WO2015087826A1 - Lighting device and control method - Google Patents

Lighting device and control method Download PDF

Info

Publication number
WO2015087826A1
WO2015087826A1 PCT/JP2014/082392 JP2014082392W WO2015087826A1 WO 2015087826 A1 WO2015087826 A1 WO 2015087826A1 JP 2014082392 W JP2014082392 W JP 2014082392W WO 2015087826 A1 WO2015087826 A1 WO 2015087826A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emission control
constant current
current source
light emission
Prior art date
Application number
PCT/JP2014/082392
Other languages
French (fr)
Japanese (ja)
Inventor
正利 米山
伸哉 三木
淳弥 若原
木村 直樹
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015531363A priority Critical patent/JP5812233B1/en
Publication of WO2015087826A1 publication Critical patent/WO2015087826A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators

Definitions

  • the present disclosure relates to a lighting device, and more particularly, to a lighting device including a plurality of surface emitting modules.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-64761 (Patent Document 1) generates a control signal for driving each of a plurality of LEDs included in each of a plurality of LED chips, and a logic unit
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-64761 (Patent Document 1) generates a control signal for driving each of a plurality of LEDs included in each of a plurality of LED chips, and a logic unit
  • a lighting driving device is disclosed that includes a buffer unit that lights and drives a plurality of LEDs based on a control signal.
  • an OLED or an LED When applying an OLED or an LED as a lighting device, it is typically necessary to arrange a required number of surface emitting modules including a plurality of light emitting elements.
  • One of the problems in application to such a lighting device is a power source. In other words, if a configuration in which a power source is arranged in each of a large number of surface emitting modules, it becomes difficult to secure a space for those power sources, while a large number of surface emitting modules are driven simultaneously by a single power source. If such a configuration is adopted, a power supply having a very large capacity is required.
  • the lighting drive device disclosed in Japanese Patent Application Laid-Open No. 2012-64761 is only supposed to light a large number of LEDs as a print head of an image forming apparatus, and basically has a power line. Only a configuration in which only one LED is connected to the ground line is assumed. Therefore, the problem of the power supply in the case of applying OLED or LED to the illuminating device which consists of many surface emitting modules as mentioned above is not solved at all.
  • This disclosure has been made to solve the above-described problems, and an object in one aspect is to provide a required power capacity even when a lighting device including a large number of surface emitting modules is configured. It is possible to achieve a configuration that can reduce the location and the size of the arrangement.
  • the lighting device includes a constant current source and a plurality of surface emitting modules connected in parallel to a power supply path connected to the constant current source. Each of the plurality of surface emitting modules is disposed adjacent to at least one of the other surface emitting modules.
  • the illumination device includes a generation unit that generates a synchronization signal for sequentially selecting one of the plurality of surface emitting modules.
  • Each of the plurality of surface emitting modules has a plurality of light emitting units connected in parallel between the constant current source and the reference potential, and a path between the constant current source and the reference potential of the plurality of light emitting units individually.
  • a light-emission control unit that drives the switch unit to sequentially conduct one of a plurality of paths between the constant current source and the reference potential.
  • the light emission control unit included in each of the plurality of surface light emitting modules starts driving the corresponding switch unit in response to the selection of the own module by the synchronization signal.
  • the light emission control unit included in each of the plurality of surface light emitting modules drives the switch unit so that the times for conducting the respective paths between the constant current source and the reference potential are the same.
  • the plurality of light emitting units included in each of the plurality of surface light emitting modules are arranged in a matrix.
  • the switch unit included in each of the plurality of surface emitting modules includes a first group of switch elements each including a plurality of switch elements associated with each column of the plurality of light emitting units arranged in a matrix, and in a matrix And a second group of switch elements including a plurality of switch elements associated with each row of the plurality of light emitting units arranged.
  • Each of the first group of switch elements is configured such that one end of a plurality of light emitting units arranged in a corresponding row can be connected to a constant current source in a lump.
  • Each of the second group of switch elements is configured such that the other ends of the plurality of light emitting units arranged in the corresponding row can be collectively connected to the reference potential.
  • the light emission control unit included in each of the plurality of surface emitting modules is a combination that is sequentially selected from among a plurality of combinations including one of the first group of switch elements and one of the second group of switch elements. Two corresponding switch elements are sequentially driven.
  • the switch unit included in each of the plurality of surface light emitting modules has a plurality of switch elements respectively inserted in respective paths between the constant current source and the reference potential of each light emitting unit.
  • the light emission control unit included in each of the plurality of surface light emitting modules starts sequential driving of one of the corresponding switch elements in response to selection of the own module by the synchronization signal.
  • the generation unit is incorporated in one of the plurality of light emission control units.
  • the generation unit is configured to transmit a synchronization signal from the first surface light emitting module in which the generation unit is incorporated to the light emission control unit included in the adjacent second surface light emitting module.
  • the generation unit is configured to further transmit a synchronization signal from the second surface light emitting module to the light emission control unit included in the adjacent third surface light emitting module.
  • the generation unit outputs a signal indicating identification information of the light emission control units that are sequentially selected as the synchronization signal.
  • the light emission control unit included in each of the plurality of surface light emitting modules drives the corresponding switch unit when the identification information for identifying the module stored in advance matches the identification information indicated by the modulation component included in the synchronization signal. To start.
  • each of the plurality of light emitting units includes a plurality of light emitting elements connected in series with each other.
  • the constant current source is disposed outside the plurality of surface emitting modules.
  • the light emission control unit included in each of the plurality of surface emitting modules is disposed at a position different from the plurality of light emitting units included in each of the plurality of surface emitting modules.
  • each of the plurality of light emitting units is electrically connected to another light emitting unit, and a first connector for exchanging current from a constant current source, which is electrically connectable to another light emitting unit. And a second connector for exchanging current from a constant current source.
  • one of the plurality of light emitting units includes a power connector that can be electrically connected to a constant current source.
  • a control method for controlling the lighting device includes a constant current source and a plurality of surface emitting modules connected in parallel to a power supply path connected to the constant current source.
  • Each of the plurality of surface emitting modules is disposed adjacent to at least one of the other surface emitting modules, and includes a plurality of light emitting units connected in parallel between the constant current source and the reference potential.
  • the light emitting unit includes a switch unit that individually conducts or cuts off each path between the constant current source and the reference potential.
  • the control method generates a synchronization signal for sequentially selecting one of a plurality of surface emitting modules, and drives a corresponding switch unit in response to the selection of the own module by the synchronization signal. Sequentially conducting one of the plurality of paths between the source and the reference potential.
  • the required power capacity can be reduced and the arrangement location can be made compact.
  • FIG. 3 is a cross-sectional view of the surface emitting module according to the related art along the line III-III in FIG. It is a figure showing a mode that the illuminating device according to 1st Embodiment is light-emitting. It is a circuit diagram which shows the basic composition of the illuminating device according to 1st Embodiment. It is a top view which shows the surface on the opposite side of the light emission surface in the surface emitting module according to 1st Embodiment.
  • FIG. 3 is a cross-sectional view of the surface emitting module according to the related art along the line III-III in FIG. It is a figure showing a mode that the illuminating device according to 1st Embodiment is light-emitting.
  • It is a circuit diagram which shows the basic composition of the illuminating device according to 1st Embodiment. It is a top view which shows the surface on the opposite side of the light emission surface in the surface emitting module according to 1st Embodi
  • FIG. 7 is a cross-sectional view of the surface emitting module taken along the line VII-VII in FIG. 6 according to the first embodiment. It is a top view which shows the surface on the opposite side of the light emission surface in the surface emitting module according to the modification of 1st Embodiment. It is a circuit diagram of the surface emitting module according to the modification of 1st Embodiment. It is a figure for showing the external appearance of the surface emitting module according to the modification of a 1st embodiment. It is a figure which shows the timing chart of the surface emitting module according to the modification of 1st Embodiment. It is a figure for showing the external appearance of the surface emitting module according to the modification of a 1st embodiment.
  • FIG. 12 is a flowchart showing a part of processing executed by the lighting device according to the first to fourth embodiments.
  • FIG. 1 is a diagram illustrating an appearance of a lighting device 50 according to the related art.
  • FIG. 1 shows the back side of the light emitting surface.
  • the lighting device 50 includes surface emitting modules 20_1 to 20_4. Each of the surface light emitting modules 20_1 to 20_4 includes four light emitting units 10 and a substrate 120. For convenience of illustration, the light emitting unit 10 is illustrated transparently using dotted lines. On the substrate 120, connectors 131 to 134, 141, 152 and a light emission control circuit 150 are mounted.
  • Each of the surface emitting modules 20_1 to 20_4 is electrically connected to each other through any of the connectors 131 to 134. Thereby, the current output from the constant current source is applied to each of the surface emitting modules 20_1 to 20_4.
  • the surface emitting module 20_1 and the surface emitting module 20_2 are electrically connected to each other via a cable 320 connected to the connector 132 of the surface emitting module 20_1 and the connector 134 of the surface emitting module 20_2. ing.
  • the surface emitting module 20_2 and the surface emitting module 20_3 are electrically connected to each other via a cable 320 connected to the connector 133 of the surface emitting module 20_2 and the connector 131 of the surface emitting module 20_3.
  • the surface emitting module 20_3 and the surface emitting module 20_4 are electrically connected to each other through a cable 320 connected to the connector 134 of the surface emitting module 20_3 and the connector 132 of the surface emitting module 20_4.
  • the connectors 131 to 134 can be electrically connected to a constant current source.
  • the current output from the constant current source flows in the order of the light emission control circuit 150, the connector 152, and the light emitting unit 10.
  • the light emission control circuit 150 is, for example, an IC (Integrated Circuit).
  • the light emission control circuit 150 causes the light emitting units 10 to emit light sequentially.
  • the light emission control circuit 150 causes each light emitting unit 10 to emit light at 100 Hz or more. By driving the light emitting units 10_1 to 10_4 at high speed in this way, the entire lighting device 50 appears to emit light to the human eye.
  • Each of the light emission control circuits 150 operates individually without cooperation. For this reason, when the light emitting units 10 are connected in parallel, they may emit light simultaneously. When the light emitting units are connected in parallel, the applied current may be diverted, and a luminance difference (hereinafter also referred to as “luminance unevenness”) occurs between the light emitting units. The embodiment described below can improve such luminance unevenness.
  • FIG. 2 is a plan view showing a surface of the surface light emitting module 20 opposite to the light emitting surface. 3 is a cross-sectional view taken along the line III-III in FIG.
  • the surface emitting module 20 in FIG. 2 is the same as the surface emitting modules 20_1 to 20_4 in FIG.
  • the surface light emitting module 20 includes a light emitting unit 10, a holding member 110, a substrate 120, and a wiring member 161.
  • the light emitting units 10 are arranged in a 2 ⁇ 2 matrix (matrix), for example, and are arranged in a plane (on the same plane) along the plane direction. Each of the four light emitting units 10 has a substantially square outer periphery and has the same configuration. Each of the light emitting units 10 is attached to the surface of the holding member 110 using, for example, a double-sided tape. Typically, each of the light emitting units 10 is composed of a planar organic EL or the like.
  • the connector 152 is connected to a power supply path 191 for the anode and a power supply path 192 for the cathode.
  • the power supply paths 191 and 192 are connected to the wiring member 161, and are electrically connected to the light emitting unit 10 via the wiring pattern provided on the wiring member 161 and the electrode members 171 and 172.
  • the current output from the constant current source is applied to the light emitting unit 10 via the light emission control circuit 150, the connector 152, the wiring member 161, and the electrode members 171 and 172.
  • an electrode extraction portion 173 for anode
  • an electrode extraction portion 174 for cathode
  • the electrode member 171 includes an electrode extraction portion 173 and a rod-shaped portion 175 that stands up from the electrode extraction portion 173.
  • the electrode member 172 (cathode) has an electrode extraction portion 174 and a rod-shaped portion 176 that stands up from the electrode extraction portion 174.
  • the wiring members 161 are arranged in a substantially square shape so that the ends of the wiring members 161 are opposed to each other along the outer periphery of the light emitting unit 10 with two L-shapes as one set. Each wiring member 161 has a wiring pattern. The rod-like portions 175 and 176 of the electrode members 171 and 172 are connected to the wiring pattern of the wiring member 161.
  • the light emitting unit 10 emits light by applying a voltage between the electrode member 171 and the electrode member 172.
  • the electrode member 171 (anode) can be electrically connected to another electrode member 171 (anode).
  • the electrode member 172 (cathode) is electrically connected to another electrode member 172 (cathode). With this connection, the light emitting units 10 are connected in parallel.
  • FIG. 4 is a diagram illustrating a state where the lighting device 100 emits light.
  • the lighting device 100 includes surface emitting modules 200_1 to 200_4.
  • Each of the surface emitting modules 200_1 to 200_4 is connected in parallel to a power supply path 601 connected to a constant current source 210 described later.
  • Each of the surface emitting modules 200_1 to 200_4 includes light emitting units 10_1 to 10_4 connected in parallel between the constant current source 210 and a reference potential.
  • the reference potential is, for example, a ground potential.
  • the lighting device 100 generates a synchronization signal for selecting the surface emitting modules 200_1 to 200_4, and transmits the synchronization signal to each of the surface emitting modules 200_1 to 200_4.
  • Each of the surface light emitting modules 200_1 to 200_4 sequentially conducts one of a plurality of paths from the constant current source 210 to the reference potential in response to the selection of the module by the synchronization signal, so that the light emitting units 10_1 to 10_1 10_4 is made to emit light sequentially.
  • the lighting device 100 first generates a synchronization signal for selecting the surface emitting module 200_1.
  • the surface emitting modules 200_1 to 200_4 receive the synchronization signal.
  • Each of the light emission control circuits of the surface light emitting modules 200_1 to 200_4 stores identification information for identifying the light emission control unit.
  • the light emitting unit 10_1 of the light emitting module 200_1 emits light (light emission state (A) in FIG. 4).
  • the surface light emitting module 200_1 turns off the light emitting unit 10_1 after a certain time has elapsed since the light emitting unit 10_1 emits light, and causes the light emitting unit 10_2 of the surface light emitting module 200_1 to emit light (light emitting state (B) in FIG. 4). Similarly, the surface emitting module 200_1 causes the light emitting units 10_3 and 10_4 to emit light sequentially.
  • the lighting device 100 generates a synchronization signal for selecting the surface emitting module 200_2.
  • the surface emitting modules 200_1 to 200_4 receive the synchronization signal.
  • the surface emitting module 200_2 receives the synchronization signal
  • the surface emitting module 200_2 emits the light emitting unit 10_1 of the surface emitting module 200_2 (light emission state (C) in FIG. 4).
  • the surface light emitting module 200_1 turns off the light emitting unit 10_1 after a certain time has elapsed since the light emitting unit 10_1 emits light, and causes the light emitting unit 10_2 of the surface light emitting module 200_2 to emit light (light emitting state (D) in FIG. 4).
  • the surface emitting module 200_2 causes the light emitting units 10_3 and 10_4 to emit light sequentially.
  • the lighting device 100 generates a synchronization signal for selecting the surface emitting module 200_3.
  • the surface emitting module 200_3 receives the synchronization signal for selecting the own module, the surface emitting module 200_1 sequentially turns on the light emitting units 10_1 to 10_4 of the surface emitting module 200_3.
  • the lighting device 100 generates a synchronization signal for selecting the surface emitting module 200_4.
  • the surface emitting module 200_4 receives the synchronization signal for selecting the own module, the surface emitting module 200_1 sequentially turns on the light emitting units 10_1 to 10_4 of the surface emitting module 200_4 (light emission states (E) and (F) in FIG. 4).
  • the lighting device 100 sequentially selects the surface emitting modules 200_1 to 200_4 again when the selection of the surface emitting modules 200_1 to 200_4 is performed in order. For example, the lighting device 100 causes each of the light emitting units 10_1 to 10_4 to emit light at 100 Hz or more. By driving the light emitting units 10_1 to 10_4 at high speed in this way, the entire lighting device 100 appears to emit light to human eyes.
  • FIG. 5 is a circuit diagram showing a basic configuration of lighting apparatus 100 according to the first embodiment.
  • the lighting device 100 includes a generation unit 510 and surface emitting modules 200_1 to 200_4.
  • Each of the surface light emitting modules 200_1 to 200_4 includes a light emission control unit 520, a switch unit 530, and light emitting units 10_1 to 10_4.
  • the generation unit 510 generates a synchronization signal for sequentially selecting one of the surface emitting modules 200_1 to 200_4.
  • the generation unit 510 outputs the generated synchronization signal to the surface emitting modules 200_1 to 200_4.
  • the light emission control unit 520 starts driving the switch unit 530 corresponding to the own module in response to selection of the own module by the synchronization signal, and sequentially applies current to the light emitting units 10_1 to 10_4. At this time, the light emission control unit 520 drives the switch unit 530 so that the time for conducting each path from a power supply path 601 to be described later to a ground potential 620 (reference potential) is the same.
  • the switch unit 530 can individually conduct or block the respective paths from the power supply path 601 to the ground potential 620 (reference potential) of the light emitting units 10_1 to 10_4 according to the signal from the light emission control unit 520.
  • Each of the surface emitting modules 200_1 to 200_4 sequentially conducts one of the plurality of paths from the power supply path to the ground potential in response to the synchronization signal, so that the applied current does not shunt. For this reason, a constant current is applied to each of the light emitting units 10_1 to 10_4 inserted in the plurality of paths. Thereby, the illuminating device 100 can reduce the brightness
  • FIG. 6 is a plan view showing a surface opposite to the light emitting surface in the surface emitting module 200A.
  • a surface emitting module 200A shown in FIG. 6 shows the surface emitting modules 200_1 to 200_4 shown in FIG. 4 in more detail.
  • FIG. 6 shows one surface emitting module 200 ⁇ / b> A among a plurality of surface emitting modules included in the lighting device 100.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. Note that, among the configurations included in the surface emitting module 200A, the description of the same configuration as the surface emitting module 20 shown in FIG. 2 will not be repeated.
  • the surface emitting module 200A includes a light emitting unit 10, a holding member 110, a substrate 120, a wiring member 161, and a constant current source 210.
  • the constant current source 210 is disposed outside the holding member 110. Thereby, the thickness L of the surface light emitting module 200A can be made thinner than when the constant current source 210 is disposed on the back surface of the light emitting surface.
  • the constant current source 210 is electrically connected to the electrode member 171 (anode) and the electrode member 172 (cathode). As described above, the electrode members 171 are electrically connected to each other, and the electrode members 172 are electrically connected to each other. Thereby, each light emitting unit is connected in parallel.
  • FIG. 8 is a plan view showing a surface opposite to the light emitting surface in the surface emitting module 200B.
  • the number of light emitting units included in the surface light emitting module is not necessarily four, and more light emitting units can be combined. As an example, an example in which 16 light emitting units are combined as shown in FIG. 8 will be described.
  • the surface light emitting module 200B includes light emitting units 10_1A to 10_4D, a constant current source 210, and a light emission control circuit 310.
  • the light emitting units 10_1A to 10_4D are arranged in a matrix.
  • the light emitting units 10_1A to 10_4D are connected in parallel between the power supply path and the ground potential.
  • the light emission control circuit 310 of the surface emitting module 200B sequentially causes the light emitting units 10_1A to 10_4D to emit light.
  • FIG. 9 is a circuit diagram of the surface emitting module 200B.
  • the lighting device 100 includes a voltage source 611, a constant current source 210, and a surface emitting module 200B.
  • the voltage source 611 may be configured integrally with the constant current source 210.
  • the surface emitting module 200B is electrically connected between the constant current source 210 and a reference potential (ground potential 620). Thereby, an electric current flows into the surface emitting module 200B.
  • the ground potential 610 and the ground potential 620 are the same potential.
  • the surface light emitting module 200B includes switch elements SW_1 to SW_4, switch elements SW_A to SW_D, light emitting units 10_1A to 10_4D, and a light emission control circuit 310.
  • Point P1 is a contact point between one end (cathode) of the light emitting units 10_1A to 10_1D on the constant current source 210 side and the switch element SW_1.
  • a point P2 is a contact point between one end (cathode) of the light emitting units 10_2A to 10_2D on the constant current source 210 side and the switch element SW_2.
  • a point P3 is a contact point between one end (cathode) of the light emitting units 10_3A to 10_3D on the constant current source 210 side and the switch element SW_3.
  • a point P4 is a contact point between one end (cathode) of the light emitting units 10_4A to 10_4D on the constant current source 210 side and the switch element SW_4.
  • Point PA is a contact point between one end (anode) of the light emitting units 10_1A to 10_4A on the ground potential 620 side and the switch element SW_A.
  • a point PB is a contact point between one end (anode) of the light emitting units 10_1B to 10_4B on the ground potential 620 side and the switch element SW_B.
  • a point PC is a contact point between one end (anode) of the light emitting units 10_1C to 10_4C on the ground potential 620 side and the switch element SW_C.
  • a point PD is a contact point between one end of the light emitting units 10_1D to 10_4D on the ground potential 620 side and the switch element SW_D.
  • the switch elements SW_1 to SW_4 are connected in parallel to the power supply path 601 electrically connected to the constant current source 210.
  • the switch elements SW_1 to SW_4 (first group switch elements) are associated with respective columns of a plurality of light emitting units arranged in a matrix. That is, each of the switch elements of the first group is configured to be able to collectively connect one end (cathode) of a plurality of light emitting units arranged in a corresponding row to the power supply path 601.
  • the switch elements SW_A to SW_D are connected in parallel to the ground potential 620.
  • the switch elements SW_A to SW_D (second group switch elements) are associated with respective rows of a plurality of light emitting units arranged in a matrix.
  • each of the second group of switch elements is configured such that the other ends (anodes) of the plurality of light emitting units arranged in the corresponding row can be connected to the ground potential 620.
  • the switch element SW_1 is interposed between the power supply path 601 and the point P1.
  • the switch element SW_2 is interposed between the power supply path 601 and the point P2.
  • the switch element SW_3 is interposed between the power supply path 601 and the point P3.
  • the switch element SW_4 is interposed between the power supply path 601 and the point P4.
  • the switch element SW_A is interposed between the ground potential 620 and the point PA.
  • the switch element SW_B is interposed between the ground potential 620 and the point PB.
  • the switch element SW_B is interposed between the ground potential 620 and the point PB.
  • the switch element SW_B is interposed between the ground potential 620 and the point PB.
  • the switch elements SW_A to SW_D may be mounted on the light emission control circuit 310 or may be mounted on another circuit.
  • the light emitting units 10_1A to 10_4D are connected in parallel between the power supply path 601 and the ground potential 620. More specifically, the light emitting unit 10_1A is interposed between the point P1 and the point PA. The light emitting unit 10_1B is interposed between the point P1 and the point PB. The light emitting unit 10_1C is interposed between the point P1 and the point PC. The light emitting unit 10_1D is interposed between the point P1 and the point PD. The light emitting unit 10_2A is interposed between the point P2 and the point PA. The light emitting unit 10_2B is interposed between the point P2 and the point PB. The light emitting unit 10_2C is interposed between the point P2 and the point PC.
  • the light emitting unit 10_2D is interposed between the point P2 and the point PD.
  • the light emitting unit 10_3A is interposed between the point P3 and the point PA.
  • the light emitting unit 10_3B is interposed between the point P3 and the point PB.
  • the light emitting unit 10_3C is interposed between the point P3 and the point PC.
  • the light emitting unit 10_3D is interposed between the point P3 and the point PD.
  • the light emitting unit 10_4A is interposed between the point P4 and the point PA.
  • the light emitting unit 10_4B is interposed between the point P4 and the point PB.
  • the light emitting unit 10_4C is interposed between the point P4 and the point PC.
  • the light emitting unit 10_4D is interposed between the point P4 and the point PD.
  • FIG. 10 is a diagram for illustrating the external appearance of the surface emitting module 200C.
  • the constant current source 210 was shown as a discharge-type power source electrically connected to the switch elements SW_1 to SW_4 in the surface emitting module 200B (see FIG. 9).
  • the constant current source 210 may be configured as a suction type power source electrically connected to the switch elements SW_A to SW_D.
  • the switch elements SW_A to SW_D are connected between the reference potential created by the voltage source 611 and the constant current source 210.
  • FIG. 11 is a diagram illustrating a timing chart of the surface emitting module 200B.
  • the light emission control circuit 310 includes one of the switch elements SW_1 to SW4 (hereinafter also referred to as “first switch element”) and the switch elements SW_A to SW_D (hereinafter also referred to as “second switch element”).
  • the first switch element and the second switch element corresponding to the sequentially selected combination of the plurality of combinations with the first switch element are driven.
  • each time the light emission control circuit 310 sequentially drives (OFF ⁇ ON) one of the first switch element and the second switch element one of the other switch elements is selected. Are sequentially driven (OFF ⁇ ON).
  • the light emission control circuit 310 drives the switch element SW_1 (OFF ⁇ ON) to bring the path between the power supply path 601 and the point P1 into a conductive state.
  • the switch element SW_1 is turned on for a predetermined period (from time t1A to time t2A).
  • the light emission control circuit 310 drives the switch element SW_A (OFF ⁇ ON) to bring the path between the point PA and the ground potential 620 into a conductive state.
  • the switch element SW_A is turned on for a predetermined period (from time t1A to time t1B).
  • the light emission control circuit 310 drives (switches from ON to OFF) the switch element SW_A. As a result, the light emitting unit 10_1A is turned off.
  • the light emission control circuit 310 drives the switch element SW_B (OFF ⁇ ON) to bring the path between the point PB and the ground potential 620 into a conductive state.
  • the switch element SW_B is turned on for a predetermined period (from time t1B to time t1C). Thereby, the current output from the constant current source 210 flows between the points P1 and PB, and the light emitting unit 10_1B emits light.
  • the light emission control circuit 310 similarly turns off the switch element SW_B and turns on the switch element SW_C. Thereafter, the light emission control circuit 310 similarly turns off the switch element SW_C and turns on the switch element SW_D.
  • the light emission control circuit 310 drives (switches from ON to OFF) the switch element SW_1. As a result, the power supply path 601 and the point P1 become non-conductive. Further, at time t2A, the light emission control circuit 310 drives the switch element SW_2 (OFF ⁇ ON) to bring the path between the power supply path 601 and the point P2 into a conductive state. The switch element SW_2 is turned on for a predetermined period (from time t2A to time t3A). Further, at time t2A, the light emission control circuit 310 drives the switch element SW_A (OFF ⁇ ON) to bring the path between the ground potential 620 and the point PA into a conductive state. Thereby, the current output from the constant current source 210 flows between the point P2 and the point PA, and the light emitting unit 10_2A emits light.
  • the light emission control circuit 310 sequentially drives the switch elements SW_B to SW_D (OFF ⁇ ON) to sequentially emit the light emitting units 10_2B to 10_2D.
  • the light emission control circuit 310 drives the switch element SW_3 (OFF ⁇ ON), and further sequentially drives the switch elements SW_A to SW_D (OFF ⁇ ON). Accordingly, the light emission control circuit 310 sequentially causes the light emitting units 10_3A to 10_3D to emit light.
  • the light emission control circuit 310 drives the switch element SW_4 (OFF ⁇ ON), and further sequentially drives the switch elements SW_A to SW_D (OFF ⁇ ON). Accordingly, the light emission control circuit 310 causes the light emitting units 10_4A to 10_4D to emit light sequentially.
  • the light emission control circuit 310 thus repeats driving of each switch element at a frequency of several tens of hertz or more. Further, since the current does not shunt, each of the light emitting units 10_1A to 10_4D does not emit light at the same time. For this reason, a constant current is applied to each of the light emitting units 10_1A to 10_4D, and light is always emitted with a constant brightness.
  • each of the light emitting units 10_1A to 10_4D is driven by PWM (Pulse Width Modulation) with a constant current as shown in the figure.
  • Driving by the PWM method can keep the chromaticity of the light emitting unit constant compared to the dimming method that adjusts the current value.
  • each of the light emitting units 10_1A to 1_4D emits light is not particularly limited.
  • the light emission control circuit 310 may drive (OFF ⁇ ON) one of the switch elements SW_A to SW_D every time the switch elements SW_1 to SW_4 are driven (OFF ⁇ ON) in sequence. Further, the order of sequentially emitting light from one end of the column or row to the other end is not necessary.
  • the light emission control circuit 310 can increase the luminance of each light emitting unit by making the time for driving (OFF ⁇ ON) each of the switch elements SW_A to SW_D constant within a range not exceeding the period T. On the contrary, the light emission control circuit 310 reduces the brightness of each light emitting unit by reducing the time for driving (OFF ⁇ ON) each of the switch elements SW_A to SW_D to be constant (in this case, the period T becomes longer). Can be lowered.
  • FIG. 12 is a view for showing the appearance of a surface emitting module 200D according to a modification of the present invention.
  • a plurality of light emitting units are not necessarily arranged in a square shape (4 rows ⁇ 4 columns).
  • the light emitting units 10 may be arranged in a rectangular shape (for example, 8 rows ⁇ 2 columns).
  • the light emitting unit 10 may be assembled in other arrangements.
  • Each of the light emitting units 10 may be disposed adjacent to one of the other light emitting units 10.
  • FIG. 13 is a diagram for illustrating an external appearance of the illumination device 100.
  • the lighting device 100 includes a constant current source 210, surface emitting modules 200_1 to 200_4 connected in parallel to a power supply path connected to the constant current source, and signal lines 702 to 704.
  • a generation unit 510 (see FIG. 5) for generating a synchronization signal is incorporated in any one of the light emission control circuits 310_1 to 310_4 of the surface light emitting modules 200_1 to 200_4.
  • the light emission control circuit 310_1 generates a synchronization signal will be described as an example.
  • the signal line 702 electrically connects the light emission control circuit 310_1 and the light emission control circuit 310_2.
  • the signal line 703 electrically connects the light emission control circuit 310_1 and the light emission control circuit 310_3.
  • the signal line 704 electrically connects the light emission control circuit 310_2 and the light emission control circuit 310_4.
  • the light emission control circuit 310_1 transmits a synchronization signal for sequentially selecting one of the surface light emitting modules 200_1 to 200_4 to the surface light emitting modules 200_2 to 200_4 via the signal lines 702 to 704.
  • the light emission control circuit 310_1 transmits a synchronization signal to the light emission control circuit 310_2 of the surface light emitting module 200_2 adjacent to the surface light emitting module 200_1 and the light emission control circuit 310_3 of the surface light emitting module 200_3 adjacent to the surface light emitting module 200_1.
  • the light emission control circuit 310_2 transmits the received synchronization signal to the light emission control circuit 310_4 of the surface light emitting module 200_4 adjacent to the surface light emitting module 200_2.
  • Each of the light emission control circuits 310_1 to 310_4 stores identification information for identifying the light emission control unit, and sequentially emits the light emitting units 10 corresponding to the light emission control unit when the synchronization signal matches the identification information.
  • Each of the light emission control circuits 310_1 to 310_4 sequentially operates in response to the synchronization signal. Since each operation of light emission control circuits 310_1 to 310_4 is as described above, description thereof will not be repeated.
  • FIG. 14 is a circuit diagram of the lighting device 100.
  • Each of the surface emitting modules 200_1 to 200_4 is connected in parallel to a power supply path 601 connected to the constant current source 210.
  • the signal line 702 electrically connects the light emission control circuit 310_1 and the light emission control circuit 310_2.
  • the signal line 703 electrically connects the light emission control circuit 310_1 and the light emission control circuit 310_3.
  • the signal line 704 electrically connects the light emission control circuit 310_2 and the light emission control circuit 310_4.
  • the signal lines are wired to the plurality of light emitting modules, and the light emitting modules are synchronized so that each light emitting unit of each light emitting module can illuminate with stable luminance without causing light emission at the same time. It becomes possible.
  • an increase in the size of the power supply can be suppressed.
  • FIG. 15 is a diagram illustrating a timing chart of the lighting device 100.
  • the generation unit 510 periodically generates a synchronization signal for selecting one of the surface emitting modules 200_1 to 200_4.
  • the synchronization signal is periodically transmitted to all the surface emitting modules as in the surface emitting modules 200_1 ⁇ 200_2 ⁇ 200_3 ⁇ 200_4 ⁇ 200_1. It is not necessarily required to be periodic. For example, some surface emitting modules may be transmitted continuously (surface emitting modules 200_1 ⁇ 200_1 ⁇ 200_1).
  • generation unit 510 generates clock signals 801 to 804 having different frequencies at regular intervals.
  • the synchronization signal is transmitted to each of the light emission control circuits 310_1 to 310_4.
  • Each of the light emission control circuits 310_1 to 310_4 stores identification information for identifying the light emission control unit.
  • the light emission control circuits 310_1 to 310_4 store different identification information.
  • the identification information is, for example, ID (Identification) indicating each of the light emission control circuits 310_1 to 310_4.
  • ID Identity
  • Each of the light emission control circuits 310_1 to 310_4 determines whether or not the number of pulses received within a predetermined time after receiving the first pulse of the synchronization signal is equal to the ID of the self light emission control circuit. For example, when each of the light emission control circuits 310_1 to 310_4 receives a two-pulse clock signal 802, the light emission control circuit 310_2 with ID: 2 is driven. The light emission control circuit 310_2 is driven to sequentially drive the light emitting units included in the surface light emitting module 200_2 during the period T2 after receiving the synchronization signal. Note that the operation of the light emission control circuit 310_2 is the same as that of the light emission control circuit 310 shown in FIG. 9, and thus description thereof will not be repeated.
  • each of the light emission control circuits 310_1 to 310_4 operates in response to a synchronization signal transmitted every predetermined time, the current applied to the light emitting units 10_1A to 10_4D does not shunt. That is, two or more of the light emitting units do not emit light simultaneously. Further, the same intensity of current is applied to all the light emitting units for the same time. For this reason, the brightness
  • the number of surface emitting modules included in the lighting device 100 is not limited to four as illustrated.
  • the number of surface emitting modules included in the lighting device 100 may be two, three, five, or more.
  • each shape of the surface emitting module is different from that of lighting apparatus 100 according to the first embodiment.
  • Other points are the same as those of lighting device 100 according to the first embodiment, and therefore description thereof will not be repeated.
  • FIG. 16 is a diagram for illustrating an external appearance of lighting apparatus 100A according to the present embodiment.
  • each of the surface light emitting modules 200_1 to 200_4 includes a square light emitting unit included in each of the surface light emitting modules 200_1 to 200_4 like the lighting device 100 according to the first embodiment. (4 rows ⁇ 4 columns).
  • the light emitting units included in each of the surface light emitting modules 200_1 to 200_4 may be arranged in a rectangular shape (for example, 8 rows ⁇ 2 columns) as shown in FIG.
  • the illumination device 100A can arrange each of the light emission control circuits 310_1 to 310_4 closer to the illumination device 100 according to the first embodiment. That is, the signal line can be shortened, and the lighting device 100 can be expanded more easily.
  • the surface light emitting modules 200_1 to 200_4 including the light emitting units of 8 rows ⁇ 2 columns are arranged in a square shape (8 rows ⁇ 8 columns), but the surface light emitting modules 200_1 to 200_4 are arranged. May be arranged in a rectangular shape. Each of the light emitting modules may be disposed adjacent to one of the other light emitting modules.
  • Lighting device 100B according to the present embodiment is different from lighting device 100A according to the second embodiment in that the light emission control circuit is arranged outside the surface emitting module. Since other points are similar to those of lighting device 100A according to the second embodiment, description thereof will not be repeated.
  • FIG. 17 is a diagram for illustrating an external appearance of lighting apparatus 100C according to the present embodiment.
  • the light emission control circuits 310_1 to 310_4 are arranged outside the plurality of light emitting units 10.
  • the lighting device 100C can be further reduced in thickness.
  • Lighting device 100C differs from lighting device 100 according to the first embodiment in that the light emitting unit has a plurality of planar light emitting elements. Other points are the same as those of lighting device 100 according to the first embodiment, and therefore description thereof will not be repeated.
  • FIG. 18 is a circuit diagram of lighting apparatus 100C according to the fourth embodiment.
  • Each of the surface emitting modules 200_1 to 200_4 includes switch elements SW_1 to SW_4.
  • Each of the switch elements SW_1 to SW_4 is inserted in each path from the power supply path 601 to the ground potential 620.
  • the surface light emitting modules 200_1 to 200_4 have light emitting units 10_1 to 10_4, respectively.
  • the light emitting unit 10_1 of each surface light emitting module includes light emitting elements 11_1A to 11_1D.
  • the light emitting elements 11_1A to 11_1D are connected in series between the switch element SW_1 and the ground potential 620.
  • the light emitting unit 10_2 includes light emitting elements 11_2A to 11_2D.
  • the light emitting elements 11_2A to 11_2D are connected in series between the switch element SW_2 and the ground potential 620.
  • the light emitting unit 10_3 includes light emitting elements 11_3A to 11_3D.
  • the light emitting elements 11_3A to 11_3D are connected in series between the switch element SW_3 and the ground potential 620.
  • the light emitting unit 10_4 includes light emitting elements 11_4A to 11_4D.
  • the light emitting elements 11_4A to 11_4D are connected in series between the switch element SW_4 and the ground potential 620.
  • the light emission control circuit 310 sequentially drives one of a plurality of switch elements corresponding to the own module in response to the selection of the own module by the synchronization signal. For example, if the synchronization signal generated by the generation unit 510 selects the surface emitting module 200_2, the light emission control circuit 310 included in the surface emitting module 200_2 sequentially switches the switch elements SW_1 to SW_4 included in the surface emitting module 200_2. Drive (OFF ⁇ ON). In this case, since each of the light emitting elements is connected in series, the current output from the constant current source 210 is not shunted. For this reason, the light emitting units 10_1 to 10_4 are not lit simultaneously. In addition, currents of the same strength are applied to the light emitting units 10_1 to 10_4. For this reason, the brightness
  • the light emission cycle of each light emitting unit becomes longer. Thereby, the illumination may flicker. Since the lighting device 100C sequentially emits light from the light emitting units connected in series in the light emitting unit, the light emitting units emit light as compared with the case where a plurality of light emitting elements included in the light emitting unit are connected in parallel. The period can be shortened. That is, flickering of illumination can be reduced.
  • FIG. 19 is a flowchart showing a part of processing executed by lighting devices 100A to 100D.
  • the processing in FIG. 19 is realized by the light emission control circuit 310 (see FIG. 8) of the illumination devices 100A to 100D executing a program. In other aspects, part of the processing may be executed by other circuit elements or other hardware.
  • the number of surface emitting modules provided in the lighting devices 100A to 100D is four will be described.
  • the determination process of the own module in steps S110, S120, S130, and S140 described later, and steps S112, S122, S132, and S142 described later are performed.
  • a process of sequentially emitting light from the light emitting units in the own module is provided according to the number of surface emitting modules.
  • step S102 the light emission control circuit 310 generates a synchronization signal for sequentially selecting one of the surface light emitting modules 200_1 to 200_4 as the generation unit 510 (see FIG. 5).
  • step S110 the light emission control circuit 310 determines whether or not the surface emitting module 200_1 has been selected. If the light emission control circuit 310 determines that the surface light emitting module 200_1 has been selected (YES in step S110), the light emission control circuit 310 switches the control to step S112. If not (NO in step S110), light emission control circuit 310 switches control to step S120. In step S112, the light emission control circuit 310 causes the light emitting units in the surface light emitting module 200_1 to emit light sequentially.
  • step S120 the light emission control circuit 310 determines whether or not the surface emitting module 200_2 has been selected. If the light emission control circuit 310 determines that the surface light emitting module 200_2 has been selected (YES in step S120), the light emission control circuit 310 switches the control to step S122. If not (NO in step S120), light emission control circuit 310 switches control to step S130. In step S122, the light emission control circuit 310 sequentially causes the light emitting units in the surface light emitting module 200_2 to emit light.
  • step S130 the light emission control circuit 310 determines whether or not the surface light emitting module 200_3 has been selected. If the light emission control circuit 310 determines that the surface light emitting module 200_3 has been selected (YES in step S130), the light emission control circuit 310 switches the control to step S132. If not (NO in step S130), light emission control circuit 310 switches control to step S140. In step S132, the light emission control circuit 310 causes the light emitting units in the surface light emitting module 200_3 to emit light sequentially.
  • step S140 the light emission control circuit 310 determines whether or not the surface light emitting module 200_4 has been selected. If the light emission control circuit 310 determines that the surface light emitting module 200_4 has been selected (YES in step S140), the light emission control circuit 310 switches the control to step S142. If not (NO in step S140), the light emission control circuit 310 executes the process of step S102 again. In step S142, the light emission control circuit 310 causes the light emitting units in the surface light emitting module 200_4 to emit light sequentially.
  • step S150 the light emission control circuit 310 determines whether or not to end the processing according to each of the above-described embodiments. For example, the light emission control circuit 310 ends the processing when the lighting devices 100A to 100D are powered off. If the light emission control circuit 310 determines to end the process (YES in step S150), the light emission control circuit 310 ends the process. If not (NO in step S150), light emission control circuit 310 returns control to step S102 again.

Abstract

This invention provides a lighting device that makes it possible to reduce the required power-supply capacity and the form factor thereof even if said lighting device comprises a large number of surface-emitting modules. Said lighting device (100) contains a plurality of surface-emitting modules connected in parallel to a power-supply path connected to a constant current source. This lighting device (100) also has a generation unit (510) that generates a synchronization signal that sequentially selects one surface-emitting module at a time. Each surface-emitting module comprises a plurality of light-emitting units connected in parallel between the constant current source and a reference potential, a switching unit (530) that individually opens or closes the paths between the constant current source and the reference potential in the respective light-emitting units, and a light-emission control unit (520) that drives said switching unit (530) so as to sequentially close the paths between the constant current source and the reference potential one at a time. The light-emission control unit (520) in each module starts driving the corresponding switching unit (530) in response to the selection of that module by the synchronization signal.

Description

照明装置および制御方法Lighting device and control method
 本開示は、照明装置に関し、特に、複数の面発光モジュールからなる照明装置に関する。 The present disclosure relates to a lighting device, and more particularly, to a lighting device including a plurality of surface emitting modules.
 従来、OLED(Organic Light Emitting Diode)やLED(Light Emitting Diode)といった発光素子の点灯を制御するための技術が知られている。たとえば、特開2012-64761号公報(特許文献1)は、複数のLEDチップの各々に含まれる複数のLEDの各々を点灯駆動するための制御信号を生成するロジック部と、ロジック部で生成した制御信号に基づいて複数のLEDを点灯駆動するバッファ部とから構成される点灯駆動装置を開示している。 Conventionally, techniques for controlling lighting of light emitting elements such as OLED (Organic Light Emitting Diode) and LED (Light Emitting Diode) are known. For example, Japanese Patent Laid-Open No. 2012-64761 (Patent Document 1) generates a control signal for driving each of a plurality of LEDs included in each of a plurality of LED chips, and a logic unit A lighting driving device is disclosed that includes a buffer unit that lights and drives a plurality of LEDs based on a control signal.
特開2012-64761号公報JP 2012-64761 A
 OLEDやLEDを照明装置として応用しようとすると、典型的には、複数の発光素子からなる面発光モジュールを必要な数だけ配置する必要がある。このような照明装置への応用における問題の一つが電源である。すなわち、多数の面発光モジュールのそれぞれに電源を配置するような構成を採用すれば、それらの電源のスペースを確保することが難しくなり、一方、単一の電源で多数の面発光モジュールを同時に駆動するような構成を採用すれば、非常に大きな容量を有する電源が必要になる。 When applying an OLED or an LED as a lighting device, it is typically necessary to arrange a required number of surface emitting modules including a plurality of light emitting elements. One of the problems in application to such a lighting device is a power source. In other words, if a configuration in which a power source is arranged in each of a large number of surface emitting modules, it becomes difficult to secure a space for those power sources, while a large number of surface emitting modules are driven simultaneously by a single power source. If such a configuration is adopted, a power supply having a very large capacity is required.
 特開2012-64761号公報に開示されている点灯駆動装置は、画像形成装置の印字ヘッドとして、多数のLEDを点灯することが想定されているに過ぎず、かつ、基本的には電源ラインとグランドラインとの間に1つのLEDしか接続されない構成が想定されているに過ぎない。そのため、上述のような、多数の面発光モジュールからなる照明装置へのOLEDまたはLEDを応用する場合の電源の問題を何ら解決するものではない。 The lighting drive device disclosed in Japanese Patent Application Laid-Open No. 2012-64761 is only supposed to light a large number of LEDs as a print head of an image forming apparatus, and basically has a power line. Only a configuration in which only one LED is connected to the ground line is assumed. Therefore, the problem of the power supply in the case of applying OLED or LED to the illuminating device which consists of many surface emitting modules as mentioned above is not solved at all.
 この開示は上述のような問題点を解決するためになされたものであって、ある局面における目的は、多数の面発光モジュールからなる照明装置を構成した場合であっても、要求される電源容量を低減できるとともに、その配置場所もコンパクト化できる構成を実現することである。 This disclosure has been made to solve the above-described problems, and an object in one aspect is to provide a required power capacity even when a lighting device including a large number of surface emitting modules is configured. It is possible to achieve a configuration that can reduce the location and the size of the arrangement.
 一実施の形態に従うと、照明装置は、定電流源と、定電流源に接続された電源経路に並列接続された複数の面発光モジュールとを備える。複数の面発光モジュールの各々は、他の面発光モジュールのうちの少なくとも1つに隣接して配置されている。照明装置は、複数の面発光モジュールのうちの1つを順次選択するための同期信号を生成する生成部を備える。複数の面発光モジュールの各々は、定電流源と基準電位との間に並列接続された複数の発光ユニットと、複数の発光ユニットの、定電流源と基準電位との間のそれぞれの経路を個別に導通または遮断するスイッチ部と、スイッチ部を駆動して、定電流源と基準電位との間の複数の経路のうちの1つを順次導通する発光制御部とを含む。複数の面発光モジュールの各々に含まれる発光制御部は、同期信号による自モジュールの選択に応答して、対応するスイッチ部の駆動を開始する。 According to one embodiment, the lighting device includes a constant current source and a plurality of surface emitting modules connected in parallel to a power supply path connected to the constant current source. Each of the plurality of surface emitting modules is disposed adjacent to at least one of the other surface emitting modules. The illumination device includes a generation unit that generates a synchronization signal for sequentially selecting one of the plurality of surface emitting modules. Each of the plurality of surface emitting modules has a plurality of light emitting units connected in parallel between the constant current source and the reference potential, and a path between the constant current source and the reference potential of the plurality of light emitting units individually. And a light-emission control unit that drives the switch unit to sequentially conduct one of a plurality of paths between the constant current source and the reference potential. The light emission control unit included in each of the plurality of surface light emitting modules starts driving the corresponding switch unit in response to the selection of the own module by the synchronization signal.
 好ましくは、複数の面発光モジュールの各々に含まれる発光制御部は、定電流源と基準電位との間のそれぞれの経路を導通させる時間が互いに同じになるようにスイッチ部を駆動する。 Preferably, the light emission control unit included in each of the plurality of surface light emitting modules drives the switch unit so that the times for conducting the respective paths between the constant current source and the reference potential are the same.
 好ましくは、複数の面発光モジュールの各々に含まれる複数の発光ユニットは、行列状に配置される。複数の面発光モジュールの各々に含まれるスイッチ部は、行列状に配置された複数の発光ユニットのそれぞれの列に対応付けられた複数のスイッチ素子からなる第1群のスイッチ素子と、行列状に配置された複数の発光ユニットのそれぞれの行に対応付けられた複数のスイッチ素子からなる第2群のスイッチ素子とを含む。第1群のスイッチ素子の各々は、対応する列に配置された複数の発光ユニットの一端を一括して定電流源に接続可能に構成されている。第2群のスイッチ素子の各々は、対応する行に配置された複数の発光ユニットの他端を一括して基準電位に接続可能に構成されている。複数の面発光モジュールの各々に含まれる発光制御部は、第1群のスイッチ素子のうち1つと第2群のスイッチ素子のうちの1つとからなる複数の組み合わせのうち、順次選択される組み合わせに対応する2つのスイッチ素子を順次駆動する。 Preferably, the plurality of light emitting units included in each of the plurality of surface light emitting modules are arranged in a matrix. The switch unit included in each of the plurality of surface emitting modules includes a first group of switch elements each including a plurality of switch elements associated with each column of the plurality of light emitting units arranged in a matrix, and in a matrix And a second group of switch elements including a plurality of switch elements associated with each row of the plurality of light emitting units arranged. Each of the first group of switch elements is configured such that one end of a plurality of light emitting units arranged in a corresponding row can be connected to a constant current source in a lump. Each of the second group of switch elements is configured such that the other ends of the plurality of light emitting units arranged in the corresponding row can be collectively connected to the reference potential. The light emission control unit included in each of the plurality of surface emitting modules is a combination that is sequentially selected from among a plurality of combinations including one of the first group of switch elements and one of the second group of switch elements. Two corresponding switch elements are sequentially driven.
 好ましくは、複数の面発光モジュールの各々に含まれるスイッチ部は、各発光ユニットの定電流源と基準電位との間のそれぞれの経路に各々介挿された複数のスイッチ素子を有する。複数の面発光モジュールの各々に含まれる発光制御部は、同期信号による自モジュールの選択に応答して、対応する複数のスイッチ素子の1つの順次駆動を開始する。 Preferably, the switch unit included in each of the plurality of surface light emitting modules has a plurality of switch elements respectively inserted in respective paths between the constant current source and the reference potential of each light emitting unit. The light emission control unit included in each of the plurality of surface light emitting modules starts sequential driving of one of the corresponding switch elements in response to selection of the own module by the synchronization signal.
 好ましくは、生成部は、複数の発光制御部のうちの1つに組み込まれている。また、生成部は、生成部が組み込まれた第1の面発光モジュールから隣接する第2の面発光モジュールに含まれる発光制御部へ同期信号が伝送されるように構成されている。さらに、生成部は、第2の面発光モジュールから隣接する第3の面発光モジュールに含まれる発光制御部へ同期信号がさらに伝送されるように構成されている。 Preferably, the generation unit is incorporated in one of the plurality of light emission control units. In addition, the generation unit is configured to transmit a synchronization signal from the first surface light emitting module in which the generation unit is incorporated to the light emission control unit included in the adjacent second surface light emitting module. Furthermore, the generation unit is configured to further transmit a synchronization signal from the second surface light emitting module to the light emission control unit included in the adjacent third surface light emitting module.
 好ましくは、生成部は、同期信号として、順次選択される発光制御部の識別情報を示す信号を出力する。複数の面発光モジュールの各々に含まれる発光制御部は、予め格納された自モジュールを識別する識別情報と、同期信号に含まれる変調成分が示す識別情報とが一致すると、対応するスイッチ部の駆動を開始する。 Preferably, the generation unit outputs a signal indicating identification information of the light emission control units that are sequentially selected as the synchronization signal. The light emission control unit included in each of the plurality of surface light emitting modules drives the corresponding switch unit when the identification information for identifying the module stored in advance matches the identification information indicated by the modulation component included in the synchronization signal. To start.
 好ましくは、複数の発光ユニットの各々は、互いに直列に接続された複数の発光素子を含む。 Preferably, each of the plurality of light emitting units includes a plurality of light emitting elements connected in series with each other.
 好ましくは、定電流源は、複数の面発光モジュールの外部に配置されている。
 好ましくは、複数の面発光モジュールの各々に含まれる発光制御部は、複数の面発光モジュールの各々に含まれる複数の発光ユニットとは異なる位置に配置されている。
Preferably, the constant current source is disposed outside the plurality of surface emitting modules.
Preferably, the light emission control unit included in each of the plurality of surface emitting modules is disposed at a position different from the plurality of light emitting units included in each of the plurality of surface emitting modules.
 好ましくは、複数の発光ユニットの各々は、別の発光ユニットと電気的に接続可能な、定電流源からの電流を遣り取りするための第1のコネクタと、さらに別の発光ユニットと電気的に接続可能な、定電流源からの電流を遣り取りするための第2のコネクタとを含む。 Preferably, each of the plurality of light emitting units is electrically connected to another light emitting unit, and a first connector for exchanging current from a constant current source, which is electrically connectable to another light emitting unit. And a second connector for exchanging current from a constant current source.
 好ましくは、複数の発光ユニットの1つは、定電流源と電気的に接続が可能な電源コネクタを含む。 Preferably, one of the plurality of light emitting units includes a power connector that can be electrically connected to a constant current source.
 他の実施の形態に従うと、照明装置を制御するための制御方法が提供される。照明装置は、定電流源と、定電流源に接続された電源経路に並列接続された複数の面発光モジュールとを備える。複数の面発光モジュールの各々は、他の面発光モジュールのうちの少なくとも1つに隣接して配置されており、定電流源と基準電位との間に並列接続された複数の発光ユニットと、複数の発光ユニットの、定電流源と基準電位との間のそれぞれの経路を個別に導通または遮断するスイッチ部とを含む。制御方法は、複数の面発光モジュールのうちの1つを順次選択するための同期信号を生成することと、同期信号による自モジュールの選択に応答して、対応するスイッチ部を駆動し、定電流源と基準電位との間の複数の経路のうちの1つを順次導通することとを含む。 According to another embodiment, a control method for controlling the lighting device is provided. The lighting device includes a constant current source and a plurality of surface emitting modules connected in parallel to a power supply path connected to the constant current source. Each of the plurality of surface emitting modules is disposed adjacent to at least one of the other surface emitting modules, and includes a plurality of light emitting units connected in parallel between the constant current source and the reference potential. The light emitting unit includes a switch unit that individually conducts or cuts off each path between the constant current source and the reference potential. The control method generates a synchronization signal for sequentially selecting one of a plurality of surface emitting modules, and drives a corresponding switch unit in response to the selection of the own module by the synchronization signal. Sequentially conducting one of the plurality of paths between the source and the reference potential.
 ある局面において、多数の面発光モジュールからなる照明装置を構成した場合であっても、要求される電源容量を低減できるとともに、その配置場所もコンパクト化できる。 In one aspect, even when a lighting device composed of a large number of surface emitting modules is configured, the required power capacity can be reduced and the arrangement location can be made compact.
 本発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解される本発明に関する次の詳細な説明から明らかとなるであろう。 The above and other objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of the invention which is to be understood in connection with the accompanying drawings.
関連技術に従う照明装置の外観を示す図である。It is a figure which shows the external appearance of the illuminating device according to related technology. 関連技術に従う面発光モジュールにおける発光面の反対側の面を示す平面図である。It is a top view which shows the surface on the opposite side of the light emission surface in the surface emitting module according to related technology. 図2中のIII-III線に沿った関連技術に従う面発光モジュールの矢視断面図である。FIG. 3 is a cross-sectional view of the surface emitting module according to the related art along the line III-III in FIG. 第1の実施の形態に従う照明装置が発光している様子を表している図である。It is a figure showing a mode that the illuminating device according to 1st Embodiment is light-emitting. 第1の実施の形態に従う照明装置の基本的な構成を示す回路図である。It is a circuit diagram which shows the basic composition of the illuminating device according to 1st Embodiment. 第1の実施の形態に従う面発光モジュールにおける発光面の反対側の面を示す平面図である。It is a top view which shows the surface on the opposite side of the light emission surface in the surface emitting module according to 1st Embodiment. 第1の実施の形態に従う、図6中のVII-VII線に沿った面発光モジュールの矢視断面図である。FIG. 7 is a cross-sectional view of the surface emitting module taken along the line VII-VII in FIG. 6 according to the first embodiment. 第1の実施の形態の変形例に従う面発光モジュールにおける発光面の反対側の面を示す平面図である。It is a top view which shows the surface on the opposite side of the light emission surface in the surface emitting module according to the modification of 1st Embodiment. 第1の実施の形態の変形例に従う面発光モジュールの回路図である。It is a circuit diagram of the surface emitting module according to the modification of 1st Embodiment. 第1の実施の形態の変形例に従う面発光モジュールの外観を示すための図である。It is a figure for showing the external appearance of the surface emitting module according to the modification of a 1st embodiment. 第1の実施の形態の変形例に従う面発光モジュールのタイミングチャートを示す図である。It is a figure which shows the timing chart of the surface emitting module according to the modification of 1st Embodiment. 第1の実施の形態の変形例に従う面発光モジュールの外観を示すための図である。It is a figure for showing the external appearance of the surface emitting module according to the modification of a 1st embodiment. 第1の実施の形態に従う照明装置の外観を示すための図である。It is a figure for showing the appearance of the illuminating device according to a 1st embodiment. 第1の実施の形態に従う照明装置の回路図である。It is a circuit diagram of the illuminating device according to 1st Embodiment. 第1の実施の形態に従う照明装置のタイミングチャートを示す図である。It is a figure which shows the timing chart of the illuminating device according to 1st Embodiment. 第2の実施の形態に従う照明装置の外観を示すための図である。It is a figure for showing the external appearance of the illuminating device according to 2nd Embodiment. 第3の実施の形態に従う照明装置の外観を示すための図である。It is a figure for showing the external appearance of the illuminating device according to 3rd Embodiment. 第4の実施の形態に従う照明装置の回路図である。It is a circuit diagram of the illuminating device according to 4th Embodiment. 第1~第4の実施の形態に従う照明装置が実行する処理の一部を表わすフローチャートである。Fig. 12 is a flowchart showing a part of processing executed by the lighting device according to the first to fourth embodiments.
 以下、図面を参照しつつ、本実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。なお、以下で説明される各実施の形態、および/または各変形例は、選択的に組み合わされてもよい。 Hereinafter, the present embodiment will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated. Each embodiment described below and / or each modification may be selectively combined.
 [関連技術]
 (照明装置50)
 まず、本発明に係る実施の形態についての理解を深めるために、図1を参照して、本願に係る関連技術に従う照明装置50について説明する。図1は、関連技術に従う照明装置50の外観を示す図である。図1には、発光面の裏側を示している。
[Related technologies]
(Lighting device 50)
First, in order to deepen an understanding about embodiment concerning this invention, with reference to FIG. 1, the illuminating device 50 according to the related technique which concerns on this application is demonstrated. FIG. 1 is a diagram illustrating an appearance of a lighting device 50 according to the related art. FIG. 1 shows the back side of the light emitting surface.
 照明装置50は、面発光モジュール20_1~20_4を含む。面発光モジュール20_1~20_4の各々は、4枚の発光ユニット10と、基板120とを含む。図示上の便宜のため、発光ユニット10は、点線を用いて透過的に図示されている。基板120には、コネクタ131~134,141,152と、発光制御回路150とが実装されている。 The lighting device 50 includes surface emitting modules 20_1 to 20_4. Each of the surface light emitting modules 20_1 to 20_4 includes four light emitting units 10 and a substrate 120. For convenience of illustration, the light emitting unit 10 is illustrated transparently using dotted lines. On the substrate 120, connectors 131 to 134, 141, 152 and a light emission control circuit 150 are mounted.
 面発光モジュール20_1~20_4の各々は、コネクタ131~134のいずれかを介して互いに電気的に接続される。これにより、定電流源から出力される電流が面発光モジュール20_1~20_4の各々に印加される。 Each of the surface emitting modules 20_1 to 20_4 is electrically connected to each other through any of the connectors 131 to 134. Thereby, the current output from the constant current source is applied to each of the surface emitting modules 20_1 to 20_4.
 図1の例においては、面発光モジュール20_1および面発光モジュール20_2は、面発光モジュール20_1のコネクタ132と面発光モジュール20_2のコネクタ134とに接続されているケーブル320を介して互いに電気的に接続されている。面発光モジュール20_2および面発光モジュール20_3は、面発光モジュール20_2のコネクタ133と面発光モジュール20_3のコネクタ131とに接続されているケーブル320を介して互いに電気的に接続されている。面発光モジュール20_3および面発光モジュール20_4は、面発光モジュール20_3のコネクタ134と面発光モジュール20_4のコネクタ132とに接続されているケーブル320を介して互いに電気的に接続されている。 In the example of FIG. 1, the surface emitting module 20_1 and the surface emitting module 20_2 are electrically connected to each other via a cable 320 connected to the connector 132 of the surface emitting module 20_1 and the connector 134 of the surface emitting module 20_2. ing. The surface emitting module 20_2 and the surface emitting module 20_3 are electrically connected to each other via a cable 320 connected to the connector 133 of the surface emitting module 20_2 and the connector 131 of the surface emitting module 20_3. The surface emitting module 20_3 and the surface emitting module 20_4 are electrically connected to each other through a cable 320 connected to the connector 134 of the surface emitting module 20_3 and the connector 132 of the surface emitting module 20_4.
 また、コネクタ131~134は、定電流源に電気的に接続することができる。定電流源から出力される電流は、発光制御回路150、コネクタ152、発光ユニット10の順に流れる。発光制御回路150は、たとえば、IC(Integrated Circuit)などである。発光制御回路150は、電流が印加されると、発光ユニット10を順次発光させる。発光制御回路150は、たとえば、各発光ユニット10を100Hz以上で発光させる。このように高速に発光ユニット10_1~10_4を駆動することで、人の目には照明装置50全体が発光しているように見える。 In addition, the connectors 131 to 134 can be electrically connected to a constant current source. The current output from the constant current source flows in the order of the light emission control circuit 150, the connector 152, and the light emitting unit 10. The light emission control circuit 150 is, for example, an IC (Integrated Circuit). When a current is applied, the light emission control circuit 150 causes the light emitting units 10 to emit light sequentially. For example, the light emission control circuit 150 causes each light emitting unit 10 to emit light at 100 Hz or more. By driving the light emitting units 10_1 to 10_4 at high speed in this way, the entire lighting device 50 appears to emit light to the human eye.
 関連技術に係る発光制御回路150の各々は、それぞれが協調せずに個別に動作する。このため、各発光ユニット10は、並列に接続されている場合には、同時に発光する可能性がある。各発光ユニットが並列に接続されている場合には、印加された電流が分流する可能性があり、発光ユニット間で輝度差(以下、「輝度ムラ」ともいう。)が生じる。以下で説明する実施の形態は、このような輝度ムラを改善することができる。 Each of the light emission control circuits 150 according to related technology operates individually without cooperation. For this reason, when the light emitting units 10 are connected in parallel, they may emit light simultaneously. When the light emitting units are connected in parallel, the applied current may be diverted, and a luminance difference (hereinafter also referred to as “luminance unevenness”) occurs between the light emitting units. The embodiment described below can improve such luminance unevenness.
 (面発光モジュール20)
 図2および図3を参照して、面発光モジュールについてさらに詳細に説明する。図2は、面発光モジュール20における発光面の反対側の面を示す平面図である。図3は、図2中のIII-III線に沿った矢視断面図である。なお、図2の面発光モジュール20は、図1における面発光モジュール20_1~20_4と同一のものである。
(Surface emitting module 20)
The surface emitting module will be described in more detail with reference to FIGS. FIG. 2 is a plan view showing a surface of the surface light emitting module 20 opposite to the light emitting surface. 3 is a cross-sectional view taken along the line III-III in FIG. The surface emitting module 20 in FIG. 2 is the same as the surface emitting modules 20_1 to 20_4 in FIG.
 図2に示されるように、面発光モジュール20は、発光ユニット10と、保持部材110と、基板120と、配線部材161とを含む。 As shown in FIG. 2, the surface light emitting module 20 includes a light emitting unit 10, a holding member 110, a substrate 120, and a wiring member 161.
 発光ユニット10は、たとえば、2×2の行列状(マトリックス状)に配列され、面方向に沿うように面状(同一平面上)に配置されている。4枚の発光ユニット10の各々は、外周が略正方形状に形成され、同一の構成を有している。発光ユニット10の各々は、たとえば、両面テープなどを用いて保持部材110の表面に取り付けられる。典型的には、発光ユニット10の各々は、面状の有機ELなどから構成されている。 The light emitting units 10 are arranged in a 2 × 2 matrix (matrix), for example, and are arranged in a plane (on the same plane) along the plane direction. Each of the four light emitting units 10 has a substantially square outer periphery and has the same configuration. Each of the light emitting units 10 is attached to the surface of the holding member 110 using, for example, a double-sided tape. Typically, each of the light emitting units 10 is composed of a planar organic EL or the like.
 コネクタ152には、陽極用の電源経路191および陰極用の電源経路192がそれぞれ接続される。電源経路191,192は、配線部材161に接続され、配線部材161に設けられた配線パターンおよび電極部材171,172を介して発光ユニット10に電気的に接続される。定電流源から出力される電流は、発光制御回路150、コネクタ152、配線部材161および電極部材171,172を介して、発光ユニット10に印加される。 The connector 152 is connected to a power supply path 191 for the anode and a power supply path 192 for the cathode. The power supply paths 191 and 192 are connected to the wiring member 161, and are electrically connected to the light emitting unit 10 via the wiring pattern provided on the wiring member 161 and the electrode members 171 and 172. The current output from the constant current source is applied to the light emitting unit 10 via the light emission control circuit 150, the connector 152, the wiring member 161, and the electrode members 171 and 172.
 図3を参照して、図1中のIII-III線に沿った面発光モジュール20の矢視断面について説明する。保持部材110周囲には、電極取出部173(陽極用)と、電極取出部174(陰極用)とが配置される。電極部材171(陽極)は、電極取出部173と、電極取出部173から起立する棒状部175とを有する。電極部材172(陰極)は、電極取出部174と、電極取出部174から起立する棒状部176とを有する。 With reference to FIG. 3, a cross-sectional view of the surface emitting module 20 along the line III-III in FIG. 1 will be described. Around the holding member 110, an electrode extraction portion 173 (for anode) and an electrode extraction portion 174 (for cathode) are arranged. The electrode member 171 (anode) includes an electrode extraction portion 173 and a rod-shaped portion 175 that stands up from the electrode extraction portion 173. The electrode member 172 (cathode) has an electrode extraction portion 174 and a rod-shaped portion 176 that stands up from the electrode extraction portion 174.
 配線部材161は、2枚のL字形状を1組として、配線部材161の端部同士が対向し、発光ユニット10の外周に沿うように略正方形状に配置される。配線部材161はそれぞれ、配線パターンを有している。電極部材171,172の棒状部175,176は、配線部材161の配線パターンに接続される。 The wiring members 161 are arranged in a substantially square shape so that the ends of the wiring members 161 are opposed to each other along the outer periphery of the light emitting unit 10 with two L-shapes as one set. Each wiring member 161 has a wiring pattern. The rod- like portions 175 and 176 of the electrode members 171 and 172 are connected to the wiring pattern of the wiring member 161.
 電極部材171と電極部材172との間に電圧を印加することにより発光ユニット10は発光する。電極部材171(陽極)は、他の電極部材171(陽極)と電気的に接続できる。また、電極部材172(陰極)は、他の電極部材172(陰極)に電気的に接続される。この接続により、各発光ユニット10は並列接続される。 The light emitting unit 10 emits light by applying a voltage between the electrode member 171 and the electrode member 172. The electrode member 171 (anode) can be electrically connected to another electrode member 171 (anode). The electrode member 172 (cathode) is electrically connected to another electrode member 172 (cathode). With this connection, the light emitting units 10 are connected in parallel.
 [第1の実施の形態]
 <概要>
 (動作概要)
 図4を参照して、第1の実施の形態に従う照明装置100の概要について説明する。図4は、照明装置100が発光している様子を表している図である。
[First Embodiment]
<Overview>
(Overview of operation)
With reference to FIG. 4, the outline | summary of the illuminating device 100 according to 1st Embodiment is demonstrated. FIG. 4 is a diagram illustrating a state where the lighting device 100 emits light.
 図4に示されるように、照明装置100は、面発光モジュール200_1~200_4を含む。面発光モジュール200_1~200_4の各々は、後述する定電流源210に接続された電源経路601に並列に接続されている。また、面発光モジュール200_1~200_4の各々は、定電流源210と基準電位との間に並列接続された発光ユニット10_1~10_4を含む。基準電位は、たとえば、グランド電位である。 As shown in FIG. 4, the lighting device 100 includes surface emitting modules 200_1 to 200_4. Each of the surface emitting modules 200_1 to 200_4 is connected in parallel to a power supply path 601 connected to a constant current source 210 described later. Each of the surface emitting modules 200_1 to 200_4 includes light emitting units 10_1 to 10_4 connected in parallel between the constant current source 210 and a reference potential. The reference potential is, for example, a ground potential.
 照明装置100は、面発光モジュール200_1~200_4を選択するための同期信号を生成し、面発光モジュール200_1~200_4のそれぞれに当該同期信号を送信する。面発光モジュール200_1~200_4の各々は、当該同期信号による自モジュールの選択に応答して、定電流源210から基準電位までの複数の経路のうちの1つを順次導通させて、発光ユニット10_1~10_4を順次発光させる。 The lighting device 100 generates a synchronization signal for selecting the surface emitting modules 200_1 to 200_4, and transmits the synchronization signal to each of the surface emitting modules 200_1 to 200_4. Each of the surface light emitting modules 200_1 to 200_4 sequentially conducts one of a plurality of paths from the constant current source 210 to the reference potential in response to the selection of the module by the synchronization signal, so that the light emitting units 10_1 to 10_1 10_4 is made to emit light sequentially.
 より具体的には、照明装置100は、最初に、面発光モジュール200_1を選択するための同期信号を生成する。面発光モジュール200_1~200_4は、当該同期信号を受け付ける。面発光モジュール200_1~200_4の発光制御回路の各々は、当該発光制御部を識別する識別情報を記憶しており、面発光モジュール200_1は、自モジュールを選択するための当該同期信号を受け付けると、面発光モジュール200_1の発光ユニット10_1を発光させる(図4の発光状態(A))。その後、面発光モジュール200_1は、発光ユニット10_1を発光させてから一定時間が経過後に発光ユニット10_1を消灯し、面発光モジュール200_1の発光ユニット10_2を発光させる(図4の発光状態(B))。同様に、面発光モジュール200_1は、発光ユニット10_3,10_4を順次発光させる。 More specifically, the lighting device 100 first generates a synchronization signal for selecting the surface emitting module 200_1. The surface emitting modules 200_1 to 200_4 receive the synchronization signal. Each of the light emission control circuits of the surface light emitting modules 200_1 to 200_4 stores identification information for identifying the light emission control unit. When the surface light emitting module 200_1 receives the synchronization signal for selecting its own module, The light emitting unit 10_1 of the light emitting module 200_1 emits light (light emission state (A) in FIG. 4). Thereafter, the surface light emitting module 200_1 turns off the light emitting unit 10_1 after a certain time has elapsed since the light emitting unit 10_1 emits light, and causes the light emitting unit 10_2 of the surface light emitting module 200_1 to emit light (light emitting state (B) in FIG. 4). Similarly, the surface emitting module 200_1 causes the light emitting units 10_3 and 10_4 to emit light sequentially.
 次に、照明装置100は、面発光モジュール200_2を選択するための同期信号を生成する。面発光モジュール200_1~200_4は、当該同期信号を受け付ける。面発光モジュール200_2は、当該同期信号を受け付けると、面発光モジュール200_2の発光ユニット10_1を発光させる(図4の発光状態(C))。その後、面発光モジュール200_1は、発光ユニット10_1を発光させてから一定時間が経過後に発光ユニット10_1を消灯し、面発光モジュール200_2の発光ユニット10_2を発光させる(図4の発光状態(D))。同様に、面発光モジュール200_2は、発光ユニット10_3,10_4を順次発光させる。 Next, the lighting device 100 generates a synchronization signal for selecting the surface emitting module 200_2. The surface emitting modules 200_1 to 200_4 receive the synchronization signal. When the surface emitting module 200_2 receives the synchronization signal, the surface emitting module 200_2 emits the light emitting unit 10_1 of the surface emitting module 200_2 (light emission state (C) in FIG. 4). Thereafter, the surface light emitting module 200_1 turns off the light emitting unit 10_1 after a certain time has elapsed since the light emitting unit 10_1 emits light, and causes the light emitting unit 10_2 of the surface light emitting module 200_2 to emit light (light emitting state (D) in FIG. 4). Similarly, the surface emitting module 200_2 causes the light emitting units 10_3 and 10_4 to emit light sequentially.
 その後、照明装置100は、面発光モジュール200_3を選択するための同期信号を生成する。面発光モジュール200_3は、自モジュールを選択するための同期信号を受け付けると、面発光モジュール200_3の発光ユニット10_1~10_4を順次点灯する。 Thereafter, the lighting device 100 generates a synchronization signal for selecting the surface emitting module 200_3. When the surface emitting module 200_3 receives the synchronization signal for selecting the own module, the surface emitting module 200_1 sequentially turns on the light emitting units 10_1 to 10_4 of the surface emitting module 200_3.
 その後、照明装置100は、面発光モジュール200_4を選択するための同期信号を生成する。面発光モジュール200_4は、自モジュールを選択するための同期信号を受け付けると、面発光モジュール200_4の発光ユニット10_1~10_4を順次点灯する(図4の発光状態(E)(F))。 Thereafter, the lighting device 100 generates a synchronization signal for selecting the surface emitting module 200_4. When the surface emitting module 200_4 receives the synchronization signal for selecting the own module, the surface emitting module 200_1 sequentially turns on the light emitting units 10_1 to 10_4 of the surface emitting module 200_4 (light emission states (E) and (F) in FIG. 4).
 照明装置100は、面発光モジュール200_1~200_4の選択を一順すると、再度、面発光モジュール200_1~200_4を順次選択する。照明装置100は、たとえば、発光ユニット10_1~10_4のそれぞれを100Hz以上で発光させる。このように高速に発光ユニット10_1~10_4を駆動することで、人の目には照明装置100全体が発光しているように見える。 The lighting device 100 sequentially selects the surface emitting modules 200_1 to 200_4 again when the selection of the surface emitting modules 200_1 to 200_4 is performed in order. For example, the lighting device 100 causes each of the light emitting units 10_1 to 10_4 to emit light at 100 Hz or more. By driving the light emitting units 10_1 to 10_4 at high speed in this way, the entire lighting device 100 appears to emit light to human eyes.
 (基本的構成)
 図5を参照して、照明装置100の概要についてさらに説明する。図5は、第1の実施の形態に従う照明装置100の基本的な構成を示す回路図である。
(Basic configuration)
With reference to FIG. 5, the outline | summary of the illuminating device 100 is further demonstrated. FIG. 5 is a circuit diagram showing a basic configuration of lighting apparatus 100 according to the first embodiment.
 照明装置100は、生成部510と、面発光モジュール200_1~200_4とを含む。面発光モジュール200_1~200_4の各々は、発光制御部520と、スイッチ部530と、発光ユニット10_1~10_4とを含む。 The lighting device 100 includes a generation unit 510 and surface emitting modules 200_1 to 200_4. Each of the surface light emitting modules 200_1 to 200_4 includes a light emission control unit 520, a switch unit 530, and light emitting units 10_1 to 10_4.
 生成部510は、面発光モジュール200_1~200_4のうちの1つを順次選択するための同期信号を生成する。生成部510は、生成した同期信号を面発光モジュール200_1~200_4に出力する。 The generation unit 510 generates a synchronization signal for sequentially selecting one of the surface emitting modules 200_1 to 200_4. The generation unit 510 outputs the generated synchronization signal to the surface emitting modules 200_1 to 200_4.
 発光制御部520は、同期信号による自モジュールの選択に応答して、自モジュールに対応するスイッチ部530の駆動を開始して、発光ユニット10_1~10_4に順次電流を印加する。このとき、発光制御部520は、後述する電源経路601からグランド電位620(基準電位)までのそれぞれの経路を導通させる時間が互いに同じになるようにスイッチ部530を駆動する。 The light emission control unit 520 starts driving the switch unit 530 corresponding to the own module in response to selection of the own module by the synchronization signal, and sequentially applies current to the light emitting units 10_1 to 10_4. At this time, the light emission control unit 520 drives the switch unit 530 so that the time for conducting each path from a power supply path 601 to be described later to a ground potential 620 (reference potential) is the same.
 スイッチ部530は、発光制御部520からの信号に応じて、発光ユニット10_1~10_4の、電源経路601からグランド電位620(基準電位)までのそれぞれの経路を個別に導通または遮断することができる。 The switch unit 530 can individually conduct or block the respective paths from the power supply path 601 to the ground potential 620 (reference potential) of the light emitting units 10_1 to 10_4 according to the signal from the light emission control unit 520.
 面発光モジュール200_1~200_4の各々は、同期信号に応答して電源経路からグランド電位までの複数の経路のうちの1つを順次導通させるため、印加された電流が分流することがない。このため、当該複数の経路にそれぞれ介挿された発光ユニット10_1~10_4のそれぞれには一定の電流が印加される。これにより、照明装置100は、並列接続された発光ユニットの各々の輝度差を低減することができる。また、同期信号により各発光モジュールを順次駆動することが可能になるため、他の発光モジュールを拡張することが容易になる。 Each of the surface emitting modules 200_1 to 200_4 sequentially conducts one of the plurality of paths from the power supply path to the ground potential in response to the synchronization signal, so that the applied current does not shunt. For this reason, a constant current is applied to each of the light emitting units 10_1 to 10_4 inserted in the plurality of paths. Thereby, the illuminating device 100 can reduce the brightness | luminance difference of each light emitting unit connected in parallel. In addition, since each light emitting module can be sequentially driven by the synchronization signal, it becomes easy to expand other light emitting modules.
 <面発光モジュール200A>
 図6および図7を参照して、第1の実施の形態に従う面発光モジュール200Aの構成について説明する。図6は、面発光モジュール200Aにおける発光面の反対側の面を示す平面図である。図6に示される面発光モジュール200Aは、図4に示される面発光モジュール200_1~200_4をより詳細に示したものである。また、図6には、照明装置100に含まれる複数の面発光モジュールのうちの1つの面発光モジュール200Aが示されている。図7は、図6中のVII-VII線に沿った矢視断面図である。なお、面発光モジュール200Aに含まれる構成のうち、図2に示される面発光モジュール20と同様の構成については説明を繰り返さない。
<Surface emitting module 200A>
With reference to FIG. 6 and FIG. 7, the structure of surface emitting module 200A according to the first embodiment will be described. FIG. 6 is a plan view showing a surface opposite to the light emitting surface in the surface emitting module 200A. A surface emitting module 200A shown in FIG. 6 shows the surface emitting modules 200_1 to 200_4 shown in FIG. 4 in more detail. FIG. 6 shows one surface emitting module 200 </ b> A among a plurality of surface emitting modules included in the lighting device 100. FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. Note that, among the configurations included in the surface emitting module 200A, the description of the same configuration as the surface emitting module 20 shown in FIG. 2 will not be repeated.
 図6および図7に示されるように、面発光モジュール200Aは、発光ユニット10と、保持部材110と、基板120と、配線部材161と、定電流源210とを含む。定電流源210は、保持部材110の外部に配置される。これにより、面発光モジュール200Aの厚みLは、定電流源210が発光面の裏側の面上に配置された場合に比べて薄くすることができる。 6 and 7, the surface emitting module 200A includes a light emitting unit 10, a holding member 110, a substrate 120, a wiring member 161, and a constant current source 210. The constant current source 210 is disposed outside the holding member 110. Thereby, the thickness L of the surface light emitting module 200A can be made thinner than when the constant current source 210 is disposed on the back surface of the light emitting surface.
 定電流源210は、電極部材171(陽極)と電極部材172(陰極)とに電気的に接続される。上述したように、各電極部材171は互いに電気的に接続され、各電極部材172は互いに電気的に接続される。これにより、各発光ユニットは並列接続される。 The constant current source 210 is electrically connected to the electrode member 171 (anode) and the electrode member 172 (cathode). As described above, the electrode members 171 are electrically connected to each other, and the electrode members 172 are electrically connected to each other. Thereby, each light emitting unit is connected in parallel.
 <面発光モジュール200B>
 図8を参照して、面発光モジュール200Aの変形例に従う面発光モジュール200Bについて説明する。図8は、面発光モジュール200Bにおける発光面の反対側の面を示す平面図である。
<Surface emitting module 200B>
With reference to FIG. 8, surface emitting module 200B according to a modification of surface emitting module 200A will be described. FIG. 8 is a plan view showing a surface opposite to the light emitting surface in the surface emitting module 200B.
 面発光モジュールに含まれる発光ユニットの数は、必ずしも4個である必要はなく、さらに多くの発光ユニットを組み合わせることが可能である。一例として、図8に示されるように、16個の発光ユニットを組み合わせた場合の例について説明する。面発光モジュール200Bは、発光ユニット10_1A~10_4Dと、定電流源210と、発光制御回路310とを含む。 The number of light emitting units included in the surface light emitting module is not necessarily four, and more light emitting units can be combined. As an example, an example in which 16 light emitting units are combined as shown in FIG. 8 will be described. The surface light emitting module 200B includes light emitting units 10_1A to 10_4D, a constant current source 210, and a light emission control circuit 310.
 典型的には、発光ユニット10_1A~10_4Dは、行列状に配置されている。また、発光ユニット10_1A~10_4Dは、電源経路とグランド電位との間に並列接続される。生成部510により生成された同期信号が面発光モジュール200Bを選択した場合に、面発光モジュール200Bの発光制御回路310は、発光ユニット10_1A~10_4Dを順次発光させる。 Typically, the light emitting units 10_1A to 10_4D are arranged in a matrix. The light emitting units 10_1A to 10_4D are connected in parallel between the power supply path and the ground potential. When the surface emitting module 200B is selected by the synchronization signal generated by the generation unit 510, the light emission control circuit 310 of the surface emitting module 200B sequentially causes the light emitting units 10_1A to 10_4D to emit light.
 (回路構成)
 図9を参照して、面発光モジュール200Bについてさらに説明する。図9は、面発光モジュール200Bの回路図である。
(Circuit configuration)
With reference to FIG. 9, the surface emitting module 200B will be further described. FIG. 9 is a circuit diagram of the surface emitting module 200B.
 照明装置100は、電圧源611と、定電流源210と、面発光モジュール200Bとを備える。電圧源611は、定電流源210と一体に構成されてもよい。面発光モジュール200Bは、定電流源210と基準電位(グランド電位620)との間に電気的に接続される。これにより、電流が面発光モジュール200Bに流れる。また、グランド電位610とグランド電位620とは同電位である。 The lighting device 100 includes a voltage source 611, a constant current source 210, and a surface emitting module 200B. The voltage source 611 may be configured integrally with the constant current source 210. The surface emitting module 200B is electrically connected between the constant current source 210 and a reference potential (ground potential 620). Thereby, an electric current flows into the surface emitting module 200B. The ground potential 610 and the ground potential 620 are the same potential.
 面発光モジュール200Bは、スイッチ素子SW_1~SW_4と、スイッチ素子SW_A~SW_Dと、発光ユニット10_1A~10_4Dと、発光制御回路310とを含む。 The surface light emitting module 200B includes switch elements SW_1 to SW_4, switch elements SW_A to SW_D, light emitting units 10_1A to 10_4D, and a light emission control circuit 310.
 点P1は、発光ユニット10_1A~10_1Dの定電流源210側の一端(カソード)と、スイッチ素子SW_1との接点である。点P2は、発光ユニット10_2A~10_2Dの定電流源210側の一端(カソード)と、スイッチ素子SW_2との接点である。点P3は、発光ユニット10_3A~10_3Dの定電流源210側の一端(カソード)と、スイッチ素子SW_3との接点である。点P4は、発光ユニット10_4A~10_4Dの定電流源210側の一端(カソード)と、スイッチ素子SW_4との接点である。 Point P1 is a contact point between one end (cathode) of the light emitting units 10_1A to 10_1D on the constant current source 210 side and the switch element SW_1. A point P2 is a contact point between one end (cathode) of the light emitting units 10_2A to 10_2D on the constant current source 210 side and the switch element SW_2. A point P3 is a contact point between one end (cathode) of the light emitting units 10_3A to 10_3D on the constant current source 210 side and the switch element SW_3. A point P4 is a contact point between one end (cathode) of the light emitting units 10_4A to 10_4D on the constant current source 210 side and the switch element SW_4.
 点PAは、発光ユニット10_1A~10_4Aのグランド電位620側の一端(アノード)と、スイッチ素子SW_Aとの接点である。点PBは、発光ユニット10_1B~10_4Bのグランド電位620側の一端(アノード)と、スイッチ素子SW_Bとの接点である。点PCは、発光ユニット10_1C~10_4Cのグランド電位620側の一端(アノード)と、スイッチ素子SW_Cとの接点である。点PDは、発光ユニット10_1D~10_4Dのグランド電位620側の一端と、スイッチ素子SW_Dとの接点である。 Point PA is a contact point between one end (anode) of the light emitting units 10_1A to 10_4A on the ground potential 620 side and the switch element SW_A. A point PB is a contact point between one end (anode) of the light emitting units 10_1B to 10_4B on the ground potential 620 side and the switch element SW_B. A point PC is a contact point between one end (anode) of the light emitting units 10_1C to 10_4C on the ground potential 620 side and the switch element SW_C. A point PD is a contact point between one end of the light emitting units 10_1D to 10_4D on the ground potential 620 side and the switch element SW_D.
 スイッチ素子SW_1~SW_4は、定電流源210に電気的に接続された電源経路601に対して並列に接続される。典型的には、スイッチ素子SW_1~SW_4(第1群のスイッチ素子)は、行列状に配置された複数の発光ユニットのそれぞれの列に対応付けられている。すなわち、第1群のスイッチ素子の各々は、対応する列に配置された複数の発光ユニットの一端(カソード)を一括して電源経路601に接続可能に構成されている。 The switch elements SW_1 to SW_4 are connected in parallel to the power supply path 601 electrically connected to the constant current source 210. Typically, the switch elements SW_1 to SW_4 (first group switch elements) are associated with respective columns of a plurality of light emitting units arranged in a matrix. That is, each of the switch elements of the first group is configured to be able to collectively connect one end (cathode) of a plurality of light emitting units arranged in a corresponding row to the power supply path 601.
 スイッチ素子SW_A~SW_Dは、グランド電位620に対して並列に接続される。典型的には、スイッチ素子SW_A~SW_D(第2群のスイッチ素子)は、行列状に配置された複数の発光ユニットのそれぞれの行に対応付けられている。すなわち、第2群のスイッチ素子の各々は、対応する行に配置された複数の発光ユニットの他端(アノード)をグランド電位620に接続可能に構成されている。 The switch elements SW_A to SW_D are connected in parallel to the ground potential 620. Typically, the switch elements SW_A to SW_D (second group switch elements) are associated with respective rows of a plurality of light emitting units arranged in a matrix. In other words, each of the second group of switch elements is configured such that the other ends (anodes) of the plurality of light emitting units arranged in the corresponding row can be connected to the ground potential 620.
 より具体的には、スイッチ素子SW_1は、電源経路601と点P1との間に介挿される。スイッチ素子SW_2は、電源経路601と点P2との間に介挿される。スイッチ素子SW_3は、電源経路601と点P3との間に介挿される。スイッチ素子SW_4は、電源経路601と点P4との間に介挿される。スイッチ素子SW_Aは、グランド電位620と点PAとの間に介挿される。スイッチ素子SW_Bは、グランド電位620と点PBとの間に介挿される。スイッチ素子SW_Bは、グランド電位620と点PBとの間に介挿される。スイッチ素子SW_Bは、グランド電位620と点PBとの間に介挿される。なお、スイッチ素子SW_A~SW_Dは、発光制御回路310に実装されてもよいし、別の回路上実装されてもよい。 More specifically, the switch element SW_1 is interposed between the power supply path 601 and the point P1. The switch element SW_2 is interposed between the power supply path 601 and the point P2. The switch element SW_3 is interposed between the power supply path 601 and the point P3. The switch element SW_4 is interposed between the power supply path 601 and the point P4. The switch element SW_A is interposed between the ground potential 620 and the point PA. The switch element SW_B is interposed between the ground potential 620 and the point PB. The switch element SW_B is interposed between the ground potential 620 and the point PB. The switch element SW_B is interposed between the ground potential 620 and the point PB. Note that the switch elements SW_A to SW_D may be mounted on the light emission control circuit 310 or may be mounted on another circuit.
 発光ユニット10_1A~10_4Dは、電源経路601とグランド電位620との間に並列接続される。より具体的には、発光ユニット10_1Aは、点P1と点PAとの間に介挿される。発光ユニット10_1Bは、点P1と点PBとの間に介挿される。発光ユニット10_1Cは、点P1と点PCとの間に介挿される。発光ユニット10_1Dは、点P1と点PDとの間に介挿される。発光ユニット10_2Aは、点P2と点PAとの間に介挿される。発光ユニット10_2Bは、点P2と点PBとの間に介挿される。発光ユニット10_2Cは、点P2と点PCとの間に介挿される。発光ユニット10_2Dは、点P2と点PDとの間に介挿される。発光ユニット10_3Aは、点P3と点PAとの間に介挿される。発光ユニット10_3Bは、点P3と点PBとの間に介挿される。発光ユニット10_3Cは、点P3と点PCとの間に介挿される。発光ユニット10_3Dは、点P3と点PDとの間に介挿される。発光ユニット10_4Aは、点P4と点PAとの間に介挿される。発光ユニット10_4Bは、点P4と点PBとの間に介挿される。発光ユニット10_4Cは、点P4と点PCとの間に介挿される。発光ユニット10_4Dは、点P4と点PDとの間に介挿される。 The light emitting units 10_1A to 10_4D are connected in parallel between the power supply path 601 and the ground potential 620. More specifically, the light emitting unit 10_1A is interposed between the point P1 and the point PA. The light emitting unit 10_1B is interposed between the point P1 and the point PB. The light emitting unit 10_1C is interposed between the point P1 and the point PC. The light emitting unit 10_1D is interposed between the point P1 and the point PD. The light emitting unit 10_2A is interposed between the point P2 and the point PA. The light emitting unit 10_2B is interposed between the point P2 and the point PB. The light emitting unit 10_2C is interposed between the point P2 and the point PC. The light emitting unit 10_2D is interposed between the point P2 and the point PD. The light emitting unit 10_3A is interposed between the point P3 and the point PA. The light emitting unit 10_3B is interposed between the point P3 and the point PB. The light emitting unit 10_3C is interposed between the point P3 and the point PC. The light emitting unit 10_3D is interposed between the point P3 and the point PD. The light emitting unit 10_4A is interposed between the point P4 and the point PA. The light emitting unit 10_4B is interposed between the point P4 and the point PB. The light emitting unit 10_4C is interposed between the point P4 and the point PC. The light emitting unit 10_4D is interposed between the point P4 and the point PD.
 <面発光モジュール200C>
 図10を参照して、面発光モジュール200Bの変形例に従う面発光モジュール200Cについて説明する。図10は、面発光モジュール200Cの外観を示すための図である。
<Surface emitting module 200C>
With reference to FIG. 10, the surface emitting module 200C according to the modification of the surface emitting module 200B is demonstrated. FIG. 10 is a diagram for illustrating the external appearance of the surface emitting module 200C.
 定電流源210は、面発光モジュール200B(図9参照)においては、スイッチ素子SW_1~SW_4に電気的に接続される吐き出し型の電源として示されていた。本変形例に従う面発光モジュール200Cにおいては、図10に示されるように、定電流源210は、スイッチ素子SW_A~SW_Dに電気的に接続される吸い込み型の電源として構成されてもよい。スイッチ素子SW_A~SW_Dは、電圧源611が作る基準電位と定電流源210との間に接続されている。 The constant current source 210 was shown as a discharge-type power source electrically connected to the switch elements SW_1 to SW_4 in the surface emitting module 200B (see FIG. 9). In the surface emitting module 200C according to the present modification, as shown in FIG. 10, the constant current source 210 may be configured as a suction type power source electrically connected to the switch elements SW_A to SW_D. The switch elements SW_A to SW_D are connected between the reference potential created by the voltage source 611 and the constant current source 210.
 (タイミングチャート)
 図11を参照して、図9に示される点P1~P4,PA~PDのそれぞれの時間と電流値との関係について説明する。図11は、面発光モジュール200Bのタイミングチャートを示す図である。
(Timing chart)
Referring to FIG. 11, the relationship between the time and current value at points P1 to P4 and PA to PD shown in FIG. 9 will be described. FIG. 11 is a diagram illustrating a timing chart of the surface emitting module 200B.
 発光制御回路310は、スイッチ素子SW_1~SW4(以下、「第1のスイッチ素子」ともいう。)の1つと、スイッチ素子SW_A~SW_D(以下、「第2のスイッチ素子」ともいう。)のうちの1つとの複数の組み合わせのうちの順次選択される組み合わせに対応する第1のスイッチ素子および第2のスイッチ素子を駆動する。典型的には、発光制御回路310は、第1のスイッチ素子および第2のスイッチ素子のうちのいずれか一方の駆動(OFF→ON)を一順する毎に他方のスイッチ素子のうちの1つを順次駆動(OFF→ON)する。 The light emission control circuit 310 includes one of the switch elements SW_1 to SW4 (hereinafter also referred to as “first switch element”) and the switch elements SW_A to SW_D (hereinafter also referred to as “second switch element”). The first switch element and the second switch element corresponding to the sequentially selected combination of the plurality of combinations with the first switch element are driven. Typically, each time the light emission control circuit 310 sequentially drives (OFF → ON) one of the first switch element and the second switch element, one of the other switch elements is selected. Are sequentially driven (OFF → ON).
 より具体的には、時間t1Aにおいて、発光制御回路310は、スイッチ素子SW_1を駆動(OFF→ON)して、電源経路601と点P1との間の経路を導通状態にする。スイッチ素子SW_1は、予め定められた期間(時間t1Aから時間t2Aまで)ONされる。また、時間t1Aにおいて、発光制御回路310は、スイッチ素子SW_Aを駆動(OFF→ON)して、点PAとグランド電位620との間の経路を導通状態にする。スイッチ素子SW_Aは、予め定められた期間(時間t1Aから時間t1Bまで)ONされる。これにより、定電流源210から出力された電流が点P1と点PAとの間を流れ、発光ユニット10_1Aが発光する。 More specifically, at time t1A, the light emission control circuit 310 drives the switch element SW_1 (OFF → ON) to bring the path between the power supply path 601 and the point P1 into a conductive state. The switch element SW_1 is turned on for a predetermined period (from time t1A to time t2A). Further, at time t1A, the light emission control circuit 310 drives the switch element SW_A (OFF → ON) to bring the path between the point PA and the ground potential 620 into a conductive state. The switch element SW_A is turned on for a predetermined period (from time t1A to time t1B). As a result, the current output from the constant current source 210 flows between the point P1 and the point PA, and the light emitting unit 10_1A emits light.
 時間t1Bにおいて、発光制御回路310は、スイッチ素子SW_Aを駆動(ON→OFFにする)。これにより、発光ユニット10_1Aは消灯する。また、時間t1Bにおいて、発光制御回路310は、スイッチ素子SW_Bを駆動(OFF→ON)して、点PBとグランド電位620との間の経路を導通状態にする。スイッチ素子SW_Bは、予め定められた期間(時間t1Bから時間t1Cまで)ONされる。これにより、定電流源210から出力された電流は点P1と点PBとの間を流れ、発光ユニット10_1Bは発光する。 At time t1B, the light emission control circuit 310 drives (switches from ON to OFF) the switch element SW_A. As a result, the light emitting unit 10_1A is turned off. At time t1B, the light emission control circuit 310 drives the switch element SW_B (OFF → ON) to bring the path between the point PB and the ground potential 620 into a conductive state. The switch element SW_B is turned on for a predetermined period (from time t1B to time t1C). Thereby, the current output from the constant current source 210 flows between the points P1 and PB, and the light emitting unit 10_1B emits light.
 以下、発光制御回路310は、同様に、スイッチ素子SW_BをOFFして、スイッチ素子SW_CをONする。その後、発光制御回路310は、同様に、スイッチ素子SW_CをOFFして、スイッチ素子SW_DをONする。 Hereinafter, the light emission control circuit 310 similarly turns off the switch element SW_B and turns on the switch element SW_C. Thereafter, the light emission control circuit 310 similarly turns off the switch element SW_C and turns on the switch element SW_D.
 時間t2Aにおいて、発光制御回路310は、スイッチ素子SW_1を駆動(ON→OFFにする)。これにより、電源経路601と点P1との間は非導通状態になる。また、時間t2Aにおいて、発光制御回路310は、スイッチ素子SW_2を駆動(OFF→ON)して、電源経路601と点P2との間の経路を導通状態にする。スイッチ素子SW_2は、予め定められた期間(時間t2Aから時間t3Aまで)ONされる。また、時間t2Aにおいて、発光制御回路310は、スイッチ素子SW_Aを駆動(OFF→ON)して、グランド電位620と点PAとの間の経路を導通状態にする。これにより、定電流源210から出力された電流は点P2と点PAとの間を流れ、発光ユニット10_2Aは発光する。 At time t2A, the light emission control circuit 310 drives (switches from ON to OFF) the switch element SW_1. As a result, the power supply path 601 and the point P1 become non-conductive. Further, at time t2A, the light emission control circuit 310 drives the switch element SW_2 (OFF → ON) to bring the path between the power supply path 601 and the point P2 into a conductive state. The switch element SW_2 is turned on for a predetermined period (from time t2A to time t3A). Further, at time t2A, the light emission control circuit 310 drives the switch element SW_A (OFF → ON) to bring the path between the ground potential 620 and the point PA into a conductive state. Thereby, the current output from the constant current source 210 flows between the point P2 and the point PA, and the light emitting unit 10_2A emits light.
 以下、発光制御回路310は、同様にスイッチ素子SW_B~SW_Dを順次駆動(OFF→ON)し、発光ユニット10_2B~10_2Dを順次発光させる。 Hereinafter, similarly, the light emission control circuit 310 sequentially drives the switch elements SW_B to SW_D (OFF → ON) to sequentially emit the light emitting units 10_2B to 10_2D.
 その後、発光制御回路310は、スイッチ素子SW_3を駆動(OFF→ON)して、さらに、スイッチ素子SW_A~SW_Dを順次駆動(OFF→ON)する。これにより、発光制御回路310は、発光ユニット10_3A~10_3Dを順次発光させる。 Thereafter, the light emission control circuit 310 drives the switch element SW_3 (OFF → ON), and further sequentially drives the switch elements SW_A to SW_D (OFF → ON). Accordingly, the light emission control circuit 310 sequentially causes the light emitting units 10_3A to 10_3D to emit light.
 その後、発光制御回路310は、スイッチ素子SW_4を駆動(OFF→ON)して、さらに、スイッチ素子SW_A~SW_Dを順次駆動(OFF→ON)する。これにより、発光制御回路310は、発光ユニット10_4A~10_4D順次を発光させる。 Thereafter, the light emission control circuit 310 drives the switch element SW_4 (OFF → ON), and further sequentially drives the switch elements SW_A to SW_D (OFF → ON). Accordingly, the light emission control circuit 310 causes the light emitting units 10_4A to 10_4D to emit light sequentially.
 発光制御回路310は、このように各スイッチ素子の駆動の繰り返しを数十ヘルツ以上の周波数で行なう。また、電流は分流することがないため、発光ユニット10_1A~10_4Dの各々は同時に発光することがない。このため、発光ユニット10_1A~10_4Dの各々には一定の電流が印加され、常に一定の明るさで発光する。 The light emission control circuit 310 thus repeats driving of each switch element at a frequency of several tens of hertz or more. Further, since the current does not shunt, each of the light emitting units 10_1A to 10_4D does not emit light at the same time. For this reason, a constant current is applied to each of the light emitting units 10_1A to 10_4D, and light is always emitted with a constant brightness.
 また、発光ユニット10_1A~10_4Dの各々は、図示されるように、一定の電流でPWM(Pulse Width Modulation)駆動される。PWM方式での駆動は、電流値を調整する調光方式に比べて、発光ユニットの色度を一定に保つことができる。 Further, each of the light emitting units 10_1A to 10_4D is driven by PWM (Pulse Width Modulation) with a constant current as shown in the figure. Driving by the PWM method can keep the chromaticity of the light emitting unit constant compared to the dimming method that adjusts the current value.
 なお、発光ユニット10_1A~1_4Dの各々が発光する順番は特に制限されない。たとえば、発光制御回路310は、スイッチ素子SW_1~SW_4の駆動(OFF→ON)を一順する毎に、スイッチ素子SW_A~SW_Dの1つを駆動(OFF→ON)してもよい。また、このように列または行の一端から他端へ順次発光する順番でなくてもよい。 In addition, the order in which each of the light emitting units 10_1A to 1_4D emits light is not particularly limited. For example, the light emission control circuit 310 may drive (OFF → ON) one of the switch elements SW_A to SW_D every time the switch elements SW_1 to SW_4 are driven (OFF → ON) in sequence. Further, the order of sequentially emitting light from one end of the column or row to the other end is not necessary.
 また、図11に示される期間Tにおいては、いずれの発光ユニットも発光していない。発光制御回路310は、スイッチ素子SW_A~SW_Dの各々を駆動(OFF→ON)する時間を、期間Tを越えない範囲で一定に長くすることで、各発光ユニットの輝度を上げることができる。逆に、発光制御回路310は、スイッチ素子SW_A~SW_Dの各々を駆動(OFF→ON)する時間を、一定に短くすることで(この場合、期間Tは長くなる)、各発光ユニットの輝度を下げることができる。 Also, none of the light emitting units emits light during the period T shown in FIG. The light emission control circuit 310 can increase the luminance of each light emitting unit by making the time for driving (OFF → ON) each of the switch elements SW_A to SW_D constant within a range not exceeding the period T. On the contrary, the light emission control circuit 310 reduces the brightness of each light emitting unit by reducing the time for driving (OFF → ON) each of the switch elements SW_A to SW_D to be constant (in this case, the period T becomes longer). Can be lowered.
 <面発光モジュール200D>
 図12を参照して、面発光モジュール200Aの変形例に従う面発光モジュール200Dについて説明する。図12は、本願発明変形例に従う面発光モジュール200Dの外観を示すための図である。
<Surface emitting module 200D>
With reference to FIG. 12, surface emitting module 200D according to a modification of surface emitting module 200A will be described. FIG. 12 is a view for showing the appearance of a surface emitting module 200D according to a modification of the present invention.
 図8に示される面発光モジュール200Bのように、必ずしも、複数の発光ユニットが正方形状(4行×4列)に配置される必要はない。たとえば、図12に示される面発光モジュール200Bのように、発光ユニット10は、長方形状(たとえば、8行×2列)に配置されてもよい。また、発光ユニット10は、他の配置で組み立てられてもよい。発光ユニット10の各々は、他の発光ユニット10の1つと隣接するように配置されればよい。 As in the surface emitting module 200B shown in FIG. 8, a plurality of light emitting units are not necessarily arranged in a square shape (4 rows × 4 columns). For example, like the surface emitting module 200B shown in FIG. 12, the light emitting units 10 may be arranged in a rectangular shape (for example, 8 rows × 2 columns). Moreover, the light emitting unit 10 may be assembled in other arrangements. Each of the light emitting units 10 may be disposed adjacent to one of the other light emitting units 10.
 <照明装置100>
 図13を参照して第1の実施の形態に従う照明装置100の一例について説明する。図13は、照明装置100の外観を示すための図である。
<Lighting device 100>
An example of lighting apparatus 100 according to the first embodiment will be described with reference to FIG. FIG. 13 is a diagram for illustrating an external appearance of the illumination device 100.
 照明装置100は、定電流源210と、定電流源に接続された電源経路に並列接続された面発光モジュール200_1~200_4と、信号ライン702~704とを含む。同期信号を生成するための生成部510(図5参照)は、面発光モジュール200_1~200_4の発光制御回路310_1~310_4のいずれか1つに組み込まれている。以下、発光制御回路310_1が同期信号を生成する場合を例に挙げて説明する。 The lighting device 100 includes a constant current source 210, surface emitting modules 200_1 to 200_4 connected in parallel to a power supply path connected to the constant current source, and signal lines 702 to 704. A generation unit 510 (see FIG. 5) for generating a synchronization signal is incorporated in any one of the light emission control circuits 310_1 to 310_4 of the surface light emitting modules 200_1 to 200_4. Hereinafter, a case where the light emission control circuit 310_1 generates a synchronization signal will be described as an example.
 信号ライン702は、発光制御回路310_1と発光制御回路310_2とを電気的に接続する。信号ライン703は、発光制御回路310_1と発光制御回路310_3とを電気的に接続する。信号ライン704は、発光制御回路310_2と発光制御回路310_4とを電気的に接続する。 The signal line 702 electrically connects the light emission control circuit 310_1 and the light emission control circuit 310_2. The signal line 703 electrically connects the light emission control circuit 310_1 and the light emission control circuit 310_3. The signal line 704 electrically connects the light emission control circuit 310_2 and the light emission control circuit 310_4.
 発光制御回路310_1は、面発光モジュール200_1~200_4のうちの1つを順次選択するための同期信号を信号ライン702~704を介して面発光モジュール200_2~200_4に送信する。典型的には、発光制御回路310_1は、面発光モジュール200_1に隣接する面発光モジュール200_2の発光制御回路310_2と、面発光モジュール200_1に隣接する面発光モジュール200_3の発光制御回路310_3に同期信号を送信する。また、発光制御回路310_2は、面発光モジュール200_2に隣接する面発光モジュール200_4の発光制御回路310_4に受信した同期信号を送信する。 The light emission control circuit 310_1 transmits a synchronization signal for sequentially selecting one of the surface light emitting modules 200_1 to 200_4 to the surface light emitting modules 200_2 to 200_4 via the signal lines 702 to 704. Typically, the light emission control circuit 310_1 transmits a synchronization signal to the light emission control circuit 310_2 of the surface light emitting module 200_2 adjacent to the surface light emitting module 200_1 and the light emission control circuit 310_3 of the surface light emitting module 200_3 adjacent to the surface light emitting module 200_1. To do. The light emission control circuit 310_2 transmits the received synchronization signal to the light emission control circuit 310_4 of the surface light emitting module 200_4 adjacent to the surface light emitting module 200_2.
 発光制御回路310_1~310_4の各々は、当該発光制御部を識別する識別情報を記憶し、同期信号が識別情報に一致する場合に、当該発光制御部に対応する発光ユニット10を順次に発光させる。発光制御回路310_1~310_4の各々は、同期信号に応答して順次動作する。発光制御回路310_1~310_4の各々の動作については、上述の通りであるので説明を繰り返さない。 Each of the light emission control circuits 310_1 to 310_4 stores identification information for identifying the light emission control unit, and sequentially emits the light emitting units 10 corresponding to the light emission control unit when the synchronization signal matches the identification information. Each of the light emission control circuits 310_1 to 310_4 sequentially operates in response to the synchronization signal. Since each operation of light emission control circuits 310_1 to 310_4 is as described above, description thereof will not be repeated.
 (回路構成)
 図14を参照して、照明装置100についてさらに説明する。図14は、照明装置100の回路図である。面発光モジュール200_1~200_4の各々は、定電流源210に接続された電源経路601に並列接続されている。
(Circuit configuration)
The illumination device 100 will be further described with reference to FIG. FIG. 14 is a circuit diagram of the lighting device 100. Each of the surface emitting modules 200_1 to 200_4 is connected in parallel to a power supply path 601 connected to the constant current source 210.
 上述したように、信号ライン702は、発光制御回路310_1と発光制御回路310_2とを電気的に接続する。信号ライン703は、発光制御回路310_1と発光制御回路310_3とを電気的に接続する。信号ライン704は、発光制御回路310_2と発光制御回路310_4とを電気的に接続する。 As described above, the signal line 702 electrically connects the light emission control circuit 310_1 and the light emission control circuit 310_2. The signal line 703 electrically connects the light emission control circuit 310_1 and the light emission control circuit 310_3. The signal line 704 electrically connects the light emission control circuit 310_2 and the light emission control circuit 310_4.
 面発光モジュール200_1~200_4のその他の回路構成については、図9に示される面発光モジュール200Bと同様であるので説明を繰り返さない。 Since other circuit configurations of the surface light emitting modules 200_1 to 200_4 are the same as those of the surface light emitting module 200B shown in FIG. 9, the description thereof will not be repeated.
 以上のようにして、複数の発光モジュールに信号ラインを配線し、各発光モジュール間で同期をとることで、各発光モジュールの各発光ユニットが同時に発光させずに、安定した輝度で照明することが可能になる。また、1つの定電流源で複数の発光ユニット(たとえば、8行×8列=64個)をPWM駆動することが可能になるので電源の大型化を抑制することができる。 As described above, the signal lines are wired to the plurality of light emitting modules, and the light emitting modules are synchronized so that each light emitting unit of each light emitting module can illuminate with stable luminance without causing light emission at the same time. It becomes possible. In addition, since a plurality of light emitting units (for example, 8 rows × 8 columns = 64) can be PWM-driven by one constant current source, an increase in the size of the power supply can be suppressed.
 (タイミングチャート)
 図15を参照して、図14に示される点P1~P4,PA~PDのそれぞれの時間と電流値との関係について説明する。図15は、照明装置100のタイミングチャートを示す図である。
(Timing chart)
Referring to FIG. 15, the relationship between the time and current value of each of points P1 to P4 and PA to PD shown in FIG. 14 will be described. FIG. 15 is a diagram illustrating a timing chart of the lighting device 100.
 図15に示されるように、生成部510は、面発光モジュール200_1~200_4のうちの1つを選択するための同期信号を周期的に発生する。なお、本実施の形態では、面発光モジュール200_1→200_2→200_3→200_4→200_1・・・のように全ての面発光モジュールに対して周期的に同期信号を送信しているが、同期信号は、必ずしも周期的である必要はなく、たとえば、一部の面発光モジュールに対しては連続的(面発光モジュール200_1→200_1→200_1・・・)に送信されてもよい。本実施の形態では、生成部510は、周波数が異なるクロック信号801~804を一定時間毎に発生する。当該同期信号は、発光制御回路310_1~310_4の各々の各々に送信される。 As shown in FIG. 15, the generation unit 510 periodically generates a synchronization signal for selecting one of the surface emitting modules 200_1 to 200_4. In the present embodiment, the synchronization signal is periodically transmitted to all the surface emitting modules as in the surface emitting modules 200_1 → 200_2 → 200_3 → 200_4 → 200_1. It is not necessarily required to be periodic. For example, some surface emitting modules may be transmitted continuously (surface emitting modules 200_1 → 200_1 → 200_1...). In the present embodiment, generation unit 510 generates clock signals 801 to 804 having different frequencies at regular intervals. The synchronization signal is transmitted to each of the light emission control circuits 310_1 to 310_4.
 発光制御回路310_1~310_4の各々は、当該発光制御部を識別する識別情報を記憶している。発光制御回路310_1~310_4は、互いに異なる識別情報を記憶する。当該識別情報は、たとえば、発光制御回路310_1~310_4の各々を示すID(Identification)などである。発光制御回路310_1~310_4の各々は、同期信号を受信すると、当該同期信号が自モジュールを指定するものであるか否かを判断する。 Each of the light emission control circuits 310_1 to 310_4 stores identification information for identifying the light emission control unit. The light emission control circuits 310_1 to 310_4 store different identification information. The identification information is, for example, ID (Identification) indicating each of the light emission control circuits 310_1 to 310_4. When each of the light emission control circuits 310_1 to 310_4 receives the synchronization signal, it determines whether or not the synchronization signal designates its own module.
 以下、発光制御回路310_1~310_4のそれぞれに、ID:1~ID:4のそれぞれが割り当てられている場合を例に挙げて説明する。発光制御回路310_1~310_4の各々は、同期信号の1パルス目を受信してから予め定められた時間内に受信するパルスの数が、自発光制御回路のIDに等しいか否かを判断する。たとえば、発光制御回路310_1~310_4の各々が2パルスのクロック信号802を受信した場合、ID:2の発光制御回路310_2が駆動する。発光制御回路310_2は、駆動することで、当該同期信号を受信してから期間T2の間に、面発光モジュール200_2に含まれる発光ユニットを順次駆動する。なお、発光制御回路310_2の動作については、図9において示される発光制御回路310と同様であるので説明を繰り返さない。 Hereinafter, a case where IDs 1 to ID: 4 are assigned to the light emission control circuits 310_1 to 310_4 will be described as an example. Each of the light emission control circuits 310_1 to 310_4 determines whether or not the number of pulses received within a predetermined time after receiving the first pulse of the synchronization signal is equal to the ID of the self light emission control circuit. For example, when each of the light emission control circuits 310_1 to 310_4 receives a two-pulse clock signal 802, the light emission control circuit 310_2 with ID: 2 is driven. The light emission control circuit 310_2 is driven to sequentially drive the light emitting units included in the surface light emitting module 200_2 during the period T2 after receiving the synchronization signal. Note that the operation of the light emission control circuit 310_2 is the same as that of the light emission control circuit 310 shown in FIG. 9, and thus description thereof will not be repeated.
 発光制御回路310_1~310_4の各々は、一定時間毎に送信される同期信号に応答して動作するため、発光ユニット10_1A~10_4Dに印加される電流は、分流することがない。すなわち、発光ユニットのうちの2つ以上が、同時に発光することはない。また、すべての発光ユニットには、同じ強さの電流が同じ時間だけ印加される。このため、各発光ユニットの輝度差(発光ムラ)を低減することできる。 Since each of the light emission control circuits 310_1 to 310_4 operates in response to a synchronization signal transmitted every predetermined time, the current applied to the light emitting units 10_1A to 10_4D does not shunt. That is, two or more of the light emitting units do not emit light simultaneously. Further, the same intensity of current is applied to all the light emitting units for the same time. For this reason, the brightness | luminance difference (light emission nonuniformity) of each light emission unit can be reduced.
 なお、照明装置100に含まれる面発光モジュールの数は、図示されるように4つに限定されない。照明装置100に含まれる面発光モジュールの数は、2つ、3つ、または5つ以上であってもよい。 Note that the number of surface emitting modules included in the lighting device 100 is not limited to four as illustrated. The number of surface emitting modules included in the lighting device 100 may be two, three, five, or more.
 [第2の実施の形態]
 <照明装置100A>
 図16を参照して第2の実施の形態に従う照明装置100Aについて説明する。本実施の形態に従う照明装置100Aにおいては、面発光モジュールの各々の形状が第1の実施の形態に従う照明装置100と異なる。その他の点については、第1の実施の形態に従う照明装置100と同様であるので説明を繰り返さない。
[Second Embodiment]
<Lighting device 100A>
Illumination device 100A according to the second embodiment will be described with reference to FIG. In lighting apparatus 100A according to the present embodiment, each shape of the surface emitting module is different from that of lighting apparatus 100 according to the first embodiment. Other points are the same as those of lighting device 100 according to the first embodiment, and therefore description thereof will not be repeated.
 図16は、本実施の形態に従う照明装置100Aの外観を示すための図である。図16に示されるように、面発光モジュール200_1~200_4の各々は、第1の実施の形態に従う照明装置100のように、面発光モジュール200_1~200_4の各々に含まれる発光ユニットは、正方形状(4行×4列)に配置される必要はない。たとえば、面発光モジュール200_1~200_4の各々に含まれる発光ユニットは、図16に示されるように、長方形状(たとえば、8行×2列)に配置されてもよい。 FIG. 16 is a diagram for illustrating an external appearance of lighting apparatus 100A according to the present embodiment. As shown in FIG. 16, each of the surface light emitting modules 200_1 to 200_4 includes a square light emitting unit included in each of the surface light emitting modules 200_1 to 200_4 like the lighting device 100 according to the first embodiment. (4 rows × 4 columns). For example, the light emitting units included in each of the surface light emitting modules 200_1 to 200_4 may be arranged in a rectangular shape (for example, 8 rows × 2 columns) as shown in FIG.
 これにより、照明装置100Aは、発光制御回路310_1~310_4の各々を、第1の実施の形態に従う照明装置100よりも近付けて配置することが可能になる。すなわち、信号ラインを短くすることができ、より容易に照明装置100を拡張することが可能になる。 Thereby, the illumination device 100A can arrange each of the light emission control circuits 310_1 to 310_4 closer to the illumination device 100 according to the first embodiment. That is, the signal line can be shortened, and the lighting device 100 can be expanded more easily.
 なお、照明装置100Aにおいては、8行×2列の発光ユニットを含む面発光モジュール200_1~200_4が正方形状(8行×8列)になるように配置されているが、面発光モジュール200_1~200_4は、長方形状になるように配置されてもよい。発光モジュールの各々は、他の発光モジュールの1つと隣接するように配置されればよい。 In the illumination device 100A, the surface light emitting modules 200_1 to 200_4 including the light emitting units of 8 rows × 2 columns are arranged in a square shape (8 rows × 8 columns), but the surface light emitting modules 200_1 to 200_4 are arranged. May be arranged in a rectangular shape. Each of the light emitting modules may be disposed adjacent to one of the other light emitting modules.
 [第3の実施の形態]
 <照明装置100B>
 図17を参照して第3の実施の形態に従う照明装置100Bについて説明する。本実施の形態に従う照明装置100Bは、発光制御回路が面発光モジュールの外部に配置される点で第2の実施の形態に従う照明装置100Aと異なる。その他の点については、第2の実施の形態に従う照明装置100Aと同様であるので説明を繰り返さない。
[Third Embodiment]
<Lighting device 100B>
With reference to FIG. 17, illumination apparatus 100B according to the third embodiment will be described. Lighting device 100B according to the present embodiment is different from lighting device 100A according to the second embodiment in that the light emission control circuit is arranged outside the surface emitting module. Since other points are similar to those of lighting device 100A according to the second embodiment, description thereof will not be repeated.
 図17は、本実施の形態に従う照明装置100Cの外観を示すための図である。照明装置100Cは、発光制御回路310_1~310_4を、複数の発光ユニット10の外部に配置している。このように、光制御回路を面発光モジュールの面上(厚み方向)ではなく、複数の発光ユニット10の外部に配置することにより、照明装置100Cをさらに薄型化することができる。 FIG. 17 is a diagram for illustrating an external appearance of lighting apparatus 100C according to the present embodiment. In the lighting device 100C, the light emission control circuits 310_1 to 310_4 are arranged outside the plurality of light emitting units 10. Thus, by arranging the light control circuit outside the plurality of light emitting units 10 instead of on the surface of the surface light emitting module (thickness direction), the lighting device 100C can be further reduced in thickness.
 [第4の実施の形態]
 <照明装置100C>
 図18を参照して第4の実施の形態に従う照明装置100Cについて説明する。本実施の形態に従う照明装置100Cは、発光ユニットが複数の面状の発光素子を有する点で第1の実施の形態に従う照明装置100と異なる。その他の点については、第1の実施の形態に従う照明装置100と同様であるので説明を繰り返さない。
[Fourth Embodiment]
<Lighting device 100C>
Illumination device 100C according to the fourth embodiment will be described with reference to FIG. Lighting device 100C according to the present embodiment differs from lighting device 100 according to the first embodiment in that the light emitting unit has a plurality of planar light emitting elements. Other points are the same as those of lighting device 100 according to the first embodiment, and therefore description thereof will not be repeated.
 図18は、第4の実施の形態に従う照明装置100Cの回路図である。面発光モジュール200_1~200_4の各々は、スイッチ素子SW_1~SW_4を含む。スイッチ素子SW_1~SW_4のそれぞれは、電源経路601からグランド電位620までのそれぞれの経路に1つずつ介挿されている。 FIG. 18 is a circuit diagram of lighting apparatus 100C according to the fourth embodiment. Each of the surface emitting modules 200_1 to 200_4 includes switch elements SW_1 to SW_4. Each of the switch elements SW_1 to SW_4 is inserted in each path from the power supply path 601 to the ground potential 620.
 面発光モジュール200_1~200_4は、各々、発光ユニット10_1~10_4を有する。 The surface light emitting modules 200_1 to 200_4 have light emitting units 10_1 to 10_4, respectively.
 各面発光モジュールの発光ユニット10_1は、発光素子11_1A~11_1Dを有する。発光素子11_1A~11_1Dは、スイッチ素子SW_1とグランド電位620との間に直列に接続される。発光ユニット10_2は、発光素子11_2A~11_2Dを有する。発光素子11_2A~11_2Dは、スイッチ素子SW_2とグランド電位620との間に直列に接続される。発光ユニット10_3は、発光素子11_3A~11_3Dを有する。発光素子11_3A~11_3Dは、スイッチ素子SW_3とグランド電位620との間に直列に接続される。発光ユニット10_4は、発光素子11_4A~11_4Dを有する。発光素子11_4A~11_4Dは、スイッチ素子SW_4とグランド電位620との間に直列に接続される。 The light emitting unit 10_1 of each surface light emitting module includes light emitting elements 11_1A to 11_1D. The light emitting elements 11_1A to 11_1D are connected in series between the switch element SW_1 and the ground potential 620. The light emitting unit 10_2 includes light emitting elements 11_2A to 11_2D. The light emitting elements 11_2A to 11_2D are connected in series between the switch element SW_2 and the ground potential 620. The light emitting unit 10_3 includes light emitting elements 11_3A to 11_3D. The light emitting elements 11_3A to 11_3D are connected in series between the switch element SW_3 and the ground potential 620. The light emitting unit 10_4 includes light emitting elements 11_4A to 11_4D. The light emitting elements 11_4A to 11_4D are connected in series between the switch element SW_4 and the ground potential 620.
 発光制御回路310は、同期信号による自モジュールの選択に応答して、自モジュールに対応する複数のスイッチ素子の1つを順次駆動する。たとえば、生成部510により生成された同期信号が面発光モジュール200_2を選択した場合には、面発光モジュール200_2に含まれる発光制御回路310は、面発光モジュール200_2に含まれるスイッチ素子SW_1~SW_4を順次駆動(OFF→ON)する。この場合、発光素子のそれぞれは、直列接続されているため、定電流源210から出力される電流は、分流することがない。このため、発光ユニット10_1~10_4は、同時に点灯することはない。また、発光ユニット10_1~10_4には、同じ強さの電流が印加される。このため、各発光ユニットの輝度差(発光ムラ)を低減することできる。 The light emission control circuit 310 sequentially drives one of a plurality of switch elements corresponding to the own module in response to the selection of the own module by the synchronization signal. For example, if the synchronization signal generated by the generation unit 510 selects the surface emitting module 200_2, the light emission control circuit 310 included in the surface emitting module 200_2 sequentially switches the switch elements SW_1 to SW_4 included in the surface emitting module 200_2. Drive (OFF → ON). In this case, since each of the light emitting elements is connected in series, the current output from the constant current source 210 is not shunted. For this reason, the light emitting units 10_1 to 10_4 are not lit simultaneously. In addition, currents of the same strength are applied to the light emitting units 10_1 to 10_4. For this reason, the brightness | luminance difference (light emission nonuniformity) of each light emission unit can be reduced.
 また、発光モジュールの数および発光ユニットの数を増加した場合、各発光ユニットの発光周期が長くなる。これにより、照明がちらつく場合がある。照明装置100Cは、発光ユニットに含まれる直列接続された発光素子を単位として発光ユニットを順次発光させるので、発光ユニットに含まれる複数の発光素子を並列に接続した場合に比べて各発光ユニットの発光周期を短くすることができる。すなわち、照明のちらつきを低減することができる。 Also, when the number of light emitting modules and the number of light emitting units are increased, the light emission cycle of each light emitting unit becomes longer. Thereby, the illumination may flicker. Since the lighting device 100C sequentially emits light from the light emitting units connected in series in the light emitting unit, the light emitting units emit light as compared with the case where a plurality of light emitting elements included in the light emitting unit are connected in parallel. The period can be shortened. That is, flickering of illumination can be reduced.
 [照明装置100A~100Dの制御構造]
 図19を参照して、第1~第4の実施の形態に従う照明装置100A~100Dの制御構造について説明する。図19は、照明装置100A~100Dが実行する処理の一部を表わすフローチャートである。図19の処理は、照明装置100A~100Dの発光制御回路310(図8参照)がプログラムを実行することにより実現される。他の局面において、処理の一部が、他の回路素子、その他のハードウェアによって実行されてもよい。
[Control structure of lighting devices 100A to 100D]
Referring to FIG. 19, a control structure of lighting apparatuses 100A to 100D according to the first to fourth embodiments will be described. FIG. 19 is a flowchart showing a part of processing executed by lighting devices 100A to 100D. The processing in FIG. 19 is realized by the light emission control circuit 310 (see FIG. 8) of the illumination devices 100A to 100D executing a program. In other aspects, part of the processing may be executed by other circuit elements or other hardware.
 以下では、照明装置100A~100Dに備えられる面発光モジュールの数が4つである場合の制御構造について説明する。なお、面発光モジュールの数が3つ以下または5つ以上である場合には、後述するステップS110,S120,S130,S140の自モジュールの判断処理と、後述するステップS112,S122,S132,S142の自モジュール内の発光ユニットを順次発光させる処理とが面発光モジュールの数に応じて設けられる。 Hereinafter, a control structure in the case where the number of surface emitting modules provided in the lighting devices 100A to 100D is four will be described. When the number of surface emitting modules is three or less or five or more, the determination process of the own module in steps S110, S120, S130, and S140 described later, and steps S112, S122, S132, and S142 described later are performed. A process of sequentially emitting light from the light emitting units in the own module is provided according to the number of surface emitting modules.
 ステップS102において、発光制御回路310は、上述の生成部510(図5参照)として、面発光モジュール200_1~200_4のうちの1つを順次選択するための同期信号を生成する。 In step S102, the light emission control circuit 310 generates a synchronization signal for sequentially selecting one of the surface light emitting modules 200_1 to 200_4 as the generation unit 510 (see FIG. 5).
 ステップS110において、発光制御回路310は、面発光モジュール200_1が選択されたか否かを判断する。発光制御回路310は、面発光モジュール200_1が選択されたと判断した場合(ステップS110においてYES)、制御をステップS112に切り替える。そうでない場合には(ステップS110においてNO)、発光制御回路310は、制御をステップS120に切り替える。ステップS112において、発光制御回路310は、面発光モジュール200_1内の発光ユニットを順次発光させる。 In step S110, the light emission control circuit 310 determines whether or not the surface emitting module 200_1 has been selected. If the light emission control circuit 310 determines that the surface light emitting module 200_1 has been selected (YES in step S110), the light emission control circuit 310 switches the control to step S112. If not (NO in step S110), light emission control circuit 310 switches control to step S120. In step S112, the light emission control circuit 310 causes the light emitting units in the surface light emitting module 200_1 to emit light sequentially.
 ステップS120において、発光制御回路310は、面発光モジュール200_2が選択されたか否かを判断する。発光制御回路310は、面発光モジュール200_2が選択されたと判断した場合(ステップS120においてYES)、制御をステップS122に切り替える。そうでない場合には(ステップS120においてNO)、発光制御回路310は、制御をステップS130に切り替える。ステップS122において、発光制御回路310は、面発光モジュール200_2内の発光ユニットを順次発光させる。 In step S120, the light emission control circuit 310 determines whether or not the surface emitting module 200_2 has been selected. If the light emission control circuit 310 determines that the surface light emitting module 200_2 has been selected (YES in step S120), the light emission control circuit 310 switches the control to step S122. If not (NO in step S120), light emission control circuit 310 switches control to step S130. In step S122, the light emission control circuit 310 sequentially causes the light emitting units in the surface light emitting module 200_2 to emit light.
 ステップS130において、発光制御回路310は、面発光モジュール200_3が選択されたか否かを判断する。発光制御回路310は、面発光モジュール200_3が選択されたと判断した場合(ステップS130においてYES)、制御をステップS132に切り替える。そうでない場合には(ステップS130においてNO)、発光制御回路310は、制御をステップS140に切り替える。ステップS132において、発光制御回路310は、面発光モジュール200_3内の発光ユニットを順次発光させる。 In step S130, the light emission control circuit 310 determines whether or not the surface light emitting module 200_3 has been selected. If the light emission control circuit 310 determines that the surface light emitting module 200_3 has been selected (YES in step S130), the light emission control circuit 310 switches the control to step S132. If not (NO in step S130), light emission control circuit 310 switches control to step S140. In step S132, the light emission control circuit 310 causes the light emitting units in the surface light emitting module 200_3 to emit light sequentially.
 ステップS140において、発光制御回路310は、面発光モジュール200_4が選択されたか否かを判断する。発光制御回路310は、面発光モジュール200_4が選択されたと判断した場合(ステップS140においてYES)、制御をステップS142に切り替える。そうでない場合には(ステップS140においてNO)、発光制御回路310は、ステップS102の処理を再び実行する。ステップS142において、発光制御回路310は、面発光モジュール200_4内の発光ユニットを順次発光させる。 In step S140, the light emission control circuit 310 determines whether or not the surface light emitting module 200_4 has been selected. If the light emission control circuit 310 determines that the surface light emitting module 200_4 has been selected (YES in step S140), the light emission control circuit 310 switches the control to step S142. If not (NO in step S140), the light emission control circuit 310 executes the process of step S102 again. In step S142, the light emission control circuit 310 causes the light emitting units in the surface light emitting module 200_4 to emit light sequentially.
 ステップS150において、発光制御回路310は、上述の各実施の形態に従う処理を終了するか否かを判断する。たとえば、発光制御回路310は、照明装置100A~100Dの電源が切られた場合に、当該処理を終了する。発光制御回路310は、当該処理を終了すると判断した場合(ステップS150においてYES)、当該処理を終了する。そうでない場合には(ステップS150においてNO)、発光制御回路310は、再び制御をステップS102に戻す。 In step S150, the light emission control circuit 310 determines whether or not to end the processing according to each of the above-described embodiments. For example, the light emission control circuit 310 ends the processing when the lighting devices 100A to 100D are powered off. If the light emission control circuit 310 determines to end the process (YES in step S150), the light emission control circuit 310 ends the process. If not (NO in step S150), light emission control circuit 310 returns control to step S102 again.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10,10_1A~10_4D 発光ユニット、11_1A~11_4D 発光素子、20,200,200A~200D 面発光モジュール、50,100,100A~100C 照明装置、110 保持部材、120 基板、131~134,141,152, コネクタ、150,310 発光制御回路、161 配線部材、171,172 電極部材、173,174 電極取出部、175,176 棒状部、191,192,601 電源経路、210 定電流源、320 ケーブル、510 生成部、520 発光制御部、530 スイッチ部、620 グランド電位、702~704 信号ライン、801~804 クロック信号。 10, 10_1A to 10_4D light emitting unit, 11_1A to 11_4D light emitting element, 20, 200, 200A to 200D surface light emitting module, 50, 100, 100A to 100C lighting device, 110 holding member, 120 substrate, 131 to 134, 141, 152, Connector, 150, 310 light emission control circuit, 161 wiring member, 171, 172 electrode member, 173, 174 electrode extraction part, 175, 176 rod-shaped part, 191, 192, 601 power supply path, 210 constant current source, 320 cable, 510 generation Part, 520 light emission control part, 530 switch part, 620 ground potential, 702-704 signal line, 801-804 clock signal.

Claims (12)

  1.  定電流源と、
     前記定電流源に接続された電源経路に並列接続された複数の面発光モジュールとを備え、前記複数の面発光モジュールの各々は、他の面発光モジュールのうちの少なくとも1つに隣接して配置されており、
     前記複数の面発光モジュールのうちの1つを順次選択するための同期信号を生成する生成部を備え、
     前記複数の面発光モジュールの各々は、
      前記定電流源と基準電位との間に並列接続された複数の発光ユニットと、
      前記複数の発光ユニットの、前記定電流源と前記基準電位との間のそれぞれの経路を個別に導通または遮断するスイッチ部と、
      前記スイッチ部を駆動して、前記定電流源と前記基準電位との間の複数の経路のうちの1つを順次導通する発光制御部とを含み、
     前記複数の面発光モジュールの各々に含まれる前記発光制御部は、前記同期信号による自モジュールの選択に応答して、対応する前記スイッチ部の駆動を開始する、照明装置。
    A constant current source;
    A plurality of surface emitting modules connected in parallel to a power supply path connected to the constant current source, and each of the plurality of surface emitting modules is disposed adjacent to at least one of the other surface emitting modules. Has been
    A generator for generating a synchronization signal for sequentially selecting one of the plurality of surface emitting modules;
    Each of the plurality of surface emitting modules is
    A plurality of light emitting units connected in parallel between the constant current source and a reference potential;
    A switch unit for individually conducting or blocking each path between the constant current source and the reference potential of the plurality of light emitting units;
    A light emission control unit that drives the switch unit to sequentially conduct one of a plurality of paths between the constant current source and the reference potential;
    The light emission control unit included in each of the plurality of surface light emitting modules starts driving the corresponding switch unit in response to selection of the own module by the synchronization signal.
  2.  前記複数の面発光モジュールの各々に含まれる前記発光制御部は、前記定電流源と前記基準電位との間のそれぞれの経路を導通させる時間が互いに同じになるように前記スイッチ部を駆動する、請求項1に記載の照明装置。 The light emission control unit included in each of the plurality of surface light emitting modules drives the switch unit so that the times for conducting the respective paths between the constant current source and the reference potential are the same. The lighting device according to claim 1.
  3.  前記複数の面発光モジュールの各々に含まれる前記複数の発光ユニットは、行列状に配置され、
     前記複数の面発光モジュールの各々に含まれる前記スイッチ部は、
      行列状に配置された前記複数の発光ユニットのそれぞれの列に対応付けられた複数のスイッチ素子からなる第1群のスイッチ素子と、
      行列状に配置された前記複数の発光ユニットのそれぞれの行に対応付けられた複数のスイッチ素子からなる第2群のスイッチ素子とを含み、
     前記第1群のスイッチ素子の各々は、対応する列に配置された複数の発光ユニットの一端を一括して前記定電流源に接続可能に構成されており、
     前記第2群のスイッチ素子の各々は、対応する行に配置された複数の発光ユニットの他端を一括して前記基準電位に接続可能に構成されており、
     前記複数の面発光モジュールの各々に含まれる前記発光制御部は、前記第1群のスイッチ素子のうち1つと前記第2群のスイッチ素子のうちの1つとからなる複数の組み合わせのうち、順次選択される組み合わせに対応する2つのスイッチ素子を順次駆動する、請求項1または2に記載の照明装置。
    The plurality of light emitting units included in each of the plurality of surface emitting modules are arranged in a matrix,
    The switch unit included in each of the plurality of surface emitting modules includes:
    A first group of switch elements consisting of a plurality of switch elements associated with respective columns of the plurality of light emitting units arranged in a matrix;
    A second group of switch elements consisting of a plurality of switch elements associated with each row of the plurality of light emitting units arranged in a matrix,
    Each of the first group of switch elements is configured to be able to connect one end of a plurality of light emitting units arranged in a corresponding row to the constant current source in a lump.
    Each of the switch elements of the second group is configured to be able to connect the other ends of a plurality of light emitting units arranged in a corresponding row to the reference potential in a lump.
    The light emission control unit included in each of the plurality of surface light emitting modules sequentially selects a plurality of combinations of one of the first group of switch elements and one of the second group of switch elements. The lighting device according to claim 1, wherein two switch elements corresponding to the combination to be combined are sequentially driven.
  4.  前記複数の面発光モジュールの各々に含まれる前記スイッチ部は、各発光ユニットの前記定電流源と前記基準電位との間のそれぞれの経路に各々介挿された複数のスイッチ素子を有し、
     前記複数の面発光モジュールの各々に含まれる前記発光制御部は、前記同期信号による自モジュールの選択に応答して、対応する前記複数のスイッチ素子の1つの順次駆動を開始する、請求項1または2に記載の照明装置。
    The switch unit included in each of the plurality of surface light emitting modules has a plurality of switch elements respectively inserted in respective paths between the constant current source and the reference potential of each light emitting unit,
    The light emission control unit included in each of the plurality of surface emitting modules starts sequential driving of one of the corresponding switch elements in response to selection of the module by the synchronization signal. 2. The illumination device according to 2.
  5.  前記生成部は、複数の前記発光制御部のうちの1つに組み込まれており、
     前記生成部が組み込まれた第1の面発光モジュールから隣接する第2の面発光モジュールに含まれる発光制御部へ前記同期信号が伝送されるように構成されており、
     前記第2の面発光モジュールから隣接する第3の面発光モジュールに含まれる発光制御部へ前記同期信号がさらに伝送されるように構成されている、請求項1~4のいずれか1項に記載の照明装置。
    The generation unit is incorporated in one of the plurality of light emission control units,
    The synchronization signal is configured to be transmitted from a first surface light emitting module in which the generation unit is incorporated to a light emission control unit included in an adjacent second surface light emitting module,
    5. The structure according to claim 1, wherein the synchronization signal is further transmitted from the second surface light emitting module to a light emission control unit included in an adjacent third surface light emitting module. Lighting equipment.
  6.  前記生成部は、前記同期信号として、順次選択される発光制御部の識別情報を示す信号を出力し、
     前記複数の面発光モジュールの各々に含まれる前記発光制御部は、予め格納された自モジュールを識別する識別情報と、前記同期信号に含まれる前記識別情報とが一致すると、対応する前記スイッチ部の駆動を開始する、請求項1~5のいずれか1項に記載の照明装置。
    The generation unit outputs a signal indicating identification information of the light emission control units sequentially selected as the synchronization signal,
    The light emission control unit included in each of the plurality of surface light emitting modules, when the identification information for identifying the own module stored in advance matches the identification information included in the synchronization signal, The lighting device according to any one of claims 1 to 5, wherein driving is started.
  7.  前記複数の発光ユニットの各々は、互いに直列に接続された複数の発光素子を含む、請求項1~6のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 6, wherein each of the plurality of light emitting units includes a plurality of light emitting elements connected in series to each other.
  8.  前記定電流源は、前記複数の面発光モジュールの外部に配置されている、請求項1~7のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 7, wherein the constant current source is disposed outside the plurality of surface emitting modules.
  9.  前記複数の面発光モジュールの各々に含まれる前記発光制御部は、前記複数の面発光モジュールの各々に含まれる前記複数の発光ユニットの外部に配置されている、請求項1~8のいずれか1項に記載の照明装置。 9. The light emission control unit included in each of the plurality of surface emitting modules is disposed outside the plurality of light emitting units included in each of the plurality of surface emitting modules. The lighting device according to item.
  10.  前記複数の発光ユニットの各々は、
      別の発光ユニットと電気的に接続可能な、前記定電流源からの電流を遣り取りするための第1のコネクタと、
      さらに別の発光ユニットと電気的に接続可能な、前記定電流源からの電流を遣り取りするための第2のコネクタとを含む、請求項1~9のいずれか1項に記載の照明装置。
    Each of the plurality of light emitting units is
    A first connector for exchanging current from the constant current source, electrically connectable with another light emitting unit;
    The lighting device according to any one of claims 1 to 9, further comprising: a second connector for exchanging current from the constant current source, which is electrically connectable to another light emitting unit.
  11.  前記複数の発光ユニットの1つは、前記定電流源と電気的に接続が可能な電源コネクタを含む、請求項1~10のいずれか1項に記載の照明装置。 11. The lighting device according to claim 1, wherein one of the plurality of light emitting units includes a power connector that can be electrically connected to the constant current source.
  12.  照明装置を制御するための制御方法であって、
     前記照明装置は、
      定電流源と、
      前記定電流源に接続された電源経路に並列接続された複数の面発光モジュールとを備え、
     前記複数の面発光モジュールの各々は、
      他の面発光モジュールのうちの少なくとも1つに隣接して配置されており、
      前記定電流源と基準電位との間に並列接続された複数の発光ユニットと、
      前記複数の発光ユニットの、前記定電流源と前記基準電位との間のそれぞれの経路を個別に導通または遮断するスイッチ部とを含み、
     前記制御方法は、
      前記複数の面発光モジュールのうちの1つを順次選択するための同期信号を生成することと、
      前記同期信号による自モジュールの選択に応答して、対応する前記スイッチ部を駆動し、前記定電流源と前記基準電位との間の複数の経路のうちの1つを順次導通することとを含む、制御方法。
    A control method for controlling a lighting device, comprising:
    The lighting device includes:
    A constant current source;
    A plurality of surface emitting modules connected in parallel to the power supply path connected to the constant current source,
    Each of the plurality of surface emitting modules is
    Arranged adjacent to at least one of the other surface emitting modules,
    A plurality of light emitting units connected in parallel between the constant current source and a reference potential;
    A switch unit individually conducting or blocking each path between the constant current source and the reference potential of the plurality of light emitting units;
    The control method is:
    Generating a synchronization signal for sequentially selecting one of the plurality of surface emitting modules;
    In response to selection of the own module by the synchronization signal, driving the corresponding switch unit, and sequentially conducting one of a plurality of paths between the constant current source and the reference potential. , Control method.
PCT/JP2014/082392 2013-12-13 2014-12-08 Lighting device and control method WO2015087826A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015531363A JP5812233B1 (en) 2013-12-13 2014-12-08 Lighting device and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013258117 2013-12-13
JP2013-258117 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015087826A1 true WO2015087826A1 (en) 2015-06-18

Family

ID=53371131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082392 WO2015087826A1 (en) 2013-12-13 2014-12-08 Lighting device and control method

Country Status (2)

Country Link
JP (1) JP5812233B1 (en)
WO (1) WO2015087826A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003233347A (en) * 2001-08-02 2003-08-22 Seiko Epson Corp Supply of programming current to pixels
JP2005173184A (en) * 2003-12-11 2005-06-30 Casio Comput Co Ltd Display device and method for controlling drive of the same
JP2007183560A (en) * 2005-12-29 2007-07-19 Lg Phillips Lcd Co Ltd Backlight assembly and liquid crystal display module using the same
JP2008091340A (en) * 2006-10-02 2008-04-17 Keiho Kagi Yugenkoshi Light-emitting device and control method therefor
JP2009260193A (en) * 2008-04-21 2009-11-05 Nec Corp Led lighting circuit
JP2011070923A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Light-emitting module and lighting apparatus having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003233347A (en) * 2001-08-02 2003-08-22 Seiko Epson Corp Supply of programming current to pixels
JP2005173184A (en) * 2003-12-11 2005-06-30 Casio Comput Co Ltd Display device and method for controlling drive of the same
JP2007183560A (en) * 2005-12-29 2007-07-19 Lg Phillips Lcd Co Ltd Backlight assembly and liquid crystal display module using the same
JP2008091340A (en) * 2006-10-02 2008-04-17 Keiho Kagi Yugenkoshi Light-emitting device and control method therefor
JP2009260193A (en) * 2008-04-21 2009-11-05 Nec Corp Led lighting circuit
JP2011070923A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Light-emitting module and lighting apparatus having the same

Also Published As

Publication number Publication date
JPWO2015087826A1 (en) 2017-03-16
JP5812233B1 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
CN106469539A (en) Display panel and pixel circuit
US4870325A (en) Ornamental light display apparatus
US5008595A (en) Ornamental light display apparatus
US20110025230A1 (en) Driver device for leds
JP4744548B2 (en) Organic electroluminescence display
CN107924658B (en) LED display device and driving device
TW201313071A (en) Dimmable lighting devices and methods for dimming same
TWI505002B (en) Light emitting diode display
CN110383951B (en) LED lighting circuit
US8466619B2 (en) Illumination apparatus and driving method thereof
JP5256623B2 (en) Lighting device
US20140247596A1 (en) Led pattern display lamp
JP5812233B1 (en) Lighting device and control method
JP2017151142A (en) Display device
JP2022515947A (en) Methods and equipment for electroluminescent devices
WO2017029894A1 (en) Led display device and drive device
JP6125791B2 (en) LED light source device
JP5356170B2 (en) Light emitting module and lighting fixture having light emitting module
JP2009206048A (en) Ornamental lighting device, light-emitting device, and light-emitting motion control method
JP5271223B2 (en) Light emitting module device
JP2012142453A (en) Semiconductor light-emitting device
JP2009271414A (en) Lamp indicator
JP6853993B2 (en) Lighting unit and lighting equipment
TWI709953B (en) Pixel array
KR101295385B1 (en) Lighting apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015531363

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870058

Country of ref document: EP

Kind code of ref document: A1