WO2015087971A1 - Adhesive composition and semiconductor device using same - Google Patents

Adhesive composition and semiconductor device using same Download PDF

Info

Publication number
WO2015087971A1
WO2015087971A1 PCT/JP2014/082839 JP2014082839W WO2015087971A1 WO 2015087971 A1 WO2015087971 A1 WO 2015087971A1 JP 2014082839 W JP2014082839 W JP 2014082839W WO 2015087971 A1 WO2015087971 A1 WO 2015087971A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive composition
mass
particles
zinc
composition according
Prior art date
Application number
PCT/JP2014/082839
Other languages
French (fr)
Japanese (ja)
Inventor
名取 美智子
田中 俊明
偉夫 中子
石川 大
山田 和彦
賢 藤田
千秋 岡田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2015087971A1 publication Critical patent/WO2015087971A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0893Zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent

Definitions

  • the present invention relates to an adhesive composition and a semiconductor device using the same. More specifically, the present invention relates to an adhesive composition suitable for bonding an LED semiconductor element to a substrate such as a lead frame, a ceramic wiring board, a glass epoxy wiring board, a polyimide wiring board, and a semiconductor device using the same. About.
  • an adhesive in which a filler such as silver powder is dispersed in a resin such as an epoxy resin or a polyimide resin there is a method of using (for example, silver paste).
  • a paste adhesive is applied to a die pad of a lead frame using a dispenser, a printing machine, a stamping machine, etc., and then a semiconductor element is die-bonded and bonded by heat curing to obtain a semiconductor device.
  • an adhesive composition (Patent Documents 1 to 3) filled with high thermal conductivity silver particles and solder particles are used.
  • an adhesive composition Patent Document 4
  • an adhesive composition Patent Document 5
  • an adhesive composition Patent Document 5
  • an adhesive composition Patent Document 6
  • silver particles are sintered by heating at 100 ° C. or more and 400 ° C. or less by using micro-sized silver particles subjected to a special surface treatment.
  • JP 2006-73811 A JP 2006-302834 A Japanese Patent Laid-Open No. 11-66953 JP 2005-93996 A JP 2006-83377 A Japanese Patent No. 4353380
  • gold-tin alloy plating is applied to many of the adherend surfaces of the LED elements. This is due to the property that the gold-tin alloy plating has high thermal conductivity (that is, high heat dissipation) and is difficult to absorb LED light. Further, gold having higher thermal conductivity than gold-tin alloy plating is applied to the high-power LED element.
  • the silver particles proposed in Patent Document 6 are sintered with each other, so that the thermal conductivity and the connection reliability at a high temperature are higher than those of other methods. It is considered that the property is excellent.
  • the present inventors apply the adhesive composition proposed in Patent Document 6 to the mounting of an LED element having a deposition surface formed by gold-tin alloy plating, the present invention is sufficient for gold-tin alloy plating. It was found that the adhesive strength could not be obtained.
  • the present inventors have found that when the adhesive composition proposed in Patent Document 6 is applied to the mounting of an LED element having a deposition surface made of gold, the adhesive strength is remarkably reduced.
  • the present invention forms a cured product having a sufficiently high adhesive force and high thermal conductivity even when applied to the mounting of an LED element having a deposition surface made of gold-tin alloy or gold. It is an object to provide an adhesive composition that can be used and a semiconductor device using the same.
  • the present invention provides an adhesive composition containing silver particles containing silver atoms, zinc particles containing metallic zinc, and a thermosetting resin.
  • the content of silver atoms is 90% by mass or more based on the total amount of transition metal atoms, and the content of zinc atoms is 0.01% by mass based on the total amount of transition metal atoms. It is preferable that the content of the thermosetting resin is 0.1% by mass or more and 10% by mass or less based on the total amount of the adhesive composition.
  • the zinc particles preferably have an average primary particle size of 50 nm to 150,000 nm.
  • the zinc particles are preferably in the form of flakes.
  • piece shape is a concept including shapes, such as plate shape, dish shape, and scale shape.
  • the silver particles preferably have an average primary particle size of 0.1 ⁇ m to 50 ⁇ m.
  • thermosetting resin preferably contains one or more resins selected from the group consisting of epoxy-phenol resins, acrylic resins, and bismaleimide resins.
  • the adhesive composition according to the present invention preferably further contains a dispersion medium.
  • the dispersion medium preferably contains at least one dispersion medium having a boiling point of 300 ° C. or higher selected from the group consisting of alcohol, carboxylic acid and ester.
  • the boiling point in this invention means the boiling point under 1 atmosphere.
  • the volume resistivity of a cured product obtained by thermosetting the adhesive composition is 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, and the thermal conductivity is 30 W / m ⁇ K or more. Preferably there is.
  • the adhesive composition according to the present invention is preferably 100 to 300 ° C. for 5 seconds to 10 hours, more preferably 150 to 300 ° C. for 30 minutes to 5 hours, still more preferably 150 to 250 ° C. for 1 to 2 hours, particularly preferably. Is preferably cured at 200 ° C. for 1 hour.
  • the adhesive composition according to the present invention is preferably used for an adherend surface having a gold-tin alloy.
  • the present invention also provides a semiconductor device having a structure in which an LED element and an LED element mounting support member are bonded via the above-described adhesive composition.
  • the deposition surface of the LED element has a gold-tin alloy.
  • a cured product having a sufficiently high adhesive force and a high thermal conductivity even when applied to the mounting of an LED element having a deposition surface made of gold-tin alloy or gold.
  • An adhesive composition that can be formed and an LED device using the same can be provided.
  • the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition in the present specification when there are a plurality of substances corresponding to each component in the composition, the plurality of the components present in the composition unless otherwise specified. Means the total amount of substances.
  • the adhesive composition of this embodiment contains silver particles, zinc particles, and a thermosetting resin. According to the adhesive composition of the present embodiment, a high adhesive force can be expressed even on a gold-tin alloy or gold-coated surface, and a cured product having a high thermal conductivity can be formed.
  • the adhesive composition of this embodiment may further contain a dispersion medium.
  • the silver particles are particles containing silver atoms, preferably particles containing silver atoms as a main component (for example, the silver content in the solid content is 90% by mass or more, the same applies hereinafter).
  • the composition mainly composed of silver atoms include metallic silver and silver oxide, with metallic silver being preferred.
  • Examples of the shape of the silver particles include a spherical shape, a lump shape, a needle shape, and a flake shape.
  • the silver particles preferably have an average primary particle size of 0.001 ⁇ m to 500 ⁇ m, more preferably 0.01 ⁇ m to 100 ⁇ m, and still more preferably 0.1 ⁇ m to 50 ⁇ m.
  • the average particle size (volume average particle size) of primary particles of silver particles can be measured with a laser scattering particle size distribution analyzer. An example of the measurement method is shown below.
  • distilled water is introduced into the liquid module by the Rinse command of the measurement program, and De-bubble, Measurement Offset, Align, and Measurement Background are performed in the measurement program. Subsequently, measurement loading is performed in the measurement program, and when the aqueous dispersion is shaken and homogenized, the aqueous dispersion is added to the liquid module using a dropper until the sample amount becomes low to OK in the measurement program. Thereafter, Measurement is performed in the measurement program to obtain a particle size distribution.
  • the zinc particles are particles containing metallic zinc, and are preferably particles containing metallic zinc as a main component (for example, the zinc content in the solid content is 90% by mass or more).
  • Zinc particles include, for example, metallic zinc particles, zinc particles whose particle nuclei are metallic zinc and having a zinc oxide layer on the surface, zinc particles whose particle nuclei are metallic zinc and having an organic protective coating, and whose particle nuclei are metallic zinc Zinc particles having a metallic silver layer on the surface can be used.
  • the zinc particles preferably have an average primary particle size of 150,000 nm or less, more preferably 50,000 nm or less, from the viewpoint of obtaining a contact area with an inorganic material such as a conductor layer or a substrate. More preferably, it is 1,000 nm or less.
  • the average particle size of primary particles of zinc particles is preferably 50 nm or more.
  • Examples of the shape of the zinc particles include a spherical shape, a lump shape, a needle shape, and a flake shape. Among these, flaky particles are preferable from the viewpoint of reducing the influence of the oxidation described above.
  • the content of silver atoms is preferably 90% by mass or more, more preferably 95% by mass or more based on the total amount of transition metal atoms.
  • the adhesive composition can express sufficiently high adhesive force and thermal conductivity.
  • the total amount of transition metal atoms means the total amount of transition metal atoms in the solid content of the adhesive composition.
  • the content of zinc atoms is preferably 0.01% by mass or more, more preferably 0.05% by mass or more based on the total amount of transition metal atoms, The content is more preferably 0.08% by mass or more, and particularly preferably 0.09% by mass or more.
  • the zinc atom content is preferably 0.6% by mass or less, more preferably 0.5% by mass or less, based on the total amount of transition metal atoms. More preferably, it is 0.2 mass% or less.
  • the content of silver atoms and zinc atoms in the adhesive composition can be measured by XRD, SEM-EDX, fluorescent X-ray measurement or the like.
  • An example of a technique for measuring the content of silver atoms and zinc atoms by SEM-EDX is shown below.
  • the adhesive composition is stretched in a petri dish so as to have a thickness of 1 mm or less, and dried in a vacuum dryer at 70 ° C., 100 Pa or less, for 40 hours or more to obtain a dry adhesive composition.
  • the dry adhesive composition is molded on a SEM sample stage so as to be flat with a thickness of 2 ⁇ m or more to obtain a sample for SEM.
  • the ratio of each transition metal atom in the adhesive composition can be obtained by quantitatively analyzing the SEM sample according to an example of a quantitative method using SEM-EDX described later.
  • the content of silver atoms and zinc atoms in the adhesive composition after curing can be measured, and this can be used as the content of silver atoms and zinc atoms in the adhesive composition. This is because silver atoms and zinc atoms do not volatilize in the adhesive composition after curing, and their contents do not substantially change.
  • the adhesive composition is uniformly applied to a glass plate with a thickness of 0.1 to 0.5 mm, and subjected to curing treatment at 200 to 300 ° C. for 1 hour in the air. obtain. About this hardened
  • the adhesive composition of this embodiment may contain transition metal atoms other than silver atoms and zinc atoms in the solid content.
  • the content of transition metal atoms other than silver atoms and zinc atoms is, for example, preferably less than 10% by mass and more preferably less than 5% by mass based on the total amount of transition metal atoms.
  • thermosetting resin In the adhesive composition of this embodiment, the content of the thermosetting resin is preferably 0.1% by mass or more and 10% by mass or less based on the total amount of the adhesive composition.
  • the thermosetting resin is preferably one or more resins selected from the group consisting of epoxy-phenol resins, acrylic resins, and bismaleimide resins. Further, from the viewpoint of increasing the efficiency of the mounting process, the shorter the reaction end time of the thermosetting resin, the better.
  • the dispersion medium may be either organic or inorganic, but preferably has a boiling point of 200 ° C. or higher, and more preferably has a boiling point of 300 ° C. or higher, from the viewpoint of preventing drying in the coating process. preferable. Moreover, it is preferable that it has a boiling point of 400 degrees C or less so that a dispersion medium does not remain after sintering.
  • the dispersion medium it is preferable to use one or more dispersion mediums having a boiling point of 300 ° C. or higher selected from the group consisting of alcohol, carboxylic acid and ester. Further, as the dispersion medium, one or more kinds of dispersion medium having a boiling point of 300 ° C. or more and 400 ° C. or less selected from the group consisting of alcohol, carboxylic acid and ester, and a volatile component having a boiling point of 100 ° C. or more and less than 300 ° C. It is more preferable to use together.
  • alcohols, carboxylic acids or esters having a boiling point of 300 ° C. or higher include aliphatic carboxylic acids such as palmitic acid, stearic acid, arachidic acid, terephthalic acid, oleic acid, pyromellitic acid, o-phenoxybenzoic acid and the like.
  • Aromatic carboxylic acid cetyl alcohol, isobornyl cyclohexanol, aliphatic alcohol such as tetraethylene glycol, aromatic alcohol such as p-phenylphenol, octyl octoate, ethyl myristate, methyl linoleate, tributyl citrate, benzoic acid And esters such as benzyl acid.
  • aromatic alcohols or carboxylic acids having 6 to 20 carbon atoms are preferred.
  • volatile components having a boiling point of 100 ° C. or higher and lower than 300 ° C. include monovalent and polyvalent compounds such as pentanol, hexanol, heptanol, octanol, decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, ⁇ -terpineol, and the like.
  • Alcohols ethylene glycol butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether Ter, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol Ethers such as butyl ether, dipropylene glycol dimethyl ether, tripropylene glycol methyl ether, trip
  • Examples of mercaptans having an alkyl group having 1 to 18 carbon atoms include ethyl mercaptan, n-propyl mercaptan, i-propyl mercaptan, n-butyl mercaptan, i-butyl mercaptan, t-butyl mercaptan, pentyl mercaptan, hexyl mercaptan, and the like.
  • Examples of mercaptans having a cycloalkyl group having 5 to 7 carbon atoms include mercaptans such as cyclopentyl mercaptan, cyclohexyl mercaptan, and cycloheptyl mercaptan.
  • mercaptans having a boiling point of 100 ° C. or higher and lower than 300 ° C. a volatile component having a boiling point of 150 ° C. or higher is preferable, and alcohols, esters and ethers having 4 to 12 carbon atoms are more preferable.
  • the above-mentioned dispersion media can be used alone or in combination of two or more.
  • the content of the dispersion medium is preferably 0.1 to 20 parts by mass when the total amount of the adhesive composition is 100 parts by mass.
  • the total content of the silver particles, the zinc particles and the dispersion medium is preferably 90 parts by mass or more and more preferably 95 parts by mass or more when the total amount of the adhesive composition is 100 parts by mass. More preferably, it is 98 parts by mass or more.
  • the adhesive composition of the present embodiment may include one or more of a sintering aid, a wettability improver, and an antifoaming agent. Note that the adhesive composition of the present embodiment may contain components other than those listed here.
  • the adhesive composition of the present embodiment further includes a moisture absorbent such as calcium oxide and magnesium oxide, a wetting improver such as a nonionic surfactant and a fluorine surfactant, and a defoaming agent such as silicone oil.
  • a moisture absorbent such as calcium oxide and magnesium oxide
  • a wetting improver such as a nonionic surfactant and a fluorine surfactant
  • a defoaming agent such as silicone oil.
  • Agents, ion trapping agents such as inorganic ion exchangers, polymerization inhibitors, curing accelerators, silane coupling agents, and the like can be added as appropriate.
  • the above-mentioned adhesive composition is a combination of dispersing or dissolving devices such as a stirrer, raky machine, three rolls, planetary mixer, etc., by mixing or dividing the above components all together, heating and mixing as necessary, It can be used as a uniform paste by dissolving, pulverizing and kneading or dispersing.
  • the adhesive composition preferably has a viscosity suitable for each printing and coating method when it is molded.
  • the viscosity of the adhesive composition for example, the Casson viscosity at 25 ° C. is preferably 0.05 Pa ⁇ s to 2.0 Pa ⁇ s, more preferably 0.06 Pa ⁇ s to 1.0 Pa ⁇ s. preferable.
  • the Casson viscosity of the adhesive composition can be measured with a viscoelasticity measuring device (Physica MCR-501, manufactured by Anton Paar).
  • a cone-type measuring jig (CP50-1) having an angle of 1 ° and a diameter of 50 mm is mounted, and an adhesive composition is introduced into the measuring apparatus so that the adhesive composition overflows from the measuring jig at the measurement position. Thereafter, the measurement jig is lowered to the measurement position, and the adhesive composition overflowing at that time is scraped off to perform measurement.
  • the measurement is performed at 25 ° C., and the following two steps are continuously performed, and the shear rate and the shear stress are recorded in the second step.
  • Shear rate 0 to 100 s ⁇ 1 shear rate increase rate 100/60 s ⁇ 1 / step, measurement interval 1 second, number of measurement points 60 points.
  • the Casson viscosity is calculated by the method described in -46). Specifically, the square root of each obtained shear rate and shear stress is calculated and approximated by the least square method from (shear stress) ⁇ (1/2) to (shear rate) ⁇ (1/2). Calculate the slope of the straight line. The square of this slope is the Casson viscosity.
  • the above-mentioned adhesive composition can be cured, for example, by heating at 100 to 300 ° C. for 5 seconds to 10 hours.
  • the content of silver atoms and zinc atoms does not substantially change before and after heating.
  • the content of silver atoms and zinc atoms in the total transition metal atoms in the cured adhesive composition can be determined by methods such as SEM-EDX, TEM-EDX, and Auger electron spectroscopy using the cured adhesive composition. Can be quantified.
  • a sample having a layer of the cured adhesive composition having a thickness of 3 ⁇ m or more is hardened with an epoxy casting resin.
  • a polishing apparatus Using a polishing apparatus, a cross section perpendicular to the layer of the cured adhesive composition is cut out, and the cross section is finished smoothly.
  • a noble metal antistatic layer having a thickness of about 10 nm is formed on the finished cross section using a sputtering apparatus or a vapor deposition apparatus to produce a sample for SEM.
  • the sample for SEM is set in a SEM-EDX (for example, ESEM XL, manufactured by Philips) apparatus and observed at a magnification of about 5,000 to 10,000 times.
  • the EDX point analysis was performed around the center of the cured adhesive composition, sample tilt angle: 0 °, acceleration voltage 25 kV, Ev / Chan: 10, Amp. Accumulated under the conditions of Time: 50 ⁇ S, Choose Preset: Live Time 300 secs, and the analysis conditions are Matrix: ZAF, SEC (Standardless element Coefficient): EDAX, quantitative method: None, and cured adhesive composition
  • the proportion of each transition metal atom in the product is obtained.
  • the cured adhesive composition preferably has a volume resistivity of 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, and a thermal conductivity of 30 W / m ⁇ K or more. It is preferable.
  • the volume resistivity of the cured adhesive composition is preferably as low as possible. The higher the thermal conductivity of the cured adhesive composition, the more preferable it is from the viewpoint of suppressing the device temperature rise.
  • the semiconductor device of this embodiment includes a semiconductor element and a semiconductor element mounting support member, and has a structure in which the semiconductor element and the semiconductor element mounting support member are bonded via the adhesive composition of the present embodiment. .
  • semiconductor elements and supporting members for mounting semiconductor elements As a semiconductor element used in the present embodiment, an LED element having a gold-tin alloy or gold on a deposition surface can be given. In addition, in this embodiment, the LED element whose deposition surface is silver can also be used. Examples of the semiconductor element mounting support member used in the present embodiment include an LED element mounting support member. Examples of the LED element mounting support member include a support member having gold or silver on the surface of the adherend. In addition, the LED element mounting support member may be formed by patterning a plurality of materials of gold, silver, and gold-tin alloy on the base material.
  • the manufacturing method of the semiconductor device of this embodiment using the adhesive composition of this embodiment can have at least the following steps.
  • (A) A process of applying an adhesive composition to an LED element or an LED element mounting support member, and bonding the LED element and the LED element mounting support member (hereinafter referred to as “process (A)”),
  • (B) A step of curing the adhesive composition and bonding the LED element and the LED element mounting support member (hereinafter referred to as “step (B)”).
  • step (A) after applying the adhesive composition, it may have a drying step.
  • the adhesive composition can be prepared by mixing the above-described silver particles, zinc particles, thermosetting resin, and optional components in a dispersion medium.
  • the adhesive composition may be stirred after mixing.
  • the adhesive composition may adjust the maximum particle size of the dispersion by filtration.
  • the stirring treatment can be performed using a stirrer.
  • a stirrer examples include a rotation / revolution stirrer, a lycra machine, a twin-screw kneader, a triple roll, a planetary mixer, and a thin layer shear disperser.
  • Filtration can be performed using a filtration device.
  • the filter for filtration include a metal mesh, a metal filter, and a nylon mesh.
  • the adhesive composition layer is formed by applying the adhesive composition onto the LED element mounting support member or the LED element. Examples of the application method include coating or printing.
  • the adhesive composition for example, pin transfer, dipping, spray coating, bar coating, die coating, comma coating, slit coating, and applicator can be used.
  • a printing method for printing the adhesive composition for example, a dispenser, stencil printing, intaglio printing, screen printing, needle dispenser, or jet dispenser method can be used.
  • the adhesive composition layer formed by the application of the adhesive composition can be appropriately dried from the viewpoint of suppressing flow and void generation during curing.
  • drying at room temperature drying by heating, or drying under reduced pressure
  • hot plate warm air dryer, warm air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device
  • a heater heating device, a steam heating furnace, a hot plate press device, or the like can be used.
  • the temperature and time for drying are preferably adjusted as appropriate according to the type and amount of the dispersion medium used, and are preferably dried at 50 to 120 ° C. for 1 to 120 minutes, for example. However, the temperature for drying is preferably set to a temperature that avoids the reaction of the thermosetting resin.
  • the LED element and the LED element mounting support member are bonded together via the adhesive composition layer.
  • it may be performed at any stage before or after the bonding process.
  • a curing process is performed on the adhesive composition layer.
  • the curing process may be performed by heat treatment or by heat and pressure treatment.
  • heat treatment hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, heater heating An apparatus, a steam heating furnace, or the like can be used.
  • a hot plate press apparatus etc. may be used for a heat pressurizing process, and the above-mentioned heat processing may be performed, putting a weight and pressurizing.
  • the LED element and the LED element mounting support member are made of a cured product of the adhesive composition of the present embodiment excellent in adhesiveness, high thermal conductivity, and high heat resistance.
  • a bonded semiconductor device can be manufactured.
  • the LED module thus obtained is an adhesive member (cured product of an adhesive composition layer) having high adhesion, high thermal conductivity, high conductivity and high heat resistance between the LED element and the LED element mounting support member. ).
  • Examples of the semiconductor device of this embodiment include an LED module.
  • Average particle diameter of primary particles 0.01 g of zinc particles or silver particles, 0.1 g of sodium dodecylbenzenesulfonate (manufactured by Wako Pure Chemical Industries), 9.99 g of distilled water (manufactured by Wako Pure Chemical Industries), Were mixed and treated with an ultrasonic cleaner for 5 minutes to obtain an aqueous dispersion.
  • a laser scattering particle size distribution analyzer LS13 320 manufactured by Beckman Coulter
  • the main body was turned on and left for 30 minutes to stabilize the light source.
  • distilled water was introduced into the liquid module by the Rinse command of the measurement program, and De-bubble, Measurement Offset, Align, and Measurement Background were performed in the measurement program. Subsequently, measurement loading was performed in the measurement program, and when the aqueous dispersion was shaken and homogenized, the aqueous dispersion was added to the liquid module using a dropper until the sample amount became low to OK in the measurement program. Thereafter, measurement was performed using a measurement program to obtain a particle size distribution.
  • the adhesive strength of the cured adhesive composition was evaluated by die shear strength. Using an all-purpose bond tester (4000 series, manufactured by DAGE) equipped with a 50N load cell, the LED chip with a measurement speed of 500 ⁇ m / s, a measurement height of 50 ⁇ m and a gold-tin alloy surface is pressed in the horizontal direction. The die shear strength of the cured composition was measured. The average of the measured values of five samples was taken as the die shear strength.
  • the adhesive strength of the cured adhesive composition was evaluated by die shear strength. Using a universal bond tester (4000 series, manufactured by DAGE) equipped with a 50N load cell, a silicon chip with a measurement speed of 500 ⁇ m / s, a measurement height of 100 ⁇ m, and a gold-plated surface is pressed in the horizontal direction, and the adhesive composition The die shear strength of the cured product was measured. The average of the measured values of 12 samples was defined as the die shear strength.
  • Example 1 (Preparation of adhesive composition) 5 parts by mass of isobornylcyclohexanol (Telsolve MTPH, manufactured by Nippon Terpene) and 5 parts by mass of dipropylene glycol methyl ether acetate (DPMA, manufactured by Daicel Chemical) as a dispersion medium, and stearic acid (New Nippon Rika) as a particle surface treatment agent 0.79 parts by mass was mixed and sealed in a plastic bottle. This solution was warmed in a water bath at 50 ° C. to obtain a transparent and uniform solution with occasional shaking.
  • Telsolve MTPH dipropylene glycol methyl ether acetate
  • stearic acid New Nippon Rika
  • the plastic bottle was sealed, and the mixture was stirred at 2000 rpm for 1 minute using a rotation / revolution type stirring device (Planetary Vacuum Mixer ARV-310, manufactured by Sinky) to obtain an adhesive composition.
  • the average particle size of the primary particles of the scaly zinc particles was 23 ⁇ m
  • the average particle size of the primary particles of the scaly silver particles was 5.42 ⁇ m
  • the average particle size of the primary particles of the spherical silver particles was 1.64 ⁇ m.
  • Example 2 (Preparation of adhesive composition) 5 parts by mass of isobornylcyclohexanol (Telsolve MTPH, manufactured by Nippon Terpene) and 5 parts by mass of dipropylene glycol methyl ether acetate (DPMA, manufactured by Daicel Chemical) as a dispersion medium, and stearic acid (New Nippon Rika) as a particle surface treatment agent 0.79 parts by mass was mixed and sealed in a plastic bottle. This solution was warmed in a water bath at 50 ° C. to obtain a transparent and uniform solution with occasional shaking.
  • Telsolve MTPH isobornylcyclohexanol
  • DPMA dipropylene glycol methyl ether acetate
  • stearic acid New Nippon Rika
  • the plastic bottle was sealed, and the mixture was stirred at 2000 rpm for 1 minute using a rotation / revolution type stirring device (Planetary Vacuum Mixer ARV-310, manufactured by Sinky) to obtain an adhesive composition.
  • the average particle size of the primary particles of the scaly zinc particles was 23 ⁇ m
  • the average particle size of the primary particles of the scaly silver particles was 5.42 ⁇ m
  • the average particle size of the primary particles of the spherical silver particles was 1.64 ⁇ m.
  • Example 3 (Preparation of adhesive composition) 5 parts by mass of isobornylcyclohexanol (Telsolve MTPH, manufactured by Nippon Terpene) and 5 parts by mass of dipropylene glycol methyl ether acetate (DPMA, manufactured by Daicel Chemical) as a dispersion medium, and stearic acid (New Nippon Rika) as a particle surface treatment agent 0.79 parts by mass was mixed and sealed in a plastic bottle. This solution was warmed in a 50 ° C. water bath, and was made into a transparent and uniform solution with occasional shaking.
  • Telsolve MTPH isobornylcyclohexanol
  • DPMA dipropylene glycol methyl ether acetate
  • stearic acid New Nippon Rika
  • the plastic bottle was sealed, and the mixture was stirred at 2000 rpm for 1 minute using a rotation / revolution type stirring device (Planetary Vacuum Mixer ARV-310, manufactured by Sinky) to obtain an adhesive composition.
  • the average particle size of the primary particles of the scaly zinc particles was 23 ⁇ m
  • the average particle size of the primary particles of the scaly silver particles was 5.42 ⁇ m
  • the average particle size of the primary particles of the spherical silver particles was 1.64 ⁇ m.
  • the average particle size of the primary particles of the scaly zinc particles was 23 ⁇ m
  • the average particle size of the primary particles of the scaly silver particles was 5.42 ⁇ m
  • the average particle size of the primary particles of the spherical silver particles was 1.64 ⁇ m.
  • Table 1 shows the amount of each component.
  • Table 2 shows the measurement results of die shear strength and thermal conductivity.

Abstract

 This adhesive composition includes silver particles containing silver atoms, zinc particles containing metallic zinc, and a thermosetting resin.

Description

接着剤組成物及びそれを用いた半導体装置Adhesive composition and semiconductor device using the same
 本発明は、接着剤組成物及びそれを用いた半導体装置に関する。さらに詳しくいえば、本発明は、LEDの半導体素子をリードフレーム、セラミック配線板、ガラスエポキシ配線板、ポリイミド配線板等の基板に接着するのに好適な接着剤組成物及びこれを用いた半導体装置に関する。 The present invention relates to an adhesive composition and a semiconductor device using the same. More specifically, the present invention relates to an adhesive composition suitable for bonding an LED semiconductor element to a substrate such as a lead frame, a ceramic wiring board, a glass epoxy wiring board, a polyimide wiring board, and a semiconductor device using the same. About.
 半導体装置を製造する際、半導体素子とリードフレーム(支持部材)とを接着させる方法としては、エポキシ系樹脂、ポリイミド系樹脂等の樹脂に銀粉等の充てん剤を分散させてペースト状にした接着剤(例えば、銀ペースト)を使用する方法がある。この方法では、ディスペンサー、印刷機、スタンピングマシン等を用いて、ペースト状接着剤をリードフレームのダイパッドに塗布した後、半導体素子をダイボンディングし、加熱硬化により接着させ半導体装置とする。 As a method of bonding a semiconductor element and a lead frame (support member) when manufacturing a semiconductor device, an adhesive in which a filler such as silver powder is dispersed in a resin such as an epoxy resin or a polyimide resin There is a method of using (for example, silver paste). In this method, a paste adhesive is applied to a die pad of a lead frame using a dispenser, a printing machine, a stamping machine, etc., and then a semiconductor element is die-bonded and bonded by heat curing to obtain a semiconductor device.
 近年、半導体素子の高速化、高集積化が進むに伴い、半導体装置の動作安定性を確保するために接着剤にも高放熱特性が求められている。 In recent years, with the progress of high speed and high integration of semiconductor elements, high heat dissipation characteristics are also required for adhesives in order to ensure the operational stability of semiconductor devices.
 従来の金属粒子同士の接触による導電性接着剤よりも高い放熱性を達成する手段として、熱伝導率の高い銀粒子が高充填された接着剤組成物(特許文献1~3)、はんだ粒子を用いた接着剤組成物(特許文献4)、焼結性に優れる平均粒径0.1μm以下の金属ナノ粒子を用いる接着剤組成物(特許文献5)が提案されている。また、特殊な表面処理を施したマイクロサイズの銀粒子を用いることで、100℃以上400℃以下での加熱により銀粒子同士が焼結されるような接着剤組成物(特許文献6)が提案されている。 As means for achieving higher heat dissipation than conventional conductive adhesives due to contact between metal particles, an adhesive composition (Patent Documents 1 to 3) filled with high thermal conductivity silver particles and solder particles are used. There have been proposed an adhesive composition (Patent Document 4) and an adhesive composition (Patent Document 5) using metal nanoparticles having an average particle size of 0.1 μm or less that are excellent in sinterability. In addition, an adhesive composition (Patent Document 6) is proposed in which silver particles are sintered by heating at 100 ° C. or more and 400 ° C. or less by using micro-sized silver particles subjected to a special surface treatment. Has been.
特開2006-73811号公報JP 2006-73811 A 特開2006-302834号公報JP 2006-302834 A 特開平11-66953号公報Japanese Patent Laid-Open No. 11-66953 特開2005-93996号公報JP 2005-93996 A 特開2006-83377号公報JP 2006-83377 A 特許第4353380号公報Japanese Patent No. 4353380
 ところで、LED素子の被着面の多くには金錫合金めっきが施されている。これは、金錫合金めっきの熱伝導率が高く(すなわち高放熱性が高く)、LED光を吸収しにくい性質によるものである。また、高出力LED素子には金錫合金めっきよりも更に熱伝導率の高い金が施されている。 By the way, gold-tin alloy plating is applied to many of the adherend surfaces of the LED elements. This is due to the property that the gold-tin alloy plating has high thermal conductivity (that is, high heat dissipation) and is difficult to absorb LED light. Further, gold having higher thermal conductivity than gold-tin alloy plating is applied to the high-power LED element.
 上記特許文献6で提案されている銀粒子同士が焼結されるような接着剤組成物では、銀粒子が金属結合を形成するため、他の手法よりも熱伝導率及び高温下での接続信頼性が優れるものと考えられる。しかしながら、本発明者らは、特許文献6で提案されている接着剤組成物を、被着面が金錫合金めっきで形成されたLED素子の実装に適用すると、金錫合金めっきには充分な接着力が得られないことを見出した。また、本発明者らは、特許文献6で提案されている接着剤組成物を、被着面が金で形成されたLED素子の実装に適用すると、接着力が著しく低下することを見出した。 In the adhesive composition in which the silver particles proposed in Patent Document 6 are sintered with each other, the silver particles form a metal bond, so that the thermal conductivity and the connection reliability at a high temperature are higher than those of other methods. It is considered that the property is excellent. However, when the present inventors apply the adhesive composition proposed in Patent Document 6 to the mounting of an LED element having a deposition surface formed by gold-tin alloy plating, the present invention is sufficient for gold-tin alloy plating. It was found that the adhesive strength could not be obtained. In addition, the present inventors have found that when the adhesive composition proposed in Patent Document 6 is applied to the mounting of an LED element having a deposition surface made of gold, the adhesive strength is remarkably reduced.
 そこで本発明は、被着面が金錫合金又は金で形成されたLED素子の実装に適用した場合であっても、充分に高い接着力を有し且つ高い熱伝導率を有する硬化物を形成できる接着剤組成物及びこれを用いた半導体装置を提供することを目的とする。 Therefore, the present invention forms a cured product having a sufficiently high adhesive force and high thermal conductivity even when applied to the mounting of an LED element having a deposition surface made of gold-tin alloy or gold. It is an object to provide an adhesive composition that can be used and a semiconductor device using the same.
 上記課題を解決するために本発明は、銀原子を含有する銀粒子、金属亜鉛を含有する亜鉛粒子、及び熱硬化性樹脂を含む接着剤組成物を提供する。 In order to solve the above problems, the present invention provides an adhesive composition containing silver particles containing silver atoms, zinc particles containing metallic zinc, and a thermosetting resin.
 本発明に係る接着剤組成物においては、銀原子の含有量が、遷移金属原子全量を基準として90質量%以上であり、亜鉛原子の含有量が、遷移金属原子全量を基準として0.01質量%以上0.6質量%以下であり、熱硬化性樹脂の含有量が、接着剤組成物全量を基準として0.1質量%以上10質量%以下であることが好ましい。 In the adhesive composition according to the present invention, the content of silver atoms is 90% by mass or more based on the total amount of transition metal atoms, and the content of zinc atoms is 0.01% by mass based on the total amount of transition metal atoms. It is preferable that the content of the thermosetting resin is 0.1% by mass or more and 10% by mass or less based on the total amount of the adhesive composition.
 上記亜鉛粒子は、一次粒子の平均粒径が50nm以上150,000nm以下であることが好ましい。また、上記亜鉛粒子は片状(フレーク状)であることが好ましい。なお、片状とは、板状、皿状、鱗片状等の形状を含む概念である。 The zinc particles preferably have an average primary particle size of 50 nm to 150,000 nm. The zinc particles are preferably in the form of flakes. In addition, piece shape is a concept including shapes, such as plate shape, dish shape, and scale shape.
 上記銀粒子は、一次粒子の平均粒径が0.1μm以上50μm以下であることが好ましい。 The silver particles preferably have an average primary particle size of 0.1 μm to 50 μm.
 上記熱硬化性樹脂は、エポキシ-フェノール樹脂、アクリル樹脂、及びビスマレイミド樹脂からなる群より選ばれる一種以上の樹脂を含むことが好ましい。 The thermosetting resin preferably contains one or more resins selected from the group consisting of epoxy-phenol resins, acrylic resins, and bismaleimide resins.
 本発明に係る接着剤組成物は、分散媒をさらに含むことが好ましい。 The adhesive composition according to the present invention preferably further contains a dispersion medium.
 上記分散媒は、アルコール、カルボン酸及びエステルからなる群より選ばれる1種以上の300℃以上の沸点を有する分散媒を含むことが好ましい。なお、本発明における沸点とは、1気圧下での沸点をいう。 The dispersion medium preferably contains at least one dispersion medium having a boiling point of 300 ° C. or higher selected from the group consisting of alcohol, carboxylic acid and ester. In addition, the boiling point in this invention means the boiling point under 1 atmosphere.
 本発明に係る接着剤組成物は、接着剤組成物を熱硬化してなる硬化物の体積抵抗率が1×10-4Ω・cm以下であり、熱伝導率が30W/m・K以上であることが好ましい。 In the adhesive composition according to the present invention, the volume resistivity of a cured product obtained by thermosetting the adhesive composition is 1 × 10 −4 Ω · cm or less, and the thermal conductivity is 30 W / m · K or more. Preferably there is.
 本発明に係る接着剤組成物は、100~300℃で5秒~10時間、より好ましくは150~300℃で30分~5時間、さらに好ましくは150~250℃で1~2時間、特に好ましくは200℃で1時間の条件で硬化させることが好ましい。 The adhesive composition according to the present invention is preferably 100 to 300 ° C. for 5 seconds to 10 hours, more preferably 150 to 300 ° C. for 30 minutes to 5 hours, still more preferably 150 to 250 ° C. for 1 to 2 hours, particularly preferably. Is preferably cured at 200 ° C. for 1 hour.
 本発明に係る接着剤組成物は、金錫合金を有する被着面に用いられることが好ましい。 The adhesive composition according to the present invention is preferably used for an adherend surface having a gold-tin alloy.
 本発明はまた、上述の接着剤組成物を介して、LED素子とLED素子搭載用支持部材とが接着された構造を有する半導体装置を提供する。 The present invention also provides a semiconductor device having a structure in which an LED element and an LED element mounting support member are bonded via the above-described adhesive composition.
 本発明に係る半導体装置において、上記LED素子の被着面が金錫合金を有することが好ましい。 In the semiconductor device according to the present invention, it is preferable that the deposition surface of the LED element has a gold-tin alloy.
 本発明によれば、被着面が金錫合金又は金で形成されたLED素子の実装に適用した場合であっても、充分に高い接着力を有し且つ高い熱伝導率を有する硬化物を形成できる接着剤組成物及びこれを用いたLED装置を提供することができる。 According to the present invention, a cured product having a sufficiently high adhesive force and a high thermal conductivity even when applied to the mounting of an LED element having a deposition surface made of gold-tin alloy or gold. An adhesive composition that can be formed and an LED device using the same can be provided.
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに、本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. . In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. Furthermore, when referring to the amount of each component in the composition in the present specification, when there are a plurality of substances corresponding to each component in the composition, the plurality of the components present in the composition unless otherwise specified. Means the total amount of substances.
<接着剤組成物>
 本実施形態の接着剤組成物は、銀粒子、亜鉛粒子及び熱硬化性樹脂を含む。本実施形態の接着剤組成物によれば、金錫合金又は金を有する被着面に対しても高い接着力を発現できるとともに、高い熱伝導率を有する硬化物を形成することができる。本実施形態の接着剤組成物は、分散媒をさらに含んでいてもよい。
<Adhesive composition>
The adhesive composition of this embodiment contains silver particles, zinc particles, and a thermosetting resin. According to the adhesive composition of the present embodiment, a high adhesive force can be expressed even on a gold-tin alloy or gold-coated surface, and a cured product having a high thermal conductivity can be formed. The adhesive composition of this embodiment may further contain a dispersion medium.
(銀粒子)
 銀粒子は銀原子を含有する粒子であり、好ましくは銀原子を主成分(例えば、固形分中の銀含有量が90質量%以上、以下同様)として含有する粒子である。銀原子を主成分とする組成としては、金属銀、酸化銀が挙げられ、金属銀が好ましい。
(Silver particles)
The silver particles are particles containing silver atoms, preferably particles containing silver atoms as a main component (for example, the silver content in the solid content is 90% by mass or more, the same applies hereinafter). Examples of the composition mainly composed of silver atoms include metallic silver and silver oxide, with metallic silver being preferred.
 銀粒子の形状としては、例えば、球状、塊状、針状、片状が挙げられる。銀粒子は、一次粒子の平均粒径が0.001μm以上500μm以下であることが好ましく、0.01μm以上100μm以下であることがより好ましく、0.1μm以上50μm以下であることがさらに好ましい。 Examples of the shape of the silver particles include a spherical shape, a lump shape, a needle shape, and a flake shape. The silver particles preferably have an average primary particle size of 0.001 μm to 500 μm, more preferably 0.01 μm to 100 μm, and still more preferably 0.1 μm to 50 μm.
 銀粒子の一次粒子の平均粒径(体積平均粒径)は、レーザー散乱法粒度分布測定装置により測定できる。測定法の一例を以下に示す。 The average particle size (volume average particle size) of primary particles of silver particles can be measured with a laser scattering particle size distribution analyzer. An example of the measurement method is shown below.
 銀粒子0.01gと、ドデシルベンゼンスルホン酸ナトリウム(和光純薬工業製)0.1gと、蒸留水(和光純薬工業製)99.9gとを混合し、超音波洗浄機で5分間処理して水分散液を得る。超音波分散ユニットを有するユニバーサルリキッドモジュールを装着したレーザー散乱法粒度分布測定装置LS13 320(ベックマンコールタ製)を用い、光源の安定のため本体電源を入れて30分間放置する。次に、測定プログラムのRinseコマンドによってリキッドモジュールに蒸留水を導入し、測定プログラムにおいてDe-bubble、Measure Offset、Align、Measure Backgroundを行う。続いて、測定プログラムにおいてMeasure Loadingを行い、水分散液を振り混ぜて均一になったところで、測定プログラムにおいてサンプル量LowからOKになるまでスポイトを用いて水分散液をリキッドモジュールに添加する。その後、測定プログラムにおいてMeasureを行い、粒度分布を得る。レーザー散乱法粒度分布測定装置の設定には、Pump Speed:70%、Include PIDS data: ON、Run Length: 90 seconds、分散媒屈折率:1.332、分散質屈折率:0.23を用いる。この測定により、通常、一次粒子以外に凝集体のピークを含む複数のピークをもつ粒度分布が得られる。複数のピークのうち、最も低粒径のピーク一つを処理範囲として一次粒子の平均粒径を得る。なお、後述する亜鉛粒子の一次粒子の平均粒径も同様の方法により、測定することができる。 0.01 g of silver particles, 0.1 g of sodium dodecylbenzenesulfonate (manufactured by Wako Pure Chemical Industries) and 99.9 g of distilled water (manufactured by Wako Pure Chemical Industries) are mixed and treated with an ultrasonic cleaner for 5 minutes. To obtain an aqueous dispersion. Using a laser scattering particle size distribution measuring device LS13 320 (manufactured by Beckman Coulter) equipped with a universal liquid module having an ultrasonic dispersion unit, the main body is turned on for 30 minutes to stabilize the light source. Next, distilled water is introduced into the liquid module by the Rinse command of the measurement program, and De-bubble, Measurement Offset, Align, and Measurement Background are performed in the measurement program. Subsequently, measurement loading is performed in the measurement program, and when the aqueous dispersion is shaken and homogenized, the aqueous dispersion is added to the liquid module using a dropper until the sample amount becomes low to OK in the measurement program. Thereafter, Measurement is performed in the measurement program to obtain a particle size distribution. For setting of the laser scattering method particle size distribution measuring apparatus, Pump Speed: 70%, Include PIDS data: ON, Run Length: 90 seconds, Dispersion medium refractive index: 1.332, Dispersoid refractive index: 0.23 are used. This measurement usually gives a particle size distribution having a plurality of peaks including aggregate peaks in addition to the primary particles. Of the plurality of peaks, one of the lowest particle diameter peaks is used as a processing range to obtain the average particle diameter of primary particles. In addition, the average particle diameter of the primary particle of the zinc particle mentioned later can also be measured by the same method.
(亜鉛粒子)
 亜鉛粒子は、金属亜鉛を含有する粒子であり、金属亜鉛を主成分として含有する粒子(例えば、固形分中の亜鉛含有量が90質量%以上)であることが好ましい。亜鉛粒子としては、例えば、金属亜鉛粒子、粒子核が金属亜鉛であり表面に酸化亜鉛層を有する亜鉛粒子、粒子核が金属亜鉛であり有機保護被膜を有する亜鉛粒子、粒子核が金属亜鉛であり表面に金属銀層を有する亜鉛粒子を用いることができる。
(Zinc particles)
The zinc particles are particles containing metallic zinc, and are preferably particles containing metallic zinc as a main component (for example, the zinc content in the solid content is 90% by mass or more). Zinc particles include, for example, metallic zinc particles, zinc particles whose particle nuclei are metallic zinc and having a zinc oxide layer on the surface, zinc particles whose particle nuclei are metallic zinc and having an organic protective coating, and whose particle nuclei are metallic zinc Zinc particles having a metallic silver layer on the surface can be used.
 亜鉛粒子は、導体層、基板等の無機材料との接触面積を得る観点から、一次粒子の平均粒径が150,000nm以下であることが好ましく、50,000nm以下であることがより好ましく、15,000nm以下がさらに好ましい。一方、亜鉛は酸化を受けやすく、酸化亜鉛では上述の効果を得られにくい傾向にあるため、酸化を防止する観点から、亜鉛粒子の一次粒子の平均粒径は50nm以上であることが好ましい。 The zinc particles preferably have an average primary particle size of 150,000 nm or less, more preferably 50,000 nm or less, from the viewpoint of obtaining a contact area with an inorganic material such as a conductor layer or a substrate. More preferably, it is 1,000 nm or less. On the other hand, zinc is susceptible to oxidation, and zinc oxide tends not to have the above-mentioned effects. Therefore, from the viewpoint of preventing oxidation, the average particle size of primary particles of zinc particles is preferably 50 nm or more.
 亜鉛粒子の形状としては、例えば、球状、塊状、針状、片状が挙げられる。これらの中で、上述の酸化による影響を低減させる観点から、片状の粒子が好ましい。 Examples of the shape of the zinc particles include a spherical shape, a lump shape, a needle shape, and a flake shape. Among these, flaky particles are preferable from the viewpoint of reducing the influence of the oxidation described above.
 本実施形態の接着剤組成物において、銀原子の含有量は、遷移金属原子全量を基準として90質量%以上であることが好ましく、95質量%以上であることがより好ましい。これにより、接着剤組成物は、充分に高い接着力と熱伝導率を発現させることができる。なお、本明細書において遷移金属原子全量とは、接着剤組成物の固形分中の遷移金属原子の総量を意味する。 In the adhesive composition of the present embodiment, the content of silver atoms is preferably 90% by mass or more, more preferably 95% by mass or more based on the total amount of transition metal atoms. Thereby, the adhesive composition can express sufficiently high adhesive force and thermal conductivity. In the present specification, the total amount of transition metal atoms means the total amount of transition metal atoms in the solid content of the adhesive composition.
 本実施形態の接着剤組成物において、亜鉛原子の含有量は、遷移金属原子全量を基準として0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.08質量%以上であることがさらに好ましく、0.09質量%以上であることが特に好ましい。また、本実施形態の接着剤組成物において、亜鉛原子の含有量は、遷移金属原子全量を基準として0.6質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.2質量%以下であることがさらに好ましい。 In the adhesive composition of the present embodiment, the content of zinc atoms is preferably 0.01% by mass or more, more preferably 0.05% by mass or more based on the total amount of transition metal atoms, The content is more preferably 0.08% by mass or more, and particularly preferably 0.09% by mass or more. In the adhesive composition of the present embodiment, the zinc atom content is preferably 0.6% by mass or less, more preferably 0.5% by mass or less, based on the total amount of transition metal atoms. More preferably, it is 0.2 mass% or less.
 亜鉛原子の含有量を上記範囲とすると、後述する接着界面近傍におけるボイドの偏在が抑制されるとともに、過剰な亜鉛粒子が焼結後にそのまま残存することによる接着力の低下が抑制され、接着力の低下をより防止することができる。 When the zinc atom content is within the above range, uneven distribution of voids in the vicinity of the adhesion interface described later is suppressed, and a decrease in adhesion force due to excessive zinc particles remaining after sintering is suppressed, thereby reducing adhesion force. Reduction can be prevented more.
 接着剤組成物における銀原子及び亜鉛原子の含有量は、XRD、SEM-EDX、蛍光X線測定などで測定できる。銀原子及び亜鉛原子の含有量をSEM-EDXで測定する手法の例を以下に示す。 The content of silver atoms and zinc atoms in the adhesive composition can be measured by XRD, SEM-EDX, fluorescent X-ray measurement or the like. An example of a technique for measuring the content of silver atoms and zinc atoms by SEM-EDX is shown below.
 まず、接着剤組成物をシャーレに厚さ1mm以下になるように伸ばし、減圧乾燥機にて70℃、100Pa以下、40時間以上乾燥させて乾燥接着剤組成物を得る。乾燥接着剤組成物をSEM試料台上に2μm以上の厚みで平らになるように成型してSEM用サンプルとする。このSEM用サンプルを後述するSEM-EDXによる定量方法の例に従って定量分析することで、接着剤組成物中の各遷移金属原子の割合が得られる。 First, the adhesive composition is stretched in a petri dish so as to have a thickness of 1 mm or less, and dried in a vacuum dryer at 70 ° C., 100 Pa or less, for 40 hours or more to obtain a dry adhesive composition. The dry adhesive composition is molded on a SEM sample stage so as to be flat with a thickness of 2 μm or more to obtain a sample for SEM. The ratio of each transition metal atom in the adhesive composition can be obtained by quantitatively analyzing the SEM sample according to an example of a quantitative method using SEM-EDX described later.
 また、硬化後の接着剤組成物についての銀原子及び亜鉛原子の含有量を測定し、これを接着剤組成物の銀原子及び亜鉛原子の含有量とすることもできる。これは、硬化後の接着剤組成物において銀原子及び亜鉛原子は揮発せず、これらの含有量は実質的に変化しないためである。具体的には、ガラス板上に0.1~0.5mm厚で均一に接着剤組成物を塗布し、大気中、200~300℃、1時間硬化処理を行い、硬化した接着剤組成物を得る。この硬化した接着剤組成物について、後述する方法で測定される銀原子及び亜鉛原子の含有量を、接着剤組成物の含有量とすることもできる。 Also, the content of silver atoms and zinc atoms in the adhesive composition after curing can be measured, and this can be used as the content of silver atoms and zinc atoms in the adhesive composition. This is because silver atoms and zinc atoms do not volatilize in the adhesive composition after curing, and their contents do not substantially change. Specifically, the adhesive composition is uniformly applied to a glass plate with a thickness of 0.1 to 0.5 mm, and subjected to curing treatment at 200 to 300 ° C. for 1 hour in the air. obtain. About this hardened | cured adhesive composition, content of the silver atom and zinc atom measured by the method mentioned later can also be made into content of an adhesive composition.
 本実施形態の接着剤組成物においては、固形分中に銀原子及び亜鉛原子以外の遷移金属原子を含有していてもよい。銀原子及び亜鉛原子以外の遷移金属原子の含有量は、遷移金属原子全量を基準として、例えば10質量%未満とすることが好ましく、5質量%未満とすることがより好ましい。 The adhesive composition of this embodiment may contain transition metal atoms other than silver atoms and zinc atoms in the solid content. The content of transition metal atoms other than silver atoms and zinc atoms is, for example, preferably less than 10% by mass and more preferably less than 5% by mass based on the total amount of transition metal atoms.
(熱硬化性樹脂)
 本実施形態の接着剤組成物において、熱硬化性樹脂の含有量は、接着剤組成物全量を基準として0.1質量%以上10質量%以下であることが好ましい。熱硬化性樹脂は、エポキシ-フェノール樹脂、アクリル樹脂、及びビスマレイミド樹脂からなる群より選ばれる一種以上の樹脂が好ましい。また、実装工程の高効率化の観点から、熱硬化性樹脂の反応終了時間は短いほどよい。
(Thermosetting resin)
In the adhesive composition of this embodiment, the content of the thermosetting resin is preferably 0.1% by mass or more and 10% by mass or less based on the total amount of the adhesive composition. The thermosetting resin is preferably one or more resins selected from the group consisting of epoxy-phenol resins, acrylic resins, and bismaleimide resins. Further, from the viewpoint of increasing the efficiency of the mounting process, the shorter the reaction end time of the thermosetting resin, the better.
(分散媒)
 分散媒は有機及び無機のいずれでもかまわないが、塗布工程での乾燥を防ぐ観点から、200℃以上の沸点を有していることが好ましく、300℃以上の沸点を有していることがより好ましい。また、焼結後に分散媒が残留しないように、400℃以下の沸点を有していることが好ましい。
(Dispersion medium)
The dispersion medium may be either organic or inorganic, but preferably has a boiling point of 200 ° C. or higher, and more preferably has a boiling point of 300 ° C. or higher, from the viewpoint of preventing drying in the coating process. preferable. Moreover, it is preferable that it has a boiling point of 400 degrees C or less so that a dispersion medium does not remain after sintering.
 分散媒としては、アルコール、カルボン酸及びエステルからなる群より選ばれる1種以上の300℃以上の沸点を有する分散媒を用いることが好ましい。また、分散媒としては、アルコール、カルボン酸及びエステルからなる群より選ばれる1種以上の300℃以上400℃以下の沸点を有する分散媒と、沸点が100℃以上300℃未満である揮発性成分とを併用することがより好ましい。 As the dispersion medium, it is preferable to use one or more dispersion mediums having a boiling point of 300 ° C. or higher selected from the group consisting of alcohol, carboxylic acid and ester. Further, as the dispersion medium, one or more kinds of dispersion medium having a boiling point of 300 ° C. or more and 400 ° C. or less selected from the group consisting of alcohol, carboxylic acid and ester, and a volatile component having a boiling point of 100 ° C. or more and less than 300 ° C. It is more preferable to use together.
 300℃以上の沸点を有するアルコール、カルボン酸又はエステルとしては、例えば、パルミチン酸、ステアリン酸、アラキジン酸、テレフタル酸、オレイン酸等の脂肪族カルボン酸、ピロメリット酸、o-フェノキシ安息香酸等の芳香族カルボン酸、セチルアルコール、イソボルニルシクロヘキサノール、テトラエチレングリコール等の脂肪族アルコール、p-フェニルフェノール等の芳香族アルコール、オクタン酸オクチル、ミリスチン酸エチル、リノール酸メチル、クエン酸トリブチル、安息香酸ベンジル等のエステルが挙げられる。これらの中で、炭素数が6~20の脂肪族のアルコール又はカルボン酸が好ましい。 Examples of alcohols, carboxylic acids or esters having a boiling point of 300 ° C. or higher include aliphatic carboxylic acids such as palmitic acid, stearic acid, arachidic acid, terephthalic acid, oleic acid, pyromellitic acid, o-phenoxybenzoic acid and the like. Aromatic carboxylic acid, cetyl alcohol, isobornyl cyclohexanol, aliphatic alcohol such as tetraethylene glycol, aromatic alcohol such as p-phenylphenol, octyl octoate, ethyl myristate, methyl linoleate, tributyl citrate, benzoic acid And esters such as benzyl acid. Of these, aliphatic alcohols or carboxylic acids having 6 to 20 carbon atoms are preferred.
 沸点が100℃以上300℃未満である揮発性成分としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、α―テルピネオール等の一価及び多価アルコール類、エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類、エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、乳酸エチル、乳酸ブチル、γ―ブチロラクトン等のエステル類、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の酸アミド、シクロヘキサノン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素、トルエン、キシレン等の芳香族炭化水素、炭素数1~18のアルキル基を有するメルカプタン類、炭素数5~7のシクロアルキル基を有するメルカプタン類が挙げられる。炭素数1~18のアルキル基を有するメルカプタン類としては、例えばエチルメルカプタン、n-プロピルメルカプタン、i-プロピルメルカプタン、n-ブチルメルカプタン、i-ブチルメルカプタン、t-ブチルメルカプタン、ペンチルメルカプタン、ヘキシルメルカプタン及びドデシルメルカプタンなどのメルカプタンが挙げられる。また、炭素数5~7のシクロアルキル基を有するメルカプタン類としては、シクロペンチルメルカプタン、シクロヘキシルメルカプタン、及びシクロヘプチルメルカプタンなどのメルカプタン類が挙げられる。沸点が100℃以上300℃未満である揮発性成分としては、中でも、沸点が150℃以上の揮発性成分が好ましく、炭素数が4~12のアルコール、エステル、エーテル類がより好ましい。 Examples of volatile components having a boiling point of 100 ° C. or higher and lower than 300 ° C. include monovalent and polyvalent compounds such as pentanol, hexanol, heptanol, octanol, decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, α-terpineol, and the like. Alcohols, ethylene glycol butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether Ter, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol Ethers such as butyl ether, dipropylene glycol dimethyl ether, tripropylene glycol methyl ether, tripropylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, ethylene glycol butyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol buty Ethers such as ether acetate, dipropylene glycol methyl ether acetate, esters such as ethyl lactate, butyl lactate and γ-butyrolactone, acid amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, Aliphatic hydrocarbons such as cyclohexanone, octane, nonane, decane and undecane, aromatic hydrocarbons such as toluene and xylene, mercaptans having an alkyl group having 1 to 18 carbon atoms, and having a cycloalkyl group having 5 to 7 carbon atoms Examples include mercaptans. Examples of mercaptans having an alkyl group having 1 to 18 carbon atoms include ethyl mercaptan, n-propyl mercaptan, i-propyl mercaptan, n-butyl mercaptan, i-butyl mercaptan, t-butyl mercaptan, pentyl mercaptan, hexyl mercaptan, and the like. Examples include mercaptans such as dodecyl mercaptan. Examples of mercaptans having a cycloalkyl group having 5 to 7 carbon atoms include mercaptans such as cyclopentyl mercaptan, cyclohexyl mercaptan, and cycloheptyl mercaptan. As the volatile component having a boiling point of 100 ° C. or higher and lower than 300 ° C., a volatile component having a boiling point of 150 ° C. or higher is preferable, and alcohols, esters and ethers having 4 to 12 carbon atoms are more preferable.
 上述の分散媒は、1種を単独で又は2種以上を混合して使用することができる。分散媒の含有量は、接着剤組成物全量を100質量部としたとき、0.1質量部~20質量部とすることが好ましい。 The above-mentioned dispersion media can be used alone or in combination of two or more. The content of the dispersion medium is preferably 0.1 to 20 parts by mass when the total amount of the adhesive composition is 100 parts by mass.
 上述の銀粒子、亜鉛粒子及び分散媒の合計の含有量は、接着剤組成物全量を100質量部としたとき、90質量部以上であることが好ましく、95質量部以上であることがより好ましく、98質量部以上であることがさらに好ましい。 The total content of the silver particles, the zinc particles and the dispersion medium is preferably 90 parts by mass or more and more preferably 95 parts by mass or more when the total amount of the adhesive composition is 100 parts by mass. More preferably, it is 98 parts by mass or more.
 本実施形態の接着剤組成物には、焼結助剤、濡れ性向上剤及び消泡剤のうちの一つ以上を含んでもよい。なお、本実施形態の接着剤組成物は、ここに列挙した以外の成分を含んでいても構わない。 The adhesive composition of the present embodiment may include one or more of a sintering aid, a wettability improver, and an antifoaming agent. Note that the adhesive composition of the present embodiment may contain components other than those listed here.
 本実施形態の接着剤組成物には、必要に応じてさらに、酸化カルシウム、酸化マグネシウム等の吸湿剤、ノニオン系界面活性剤、フッ素系界面活性剤等の濡れ向上剤、シリコーン油等の消泡剤、無機イオン交換体等のイオントラップ剤、重合禁止剤、硬化促進剤、シラン系カップリング剤などを適宜添加することができる。硬化促進剤を添加する場合には、硬化物の耐熱性の観点から、硬化物のTgが200℃を超えるように、硬化促進剤の量を調節することが好ましい。 If necessary, the adhesive composition of the present embodiment further includes a moisture absorbent such as calcium oxide and magnesium oxide, a wetting improver such as a nonionic surfactant and a fluorine surfactant, and a defoaming agent such as silicone oil. Agents, ion trapping agents such as inorganic ion exchangers, polymerization inhibitors, curing accelerators, silane coupling agents, and the like can be added as appropriate. When adding a hardening accelerator, it is preferable to adjust the quantity of a hardening accelerator so that Tg of hardened | cured material may exceed 200 degreeC from a heat resistant viewpoint of hardened | cured material.
 上述の接着剤組成物は、上述の成分を一括又は分割して撹拌器、らいかい機、3本ロール、プラネタリーミキサー等の分散・溶解装置を適宜組み合わせ、必要に応じて加熱して混合、溶解、解粒混練又は分散して均一なペースト状として用いることができる。 The above-mentioned adhesive composition is a combination of dispersing or dissolving devices such as a stirrer, raky machine, three rolls, planetary mixer, etc., by mixing or dividing the above components all together, heating and mixing as necessary, It can be used as a uniform paste by dissolving, pulverizing and kneading or dispersing.
 接着剤組成物は、成型する場合には各々の印刷、塗布手法に適した粘度が好ましい。接着剤組成物の粘度としては、例えば、25℃におけるCasson粘度が0.05Pa・s~2.0Pa・sであることが好ましく、0.06Pa・s~1.0Pa・sであることがより好ましい。 The adhesive composition preferably has a viscosity suitable for each printing and coating method when it is molded. As the viscosity of the adhesive composition, for example, the Casson viscosity at 25 ° C. is preferably 0.05 Pa · s to 2.0 Pa · s, more preferably 0.06 Pa · s to 1.0 Pa · s. preferable.
 接着剤組成物のCasson粘度の測定は、粘弾性測定装置(Physica MCR-501、Anton Paar製)によって行うことができる。角度1°直径50mmのコーン型測定冶具(CP50-1)を装着し、測定位置で接着剤組成物が測定冶具からあふれる程度の接着剤組成物を測定装置に導入する。その後、測定冶具を測定位置に下ろし、その際にあふれた接着剤組成物をかきとり、測定を行う。測定は25℃で、以下の2ステップを連続して行い、2ステップ目にせん断速度とせん断応力を記録する。
(1)せん断速度0s-1、600秒、
(2)せん断速度0~100s-1、せん断速度増加率 100/60s-1/step、測定間隔1秒、測定点数60点。
The Casson viscosity of the adhesive composition can be measured with a viscoelasticity measuring device (Physica MCR-501, manufactured by Anton Paar). A cone-type measuring jig (CP50-1) having an angle of 1 ° and a diameter of 50 mm is mounted, and an adhesive composition is introduced into the measuring apparatus so that the adhesive composition overflows from the measuring jig at the measurement position. Thereafter, the measurement jig is lowered to the measurement position, and the adhesive composition overflowing at that time is scraped off to perform measurement. The measurement is performed at 25 ° C., and the following two steps are continuously performed, and the shear rate and the shear stress are recorded in the second step.
(1) Shear rate 0 s −1 , 600 seconds,
(2) Shear rate 0 to 100 s −1 , shear rate increase rate 100/60 s −1 / step, measurement interval 1 second, number of measurement points 60 points.
 得られたせん断速度とせん断応力から、公知の文献(技術情報協会:レオロジーの測定とコントロール 一問一答集 -レオロジーを測って、物性を丸裸にする-、東京、技術情報協会、2010、p39-46)に記載の手法で、Casson粘度を算出する。具体的には、得られたそれぞれのせん断速度及びせん断応力の平方根を計算し、(せん断速度)^(1/2)に対する(せん断応力)^(1/2)から最小二乗法により近似される直線の傾きを算出する。この傾きを二乗したものをCasson粘度とする。 From the obtained shear rate and shear stress, publicly known literature (Technical Information Institute: Rheological Measurement and Control, One Question and Answers-Measuring rheology and making physical properties naked, Tokyo, Technical Information Society, 2010, p39. The Casson viscosity is calculated by the method described in -46). Specifically, the square root of each obtained shear rate and shear stress is calculated and approximated by the least square method from (shear stress) ^ (1/2) to (shear rate) ^ (1/2). Calculate the slope of the straight line. The square of this slope is the Casson viscosity.
 上述の接着剤組成物は、例えば、100~300℃で、5秒~10時間加熱することにより硬化させることができる。上述のように、銀原子及び亜鉛原子の含有量は加熱の前後で実質的に変化しない。 The above-mentioned adhesive composition can be cured, for example, by heating at 100 to 300 ° C. for 5 seconds to 10 hours. As described above, the content of silver atoms and zinc atoms does not substantially change before and after heating.
 硬化した接着剤組成物中の全遷移金属原子に占める銀原子及び亜鉛原子の含有量は、硬化した接着剤組成物を用いて、SEM-EDX、TEM-EDX、オージェ電子分光法などの方法で定量できる。 The content of silver atoms and zinc atoms in the total transition metal atoms in the cured adhesive composition can be determined by methods such as SEM-EDX, TEM-EDX, and Auger electron spectroscopy using the cured adhesive composition. Can be quantified.
 SEM-EDXによる定量方法の例を示す。
 厚さが3μm以上の接着剤組成物硬化物の層を有するサンプルを、エポキシ注形樹脂で周囲を固める。研磨装置を用いて、接着剤組成物硬化物の層に直交する断面を削り出し、この断面を平滑に仕上げる。仕上げた断面に、スパッタ装置あるいは蒸着装置を用いて、厚み10nm程度の貴金属の帯電防止層を形成してSEM用のサンプルを作製する。
An example of a quantification method by SEM-EDX is shown.
A sample having a layer of the cured adhesive composition having a thickness of 3 μm or more is hardened with an epoxy casting resin. Using a polishing apparatus, a cross section perpendicular to the layer of the cured adhesive composition is cut out, and the cross section is finished smoothly. A noble metal antistatic layer having a thickness of about 10 nm is formed on the finished cross section using a sputtering apparatus or a vapor deposition apparatus to produce a sample for SEM.
 このSEM用サンプルをSEM-EDX(例えば、ESEM XL、Philips製)装置にセットし、5,000~10,000倍程度の倍率で観察する。接着剤組成物硬化物の中央あたりでEDX点分析を試料傾斜角度:0°、加速電圧25kV、Ev/Chan: 10、Amp. Time:50μS、Choose Preset:Live Time 300 secsの条件で積算し、分析条件をMatrix: ZAF、SEC (Standardless lement Coefficient):EDAX、定量法:Noneの条件で定量分析して、硬化した接着剤組成物中の各遷移金属原子の割合が得られる。 The sample for SEM is set in a SEM-EDX (for example, ESEM XL, manufactured by Philips) apparatus and observed at a magnification of about 5,000 to 10,000 times. The EDX point analysis was performed around the center of the cured adhesive composition, sample tilt angle: 0 °, acceleration voltage 25 kV, Ev / Chan: 10, Amp. Accumulated under the conditions of Time: 50 μS, Choose Preset: Live Time 300 secs, and the analysis conditions are Matrix: ZAF, SEC (Standardless element Coefficient): EDAX, quantitative method: None, and cured adhesive composition The proportion of each transition metal atom in the product is obtained.
 本実施形態の接着剤組成物は、硬化した接着剤組成物の体積抵抗率が、1×10-4Ω・cm以下であることが好ましく、熱伝導率が、30W/m・K以上であることが好ましい。硬化した接着剤組成物の体積抵抗率は、低いほど好ましい。硬化した接着剤組成物の熱伝導率は、デバイス温度上昇抑制の観点から、高いほど好ましい。 In the adhesive composition of the present embodiment, the cured adhesive composition preferably has a volume resistivity of 1 × 10 −4 Ω · cm or less, and a thermal conductivity of 30 W / m · K or more. It is preferable. The volume resistivity of the cured adhesive composition is preferably as low as possible. The higher the thermal conductivity of the cured adhesive composition, the more preferable it is from the viewpoint of suppressing the device temperature rise.
<半導体装置及び半導体装置の製造方法>
 本実施形態の半導体装置は、半導体素子と半導体素子搭載用支持部材とを備え、半導体素子と半導体素子搭載用支持部材とが上記本実施形態の接着剤組成物を介して接着された構造を有する。
<Semiconductor Device and Semiconductor Device Manufacturing Method>
The semiconductor device of this embodiment includes a semiconductor element and a semiconductor element mounting support member, and has a structure in which the semiconductor element and the semiconductor element mounting support member are bonded via the adhesive composition of the present embodiment. .
(半導体素子と半導体素子搭載用支持部材)
 本実施形態で用いられる半導体素子としては、被着面に金錫合金又は金を有するLED素子が挙げられる。なお、本実施形態においては、被着面が銀であるLED素子を用いることもできる。本実施形態で用いられる半導体素子搭載用支持部材としては、LED素子搭載用支持部材が挙げられる。LED素子搭載用支持部材は、被着体表面に金又は銀等を有する支持部材が挙げられる。また、LED素子搭載用支持部材は、金、銀及び金錫合金のうちの複数の材料が基材上にパターニングされていてもよい。
(Semiconductor elements and supporting members for mounting semiconductor elements)
As a semiconductor element used in the present embodiment, an LED element having a gold-tin alloy or gold on a deposition surface can be given. In addition, in this embodiment, the LED element whose deposition surface is silver can also be used. Examples of the semiconductor element mounting support member used in the present embodiment include an LED element mounting support member. Examples of the LED element mounting support member include a support member having gold or silver on the surface of the adherend. In addition, the LED element mounting support member may be formed by patterning a plurality of materials of gold, silver, and gold-tin alloy on the base material.
 本実施形態の接着剤組成物を用いる本実施形態の半導体装置の製造方法は、少なくとも以下の工程を有することができる。
 (A)接着剤組成物をLED素子あるいはLED素子搭載用支持部材に付与し、LED素子とLED素子搭載用支持部材とを貼り合わせる工程(以下、「工程(A)という。」)、(B)接着剤組成物を硬化し、LED素子とLED素子搭載用支持部材とを接合する工程(以下、「工程(B)という。」)。
The manufacturing method of the semiconductor device of this embodiment using the adhesive composition of this embodiment can have at least the following steps.
(A) A process of applying an adhesive composition to an LED element or an LED element mounting support member, and bonding the LED element and the LED element mounting support member (hereinafter referred to as “process (A)”), (B). ) A step of curing the adhesive composition and bonding the LED element and the LED element mounting support member (hereinafter referred to as “step (B)”).
 さらに工程(A)では、接着剤組成物を付与した後、乾燥工程を有してもよい。 Furthermore, in the step (A), after applying the adhesive composition, it may have a drying step.
(工程(A))-接着剤組成物の付与工程-
〔接着剤組成物の調製〕
 接着剤組成物は、上述の銀粒子、亜鉛粒子、熱硬化性樹脂及び任意の成分を分散媒に混合して調製できる。接着剤組成物は、混合後に撹拌処理を行ってもよい。また、接着剤組成物は、ろ過により分散液の最大粒径を調整してもよい。
(Process (A))-Adhesive Composition Application Process-
(Preparation of adhesive composition)
The adhesive composition can be prepared by mixing the above-described silver particles, zinc particles, thermosetting resin, and optional components in a dispersion medium. The adhesive composition may be stirred after mixing. The adhesive composition may adjust the maximum particle size of the dispersion by filtration.
 撹拌処理は、撹拌機を用いて行うことができる。このような撹拌機としては、例えば、自転公転型攪拌装置、ライカイ機、二軸混練機、三本ロール、プラネタリーミキサー、薄層せん断分散機が挙げられる。 The stirring treatment can be performed using a stirrer. Examples of such a stirrer include a rotation / revolution stirrer, a lycra machine, a twin-screw kneader, a triple roll, a planetary mixer, and a thin layer shear disperser.
 ろ過は、ろ過装置を用いて行うことができる。ろ過用のフィルターとしては、例えば、金属メッシュ、メタルフィルター、ナイロンメッシュが挙げられる。 Filtration can be performed using a filtration device. Examples of the filter for filtration include a metal mesh, a metal filter, and a nylon mesh.
〔接着剤組成物の付与〕
 接着剤組成物をLED素子搭載用支持部材又はLED素子上に付与することで、接着剤組成物層を形成する。付与方法としては、塗布又は印刷が挙げられる。
[Granting adhesive composition]
The adhesive composition layer is formed by applying the adhesive composition onto the LED element mounting support member or the LED element. Examples of the application method include coating or printing.
 接着剤組成物の塗布方法としては、例えば、ピントランスファー、ディッピング、スプレーコート、バーコート、ダイコート、カンマコート、スリットコート、アプリケータを用いることができる。 As a method for applying the adhesive composition, for example, pin transfer, dipping, spray coating, bar coating, die coating, comma coating, slit coating, and applicator can be used.
 接着剤組成物を印刷する印刷方法としては、例えば、ディスペンサー、ステンシル印刷、凹版印刷、スクリーン印刷、ニードルディスペンサー、ジェットディスペンサー法を用いることができる。 As a printing method for printing the adhesive composition, for example, a dispenser, stencil printing, intaglio printing, screen printing, needle dispenser, or jet dispenser method can be used.
 接着剤組成物の付与により形成された接着剤組成物層は、硬化時の流動及びボイド発生を抑制する観点から適宜乾燥させることができる。 The adhesive composition layer formed by the application of the adhesive composition can be appropriately dried from the viewpoint of suppressing flow and void generation during curing.
 乾燥方法は、常温放置による乾燥、加熱乾燥又は減圧乾燥を用いることができる。加熱乾燥又は減圧乾燥には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。 As the drying method, drying at room temperature, drying by heating, or drying under reduced pressure can be used. For heat drying or reduced pressure drying, hot plate, warm air dryer, warm air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device A heater heating device, a steam heating furnace, a hot plate press device, or the like can be used.
 乾燥のための温度及び時間は、使用した分散媒の種類及び量に合わせて適宜調整することが好ましく、例えば、50~120℃で、1~120分間乾燥させることが好ましい。ただし、乾燥のための温度は、熱硬化性樹脂の反応を避ける温度に設定することが好ましい。 The temperature and time for drying are preferably adjusted as appropriate according to the type and amount of the dispersion medium used, and are preferably dried at 50 to 120 ° C. for 1 to 120 minutes, for example. However, the temperature for drying is preferably set to a temperature that avoids the reaction of the thermosetting resin.
 接着剤組成物層の形成後、LED素子とLED素子搭載用支持部材とを、接着剤組成物層を介して貼りあわせる。乾燥工程を有する場合は、貼り合わせ工程の前あるいは後のいずれの段階で行ってもよい。 After the formation of the adhesive composition layer, the LED element and the LED element mounting support member are bonded together via the adhesive composition layer. When it has a drying process, it may be performed at any stage before or after the bonding process.
(工程(B))-硬化処理-
 次いで、接着剤組成物層に対して硬化処理を行う。硬化処理は加熱処理で行ってもよいし、加熱加圧処理で行ってもよい。加熱処理には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。また、加熱加圧処理には、熱板プレス装置等を用いてもよいし、重りを乗せて加圧しながら上述の加熱処理を行ってもよい。
(Process (B)) -Curing treatment-
Next, a curing process is performed on the adhesive composition layer. The curing process may be performed by heat treatment or by heat and pressure treatment. For heat treatment, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, heater heating An apparatus, a steam heating furnace, or the like can be used. Moreover, a hot plate press apparatus etc. may be used for a heat pressurizing process, and the above-mentioned heat processing may be performed, putting a weight and pressurizing.
 以上の本実施形態の半導体装置の製造方法により、LED素子とLED素子搭載用支持部材とが、接着性、高熱伝導性及び高耐熱性に優れた本実施形態の接着剤組成物の硬化物により接合された半導体装置を製造することができる。こうして得られたLEDモジュールは、LED素子とLED素子搭載用支持部材との間に、高接着性、高熱伝導性、高導電性かつ高耐熱性を有する接着部材(接着剤組成物層の硬化物)を有することができる。 By the manufacturing method of the semiconductor device of the present embodiment described above, the LED element and the LED element mounting support member are made of a cured product of the adhesive composition of the present embodiment excellent in adhesiveness, high thermal conductivity, and high heat resistance. A bonded semiconductor device can be manufactured. The LED module thus obtained is an adhesive member (cured product of an adhesive composition layer) having high adhesion, high thermal conductivity, high conductivity and high heat resistance between the LED element and the LED element mounting support member. ).
<半導体装置>
 本実施形態の半導体装置としては、LEDモジュールなどが挙げられる。
<Semiconductor device>
Examples of the semiconductor device of this embodiment include an LED module.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
 各実施例における各特性の測定は、次のようにして実施した。 The measurement of each characteristic in each example was performed as follows.
(1)一次粒子の平均粒径
 亜鉛粒子又は銀粒子0.01gと、ドデシルベンゼンスルホン酸ナトリウム(和光純薬工業製)0.1gと、蒸留水(和光純薬工業製)9.99gと、を混合し、超音波洗浄機で5分間処理して水分散液を得た。超音波分散ユニットを有するユニバーサルリキッドモジュールを装着したレーザー散乱法粒度分布測定装置LS13 320(ベックマンコールタ製)を用い、光源の安定のため本体電源を入れて30分間放置した。その後、測定プログラムのRinseコマンドによってリキッドモジュールに蒸留水を導入し、測定プログラムにおいてDe-bubble、Measure Offset、Align、Measure Backgroundを行った。続いて、測定プログラムにおいてMeasure Loadingを行い、この水分散液を振り混ぜて均一になったところで測定プログラムにおいてサンプル量LowからOKになるまでスポイトを用いて水分散液をリキッドモジュールに添加した。その後、測定プログラムにおいて測定を行い、粒度分布を得た。レーザー散乱法粒度分布測定装置の設定として、Pump Speed:70%、Include PIDS data: ON、Run Length: 90 seconds、分散媒屈折率:1.332、分散質屈折率:0.23を用いた。複数のピークのうち、最も低粒径のピーク一つを処理範囲として一次粒子の平均粒径を得た。
(1) Average particle diameter of primary particles 0.01 g of zinc particles or silver particles, 0.1 g of sodium dodecylbenzenesulfonate (manufactured by Wako Pure Chemical Industries), 9.99 g of distilled water (manufactured by Wako Pure Chemical Industries), Were mixed and treated with an ultrasonic cleaner for 5 minutes to obtain an aqueous dispersion. Using a laser scattering particle size distribution analyzer LS13 320 (manufactured by Beckman Coulter) equipped with a universal liquid module having an ultrasonic dispersion unit, the main body was turned on and left for 30 minutes to stabilize the light source. Then, distilled water was introduced into the liquid module by the Rinse command of the measurement program, and De-bubble, Measurement Offset, Align, and Measurement Background were performed in the measurement program. Subsequently, measurement loading was performed in the measurement program, and when the aqueous dispersion was shaken and homogenized, the aqueous dispersion was added to the liquid module using a dropper until the sample amount became low to OK in the measurement program. Thereafter, measurement was performed using a measurement program to obtain a particle size distribution. As settings of the laser scattering particle size distribution measuring apparatus, Pump Speed: 70%, Include PIDS data: ON, Run Length: 90 seconds, Dispersion medium refractive index: 1.332, Dispersoid refractive index: 0.23 were used. Among the plurality of peaks, the average particle size of the primary particles was obtained using one of the lowest particle size peaks as the treatment range.
(2-1)ダイシェア強度A
 接着剤組成物を、銀めっきしたPPF-Cuリードフレーム(ランド部:10×5mm)上に先のとがったピンセットを用い、精密天秤により0.1mgとなるように塗布した。塗布した接着剤組成物上に、1×1mmの被着面が金錫合金(金80:錫20モル比)であるLEDチップ(EZ1000、CREE社製、チップ厚:400μm)を載せ、ピンセットで軽く押さえた。これをステンレスバットに並べ、200℃に設定したクリーンオーブン(PVHC-210、TABAIESPEC CORP.製)で1時間処理して、リードフレームとLEDチップを接着剤組成物で接着した。
(2-1) Die shear strength A
The adhesive composition was applied on a silver-plated PPF-Cu lead frame (land part: 10 × 5 mm) with a pointed tip using a precision balance so as to be 0.1 mg. On the applied adhesive composition, an LED chip (EZ1000, manufactured by CREE, chip thickness: 400 μm) having a 1 × 1 mm 2 adherent surface made of a gold-tin alloy (gold 80: tin 20 molar ratio) is placed, and tweezers are mounted. Press lightly. This was placed on a stainless steel vat and treated in a clean oven (PVHC-210, manufactured by TABAIESPEC CORP.) Set at 200 ° C. for 1 hour, and the lead frame and the LED chip were bonded with the adhesive composition.
 接着剤組成物硬化物の接着強度は、ダイシェア強度により評価した。50Nのロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社製)を用い、測定スピード500μm/s、測定高さ50μmで被着面が金錫合金であるLEDチップを水平方向に押し、接着剤組成物硬化物のダイシェア強度を測定した。5個のサンプルの測定値の平均をダイシェア強度とした。 The adhesive strength of the cured adhesive composition was evaluated by die shear strength. Using an all-purpose bond tester (4000 series, manufactured by DAGE) equipped with a 50N load cell, the LED chip with a measurement speed of 500 μm / s, a measurement height of 50 μm and a gold-tin alloy surface is pressed in the horizontal direction. The die shear strength of the cured composition was measured. The average of the measured values of five samples was taken as the die shear strength.
(2-2)ダイシェア強度B
 接着剤組成物を、銀めっきしたPPF-Cuリードフレーム(ランド部:10×5mm)上に先のとがったピンセットを用い、精密天秤により0.1mgとなるように塗布した。塗布した接着剤組成物上に、チタン、ニッケル及び金がこの順でめっきされ、1×1mmの被着面が金めっきであるシリコンチップ(金めっきの厚み0.1μm、チップ厚:400μm)を載せ、ピンセットで軽く押さえた。これをステンレスバットに並べ、200℃に設定したクリーンオーブン(PVHC-210、TABAIESPEC CORP.製)で1時間処理してリードフレームとシリコンチップを接着剤組成物で接着した。
(2-2) Die shear strength B
The adhesive composition was applied on a silver-plated PPF-Cu lead frame (land part: 10 × 5 mm) with a pointed tip using a precision balance so as to be 0.1 mg. On the applied adhesive composition, titanium, nickel and gold are plated in this order, and a 1 × 1 mm 2 adherent surface is gold plated silicon chip (gold plating thickness 0.1 μm, chip thickness: 400 μm) Was placed and lightly pressed with tweezers. This was placed on a stainless steel vat and treated for 1 hour in a clean oven (PVHC-210, manufactured by TABAIESPEC CORP.) Set at 200 ° C. to bond the lead frame and the silicon chip with the adhesive composition.
 接着剤組成物硬化物の接着強度は、ダイシェア強度により評価した。50Nのロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社製)を用い、測定スピード500μm/s、測定高さ100μmで被着面が金めっきであるシリコンチップを水平方向に押し、接着剤組成物硬化物のダイシェア強度を測定した。12個のサンプルの測定値の平均をダイシェア強度とした。 The adhesive strength of the cured adhesive composition was evaluated by die shear strength. Using a universal bond tester (4000 series, manufactured by DAGE) equipped with a 50N load cell, a silicon chip with a measurement speed of 500 μm / s, a measurement height of 100 μm, and a gold-plated surface is pressed in the horizontal direction, and the adhesive composition The die shear strength of the cured product was measured. The average of the measured values of 12 samples was defined as the die shear strength.
(3)熱伝導率
 接着剤組成物を、クリーンオーブン(PVHC-210、TABAIESPEC CORP.製)を用いて200℃で1時間加熱処理し、10mm×10mm×0.3mmの接着剤組成物の硬化物を得た。この硬化物の熱拡散率をレーザーフラッシュ法(ネッチ社製 LFA 447、25℃)で測定した。さらに、この熱拡散率と、示差走査熱量測定装置(Pyris1、パーキンエルマー社製)で得られた比熱容量及びアルキメデス法で得られた比重の積とを用いて、25℃における接着剤組成物硬化物の熱伝導率(W/m・K)を算出した。
(3) Thermal conductivity The adhesive composition was heat-treated at 200 ° C. for 1 hour using a clean oven (PVHC-210, manufactured by TABAIESPEC CORP.) To cure the adhesive composition of 10 mm × 10 mm × 0.3 mm. I got a thing. The thermal diffusivity of this cured product was measured by a laser flash method (LFA 447, 25 ° C., manufactured by Netch Co., Ltd.). Further, using this thermal diffusivity and the product of specific heat capacity obtained by a differential scanning calorimeter (Pyris 1, manufactured by Perkin Elmer) and specific gravity obtained by Archimedes method, the adhesive composition was cured at 25 ° C. The thermal conductivity (W / m · K) of the product was calculated.
[実施例1](接着剤組成物の調製)
 分散媒としてイソボルニルシクロヘキサノール(テルソルブMTPH、日本テルペン製)5質量部及びジプロピレングリコールメチルエーテルアセテート(DPMA、ダイセル化学製)5質量部と、粒子表面処理剤としてステアリン酸(新日本理化)0.79質量部とをポリ瓶に混合、密栓した。この溶液を、50℃の水浴で温め、時々振り混ぜながら透明均一な溶液とした。この溶液に熱硬化性樹脂としてクレゾールノボラック型エポキシ樹脂(N665-EXP、DIC製)0.4質量部、フェノール・ホルムアルデヒド重縮合物フェノール(レヂトップ LVR8210、群栄化学工業製)0.8質量部、亜鉛粒子として鱗片状亜鉛粒子(製品番号13789、Alfa Aesar、 A Johnson Matthey Company製)0.088質量部、銀粒子として鱗片状銀粒子(AGC239、福田金属箔粉工業製)43.96質量部及び球状銀粒子(K-0082P、METALOR製)43.96質量部を添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。さらに、ポリ瓶に密栓をして、自転公転型攪拌装置(Planetary Vacuum Mixer ARV-310、シンキー製)を用いて、2000rpmで1分間撹拌して、接着剤組成物を得た。
 なお、鱗片状亜鉛粒子の一次粒子の平均粒径は23μm、鱗片状銀粒子の一次粒子の平均粒径は5.42μm、球状銀粒子の一次粒子の平均粒径は1.64μmであった。
[Example 1] (Preparation of adhesive composition)
5 parts by mass of isobornylcyclohexanol (Telsolve MTPH, manufactured by Nippon Terpene) and 5 parts by mass of dipropylene glycol methyl ether acetate (DPMA, manufactured by Daicel Chemical) as a dispersion medium, and stearic acid (New Nippon Rika) as a particle surface treatment agent 0.79 parts by mass was mixed and sealed in a plastic bottle. This solution was warmed in a water bath at 50 ° C. to obtain a transparent and uniform solution with occasional shaking. In this solution, 0.4 part by mass of a cresol novolac type epoxy resin (N665-EXP, manufactured by DIC) as a thermosetting resin, 0.8 part by mass of phenol / formaldehyde polycondensate phenol (Resitop LVR8210, manufactured by Gunei Chemical Industry), Scale-like zinc particles (product number 13789, manufactured by Alfa Aesar, A Johnson Matthey Company) 0.088 parts by mass as zinc particles, scale-like silver particles (AGC239, manufactured by Fukuda Metal Foil Powder Industry) 43.96 parts by mass as silver particles, and 43.96 parts by mass of spherical silver particles (K-0082P, manufactured by METALOR) were added, and the mixture was stirred with a spatula until there was no dry powder. Further, the plastic bottle was sealed, and the mixture was stirred at 2000 rpm for 1 minute using a rotation / revolution type stirring device (Planetary Vacuum Mixer ARV-310, manufactured by Sinky) to obtain an adhesive composition.
The average particle size of the primary particles of the scaly zinc particles was 23 μm, the average particle size of the primary particles of the scaly silver particles was 5.42 μm, and the average particle size of the primary particles of the spherical silver particles was 1.64 μm.
[実施例2](接着剤組成物の調製)
 分散媒としてイソボルニルシクロヘキサノール(テルソルブMTPH、日本テルペン製)5質量部及びジプロピレングリコールメチルエーテルアセテート(DPMA、ダイセル化学製)5質量部と、粒子表面処理剤としてステアリン酸(新日本理化)0.79質量部とをポリ瓶に混合、密栓した。この溶液を、50℃の水浴で温め、時々振り混ぜながら透明均一な溶液とした。この溶液に熱硬化性樹脂としてアクリル樹脂(A-DCP、新中村化学工業製)1.08質量部、重合剤(トリゴノックス22-70E、化薬アクゾ製)0.12質量部、亜鉛粒子として鱗片状亜鉛粒子(製品番号13789、Alfa Aesar、 A Johnson Matthey Company製)0.088質量部、銀粒子として鱗片状銀粒子(AGC239、福田金属箔粉工業製)43.96質量部及び球状銀粒子(K-0082P、METALOR製)43.96質量部を添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。さらに、ポリ瓶に密栓をして、自転公転型攪拌装置(Planetary Vacuum Mixer ARV-310、シンキー製)を用いて、2000rpmで1分間撹拌して接着剤組成物を得た。
 なお、鱗片状亜鉛粒子の一次粒子の平均粒径は23μm、鱗片状銀粒子の一次粒子の平均粒径は5.42μm、球状銀粒子の一次粒子の平均粒径は1.64μmであった。
[Example 2] (Preparation of adhesive composition)
5 parts by mass of isobornylcyclohexanol (Telsolve MTPH, manufactured by Nippon Terpene) and 5 parts by mass of dipropylene glycol methyl ether acetate (DPMA, manufactured by Daicel Chemical) as a dispersion medium, and stearic acid (New Nippon Rika) as a particle surface treatment agent 0.79 parts by mass was mixed and sealed in a plastic bottle. This solution was warmed in a water bath at 50 ° C. to obtain a transparent and uniform solution with occasional shaking. In this solution, 1.08 parts by mass of acrylic resin (A-DCP, manufactured by Shin-Nakamura Chemical Co., Ltd.) as a thermosetting resin, 0.12 parts by mass of a polymerizing agent (Trigonox 22-70E, manufactured by Kayaku Akzo), and scale as zinc particles Zinc particles (product number 13789, manufactured by Alfa Aesar, A Johnson Matthey Company) 0.088 parts by mass, scaly silver particles (AGC239, manufactured by Fukuda Metal Foil Powder Industry) 43.96 parts by mass and spherical silver particles (manufactured by Afson Matthey Company) (K-0082P, manufactured by METALOR) (43.96 parts by mass) was added, and the mixture was stirred with a spatula until there was no dry powder. Further, the plastic bottle was sealed, and the mixture was stirred at 2000 rpm for 1 minute using a rotation / revolution type stirring device (Planetary Vacuum Mixer ARV-310, manufactured by Sinky) to obtain an adhesive composition.
The average particle size of the primary particles of the scaly zinc particles was 23 μm, the average particle size of the primary particles of the scaly silver particles was 5.42 μm, and the average particle size of the primary particles of the spherical silver particles was 1.64 μm.
[実施例3](接着剤組成物の調製)
 分散媒としてイソボルニルシクロヘキサノール(テルソルブMTPH、日本テルペン製)5質量部及びジプロピレングリコールメチルエーテルアセテート(DPMA、ダイセル化学製)5質量部と、粒子表面処理剤としてステアリン酸(新日本理化)0.79質量部とをポリ瓶に混合、密栓した。この溶液を50℃の水浴で温め、時々振り混ぜながら透明均一な溶液とした。この溶液に熱硬化性樹脂としてビスマレイミド樹脂(BMI-689、Designer Molecules製)1.2質量部、亜鉛粒子として鱗片状亜鉛粒子(製品番号13789、Alfa Aesar、 A Johnson Matthey Company製)0.088質量部、銀粒子として鱗片状銀粒子(AGC239、福田金属箔粉工業製)43.96質量部及び球状銀粒子(K-0082P、METALOR製)43.96質量部を添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。さらに、ポリ瓶に密栓をして、自転公転型攪拌装置(Planetary Vacuum Mixer ARV-310、シンキー製)を用いて、2000rpmで1分間撹拌して接着剤組成物を得た。
 なお、鱗片状亜鉛粒子の一次粒子の平均粒径は23μm、鱗片状銀粒子の一次粒子の平均粒径は5.42μm、球状銀粒子の一次粒子の平均粒径は1.64μmであった。
[Example 3] (Preparation of adhesive composition)
5 parts by mass of isobornylcyclohexanol (Telsolve MTPH, manufactured by Nippon Terpene) and 5 parts by mass of dipropylene glycol methyl ether acetate (DPMA, manufactured by Daicel Chemical) as a dispersion medium, and stearic acid (New Nippon Rika) as a particle surface treatment agent 0.79 parts by mass was mixed and sealed in a plastic bottle. This solution was warmed in a 50 ° C. water bath, and was made into a transparent and uniform solution with occasional shaking. In this solution, 1.2 parts by mass of bismaleimide resin (BMI-689, Designer Molecules) as a thermosetting resin, and scaly zinc particles (product number 13789, Alfa Aesar, manufactured by A Johnson Matthey Company) as a zinc particle 0.088 Add 43.96 parts by mass of scaly silver particles (AGC239, manufactured by Fukuda Metal Foil Powder Industry) and 43.96 parts by mass of spherical silver particles (K-0082P, manufactured by METALOR) as silver particles, and dry with a spatula Stir until no more. Further, the plastic bottle was sealed, and the mixture was stirred at 2000 rpm for 1 minute using a rotation / revolution type stirring device (Planetary Vacuum Mixer ARV-310, manufactured by Sinky) to obtain an adhesive composition.
The average particle size of the primary particles of the scaly zinc particles was 23 μm, the average particle size of the primary particles of the scaly silver particles was 5.42 μm, and the average particle size of the primary particles of the spherical silver particles was 1.64 μm.
[比較例1](接着剤組成物の調製)
 分散媒としてイソボルニルシクロヘキサノール(テルソルブMTPH、日本テルペン製)5.56質量部及びジプロピレングリコールメチルエーテルアセテート(DPMA、ダイセル化学製)5.56質量部と、粒子表面処理剤としてステアリン酸(新日本理化)0.88質量部とをポリ瓶に混合、密栓した。この溶液を、50℃の水浴で温め、時々振り混ぜながら透明均一な溶液とした。この溶液に亜鉛粒子として鱗片状亜鉛粒子(製品番号13789、Alfa Aesar、 A Johnson Matthey Company製)0.088質量部、銀粒子として鱗片状銀粒子(AGC239、福田金属箔粉工業製)43.96質量部及び球状銀粒子(K-0082P、METALOR製)43.96質量部を添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。さらに、ポリ瓶に密栓をして、自転公転型攪拌装置(Planetary Vacuum Mixer ARV-310、シンキー製)を用いて、2000rpmで1分間撹拌して接着剤組成物を得た。
 なお、鱗片状亜鉛粒子の一次粒子の平均粒径は23μm、鱗片状銀粒子の一次粒子の平均粒径は5.42μm、球状銀粒子の一次粒子の平均粒径は1.64μmであった。
[Comparative Example 1] (Preparation of adhesive composition)
As a dispersion medium, isobornylcyclohexanol (Telsolve MTPH, manufactured by Nippon Terpene) 5.56 parts by mass and dipropylene glycol methyl ether acetate (DPMA, manufactured by Daicel Chemical) 5.56 parts by mass, and stearic acid (as a particle surface treatment agent) (New Nippon Rika) 0.88 parts by mass was mixed in a plastic bottle and sealed. This solution was warmed in a water bath at 50 ° C. to obtain a transparent and uniform solution with occasional shaking. In this solution, scaly zinc particles (product number 13789, manufactured by Alfa Aesar, A Johnson Matthey Company) 0.088 parts by mass as zinc particles, and scaly silver particles (AGC239, manufactured by Fukuda Metal Foil Powder Industry) 43.96 as silver particles. Part by mass and 43.96 parts by mass of spherical silver particles (K-0082P, manufactured by METALOR) were added and stirred with a spatula until there was no dry powder. Further, the plastic bottle was sealed, and the mixture was stirred at 2000 rpm for 1 minute using a rotation / revolution type stirring device (Planetary Vacuum Mixer ARV-310, manufactured by Sinky) to obtain an adhesive composition.
The average particle size of the primary particles of the scaly zinc particles was 23 μm, the average particle size of the primary particles of the scaly silver particles was 5.42 μm, and the average particle size of the primary particles of the spherical silver particles was 1.64 μm.
 各成分の配合量を表1に示す。 Table 1 shows the amount of each component.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ダイシェア強度及び熱伝導率の測定結果を表2に示す。 Table 2 shows the measurement results of die shear strength and thermal conductivity.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、銀粒子、亜鉛粒子及び熱硬化性樹脂を添加した接着剤組成物を用いると、被着面が金錫合金又は金で形成されたLED素子の実装に適用した場合であっても、充分に高い接着力と高い熱伝導率を有することが分かった(実施例1~3)。一方、熱硬化性樹脂を添加していない接着剤組成物を用いた場合、高い熱伝導率は得られるものの、被着面が金錫合金又は金で形成されたLED素子との充分な接着強度が得られない(比較例1)。 From the results shown in Table 2, when an adhesive composition to which silver particles, zinc particles and a thermosetting resin are added is used, it is a case where the adherend surface is applied to mounting of an LED element formed of a gold-tin alloy or gold. However, it was found to have a sufficiently high adhesive strength and high thermal conductivity (Examples 1 to 3). On the other hand, when an adhesive composition to which a thermosetting resin is not added is used, a high thermal conductivity is obtained, but sufficient adhesion strength with an LED element having a deposition surface made of gold-tin alloy or gold. Is not obtained (Comparative Example 1).

Claims (12)

  1.  銀原子を含有する銀粒子、金属亜鉛を含有する亜鉛粒子、及び熱硬化性樹脂、を含む、接着剤組成物。 An adhesive composition comprising silver particles containing silver atoms, zinc particles containing metallic zinc, and a thermosetting resin.
  2.  該接着剤組成物における銀原子の含有量が、遷移金属原子全量を基準として90質量%以上であり、亜鉛原子の含有量が遷移金属原子全量を基準として0.01質量%以上0.6質量%以下であり、熱硬化性樹脂の含有量が接着剤組成物全量を基準として0.1質量%以上10質量%以下である、請求項1に記載の接着剤組成物。 The content of silver atoms in the adhesive composition is 90% by mass or more based on the total amount of transition metal atoms, and the content of zinc atoms is 0.01% by mass or more and 0.6% by mass based on the total amount of transition metal atoms. The adhesive composition according to claim 1, wherein the content of the thermosetting resin is 0.1% by mass or more and 10% by mass or less based on the total amount of the adhesive composition.
  3.  前記亜鉛粒子の一次粒子の平均粒径が50nm以上150,000nm以下である、請求項1又は2に記載の接着剤組成物。 The adhesive composition according to claim 1 or 2, wherein an average particle size of primary particles of the zinc particles is 50 nm or more and 150,000 nm or less.
  4.  前記亜鉛粒子が片状である、請求項1~3のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 3, wherein the zinc particles are flakes.
  5.  前記銀粒子の一次粒子の平均粒径が0.1μm以上50μm以下である、請求項1~4のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 4, wherein an average particle size of primary particles of the silver particles is 0.1 µm or more and 50 µm or less.
  6.  前記熱硬化性樹脂が、エポキシ-フェノール樹脂、アクリル樹脂及びビスマレイミド樹脂からなる群より選ばれる一種以上の樹脂を含む、請求項1~5のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 5, wherein the thermosetting resin contains one or more resins selected from the group consisting of epoxy-phenol resins, acrylic resins, and bismaleimide resins.
  7.  分散媒をさらに含む、請求項1~6のいずか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 6, further comprising a dispersion medium.
  8.  前記分散媒が、アルコール、カルボン酸及びエステルからなる群より選ばれる1種以上の300℃以上の沸点を有する分散媒を含む、請求項7に記載の接着剤組成物。 The adhesive composition according to claim 7, wherein the dispersion medium includes one or more dispersion media having a boiling point of 300 ° C or higher selected from the group consisting of alcohol, carboxylic acid and ester.
  9.  前記接着剤組成物を熱硬化してなる硬化物の体積抵抗率が1×10-4Ω・cm以下であり、熱伝導率が30W/m・K以上である、請求項1~8のいずれか一項に記載の接着剤組成物。 The volume resistivity of a cured product obtained by thermally curing the adhesive composition is 1 × 10 −4 Ω · cm or less, and the thermal conductivity is 30 W / m · K or more. The adhesive composition according to claim 1.
  10.  金錫合金を有する被着面に用いられる、請求項1~9のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 9, which is used for an adherent surface having a gold-tin alloy.
  11.  請求項1~10のいずれか一項に記載の接着剤組成物を介して、LED素子とLED素子搭載用支持部材とが接着された構造を有する、半導体装置。 A semiconductor device having a structure in which an LED element and an LED element mounting support member are bonded via the adhesive composition according to any one of claims 1 to 10.
  12.  前記LED素子の被着面が金錫合金を有する、請求項11に記載の半導体装置。 The semiconductor device according to claim 11, wherein a deposition surface of the LED element has a gold-tin alloy.
PCT/JP2014/082839 2013-12-13 2014-12-11 Adhesive composition and semiconductor device using same WO2015087971A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-257865 2013-12-13
JP2013257865A JP2017031227A (en) 2013-12-13 2013-12-13 Adhesive composition and semiconductor device using the same

Publications (1)

Publication Number Publication Date
WO2015087971A1 true WO2015087971A1 (en) 2015-06-18

Family

ID=53371270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082839 WO2015087971A1 (en) 2013-12-13 2014-12-11 Adhesive composition and semiconductor device using same

Country Status (3)

Country Link
JP (1) JP2017031227A (en)
TW (1) TWI669361B (en)
WO (1) WO2015087971A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132877A (en) * 2016-01-27 2017-08-03 京セラ株式会社 Resin composition for semiconductor bonding and semiconductor device
US20210139746A1 (en) * 2019-11-08 2021-05-13 Nitto Denko Corporation Thermosetting sheet and dicing die bonding film
US20210139745A1 (en) * 2019-11-08 2021-05-13 Nitto Denko Corporation Thermosetting sheet and dicing die bonding film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6903282B2 (en) * 2017-02-14 2021-07-14 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP7099700B2 (en) 2017-06-19 2022-07-12 ユニチカ株式会社 Bismaleimide modified product and its manufacturing method
CN113831865A (en) * 2020-06-24 2021-12-24 日东电工株式会社 Thermosetting sheet and dicing die-bonding film
JP2022069969A (en) * 2020-10-26 2022-05-12 日東電工株式会社 Thermosetting sheet, dicing die bond film, and semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329960A (en) * 1993-05-21 1994-11-29 Hitachi Chem Co Ltd Conductive paste
JP2002150838A (en) * 2000-08-31 2002-05-24 Matsushita Electric Ind Co Ltd Conductive adhesives, and mounted structure using the same
JP2005225980A (en) * 2004-02-13 2005-08-25 Harima Chem Inc Electrically conductive adhesive
JP2008106145A (en) * 2006-10-25 2008-05-08 Sekisui Chem Co Ltd Sintering electroconductive paste
WO2008139763A1 (en) * 2007-05-14 2008-11-20 Fujikura Ltd. Optical communications module, process for manufacturing the same, and optical transmitter and receiver apparatus
WO2012043545A1 (en) * 2010-09-29 2012-04-05 日立化成工業株式会社 Adhesive composition and semiconductor device using the same
WO2013094543A1 (en) * 2011-12-22 2013-06-27 味の素株式会社 Conductive adhesive
WO2013187518A1 (en) * 2012-06-14 2013-12-19 日立化成株式会社 Adhesive composition and semiconductor device using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524721B2 (en) * 2000-08-31 2003-02-25 Matsushita Electric Industrial Co., Ltd. Conductive adhesive and packaging structure using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329960A (en) * 1993-05-21 1994-11-29 Hitachi Chem Co Ltd Conductive paste
JP2002150838A (en) * 2000-08-31 2002-05-24 Matsushita Electric Ind Co Ltd Conductive adhesives, and mounted structure using the same
JP2005225980A (en) * 2004-02-13 2005-08-25 Harima Chem Inc Electrically conductive adhesive
JP2008106145A (en) * 2006-10-25 2008-05-08 Sekisui Chem Co Ltd Sintering electroconductive paste
WO2008139763A1 (en) * 2007-05-14 2008-11-20 Fujikura Ltd. Optical communications module, process for manufacturing the same, and optical transmitter and receiver apparatus
WO2012043545A1 (en) * 2010-09-29 2012-04-05 日立化成工業株式会社 Adhesive composition and semiconductor device using the same
WO2013094543A1 (en) * 2011-12-22 2013-06-27 味の素株式会社 Conductive adhesive
WO2013187518A1 (en) * 2012-06-14 2013-12-19 日立化成株式会社 Adhesive composition and semiconductor device using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132877A (en) * 2016-01-27 2017-08-03 京セラ株式会社 Resin composition for semiconductor bonding and semiconductor device
US20210139746A1 (en) * 2019-11-08 2021-05-13 Nitto Denko Corporation Thermosetting sheet and dicing die bonding film
US20210139745A1 (en) * 2019-11-08 2021-05-13 Nitto Denko Corporation Thermosetting sheet and dicing die bonding film

Also Published As

Publication number Publication date
JP2017031227A (en) 2017-02-09
TW201529772A (en) 2015-08-01
TWI669361B (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP5880300B2 (en) Adhesive composition and semiconductor device using the same
WO2015087971A1 (en) Adhesive composition and semiconductor device using same
JP6477486B2 (en) Die bond sheet and semiconductor device manufacturing method
JP7056724B2 (en) Bonds and semiconductor devices
JP4247801B2 (en) Paste-like metal particle composition and joining method
TWI806919B (en) Method for producing joint body and joint material
CN109070206A (en) The engagement manufacturing method of copper thickener, the manufacturing method of conjugant and semiconductor device
WO2012070262A1 (en) Binding material, binding body, and binding method
JP6900148B2 (en) Silver paste and semiconductor devices using it
KR20190105610A (en) Copper pastes, assemblies and semiconductor devices for pressureless bonding
KR20140035996A (en) Bonding material and bonded object produced using same
WO2012102275A1 (en) Adhesive composition and semiconductor device using same
JP2018156736A (en) Copper paste for bonding, bonded body and manufacturing method thereof, and semiconductor device and manufacturing method thereof
KR20130097768A (en) Adhesive composition and semiconductor device using the same
JP2018152176A (en) Copper paste for bonding and semiconductor device
JP2015109434A (en) Die bond layer-attached semiconductor device-mounting support member, die bond layer-attached semiconductor device, and die bond layer-attached bonding board
JP4419382B2 (en) Adhesive composition, adhesive film using the same, and semiconductor device
JP5923698B2 (en) Manufacturing method of semiconductor device using noble metal paste
JP2015224263A (en) Adhesive composition, semiconductor device using the same and production method of semiconductor device
WO2024034662A1 (en) Copper paste
JP2016054252A (en) Porous layer-attached semiconductor element for die bonding, method for manufacturing semiconductor device by use thereof, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP