WO2015087668A1 - Method for producing 1,3-butadiene - Google Patents

Method for producing 1,3-butadiene Download PDF

Info

Publication number
WO2015087668A1
WO2015087668A1 PCT/JP2014/080558 JP2014080558W WO2015087668A1 WO 2015087668 A1 WO2015087668 A1 WO 2015087668A1 JP 2014080558 W JP2014080558 W JP 2014080558W WO 2015087668 A1 WO2015087668 A1 WO 2015087668A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
solvent
gas
butadiene
volume
Prior art date
Application number
PCT/JP2014/080558
Other languages
French (fr)
Japanese (ja)
Inventor
裕子 岡田
裕一郎 佐々木
悠 深見
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2015552374A priority Critical patent/JPWO2015087668A1/en
Publication of WO2015087668A1 publication Critical patent/WO2015087668A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/11Purification; Separation; Use of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36

Definitions

  • the present invention relates to a method for producing 1,3-butadiene.
  • butadiene 1,3-butadiene
  • C4 fraction a fraction having 4 carbon atoms obtained by cracking naphtha.
  • separating these components by distillation is employ
  • Butadiene is increasing in demand as a raw material for synthetic rubber, etc., but the supply of C4 fraction has decreased due to factors such as the shift of ethylene production from naphtha cracking to ethane pyrolysis. Therefore, there is a demand for production of butadiene that does not use a C4 fraction as a raw material.
  • a method for separating butadiene from a product gas obtained by oxidative dehydrogenation of n-butene has attracted attention as a method for producing butadiene. Since the oxidative dehydrogenation reaction is a gas phase reaction at a high temperature, it is usually necessary to introduce the product gas obtained into a cooling tower or the like and contact it with water or cool it by contacting with water. However, the resulting product gas contains by-products such as water-soluble by-products other than butadiene and poorly water-soluble high-boiling by-products, and these by-products are precipitated by cooling. Since the cooling tower and the piping are closed, there is a disadvantage that continuous operation becomes difficult.
  • the method (1) since the oil component corresponding to the vapor pressure is contained in the product gas after cooling, a step of separately collecting this oil component is required.
  • the method (2) a method for maintaining the temperature of the product gas and the inner wall surface of the cooling tower at a specific temperature has been proposed. At the specific temperature, precipitation of high-boiling by-products occurs, and the cooling tower There is a risk of blockage of pipes and pipes.
  • the method (3) since two or more parallel lines corresponding to the by-products to be deposited are installed, there is a disadvantage that line blockage management, line switching work, cleaning work, etc. occur. is there.
  • the present invention has been made on the basis of the circumstances as described above, and the object thereof is to suppress precipitation of by-products and blockage of cooling towers and piping, and stable and continuous operation can be achieved. It is to provide a method for producing butadiene.
  • the invention made to solve the above problems is A step of obtaining a product gas containing 1,3-butadiene by an oxidative dehydrogenation reaction of a source gas containing n-butene and a molecular oxygen-containing gas in the presence of a metal oxide catalyst, and a step of cooling the product gas And in the cooling step, a cooling solvent containing an organic solvent and an aqueous alkali metal compound solution is brought into contact with a gas.
  • a cooling solvent containing an organic solvent in addition to the aqueous alkali metal compound solution in the cooling step, a water-insoluble high-boiling point together with a water-soluble byproduct that is soluble in the aqueous alkali metal compound solution.
  • By-products can be dissolved in the cooling solvent.
  • butadiene of the present invention when producing butadiene from a product gas obtained by oxidative dehydrogenation of n-butene, it is possible to suppress the clogging of cooling towers and piping due to precipitation of by-products. , Stable and continuous operation.
  • the method for producing butadiene according to an embodiment of the present invention includes a reaction process, a cooling process, a rough separation process, a separation process, and a desorption process.
  • a reaction process a cooling process, a rough separation process, a separation process, and a desorption process.
  • 1,3-butadiene is produced by an oxidative dehydrogenation reaction between a source gas containing n-butene (hereinafter also referred to as “source gas”) and a molecular oxygen-containing gas in the presence of a metal oxide catalyst.
  • source gas a source gas containing n-butene
  • molecular oxygen-containing gas in the presence of a metal oxide catalyst.
  • the raw material gas, inert gas, air, and water (steam) may be supplied directly to the reactor 1 from separate pipes, but are preferably supplied to the reactor 1 in a uniformly mixed state in advance. This is because, for example, it is possible to prevent a situation in which a non-uniform mixed gas partially forms explosive gas in the reactor 1.
  • the molecular oxygen-containing gas is usually a gas containing 10% by volume or more of molecular oxygen, preferably contains 15% by volume or more of molecular oxygen, and more preferably contains 20% by volume or more of molecular oxygen.
  • the molecular oxygen-containing gas air is preferable.
  • the molecular oxygen-containing gas may contain any impurity such as nitrogen, argon, neon, helium, CO, CO 2 , and water as long as the effects of the present invention are not impaired.
  • the amount of this impurity is usually 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less.
  • the amount of components other than nitrogen is usually 10% by volume or less, preferably 1% by volume or less. If the amount of this impurity is too large, it tends to be difficult to supply oxygen necessary for the reaction.
  • the inert gas (inert gas) is preferably supplied to the reactor 1 together with the raw material gas containing n-butene and the molecular oxygen-containing gas. By adding this inert gas, the concentration of the combustible gas such as butene and oxygen can be adjusted so that the mixed gas does not form squeal in the reactor 1.
  • the inert gas nitrogen argon, CO 2 and the like. Among these, nitrogen is preferable from an economical point of view.
  • the reactor 1 is preferably supplied with water (steam).
  • Water (steam) can adjust the concentration of the raw material gas and oxygen in the same manner as the inert gas, and can reduce the coking of the metal oxide catalyst.
  • the raw material gas refers to a gaseous material obtained by gasifying a raw material of 1,3-butadiene with a vaporizer (not shown in FIG. 1).
  • the raw material is n-butene, which is a monoolefin having 4 carbon atoms.
  • n-butene for example, a fraction mainly composed of n-butene (1-butene and 2-butene) obtained by separating butadiene and i-butene from a C 4 fraction by-produced by naphtha decomposition (raffinate 2) And a butene fraction produced by dehydrogenation or oxidative dehydrogenation of n-butane can be used.
  • a gas containing high-purity 1-butene, cis-2-butene, trans-2-butene or a mixture thereof obtained by dimerization of ethylene can also be used.
  • fluid catalytic cracking Flud Catalytic
  • FCC-C4 Fluid Catalytic cracking
  • the concentration of n-butene in the source gas is usually 40% by volume or more, preferably 60% by volume or more, more preferably 75% by volume or more, and particularly preferably 99% by volume or more.
  • the source gas may contain an arbitrary impurity as long as the effects of the present invention are not impaired.
  • the impurities include branched monoolefins such as i-butene; saturated hydrocarbons such as propane, n-butane and i-butane.
  • the source gas may contain 1,3-butadiene, which is a target of reaction, as an impurity.
  • the amount of these impurities is usually 60% by volume or less, preferably 40% by volume or less, more preferably 25% by volume or less, and particularly preferably 1% by volume or less based on the total amount of the raw material gas. If the amount is too large, the concentration of 1-butene or 2-butene, which are the main raw materials, decreases, and the reaction tends to be slow, or by-products tend to increase.
  • the lower limit of the concentration of n-butene in the mixed gas is preferably 2% by volume, more preferably 3% by volume, and even more preferably 5% by volume from the viewpoint of butadiene productivity.
  • the upper limit of the concentration of n-butene in the mixed gas is preferably 30% by volume, more preferably 25% by volume, and still more preferably 20% by volume from the viewpoint of suppressing the load on the metal oxide catalyst.
  • the lower limit of the ratio of O 2 to 100 parts by volume of the source gas is preferably 50 parts by volume, and more preferably 70 parts by volume.
  • the upper limit of the O 2 ratio is preferably 150 parts by volume, and more preferably 110 parts by volume.
  • the lower limit of the ratio of N 2 for the raw material gas 100 parts by volume preferably 200 parts by volume, more preferably 300 parts by volume.
  • the upper limit of the N 2 ratio is preferably 2,000 parts by volume, and more preferably 1,500 parts by volume.
  • the lower limit of the ratio of H 2 O for the raw material gas 100 parts by volume preferably 0 parts by volume, more preferably 100 parts by volume.
  • the upper limit of the H 2 O ratio is preferably 900 parts by volume, and more preferably 300 parts by volume. If the ratio of O 2 to the raw material gas deviates from this range, even if the reaction temperature is adjusted, it tends to be difficult to adjust the O 2 concentration at the reactor 1 outlet.
  • the ratio of N 2 and H 2 O increases, the raw material gas becomes thinner and the efficiency tends to deteriorate.
  • the ratio decreases the mixed gas enters the explosion composition and heat removal becomes difficult. Tend.
  • the explosion range here is a range having a composition in which the mixed gas is ignited in the presence of some ignition source. It is known that if the concentration of the source gas is lower than a certain value, it will not ignite even if an ignition source is present, and this concentration is called the lower explosion limit. In addition, it is known that if the concentration of the raw material gas is higher than a certain value, it does not ignite even if an ignition source is present, and this concentration is called the upper limit of explosion. Each value depends on the oxygen concentration. In general, the lower the oxygen concentration, the closer the values are, and the two match when the oxygen concentration reaches a certain value. The oxygen concentration at this time is called a critical oxygen concentration. If the oxygen concentration is lower than this, the mixed gas does not ignite regardless of the concentration of the raw material gas.
  • the amount of molecular oxygen-containing gas, inert gas and water vapor supplied to the reactor 1 is first adjusted so that the oxygen concentration at the inlet of the reactor 1 is the critical oxygen concentration.
  • the supply of the source gas is started after the following, and then the supply amount of the molecular oxygen-containing gas such as the source gas and air is increased so that the source gas concentration is higher than the upper limit of explosion. .
  • the supply amount of the source gas and the molecular oxygen-containing gas may be made constant by decreasing the supply amount of water vapor. If it does in this way, the gas residence time in piping or the reactor 1 is kept constant, and the fluctuation
  • the reactor 1 is filled with a metal oxide catalyst, which will be described later. Under this catalyst, the raw material gas reacts with oxygen to produce a gas containing 1,3-butadiene.
  • unsaturated carbonyl compounds having 3 to 4 carbon atoms such as acrolein, acrylic acid, methacrolein, methacrylic acid, maleic acid, fumaric acid and maleic anhydride can be generated in the product gas.
  • concentration of the unsaturated carbonyl compound is high, the unsaturated carbonyl compound dissolves and accumulates in the cooling solvent circulated in the cooling step described later, the absorption solvent circulated in the rough separation step, and the extraction solvent circulated in the extractive distillation step. It becomes easy to induce the generation of by-products.
  • the reaction temperature As a condition for setting the unsaturated carbonyl compound concentration within a certain range, there is a method of adjusting the reaction temperature during the oxidative dehydrogenation reaction.
  • This oxidative dehydrogenation reaction is an exothermic reaction, and the temperature rises due to the reaction.
  • the lower limit of the reaction temperature is usually 300 ° C, preferably 320 ° C.
  • the upper limit of the reaction temperature is usually 400 ° C., and preferably 380 ° C.
  • reaction temperature is less than 300 ° C.
  • the conversion of n-butene may decrease.
  • reaction temperature is higher than 400 ° C.
  • the concentration of the unsaturated carbonyl compound having 3 to 4 carbon atoms is increased, which tends to cause accumulation of by-products in the absorption solvent or extraction solvent and coking of the catalyst.
  • the reactor 1 is appropriately cooled by, for example, removing heat with a heat medium (dibenzyltoluene, nitrite, or the like) and the temperature of the catalyst layer is controlled to be constant.
  • a heat medium dibenzyltoluene, nitrite, or the like
  • the lower limit of the pressure in the reactor 1 is not particularly limited, but is usually 0 MPaG, preferably 0.02 MPaG, and more preferably 0.05 MPaG.
  • the upper limit is usually 0.5 MPaG, preferably 0.3 MPaG, and more preferably 0.1 MPaG.
  • the lower limit of the gas hourly space velocity in the oxidative dehydrogenation reaction preferably 500hr -1, 800hr -1 are more preferred.
  • the upper limit of GHSV preferably 5,000hr -1, 3,000hr -1 are more preferred.
  • the lower limit of the N 2 concentration in the product gas generated by the oxidative dehydrogenation reaction is preferably 35% by volume, and more preferably 45% by volume.
  • the upper limit of the N 2 concentration is preferably 90% by volume, and more preferably 80% by volume.
  • the lower limit of the H 2 O concentration preferably 5% by volume, more preferably 8% by volume.
  • the upper limit of the H 2 O concentration is preferably 60% by volume, and more preferably 40% by volume.
  • the lower limit of the butadiene concentration is preferably 3% by volume, and more preferably 5% by volume.
  • the upper limit of the butadiene concentration is preferably 20% by volume, more preferably 15% by volume.
  • the efficiency of the butadiene purification process can be improved, and side reactions of butadiene occurring in the purification process can be suppressed, thereby accumulating by-products. Can be suppressed.
  • the catalyst is not particularly limited as long as it functions as an oxidative dehydrogenation catalyst for a raw material gas, and a known catalyst can be used.
  • a known catalyst can be used.
  • molybdenum (Mo), bismuth (Bi), and iron (Fe) are used.
  • the thing containing the metal oxide which has at least is mentioned.
  • the composite metal oxide represented by following formula (1) is preferable.
  • X represents at least one element selected from Ni and Co.
  • Y represents at least one element selected from the group consisting of Li, Na, K, Rb, Cs, and Tl.
  • Z represents at least one element selected from the group consisting of Mg, Ca, Ce, Zn, Cr, Sb, As, B, P, and W.
  • a, b, c, d, e, f, g represent the atomic ratio of each element.
  • the metal oxide catalyst is highly active and highly selective in the method of producing butadiene by oxidative dehydrogenation using molecular oxygen, and further has excellent life stability.
  • the method for preparing the catalyst is not particularly limited, and a known method such as an evaporation / drying method using a raw material of each element, a spray drying method, or an oxide mixing method can be employed.
  • the raw material of each of the above elements is not particularly limited.
  • oxides, nitrates, carbonates, ammonium salts, hydroxides, carboxylates, carboxylate ammonium salts, ammonium halide salts, hydrogen acids, component elements, An alkoxide etc. are mentioned.
  • the catalyst may be used by supporting it on an inert carrier, and examples of the carrier species include silica, alumina, silicon carbide and the like.
  • This step the product gas from the reactor 1 is cooled.
  • This cooling process includes, for example, a rapid cooling process by the cooling tower 2 and a heat exchange process by the heat exchanger 3.
  • the product gas from the reactor 1 is sent to the cooling tower 2 through the pipe 101. From the upper part, a cooling solvent is introduced from the pipe 102, and this cooling solvent is brought into contact with the supplied product gas.
  • the cooling tower 2 include a packed tower, a plate tower, a spray tower, a wet wall tower, and a bubble tower, and a packed tower and a plate tower are preferable.
  • the packing material used in the packed tower include irregular packing materials such as Raschig rings, Berle saddles and cascade mini rings, and regular packing materials such as flexi packs and mela packs.
  • the cooling method in the cooling tower 2 is preferably a rapid cooling method in which the cooling solvent and the product gas are brought into countercurrent contact in a packed tower using an irregular packing material.
  • the product gas is cooled to about 30 ° C. or higher and 99 ° C. or lower by this countercurrent contact.
  • As the cooling solvent a mixed system of an organic solvent and an alkali metal compound aqueous solution is used.
  • water-insoluble by-products such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and maleic anhydride generated in the above-mentioned oxidative dehydrogenation reaction and poorly water-soluble such as fluorenone and anthraquinone High-boiling by-products can also be removed by dissolving in a cooling solvent.
  • an alkali metal aqueous solution an acid such as acrylic acid is neutralized to suppress corrosion of the apparatus.
  • the said cooling solvent may contain other solvents other than an organic solvent and alkali metal compound aqueous solution. The cooled solvent is discharged from the pipe 103.
  • the temperature of the cooling solvent to be introduced depends on the cooling temperature of the reaction product gas, the lower limit thereof is preferably 10 ° C., more preferably 20 ° C. On the other hand, as an upper limit of the temperature of a cooling medium, 90 degreeC is preferable, 70 degreeC is more preferable, and 40 degreeC is further more preferable.
  • the pressure in the cooling tower 2 is not particularly limited, the lower limit thereof is preferably 0 MPaG, more preferably 0.1 MPaG, and further preferably 0.2 MPaG.
  • the upper limit of the pressure in the cooling tower 2 is preferably 1.5 MPaG, more preferably 1.0 MPaG, and even more preferably 0.5 MPaG.
  • the organic solvent in the cooling step is preferably an aromatic compound, an amide compound, a sulfur compound, a nitrile compound, a ketone compound, an alcohol, or a combination thereof.
  • a cooling solvent containing the specific organic solvent it is possible to more effectively remove poorly water-soluble high-boiling by-products, and to further reduce process instability due to accumulation of these by-products.
  • these organic solvents may be used individually by 1 type, and may use 2 or more types together.
  • aromatic compound examples include toluene, xylene, benzene and the like.
  • amide compound examples include dimethylformamide and N-methyl-2-pyrrolidone (NMP).
  • Examples of the sulfur compound include dimethyl sulfoxide (DMSO) and sulfolane.
  • nitrile compound examples include acetonitrile and butyronitrile.
  • ketone compound examples include cyclohexanone and acetophenone.
  • Examples of the alcohols include methyl alcohol, ethyl alcohol, allyl alcohol, crotyl alcohol, and cyclopentanol.
  • the organic solvent in the cooling step is preferably an aromatic compound, and more preferably toluene.
  • the aqueous alkali metal compound solution in the cooling solvent is preferably an aqueous alkali metal hydroxide solution, such as an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or an aqueous lithium hydroxide solution.
  • a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution are more preferable, and a sodium hydroxide aqueous solution is more preferable.
  • concentration of alkali metal compound aqueous solution 1 mass% is preferable, 2 mass% is more preferable, and 3 mass% is further more preferable.
  • the upper limit of the alkali hydroxide concentration of the aqueous alkali metal compound solution is preferably 50% by mass, more preferably 40% by mass, and still more preferably 30% by mass.
  • these alkali metal compound aqueous solutions may be used individually by 1 type, and may use 2 or more types together.
  • Ammonia and amines can be used for the purpose of neutralization and carbon dioxide absorption, but ammonia is a toxic gas and is dangerous to use, and amines are weaker than alkali metals and are used for neutralization. Since the amount of use increases and the unit price is high, the butadiene production cost increases.
  • the lower limit of the content of the aqueous alkali metal compound solution in the cooling solvent is preferably 10% by mass, more preferably 20% by mass, and even more preferably 30% by mass.
  • the upper limit of the content of the alkali metal compound aqueous solution in the cooling solvent is preferably 80% by mass, more preferably 75% by mass, and even more preferably 70% by mass.
  • the lower limit of the content of the aqueous alkali metal compound solution in the cooling solvent is 5% by mass. 10 mass% is preferable and 15 mass% is more preferable.
  • As an upper limit of content of the alkali metal compound aqueous solution in the said cooling solvent 80 mass% is preferable, 70 mass% is more preferable, and 60 mass% is further more preferable.
  • the cooling solvent is circulated to the cooling tower 2 through the pipe 122 and used.
  • a part of the cooling solvent used for circulation is extracted from the pipe 103 and separated into an organic solvent and an aqueous alkali metal compound solution in the decanter 10.
  • the separated alkali metal compound aqueous solution containing an organic acid such as maleic acid or acrylic acid is discharged from the pipe 120.
  • the separated organic solvent is sent to the regenerator 11 through the pipe 121.
  • By-products such as poorly water-soluble high-boiling by-products are accumulated in the separated organic solvent, the by-products are removed in the regenerator 11.
  • the organic solvent after removing the by-products is reused to the cooling tower 2 through the pipe 102. By circulating the cooling solvent in this way, the drainage load from the pipe 120 can be reduced. In the present invention, this separation step may not be provided.
  • the concentration of each component in the product gas at the outlet of the cooling tower 2 is preferably 30% by volume and more preferably 40% by volume as the lower limit of N 2 .
  • the upper limit of the N 2 is preferably 80 vol%, more preferably 70% by volume.
  • the lower limit of H 2 O preferably 5% by volume, more preferably 10% by volume.
  • the upper limit of the H 2 O preferably 60 vol%, more preferably 45% by volume.
  • the lower limit of butadiene is preferably 3% by volume, and more preferably 5% by volume.
  • the upper limit of butadiene is preferably 20% by volume, and more preferably 15% by volume.
  • the product gas cooled in the cooling tower 2 flows out from the top of the cooling tower 2 and is cooled to about room temperature (10 ° C. or more and 30 ° C. or less) through the heat exchanger 3 from the pipe 104 to obtain a cooled product gas.
  • the lower limit of the N 2 is preferably 60 vol%, more preferably 70% by volume.
  • the upper limit of the N 2 is preferably 94 vol%, more preferably 85% by volume.
  • the lower limit of H 2 O 1% by volume is preferred.
  • the upper limit of the H 2 O preferably 20 vol%, more preferably 10% by volume.
  • the lower limit of butadiene is preferably 3% by volume, and more preferably 4% by volume.
  • the upper limit of butadiene is preferably 20% by volume, and more preferably 15% by volume.
  • ⁇ Rough separation process (absorption process)>
  • the cooled product gas is roughly separated into molecular oxygen and inert gases and other gases by selective absorption into an absorbing solvent.
  • “other gas” refers to a gas containing at least butadiene and unreacted n-butene absorbed in the absorbing solvent.
  • the rough separation step can be omitted.
  • the cooling product gas is pressurized by the compressor 4 and further cooled by the heat exchanger 5 as necessary.
  • the cooled product gas is sent from the pipe 107 to the absorption tower 6.
  • the absorption solvent whose temperature is adjusted through the heat exchanger 123 is introduced from the pipe 108, and the absorption solvent and the cooled product gas are brought into countercurrent contact.
  • other gases gas containing butadiene and unreacted n-butene
  • molecular oxygen and inert gases are roughly separated from other gases. .
  • the pressure in the absorption tower 6 is not particularly limited, the lower limit of the pressure is preferably 0.1 MPaG, more preferably 0.2 MPaG. As an upper limit of pressure, 1.5 MPaG is preferable and 1.0 MPaG is more preferable. The larger the pressure, the higher the absorption efficiency, and the smaller the pressure, the more energy required for boosting when introducing gas into the absorption tower 6 can be reduced.
  • the temperature in the absorption tower 6 is not particularly limited, but the lower limit of the temperature is preferably 0 ° C, more preferably 10 ° C. As an upper limit of temperature, 60 degreeC is preferable and 50 degreeC is more preferable. The higher this temperature is, the more advantageous it is that oxygen, nitrogen, etc. are less likely to be absorbed by the solvent, and the lower, there is an advantage that the absorption efficiency of hydrocarbons such as butadiene is improved.
  • the absorbing solvent used in this step examples include those containing as a main component the same organic solvent as exemplified as the organic solvent in the cooling step.
  • the main component is preferably the same as the organic solvent used in the cooling step, more preferably toluene or acetonitrile, and even more preferably toluene.
  • the “main component” means that the organic solvent content in the absorbing solvent at the time of supply is 50% by mass or more.
  • As a minimum of content of the above-mentioned organic solvent in the above-mentioned absorption solvent 55 mass% is preferred and 60 mass% is more preferred.
  • the upper limit of the content of the organic solvent in the absorbing solvent is preferably 100% by mass.
  • the content of toluene in the absorption solvent is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
  • the absorption solvent when the absorption solvent contains acetonitrile as a main component, the absorption solvent preferably further contains at least one selected from the group consisting of water and alcohol.
  • the absorption solvent when the absorption solvent further contains water, the selectivity of the absorption solvent can be increased. However, if the water content becomes too high, hydrocarbons cannot be completely dissolved in acetonitrile in the absorption solvent and the two-phase. Will be separated. Therefore, when the absorption solvent further contains alcohol in addition to water, the solubility of hydrocarbons (other gases) in acetonitrile does not decrease even if the water content is increased, The water content can be increased.
  • Examples of the alcohol include those having 8 or less carbon atoms from the viewpoint of the affinity between hydrocarbons and water. Of these, alcohols having a carbon number of 5 or less whose boiling point is close to those of acetonitrile are preferable, and methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol More preferable are aliphatic saturated alcohols such as n-pentyl alcohol, aliphatic unsaturated alcohols such as allyl alcohol and crotyl alcohol, and alicyclic alcohols such as cyclopentanol, and ethyl alcohol is particularly preferable.
  • the lower limit of the water content in the absorption solvent is preferably 5% by mass, and more preferably 10% by mass.
  • the upper limit of the water content in the absorbing solvent is preferably 35% by mass and more preferably 25% by mass.
  • the lower limit of the alcohol content in the absorption solvent is preferably 5% by mass.
  • the upper limit of content of the alcohol in the said absorption solvent 30 mass% is preferable and 15 mass% is more preferable.
  • the absorption solvent may contain other solvents other than acetonitrile, alcohol and water.
  • the amount of the absorbing solvent used in the rough separation step is not particularly limited, but the lower limit of the amount of the absorbing solvent used with respect to the total flow rate of butadiene and unreacted n-butene in the product gas supplied from the reactor 1 is as follows. 1 mass times is preferable and 5 mass times is more preferable. On the other hand, as an upper limit of the usage-amount of an absorption solvent, 100 mass times is preferable and 50 mass times is more preferable. By making the usage-amount of an absorption solvent into the said range, absorption efficiency, such as a butadiene, can be improved. When the amount of the absorbing solvent used is too large, it tends to be uneconomical, and when it is too small, the absorption efficiency of butadiene or the like tends to be lowered.
  • the lower limit of the temperature of the absorbing solvent is preferably 0 ° C.
  • the upper limit of the temperature of the absorbing solvent is preferably 60 ° C, more preferably 40 ° C.
  • Components that have not been absorbed by the absorbing solvent are discharged from the top of the absorption tower 6 and sent to the cleaning tower 7 through the pipe 110.
  • the molecular oxygen and inert gases are washed with oil (when the absorbing solvent contains toluene as a main component) or water (when the absorbing solvent contains acetonitrile as a main component) supplied from the pipe 118 of the cleaning tower 7.
  • the absorbing solvent mixed (entrained) with the molecular oxygen and the inert gas is removed, and the removed absorbing solvent is recovered from the pipe 117.
  • the cleaned molecular oxygen and inert gas may be sent to the reaction process from the pipe 119 and recycled.
  • the solvent is separated from the absorbing solvent containing butadiene to obtain a gas stream containing butadiene.
  • an absorption solvent containing butadiene obtained from the bottom of the absorption tower 6 is supplied to the demelting tower 8 through the pipe 109.
  • distillation separation is performed, and a gas stream containing butadiene is obtained from the top of the tower via a pipe 113.
  • the separated solvent is extracted from the bottom of the column and circulated and used as the absorption solvent of the absorption tower 6 through the pipe 111.
  • After a part of the solvent is supplied to the solvent regeneration tower 9 through the pipe 112 and impurities in the solvent are separated. It is recycled to the absorption tower 6 through the pipe 116.
  • the separated impurities are discharged through pipes 114 and 115 connected to the upper and lower sides of the solvent regeneration tower 9.
  • the pressure in the demelting tower 8 is not particularly limited, but the lower limit is preferably 0.03 MPaG, more preferably 0.2 MPaG. As an upper limit of the pressure in the demelting tower 8, 1.0 MPaG is preferable and 0.6 MPaG is more preferable.
  • the lower limit of the bottom temperature of the demelting tower 8 is preferably 80 ° C., more preferably 100 ° C.
  • the upper limit of the bottom temperature of the demelting tower 8 is preferably 200 ° C and more preferably 180 ° C.
  • the pressure in the solvent regeneration tower 9 is not particularly limited, but the lower limit is preferably 0 MPaG.
  • the upper limit of the pressure in the solvent regeneration tower 9 is preferably 0.8 MPaG, and more preferably 0.5 MPaG.
  • Example 1 is a method for producing butadiene according to an embodiment of the present invention. Hereinafter, Example 1 will be described with reference to FIG.
  • Reactor 1 of FIG. 1 (inner diameter 21.2 mm, outer diameter 25.4 mm) filled with the catalyst (a) with a catalyst length of 4,000 mm is supplied with a raw material gas / air / water vapor / nitrogen containing n-butene.
  • a mixed gas mixed at a volume ratio of 0.0 / 4.3 / 1.2 / 3.4 was supplied at a gas hourly space velocity (GHSV) of 1,000 hr ⁇ 1 and reacted at 320 ° C. to 330 ° C.
  • GHSV gas hourly space velocity
  • the product gas extracted from the reactor 1 was introduced into the cooling tower 2 having an outer diameter of 1 ⁇ 4 inch, a height of 1,600 mm, and a material SUS316L filled with Raschig rings of ⁇ 5 ⁇ 5 mm inside.
  • the introduced introduced gas was brought into contact with a cooling solvent containing toluene and a 5 mass% aqueous sodium hydroxide solution at a ratio of 1: 1 under the condition of a pressure of 0.01 MPaG and cooled to 67 ° C. Then, it cooled to room temperature (30 degreeC) with the heat exchanger 3.
  • the ratio of each gas component in the product gas at the outlet of the cooling tower 2 is such that 1,3-butadiene / unreacted n-butene / N 2 / H 2 O / O 2 / COx is 8.5 / 1.0 / 66 / The volume ratio was 19 / 4.1 / 1.4.
  • the cooling solvent was circulated and used, and a part thereof was extracted and introduced into the decanter 10 to separate toluene and aqueous sodium hydroxide solution.
  • the separated toluene contains by-products such as fluorenone and anthraquinone. After introducing the by-products into the regenerator 11 and removing the by-products, the toluene was reused.
  • the separated sodium hydroxide aqueous solution contained organic acids such as maleic acid and acrylic acid.
  • the cooled product gas obtained in the cooling step was pressurized to 0.4 MPaG by the compressor 4 and cooled to 50 ° C. by the heat exchanger 5.
  • the cooled gas is supplied from the bottom of the absorption tower 6 in which a regular packing is arranged inside with a material SUS304 with an outer diameter of 11/2 inches, a height of 1,000 mm, and 10 parts of toluene (absorbing solvent) from the top of the tower. Supplied at ° C.
  • the amount of toluene supplied was 16 times by mass with respect to 1,3-butadiene and unreacted n-butene to be absorbed in toluene.
  • the gas extracted from the top of the column without being absorbed by toluene contained 91% by volume of N 2 , 5% by volume of O 2 , and 4% by volume of impurities such as COx.
  • the gas obtained from the top of the tower was sent to the washing tower 7 and a small amount of solvent contained in the gas was removed with oil, and then part of the solvent was sent to the reaction process and recycled.
  • the solvent containing 1,3-butadiene obtained from the bottom of the absorption tower 6 is supplied to a demelting tower 8 having an outer diameter of 11/2 inches, a height of 1,000 mm, and a material SS400 with a packing inside.
  • a gas stream substantially free of solvent was obtained from the top of the column.
  • the gas obtained from the top of the desorption tower 8 contained 75% by volume of 1,3-butadiene, 8% by volume of n-butene, and 17% by volume of impurities such as COx and solvent. .
  • the solvent substantially free of 1,3-butadiene extracted from the bottom of the desulfurization tower 8 is cooled by a heat exchanger and then supplied to the absorption tower 6 for recycling. A part of the solvent is regenerated. It was supplied to the tower 9 and was recycled to the absorption tower 6 after the impurities were separated.
  • Example 2 In Example 1, butadiene was produced in the same manner except that a 25% by mass aqueous sodium hydroxide solution was used as the cooling solvent in the cooling tower 2. There was no change in the substances and concentrations contained in the partially extracted toluene and sodium hydroxide. When the filter installed after the cooling tower 2 was confirmed, there was no adhesion
  • Example 1 In Example 1, butadiene was produced in the same manner except that a 5% by mass aqueous sodium hydroxide solution was used as the cooling solvent for the cooling tower 2. When the filter installed after the cooling tower 2 was confirmed, deposits were visually observed.
  • butadiene production method of the present invention when producing butadiene from a product gas obtained by oxidative dehydrogenation of n-butene, it is possible to suppress the precipitation of by-products and blockage of cooling towers and piping. , Stable and continuous operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The purpose of the present invention is to provide a method for producing butadiene, which does not undergo the precipitation of a by-product and therefore does not cause the clogging of a cooling column or a pipe due to the precipitation of the by-product, and which can be operated steadily and continuously. The present invention is a method for producing 1,3-butadiene, which comprises a step of carrying out an oxidative dehydrogenation reaction of a raw material gas containing n-butene with a gas containing molecular oxygen in the presence of a metal oxide catalyst to produce a product gas containing 1,3-butadiene and a step of cooling the product gas, wherein the gas is brought into contact with a cooling solvent comprising an organic solvent and an aqueous alkali metal compound solution in the cooling step.

Description

1,3-ブタジエンの製造方法Method for producing 1,3-butadiene
 本発明は、1,3-ブタジエンの製造方法に関する。 The present invention relates to a method for producing 1,3-butadiene.
 従来から、1,3-ブタジエン(以下、「ブタジエン」ともいう)を製造する方法として、ナフサのクラッキングにより得られた炭素数4の留分(以下、「C4留分」ともいう)からブタジエン以外の成分を蒸留によって分離する方法が採用されている。ブタジエンは合成ゴム等の原料として需要が増加しているが、エチレンの製法がナフサのクラッキングからエタンの熱分解による方法に移行している等の事情により、C4留分の供給量が減少しており、C4留分を原料としないブタジエンの製造が求められている。 Conventionally, as a method for producing 1,3-butadiene (hereinafter also referred to as “butadiene”), other than butadiene from a fraction having 4 carbon atoms (hereinafter also referred to as “C4 fraction”) obtained by cracking naphtha. The method of isolate | separating these components by distillation is employ | adopted. Butadiene is increasing in demand as a raw material for synthetic rubber, etc., but the supply of C4 fraction has decreased due to factors such as the shift of ethylene production from naphtha cracking to ethane pyrolysis. Therefore, there is a demand for production of butadiene that does not use a C4 fraction as a raw material.
 上記要求に鑑み、ブタジエンの製造方法として、n-ブテンを酸化脱水素させて得られる生成ガスからブタジエンを分離する方法が注目されている。上記酸化脱水素反応は、高温での気相反応であるため、通常得られた生成ガスを冷却塔等に導入し、水と接触させ、又は水との接触により冷却する必要がある。しかし、得られた生成ガス中にはブタジエン以外の水溶性副生成物、難水溶性高沸点副生成物等の副生成物が含まれ、上記冷却することでこれらの副生成物が析出して冷却塔や配管を閉塞するため、連続運転が困難となる不都合がある。 In view of the above requirements, a method for separating butadiene from a product gas obtained by oxidative dehydrogenation of n-butene has attracted attention as a method for producing butadiene. Since the oxidative dehydrogenation reaction is a gas phase reaction at a high temperature, it is usually necessary to introduce the product gas obtained into a cooling tower or the like and contact it with water or cool it by contacting with water. However, the resulting product gas contains by-products such as water-soluble by-products other than butadiene and poorly water-soluble high-boiling by-products, and these by-products are precipitated by cooling. Since the cooling tower and the piping are closed, there is a disadvantage that continuous operation becomes difficult.
 そこで、例えば(1)パラフィン油、ナフテン油、芳香族油等の副生成物を溶解する油を用いて副生成物を除去する方法(特公昭49-6283号公報参照)、(2)冷却塔へ導入する生成ガスの温度を170℃以上とし、かつ冷却塔内壁面の温度を140℃以上の温度とすることにより、上記副生成物を水で分離することを可能にする方法(特開昭60-115531号公報参照)、(3)冷却塔で冷却する前に、得られた生成ガスを300℃~221℃とすることで、生成ガス中の副生成物の析出を回避する方法(特開2011-1341号公報参照)等が提案されている。 Therefore, for example, (1) a method for removing by-products using oil that dissolves by-products such as paraffin oil, naphthenic oil, and aromatic oil (see Japanese Patent Publication No. 49-6283), (2) cooling tower The method of making it possible to separate the by-product with water by setting the temperature of the product gas introduced to the temperature of 170 ° C. or higher and the temperature of the inner wall surface of the cooling tower to 140 ° C. or higher 60-315531), (3) A method for avoiding the precipitation of by-products in the product gas by setting the obtained product gas to 300 ° C. to 221 ° C. before cooling in the cooling tower No. 2011-1341) is proposed.
 しかし、上記(1)の方法では、冷却後の生成ガス中に蒸気圧分の油分が含まれてしまうため、この油分を別途回収する工程が必要となる。また、上記(2)の方法では、生成ガス及び冷却塔内壁面の温度を特定温度に保持する方法が提案されているが、上記特定温度では高沸点の副生成物の析出が起こり、冷却塔や配管の閉塞を招来するおそれがある。また、上記(3)の方法では、析出する副生成物に対応する2つ以上の並列ラインを設置しているため、ラインの閉塞管理やラインの切り替え作業、洗浄作業等が発生するという不都合がある。 However, in the method (1), since the oil component corresponding to the vapor pressure is contained in the product gas after cooling, a step of separately collecting this oil component is required. In the method (2), a method for maintaining the temperature of the product gas and the inner wall surface of the cooling tower at a specific temperature has been proposed. At the specific temperature, precipitation of high-boiling by-products occurs, and the cooling tower There is a risk of blockage of pipes and pipes. Further, in the method (3), since two or more parallel lines corresponding to the by-products to be deposited are installed, there is a disadvantage that line blockage management, line switching work, cleaning work, etc. occur. is there.
 なお、国際公開第2012/157495号には、冷却剤として、有機アミン水溶液及び芳香族系有機溶媒を含むものを用いることが提案されている。しかし、上記文献の発明は、冷却溶媒として、2官能性化合物である有機アミンの水溶液を用いることで、この有機アミンに副生成物との酸塩基反応又はアルドール縮合を起こさせて除去することを特徴とするものである。さらに段落0039に記載されているように、上記文献では冷却剤として、単純な中和反応を起こす苛性ソーダ水溶液等のアルカリ水溶液を用いることを意識的に除外しており、本願発明の意図する範囲ではない。 In addition, in international publication 2012/157495, it is proposed to use what contains organic amine aqueous solution and an aromatic organic solvent as a cooling agent. However, the invention of the above-mentioned document uses an aqueous solution of an organic amine, which is a bifunctional compound, as a cooling solvent, thereby removing the organic amine by causing an acid-base reaction or an aldol condensation with a by-product. It is a feature. Furthermore, as described in paragraph 0039, the above document intentionally excludes the use of an alkaline aqueous solution such as an aqueous solution of caustic soda that causes a simple neutralization reaction as a coolant, and within the intended scope of the present invention. Absent.
特公昭49-6283号公報Japanese Patent Publication No.49-6283 特開昭60-115531号公報JP-A-60-115531 特開2011-1341号公報JP 2011-1341 A 国際公開第2012/157495号International Publication No. 2012/157495
 本発明は、上述のような事情に基づいてなされたものであり、その目的は、副生成物が析出し、冷却塔や配管を閉塞するのを抑制でき、安定的に連続運転することができるブタジエンの製造方法を提供することである。 The present invention has been made on the basis of the circumstances as described above, and the object thereof is to suppress precipitation of by-products and blockage of cooling towers and piping, and stable and continuous operation can be achieved. It is to provide a method for producing butadiene.
 上記課題を解決するためになされた発明は、
 金属酸化物触媒の存在下、n-ブテンを含む原料ガスと分子状酸素含有ガスとの酸化脱水素反応により1,3-ブタジエンを含む生成ガスを得る工程、及び上記生成ガスを冷却する工程を有し、上記冷却工程において、有機溶媒及びアルカリ金属化合物水溶液を含む冷却溶媒をガスと接触させる1,3-ブタジエンの製造方法である。
The invention made to solve the above problems is
A step of obtaining a product gas containing 1,3-butadiene by an oxidative dehydrogenation reaction of a source gas containing n-butene and a molecular oxygen-containing gas in the presence of a metal oxide catalyst, and a step of cooling the product gas And in the cooling step, a cooling solvent containing an organic solvent and an aqueous alkali metal compound solution is brought into contact with a gas.
 当該ブタジエンの製造方法によれば、上記冷却工程においてアルカリ金属化合物水溶液に加えて有機溶媒を含む冷却溶媒を用いることで、アルカリ金属化合物水溶液に可溶な水溶性副生成物と共に難水溶性高沸点副生成物を冷却溶媒に溶解させることができる。これにより、ブタジエンを製造する際に副生成物が析出して冷却塔や配管を閉塞するのを抑制し、安定的に連続運転することができる。 According to the method for producing butadiene, by using a cooling solvent containing an organic solvent in addition to the aqueous alkali metal compound solution in the cooling step, a water-insoluble high-boiling point together with a water-soluble byproduct that is soluble in the aqueous alkali metal compound solution. By-products can be dissolved in the cooling solvent. Thereby, it can suppress that a by-product precipitates when manufacturing a butadiene and obstruct | occludes a cooling tower and piping, and can operate stably continuously.
 本発明のブタジエンの製造方法によれば、n-ブテンを酸化脱水素させて得られる生成ガスからブタジエンを製造する際に、副生成物が析出して冷却塔や配管を閉塞するのを抑制し、安定的に連続運転することができる。 According to the method for producing butadiene of the present invention, when producing butadiene from a product gas obtained by oxidative dehydrogenation of n-butene, it is possible to suppress the clogging of cooling towers and piping due to precipitation of by-products. , Stable and continuous operation.
本発明の実施形態に係るブタジエンの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the butadiene which concerns on embodiment of this invention.
 本発明の一実施形態のブタジエンの製造方法を、図1を用いて説明する。本実施形態のブタジエンの製造方法は、反応工程、冷却工程、粗分離工程、分離工程及び脱溶工程を有する。以下、各工程を詳述する。 A method for producing butadiene according to an embodiment of the present invention will be described with reference to FIG. The method for producing butadiene according to the present embodiment includes a reaction process, a cooling process, a rough separation process, a separation process, and a desorption process. Hereinafter, each process is explained in full detail.
<反応工程>
 本工程では、金属酸化物触媒の存在下、n-ブテンを含む原料ガス(以下、「原料ガス」ともいう)と分子状酸素含有ガスとの酸化脱水素反応により1,3-ブタジエンを含む生成ガスを得る。まず、原料ガスと共に、分子状酸素含有ガスとしての空気、必要に応じて不活性ガス(イナートガス)及び水(水蒸気)を予熱器(図示せず)で200℃以上350℃以下程度に加熱した後、これらを図1に示すように配管100より金属酸化物触媒が充填された反応器1に供給する。原料ガス、不活性ガス、空気、及び水(水蒸気)を反応器1に、直接別々の配管から供給してもよいが、予め均一に混合した状態で反応器1に供給するのが好ましい。これは、反応器1内で不均一な混合ガスが部分的に爆鳴気を形成する事態を防ぐことが出来る等の理由による。
<Reaction process>
In this step, 1,3-butadiene is produced by an oxidative dehydrogenation reaction between a source gas containing n-butene (hereinafter also referred to as “source gas”) and a molecular oxygen-containing gas in the presence of a metal oxide catalyst. Get gas. First, after heating the source gas, air as molecular oxygen-containing gas, and optionally inert gas (inert gas) and water (water vapor) to about 200 ° C. to 350 ° C. with a preheater (not shown) These are supplied from a pipe 100 to a reactor 1 filled with a metal oxide catalyst as shown in FIG. The raw material gas, inert gas, air, and water (steam) may be supplied directly to the reactor 1 from separate pipes, but are preferably supplied to the reactor 1 in a uniformly mixed state in advance. This is because, for example, it is possible to prevent a situation in which a non-uniform mixed gas partially forms explosive gas in the reactor 1.
(分子状酸素含有ガス)
 分子状酸素含有ガスは、通常、分子状酸素を10体積%以上含むガスであり、分子状酸素を15体積%以上含むことが好ましく、分子状酸素を20体積%以上含むことがより好ましい。分子状酸素含有ガスとしては、空気が好ましい。また、分子状酸素含有ガスは、本発明の効果を阻害しない範囲で、例えば窒素、アルゴン、ネオン、ヘリウム、CO、CO、水等の任意の不純物を含んでいてもよい。この不純物の量は、窒素の場合、通常90体積%以下であり、85体積%以下が好ましく、80体積%以下がより好ましい。窒素以外の成分の量は、通常10体積%以下であり、1体積%以下が好ましい。この不純物の量が多すぎると、反応に必要な酸素を供給するのが難しくなる傾向にある。
(Molecular oxygen-containing gas)
The molecular oxygen-containing gas is usually a gas containing 10% by volume or more of molecular oxygen, preferably contains 15% by volume or more of molecular oxygen, and more preferably contains 20% by volume or more of molecular oxygen. As the molecular oxygen-containing gas, air is preferable. Further, the molecular oxygen-containing gas may contain any impurity such as nitrogen, argon, neon, helium, CO, CO 2 , and water as long as the effects of the present invention are not impaired. In the case of nitrogen, the amount of this impurity is usually 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less. The amount of components other than nitrogen is usually 10% by volume or less, preferably 1% by volume or less. If the amount of this impurity is too large, it tends to be difficult to supply oxygen necessary for the reaction.
(不活性ガス(イナートガス))
 不活性ガス(イナートガス)は、n-ブテンを含む原料ガス及び分子状酸素含有ガスと共に反応器1に供給されることが好ましい。この不活性ガスを加えることで、上記混合ガスが反応器1中において、爆鳴気を形成しないようにブテン等の可燃性ガスと酸素との濃度を調整することができる。上記不活性ガスとしては窒素、アルゴン、CO等が挙げられ、これらの中でも、経済的観点から窒素が好ましい。
(Inert gas)
The inert gas (inert gas) is preferably supplied to the reactor 1 together with the raw material gas containing n-butene and the molecular oxygen-containing gas. By adding this inert gas, the concentration of the combustible gas such as butene and oxygen can be adjusted so that the mixed gas does not form squeal in the reactor 1. As the inert gas nitrogen, argon, CO 2 and the like. Among these, nitrogen is preferable from an economical point of view.
(水(水蒸気))
 反応器1には、水(水蒸気)が供給されることが好ましい。水(水蒸気)は、上記不活性ガスと同様に原料ガスと酸素との濃度を調整することができ、また金属酸化物触媒のコーキングを低減することができる。
(Water (steam))
The reactor 1 is preferably supplied with water (steam). Water (steam) can adjust the concentration of the raw material gas and oxygen in the same manner as the inert gas, and can reduce the coking of the metal oxide catalyst.
(原料ガス)
 原料ガスは、1,3-ブタジエンの原料を、気化器(図1で図示せず)でガス化したガス状物をいう。上記原料は炭素数4のモノオレフィンであるn-ブテンである。n-ブテンとしては、例えばナフサ分解で副生するC留分からブタジエン及びi-ブテンを分離して得られるn-ブテン(1-ブテン及び2-ブテン)を主成分とする留分(ラフィネート2)や、n-ブタンの脱水素又は酸化脱水素反応により生成するブテン留分を使用することができる。また、エチレンの2量化により得られる高純度の1-ブテン、シス-2-ブテン、トランス-2-ブテン又はこれらの混合物を含有するガスを使用することもできる。さらには、石油精製プラントなどで原油を蒸留した際に得られる重油留分を、流動層状態で粉末状の固体触媒を使って分解し、低沸点の炭化水素に変換する流動接触分解(Fluid Catalytic Cracking)から得られる炭素原子数4の炭化水素類を多く含むガス(以下、FCC-C4と略記することがある)をそのまま原料ガスとする、又はFCC-C4からリンなどの不純物を除去したものを原料ガスとして使用することもできる。上記原料ガスにおけるn-ブテンの濃度は通常40体積%以上であり、60体積%以上が好ましく、75体積%以上がより好ましく、99体積%以上が特に好ましい。
(Raw material gas)
The raw material gas refers to a gaseous material obtained by gasifying a raw material of 1,3-butadiene with a vaporizer (not shown in FIG. 1). The raw material is n-butene, which is a monoolefin having 4 carbon atoms. As n-butene, for example, a fraction mainly composed of n-butene (1-butene and 2-butene) obtained by separating butadiene and i-butene from a C 4 fraction by-produced by naphtha decomposition (raffinate 2) And a butene fraction produced by dehydrogenation or oxidative dehydrogenation of n-butane can be used. A gas containing high-purity 1-butene, cis-2-butene, trans-2-butene or a mixture thereof obtained by dimerization of ethylene can also be used. Furthermore, fluid catalytic cracking (Fluid Catalytic), which decomposes heavy oil fraction obtained when crude oil is distilled in an oil refinery plant, etc., using a powdered solid catalyst in a fluidized bed state and converts it into low boiling point hydrocarbons. Gas containing a large amount of hydrocarbons having 4 carbon atoms obtained from Cracking (hereinafter sometimes abbreviated as FCC-C4) as raw gas, or from which impurities such as phosphorus are removed from FCC-C4 Can also be used as a raw material gas. The concentration of n-butene in the source gas is usually 40% by volume or more, preferably 60% by volume or more, more preferably 75% by volume or more, and particularly preferably 99% by volume or more.
 また、上記原料ガスは、本発明の効果を阻害しない範囲で、任意の不純物を含んでいてもよい。この不純物としては、具体的には、i-ブテン等の分岐型モノオレフィン;プロパン、n-ブタン、i-ブタン等の飽和炭化水素等が挙げられる。また、上記原料ガスは、不純物として反応の目的物である1,3-ブタジエンを含んでいてもよい。これらの不純物の量は、通常、原料ガス全量に対し60体積%以下であり、40体積%以下が好ましく、25体積%以下がより好ましく、1体積%以下が特に好ましい。この量が多すぎると、主原料である1-ブテンや2-ブテンの濃度が低下して反応が遅くなったり、副生物が増える傾向にある。 Further, the source gas may contain an arbitrary impurity as long as the effects of the present invention are not impaired. Specific examples of the impurities include branched monoolefins such as i-butene; saturated hydrocarbons such as propane, n-butane and i-butane. The source gas may contain 1,3-butadiene, which is a target of reaction, as an impurity. The amount of these impurities is usually 60% by volume or less, preferably 40% by volume or less, more preferably 25% by volume or less, and particularly preferably 1% by volume or less based on the total amount of the raw material gas. If the amount is too large, the concentration of 1-butene or 2-butene, which are the main raw materials, decreases, and the reaction tends to be slow, or by-products tend to increase.
(混合ガスの組成)
 上記混合ガス中のn-ブテンの濃度の下限としては、ブタジエンの生産性の観点で、2体積%が好ましく、3体積%がより好ましく、5体積%がさらに好ましい。一方、上記混合ガス中のn-ブテンの濃度の上限としては、金属酸化物触媒への負荷を抑える観点で、30体積%が好ましく、25体積%がより好ましく、20体積%がさらに好ましい。上記混合ガスの組成として、原料ガス100体積部に対するOの比率の下限としては、50体積部が好ましく、70体積部がより好ましい。Oの比率の上限としては、150体積部が好ましく、110体積部がより好ましい。原料ガス100体積部に対するNの比率の下限としては、200体積部が好ましく、300体積部がより好ましい。Nの比率の上限としては、2,000体積部が好ましく、1,500体積部がより好ましい。原料ガス100体積部に対するHOの比率の下限としては、0体積部が好ましく、100体積部がより好ましい。HOの比率の上限としては、900体積部が好ましく、300体積部がより好ましい。原料ガスに対するOの比率がこの範囲を逸脱すると、反応温度を調整しても、反応器1出口におけるO濃度を調整しづらくなる傾向がある。また、NやHOの比率が大きくなるほど、原料ガスが薄くなるので効率が悪くなる傾向があり、一方、比率が小さくなるほど、混合ガスが爆発組成に入ったり、除熱が困難になる傾向がある。
(Composition of mixed gas)
The lower limit of the concentration of n-butene in the mixed gas is preferably 2% by volume, more preferably 3% by volume, and even more preferably 5% by volume from the viewpoint of butadiene productivity. On the other hand, the upper limit of the concentration of n-butene in the mixed gas is preferably 30% by volume, more preferably 25% by volume, and still more preferably 20% by volume from the viewpoint of suppressing the load on the metal oxide catalyst. As a composition of the mixed gas, the lower limit of the ratio of O 2 to 100 parts by volume of the source gas is preferably 50 parts by volume, and more preferably 70 parts by volume. The upper limit of the O 2 ratio is preferably 150 parts by volume, and more preferably 110 parts by volume. The lower limit of the ratio of N 2 for the raw material gas 100 parts by volume, preferably 200 parts by volume, more preferably 300 parts by volume. The upper limit of the N 2 ratio is preferably 2,000 parts by volume, and more preferably 1,500 parts by volume. The lower limit of the ratio of H 2 O for the raw material gas 100 parts by volume, preferably 0 parts by volume, more preferably 100 parts by volume. The upper limit of the H 2 O ratio is preferably 900 parts by volume, and more preferably 300 parts by volume. If the ratio of O 2 to the raw material gas deviates from this range, even if the reaction temperature is adjusted, it tends to be difficult to adjust the O 2 concentration at the reactor 1 outlet. In addition, as the ratio of N 2 and H 2 O increases, the raw material gas becomes thinner and the efficiency tends to deteriorate. On the other hand, as the ratio decreases, the mixed gas enters the explosion composition and heat removal becomes difficult. Tend.
(混合ガスの爆発範囲)
 上記混合ガスは、酸素と可燃性の原料ガスとの混合物であることから、爆発範囲に入らないように各々のガス(原料ガス、空気、及び必要に応じて不活性ガスと水(水蒸気))を供給する配管に設置された流量計(図示せず)にて、流量を監視しながら、反応器1入口の組成制御を行い、上述した混合ガス組成に調整される。
(Explosion range of mixed gas)
Since the above mixed gas is a mixture of oxygen and combustible source gas, each gas (source gas, air, and inert gas and water (water vapor) if necessary) so as not to enter the explosion range. The composition of the inlet of the reactor 1 is controlled while monitoring the flow rate with a flow meter (not shown) installed in a pipe for supplying the gas to adjust the mixed gas composition described above.
 なお、ここでいう爆発範囲とは、混合ガスが何らかの着火源の存在下で着火するような組成を持つ範囲のことである。原料ガスの濃度がある値より低いと着火源が存在しても着火しないことが知られており、この濃度を爆発下限界という。また原料ガスの濃度がある値より高いとやはり着火源が存在しても着火しないことが知られており、この濃度を爆発上限界という。各々の値は酸素濃度に依存しており、一般に酸素濃度が低いほど両者の値が近づき、酸素濃度がある値になったとき両者が一致する。このときの酸素濃度を限界酸素濃度と言い、酸素濃度がこれより低ければ原料ガスの濃度によらず混合ガスは着火しない。 In addition, the explosion range here is a range having a composition in which the mixed gas is ignited in the presence of some ignition source. It is known that if the concentration of the source gas is lower than a certain value, it will not ignite even if an ignition source is present, and this concentration is called the lower explosion limit. In addition, it is known that if the concentration of the raw material gas is higher than a certain value, it does not ignite even if an ignition source is present, and this concentration is called the upper limit of explosion. Each value depends on the oxygen concentration. In general, the lower the oxygen concentration, the closer the values are, and the two match when the oxygen concentration reaches a certain value. The oxygen concentration at this time is called a critical oxygen concentration. If the oxygen concentration is lower than this, the mixed gas does not ignite regardless of the concentration of the raw material gas.
 本工程の酸化脱水素反応を開始するときは、最初に反応器1に供給する分子状酸素含有ガス、不活性ガス及び水蒸気の量を調整して、反応器1入口の酸素濃度が限界酸素濃度以下になるようにしてから原料ガスの供給を開始し、次いで、原料ガス濃度が爆発上限界よりも濃くなるように原料ガス及び空気等の分子状酸素含有ガスの供給量を増やしていくとよい。 When the oxidative dehydrogenation reaction in this step is started, the amount of molecular oxygen-containing gas, inert gas and water vapor supplied to the reactor 1 is first adjusted so that the oxygen concentration at the inlet of the reactor 1 is the critical oxygen concentration. The supply of the source gas is started after the following, and then the supply amount of the molecular oxygen-containing gas such as the source gas and air is increased so that the source gas concentration is higher than the upper limit of explosion. .
 原料ガスと分子状酸素含有ガスの供給量を増やしていくときに、水蒸気の供給量を減らすことにより、混合ガスの供給量を一定となるようにしてもよい。このようにすると、配管や反応器1におけるガス滞留時間が一定に保たれ、圧力の変動を抑えることができる。 When the supply amount of the source gas and the molecular oxygen-containing gas is increased, the supply amount of the mixed gas may be made constant by decreasing the supply amount of water vapor. If it does in this way, the gas residence time in piping or the reactor 1 is kept constant, and the fluctuation | variation of a pressure can be suppressed.
[酸化脱水素反応の条件]
 上記反応器1には、後述する金属酸化物触媒が充填されており、この触媒下で、上記原料ガスが酸素と反応し、1,3-ブタジエンを含むガスが生成する。
[Conditions for oxidative dehydrogenation]
The reactor 1 is filled with a metal oxide catalyst, which will be described later. Under this catalyst, the raw material gas reacts with oxygen to produce a gas containing 1,3-butadiene.
 この酸化脱水素反応において、生成ガス中にアクロレイン、アクリル酸、メタクロレイン、メタクリル酸、マレイン酸、フマル酸、無水マレイン酸等の炭素原子数3~4の不飽和カルボニル化合物が発生し得る。この不飽和カルボニル化合物の濃度が高いと、後述する冷却工程で循環する冷却溶媒、粗分離工程で循環する吸収溶媒及び抽出蒸留工程で循環する抽出溶媒に、この不飽和カルボニル化合物が溶解して蓄積していき、副生成物の生成を誘発させやすくなる。 In this oxidative dehydrogenation reaction, unsaturated carbonyl compounds having 3 to 4 carbon atoms such as acrolein, acrylic acid, methacrolein, methacrylic acid, maleic acid, fumaric acid and maleic anhydride can be generated in the product gas. When the concentration of the unsaturated carbonyl compound is high, the unsaturated carbonyl compound dissolves and accumulates in the cooling solvent circulated in the cooling step described later, the absorption solvent circulated in the rough separation step, and the extraction solvent circulated in the extractive distillation step. It becomes easy to induce the generation of by-products.
 上記不飽和カルボニル化合物濃度を一定の範囲内とする条件としては、酸化脱水素反応時における反応温度を調整する方法が挙げられる。この酸化脱水素反応は発熱反応であり、反応により温度が上昇する。反応温度の下限としては通常300℃であり、320℃が好ましい。一方、反応温度の上限としては、通常400℃であり、380℃が好ましい。反応温度を上記範囲内とすることにより、触媒のコーキングを抑制することができると共に、上記炭素原子数3~4の不飽和カルボニル化合物濃度を、一定範囲内とすることが可能となる。反応温度が300℃未満だと、n-ブテンの転化率が低下するおそれがある。一方、反応温度が400℃より高いと、上記炭素原子数3~4の不飽和カルボニル化合物濃度が高くなり、吸収溶媒や抽出溶媒における副生成物の蓄積や、触媒のコーキングが生じる傾向がある。 As a condition for setting the unsaturated carbonyl compound concentration within a certain range, there is a method of adjusting the reaction temperature during the oxidative dehydrogenation reaction. This oxidative dehydrogenation reaction is an exothermic reaction, and the temperature rises due to the reaction. The lower limit of the reaction temperature is usually 300 ° C, preferably 320 ° C. On the other hand, the upper limit of the reaction temperature is usually 400 ° C., and preferably 380 ° C. By setting the reaction temperature within the above range, coking of the catalyst can be suppressed, and the concentration of the unsaturated carbonyl compound having 3 to 4 carbon atoms can be set within a certain range. If the reaction temperature is less than 300 ° C., the conversion of n-butene may decrease. On the other hand, when the reaction temperature is higher than 400 ° C., the concentration of the unsaturated carbonyl compound having 3 to 4 carbon atoms is increased, which tends to cause accumulation of by-products in the absorption solvent or extraction solvent and coking of the catalyst.
 なお、反応器1は、例えば熱媒体(ジベンジルトルエンや亜硝酸塩など)による除熱を行うことにより、適宜冷却して、触媒層の温度を一定に制御することが好ましい。 In addition, it is preferable that the reactor 1 is appropriately cooled by, for example, removing heat with a heat medium (dibenzyltoluene, nitrite, or the like) and the temperature of the catalyst layer is controlled to be constant.
 反応器1の圧力の下限としては、特に限定されないが、通常0MPaGであり、0.02MPaGが好ましく、0.05MPaGがより好ましい。一方、上限としては、通常0.5MPaGであり、0.3MPaGが好ましく、0.1MPaGがより好ましい。 The lower limit of the pressure in the reactor 1 is not particularly limited, but is usually 0 MPaG, preferably 0.02 MPaG, and more preferably 0.05 MPaG. On the other hand, the upper limit is usually 0.5 MPaG, preferably 0.3 MPaG, and more preferably 0.1 MPaG.
 上記酸化脱水素反応における気体時空間速度(GHSV)の下限としては、500hr-1が好ましく、800hr-1がより好ましい。一方、GHSVの上限としては、5,000hr-1が好ましく、3,000hr-1がより好ましい。このような気体時空間速度とすることで、効率的な反応を進めることができる。気体時空間速度(GHSV)は、下記式により求められる。
  GHSV[hr-1]=ガス流量[Nm/hr]÷触媒層体積[m
 上記式中、「触媒層体積」とは、空隙を含む全体の体積(見かけ体積)をいう。
The lower limit of the gas hourly space velocity in the oxidative dehydrogenation reaction (GHSV), preferably 500hr -1, 800hr -1 are more preferred. On the other hand, the upper limit of GHSV, preferably 5,000hr -1, 3,000hr -1 are more preferred. By setting such a gas hourly space velocity, an efficient reaction can be promoted. The gas hourly space velocity (GHSV) is obtained by the following equation.
GHSV [hr −1 ] = gas flow rate [Nm 3 / hr] ÷ catalyst layer volume [m 3 ]
In the above formula, “catalyst layer volume” refers to the entire volume (apparent volume) including voids.
[生成ガス中の各成分の濃度]
 上記酸化脱水素反応により生じた生成ガス中のN濃度の下限としては、35体積%が好ましく、45体積%がより好ましい。N濃度の上限としては、90体積%が好ましく、80体積%がより好ましい。HO濃度の下限としては、5体積%が好ましく、8体積%がより好ましい。HO濃度の上限としては、60体積%が好ましく、40体積%がより好ましい。ブタジエン濃度の下限としては、3体積%が好ましく、5体積%がより好ましい。ブタジエン濃度の上限としては、20体積%が好ましく、15体積%がより好ましい。生成ガス中の各成分の濃度を上記範囲とすることで、ブタジエン精製工程の効率を向上させ、かつ、精製工程で起こるブタジエンの副反応を抑制することができ、これにより、副生成物の蓄積を抑制することができる。
[Concentration of each component in the product gas]
The lower limit of the N 2 concentration in the product gas generated by the oxidative dehydrogenation reaction is preferably 35% by volume, and more preferably 45% by volume. The upper limit of the N 2 concentration is preferably 90% by volume, and more preferably 80% by volume. The lower limit of the H 2 O concentration, preferably 5% by volume, more preferably 8% by volume. The upper limit of the H 2 O concentration is preferably 60% by volume, and more preferably 40% by volume. The lower limit of the butadiene concentration is preferably 3% by volume, and more preferably 5% by volume. The upper limit of the butadiene concentration is preferably 20% by volume, more preferably 15% by volume. By setting the concentration of each component in the product gas within the above range, the efficiency of the butadiene purification process can be improved, and side reactions of butadiene occurring in the purification process can be suppressed, thereby accumulating by-products. Can be suppressed.
(金属酸化物触媒)
 次に、本工程で用いられる金属酸化物触媒について説明する。上記触媒は、原料ガスの酸化脱水素触媒として機能するものであれば特に限定されず、公知のものを用いることができるが、例えばモリブデン(Mo)、ビスマス(Bi)、及び鉄(Fe)を少なくとも有する金属酸化物を含有するものが挙げられる。上記金属酸化物としては、下記式(1)で表される複合金属酸化物が好ましい。
(Metal oxide catalyst)
Next, the metal oxide catalyst used in this step will be described. The catalyst is not particularly limited as long as it functions as an oxidative dehydrogenation catalyst for a raw material gas, and a known catalyst can be used. For example, molybdenum (Mo), bismuth (Bi), and iron (Fe) are used. The thing containing the metal oxide which has at least is mentioned. As said metal oxide, the composite metal oxide represented by following formula (1) is preferable.
 Mo(a)Bi(b)Fe(c)X(d)Y(e)Z(f)O(g)・・・ (1) Mo (a) Bi (b) Fe (c) X (d) Y (e) Z (f) O (g) (1)
 なお、式(1)中、XはNi及びCoの中から選ばれる少なくとも1種以上の元素を表す。YはLi、Na、K、Rb、Cs、及びTlからなる群より選ばれる少なくとも1種の元素を表す。ZはMg、Ca、Ce、Zn、Cr、Sb、As、B、P、及びWからなる群より選ばれる少なくとも1種の元素を表す。a、b、c、d、e、f、gは各元素の原子比率を表わし、a=12のとき、b=0.1~8、c=0.1~20、d=0~20、e=0~4、f=0~2であり、gは上記各成分の原子価を満足するのに必要な酸素の原子数である。 In formula (1), X represents at least one element selected from Ni and Co. Y represents at least one element selected from the group consisting of Li, Na, K, Rb, Cs, and Tl. Z represents at least one element selected from the group consisting of Mg, Ca, Ce, Zn, Cr, Sb, As, B, P, and W. a, b, c, d, e, f, g represent the atomic ratio of each element. When a = 12, b = 0.1 to 8, c = 0.1 to 20, d = 0 to 20, e = 0 to 4, f = 0 to 2, and g is the number of oxygen atoms necessary to satisfy the valence of each component.
 上記金属酸化物触媒は、分子状酸素を用いて、酸化的に脱水素してブタジエンを製造する方法において、高活性かつ高選択性であり、さらに寿命安定性に優れている。 The metal oxide catalyst is highly active and highly selective in the method of producing butadiene by oxidative dehydrogenation using molecular oxygen, and further has excellent life stability.
 触媒の調製法としては、特に限定されず各元素の原料物質を用いた蒸発乾固法、スプレードライ法、酸化物混合法等の公知の方法を採用することができる。上記各元素の原料物質としては、特に限定されず、例えば成分元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩、水酸化物、カルボン酸塩、カルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、水素酸、アルコキシド等が挙げられる。上記触媒を不活性な担体に担持させて使用してもよく、担体種としてはシリカ、アルミナ、シリコンカーバイト等が挙げられる。 The method for preparing the catalyst is not particularly limited, and a known method such as an evaporation / drying method using a raw material of each element, a spray drying method, or an oxide mixing method can be employed. The raw material of each of the above elements is not particularly limited. For example, oxides, nitrates, carbonates, ammonium salts, hydroxides, carboxylates, carboxylate ammonium salts, ammonium halide salts, hydrogen acids, component elements, An alkoxide etc. are mentioned. The catalyst may be used by supporting it on an inert carrier, and examples of the carrier species include silica, alumina, silicon carbide and the like.
<冷却工程>
 本工程では、反応器1からの生成ガスを冷却する。この冷却工程は、例えば冷却塔2による急冷工程、及び熱交換器3による熱交換工程を含む。
<Cooling process>
In this step, the product gas from the reactor 1 is cooled. This cooling process includes, for example, a rapid cooling process by the cooling tower 2 and a heat exchange process by the heat exchanger 3.
(冷却塔2)
 反応器1からの生成ガスは、配管101より冷却塔2に送給される。その上部からは、配管102より冷却溶媒が導入され、この冷却溶媒と上記送給された生成ガスとを接触させる。冷却塔2の形式としては、例えば充填塔、棚段塔、スプレー塔、ぬれ壁塔、気泡塔等が挙げられ、充填塔、及び棚段塔が好ましい。上記充填塔に用いる充填材としては、例えばラシヒリング、ベルルサドル、カスケードミニリング等の不規則充填材、フレクシパック、メラパック等の規則充填材等が挙げられる。冷却塔2における冷却方法としては、冷却溶媒と上記生成ガスとを不規則充填材を使用した充填塔において向流接触させる急冷方法が好ましい。この向流接触で生成ガスを30℃以上99℃以下程度に冷却する。冷却溶媒としては、有機溶媒及びアルカリ金属化合物水溶液の混合系を用いる。このような冷却溶媒を用いることで、上述の酸化脱水素反応で発生するアクリル酸、メタクリル酸、マレイン酸、フマル酸、無水マレイン酸等の水溶性副生成物と共にフルオレノン、アントラキノン等の難水溶性高沸点副生成物も冷却溶媒に溶解させ除去することができる。また、アルカリ金属水溶液を用いることでアクリル酸のような酸を中和し、装置の腐食を抑制する。なお、上記冷却溶媒は、有機溶媒及びアルカリ金属化合物水溶液以外のその他の溶媒を含んでいてもよい。冷却した溶媒は、配管103より排出される。導入する冷却溶媒の温度は、反応生成ガスの冷却温度に依存するが、その下限としては、10℃が好ましく、20℃がより好ましい。一方、冷却媒体の温度の上限としては、90℃が好ましく、70℃がより好ましく、40℃がさらに好ましい。
(Cooling tower 2)
The product gas from the reactor 1 is sent to the cooling tower 2 through the pipe 101. From the upper part, a cooling solvent is introduced from the pipe 102, and this cooling solvent is brought into contact with the supplied product gas. Examples of the cooling tower 2 include a packed tower, a plate tower, a spray tower, a wet wall tower, and a bubble tower, and a packed tower and a plate tower are preferable. Examples of the packing material used in the packed tower include irregular packing materials such as Raschig rings, Berle saddles and cascade mini rings, and regular packing materials such as flexi packs and mela packs. The cooling method in the cooling tower 2 is preferably a rapid cooling method in which the cooling solvent and the product gas are brought into countercurrent contact in a packed tower using an irregular packing material. The product gas is cooled to about 30 ° C. or higher and 99 ° C. or lower by this countercurrent contact. As the cooling solvent, a mixed system of an organic solvent and an alkali metal compound aqueous solution is used. By using such a cooling solvent, water-insoluble by-products such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and maleic anhydride generated in the above-mentioned oxidative dehydrogenation reaction and poorly water-soluble such as fluorenone and anthraquinone High-boiling by-products can also be removed by dissolving in a cooling solvent. Further, by using an alkali metal aqueous solution, an acid such as acrylic acid is neutralized to suppress corrosion of the apparatus. In addition, the said cooling solvent may contain other solvents other than an organic solvent and alkali metal compound aqueous solution. The cooled solvent is discharged from the pipe 103. Although the temperature of the cooling solvent to be introduced depends on the cooling temperature of the reaction product gas, the lower limit thereof is preferably 10 ° C., more preferably 20 ° C. On the other hand, as an upper limit of the temperature of a cooling medium, 90 degreeC is preferable, 70 degreeC is more preferable, and 40 degreeC is further more preferable.
 冷却塔2内の圧力は特に限定されないが、その下限としては、0MPaGが好ましく、0.1MPaGがより好ましく、0.2MPaGがさらに好ましい。一方、冷却塔2内の圧力の上限としては、1.5MPaGが好ましく、1.0MPaGがより好ましく、0.5MPaGがさらに好ましい。冷却塔2内の圧力を上記特定範囲とすることで、冷却溶媒による副生成物の除去をより効果的に行うことができる。冷却塔2内の温度の下限としては、0℃が好ましく、20℃がより好ましい。一方、冷却塔2内の温度の上限としては、100℃が好ましく、80℃がより好ましい。 Although the pressure in the cooling tower 2 is not particularly limited, the lower limit thereof is preferably 0 MPaG, more preferably 0.1 MPaG, and further preferably 0.2 MPaG. On the other hand, the upper limit of the pressure in the cooling tower 2 is preferably 1.5 MPaG, more preferably 1.0 MPaG, and even more preferably 0.5 MPaG. By setting the pressure in the cooling tower 2 within the specific range, it is possible to more effectively remove by-products with the cooling solvent. As a minimum of the temperature in the cooling tower 2, 0 degreeC is preferable and 20 degreeC is more preferable. On the other hand, as an upper limit of the temperature in the cooling tower 2, 100 degreeC is preferable and 80 degreeC is more preferable.
 上記冷却工程における有機溶媒としては、芳香族化合物、アミド化合物、硫黄化合物、ニトリル化合物、ケトン化合物、アルコール類又はこれらの組み合わせが好ましい。上記特定の有機溶媒を含む冷却溶媒を用いることで、難水溶性高沸点副生成物をより効果的に除去することができ、この副生成物の蓄積に起因するプロセスの不安定性をより低減できる。なお、これらの有機溶媒は1種を単独で用いてもよく、2種以上を併用してもよい。 The organic solvent in the cooling step is preferably an aromatic compound, an amide compound, a sulfur compound, a nitrile compound, a ketone compound, an alcohol, or a combination thereof. By using a cooling solvent containing the specific organic solvent, it is possible to more effectively remove poorly water-soluble high-boiling by-products, and to further reduce process instability due to accumulation of these by-products. . In addition, these organic solvents may be used individually by 1 type, and may use 2 or more types together.
 上記芳香族化合物としては、例えばトルエン、キシレン、ベンゼン等が挙げられる。 Examples of the aromatic compound include toluene, xylene, benzene and the like.
 上記アミド化合物としては、例えばジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)等が挙げられる。 Examples of the amide compound include dimethylformamide and N-methyl-2-pyrrolidone (NMP).
 上記硫黄化合物としては、例えばジメチルスルホキシド(DMSO)、スルホラン等が挙げられる。 Examples of the sulfur compound include dimethyl sulfoxide (DMSO) and sulfolane.
 上記ニトリル化合物としては、例えば、アセトニトリル、ブチロニトリル等が挙げられる。 Examples of the nitrile compound include acetonitrile and butyronitrile.
 上記ケトン化合物としては、例えば、シクロヘキサノン、アセトフェノン等が挙げられる。 Examples of the ketone compound include cyclohexanone and acetophenone.
 上記アルコール類としては、例えばメチルアルコール、エチルアルコール、アリルアルコール、クロチルアルコール、シクロペンタノール等が挙げられる。 Examples of the alcohols include methyl alcohol, ethyl alcohol, allyl alcohol, crotyl alcohol, and cyclopentanol.
 これらのうち、上記冷却工程における有機溶媒としては、芳香族化合物が好ましく、トルエンがより好ましい。 Of these, the organic solvent in the cooling step is preferably an aromatic compound, and more preferably toluene.
 上記冷却溶媒におけるアルカリ金属化合物水溶液としては、水酸化アルカリ金属水溶液が好ましく、例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム水溶液等が挙げられる。これらのうち、水酸化ナトリウム水溶液、水酸化カリウム水溶液がより好ましく、水酸化ナトリウム水溶液がさらに好ましい。また、アルカリ金属化合物水溶液の水酸化アルカリ濃度の下限としては、1質量%が好ましく、2質量%がより好ましく、3質量%がさらに好ましい。一方、アルカリ金属化合物水溶液の水酸化アルカリ濃度の上限としては、50質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましい。なお、これらのアルカリ金属化合物水溶液は1種を単独で用いてもよく、2種以上を併用してもよい。中和や炭酸ガス吸収の目的では、アンモニアやアミン類を用いることも可能であるが、アンモニアは毒性ガスであり使用に危険を伴い、アミン類はアルカリ金属より塩基性が弱く中和のためには使用量が多くなり、且つ単価も高いため、ブタジエン製造コストが高くなる。 The aqueous alkali metal compound solution in the cooling solvent is preferably an aqueous alkali metal hydroxide solution, such as an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or an aqueous lithium hydroxide solution. Among these, a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution are more preferable, and a sodium hydroxide aqueous solution is more preferable. Moreover, as a minimum of the alkali hydroxide density | concentration of alkali metal compound aqueous solution, 1 mass% is preferable, 2 mass% is more preferable, and 3 mass% is further more preferable. On the other hand, the upper limit of the alkali hydroxide concentration of the aqueous alkali metal compound solution is preferably 50% by mass, more preferably 40% by mass, and still more preferably 30% by mass. In addition, these alkali metal compound aqueous solutions may be used individually by 1 type, and may use 2 or more types together. Ammonia and amines can be used for the purpose of neutralization and carbon dioxide absorption, but ammonia is a toxic gas and is dangerous to use, and amines are weaker than alkali metals and are used for neutralization. Since the amount of use increases and the unit price is high, the butadiene production cost increases.
 上記冷却工程における有機溶媒が芳香族化合物である場合、上記冷却溶媒におけるアルカリ金属化合物水溶液の含有量の下限としては、10質量%が好ましく、20質量%がより好ましく、30質量%がさらに好ましい。一方、上記冷却溶媒におけるアルカリ金属化合物水溶液の含有量の上限としては、80質量%が好ましく、75質量%がより好ましく、70質量%がさらに好ましい。このように、有機溶媒が芳香族化合物である場合の冷却溶媒におけるアルカリ金属化合物水溶液の含有量を上記特定範囲とすることで、水溶性副生成物と共に難水溶性高沸点副生成物を冷却溶媒により効果的に溶解させて除去することができる。 When the organic solvent in the cooling step is an aromatic compound, the lower limit of the content of the aqueous alkali metal compound solution in the cooling solvent is preferably 10% by mass, more preferably 20% by mass, and even more preferably 30% by mass. On the other hand, the upper limit of the content of the alkali metal compound aqueous solution in the cooling solvent is preferably 80% by mass, more preferably 75% by mass, and even more preferably 70% by mass. Thus, by setting the content of the alkali metal compound aqueous solution in the cooling solvent in the case where the organic solvent is an aromatic compound within the above specific range, the water-soluble by-product and the slightly water-soluble high-boiling by-product are cooled with the cooling solvent. Can be dissolved and removed more effectively.
 上記冷却工程における有機溶媒が、アミド化合物、硫黄化合物、ニトリル化合物、ケトン化合物、アルコール類又はこれらの組み合わせである場合、上記冷却溶媒におけるアルカリ金属化合物水溶液の含有量の下限としては、5質量%が好ましく、10質量%が好ましく、15質量%がより好ましい。上記冷却溶媒におけるアルカリ金属化合物水溶液の含有量の上限としては、80質量%が好ましく、70質量%がより好ましく、60質量%がさらに好ましい。このように、有機溶媒が芳香族化合物以外である場合の冷却溶媒におけるアルカリ金属化合物水溶液の含有量を上記特定範囲とすることで、副生成物を冷却溶媒により効果的に溶解させて除去することができる。 When the organic solvent in the cooling step is an amide compound, a sulfur compound, a nitrile compound, a ketone compound, an alcohol, or a combination thereof, the lower limit of the content of the aqueous alkali metal compound solution in the cooling solvent is 5% by mass. 10 mass% is preferable and 15 mass% is more preferable. As an upper limit of content of the alkali metal compound aqueous solution in the said cooling solvent, 80 mass% is preferable, 70 mass% is more preferable, and 60 mass% is further more preferable. Thus, by making the content of the alkali metal compound aqueous solution in the cooling solvent in the case where the organic solvent is other than the aromatic compound within the specified range, the by-product is effectively dissolved and removed by the cooling solvent. Can do.
<分離工程>
 冷却溶媒は、配管122より冷却塔2に循環して使用される。また、上記循環使用する冷却溶媒の一部は、配管103より抜き出されデカンター10において有機溶媒とアルカリ金属化合物水溶液とに分離される。マレイン酸、アクリル酸等の有機酸を含む上記分離されたアルカリ金属化合物水溶液は、配管120より排出される。一方、上記分離された有機溶媒は、配管121より再生器11に送られる。上記分離された有機溶媒中には、難水溶性高沸点副生成物等の副生成物が蓄積されているが、この副生成物は、再生器11において除去される。副生成物除去後の有機溶媒は、配管102により冷却塔2へと再利用される。冷却溶媒がこのように循環使用されることで、配管120からの排水負荷を低減することができる。なお、本発明においては、この分離工程を有さなくてもよい。
<Separation process>
The cooling solvent is circulated to the cooling tower 2 through the pipe 122 and used. A part of the cooling solvent used for circulation is extracted from the pipe 103 and separated into an organic solvent and an aqueous alkali metal compound solution in the decanter 10. The separated alkali metal compound aqueous solution containing an organic acid such as maleic acid or acrylic acid is discharged from the pipe 120. On the other hand, the separated organic solvent is sent to the regenerator 11 through the pipe 121. By-products such as poorly water-soluble high-boiling by-products are accumulated in the separated organic solvent, the by-products are removed in the regenerator 11. The organic solvent after removing the by-products is reused to the cooling tower 2 through the pipe 102. By circulating the cooling solvent in this way, the drainage load from the pipe 120 can be reduced. In the present invention, this separation step may not be provided.
 冷却塔2出口における生成ガス中の各成分の濃度として、Nの下限としては、30体積%が好ましく、40体積%がより好ましい。Nの上限としては、80体積%が好ましく、70体積%がより好ましい。HOの下限としては、5体積%が好ましく、10体積%がより好ましい。HOの上限としては、60体積%が好ましく、45体積%がより好ましい。ブタジエンの下限としては、3体積%が好ましく、5体積%がより好ましい。ブタジエンの上限としては、20体積%が好ましく、15体積%がより好ましい。 The concentration of each component in the product gas at the outlet of the cooling tower 2 is preferably 30% by volume and more preferably 40% by volume as the lower limit of N 2 . The upper limit of the N 2, is preferably 80 vol%, more preferably 70% by volume. The lower limit of H 2 O, preferably 5% by volume, more preferably 10% by volume. The upper limit of the H 2 O, preferably 60 vol%, more preferably 45% by volume. The lower limit of butadiene is preferably 3% by volume, and more preferably 5% by volume. The upper limit of butadiene is preferably 20% by volume, and more preferably 15% by volume.
(熱交換器)
 冷却塔2で冷却された生成ガスは冷却塔2の塔頂から流出され、配管104より熱交換器3を経て室温(10℃以上30℃以下)程度に冷却され、冷却生成ガスを得る。
(Heat exchanger)
The product gas cooled in the cooling tower 2 flows out from the top of the cooling tower 2 and is cooled to about room temperature (10 ° C. or more and 30 ° C. or less) through the heat exchanger 3 from the pipe 104 to obtain a cooled product gas.
 熱交換器3出口における冷却生成ガスの各成分の濃度として、Nの下限としては、60体積%が好ましく、70体積%がより好ましい。Nの上限としては、94体積%が好ましく、85体積%がより好ましい。HOの下限としては、1体積%が好ましい。HOの上限としては、20体積%が好ましく、10体積%がより好ましい。ブタジエンの下限としては、3体積%が好ましく、4体積%がより好ましい。ブタジエンの上限としては、20体積%が好ましく、15体積%がより好ましい。冷却生成ガスの各成分の濃度を上記範囲とすることで、冷却生成ガス中のブタジエン濃度を上記範囲に制御でき、これにより、次工程で吸収溶媒への吸収効率を高めることができる。 As the concentration of each component of the cooling product gas in the heat exchanger 3 outlet, the lower limit of the N 2, is preferably 60 vol%, more preferably 70% by volume. The upper limit of the N 2, is preferably 94 vol%, more preferably 85% by volume. The lower limit of H 2 O, 1% by volume is preferred. The upper limit of the H 2 O, preferably 20 vol%, more preferably 10% by volume. The lower limit of butadiene is preferably 3% by volume, and more preferably 4% by volume. The upper limit of butadiene is preferably 20% by volume, and more preferably 15% by volume. By setting the concentration of each component of the cooled product gas within the above range, the concentration of butadiene in the cooled product gas can be controlled within the above range, and thereby the absorption efficiency into the absorbing solvent can be increased in the next step.
<粗分離工程(吸収工程)>
 本工程では、吸収溶媒への選択的吸収により上記冷却生成ガスを分子状酸素及び不活性ガス類とその他のガスとに粗分離する。ここで、「その他のガス」とは、少なくとも吸収溶媒に吸収されるブタジエン及び未反応のn-ブテンを含むガスをいう。なお、粗分離工程は省略することができる。
<Rough separation process (absorption process)>
In this step, the cooled product gas is roughly separated into molecular oxygen and inert gases and other gases by selective absorption into an absorbing solvent. Here, “other gas” refers to a gas containing at least butadiene and unreacted n-butene absorbed in the absorbing solvent. The rough separation step can be omitted.
 上記冷却生成ガスは、必要に応じて、圧縮機4により加圧され、さらに熱交換器5により冷却される。冷却生成ガスは、配管107から吸収塔6に送給される。吸収塔6の上部からは、熱交換器123を経て温度調節された吸収溶媒が配管108より導入され、この吸収溶媒と上記冷却生成ガスとを向流接触させる。これにより、上記冷却生成ガス中のその他のガス(ブタジエン及び未反応のn-ブテンを含むガス)が吸収溶媒に吸収され、分子状酸素及び不活性ガス類とその他のガスとは粗分離される。 The cooling product gas is pressurized by the compressor 4 and further cooled by the heat exchanger 5 as necessary. The cooled product gas is sent from the pipe 107 to the absorption tower 6. From the upper part of the absorption tower 6, the absorption solvent whose temperature is adjusted through the heat exchanger 123 is introduced from the pipe 108, and the absorption solvent and the cooled product gas are brought into countercurrent contact. As a result, other gases (gas containing butadiene and unreacted n-butene) in the cooled product gas are absorbed by the absorption solvent, and molecular oxygen and inert gases are roughly separated from other gases. .
 吸収塔6内の圧力は特に限定されないが、圧力の下限としては、0.1MPaGが好ましく、0.2MPaGがより好ましい。圧力の上限としては、1.5MPaGが好ましく、1.0MPaGがより好ましい。この圧力が大きいほど、吸収効率を高めることができ、小さいほど吸収塔6へのガス導入時の昇圧に要するエネルギーを削減できる。 Although the pressure in the absorption tower 6 is not particularly limited, the lower limit of the pressure is preferably 0.1 MPaG, more preferably 0.2 MPaG. As an upper limit of pressure, 1.5 MPaG is preferable and 1.0 MPaG is more preferable. The larger the pressure, the higher the absorption efficiency, and the smaller the pressure, the more energy required for boosting when introducing gas into the absorption tower 6 can be reduced.
 また、吸収塔6内の温度は特に限定されないが、温度の下限としては、0℃が好ましく、10℃がより好ましい。温度の上限としては、60℃が好ましく、50℃がより好ましい。この温度が高いほど、酸素や窒素等が溶媒に吸収されにくいというメリットがあり、低いほどブタジエン等の炭化水素の吸収効率が良くなるというメリットがある。 Further, the temperature in the absorption tower 6 is not particularly limited, but the lower limit of the temperature is preferably 0 ° C, more preferably 10 ° C. As an upper limit of temperature, 60 degreeC is preferable and 50 degreeC is more preferable. The higher this temperature is, the more advantageous it is that oxygen, nitrogen, etc. are less likely to be absorbed by the solvent, and the lower, there is an advantage that the absorption efficiency of hydrocarbons such as butadiene is improved.
(吸収溶媒)
 本工程で用いる吸収溶媒としては、上記冷却工程における有機溶媒として例示したものと同様の有機溶媒を主成分として含むもの等が挙げられる。この主成分としては、上記冷却工程において使用する有機溶媒と同一のものが好ましく、トルエン又はアセトニトリルがより好ましく、トルエンがさらに好ましい。ここで「主成分」とは、供給時の吸収溶媒における上記有機溶媒含有量が、50質量%以上であることをいう。上記吸収溶媒における上記有機溶媒の含有量の下限としては、55質量%が好ましく、60質量%がより好ましい。上記吸収溶媒における上記有機溶媒の含有量の上限としては、100質量%が好ましい。
(Absorbing solvent)
Examples of the absorbing solvent used in this step include those containing as a main component the same organic solvent as exemplified as the organic solvent in the cooling step. The main component is preferably the same as the organic solvent used in the cooling step, more preferably toluene or acetonitrile, and even more preferably toluene. Here, the “main component” means that the organic solvent content in the absorbing solvent at the time of supply is 50% by mass or more. As a minimum of content of the above-mentioned organic solvent in the above-mentioned absorption solvent, 55 mass% is preferred and 60 mass% is more preferred. The upper limit of the content of the organic solvent in the absorbing solvent is preferably 100% by mass.
 上記吸収溶媒がトルエンを主成分として含む場合、上記吸収溶媒におけるトルエンの含有量としては、80質量%以上が好ましく、90質量%以上がより好ましく、100質量%がさらに好ましい。 When the absorption solvent contains toluene as a main component, the content of toluene in the absorption solvent is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
 上記吸収溶媒が、アセトニトリルを主成分として含む場合、上記吸収溶媒は、水及びアルコールからなる群より選ばれる少なくとも1種をさらに含むことが好ましい。上記吸収溶媒が水をさらに含有することで、吸収溶媒の選択性を高めることができるが、水の含有量が高くなりすぎると、吸収溶媒中のアセトニトリルに炭化水素類が溶解しきれなくなり二相に分離してしまう。そこで、上記吸収溶媒が水に加えてアルコールをさらに含有することで、水の含有量を高くしてもアセトニトリルへの炭化水素類(その他のガス)の溶解性が低下せず、吸収溶媒中の水の含有量を高めることができる。 When the absorption solvent contains acetonitrile as a main component, the absorption solvent preferably further contains at least one selected from the group consisting of water and alcohol. When the absorption solvent further contains water, the selectivity of the absorption solvent can be increased. However, if the water content becomes too high, hydrocarbons cannot be completely dissolved in acetonitrile in the absorption solvent and the two-phase. Will be separated. Therefore, when the absorption solvent further contains alcohol in addition to water, the solubility of hydrocarbons (other gases) in acetonitrile does not decrease even if the water content is increased, The water content can be increased.
 上記アルコールとしては、炭化水素類と水との親和性の観点から、例えば炭素数8以下のものが挙げられる。これらのうち、アセトニトリルと沸点が近似する炭素数5以下のアルコールが好ましく、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、n-ペンチルアルコール等の脂肪族飽和アルコール、アリルアルコール、クロチルアルコール等の脂肪族不飽和アルコール、シクロペンタノール等の脂環式アルコールがより好ましく、エチルアルコールが特に好ましい。 Examples of the alcohol include those having 8 or less carbon atoms from the viewpoint of the affinity between hydrocarbons and water. Of these, alcohols having a carbon number of 5 or less whose boiling point is close to those of acetonitrile are preferable, and methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol More preferable are aliphatic saturated alcohols such as n-pentyl alcohol, aliphatic unsaturated alcohols such as allyl alcohol and crotyl alcohol, and alicyclic alcohols such as cyclopentanol, and ethyl alcohol is particularly preferable.
 上記吸収溶媒が、アセトニトリルを主成分として含む場合、上記吸収溶媒における水の含有量の下限としては、5質量%が好ましく、10質量%がより好ましい。上記吸収溶媒における水の含有量の上限としては、35質量%が好ましく、25質量%がより好ましい。水の含有量を上記範囲とすることで、吸収溶媒の選択性を効果的に高めることができる。 When the absorption solvent contains acetonitrile as a main component, the lower limit of the water content in the absorption solvent is preferably 5% by mass, and more preferably 10% by mass. The upper limit of the water content in the absorbing solvent is preferably 35% by mass and more preferably 25% by mass. By setting the water content within the above range, the selectivity of the absorbing solvent can be effectively increased.
 上記吸収溶媒が、アセトニトリルを主成分として含む場合、上記吸収溶媒におけるアルコールの含有量の下限としては、5質量%が好ましい。上記吸収溶媒におけるアルコールの含有量の上限としては、30質量%が好ましく、15質量%がより好ましい。アルコールの含有量を上記範囲とすることで、水の含有量を高くしてもアセトニトリルへの炭化水素類(その他のガス)の溶解性が低下せず、吸収溶媒中の水の含有量を高めることができる。 When the absorption solvent contains acetonitrile as a main component, the lower limit of the alcohol content in the absorption solvent is preferably 5% by mass. As an upper limit of content of the alcohol in the said absorption solvent, 30 mass% is preferable and 15 mass% is more preferable. By setting the alcohol content within the above range, the solubility of hydrocarbons (other gases) in acetonitrile does not decrease even when the water content is increased, and the water content in the absorbing solvent is increased. be able to.
 上記吸収溶媒がアセトニトリルを主成分として含む場合、上記吸収溶媒は、アセトニトリル、アルコール及び水以外のその他の溶媒を含んでいてもよい。 When the absorption solvent contains acetonitrile as a main component, the absorption solvent may contain other solvents other than acetonitrile, alcohol and water.
 粗分離工程での吸収溶媒の使用量としては、特に制限はないが、反応器1から供給される生成ガス中のブタジエン及び未反応n-ブテンの合計流量に対する吸収溶媒の使用量の下限としては、1質量倍が好ましく、5質量倍がより好ましい。一方、吸収溶媒の使用量の上限としては、100質量倍が好ましく、50質量倍がより好ましい。吸収溶媒の使用量を上記範囲とすることで、ブタジエン等の吸収効率を向上することができる。吸収溶媒の使用量が多すぎると、不経済となる傾向にあり、少なすぎると、ブタジエン等の吸収効率が低下する傾向にある。 The amount of the absorbing solvent used in the rough separation step is not particularly limited, but the lower limit of the amount of the absorbing solvent used with respect to the total flow rate of butadiene and unreacted n-butene in the product gas supplied from the reactor 1 is as follows. 1 mass times is preferable and 5 mass times is more preferable. On the other hand, as an upper limit of the usage-amount of an absorption solvent, 100 mass times is preferable and 50 mass times is more preferable. By making the usage-amount of an absorption solvent into the said range, absorption efficiency, such as a butadiene, can be improved. When the amount of the absorbing solvent used is too large, it tends to be uneconomical, and when it is too small, the absorption efficiency of butadiene or the like tends to be lowered.
 吸収溶媒の温度の下限としては、0℃が好ましい。吸収溶媒の温度の上限としては、60℃が好ましく、40℃がより好ましい。吸収溶媒の温度を上記範囲とすることで、ブタジエン等の炭化水素の吸収効率をより向上させることができる。従って、熱交換器123のような装置で温度を調節することが好ましい。 The lower limit of the temperature of the absorbing solvent is preferably 0 ° C. The upper limit of the temperature of the absorbing solvent is preferably 60 ° C, more preferably 40 ° C. By setting the temperature of the absorption solvent in the above range, the absorption efficiency of hydrocarbons such as butadiene can be further improved. Therefore, it is preferable to adjust the temperature with an apparatus such as the heat exchanger 123.
 吸収溶媒に吸収されなかった成分(分子状酸素及び不活性ガス類)は吸収塔6の塔頂から排出され、配管110より洗浄塔7に送給される。この分子状酸素及び不活性ガス類は洗浄塔7の配管118より供給されるオイル(吸収溶媒がトルエンを主成分として含む場合)又は水(吸収溶媒がアセトニトリルを主成分として含む場合)で洗浄され、これにより分子状酸素及び不活性ガス類に混合する(同伴する)吸収溶媒が除去され、除去された吸収溶媒は配管117より回収される。洗浄された分子状酸素及び不活性ガス類は、配管119より反応工程に送り、循環使用してもよい。 Components that have not been absorbed by the absorbing solvent (molecular oxygen and inert gases) are discharged from the top of the absorption tower 6 and sent to the cleaning tower 7 through the pipe 110. The molecular oxygen and inert gases are washed with oil (when the absorbing solvent contains toluene as a main component) or water (when the absorbing solvent contains acetonitrile as a main component) supplied from the pipe 118 of the cleaning tower 7. Thus, the absorbing solvent mixed (entrained) with the molecular oxygen and the inert gas is removed, and the removed absorbing solvent is recovered from the pipe 117. The cleaned molecular oxygen and inert gas may be sent to the reaction process from the pipe 119 and recycled.
<脱溶工程>
 本工程では、ブタジエンを含む吸収溶媒から溶媒を分離し、ブタジエンを含むガス流を得る。具体的には、吸収塔6の底部から得られるブタジエンを含む吸収溶媒を、配管109より脱溶塔8に供給する。脱溶塔8において、蒸留分離を行い、塔頂より配管113を介してブタジエンを含むガス流を得る。分離された溶媒は塔底より抜き出され、吸収塔6の吸収溶媒として配管111により循環使用されるが、一部を配管112により溶媒再生塔9に供給し、溶媒中の不純物を分離した後に配管116により吸収塔6に循環使用する。分離した不純物は溶媒再生塔9の上下に接続された配管114,115により排出される。
<Demelting process>
In this step, the solvent is separated from the absorbing solvent containing butadiene to obtain a gas stream containing butadiene. Specifically, an absorption solvent containing butadiene obtained from the bottom of the absorption tower 6 is supplied to the demelting tower 8 through the pipe 109. In the demelting tower 8, distillation separation is performed, and a gas stream containing butadiene is obtained from the top of the tower via a pipe 113. The separated solvent is extracted from the bottom of the column and circulated and used as the absorption solvent of the absorption tower 6 through the pipe 111. After a part of the solvent is supplied to the solvent regeneration tower 9 through the pipe 112 and impurities in the solvent are separated. It is recycled to the absorption tower 6 through the pipe 116. The separated impurities are discharged through pipes 114 and 115 connected to the upper and lower sides of the solvent regeneration tower 9.
 脱溶塔8内の圧力としては、特に限定されないが、その下限としては、0.03MPaGが好ましく、0.2MPaGがより好ましい。脱溶塔8内の圧力の上限としては、1.0MPaGが好ましく、0.6MPaGがより好ましい。 The pressure in the demelting tower 8 is not particularly limited, but the lower limit is preferably 0.03 MPaG, more preferably 0.2 MPaG. As an upper limit of the pressure in the demelting tower 8, 1.0 MPaG is preferable and 0.6 MPaG is more preferable.
 また、脱溶塔8の塔底温度の下限としては、80℃が好ましく、100℃がより好ましい。一方、脱溶塔8の塔底温度の上限としては、200℃が好ましく、180℃がより好ましい。 The lower limit of the bottom temperature of the demelting tower 8 is preferably 80 ° C., more preferably 100 ° C. On the other hand, the upper limit of the bottom temperature of the demelting tower 8 is preferably 200 ° C and more preferably 180 ° C.
 溶媒再生塔9内の圧力としては、特に限定されないが、その下限としては、0MPaGが好ましい。溶媒再生塔9内の圧力の上限としては、0.8MPaGが好ましく、0.5MPaGがより好ましい。 The pressure in the solvent regeneration tower 9 is not particularly limited, but the lower limit is preferably 0 MPaG. The upper limit of the pressure in the solvent regeneration tower 9 is preferably 0.8 MPaG, and more preferably 0.5 MPaG.
 当該ブタジエンの製造方法の具体的実施例を以下説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例内に記載したガス組成分析については、下記表1に示す条件でガスクロマトグラフィーを用いて行った。HOに関しては、ガスサンプリングの際の氷冷トラップにより得られた水分量を加算することで算出した。 Specific examples of the method for producing butadiene will be described below, but the present invention is not limited to the following examples. The gas composition analysis described in the following examples was performed using gas chromatography under the conditions shown in Table 1 below. H 2 O was calculated by adding the amount of water obtained by the ice-cold trap at the time of gas sampling.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 実施例1は、本発明の実施形態のブタジエンの製造方法である。以下、実施例1を図1を参照しつつ説明する。
[Example 1]
Example 1 is a method for producing butadiene according to an embodiment of the present invention. Hereinafter, Example 1 will be described with reference to FIG.
<反応工程>
(a)触媒
 Mo12BiFe0.5NiCo0.1Cs0.1Sb0.2の組成式で表される酸化物を球状のシリカに触媒総体積の20%の割合で担持させた触媒を使用した。
<Reaction process>
(A) Catalyst Mo 12 Bi 5 Fe 0.5 Ni 2 Co 3 K 0.1 Cs 0.1 Sb 0.2 in a ratio of 20% of the total volume of catalyst to spherical silica The catalyst supported on was used.
 上記(a)の触媒を触媒長4,000mmで充填した図1の反応器1(内径21.2mm、外径25.4mm)に、n-ブテンを含む原料ガス/空気/水蒸気/窒素を1.0/4.3/1.2/3.4の体積割合で混合した混合ガスを1,000hr-1の気体時空間速度(GHSV)にて供給し、320℃~330℃で反応させ、1,3-ブタジエンを含む生成ガスを得た。 Reactor 1 of FIG. 1 (inner diameter 21.2 mm, outer diameter 25.4 mm) filled with the catalyst (a) with a catalyst length of 4,000 mm is supplied with a raw material gas / air / water vapor / nitrogen containing n-butene. A mixed gas mixed at a volume ratio of 0.0 / 4.3 / 1.2 / 3.4 was supplied at a gas hourly space velocity (GHSV) of 1,000 hr −1 and reacted at 320 ° C. to 330 ° C. A product gas containing 1,3-butadiene was obtained.
<冷却工程>
 反応器1から抜き出した生成ガスを、外径1・1/4インチ、高さ1,600mm、材質SUS316Lで内部にφ5×5mmのラシヒリングを充填した冷却塔2に導入した。冷却塔2において、圧力が0.01MPaGの条件で、上記導入した生成ガスをトルエン及び5質量%水酸化ナトリウム水溶液を1:1の割合で含む冷却溶媒と接触させて67℃に冷却した。その後、熱交換器3で室温(30℃)まで冷却した。冷却塔2出口における生成ガス中の各ガス成分の割合は、1,3-ブタジエン/未反応n-ブテン/N/HO/O/COxが8.5/1.0/66/19/4.1/1.4の体積割合であった。10日後に運転を停止し、冷却塔2の後に設置したフィルターを確認したところ目視で付着物はなかった。冷却溶媒は循環使用し、その一部を抜き出してデカンター10に導入してトルエンと水酸化ナトリウム水溶液とを分離した。分離したトルエンにはフルオレノン、アントラキノンのような副生成物が含まれており、再生器11へ導入してこの副生成物を除去した後、トルエンを再利用した。分離された水酸化ナトリウム水溶液には、マレイン酸、アクリル酸のような有機酸が含まれていた。
<Cooling process>
The product gas extracted from the reactor 1 was introduced into the cooling tower 2 having an outer diameter of ¼ inch, a height of 1,600 mm, and a material SUS316L filled with Raschig rings of φ5 × 5 mm inside. In the cooling tower 2, the introduced introduced gas was brought into contact with a cooling solvent containing toluene and a 5 mass% aqueous sodium hydroxide solution at a ratio of 1: 1 under the condition of a pressure of 0.01 MPaG and cooled to 67 ° C. Then, it cooled to room temperature (30 degreeC) with the heat exchanger 3. FIG. The ratio of each gas component in the product gas at the outlet of the cooling tower 2 is such that 1,3-butadiene / unreacted n-butene / N 2 / H 2 O / O 2 / COx is 8.5 / 1.0 / 66 / The volume ratio was 19 / 4.1 / 1.4. After 10 days, the operation was stopped, and the filter installed after the cooling tower 2 was confirmed. The cooling solvent was circulated and used, and a part thereof was extracted and introduced into the decanter 10 to separate toluene and aqueous sodium hydroxide solution. The separated toluene contains by-products such as fluorenone and anthraquinone. After introducing the by-products into the regenerator 11 and removing the by-products, the toluene was reused. The separated sodium hydroxide aqueous solution contained organic acids such as maleic acid and acrylic acid.
<粗分離工程(吸収工程)>
 上記冷却工程で得られた冷却生成ガスを圧縮機4で0.4MPaGまで加圧し、熱交換器5で50℃まで冷却した。冷却後のガスを外径1・1/2インチ、高さ1,000mm、材質SUS304で内部に規則充填物を配置した吸収塔6の底部より供給し、塔上部よりトルエン(吸収溶媒)を10℃で供給した。トルエンに吸収させようとする1,3-ブタジエン及び未反応のn-ブテンに対し、供給したトルエンの量は16質量倍であった。
<Rough separation process (absorption process)>
The cooled product gas obtained in the cooling step was pressurized to 0.4 MPaG by the compressor 4 and cooled to 50 ° C. by the heat exchanger 5. The cooled gas is supplied from the bottom of the absorption tower 6 in which a regular packing is arranged inside with a material SUS304 with an outer diameter of 11/2 inches, a height of 1,000 mm, and 10 parts of toluene (absorbing solvent) from the top of the tower. Supplied at ° C. The amount of toluene supplied was 16 times by mass with respect to 1,3-butadiene and unreacted n-butene to be absorbed in toluene.
 トルエンに吸収されず、塔頂より抜き出されたガスには、Nが91体積%、Oが5体積%、COx等の不純物が4体積%の割合で含まれていた。塔頂から得られたガスは、洗浄塔7に送られ、ガス中に含まれる少量の溶媒をオイルで除去後、一部を反応工程へ送り、循環使用した。 The gas extracted from the top of the column without being absorbed by toluene contained 91% by volume of N 2 , 5% by volume of O 2 , and 4% by volume of impurities such as COx. The gas obtained from the top of the tower was sent to the washing tower 7 and a small amount of solvent contained in the gas was removed with oil, and then part of the solvent was sent to the reaction process and recycled.
<脱溶工程>
 吸収塔6の底部から得られた1,3-ブタジエンを含む溶媒を外径1・1/2インチ、高さ1,000mm、材質SS400で内部に充填物を配置した脱溶塔8に供給し、塔頂より実質的に溶媒を含まないガス流を得た。脱溶塔8の塔頂より得られたガスには、1,3-ブタジエンが75体積%、n-ブテンが8体積%、COxや溶媒等の不純物が17体積%の割合で含まれていた。
<Demelting process>
The solvent containing 1,3-butadiene obtained from the bottom of the absorption tower 6 is supplied to a demelting tower 8 having an outer diameter of 11/2 inches, a height of 1,000 mm, and a material SS400 with a packing inside. A gas stream substantially free of solvent was obtained from the top of the column. The gas obtained from the top of the desorption tower 8 contained 75% by volume of 1,3-butadiene, 8% by volume of n-butene, and 17% by volume of impurities such as COx and solvent. .
 脱溶塔8の底部から抜き出された実質的に1,3-ブタジエンを含まない溶媒は、熱交換器で冷却された後、吸収塔6へ供給され循環使用したが、一部は溶媒再生塔9へ供給され、不純物を分離後に吸収塔6へ循環使用した。 The solvent substantially free of 1,3-butadiene extracted from the bottom of the desulfurization tower 8 is cooled by a heat exchanger and then supplied to the absorption tower 6 for recycling. A part of the solvent is regenerated. It was supplied to the tower 9 and was recycled to the absorption tower 6 after the impurities were separated.
[実施例2]
 実施例1において、冷却塔2に冷却溶媒として25質量%水酸化ナトリウム水溶液を用いた以外は、同様に操作してブタジエンを製造した。一部抜き出したトルエン及び水酸化ナトリウムに含まれる物質や濃度に変化はなかった。冷却塔2の後に設置したフィルターを確認したところ目視で付着物はなかった。水酸化ナトリウム使用量が少ないほど、ブタジエン製造コストは安くなる。
[Example 2]
In Example 1, butadiene was produced in the same manner except that a 25% by mass aqueous sodium hydroxide solution was used as the cooling solvent in the cooling tower 2. There was no change in the substances and concentrations contained in the partially extracted toluene and sodium hydroxide. When the filter installed after the cooling tower 2 was confirmed, there was no adhesion | attachment visually. The lower the amount of sodium hydroxide used, the lower the butadiene production cost.
[比較例1]
 実施例1において、冷却塔2に冷却溶媒として5質量%水酸化ナトリウム水溶液を用いた以外は、同様に操作してブタジエンを製造した。冷却塔2の後に設置したフィルターを確認したところ目視で付着物が見られた。
[Comparative Example 1]
In Example 1, butadiene was produced in the same manner except that a 5% by mass aqueous sodium hydroxide solution was used as the cooling solvent for the cooling tower 2. When the filter installed after the cooling tower 2 was confirmed, deposits were visually observed.
 本発明のブタジエンの製造方法によれば、n-ブテンを酸化脱水素させて得られる生成ガスからブタジエンを製造する際に、副生成物が析出し、冷却塔や配管を閉塞するのを抑制でき、安定的に連続運転することができる。 According to the butadiene production method of the present invention, when producing butadiene from a product gas obtained by oxidative dehydrogenation of n-butene, it is possible to suppress the precipitation of by-products and blockage of cooling towers and piping. , Stable and continuous operation.
 1 反応器
 2 冷却塔
 3 熱交換器
 4 圧縮機
 5 熱交換器
 6 吸収塔
 7 洗浄塔
 8 脱溶塔
 9 溶媒再生塔
 10 デカンター
 11 再生器
 100~122 配管
 123 熱交換器
1 Reactor 2 Cooling Tower 3 Heat Exchanger 4 Compressor 5 Heat Exchanger 6 Absorption Tower 7 Washing Tower 8 Demelting Tower 9 Solvent Regeneration Tower 10 Decanter 11 Regenerator 100 to 122 Piping 123 Heat Exchanger

Claims (8)

  1.  金属酸化物触媒の存在下、n-ブテンを含む原料ガスと分子状酸素含有ガスとの酸化脱水素反応により1,3-ブタジエンを含む生成ガスを得る工程、及び
     上記生成ガスを冷却する工程
     を有し、
     上記冷却工程において、有機溶媒及びアルカリ金属化合物水溶液を含む冷却溶媒をガスと接触させる1,3-ブタジエンの製造方法。
    A step of obtaining a product gas containing 1,3-butadiene by an oxidative dehydrogenation reaction between a source gas containing n-butene and a molecular oxygen-containing gas in the presence of a metal oxide catalyst, and a step of cooling the product gas. Have
    A method for producing 1,3-butadiene, wherein a cooling solvent containing an organic solvent and an aqueous alkali metal compound solution is brought into contact with a gas in the cooling step.
  2.  上記冷却工程における有機溶媒が、芳香族化合物、アミド化合物、硫黄化合物、ニトリル化合物、ケトン化合物、アルコール類又はこれらの組み合わせである請求項1に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to claim 1, wherein the organic solvent in the cooling step is an aromatic compound, an amide compound, a sulfur compound, a nitrile compound, a ketone compound, an alcohol, or a combination thereof.
  3.  上記冷却工程における有機溶媒が、芳香族化合物であって、
     上記冷却溶媒におけるアルカリ金属化合物水溶液の含有量が、10質量%以上80質量%以下である請求項2に記載の1,3-ブタジエンの製造方法。
    The organic solvent in the cooling step is an aromatic compound,
    The method for producing 1,3-butadiene according to claim 2, wherein the content of the aqueous alkali metal compound solution in the cooling solvent is 10% by mass or more and 80% by mass or less.
  4.  上記冷却工程における有機溶媒が、アミド化合物、硫黄化合物、ニトリル化合物、アルコール類又はこれらの組み合わせであって、
     上記冷却溶媒におけるアルカリ金属化合物水溶液の含有量が、5質量%以上80質量%以下である請求項2に記載の1,3-ブタジエンの製造方法。
    The organic solvent in the cooling step is an amide compound, a sulfur compound, a nitrile compound, an alcohol or a combination thereof,
    The method for producing 1,3-butadiene according to claim 2, wherein the content of the aqueous alkali metal compound solution in the cooling solvent is 5% by mass or more and 80% by mass or less.
  5.  上記冷却工程において、上記冷却溶媒を循環使用する請求項1から請求項4のいずれか1項に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to any one of claims 1 to 4, wherein the cooling solvent is circulated and used in the cooling step.
  6.  上記循環使用する冷却溶媒の一部を抜き出して有機溶媒とアルカリ金属化合物水溶液とに分離する工程をさらに有する請求項5に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to claim 5, further comprising a step of extracting a part of the cooling solvent to be circulated and separating it into an organic solvent and an aqueous alkali metal compound solution.
  7.  上記分離工程で得られる上記有機溶媒中に蓄積した副生成物を分離する工程をさらに有する請求項6に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to claim 6, further comprising a step of separating the by-product accumulated in the organic solvent obtained in the separation step.
  8.  上記冷却工程を、0MPaG以上0.5MPaG以下の圧力下で行う請求項1から請求項7のいずれか1項に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to any one of claims 1 to 7, wherein the cooling step is performed under a pressure of 0 MPaG to 0.5 MPaG.
PCT/JP2014/080558 2013-12-12 2014-11-18 Method for producing 1,3-butadiene WO2015087668A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015552374A JPWO2015087668A1 (en) 2013-12-12 2014-11-18 Method for producing 1,3-butadiene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013257509 2013-12-12
JP2013-257509 2013-12-12
JP2014127727 2014-06-20
JP2014-127727 2014-06-20

Publications (1)

Publication Number Publication Date
WO2015087668A1 true WO2015087668A1 (en) 2015-06-18

Family

ID=53370982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080558 WO2015087668A1 (en) 2013-12-12 2014-11-18 Method for producing 1,3-butadiene

Country Status (2)

Country Link
JP (1) JPWO2015087668A1 (en)
WO (1) WO2015087668A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017533919A (en) * 2014-11-03 2017-11-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing 1,3-butadiene from n-butenes by oxidative dehydrogenation
CN109843836A (en) * 2016-08-09 2019-06-04 巴斯夫欧洲公司 Method of the starting for the reactor of the oxidative dehydrogenation of n-butene
US10407363B2 (en) 2017-08-16 2019-09-10 Saudi Arabian Oil Company Steam-less process for converting butenes to 1,3-butadiene
WO2019172250A1 (en) * 2018-03-06 2019-09-12 Jsr株式会社 Method for producing 1,3-butadiene
WO2020075088A1 (en) * 2018-10-11 2020-04-16 Nova Chemicals (International) S.A. Oxygenate separation using a metal salt
JP2021505388A (en) * 2017-12-11 2021-02-18 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム How to remove dirt downstream of the ODH reactor
WO2021044918A1 (en) * 2019-09-02 2021-03-11 Jsr株式会社 Method for producing 1,3-butadiene
WO2021059834A1 (en) * 2019-09-26 2021-04-01 Jsr株式会社 Method for producing 1,3-butadiene
WO2021172239A1 (en) * 2020-02-25 2021-09-02 Eneos株式会社 Method for producing 1,3-butadiene
US11492310B2 (en) 2018-11-19 2022-11-08 Nova Chemicals (International) S.A. Oxygenate separation following oxidative dehydrogenation of a lower alkane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615030A (en) * 1984-06-18 1986-01-10 Japan Synthetic Rubber Co Ltd Method for purifying butadiene-1,3
JP2012067048A (en) * 2010-09-27 2012-04-05 Asahi Kasei Chemicals Corp Method for producing butadiene
WO2012157495A1 (en) * 2011-05-19 2012-11-22 旭化成ケミカルズ株式会社 Method for manufacturing conjugated diolefin and manufacturing device therefor
WO2013136434A1 (en) * 2012-03-13 2013-09-19 旭化成ケミカルズ株式会社 Method for producing conjugate diolefin
JP2013213028A (en) * 2012-03-07 2013-10-17 Mitsubishi Chemicals Corp Method for producing conjugated diene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615030A (en) * 1984-06-18 1986-01-10 Japan Synthetic Rubber Co Ltd Method for purifying butadiene-1,3
JP2012067048A (en) * 2010-09-27 2012-04-05 Asahi Kasei Chemicals Corp Method for producing butadiene
WO2012157495A1 (en) * 2011-05-19 2012-11-22 旭化成ケミカルズ株式会社 Method for manufacturing conjugated diolefin and manufacturing device therefor
JP2013213028A (en) * 2012-03-07 2013-10-17 Mitsubishi Chemicals Corp Method for producing conjugated diene
WO2013136434A1 (en) * 2012-03-13 2013-09-19 旭化成ケミカルズ株式会社 Method for producing conjugate diolefin

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017533919A (en) * 2014-11-03 2017-11-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing 1,3-butadiene from n-butenes by oxidative dehydrogenation
CN109843836A (en) * 2016-08-09 2019-06-04 巴斯夫欧洲公司 Method of the starting for the reactor of the oxidative dehydrogenation of n-butene
US10407363B2 (en) 2017-08-16 2019-09-10 Saudi Arabian Oil Company Steam-less process for converting butenes to 1,3-butadiene
JP2021505388A (en) * 2017-12-11 2021-02-18 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム How to remove dirt downstream of the ODH reactor
US11230513B2 (en) 2018-03-06 2022-01-25 Jsr Corporation Production process of 1,3-butadiene
WO2019172250A1 (en) * 2018-03-06 2019-09-12 Jsr株式会社 Method for producing 1,3-butadiene
JP7196155B2 (en) 2018-03-06 2022-12-26 株式会社Eneosマテリアル Method for producing 1,3-butadiene
JPWO2019172250A1 (en) * 2018-03-06 2021-03-04 Jsr株式会社 Method for producing 1,3-butadiene
US11447704B2 (en) 2018-10-11 2022-09-20 Nova Chemicals (International) S.A. Oxygenate separation using a metal salt
WO2020075088A1 (en) * 2018-10-11 2020-04-16 Nova Chemicals (International) S.A. Oxygenate separation using a metal salt
US11492310B2 (en) 2018-11-19 2022-11-08 Nova Chemicals (International) S.A. Oxygenate separation following oxidative dehydrogenation of a lower alkane
WO2021044918A1 (en) * 2019-09-02 2021-03-11 Jsr株式会社 Method for producing 1,3-butadiene
WO2021059834A1 (en) * 2019-09-26 2021-04-01 Jsr株式会社 Method for producing 1,3-butadiene
WO2021172239A1 (en) * 2020-02-25 2021-09-02 Eneos株式会社 Method for producing 1,3-butadiene
JPWO2021172239A1 (en) * 2020-02-25 2021-09-02
JP7384995B2 (en) 2020-02-25 2023-11-21 Eneos株式会社 Method for producing 1,3-butadiene

Also Published As

Publication number Publication date
JPWO2015087668A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015087668A1 (en) Method for producing 1,3-butadiene
JP5621305B2 (en) Method for producing conjugated diene
JP5621304B2 (en) Method for producing conjugated diene
JP5994726B2 (en) Method for producing conjugated diene
JP6070825B2 (en) Method for producing 1,3-butadiene
JP2010275210A (en) Method for producing conjugated diene
KR20150105456A (en) Method for producing 1,3-butadiene from n-butenes by oxidative dehydrogenation
JP5780072B2 (en) Method for producing conjugated diene
KR20150105457A (en) Method for the oxidative dehydrogenation of n-butenes to butadiene
JP2012240963A (en) Method for producing conjugated diene
KR20170134522A (en) Preparation of 1,3-butadiene from n-butene by oxidative dehydrogenation
JP5682130B2 (en) Method for producing conjugated diene
JP2012106942A (en) Method for producing conjugated diene
US11986805B2 (en) Method of reactivating catalyst
JP2012111751A (en) Method for producing conjugated diene
JP6187334B2 (en) Method for producing conjugated diene
KR20180101361A (en) Method for producing butadiene by oxidative dehydrogenation of n-butene
JP2012077074A (en) Method for production of conjugated diene
WO2014168051A1 (en) Method for producing 1,3-butadiene
JP2018016566A (en) Method for producing butadiene
JP2012111699A (en) Method for producing conjugated diene
JP2011148764A (en) Method for producing conjugated diene
JP2019151604A (en) Manufacturing method of 1,3-butadiene
JP5780038B2 (en) Method for producing conjugated diene
JP7384995B2 (en) Method for producing 1,3-butadiene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869789

Country of ref document: EP

Kind code of ref document: A1