WO2015087858A1 - 藻類培養装置、及び藻類培養システム - Google Patents

藻類培養装置、及び藻類培養システム Download PDF

Info

Publication number
WO2015087858A1
WO2015087858A1 PCT/JP2014/082512 JP2014082512W WO2015087858A1 WO 2015087858 A1 WO2015087858 A1 WO 2015087858A1 JP 2014082512 W JP2014082512 W JP 2014082512W WO 2015087858 A1 WO2015087858 A1 WO 2015087858A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
algae
culture tank
tank
culture solution
Prior art date
Application number
PCT/JP2014/082512
Other languages
English (en)
French (fr)
Other versions
WO2015087858A9 (ja
Inventor
松本 光史
Original Assignee
電源開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電源開発株式会社 filed Critical 電源開発株式会社
Priority to AU2014362516A priority Critical patent/AU2014362516B2/en
Priority to JP2015552449A priority patent/JP6571529B2/ja
Priority to ES14870351T priority patent/ES2849553T3/es
Priority to EP14870351.5A priority patent/EP3081628B1/en
Priority to US15/100,285 priority patent/US20160369216A1/en
Priority to MYPI2016701827A priority patent/MY182774A/en
Priority to CN201480066836.XA priority patent/CN105814186A/zh
Publication of WO2015087858A1 publication Critical patent/WO2015087858A1/ja
Publication of WO2015087858A9 publication Critical patent/WO2015087858A9/ja
Priority to PH12016501038A priority patent/PH12016501038B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/503Floating mixing devices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M99/00Subject matter not otherwise provided for in other groups of this subclass

Definitions

  • the present invention relates to an algae culture apparatus for culturing photosynthetic algae that perform photosynthesis by absorbing light and taking in carbon dioxide, and an algae culture system including the algae culture apparatus.
  • photosynthetic microalgae have attracted attention as microscopic organisms that absorb and immobilize carbon dioxide, the cause of global warming, through photosynthesis reactions.
  • the photosynthetic microalgae are cultured in a culture apparatus having a culture tank or a culture pond containing a culture solution.
  • a culture apparatus it is required to increase the productivity by preventing the spoilage accompanying sedimentation and deposition of the cultured photosynthetic microalgae by stirring the mixed solution of the photosynthetic microalgae and the culture solution (for example, patents). Reference 1).
  • FIG. 6 is a plan view showing a schematic configuration of the algae culture apparatus disclosed in Patent Document 1.
  • FIG. FIG. 7 is a cross-sectional view illustrating a schematic configuration of the stirring apparatus illustrated in FIG. 6.
  • M indicates the center line of the culture tank 201 (hereinafter referred to as “center line M”)
  • N indicates the width of the culture tank 201 (hereinafter referred to as “width N”).
  • Patent Document 1 discloses an algal culture device 200 having a culture tank 201, a plurality of stirring devices 204, and a moving means 206.
  • the culture tank 201 contains a mixed solution of photosynthetic microalgae and a culture solution, and cultures the photosynthetic microalgae.
  • the stirring device 204 sucks the mixed liquid 202 in the mixed liquid 202 of the culture tank 201 while being spaced apart from the bottom of the culture tank 201 at a fixed position, and discharges the mixed liquid 202 toward the bottom. Stir photosynthetic microalgae.
  • the moving unit 206 moves the plurality of stirring devices 204 in the mixed liquid 202.
  • the mixed liquid given the flow moves in the arrow X direction.
  • the present inventor measured the electric power necessary for cultivation of 1 kg of microalgae for 2 years using a commercially available raceway type algae culture system and a commercially available column type algae culture system. In the algal culture system, it was 74.4 ⁇ 28.2 (kWh / kg), and in the column type algal culture system, it was 223.2 ⁇ 38.0 (kWh / kg). From the above numerical values, it can be seen that a large amount of electric power is conventionally required for cultivation of a predetermined amount (for example, 1 kg) of microalgae.
  • the present invention provides an algae culture device and an algae culture system that can cultivate a predetermined amount of algae with less power than conventional culture devices, while suppressing decay caused by sedimentation and deposition of algae. With the goal.
  • the algae culture apparatus is provided with a culture vessel that contains algae and a culture solution for culturing the algae, and the culture solution provided in the culture vessel, and the culture solution in the vicinity of the culture vessel and the culture solution in the vicinity thereof.
  • a culture vessel that contains algae and a culture solution for culturing the algae
  • the culture solution provided in the culture vessel, and the culture solution in the vicinity of the culture vessel and the culture solution in the vicinity thereof.
  • the support member may be a buoyancy material having a specific gravity lighter than that of the culture solution and ensuring the buoyancy of the flow generator with respect to the culture solution.
  • the plurality of support members may be arranged so that the angles formed by the adjacent support members are all equal.
  • the culture vessel may have a cylindrical shape in the inner wall portion when seen in a plan view, and the flow generator may be disposed in a central portion of the culture vessel.
  • the algae culture system according to the present invention may further include a sunlight condensing unit that collects sunlight and supplies the collected sunlight to a light irradiation member provided in the algae culture apparatus.
  • the algae culture system according to the present invention further includes an algae collection line in which one end is connected to an algae collection port provided in the culture tank and collects the algae cultured in the culture solution together with the culture solution.
  • the other end of the algae recovery line is disposed at a lower position than the one end, and the alga is recovered from the culture tank using the height difference between both ends of the algae recovery line. Also good.
  • At least a part of the algae recovery line may be inclined from the one end to the other end.
  • the solar cell panel may be installed above the culture tank.
  • the flow generator moves the liquid level in the culture tank and the culture liquid in the vicinity thereof from the center of the culture tank toward the inner wall, so that the liquid level of the culture liquid and In the vicinity thereof, a flow of the culture solution from the center of the culture tank toward the inner wall is generated.
  • a flow of the culture liquid is generated along the inner wall of the culture tank in a direction toward the bottom surface of the outer periphery of the culture tank.
  • a flow of the culture solution is generated along the bottom surface of the culture tank in a direction from the outer peripheral portion of the culture tank toward the central portion, and then the direction toward the flow generator disposed above from the bottom surface of the central portion of the culture tank. The flow of the culture solution occurs.
  • the flow generator generates a flow of the culture solution from the central part of the culture tank toward the inner wall at and near the liquid level of the culture solution contained in the culture tank, but the reaction occurs depending on the viscosity of the culture solution. Since the force, that is, the resistance that generates a load on the flow generator is smaller than that in the case of stirring a deep portion of the culture solution, the load on the flow generator can be reduced. Therefore, the power consumption of the flow generator can be suppressed as compared with the conventional case. That is, algae in an amount equal to or greater than that of the conventional one can be cultured with less electric power than conventional culturing devices, while suppressing the spoilage due to the sedimentation and accumulation of algae.
  • FIG. 2 is a cross-sectional view of the algae culture system shown in FIG.
  • FIG. 2 is a cross-sectional view of the algal culture system shown in FIG. 1 in the BB line direction. It is sectional drawing for demonstrating the other example of an algae collection line. It is sectional drawing which shows the modification of the algal culture apparatus of this invention. It is a top view which shows schematic structure of the algae culture apparatus disclosed by patent document 1.
  • FIG. It is sectional drawing which shows schematic structure of the stirring apparatus shown in FIG.
  • FIG. 1 is a plan view showing a schematic configuration of an algae culture system according to an embodiment of the present invention.
  • the illustration of the sheet 32 shown in FIG. Moreover, the arrow drawn around the flow generator 33 shown in FIG. 1 indicates that the flow generator 33 rotates with respect to the culture tank 31.
  • FIG. 2 is a cross-sectional view of the algal culture system shown in FIG. 2, for convenience of explanation, one end 17a that does not pass the line AA shown in FIG. 1, the carbon dioxide supply source 26, the connection member 65, and the carbon dioxide supply line 66 are shown.
  • FIG. 3 is a cross-sectional view of the algal culture system shown in FIG. 1 in the BB line direction. 2 and 3, the same components as those in the structure shown in FIG.
  • an algal culture system 10 includes a plurality of algae culture apparatuses 11 (four in the case of FIG. 1), a pedestal portion 15, an algae recovery line 16, and a dioxide dioxide.
  • the carbon supply pipe 17, the panel support member 18, the solar battery panel 21, the power storage unit 23, the sunlight collecting unit 24, and the carbon dioxide supply source 26 are included.
  • the algae culture apparatus 11 includes algae 14 that are photosynthetic microalgae, a culture tank 31 that contains a culture solution 13 for culturing the algae 14, a flow generator 33 that generates a predetermined flow in the culture solution 13, and a flow It has a flow generator position regulating member 34 that maintains the generator 33 in a fixed position with respect to the culture tank 31, and a light irradiation member 38 that irradiates light on the algae 14 existing in the culture solution 13.
  • a through portion 31d for allowing the other end 17b of the carbon dioxide supply pipe 17 for supplying carbon dioxide to the culture solution 13 accommodated in the tank to pass therethrough.
  • the end 17 b of the carbon dioxide supply pipe 17 also penetrates the sheet 32 and protrudes to the bottom of the culture tank 31.
  • the bottom plate portion 31c close to the inner wall portion 31b of the culture tank 31 is passed through an end of an algae collection line 16 for collecting the algae 14 cultured together with the culture solution 13 accommodated in the tank. Is provided.
  • the end of the algae collection line 16 also penetrates the sheet 32 and is exposed at the bottom of the culture tank 31.
  • a plurality of recesses for arranging a plurality of light irradiation members 38 and regulating their positions.
  • positioned surface (specifically, the bottom plate part of the culture tank)
  • a culture tank composed of a surface composed of concrete) may be used.
  • the sheet 32 is placed on the culture tank 31 so as to cover the inner surface of the culture tank 31, and the culture solution containing the algae 14 is placed in the culture tank 31 so as to be in close contact with the inner wall portion 31b and the bottom plate portion 31c.
  • the shape inside the tank 31 is transferred.
  • the case where the light irradiation member 38 is disposed between the sheet 32 and the bottom plate portion 31c has been described as an example. It is not limited.
  • the light irradiation member 38 may be disposed on the sheet 32 so as to be immersed in the culture solution 13. In this case, it is possible to irradiate the algae 14 existing in the culture solution 13 without passing through the sheet 32, so that the sheet 32 does not have to be light transmissive. Therefore, various types of sheets can be used as the sheet 32.
  • the flow generator 33 is arranged in the central part C of the culture tank 31 in a state of floating in the culture solution 13 accommodated in the culture tank 31 via the sheet 32 (see FIG. 2).
  • the flow generator 33 moves the culture solution 13 in the vicinity of the liquid level 13a from the central portion C of the culture tank 31 toward the inner wall portion 31b, thereby transferring the culture solution 13 in the vicinity of the liquid level 13a to the center of the culture tank 31.
  • a flow from the part C toward the inner wall part 31b is generated in all directions.
  • the flow generator 33 includes a motor 41, a speed reducer 42, a rotating shaft 43, a plurality of blade members 45 (three in the case of the algae culture apparatus 11 shown in FIG. 1), and a plurality of blade members 45 that support the blade members 45.
  • Support members 46 three in the case of the algae culture apparatus 11 shown in FIG. 1 and rope fixing portions 47 and 48 are provided.
  • the rope fixing portions 47 and 48 are provided on the outer wall of the speed reducer 42.
  • the rope fixing portions 47 and 48 are arranged so as to face each other via the speed reducer 42.
  • the rope fixing portion 47 is a member for connecting one end of a first rope 56 (one rope for regulating the position of the flow generator 33) described later.
  • the rope fixing portion 48 is a member for connecting one end of a second rope 57 (the other rope for regulating the position of the flow generator 33) described later.
  • the motor 41 is connected to one end portion of the rotating shaft 43 via the speed reducer 42.
  • the rotation shaft 43 is provided so that the axial direction of the rotation shaft 43 is orthogonal to the liquid surface 13a where the flow of the culture solution 13 is not formed when the flow generator 33 is floated on the culture solution 13.
  • the base end portion 46a of the support member 46 is connected to the other end portion 43a of the rotating shaft 43, and a blade member 45 is attached to the lower surface 46c of the tip end portion 46b.
  • the support member 46 has a resin-made hollow structure, and its specific gravity is very light compared to the culture solution 13 and functions as a float (a member that generates buoyancy) of the flow generator 33.
  • the structure of the support member 46 is not limited to a resin hollow structure, and any structure can be adopted as long as it provides sufficient buoyancy to the flow generator 33.
  • the support members 46 are arranged so that the angles formed with other adjacent support members 46 are all equal. In the case of the structure shown in FIG. 1, the three support members 46 are adjacent to each other by 120 degrees. As a result, when the flow generator 33 floats on the culture solution 13, the blade member 45 attached to the lower surface 46 c of the support member 46 is placed in a relatively shallow region below the original liquid level 13 a of the culture solution 13. While being arranged, the motor 41 and the speed reducer 42 are held above the liquid level 13a, so that they can float on the culture medium 13 in a stable state.
  • the blade member 45 is located at a position spaced from the center of the culture tank 31 toward the inner wall portion 31b when the motor 41 and the speed reducer 42 are arranged at substantially the center of the culture tank 31 and the flow generator 33 is floated on the culture solution 13. Be placed.
  • the blade member 45 is attached so that the length direction of the blade member 45 coincides with the support member 46, and the width direction of the blade member 45 is orthogonal to the liquid surface 13 a of the culture solution 13.
  • the culture solution 13 is a mixed solution of photosynthetic microalgae and a culture solution, and has a considerable viscosity as a fluid. Viscosity is a force (reaction force) that attempts to push back the movement of an object in proportion to the velocity gradient when the velocity gradient occurs inside the fluid. Refers to the characteristics that act on. In this embodiment, it can be said that the support member 46 and the blade member 45 (mainly the blade member 45) rotating in the culture solution 13 are the factors of the velocity gradient.
  • the propeller which is also a factor of the velocity gradient, is located away from the liquid surface of the culture solution, so that a reaction force will be generated against the rotation of the propeller.
  • the viscosity of the culture medium acts on all parts including the top and bottom of the propeller.
  • the blade member 45 since the blade member 45 is disposed in a relatively shallow region below the liquid level 13a of the culture solution 13, an attempt is made to generate a reaction force against the rotation of the support member 46 and the blade member 45.
  • the viscosity of the culture solution is clearly lower than that of the conventional algae culture apparatus.
  • the upper part of the blade member 45 is close to the liquid surface 13a, so that the velocity gradient generated in the culture solution between the blade member 45 and the liquid surface 13a is small.
  • the viscosity of the air is very small relative to the viscosity of the culture solution 13, and can be ignored here. That is, in this embodiment, since the reaction force (force to push back the rotating blade member 45) generated depending on the viscosity of the culture solution is smaller than that of the conventional algae culture apparatus, the motor that rotates the blade member 45 The load on 41 can be small. Therefore, the power consumption of the motor 41, that is, the flow generator 33 can be suppressed as compared with the conventional case.
  • the fact that the flow of the culture solution close to the liquid surface 13a is less than the stirring of the culture solution 13 in the region close to the bottom of the culture tank 31 requires less power consumption. Street.
  • the motor 41 and the speed reducer 42 are arranged at substantially the center of the culture tank 31 and the flow generator 33 is floated on the culture solution 13, the motor 41 is driven to rotate the support member 46 and the blade member 45.
  • the culture solution that is close to the liquid surface 13 a and is in front of the blade member 45 in the rotation direction performs a circular motion around the rotation shaft 43 of the motor 41 so as to be pushed by the blade member 45.
  • the culture solution is not subjected to any restraint except for its own viscosity in the radial direction in the solution, a flow is generated by the centrifugal force acting radially outward from the center along with the circular motion.
  • the motor 41 and the speed reducer 42 are disposed substantially at the center of the culture tank 31, as a result, the culture solution 13 near the liquid surface 13a is directed from the central part C of the culture tank 31 toward the inner wall part 31b. A flow will occur.
  • the flow of the culture solution which circulates in the longitudinal half cross section of the radial direction of the culture tank 31 can be generated, and the cultivation of the algae can be performed while suppressing the decay due to the sedimentation and deposition of the algae in the culture tank 31. It can be performed efficiently.
  • the blade member 45 for example, a rectangular blade can be used.
  • the inner diameter R of the culture tank 31 is 5 m
  • the depth D of the culture solution 13 is 0.4 m
  • the length of the blade member 45 (the blade in the radial direction of the culture tank 31) length) W 1 of the member 45 may be, for example, 30 cm.
  • W 2 width of the blade member 45 may be, for example, 25 cm.
  • a material constituting the blade member 45 for example, wood, plastic, and stainless steel can be used.
  • the length of the support member 46 is preferably in the range of 30% to 40% of 1 ⁇ 2 of the inner diameter R (in other words, the radius r shown in the following formula (5)). Specifically, when the half value of the inner diameter R is 2.5 m, the length of the support member 46 can be appropriately set within the range of 0.75 m to 1.0 m.
  • the blade member 45 attached to the plurality of support members 46 allows the center of the culture tank 31 to be centered.
  • a radial flow that diffuses in all directions can be uniformly generated in the direction from the portion C toward the inner wall portion 31 b of the culture tank 31.
  • the input energy efficiency ⁇ per volume (hereinafter referred to as “culture volume”) of the culture solution 13 for culturing the algae 14 is expressed by the following equation (2).
  • the input energy efficiency ⁇ is a parameter obtained by dividing the culture volume by the output (input power) of the flow generator required for culturing the algae 14, and is a parameter indicating how much the culture solution 13 can be stirred by the input power. is there.
  • the culture volume V is expressed by the following equation (4). It is.
  • the depth D (unit: m (meter)) of the culture solution 13 can be appropriately selected within the range of 0.4 to 1 m, for example, but is preferably 0.4 to 0.5 m.
  • the flow velocity v of the culture solution 13 at the outer periphery of the culture tank 31 can be expressed by the following equation (7).
  • t shown in the following formula (7) indicates the time required for the culture solution 13 to make one round of the outer periphery of the culture tank 31 (hereinafter referred to as “time t”).
  • the time t is an actually measured value, and min is used as the unit.
  • the target value of the input energy efficiency ⁇ is set, the depth D of the culture solution 13 is set within the above-described range, and the time t is obtained by measurement.
  • the flow rate v of the culture solution 13 can be obtained.
  • the flow velocity v of the culture solution 13 at the outer peripheral edge of the culture tank 31 is preferably 12 m / min or more.
  • the algae culture apparatus 11 has a culture tank 31 in which the inner wall portion is cylindrical, the algae 14 and the culture solution 13 for culturing the algae 14 are accommodated via the sheet 32, and the culture solution. 13 and a flow generator 33 arranged in the central part C of the culture tank 31 in a state of being floated.
  • the flow generator 33 moves the liquid level in the culture tank 31 and the culture liquid 13 in the vicinity thereof from the central part C of the culture tank 31 toward the inner wall part 31b of the culture tank 31, thereby allowing the liquid of the culture liquid 13 to flow.
  • a flow of the culture solution 13 from the central part C of the culture tank 31 toward the inner wall part 31b of the culture tank 31 is generated on the surface and in the vicinity thereof.
  • the flow generator position restricting member 34 includes a first strut 51, a second strut 52, a first rope fixing portion 54, a second rope fixing portion 55, a first rope 56, and a second rope. And a rope 57.
  • pillars 51 and 52 are provided in the upper surface side of the base part 15 so that it may oppose on both sides of the culture tank 31.
  • the first and second support columns 51 and 52 protrude upward from the upper surface 15 a of the pedestal portion 15.
  • the first rope fixing portion 54 is provided in a portion of the outer wall of the first support column 51 that faces the second support column 52.
  • the second rope fixing portion 55 is provided in a portion of the outer wall of the second support column 52 that faces the first support column 51.
  • One end of the first rope 56 is tied to the rope fixing portion 47, and the other end is tied to the first rope fixing portion 54.
  • One end of the second rope 57 is tied to the rope fixing portion 48, and the other end is tied to the second rope fixing portion 55.
  • the light irradiation member 38 is cultivating sunlight necessary for photosynthesis when the cultivation of the algae 14 progresses and sunlight no longer reaches the sheet 32 disposed on the bottom surface 31a of the culture tank 31 from the liquid level 13a side. It is a member for irradiating the algae 14.
  • an optical fiber (not shown) for irradiating sunlight and an optical fiber containing portion (not shown) capable of accommodating an optical fiber (not shown) inside is light transmissive.
  • a member having a tube can be used.
  • the optical fiber irradiates sunlight on the algae 14 accommodated in the sheet 32 via an optical fiber accommodating portion (not shown). Therefore, it is preferable to use an optical fiber housing (not shown) made of a material that can transmit light.
  • an optical fiber housing made of a material that can transmit light.
  • a material for such an optical fiber housing for example, a light transmissive resin (for example, acrylic resin, polycarbonate resin, etc.), glass, or the like can be used.
  • the light irradiation member 38 configured as described above can be arranged in a layout as shown in FIG. 1, for example.
  • the layout of the light irradiation member 38 shown in FIG. 1 is an example, and is not limited to this.
  • the light irradiation member 38 should just contain the member which can irradiate the light required for photosynthesis to the algae 14 in culture
  • the algae 14 is irradiated with sunlight as an external light source through an optical fiber.
  • sunlight not only sunlight but also artificial light sources such as fluorescent lamps and LEDs are used to control the algae. It can also promote photosynthesis.
  • an artificial light source such as a fluorescent lamp or LED
  • they are arranged on the upper surface side of the bottom plate portion 31c of the culture tank 31, and the light is directly applied to the algae 14 without passing through an optical fiber. It may be irradiated.
  • an example of the algae culture system 10 has been described by taking the case of having four algae culture devices 11 as an example.
  • the algae culture system 10 may include a plurality of algae culture devices 11.
  • the present invention is not limited to this.
  • the number of the algae culture apparatuses 11 which comprise the algae culture system 10 can be suitably selected according to the internal diameter R of the culture tank 31, for example.
  • the algae culture system 10 alone can supply the power necessary for the algae culture system 10, so that the algae culture can be performed in places where the sunshine conditions are good even in places where it is difficult to supply power.
  • the system 10 can be installed to culture the algae 14.
  • the algae culture system 10 having the plurality of algae culture apparatuses 11 can obtain the same effects as the algae culture apparatus 11 described above.
  • the case of having four culture tanks 31 has been described as an example, but the number of culture tanks 31 is not limited to this.
  • the structure shown in FIG. 4 is configured in the same manner as the structure shown in FIG. 3 except that it has an algae recovery line 71 instead of the algae recovery line 16 that is a component of the structure shown in FIG.
  • the algae recovery line 16 is placed on the pedestal 15 so that the central axis of the portion extending to the outer periphery of the pedestal 15 and the upper surface 15 a of the pedestal 15 are parallel to each other.
  • the algae recovery line 71 may be provided in the pedestal 15 so that the upper surface 15a intersects the upper surface 15a.
  • FIG. 5 shows a modification of the algal culture apparatus of the present invention.
  • the culture tank 31 is provided in a recess 62a formed by digging the ground 62 below the ground surface GL.
  • materials such as a pedestal portion can be omitted.
  • the vertical earth wall of the recess 62a supports the inner wall part 31b of the culture tank 31, the shape of the culture tank 31 can be maintained without giving the inner wall part 31b sufficient strength to be self-supporting. Therefore, it is possible to construct an algae culture system with as few materials as possible when performing algae culture in a remote place that is suitable for algae culture but far from the consumption place.
  • cultivation of the algae 14 was started by rotationally driving the flow generator 33 arrange
  • the algae 14 were cultured for 10 days by storing the electric power obtained from the four solar cell panels 21 in the power storage unit 23 and using it.
  • the light required for photosynthesis did not reach the culture solution 13 located near the bottom of the sheet 32 due to the increase in the concentration of the algae 14. Therefore, on the seventh day from the start of the culture, the sunlight collected by the sunlight collecting unit 24 was irradiated from the bottom of the culture tank 31. Thereby, the shortage of light was compensated and the productivity of the algae 14 and the productivity of the oil could be improved.
  • the total power (in other words, the total power used by the four algae culture devices 11) used in the above examples was 10 kWh.
  • the weight of the algae 14 obtained in 10 days was 2 kg. From this, it was found that the electric power required for culturing algae per 1 kg (predetermined amount) was 5 kWh.
  • the present invention can be applied to an algae culture apparatus and an algae culture system that can cultivate algae after suppressing decay due to sedimentation and accumulation of algae.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、光を吸収し二酸化炭素を取り込むことで光合成を行う光合成藻類を培養する藻類培養装置、及び該藻類培養装置を含む藻類培養システムを提供することを課題とする。 藻類(14)及び藻類(14)を培養する培養液(13)が収容される培養槽(31)と、培養槽(31)に設けられ、培養槽(31)内の液面及びその近傍の培養液(13)を、培養槽(31)の中央から内壁部(31b)に向かって移動させることで、培養液(13)の液面及びその近傍に、培養槽(31)の中央から内壁部(31b)に向かう培養液(13)の流れを生じさせる流れ発生機(33)とを備える藻類培養装置(11)を採用する。

Description

藻類培養装置、及び藻類培養システム
 本発明は、光を吸収し二酸化炭素を取り込むことで光合成を行う光合成藻類を培養する藻類培養装置、及び該藻類培養装置を含む藻類培養システムに関する。
 本願は、2013年12月9日に日本に出願された特願2013-254530号に対して優先権を主張し、その内容をここに援用する。
 近年、地球温暖化の元凶である二酸化炭素を光合成反応により吸収して固定化する微細生物として光合成微細藻類が注目されている。
 光合成微細藻類は、培養液を収容する培養槽又は培養池を有する培養装置で培養される。このような培養装置では、光合成微細藻類と培養液の混合液を撹拌することで、培養された光合成微細藻類の沈降や堆積に伴う腐敗を防止し生産性を高めることが求められる(例えば、特許文献1参照)。
 図6は、特許文献1に開示された藻類培養装置の概略構成を示す平面図である。図7は、図6に示す撹拌装置の概略構成を示す断面図である。図6において、Mは培養槽201の中心線(以下、「中心線M」という)を示しており、Nは培養槽201の幅(以下、「幅N」という)を示している。
 図6及び図7を参照すると、特許文献1には、培養槽201と、複数の撹拌装置204と、移動手段206とを有する藻類培養装置200が開示されている。培養槽201は、光合成微細藻類と培養液との混合液を収容し、当該光合成微細藻類を培養する。撹拌装置204は、培養槽201の混合液202中で、培養槽201の底部から上方の一定位置に離間して位置した状態で、混合液202を吸引し、底部に向かって排出し当該底部の光合成微細藻類を撹拌する。移動手段206は、複数の撹拌装置204を混合液202中で移動させる。撹拌装置204内では、流れを与えられた混合液が矢印X方向に移動する。
 このような構成とされた藻類培養装置200を用いることで、培養された光合成微細藻類の沈降や堆積に伴う腐敗を防止し生産性を高めることが可能となる。
特開2011-254724号公報
 しかしながら、特許文献1に開示された藻類培養装置200を用いて微細藻類の培養を行う場合、複数の撹拌装置204及び移動手段206を駆動させるために多くの電力が必要となってしまう。
 つまり、所定の量(例えば、1kg)の微細藻類の栽培に、多くの電力が必要になってしまうという問題があった。
 本発明者が、市販のレースウェイタイプの藻類培養システムと、市販のカラムタイプの藻類培養システムと、を用いて1kgの微細藻類の栽培に必要な電力を2年間測定したところ、レースウェイタイプの藻類培養システムでは、74.4±28.2(kWh/kg)であり、カラムタイプの藻類培養システムでは、223.2±38.0(kWh/kg)であった。
 上記数値から、従来、所定の量(例えば、1kg)の微細藻類の栽培には、多くの電力が必要になってしまうことが分かる。
 そこで、本発明は、藻類の沈降や堆積に伴う腐敗を抑制した上で、従来の培養装置よりも少ない電力で所定の量の藻類を培養可能な藻類培養装置、及び藻類培養システムを提供することを目的とする。
 本発明に係る藻類培養装置は、藻類及び該藻類を培養する培養液を収容する培養槽と、前記培養槽に設けられ、該培養槽内の液面及びその近傍の前記培養液を、前記培養槽の中央から該培養槽の内壁部に向かって移動させることで、前記培養液の液面及びその近傍に、前記培養槽の中央から該培養槽の内壁部に向かう前記培養液の流れを生じさせる流れ発生機とを備える。
 本発明に係る藻類培養装置において、前記流れ発生機は、モータと、一方の端部が前記モータに接続された回転軸と、基端部が前記回転軸の他方の端部に接続されて前記回転軸を中心に放射状に配置された複数の支持部材と、前記支持部材の先端部に取り付けられた複数の羽根部材とを備え、前記培養槽に収容された前記培養液の液面に対して前記回転軸を直交するように配置された状態では、前記複数の羽根部材が前記回転軸よりも前記培養槽の前記内壁部寄りに配置されるとともに前記支持部材から垂下することで前記培養液に接していてもよい。
 本発明に係る藻類培養装置において、前記支持部材は前記培養液よりも比重が軽く、前記培養液に対し前記流れ発生機の浮力を確保するための浮力材であってもよい。
 本発明に係る藻類培養装置において、前記複数の支持部材は、隣接する該支持部材同士が成す角度が全て等しくなるように配置されていてもよい。
 本発明に係る藻類培養装置において、前記培養槽は、平面視すると前記内壁部が円筒形状であり、前記流れ発生機は前記培養槽の中央部に配置されていてもよい。
 本発明に係る藻類培養装置において、前記流れ発生機は、前記培養槽の中央から前記内壁部に向かう前記培養液の流れを、前記培養液に対して前記培養槽の中央から全方向に生じさせてもよい。
 本発明に係る藻類培養装置は、前記流れ発生機が前記培養液に浮かんだ状態で、前記培養槽の中央部に前記流れ発生機の位置を規制する流れ発生機位置規制部材をさらに備えていてもよい。
 本発明に係る藻類培養装置は、前記培養槽に収容された前記培養液中に存在する前記藻類に光を照射する光照射部材をさらに備えていてもよい。
 本発明に係る藻類培養装置において、前記光照射部材は前記培養槽の底面に配置された光ファイバを含み、外部光源の光を、前記光ファイバを通じて前記培養槽の底面に導いて前記藻類に照射してもよい。又は、前記光照射部材は前記培養槽の底面に配置され、前記藻類に自ら発する光を照射してもよい。
 本発明に係る藻類培養装置において、前記培養槽は、地盤を地表よりも掘り下げて形成されていてもよい。
 本発明に係る藻類培養装置は、前記培養槽に被せられ、該培養槽の内壁部及び底部を覆うシートをさらに備え、前記培養液は前記シートを介して前記培養槽に収容されていてもよい。
 本発明に係る藻類培養装置において、前記培養槽に、該培養槽内に収容された前記培養液に二酸化炭素を供給するための二酸化炭素供給口が設けられていてもよい。
 本発明に係る藻類培養装置において、前記二酸化炭素供給口は、前記培養槽の底面の中央に配置されていてもよい。
 本発明に係る藻類培養装置において、前記培養槽に、前記培養液中で培養した前記藻類を前記培養液とともに回収するための藻類回収口が設けられていてもよい。
 本発明に係る藻類培養装置において、前記藻類回収口は、前記培養槽の底面に配置されていてもよい。
 本発明に係る藻類培養装置においては、下記(1)式で示される前記培養槽の外周縁での前記培養液の流速vが12m/min以上であってもよい。
Figure JPOXMLDOC01-appb-M000002
 但し、上記(1)式において、φは前記培養液の体積を前記藻類の培養に要した前記流れ発生機の出力で割ったパラメータ、Wattは前記藻類の培養に要した前記流れ発生機の出力、Dは前記培養槽に収容された前記培養液の深さであり、かつ0.4~1mの範囲内の数値、tは前記培養液が前記培養槽の外周縁を1周するのに要する時間をそれぞれ示す。
 本発明に係る藻類培養装置において、前記流れ発生機は、1つの前記培養槽に対して1つ設けられていてもよい。
 本発明に係る藻類培養システムは、複数の前記藻類培養装置と、複数の前記藻類培養装置と電気的に接続された蓄電部と、前記蓄電部と電気的に接続された太陽電池パネルとを備え、前記太陽電池パネルで発電した電気を前記蓄電部に供給し、複数の前記流れ発生機を駆動する。
 本発明に係る藻類培養システムは、前記培養槽内に収容された前記培養液に、前記培養槽に設けられた二酸化炭素供給口を通じて二酸化炭素を供給する二酸化炭素供給源をさらに備えていてもよい。
 本発明に係る藻類培養システムは、太陽光を集光し、該集光した太陽光を藻類培養装置に設けられた光照射部材に供給する太陽光集光部をさらに備えていてもよい。
 本発明に係る藻類培養システムは、一方の端部が前記培養槽に設けられた藻類回収口に接続され、前記培養液中で培養した前記藻類を前記培養液とともに回収する藻類回収ラインをさらに備え、
 前記藻類回収ラインの他方の端部は、前記一方の端部よりも低い位置に配置され、前記藻類回収ラインの双方の端部の高低差を利用して前記藻類を前記培養槽から回収してもよい。
 本発明に係る藻類培養システムにおいて、前記藻類回収ラインの少なくとも一部が、前記一方の端部から前記他方の端部に向けて傾斜していてもよい。
 本発明に係る藻類培養システムにおいては、前記太陽電池パネルが、前記培養槽の上方に設置されていてもよい。
 本発明の藻類培養装置によれば、流れ発生機が、培養槽内の液面及びその近傍の培養液を、培養槽の中央から内壁部に向かって移動させることで、培養液の液面及びその近傍に、培養槽の中央から内壁部に向かう培養液の流れを生じさせる。培養液の液面及びその近傍に形成された流れが培養槽の内壁に到達すると、培養槽の内壁に沿って培養槽の外周部の底面に向かう方向に培養液の流れが発生する。次いで、培養槽の底面に沿って培養槽の外周部から中央部に向かう方向に培養液の流れが発生し、その後、培養槽の中央部の底面から上方に配置された流れ発生機に向かう方向に培養液の流れが発生する。
 流れ発生機は、培養槽に収容された培養液の液面及びその近傍に、培養槽の中央部から内壁部に向かう培養液の流れを発生させるが、培養液の粘性に依存して生じる反力、すなわち流れ発生機に対して負荷を生じる抵抗が、培養液の深い部分を攪拌する場合と比較して小さいので、流れ発生機にかかる負荷が小さくて済む。したがって、流れ発生機の消費電力を従来よりも抑えることができる。つまり、藻類の沈降や堆積に伴う腐敗を抑制した上で、従来の培養装置よりも少ない電力で、従来と同等もしくはそれ以上の量の藻類を培養させることができる。
本発明の実施の形態に係る藻類培養システムの概略構成を示す平面図である。 図1に示す藻類培養システムのA-A線方向の断面図である。 図1に示す藻類培養システムのB-B線方向の断面図である。 藻類回収ラインの他の例を説明するための断面図である。 本発明の藻類培養装置の変形例を示す断面図である。 特許文献1に開示された藻類培養装置の概略構成を示す平面図である。 図6に示す撹拌装置の概略構成を示す断面図である。
 図1は、本発明の実施の形態に係る藻類培養システムの概略構成を示す平面図である。
図1では、後述する図2に示すシート32の図示を省略する。また、図1に示す流れ発生機33の周囲に描いた矢印は、培養槽31に対して流れ発生機33が回転することを示している。
 図2は、図1に示す藻類培養システムのA-A線方向の断面図である。図2では、説明の便宜上、図1に示すA-A線を通過しない一方の端部17a、二酸化炭素供給源26、接続部材65、及び二酸化炭素供給ライン66を図示する。
 図3は、図1に示す藻類培養システムのB-B線方向の断面図である。図2及び図3において、図1に示す構造体と同一構成部分には、同一符号を付す。
 図1~図3を参照するに、本実施の形態の藻類培養システム10は、複数の藻類培養装置11(図1の場合、4つ)と、台座部15と、藻類回収ライン16と、二酸化炭素供給管17と、パネル支持部材18と、太陽電池パネル21と、蓄電部23と、太陽光集光部24と、二酸化炭素供給源26と、を有する。
 藻類培養装置11は、光合成微細藻類である藻類14及び藻類14を培養するための培養液13を収容する培養槽31と、培養液13中に所定の流れを発生させる流れ発生機33と、流れ発生機33を培養槽31に対して定位置に維持する流れ発生機位置規制部材34と、培養液13中に存在する藻類14に光を照射する光照射部材38と、を有する。
 培養槽31は、円筒形状とされた内壁部31bと、内壁部31bの下端を覆う円形状の板部材である底板部31cと、を有する。培養槽31内には、培養槽31の内面を覆うように、シート32が配置されている。
 培養槽31の底板部31cの中央には、槽内に収容された培養液13に二酸化炭素を供給する二酸化炭素供給管17の他方の端部17bを通過させるための貫通部31dが設けられている。二酸化炭素供給管17の端部17bはシート32をも貫通し、培養槽31の底に突き出している。
 また、培養槽31の内壁部31bに近い底板部31cには、槽内に収容された培養液13と共に培養した藻類14を回収する藻類回収ライン16の端部を通過させるための藻類回収口31eが設けられている。藻類回収ライン16の端部もシート32を貫通し、培養槽31の底に露出している。
 さらに、培養槽31の底板部31cの上面側には、複数の光照射部材38を配置してその位置を規制する凹部が複数設けられている。
 培養槽31の内径R(言い換えれば、内壁部31bの内径)は、例えば、3~6mの範囲内で適宜選択することができる。
 培養槽31内に収容された培養液13の深さDは、培養槽31の内径Rの値よりも小さくなるように構成されている。培養槽31内に収容される培養液13の深さDは、例えば、0.4m以上1m以下の範囲内で適宜選択することができるが、0.4m以上0.5m以下が好ましい。
 具体的には、培養槽31の内径Rが5mの場合、培養槽31内に収容される培養液13の深さDは、例えば、0.4mとすることができる。
 ところで、培養槽31の内壁部31bの形状は、円筒形状に限らず、多角形状であってもよい。また、藻類培養装置を含むシステムの設置場所に依っては、一様でない形状の槽を採用しても、本発明の主題が損なわれることはない。
 つまり、本実施の形態の藻類培養装置11では、深さの浅い培養液13を用いて藻類14の栽培を行う。培養する藻類14としては、例えば、藻類バイオ燃料に使用可能な微細藻類(例えば、ボトリオコッカス、シュードコリシスチス、クロレラ、スピルリナ、セネデスムス、ナンノクロロプシス、フィスツリフェラ等)を用いることができる。この場合、培養液13としては、例えば、人工合成培地であるf/2培地を用いることができる。
 なお、培養槽31に替えて、培養槽31を構成する内壁部31bと、該内壁部31bが配置される台座部15の培養装置載置面15b(培養槽の底板部として機能する面(具体的には、例えば、コンクリートで構成された面))と、で構成される培養槽を用いてもよい。
 このような構成とされた培養槽を用いることで、底板部31cが不要となるため、藻類培養装置11の軽量化を図ることが可能となるので、藻類培養装置11の運搬を容易に行うことができる。
 シート32は、培養槽31の内面を覆うように培養槽31に被せられており、藻類14を含んだ培養液を培養槽31に収容することで内壁部31b及び底板部31cに密着し、培養槽31の内側の形状を転写されている。このように、シート32を介して、培養槽31内に藻類14を含んだ培養液13を収容することで、培養槽31の止水性を高めるとともに、藻類14及び培養液13によって培養槽31の内面が汚れることを抑制することができる。
 図2に示すように、シート32の下方に光照射部材38を配置する場合、シート32としては、光透過性を有するシート(例えば、透明なシート)を用いるとよい。
 このように、シート32として光透過性を有するシートを用いることで、光照射部材38が照射する光(例えば、太陽光)を、シート32に収容された培養液13中に存在する藻類14に照射することができる。
 なお、図2では、一例として、シート32と底板部31cとの間に、光照射部材38を配置させた場合を例に挙げて説明したが、光照射部材38の配設位置は、これに限定されない。光照射部材38は、培養液13に浸漬されるように、シート32上に配置してもよい。この場合、シート32を介することなく、培養液13中に存在する藻類14に光を照射することが可能となるので、シート32が光透過性を有する必要がない。よって、シート32として、様々な種類のシートを用いることができる。
 また、図2及び図3では、シート32を介して、培養槽31内に藻類14及び培養液13を収容した場合を例に挙げて図示したが、シート32を用いることなく、直接、培養槽31内に藻類14及び培養液13を収容してもよい。
 流れ発生機33は、シート32を介して培養槽31に収容された培養液13に浮かんだ状態(図2参照)で培養槽31の中央部Cに配置されている。流れ発生機33は、液面13a付近の培養液13を、培養槽31の中央部Cから内壁部31bに向けて移動させることで、液面13a付近の培養液13に、培養槽31の中央部Cから内壁部31bに向かう流れを全方向的に生じさせる。
 流れ発生機33は、1つの培養槽31に対して1つのみ配置されている。このように、1つの培養槽31に対して1つの流れ発生機33を配置することで、1つの培養槽31に対して複数の流れ発生機33を配置させた場合と比較して、少ない電力で所定の量の藻類14を培養することができる。
 流れ発生機33は、モータ41と、減速機42と、回転軸43と、複数の羽根部材45(図1に示す藻類培養装置11の場合、3つ)と、羽根部材45を支持する複数の支持部材46(図1に示す藻類培養装置11の場合、3つ)と、ロープ固定部47,48と、を有する。
 ロープ固定部47,48は、減速機42の外壁に設けられている。ロープ固定部47,48は、減速機42を介して、対向するように配置されている。ロープ固定部47は、後述する第1のロープ56(流れ発生機33の位置を規制するための一方のロープ)の一端を結ぶための部材である。ロープ固定部48は、後述する第2のロープ57(流れ発生機33の位置を規制するための他方のロープ)の一端を結ぶための部材である。
 モータ41は、減速機42を介して、回転軸43の一方の端部に接続されている。回転軸43は、流れ発生機33を培養液13に浮かべたとき、培養液13の流れが形成されていない液面13aに対して回転軸43の軸方向が直交するように設けられている。
 支持部材46の基端部46aは回転軸43の他方の端部43aに接続され、先端部46bの下面46cには羽根部材45が取り付けられている。支持部材46は、樹脂製の中空構造を有しており、その比重は培養液13に比べて非常に軽く、流れ発生機33のフロート(浮力を生じる部材)として機能する。なお、支持部材46の構造は樹脂製の中空構造に限らず、流れ発生機33に十分な浮力をもたらすものであればいかなる構造をも採用し得る。
 また、支持部材46は、隣接する他の支持部材46との成す角度が全て等しくなるように配置されている。図1に示す構造の場合、3つの支持部材46は隣接するものどうしが120度ずつ離間している。これにより、流れ発生機33は、培養液13に浮かべたとき、支持部材46の下面46cに取り付けられた羽根部材45を、培養液13の当初の液面13aよりも下の比較的浅い領域に配置しつつ、モータ41及び減速機42は液面13aよりも上に保持されるので、安定した状態で培養液13上に浮かべることができる。
 羽根部材45は、モータ41及び減速機42を培養槽31のほぼ中心に配置して流れ発生機33を培養液13に浮かべたとき、培養槽31の中心から内壁部31b寄りに離間した位置に配置される。また、羽根部材45は、支持部材46に長さ方向が一致するように、かつ羽根部材45の幅方向が培養液13の液面13aに対して直交するように取り付けられている。
 培養液13は光合成微細藻類と培養液の混合液であって、流体として相当の粘性を有する。ここで粘性とは、流体の内部に速度勾配が生じたとき、速度勾配の要因となった物体に対してその速度勾配に比例してその物体の動きを押し返そうとする力(反力)が作用する特性をいう。本実施形態では、培養液13内で回転する支持部材46及び羽根部材45(主に羽根部材45)が速度勾配の要因といえる。
 従来の藻類培養装置(特開2011-254724号公報)では、やはり速度勾配の要因といえるプロペラが、培養液の液面から離れた位置にあるので、プロペラの回転に対して反力を生じようとする培養液の粘性が、プロペラの上下を含むすべての部分に作用する。
 一方、本実施形態では、羽根部材45が培養液13の液面13aよりも下の比較的浅い領域に配置されるので、支持部材46及び羽根部材45の回転に対して反力を生じようとする培養液の粘性が、従来の藻類培養装置よりも明らかに小さい。羽根部材45の上部は液面13aに近いため、羽根部材45と液面13aとの間の培養液に生じる速度勾配が小さいためである。なお、培養液13は液面13aを介して空気と接しているが、空気の粘性は培養液13の粘性に対して非常に小さいのでここでは無視できる。
 つまり、本実施形態では、培養液の粘性に依存して生じる反力(回転する羽根部材45を押し返そうとする力)が従来の藻類培養装置よりも小さいので、羽根部材45を回転させるモータ41にかかる負荷が小さくて済む。したがって、モータ41すなわち流れ発生機33の消費電力を従来よりも抑えることができる。
 培養液13の粘性を考慮すると、培養槽31の底に近い領域の培養液13を攪拌するよりも液面13aに近い培養液に流れを生じさせるほうが、電力消費が少なくて済むことは上記の通りである。次に、モータ41及び減速機42を培養槽31のほぼ中心に配置して流れ発生機33を培養液13に浮かべた状態でモータ41を駆動して支持部材46及び羽根部材45を回転させると、液面13aに近く、かつ羽根部材45の回転方向前方に存在する培養液は、羽根部材45に押されるようにモータ41の回転軸43を中心とする円運動をする。しかしながら、培養液は液中において半径方向に自らの粘性を除いてなんらの拘束も受けないので、円運動に伴いその中心から半径方向外向きに作用する遠心力によって流れを生じる。このとき、モータ41及び減速機42は培養槽31のほぼ中心に配置されているので、結果的に、液面13a付近の培養液13には培養槽31の中央部Cから内壁部31bに向かう流れが生じることになる。
 液面13aに近い培養液13に生じた流れが内壁部31bに達すると、その流れは向きを変えて内壁部31bに沿って下方に流れ、培養槽31の底面31aに達してさらに向きを変え、今度は内壁部31bから槽の中央に向かって流れる。槽の中央に至った培養液は、流れ発生機33の駆動によって全方位的に拡散し、同じプロセスを経て槽の中央に至った培養液と共に槽の中央で液面に向けて上昇する。これにより、培養槽31の半径方向の縦半断面内を循環する培養液の流れを生じさせることができ、培養槽31内における藻類の沈降や堆積に伴う腐敗を抑制しつつ、藻類の培養を効率よく行なうことができる。
 羽根部材45としては、例えば、矩形の羽根を用いることができる。羽根部材45として矩形の羽根を用い、かつ培養槽31の内径Rが5mで、培養液13の深さDが0.4mの場合、羽根部材45の長さ(培養槽31の半径方向における羽根部材45の長さ)Wは、例えば30cmとすることができる。また、羽根部材45の幅(培養槽31の深さ方向に平行な羽根部材45の長さ)Wは、例えば25cmとすることができる。
 羽根部材45を構成する材料としては、例えば、木、プラスチック、ステンレスを用いることができる。
 支持部材46の長さは、内径Rの1/2(言い換えれば、後述する下記(5)式に示す半径r)の30%~40%の範囲内であることが好ましい。具体的には、内径Rの1/2の値が2.5mの場合、支持部材46の長さは、0.75m~1.0mの範囲内で適宜設定することができる。
 なお、使用するモータ41として出力の大きいものを用いる場合には、出力の大きさに応じて支持部材46の数を増加させてもよい。その場合、隣接する支持部材46間の角度を、支持部材46の数に応じて例えば90度、60度というように小さくして支持部材46の等間隔配置を維持するべきである。
 使用するモータ41として出力の大きいものを用いた場合、モータ41及び減速機42の重量増が懸念されるが、フロートとしての支持部材46の数を増加させることにより、モータ41及び減速機42の重量増に対して流れ発生機33の浮力が担保されるので、安定した状態を損なうことなく流れ発生機33を培養液13上に浮かべておくことができる。
 上記のように、隣接する支持部材46の成す角度が全て等しくなるように、複数の支持部材46を配置することで、複数の支持部材46に取り付けられた羽根部材45により、培養槽31の中央部Cから培養槽31の内壁部31bに向かう方向に、全方位的に拡散する放射状の流れを均一に発生させることができる。
 ここで、藻類14の沈殿や死滅を抑制するために必要な培養槽31の外周縁における培養液13の流速vについて説明する。
 藻類14を培養する培養液13の体積(以下、「培養体積」という)当たりの投入エネルギー効率φは、下記(2)式で示される。
 なお、投入エネルギー効率φは、培養体積を藻類14の培養に要した流れ発生機の出力(投入出力)で割ったパラメータであり、投入出力でどれだけ培養液13を撹拌できるかを示すパラメータである。
Figure JPOXMLDOC01-appb-M000003
 上記(2)式において、Vは上記培養体積(以下、「培養体積V」という)、Wattは、流れ発生機33の投入出力、言い換えれば、培養液13の撹拌に使用した出力(以下、「投入出力Watt」という)を示している。
 このとき、培養体積Vの単位としてL(リットル)を使用し、投入出力Wattの単位としてW(ワット)を用いる。
 上記(2)式で示される投入エネルギー効率φは、その値が大きければ大きいほどエネルギー効率が良いということになる。
 投入エネルギー効率φは、例えば、200~320(L/W)を目標値とすることが好ましいが、上記数値範囲よりも大きい値の方がより好ましい。
 また、藻類14の沈殿や死滅を抑制する観点から、藻類14の培養効率を向上させるためには、撹拌された培養液13の流速も重要となる。ここで、上記(2)式を変形すると、下記(3)式となる。
Figure JPOXMLDOC01-appb-M000004
 ここで、シート32に収容された培養液13の深さD、及び培養槽31の半径r(内径Rの1/2の値)を用いると、培養体積Vは、下記(4)式で示される。培養液13の深さD(単位はm(メートル))は、例えば、0.4~1mの範囲内で適宜選択することが可能であるが、0.4~0.5mが好ましい。
Figure JPOXMLDOC01-appb-M000005
 上記(3)式及び(4)式から、下記(5)式が成り立つ。
Figure JPOXMLDOC01-appb-M000006
 上記(5)式を培養槽31の半径rについて解くと、下記(6)式が成り立つ。
Figure JPOXMLDOC01-appb-M000007
 培養槽31の外周縁における培養液13の流速vは、下記(7)式で示すことができる。なお、下記(7)式に示すtは、培養液13が培養槽31の外周縁を1周するのに要する時間(以下、「時間t」という)を示している。時間tは、実際に測定した値であり、その単位としては、minを用いる。
Figure JPOXMLDOC01-appb-M000008
 上記(7)式の培養槽31の半径rを、上記(6)式で示される培養槽31の半径rに置き換えると、下記(8)式が成立する。
Figure JPOXMLDOC01-appb-M000009
 投入エネルギー効率φの目標値を設定し、上述した範囲内で培養液13の深さDを設定し、時間tを測定により取得することで、上記(8)式により、培養槽31の外周縁における培養液13の流速vを求めることができる。
 従来のオープンポンドタイプの藻類培養装置を用いる場合、培養液の流速が12m/min以上にすると藻類の沈殿や死滅を抑制することが可能となる。
 よって、培養槽31の外周縁における培養液13の流速vは、12m/min以上が好ましい。
 上記のように、本実施形態の藻類培養装置11は、内壁部が円筒形状とされ、シート32を介して藻類14及び藻類14を培養する培養液13が収容される培養槽31と、培養液13に浮かんだ状態で培養槽31の中央部Cに配置された流れ発生機33とを有する。流れ発生機33は、培養槽31内の液面及びその近傍の培養液13を、培養槽31の中央部Cから培養槽31の内壁部31bに向かって移動させることで、培養液13の液面及びその近傍に、培養槽31の中央部Cから培養槽31の内壁部31bに向かう培養液13の流れを生じさせる。培養槽31の内壁部31bに培養液13の液面13a及びその近傍に形成された流れが到達すると、培養液13の内壁部31bに沿って培養槽31の外周部の底面31aに向かう方向に培養液13の流れが発生する。次いで、培養槽31の底面31aに沿って培養槽31の外周部から中央部Cに向かう方向に培養液13の流れが発生し、その後、培養槽31の中央部Cの底面31aから上方に配置された流れ発生機33に向かう方向に培養液13の流れが発生する。
 流れ発生機33は、培養槽31の液面及びその近傍に、培養槽31の中央部Cから内壁部31bに向かう培養液13の流れを発生させるが、羽根部材45が培養液13の液面13aよりも下の比較的浅い領域に配置されるので、支持部材46及び羽根部材45の回転に対して反力を生じようとする培養液の粘性が、培養液の深い部分を攪拌する従来の藻類培養装置よりも明らかに小さい。そのため、羽根部材45を回転させるモータ41にかかる負荷が小さくて済む。したがって、モータ41すなわち流れ発生機33の消費電力を従来よりも抑えることができる。
 つまり、藻類14の沈降や堆積に伴う腐敗を抑制した上で、従来の培養装置よりも少ない電力で所定の量の藻類を培養することができる。
 上記効果により、羽根部材45を回転させる際に使用するモータ41としては、最大出力が25Wのモータ(言い換えれば、消費電力の少ないモータ)を用いることができる。
 流れ発生機位置規制部材34は、第1の支柱51と、第2の支柱52と、第1のロープ固定部54と、第2のロープ固定部55と、第1のロープ56と、第2のロープ57と、を有する。
 第1及び第2の支柱51,52は、培養槽31を挟んで対向するように、台座部15の上面側に設けられている。第1及び第2の支柱51,52は、台座部15の上面15aからその上方に突出している。
 第1のロープ固定部54は、第1の支柱51の外壁のうち、第2の支柱52と対向する部分に設けられている。第2のロープ固定部55は、第2の支柱52の外壁のうち、第1の支柱51と対向する部分に設けられている。
 第1のロープ56は、その一端がロープ固定部47に結ばれており、他端が第1のロープ固定部54に結ばれている。第2のロープ57は、その一端がロープ固定部48に結ばれており、他端が第2のロープ固定部55に結ばれている。
 このように、流れ発生機33の位置を規制する流れ発生機位置規制部材34を有することで、培養槽31に収容された培養液13に浮かんだ状態の流れ発生機33を動作させた場合でも、常に流れ発生機33を培養槽31の中央部Cに配置することが可能となるので、培養槽31に収容された培養液13に形成される循環流Eの場所によるばらつきを小さくすることができる。
 光照射部材38は、藻類14の培養が進み、液面13a側から培養槽31の底面31a上に配置されたシート32まで太陽光が到達しなくなった際、光合成に必要な太陽光を培養中の藻類14に照射するための部材である。
 光照射部材38としては、例えば、太陽光を照射する光ファイバ(図示せず)と、内部に光ファイバ(図示せず)を収容可能な光ファイバ収容部(図示せず)を有する光透過性のチューブと、を有した部材を用いることができる。
 このような構成の場合、光ファイバは、光ファイバ収容部(図示せず)を介して、シート32に収容された藻類14に太陽光を照射する。よって、光ファイバ収容部(図示せず)としては、光を透過可能な材料で構成されたものを用いるとよい。
 このような光ファイバ収容部(図示せず)の材料としては、例えば、光透過性樹脂(例えば、アクリル樹脂、ポリカーボネート樹脂等)、ガラス等を用いることができる。
 上記構成とされた光照射部材38は、例えば、図1に示すようなレイアウトで配置することができる。
 なお、図1に示す光照射部材38のレイアウトは、一例であり、これに限定されない。
また、光照射部材38は、光合成に必要な光を培養中の藻類14に照射することが可能な部材を含んでおればよく、光ファイバを構成要素に含むものに限定されない。また、本実施形態では、外部光源としての太陽光を光ファイバを通じて藻類14に照射しているが、太陽光に限らず人工的な光源、例えば蛍光灯、LED等の光を利用して藻類の光合成を促すこともできる。蛍光灯、LED等の人工的な光源を光照射部材38として使用する場合は、それらを培養槽31の底板部31cの上面側に配置し、その光を光ファイバを介することなく藻類14に直接照射してもよい。
 さらに、図1では、藻類培養システム10の一例について、4つの藻類培養装置11を有する場合を例に挙げて説明したが、藻類培養システム10を構成する藻類培養装置11の数は、複数であればよく、これに限定されない。また、藻類培養システム10を構成する藻類培養装置11の数は、例えば、培養槽31の内径Rに応じて適宜選択することができる。
 台座部15は、複数の藻類培養装置11、藻類回収ライン16、パネル支持部材18、太陽電池パネル21、蓄電部23、太陽光集光部24、及び二酸化炭素供給源26が配置される部材である。台座部15は、地盤62の上に配置されている。
 台座部15の上面15aは、平坦な面とされている。台座部15の上面15aは、藻類培養装置11が載置される複数の培養装置載置面15bを含む。培養装置載置面15bは、円形とされた面である。図1の場合、縦方向及び横方向に対してそれぞれ2つの培養装置載置面15bが隣り合うように配置されている。
 上記構成とされた台座部15の材料としては、例えば、コンクリートを用いることができる。また、台座部15には、藻類回収ライン16の一部が内設させることから、台座部15の厚さ(高さ)は、例えば、0.2~0.5mとすることができる。
 藻類回収ライン16は、培養槽31の底板部31cを介して、複数の培養槽31のシート32内で培養された藻類14を培養液13と共に抜き出して、培養した藻類14を回収するためのラインである。
 藻類回収ライン16は、その一部が台座部15に内設されており、残りの部分が台座部15の外部(地盤62の上に配置された部分も含む)に配置されている。藻類回収ライン16のうち、台座部15に内設された部分(藻類回収ライン16の一方の端部16aを含む)は、地盤62の上に配置された部分(藻類回収ライン16の他方の端部16bを含む)よりも高い位置に配置されている。
 藻類回収ライン16の一方の端部16a(台座部15内に配置された端部)は、藻類回収口31eに挿入されている。藻類回収ライン16の一方の端部16aは、底板部31cよりも上方に突出しており、シート32の中央部を貫通している。
 これにより、藻類回収ライン16は、複数のシート32に収容された培養液13及び藻類14を回収可能な構成とされている。
 上記構成とされた藻類回収ライン16は、藻類回収ライン16の一方の端部16aと該一方の端部16aよりも低い位置に配置される藻類回収ライン16の他方の端部16bとの間の高低差を利用して藻類14を回数可能な構成とされている。これにより、培養した藻類14を回収するための電力が不要となるため、電力を節約することができる。
 二酸化炭素供給管17は、その一方の端部17aが台座部15の上面15aから突出しており、それ以外の部分が台座部15に内設されている。二酸化炭素供給管17の一方の端部17aには、二酸化炭素供給ライン66を介して、二酸化炭素供給源26に接続された部材である接続部材65が装着されている。
 二酸化炭素供給管17の他方の端部17b(台座部15に内設された端部)は、貫通部31dに挿入されている。二酸化炭素供給管17の他方の端部17bの先端に配置された二酸化炭素供給口17cは、底板部31cよりも上方に突出しており、シート32の一部を貫通している。
 これにより、二酸化炭素供給管17は、二酸化炭素供給口17cを介して、二酸化炭素供給源26内に充填された二酸化炭素を培養液13内に存在する藻類14に供給する。
 パネル支持部材18は、支持柱18aと、パネル支持体18bと、を有する。支持柱18aは、その一方の端部が台座部15に固定されており、台座部15の上面15aの上方に突出している。支持柱18aの他方の端部は、パネル支持体18bに接続されている。これにより、支持柱18aは、パネル支持体18bを支持している。
 パネル支持体18bは、複数の太陽電池パネル21(図1の場合、4枚の太陽電池パネル21)が貼り付けられる支持体である。パネル支持体18bは、パネル固定面(図示せず)を有する。
 なお、上記パネル支持部材18を構成するパネル支持体18bの向きや台座部15の上面15aに対する傾斜角度を調節するための駆動機構(図示せず)を有してもよい。このような、駆動機構(図示せず)を有することで、太陽電池パネル21に対して太陽光を効率良く照射させることが可能となるので、効率良く電力を得ることができる。
 太陽電池パネル21は、パネル支持体18bのパネル固定面(図示せず)に複数枚固定されている。複数の太陽電池パネル21(図1の場合、4枚の太陽電池パネル)は、蓄電部23と電気的に接続されている。
 最大出力が25Wのモータ41を含む流れ発生機33を4台有する藻類培養システム10(図1に示す構成とされた藻類培養システム10)を用いて、藻類14の培養を行う場合、太陽電池パネル21としては、例えば、220Wのパネルを4枚用いることができる。これにより、昼間にモータ41が使用する電力以上の電力を得ることが可能となる。
 蓄電部23は、台座部15上に配置されている。蓄電部23は、複数の太陽電池パネル21により変換された電力を蓄電する。蓄電部23は、複数の流れ発生機33に電力を供給可能な状態で、複数の流れ発生機33と電気的に接続されている。
 このように、複数の太陽電池パネル21により変換された電力のうち、昼間に使用しない電力を蓄電する蓄電部23を有することで、別途電力を準備することなく、蓄電部23に蓄えられた電力を用いて、夜間に藻類培養システム10を運転することができる。
 なお、蓄電部23としては、例えば、車両であるトラックで使用するバッテリーを複数個組み合わせたものを用いることができる。
 太陽光集光部24は、複数の藻類培養装置11で囲まれた台座部15上に設けられている。太陽光集光部24は、光照射部材38(具体的には、本実施の形態の場合、複数の光ファイバ、及び複数の光ファイバを収容する光ファイバ収容部よりなる構造体)に接続された複数の太陽光輸送ライン68に接続されている。
 太陽光集光部24は、太陽光輸送ライン68を介して、複数の藻類培養装置11を構成する光照射部材38に集光した太陽光を供給する。
 二酸化炭素供給源26は、台座部15上に二酸化炭素供給源固定部材(図示せず)により固定されている。二酸化炭素供給源26は、二酸化炭素供給ライン66、及び二酸化炭素供給管17(二酸化炭素供給口17cを含む)を介して、藻類14に光合成に必要な二酸化炭素を供給する。
 二酸化炭素供給源26としては、例えば、二酸化炭素が充填された高圧ガスボンベを用いることができる。
 本実施形態の藻類培養システムは、複数の藻類培養装置11と、藻類培養装置11が載置される平坦な培養装置載置面15bを複数有する台座部15と、台座部15上に配置され、複数の藻類培養装置11と電気的に接続された蓄電部23と、蓄電部23と電気的に接続された太陽電池パネル21とを有する。本実施形態の藻類培養システムによれば、従来よりも少ない電力で藻類14を培養する際に複数の藻類培養装置11で必要となる電力(複数の流れ発生機33を駆動させるために必要な電力)を太陽電池パネル21によって発電された電力でまかなうことが可能となるので、電力会社から購入した電力で稼働させる従来の藻類培養システムよりも少ないコストで所定の量の藻類を培養させることができる。
 また、藻類培養システム10単体で、藻類培養システム10に必要な電力をまかなうことが可能となることで、電力の供給が難しいような場所であっても日照条件がよい場所であれば、藻類培養システム10を設置して、藻類14を培養することができる。
 なお、複数の藻類培養装置11を有する藻類培養システム10は、先に説明した藻類培養装置11と同様な効果を得ることができる。
 以上、本発明の好ましい実施形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、本実施の形態の藻類培養システム10では、4つの培養槽31を有する場合を例に挙げて説明したが、培養槽31の数は、これに限定されない。また、後述する図4に示す藻類回収ライン71を用いてもよい。さらに、太陽電池パネル21を培養槽31の上方に設置してもよい。
 図4は、藻類回収ラインの他の例を説明するための断面図である。図4において、図3に示す構造体と同一構成部分には、同一符号を付す。
 図4に示す構造体は、図3に示す構造体の構成要素である藻類回収ライン16に替えて、藻類回収ライン71を有すること以外は、図3に示す構造体と同様に構成される。
 図3では、藻類回収ライン16のうち、台座部15の外周部に延在する部分の中心軸と、台座部15の上面15aと、が平行となるように、台座部15に藻類回収ライン16を内設させた場合を例に挙げて説明したが、例えば、図4に示すように、藻類回収ライン71のうち、台座部15の外周部に延在する部分の中心軸と、台座部15の上面15aと、が交差するように、台座部15に藻類回収ライン71を内設させてもよい。
 このような構成とされた藻類回収ライン71を有することで、図3に示す藻類回収ライン16を有する場合と比較して、複数の培養槽31内で培養された藻類14及び培養液13を容易に回収することができる。
 本発明の藻類培養装置の変形例を図5に示す。この藻類培養装置110では、培養槽31が、地盤62を地表GLよりも掘り下げて形成された凹所62aに設けられている。このように培養槽31を地表GLよりも低い位置に設けることで、台座部などの資材を省略することができる。また、培養槽31の内壁部31bを凹所62aの垂直な土壁が支持するので、内壁部31bに自立可能な十分な強度を与えなくても培養槽31の形状を維持することができる。そのため、藻類の培養に適するも消費地から遠く離れた遠隔地において藻類培養を実施するにあたり、なるべく少ない資材で藻類培養システムの構築が可能である。
 実施例では、図1に示す藻類培養システム10を用いて、藻類14の培養を実施した。
培養槽31の内径Rは、5mとした。シートとしては、透明ポリ塩化ビニル製の厚さ3mmのシートを用いた。
 培養液13である成分を改良したf/2培地を培養槽31内に供給し、培養槽31内における培養液13の深さDが0.4mとなるようにした。また、培養中の培養液13の温度は、15~35℃の範囲内とした。
 この培養液13に、藻類14として高オイル産生海洋珪藻Fistulifera sp. JPCC DA0580株を培地量に対して2%~5%程度量植菌した。
 3つの支持部材46の長さは、それぞれ1mとした。また、羽根部材45としては、横の幅Wが30cm、縦の幅Wが25cm、厚さが2mmのステンレス製の羽根部材45を用いた。
 各流れ発生機33を構成するモータ41としては、最大出力が25Wの交流モータを用いた。また、支持部材46の回転速度は、6rpm(1分間に6回転)とした。
 その後、太陽電池パネル21から得られる電力により、各培養槽31内に配置された流れ発生機33を回転駆動させることで、藻類14の培養を開始した。
 藻類14の培養期間は、10日間(具体的には、24時間×10=240時間)とした。また、4枚の太陽電池パネル21から得られた電力を蓄電部23に蓄電し、これを使用することで、10日間の藻類14の培養を行った。
 培養が進むにつれて、藻類14の濃度の上昇により、シート32の底付近に位置する培養液13に光合成に必要な光が届かなくなった。
 そこで、培養開始から7日目に、太陽光集光部24により集光した太陽光を培養槽31の底から照射した。
 これにより、光不足を補い、藻類14の生産性及びオイルの生産性の向上を図ることができた。
 しかし、藻類14の培養が進むにつれて、培養液13のpHが上昇した。そこで、pHが9.0に到達した段階で、培養液13に、二酸化炭素を供給した。
 これにより、培養液13に二酸化炭素を炭酸として溶解させて、培養液13のpHを8.2まで低下させた。
 なお、培養液13に供給した二酸化炭素は、藻類14の光合成に必要なC源(言い換えれば、炭素)としても利用した。
 上記実施例で使用した電力の合計(言い換えれば、4つの藻類培養装置11が使用した電力の合計)は、10kWhであった。また、10日間で得られた藻類14の重量は、2kgであった。
 このことから、1kg(所定の量)当たりの藻類を培養するために要した電力は、5kWhであることが分かった。
 本発明は、藻類の沈降や堆積に伴う腐敗を抑制した上で、藻類を培養可能な藻類培養装置、及び藻類培養システムに適用可能である。
 10…藻類培養システム、
11…藻類培養装置、
13…培養液、
13a…液面、
14…藻類、
15…台座部、
15a…上面、
15b…培養装置載置面、
16…藻類回収ライン、
17…二酸化炭素供給管、
18…パネル支持部材、
21…太陽電池パネル、
23…蓄電部、
24…太陽光集光部、
26…二酸化炭素供給源、
31…培養槽、
31a…底面、
32…シート、
33…流れ発生機、
34…流れ発生機位置規制部材、
38…光照射部材、
41…モータ、
42…減速機、
43…回転軸、
45…羽根部材、
45a…上端面、
46…支持部材、
47,48…ロープ固定部、
51…第1の支柱、
52…第2の支柱、
54…第1のロープ固定部、
55…第2のロープ固定部、
56…第1のロープ、
57…第2のロープ、
62…地盤、
65…接続部材、
66…二酸化炭素供給ライン、
68…太陽光輸送ライン、
71…藻類回収ライン、
110…藻類培養システム、
C…中央部、
D…深さ、
E…循環流、
N,W,W…幅、
M…中心線、
R…内径、
GL…地表

Claims (24)

  1.  藻類及び該藻類を培養する培養液を収容する培養槽と、
     前記培養槽に設けられ、該培養槽内の液面及びその近傍の前記培養液を、前記培養槽の中央から該培養槽の内壁部に向かって移動させることで、前記培養液の液面及びその近傍に、前記培養槽の中央から該培養槽の内壁部に向かう前記培養液の流れを生じさせる流れ発生機と
    を備えることを特徴とする藻類培養装置。
  2.  前記流れ発生機は、モータと、
     一方の端部が前記モータに接続された回転軸と、
     基端部が前記回転軸の他方の端部に接続されて前記回転軸を中心に放射状に配置された複数の支持部材と、
     前記支持部材の先端部に取り付けられた複数の羽根部材とを備え、
     前記培養槽に収容された前記培養液の液面に対して前記回転軸を直交するように配置された状態では、前記複数の羽根部材が前記回転軸よりも前記培養槽の前記内壁部寄りに配置されるとともに前記支持部材から垂下することで前記培養液に接することを特徴とする請求項1に記載の藻類培養装置。
  3.  前記支持部材は前記培養液よりも比重が軽く、前記培養液に対し前記流れ発生機の浮力を確保するための浮力材であることを特徴とする請求項2に記載の藻類培養装置。
  4.  前記複数の支持部材は、隣接する該支持部材同士が成す角度が全て等しくなるように配置されていることを特徴とする請求項2又は3に記載の藻類培養装置。
  5.  前記培養槽は、平面視すると前記内壁部が円筒形状であり、前記流れ発生機は前記培養槽の中央部に配置されることを特徴とする請求項1から4の何れか一項に記載の藻類培養装置。
  6.  前記流れ発生機は、前記培養槽の中央から前記内壁部に向かう前記培養液の流れを、前記培養液に対して前記培養槽の中央から全方向に生じさせることを特徴とする請求項1から5の何れか一項に記載の藻類培養装置。
  7.  前記流れ発生機が前記培養液に浮かんだ状態で、前記培養槽の中央部に前記流れ発生機の位置を規制する流れ発生機位置規制部材を備えることを特徴とする請求項2から6の何れか一項に記載の藻類培養装置。
  8.  前記培養槽に収容された前記培養液中に存在する前記藻類に光を照射する光照射部材を備えることを特徴とする請求項1から7の何れか一項に記載の藻類培養装置。
  9.  前記光照射部材は前記培養槽の底面に配置された光ファイバを含み、外部光源の光を、前記光ファイバを通じて前記培養槽の底面に導いて前記藻類に照射することを特徴とする請求項8に記載の藻類培養装置。
  10.  前記光照射部材は前記培養槽の底面に配置され、前記藻類に自ら発する光を照射することを特徴とする請求項8に記載の藻類培養装置。
  11.  前記培養槽は、地盤を地表よりも掘り下げて形成されていることを特徴とする請求項1から10の何れか一項に記載の藻類培養装置。
  12.  前記培養槽に被せられ、該培養槽の内壁部及び底部を覆うシートを備え、
     前記培養液は前記シートを介して前記培養槽に収容されていることを特徴とする請求項1から11の何れか一項に記載の藻類培養装置。
  13.  前記培養槽に、該培養槽内に収容された前記培養液に二酸化炭素を供給するための二酸化炭素供給口が設けられていることを特徴とする請求項1から12の何れか一項に記載の藻類培養装置。
  14.  前記二酸化炭素供給口は、前記培養槽の底面の中央に配置されていることを特徴とする請求項13に記載の藻類培養装置。
  15.  前記培養槽に、前記培養液中で培養した前記藻類を前記培養液とともに回収するための藻類回収口が設けられていることを特徴とする請求項1から14の何れか一項に記載の藻類培養装置。
  16.  前記藻類回収口は、前記培養槽の底面に配置されていることを特徴とする請求項15に記載の藻類培養装置。
  17.  下記(1)式で示される前記培養槽の外周縁での前記培養液の流速vが12m/min以上であることを特徴とする請求項1から16の何れか一項に記載の藻類培養装置。
    Figure JPOXMLDOC01-appb-M000001
     但し、上記(1)式において、φは前記培養液の体積を前記藻類の培養に要した前記流れ発生機の出力で割ったパラメータ、Wattは前記藻類の培養に要した前記流れ発生機の出力、Dは前記培養槽に収容された前記培養液の深さであり、かつ0.4~1mの範囲内の数値、tは前記培養液が前記培養槽の外周縁を1周するのに要する時間をそれぞれ示す。
  18.  前記流れ発生機は、1つの前記培養槽に対して1つ設けられることを特徴とする請求項1から17の何れか一項に記載の藻類培養装置。
  19.  請求項1から18の何れか一項記載の複数の前記藻類培養装置と、
     複数の前記藻類培養装置と電気的に接続された蓄電部と、
     前記蓄電部と電気的に接続された太陽電池パネルと
     を備え、前記太陽電池パネルで発電した電気を前記蓄電部に供給し、複数の前記流れ発生機を駆動することを特徴とする藻類培養システム。
  20.  前記培養槽内に収容された前記培養液に、前記培養槽に設けられた二酸化炭素供給口を通じて二酸化炭素を供給する二酸化炭素供給源を備えることを特徴とする請求項19記載の藻類培養システム。
  21.  太陽光を集光し、該集光した太陽光を藻類培養装置に設けられた光照射部材に供給する太陽光集光部を備えることを特徴とする請求項19又は20記載の藻類培養システム。
  22.  一方の端部が前記培養槽に設けられた藻類回収口に接続され、前記培養液中で培養した前記藻類を前記培養液とともに回収する藻類回収ラインを備え、
     前記藻類回収ラインの他方の端部は、前記一方の端部よりも低い位置に配置され、前記藻類回収ラインの双方の端部の高低差を利用して前記藻類を前記培養槽から回収することを特徴とする請求項18から21の何れか一項に記載の藻類培養システム。
  23.  前記藻類回収ラインの少なくとも一部が、前記一方の端部から前記他方の端部に向けて傾斜していることを特徴とする請求項22記載の藻類培養システム。
  24.  前記太陽電池パネルが、前記培養槽の上方に設置されていることを特徴とする請求項18から23の何れか一項に記載の藻類培養システム。
PCT/JP2014/082512 2013-12-09 2014-12-09 藻類培養装置、及び藻類培養システム WO2015087858A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2014362516A AU2014362516B2 (en) 2013-12-09 2014-12-09 Algae culturing apparatus and algae culturing system
JP2015552449A JP6571529B2 (ja) 2013-12-09 2014-12-09 藻類培養システム
ES14870351T ES2849553T3 (es) 2013-12-09 2014-12-09 Aparatos de cultivo de algas y sistema de cultivo de algas
EP14870351.5A EP3081628B1 (en) 2013-12-09 2014-12-09 Algae culturing apparatus and algae culturing system
US15/100,285 US20160369216A1 (en) 2013-12-09 2014-12-09 Algae culturing apparatus and algae culturing system
MYPI2016701827A MY182774A (en) 2013-12-09 2014-12-09 Algae culturing apparatus and algae culturing system
CN201480066836.XA CN105814186A (zh) 2013-12-09 2014-12-09 藻类培养装置及藻类培养系统
PH12016501038A PH12016501038B1 (en) 2013-12-09 2016-06-01 Algae culturing apparatus and algae culturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013254530 2013-12-09
JP2013-254530 2013-12-09

Publications (2)

Publication Number Publication Date
WO2015087858A1 true WO2015087858A1 (ja) 2015-06-18
WO2015087858A9 WO2015087858A9 (ja) 2015-08-06

Family

ID=53371161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082512 WO2015087858A1 (ja) 2013-12-09 2014-12-09 藻類培養装置、及び藻類培養システム

Country Status (11)

Country Link
US (1) US20160369216A1 (ja)
EP (1) EP3081628B1 (ja)
JP (1) JP6571529B2 (ja)
CN (1) CN105814186A (ja)
AU (1) AU2014362516B2 (ja)
CL (1) CL2016001284A1 (ja)
ES (1) ES2849553T3 (ja)
MY (1) MY182774A (ja)
PH (1) PH12016501038B1 (ja)
PT (1) PT3081628T (ja)
WO (1) WO2015087858A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108841575A (zh) * 2018-08-29 2018-11-20 佛山市金净创环保技术有限公司 一种管道养藻内的光照补充装置
JP2020048414A (ja) * 2018-09-21 2020-04-02 合同会社シーベジタブル 海藻類の陸上養殖方法及び陸上養殖装置
JP2021010369A (ja) * 2020-09-12 2021-02-04 合同会社シーベジタブル 海藻類の陸上養殖装置及び陸上養殖方法
WO2024190607A1 (ja) * 2023-03-14 2024-09-19 株式会社ちとせ研究所 培養装置および培養システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7313832B2 (ja) * 2019-02-04 2023-07-25 浜松ホトニクス株式会社 ハプト藻の培養方法、及びハプト藻の培養装置
US11028355B2 (en) 2019-05-22 2021-06-08 SolarClean Fuels, LLC Methods and systems for efficient bioreactor mixing and light utilization embodying low process energy and scalability

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111376A (ja) * 1991-10-24 1993-05-07 Marubishi Baioenji:Kk 光合成培養装置
JPH07176A (ja) * 1993-06-18 1995-01-06 Ebara Corp 光合成微生物培養装置
JPH07250668A (ja) * 1994-03-14 1995-10-03 Towa Denki Kk 菌藻類培養装置
JPH1066561A (ja) * 1996-07-26 1998-03-10 Ryohei Rin 培養プール
JP2004057967A (ja) * 2002-07-30 2004-02-26 Nishihara Environment Technology Inc 浄水機
JP2006035021A (ja) * 2004-07-23 2006-02-09 Komatsu Denki Sangyo Kk 浮遊型浄水機
JP2011254724A (ja) 2010-06-07 2011-12-22 Sumitomo Heavy Ind Ltd 光合成微細藻類培養装置
JP2012175964A (ja) * 2011-02-01 2012-09-13 Ihi Corp 微細藻類培養装置及び方法
JP2013085534A (ja) * 2011-10-20 2013-05-13 Eco Renaissance Entec:Kk 微細藻類の培養方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009276284A1 (en) * 2008-07-29 2010-02-04 Bioseq Pty Ltd Covered pond-type photobioreactor for large-scale, intensive cultivation of microalgae
US20100144019A1 (en) * 2008-12-05 2010-06-10 Chao-Hung Hsu Photobioreactor
IT1403095B1 (it) * 2010-12-09 2013-10-04 Zaglio Dispositivo agitatore di fluidi per favorire lo sviluppo di alghe o microalghe in vasche o fotobioreattori
WO2013063075A2 (en) * 2011-10-24 2013-05-02 Heliae Development Llc Systems and methods for growing photosynthetic organisms

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111376A (ja) * 1991-10-24 1993-05-07 Marubishi Baioenji:Kk 光合成培養装置
JPH07176A (ja) * 1993-06-18 1995-01-06 Ebara Corp 光合成微生物培養装置
JPH07250668A (ja) * 1994-03-14 1995-10-03 Towa Denki Kk 菌藻類培養装置
JPH1066561A (ja) * 1996-07-26 1998-03-10 Ryohei Rin 培養プール
JP2004057967A (ja) * 2002-07-30 2004-02-26 Nishihara Environment Technology Inc 浄水機
JP2006035021A (ja) * 2004-07-23 2006-02-09 Komatsu Denki Sangyo Kk 浮遊型浄水機
JP2011254724A (ja) 2010-06-07 2011-12-22 Sumitomo Heavy Ind Ltd 光合成微細藻類培養装置
JP2012175964A (ja) * 2011-02-01 2012-09-13 Ihi Corp 微細藻類培養装置及び方法
JP2013085534A (ja) * 2011-10-20 2013-05-13 Eco Renaissance Entec:Kk 微細藻類の培養方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3081628A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108841575A (zh) * 2018-08-29 2018-11-20 佛山市金净创环保技术有限公司 一种管道养藻内的光照补充装置
JP2020048414A (ja) * 2018-09-21 2020-04-02 合同会社シーベジタブル 海藻類の陸上養殖方法及び陸上養殖装置
JP2021010369A (ja) * 2020-09-12 2021-02-04 合同会社シーベジタブル 海藻類の陸上養殖装置及び陸上養殖方法
WO2024190607A1 (ja) * 2023-03-14 2024-09-19 株式会社ちとせ研究所 培養装置および培養システム

Also Published As

Publication number Publication date
US20160369216A1 (en) 2016-12-22
EP3081628A1 (en) 2016-10-19
AU2014362516B2 (en) 2017-02-16
AU2014362516A1 (en) 2016-06-02
PH12016501038A1 (en) 2016-07-04
EP3081628A4 (en) 2017-08-09
PT3081628T (pt) 2021-02-25
WO2015087858A9 (ja) 2015-08-06
ES2849553T3 (es) 2021-08-19
CN105814186A (zh) 2016-07-27
JP6571529B2 (ja) 2019-09-04
CL2016001284A1 (es) 2017-02-24
MY182774A (en) 2021-02-05
PH12016501038B1 (en) 2016-07-04
JPWO2015087858A1 (ja) 2017-03-16
EP3081628B1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP6571529B2 (ja) 藻類培養システム
Assunção et al. Enclosed “non-conventional” photobioreactors for microalga production: A review
Płaczek et al. Technical evaluation of photobioreactors for microalgae cultivation
KR101168372B1 (ko) 자가 발전이 가능한 부유식 수질정화장치
Zhu et al. Progress on the development of floating photobioreactor for microalgae cultivation and its application potential
EP2667963B1 (en) A fluid agitator device for facilitating development of algae or micro-algae in trays or photobioreactors
KR101043583B1 (ko) 미세조류 고농도 배양을 위하여 내부광원이 일체로 설치된 분산판을 가지는 광생물반응기
JP2011254724A (ja) 光合成微細藻類培養装置
WO2012087741A2 (en) Algae bioreactor, system and process
CN109790501B (zh) 用于使藻溶液暴露于光的装置、相关的光生物反应器和实施方法
KR101087616B1 (ko) 복합발전장치를 구비한 해양 미세조류 대량배양을 위한 광생물 반응기
WO2011065445A1 (ja) 微細藻類培養装置
WO2016000192A1 (zh) 一种内置光源生物反应器及微藻养殖方法
ES2383263T3 (es) Foto-biorreactor y edificio que tiene un foto-biorreactor montado en una pared del mismo
KR101237039B1 (ko) 식물 플랑크톤 배양장치
US20160130547A1 (en) An apparatus for culturing photosynthetic organisms
WO2012072837A1 (es) Fotobiorreactor para el cultivo de organismos fotótrofos
CN204874503U (zh) 一种微藻中试培养罐
KR101415553B1 (ko) 미세 조류 배양 장치
CN213388603U (zh) 一种微藻养殖系统
KR20160045393A (ko) 미세조류 배양을 위한 해양 부유식 폐쇄 튜브형 광생물반응기
CN204125447U (zh) 一种微藻自养和异养相结合的培养装置
KR102709887B1 (ko) 하·폐수를 처리하기 위한 개방형 반응기에서 배양액의 순환과 미세조류를 수확할 수 있는 개량 수차
KR101450090B1 (ko) 광 조사 장치, 광생물 배양 장치 및 배양 방법
JP3565468B2 (ja) 光合成培養装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552449

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15100285

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12016501038

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2014362516

Country of ref document: AU

Date of ref document: 20141209

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014870351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014870351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201603821

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE