 ° C. for 24 hours was 0.46 μm, the change in median diameter was 0.0%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例40>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1に水168.0部、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部を仕込み密閉して攪拌しながら加熱し、系内温度76℃まで昇温し、パラフィンワックスの溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.55L/hの流量で導入し、バルブV1を調整し、8MPaとした。次いで、溶解槽(タンク)T1、ポンプP1よりパラフィンワックスの溶液を0.65L/hの流量で導入し、8MPa、70℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-40)が分散された分散液(L-40)を得た。体積膨張した直後の分散液(L-40)の温度(T3)は13℃であり、LA-920による粒子(C-40)のメジアン径は0.45μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-40)のメジアン径は0.46μmであり、メジアン径の変化2.2%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 40>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of water, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., Nippon Seiwa) were charged and sealed. Then, the mixture was heated with stirring, and the temperature in the system was raised to 76 ° C. to prepare a paraffin wax solution. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa. Next, the paraffin wax solution was introduced at a flow rate of 0.65 L / h from the dissolution tank (tank) T1 and the pump P1, and the liquid mixture line-blended with M1 was maintained at 8 MPa at 70 ° C. (T2). To the dispersion receiving tank T2 (0.1 MPa) to precipitate the paraffin wax, vaporize and remove the carbon dioxide, and the dispersion liquid in which the particles (C-40) containing the paraffin wax are dispersed ( L-40) was obtained. The temperature (T3) of the dispersion (L-40) immediately after volume expansion is 13 ° C., the median diameter of particles (C-40) by LA-920 is 0.45 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of the particles (C-40) after standing at 10 ° C. for 24 hours was 0.46 μm, the median diameter change was 2.2%, and the increase in coarse particles was 0.0 vol%. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例41>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1にアセトン168.0部、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部を仕込み密閉して攪拌しながら加熱し、系内温度76℃まで昇温し、パラフィンワックスの溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.70L/hの流量で導入し、バルブV1を調整し、10MPaとした。次いで、溶解槽(タンク)T1、ポンプP1よりパラフィンワックスの溶液を0.83L/hの流量で導入し、10MPa、70℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-41)が分散された分散液(L-41)を得た。体積膨張した直後の分散液(L-41)の温度(T3)は13℃であり、LA-920による粒子(C-41)のメジアン径は0.39μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-41)のメジアン径は0.39μmであり、メジアン径の変化0.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 41>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of acetone, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., Nippon Seiwa) were charged and sealed. Then, the mixture was heated with stirring, and the temperature in the system was raised to 76 ° C. to prepare a paraffin wax solution. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.70 L / h, and the valve V1 was adjusted to 10 MPa. Next, a paraffin wax solution is introduced at a flow rate of 0.83 L / h from a dissolution tank (tank) T1 and a pump P1, and the mixture liquid line-blended with M1 is maintained at 10 MPa at 70 ° C. (T2). To the dispersion receiving tank T2 (0.1 MPa) to precipitate the paraffin wax, vaporize and remove the carbon dioxide, and disperse the dispersion liquid (C-41) containing the paraffin wax (C-41). L-41) was obtained. The temperature (T3) of the dispersion (L-41) immediately after volume expansion is 13 ° C., the median diameter of the particles (C-41) by LA-920 is 0.39 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of the particles (C-41) after standing at 10 ° C. for 24 hours was 0.39 μm, the change in median diameter was 0.0%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例42>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1にアセトン168.0部、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部を仕込み密閉して攪拌しながら加熱し、系内温度76℃まで昇温し、パラフィンワックスの溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.55L/hの流量で導入し、バルブV1を調整し、8MPaとした。次いで、タンクT1、ポンプP1よりパラフィンワックスの溶液を0.65L/hの流量で導入し、8MPa、60℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-42)が分散された分散液(L-42)を得た。体積膨張した直後の分散液(L-42)の温度(T3)は1℃であり、LA-920による粒子(C-42)のメジアン径は0.38μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-42)のメジアン径は0.39μmであり、メジアン径の変化2.6%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 42>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of acetone, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., Nippon Seiwa) were charged and sealed. Then, the mixture was heated with stirring, and the temperature in the system was raised to 76 ° C. to prepare a paraffin wax solution. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa. Next, a paraffin wax solution was introduced from the tank T1 and the pump P1 at a flow rate of 0.65 L / h, and the liquid mixture line-blended with M1 was received from the nozzle while maintaining 8 MPa and 60 ° C. (T2). Dispersion liquid (L-42) in which particles (C-42) containing paraffin wax are dispersed by depositing paraffin wax, vaporizing and removing carbon dioxide by opening in tank T2 (0.1 MPa) Got. The temperature (T3) of the dispersion (L-42) immediately after the volume expansion is 1 ° C., the median diameter of the particles (C-42) by LA-920 is 0.38 μm, and the amount of coarse particles is 0.0 volume. %Met. The median diameter of the particles (C-42) after standing at 10 ° C. for 24 hours was 0.39 μm, the median diameter change was 2.6%, and the increase in coarse particles was 0.0 vol%. Moreover, T1 was 29 degreeC from the measurement by DSC.
<実施例43>
 図1に示すラインブレンド方法を用いる実験装置〔ラインブレンド装置としては、スタティックミキサーM1(ノリタケカンパニーリミテド製;内径3.4mm、エレメント数27)を使用した〕において、まず溶解槽(タンク)T1にアセトン168.0部、製造例1で得られた[分散剤1]24.0部、パラフィンワックス(HNP-9、T0(融点):76℃、日本精蝋製)48.0部を仕込み密閉して攪拌しながら加熱し、系内温度76℃まで昇温し、パラフィンワックスの溶液を作製した。ボンベB1、ポンプP2より二酸化炭素を0.55L/hの流量で導入し、バルブV1を調整し、8MPaとした。次いで、溶解槽(タンク)T1、ポンプP1よりパラフィンワックスの溶液を0.65L/hの流量で導入し、8MPa、70℃(T2)を維持しながら、M1でラインブレンドされた混合液をノズルから分散液受け槽T2内(0.1MPa)に開放することで、パラフィンワックスを析出させ、二酸化炭素を気化させ除去して、パラフィンワックスを含む粒子(C-43)が分散された分散液(L-43)を得た。体積膨張した直後の分散液(L-43)の温度(T3)は13℃であり、LA-920による粒子(C-43)のメジアン径は0.51μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(C-43)のメジアン径は0.52μmであり、メジアン径の変化2.0%であり、粗大粒子増加量は0.0体積%であった。また、DSCでの測定からT1は29℃であった。
<Example 43>
In an experimental apparatus using the line blending method shown in FIG. 1 [as a line blending apparatus, a static mixer M1 (manufactured by Noritake Company Limited; inner diameter 3.4 mm, element number 27) was used] 168.0 parts of acetone, 24.0 parts of [Dispersant 1] obtained in Production Example 1, and 48.0 parts of paraffin wax (HNP-9, T0 (melting point): 76 ° C., Nippon Seiwa) were charged and sealed. Then, the mixture was heated with stirring, and the temperature in the system was raised to 76 ° C. to prepare a paraffin wax solution. Carbon dioxide was introduced from the cylinder B1 and the pump P2 at a flow rate of 0.55 L / h, and the valve V1 was adjusted to 8 MPa. Next, the paraffin wax solution was introduced at a flow rate of 0.65 L / h from the dissolution tank (tank) T1 and the pump P1, and the liquid mixture line-blended with M1 was maintained at 8 MPa at 70 ° C. (T2). To the dispersion receiving tank T2 (0.1 MPa) to precipitate the paraffin wax, vaporize and remove the carbon dioxide, and disperse the dispersion liquid containing particles (C-43) containing the paraffin wax (C-43). L-43) was obtained. The temperature (T3) of the dispersion (L-43) immediately after volume expansion is 13 ° C., the median diameter of the particles (C-43) by LA-920 is 0.51 μm, and the amount of coarse particles is 0.0 volume. %Met. Further, the median diameter of the particles (C-43) after standing at 10 ° C. for 24 hours was 0.52 μm, the change in median diameter was 2.0%, and the increase in coarse particles was 0.0% by volume. Moreover, T1 was 29 degreeC from the measurement by DSC.
<比較例1>
 実施例1において、T2を70℃及び、T3を25℃とした以外は同様に行い、比較粒子(RC-1)が分散した分散液(RL-1)を得た。LA-920による粒子(RC-1)のメジアン径は8.90μmで、粗大粒子量は3.2体積%であった。また10℃、24h静置後の粒子(RC-1)のメジアン径は10.20μmで、粗大粒子量3.4体積%であった。メジアン径の変化率は14.6%であり、粗大粒子増加量は0.2体積%であった。 
<Comparative Example 1>
The same procedure as in Example 1 was carried out except that T2 was set to 70 ° C. and T3 was set to 25 ° C. to obtain a dispersion liquid (RL-1) in which comparative particles (RC-1) were dispersed. The median diameter of the particles (RC-1) by LA-920 was 8.90 μm, and the amount of coarse particles was 3.2% by volume. The median diameter of the particles (RC-1) after standing at 10 ° C. for 24 hours was 10.20 μm, and the amount of coarse particles was 3.4% by volume. The change rate of the median diameter was 14.6%, and the increase amount of coarse particles was 0.2% by volume.
<比較例2>
 実施例1において、T2を70℃及び、膨張前圧力を10MPaとした以外は同様に行い、比較粒子(RC-2)が分散した分散液(RL-2)を得た。LA-920による粒子(RC-2)のメジアン径は0.51μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(RC-2)のメジアン径は3.62μmで、粗大粒子量1.5体積%であった。メジアン径の変化率は609.8%であり、粗大粒子増加量は1.5体積%であった。
<Comparative example 2>
The same procedure as in Example 1 was conducted except that T2 was set to 70 ° C. and the pre-expansion pressure was set to 10 MPa to obtain a dispersion liquid (RL-2) in which comparative particles (RC-2) were dispersed. The median diameter of the particles (RC-2) by LA-920 was 0.51 μm, and the amount of coarse particles was 0.0% by volume. The median diameter of the particles (RC-2) after standing at 10 ° C. for 24 hours was 3.62 μm, and the amount of coarse particles was 1.5% by volume. The change rate of the median diameter was 609.8%, and the increase amount of coarse particles was 1.5% by volume.
<比較例3>
 実施例1において、膨張前圧力を1MPaとしT3を19℃とした以外は同様に行い、比較粒子(RC-3)が分散した分散液(RL-3)を得た。LA-920による粒子(RC-3)のメジアン径は5.40μmで、粗大粒子量は3.2体積%であった。また10℃、24h静置後の粒子(RC-3)のメジアン径は7.30μmで、粗大粒子量4.5体積%であった。メジアン径の変化率は35.2%であり、粗大粒子増加量は1.3体積%であった。
<Comparative Example 3>
The same procedure as in Example 1 was performed except that the pre-expansion pressure was 1 MPa and T3 was 19 ° C., to obtain a dispersion liquid (RL-3) in which comparative particles (RC-3) were dispersed. The median particle size of RC-920 particles (RC-3) was 5.40 μm, and the amount of coarse particles was 3.2% by volume. The median diameter of the particles (RC-3) after standing at 10 ° C. for 24 hours was 7.30 μm, and the amount of coarse particles was 4.5 vol%. The rate of change in median diameter was 35.2%, and the increase in coarse particles was 1.3% by volume.
<比較例4>
 実施例1において、膨張後圧力を3MPaとしT3を25℃とした以外は同様に行い、比較粒子(RC-4)が分散した分散液(RL-4)を得た。LA-920による粒子(RC-4)のメジアン径は5.70μmで、粗大粒子量は2.1体積%であった。また10℃、24h静置後の粒子(RC-4)のメジアン径は8.48μmで、粗大粒子量5.5体積%であった。メジアン径の変化率は48.8%であり、粗大粒子増加量は3.4体積%であった。
<Comparative example 4>
The same procedure as in Example 1 was performed except that the pressure after expansion was 3 MPa and T3 was 25 ° C., to obtain a dispersion liquid (RL-4) in which comparative particles (RC-4) were dispersed. The median diameter of particles (RC-4) by LA-920 was 5.70 μm, and the amount of coarse particles was 2.1% by volume. The median diameter of the particles (RC-4) after standing at 10 ° C. for 24 hours was 8.48 μm, and the amount of coarse particles was 5.5% by volume. The change rate of the median diameter was 48.8%, and the increase amount of coarse particles was 3.4% by volume.
<比較例5>
 実施例26において、T2を90℃及び、T3を33℃とした以外は同様に行い、比較粒子(RC-5)が分散した分散液(RL-5)を得た。LA-920による粒子(RC-5)のメジアン径は7.60μmで、粗大粒子量は3.2体積%であった。また10℃、24h静置後の粒子(RC-5)のメジアン径は11.30μmで、粗大粒子量3.5体積%であった。メジアン径の変化率は48.7%であり、粗大粒子増加量は0.3体積%であった。 
<Comparative Example 5>
The same procedure as in Example 26 was carried out except that T2 was 90 ° C. and T3 was 33 ° C., to obtain a dispersion liquid (RL-5) in which comparative particles (RC-5) were dispersed. The median particle size of RC-920 particles (RC-5) was 7.60 μm, and the amount of coarse particles was 3.2% by volume. The median diameter of the particles (RC-5) after standing at 10 ° C. for 24 hours was 11.30 μm, and the amount of coarse particles was 3.5% by volume. The change rate of the median diameter was 48.7%, and the increase amount of coarse particles was 0.3% by volume.
<比較例6>
 実施例26において、T2を90℃及び膨張前圧力を10MPaとした以外は同様に行い、比較粒子(RC-6)が分散した分散液(RL-6)を得た。LA-920による粒子(RC-6)のメジアン径は0.45μmで、粗大粒子量は0.2体積%であった。また10℃、24h静置後の粒子(RC-6)のメジアン径は1.62μmで、粗大粒子量4.3体積%であった。メジアン径の変化率は260.0%であり、粗大粒子増加量は4.1体積%であった。
<Comparative Example 6>
The same procedure as in Example 26 was carried out except that T2 was 90 ° C. and the pre-expansion pressure was 10 MPa, to obtain a dispersion liquid (RL-6) in which comparative particles (RC-6) were dispersed. The median particle size of RC-920 particles (RC-6) was 0.45 μm, and the amount of coarse particles was 0.2% by volume. The median diameter of the particles (RC-6) after standing at 10 ° C. for 24 hours was 1.62 μm, and the amount of coarse particles was 4.3% by volume. The rate of change in median diameter was 260.0%, and the increase in coarse particles was 4.1% by volume.
<比較例7>
 実施例26において、膨張前圧力を1MPaとし、膨張後温度(T3)を25℃とした以外は同様に行い、比較粒子(RC-7)が分散した分散液(RL-7)を得た。LA-920による粒子(RC-7)のメジアン径は5.61μmで、粗大粒子量は4.1体積%であった。また10℃、24h静置後の粒子(RC-7)のメジアン径は7.61μmで、粗大粒子量5.1体積%であった。メジアン径の変化率は35.7%であり、粗大粒子増加量は1.0体積%であった。
<Comparative Example 7>
The same procedure as in Example 26 was performed except that the pre-expansion pressure was 1 MPa and the post-expansion temperature (T3) was 25 ° C., to obtain a dispersion liquid (RL-7) in which comparative particles (RC-7) were dispersed. The median diameter of particles (RC-7) by LA-920 was 5.61 μm, and the amount of coarse particles was 4.1% by volume. The median diameter of the particles (RC-7) after standing at 10 ° C. for 24 hours was 7.61 μm, and the amount of coarse particles was 5.1% by volume. The rate of change in median diameter was 35.7%, and the increase in coarse particles was 1.0% by volume.
<比較例8>
 実施例26において、膨張前圧力を8MPaとし、膨張後圧力を5MPaとした以外は同様に行い、比較粒子(RC-8)が分散した分散液(RL-8)を得た。LA-920による粒子(RC-8)のメジアン径は4.32μmで、粗大粒子量は3.5体積%であった。また10℃、24h静置後の粒子(RC-8)のメジアン径は4.53μmで、粗大粒子量4.1体積%であった。メジアン径の変化率は4.9%であり、粗大粒子増加量は0.6体積%であった。
<Comparative Example 8>
The same procedure as in Example 26 was performed except that the pre-expansion pressure was 8 MPa and the post-expansion pressure was 5 MPa, to obtain a dispersion liquid (RL-8) in which comparative particles (RC-8) were dispersed. The median diameter of the particles by RC-920 (RC-8) was 4.32 μm, and the amount of coarse particles was 3.5% by volume. The median diameter of the particles (RC-8) after standing at 10 ° C. for 24 hours was 4.53 μm, and the amount of coarse particles was 4.1% by volume. The rate of change in median diameter was 4.9%, and the increase in coarse particles was 0.6% by volume.
<比較例9>
 実施例19において、T2を70℃、T3を25℃とした以外は同様に行い、比較粒子(RC-9)が分散した分散液(RL-9)を得た。LA-920による粒子(RC-9)のメジアン径は9.50μmで、粗大粒子量は2.9体積%であった。また10℃、24h静置後の粒子(RC-9)のメジアン径は11.50μmで、粗大粒子量4.3体積%であった。メジアン径の変化率は21.1%であり、粗大粒子増加量は1.4体積%であった。
<Comparative Example 9>
Example 19 was carried out in the same manner except that T2 was set to 70 ° C. and T3 was set to 25 ° C., to obtain a dispersion liquid (RL-9) in which comparative particles (RC-9) were dispersed. The median particle size of RC-920 particles (RC-9) was 9.50 μm, and the amount of coarse particles was 2.9% by volume. The median diameter of the particles (RC-9) after standing at 10 ° C. for 24 hours was 11.50 μm, and the amount of coarse particles was 4.3% by volume. The rate of change in median diameter was 21.1%, and the increase in coarse particles was 1.4% by volume.
<比較例10>
 実施例19において、T2を70℃、T3を4℃、膨張前圧力10MPaとした以外は同様に行い、比較粒子(RC-10)が分散した分散液(RL-10)を得た。LA-920による粒子(RC-10)のメジアン径は0.41μmで、粗大粒子量は0.0体積%であった。また10℃、24h静置後の粒子(RC-10)のメジアン径は3.21μmで、粗大粒子量1.5体積%であった。メジアン径の変化率は682.9%であり、粗大粒子増加量は1.5体積%であった。
<Comparative Example 10>
A dispersion (RL-10) in which comparative particles (RC-10) were dispersed was obtained in the same manner as in Example 19 except that T2 was set at 70 ° C., T3 was set at 4 ° C., and the pressure before expansion was 10 MPa. The median particle size of RC-920 particles (RC-10) was 0.41 μm, and the amount of coarse particles was 0.0% by volume. The median diameter of the particles (RC-10) after standing at 10 ° C. for 24 hours was 3.21 μm, and the amount of coarse particles was 1.5% by volume. The change rate of the median diameter was 682.9%, and the increase amount of coarse particles was 1.5% by volume.
<比較例11>
 実施例19において、T3が25℃、膨張前圧力を1MPaとした以外は同様に行い、比較粒子(RC-11)が分散した分散液(RL-11)を得た。LA-920による粒子(RC-11)のメジアン径は4.30μmで、粗大粒子量は1.7体積%であった。また10℃、24h静置後の粒子(RC-11)のメジアン径は5.37μmで、粗大粒子量4.5体積%であった。メジアン径の変化率は24.9%であり、粗大粒子増加量は2.8体積%であった。
<Comparative Example 11>
The same procedure as in Example 19 was carried out except that T3 was 25 ° C. and the pre-expansion pressure was 1 MPa to obtain a dispersion liquid (RL-11) in which comparative particles (RC-11) were dispersed. The median diameter of the particles by RC-920 (RC-11) was 4.30 μm, and the amount of coarse particles was 1.7% by volume. The median diameter of the particles (RC-11) after standing at 10 ° C. for 24 hours was 5.37 μm, and the amount of coarse particles was 4.5 vol%. The change rate of the median diameter was 24.9%, and the increase amount of coarse particles was 2.8% by volume.
<比較例12>
 実施例19において、T3が25℃、膨張後圧力を3MPaとした以外は同様に行い、比較粒子(RC-12)が分散した分散液(RL-12)を得た。LA-920による粒子(RC-12)のメジアン径は6.10μmで、粗大粒子量は3.8体積%であった。また10℃、24h静置後の粒子(RC-12)のメジアン径は8.45μmで、粗大粒子量5.1体積%であった。メジアン径の変化率は38.5%であり、粗大粒子増加量は1.3体積%であった。
<Comparative Example 12>
The same procedure as in Example 19 was carried out except that T3 was 25 ° C. and the post-expansion pressure was 3 MPa to obtain a dispersion liquid (RL-12) in which comparative particles (RC-12) were dispersed. The median diameter of the particles by RC-920 (RC-12) was 6.10 μm, and the amount of coarse particles was 3.8% by volume. The median diameter of the particles (RC-12) after standing at 10 ° C. for 24 hours was 8.45 μm, and the amount of coarse particles was 5.1% by volume. The rate of change in median diameter was 38.5%, and the increase in coarse particles was 1.3% by volume.
<比較例13>
 実施例37において、T2を80℃、T3が33℃とした以外は同様に行い、比較粒子(RC-13)が分散した分散液(RL-13)を得た。LA-920による粒子(RC-13)のメジアン径は5.60μmで、粗大粒子量は3.5体積%であった。また10℃、24h静置後の粒子(RC-13)のメジアン径は10.54μmで、粗大粒子量4.1体積%であった。メジアン径の変化率は88.2%であり、粗大粒子増加量は0.6体積%であった。
<Comparative Example 13>
The same procedure as in Example 37 was conducted except that T2 was 80 ° C. and T3 was 33 ° C., to obtain a dispersion liquid (RL-13) in which comparative particles (RC-13) were dispersed. The median diameter of the particles by RC-920 (RC-13) was 5.60 μm, and the amount of coarse particles was 3.5% by volume. The median diameter of the particles (RC-13) after standing at 10 ° C. for 24 hours was 10.54 μm, and the amount of coarse particles was 4.1% by volume. The rate of change in median diameter was 88.2%, and the increase in coarse particles was 0.6% by volume.
<比較例14>
 実施例37において、T2を80℃、膨張前圧力を10MPaとした以外は同様に行い、比較粒子(RC-14)が分散した分散液(RL-14)を得た。LA-920による粒子(RC-14)のメジアン径は0.41μmで、粗大粒子量は0.1体積%であった。また10℃、24h静置後の粒子(RC-14)のメジアン径は3.24μmで、粗大粒子量3.5体積%であった。メジアン径の変化率は690.2%であり、粗大粒子増加量は3.4体積%であった。DSCでの測定からT1は20℃であった。
<Comparative example 14>
The same procedure as in Example 37 was carried out except that T2 was 80 ° C. and the pre-expansion pressure was 10 MPa, to obtain a dispersion liquid (RL-14) in which comparative particles (RC-14) were dispersed. The median particle size of RC-920 particles (RC-14) was 0.41 μm, and the amount of coarse particles was 0.1% by volume. The median diameter of the particles (RC-14) after standing at 10 ° C. for 24 hours was 3.24 μm, and the amount of coarse particles was 3.5% by volume. The rate of change in median diameter was 690.2%, and the increase in coarse particles was 3.4% by volume. T1 was 20 degreeC from the measurement by DSC.
<比較例15>
 実施例37において、膨張前圧力を1MPaとしT2を40℃とした以外は同様に行い、比較粒子(RC-15)が分散した分散液(RL-15)を得た。LA-920による粒子(RC-15)のメジアン径は4.65μmで、粗大粒子量は4.5体積%であった。また10℃、24h静置後の粒子(RC-15)のメジアン径は5.65μmで、粗大粒子量4.7体積%であった。メジアン径の変化率は21.5%であり、粗大粒子増加量は0.2体積%であった。
<Comparative Example 15>
The same procedure as in Example 37 was performed except that the pre-expansion pressure was 1 MPa and T2 was 40 ° C., to obtain a dispersion liquid (RL-15) in which comparative particles (RC-15) were dispersed. The median particle size of RC-920 particles (RC-15) was 4.65 μm, and the amount of coarse particles was 4.5% by volume. The median diameter of the particles (RC-15) after standing at 10 ° C. for 24 hours was 5.65 μm, and the amount of coarse particles was 4.7% by volume. The change rate of the median diameter was 21.5%, and the increase amount of coarse particles was 0.2% by volume.
<比較例16>
 実施例37において、膨張後圧力を5MPaとしT2を40℃とした以外は同様に行い、比較粒子(RC-16)が分散した分散液(RL-16)を得た。LA-920による粒子(RC-16)のメジアン径は3.32μmで、粗大粒子量は3.8体積%であった。また10℃、24h静置後の粒子(RC-16)のメジアン径は5.57μmで、粗大粒子量4.8体積%であった。メジアン径の変化率は67.8%であり、粗大粒子増加量は1.0体積%であった。
<Comparative Example 16>
The same procedure as in Example 37 was performed except that the pressure after expansion was 5 MPa and T2 was 40 ° C., to obtain a dispersion liquid (RL-16) in which comparative particles (RC-16) were dispersed. The median particle size of RC-920 particles (RC-16) was 3.32 μm, and the amount of coarse particles was 3.8% by volume. The median diameter of the particles (RC-16) after standing at 10 ° C. for 24 hours was 5.57 μm, and the amount of coarse particles was 4.8% by volume. The rate of change in median diameter was 67.8%, and the increase in coarse particles was 1.0% by volume.
 実施例1~43及び比較例1~16における分散液の評価結果を表1~6に示す。 Tables 1 to 6 show the evaluation results of the dispersions in Examples 1 to 43 and Comparative Examples 1 to 16.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記に示したように、実施例の分散液は、比較例の分散液と比べて、分散質を含む粒子が溶剤に微細にかつ安定に分散された分散液であることがわかる。 As shown above, it can be seen that the dispersion liquid of the example is a dispersion liquid in which particles containing a dispersoid are finely and stably dispersed in a solvent as compared with the dispersion liquid of the comparative example.
 本発明の分散液の製造方法により、微細化された粒子の分散液を迅速に得ることができる。本発明の製造方法により製造される分散液は、塗料、インキ、化粧品、食品、医薬品その他の各種の用途に好適である。 The dispersion of fine particles can be rapidly obtained by the method for producing a dispersion of the present invention. The dispersion produced by the production method of the present invention is suitable for various uses such as paints, inks, cosmetics, foods, pharmaceuticals and the like.
 T1:溶解槽(最高使用圧力20MPa、最高使用温度200℃、攪拌機つき)
 T2:分散液受け槽
 B1:二酸化炭素ボンベ
 P1:溶液ポンプ
 P2:二酸化炭素ポンプ
 M1:スタティックミキサー
 V1:バルブ
 
T1: Dissolution tank (maximum operating pressure 20 MPa, maximum operating temperature 200 ° C., with stirrer)
T2: Dispersion tank B1: Carbon dioxide cylinder P1: Solution pump P2: Carbon dioxide pump M1: Static mixer V1: Valve

Claims (7)

  1. 分散質(A)と溶剤(S)と圧縮性流体(F)とを含む混合物(X)を、体積膨張させる工程を含む、分散質(A)を含む粒子(C)が溶剤(S)に分散された分散液(L)の製造方法であって、分散質(A)の融点又は軟化点以下の温度で分散質(A)が溶剤(S)及び/又は圧縮性流体(F)に溶解した状態で、分散質(A)の融点又は軟化点以下で混合物(X)を体積膨張させること、並びに粒子(C)のメジアン径が3.0μm以下であることを特徴とする分散液(L)の製造方法。 The particle (C) containing the dispersoid (A) includes the step of expanding the volume of the mixture (X) containing the dispersoid (A), the solvent (S), and the compressible fluid (F). A method for producing a dispersed dispersion (L), wherein the dispersoid (A) is dissolved in the solvent (S) and / or the compressive fluid (F) at a temperature below the melting point or softening point of the dispersoid (A). In this state, the mixture (X) is volume-expanded below the melting point or softening point of the dispersoid (A), and the median diameter of the particles (C) is 3.0 μm or less. ) Manufacturing method.
  2. 分散質(A)が融点を有し、以下の条件1を満たす請求項1に記載の分散液(L)の製造方法。
    条件1
     T3<T1<T2<T0 
     T0:分散質(A)の融点
     T1:分散液(L)をDSC降温測定した際の、分散質(A)由来の発熱ピーク温度
     T2:体積膨張させる直前の混合物(X)の温度
     T3:混合物(X)を体積膨張した直後の分散液(L)の温度
    The method for producing a dispersion (L) according to claim 1, wherein the dispersoid (A) has a melting point and satisfies the following condition 1.
    Condition 1
    T3 <T1 <T2 <T0
    T0: Melting point of dispersoid (A) T1: Exothermic peak temperature derived from dispersoid (A) when DSC temperature drop measurement of dispersion (L) T2: Temperature of mixture (X) immediately before volume expansion T3: Mixture Temperature of dispersion liquid (L) immediately after volume expansion of (X)
  3. 以下の条件2を満たす請求項2に記載の分散液(L)の製造方法。
    条件2
     T3+10<T1
     T1:分散液(L)をDSC降温測定した際の、分散質(A)由来の発熱ピーク温度
     T3:混合物(X)を体積膨張した直後の分散液(L)の温度
    The manufacturing method of the dispersion liquid (L) of Claim 2 which satisfy | fills the following conditions 2. FIG.
    Condition 2
    T3 + 10 <T1
    T1: Exothermic peak temperature derived from the dispersoid (A) when the dispersion (L) was subjected to DSC temperature drop measurement. T3: Temperature of the dispersion (L) immediately after volumetric expansion of the mixture (X)
  4. 前記混合物(X)において、分散質(A)が溶剤(S)及び圧縮性流体(F)からなる群より選択される少なくとも1種の液と液液二相分離している請求項1~3のいずれかに記載の分散液(L)の製造方法。 In the mixture (X), the dispersoid (A) is subjected to liquid-liquid two-phase separation from at least one liquid selected from the group consisting of a solvent (S) and a compressive fluid (F). The manufacturing method of the dispersion liquid (L) in any one of.
  5. 分散質(A)が非晶質材料である請求項1に記載の分散液(L)の製造方法。 The method for producing a dispersion (L) according to claim 1, wherein the dispersoid (A) is an amorphous material.
  6. 圧縮性流体(F)が液体二酸化炭素、亜臨界二酸化炭素又は超臨界二酸化炭素である請求項1~5のいずれかに記載の分散液(L)の製造方法。 The method for producing a dispersion (L) according to any one of claims 1 to 5, wherein the compressive fluid (F) is liquid carbon dioxide, subcritical carbon dioxide or supercritical carbon dioxide.
  7. 請求項1~6のいずれかに記載の製造方法で製造された分散液。
     
    A dispersion produced by the production method according to any one of claims 1 to 6.
PCT/JP2014/082901 2013-12-11 2014-12-11 Method for producing dispersion, and dispersion WO2015087986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015552522A JP6533467B2 (en) 2013-12-11 2014-12-11 Method of producing dispersion liquid and dispersion liquid

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2013-255923 2013-12-11
JP2013-255976 2013-12-11
JP2013255923 2013-12-11
JP2013255976 2013-12-11
JP2013-270981 2013-12-27
JP2013-271160 2013-12-27
JP2013271023 2013-12-27
JP2013271160 2013-12-27
JP2013-271072 2013-12-27
JP2013270981 2013-12-27
JP2013271072 2013-12-27
JP2013271117 2013-12-27
JP2013-271023 2013-12-27
JP2013-271117 2013-12-27
JP2014110679 2014-05-28
JP2014-110679 2014-05-28
JP2014-192770 2014-09-22
JP2014192770 2014-09-22

Publications (1)

Publication Number Publication Date
WO2015087986A1 true WO2015087986A1 (en) 2015-06-18

Family

ID=53371284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082901 WO2015087986A1 (en) 2013-12-11 2014-12-11 Method for producing dispersion, and dispersion

Country Status (2)

Country Link
JP (1) JP6533467B2 (en)
WO (1) WO2015087986A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115778A (en) * 2009-09-15 2011-06-16 Sanyo Chem Ind Ltd Method for manufacturing dispersion liquid
JP2011177617A (en) * 2010-02-26 2011-09-15 Sanyo Chem Ind Ltd Method of producing dispersion
JP2011526836A (en) * 2009-06-23 2011-10-20 ザ インダストリイ アンド コーパレイション イン チョンナム ナショナル ユニヴァシティ Novel production method and apparatus for ultrafine particles having uniform particle size distribution
JP2012172074A (en) * 2011-02-22 2012-09-10 Ricoh Co Ltd Method for producing crystalline polyester resin particle, crystalline polyester resin dispersion, toner, and developer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689270B2 (en) * 2009-09-29 2015-03-25 三洋化成工業株式会社 Method for producing dispersion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526836A (en) * 2009-06-23 2011-10-20 ザ インダストリイ アンド コーパレイション イン チョンナム ナショナル ユニヴァシティ Novel production method and apparatus for ultrafine particles having uniform particle size distribution
JP2011115778A (en) * 2009-09-15 2011-06-16 Sanyo Chem Ind Ltd Method for manufacturing dispersion liquid
JP2011177617A (en) * 2010-02-26 2011-09-15 Sanyo Chem Ind Ltd Method of producing dispersion
JP2012172074A (en) * 2011-02-22 2012-09-10 Ricoh Co Ltd Method for producing crystalline polyester resin particle, crystalline polyester resin dispersion, toner, and developer

Also Published As

Publication number Publication date
JPWO2015087986A1 (en) 2017-03-16
JP6533467B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP5705493B2 (en) Method for producing resin particles
JP5237902B2 (en) Crystalline resin particles
JP5705492B2 (en) Method for producing resin particles
CN106462094B (en) Toner binder and toner
JP5291649B2 (en) Resin particles
JP5627977B2 (en) Method for producing resin particles
WO2009142010A1 (en) Resin particle and process for production thereof
JP2011237790A (en) Resin particle and producing method for the same
JP2010168529A (en) Resin particle and manufacturing method thereof
JP5214558B2 (en) Resin particles and method for producing the same
WO2010021081A1 (en) Resin particle and method for producing same
JP5653813B2 (en) Method for producing resin particles
JP2006307195A (en) Resin particle
JP6948282B2 (en) Method for producing composite particles and dispersion liquid containing composite particles
JP5705505B2 (en) Resin particles
JP2012012481A (en) Method for producing resin particle, the resultant resin particle, and electrophotographic toner using the same
JP2010084133A (en) Resin particle and method for producing the same
WO2015087986A1 (en) Method for producing dispersion, and dispersion
JP2006309203A (en) Toner binder
JP2019074761A (en) Method for manufacturing toner and toner
JP2016138257A (en) Production method of resin particle
JP6453015B2 (en) Dispersion liquid and method for producing dispersion liquid, resin particles and toner
JP2013087166A (en) Method for producing resin particle, resin particle, and electrophotographic toner
JP5697949B2 (en) Method for producing resin particles
JP2016130306A (en) Method for producing resin particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869291

Country of ref document: EP

Kind code of ref document: A1