WO2015085793A1 - 基于4-20mA回路取电的802.15.4e无线设备低功耗组网方法 - Google Patents

基于4-20mA回路取电的802.15.4e无线设备低功耗组网方法 Download PDF

Info

Publication number
WO2015085793A1
WO2015085793A1 PCT/CN2014/085238 CN2014085238W WO2015085793A1 WO 2015085793 A1 WO2015085793 A1 WO 2015085793A1 CN 2014085238 W CN2014085238 W CN 2014085238W WO 2015085793 A1 WO2015085793 A1 WO 2015085793A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
message
time
wireless device
time slot
Prior art date
Application number
PCT/CN2014/085238
Other languages
English (en)
French (fr)
Inventor
曾鹏
肖金超
于海斌
臧传治
李忠文
Original Assignee
中国科学院沈阳自动化研究所
广州中国科学院沈阳自动化研究所分所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳自动化研究所, 广州中国科学院沈阳自动化研究所分所 filed Critical 中国科学院沈阳自动化研究所
Priority to US14/900,558 priority Critical patent/US10383056B2/en
Publication of WO2015085793A1 publication Critical patent/WO2015085793A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to a wireless sensor network networking technology, and in particular to a low power consumption networking method for an 802.15.4e wireless device based on a 4-20 mA loop power take-off. Background technique
  • the 4-20 mA current loop signal is commonly used in industrial environments to enable remote measurement data transmission.
  • the Hart protocol is transmitted on this signal.
  • This type of signal transmission has become the first choice because it is simple, convenient, noise-resistant, safe, and can be transmitted over long distances without data corruption.
  • 4-20mA is divided into two specifications: 2-wire and 3-wire.
  • the signal and power supply use the same cable to provide power to the wireless device.
  • the power consumption of these powered devices must be very low, because the energy from the 4-20mA current loop is quite limited, the minimum current during normal operation is only 4mA, and in the case of alarm or error, the current value can be as low as 0mA. .
  • the loop power it is necessary to control the power consumption in the network to ensure that the power consumption per unit period is less than or equal to the power consumption, and maintain the long-term stable operation of the wireless device.
  • the MAC layer determines the channel allocation and usage methods, and plays a pivotal role in the energy consumption of the protocol stack.
  • the TG4e (IEEE 802.15.4e) working group was formally established in 2008 to increase and increase the IEEE 802.15.4-2006 support for industrial wireless applications and TG4c at the MAC layer, enhancing and increasing the functionality of the MAC.
  • the IEEE 802.15.4e network like other ad hoc networks, includes the process of time synchronization, neighbor discovery, and networking interaction.
  • Neighbor discovery is a very important step in network formation. It is the basis of MAC protocol, route discovery, and topology management algorithms. Fast neighbor discovery is important for improving network performance.
  • the literature makes full use of the characteristics of slot communication in IEEE802.15.4e, optimizes the problem by linear programming, and proposes an OPT strategy to reduce the channel search process. First, average and longest search time. However, this strategy is only optimized for search time and is not optimized for energy consumption.
  • the object of the present invention is to overcome the shortcomings and shortcomings of the prior art, and to provide a low power consumption networking method for an 802.15.4e (ie, IEEE802.15.4e) wireless device based on a 4-20 mA loop.
  • 802.15.4e ie, IEEE802.15.4e
  • a low power consumption networking method for an 802. 15. 4e wireless device based on a 4-20 mA loop power take-up includes the following steps:
  • the wireless device circuit takes power
  • the wireless device implements one-way time synchronization based on the foregoing wireless network
  • the wireless device interacts with the wireless network
  • the power check is performed. If the remaining power cannot meet the consumption of the subsequent steps, it will pause until the remaining power is saved before proceeding to the next step.
  • the steps of the wireless device loop to take power are:
  • the wireless device is connected to the 4-20 mA loop.
  • the wireless device charges the storage capacitor through the power taking circuit, and the charging speed is determined by the loop current;
  • the storage capacitor voltage reaches a power required to complete the one-way time synchronization, the storage capacitor starts to supply power to the wireless transceiver module through the power supply circuit;
  • the wireless transceiver module When the power consumption of the wireless transceiver module is greater than the charge capacity of the storage capacitor, the storage capacitor voltage is lowered. When the energy storage monitoring module detects that the remaining capacity of the storage capacitor is less than the power required to complete the neighbor discovery, the wireless transceiver module is at Sleep state.
  • the wireless network is a full-slot wireless network based on the IEEE 802.15.4e standard, wherein a coordinator transmits a beacon frame, and at least one beacon frame appears in one super frame period; the one superframe includes a letter a label portion, a management slot portion, an uplink slot portion, and a bidirectional communication slot portion, where:
  • Each beacon portion has only one time slot, in which the coordinator transmits a beacon frame
  • the management time slot includes uplink and downlink, and is mainly used for receiving and receiving network management messages.
  • Uplink time slot mainly used for message retransmission
  • Two-way communication time slot used for sending and receiving or responding to other messages in the network.
  • the one-way time synchronization is implemented by the following methods:
  • S3 fast channel search that is, continuously switching the actual available channel to obtain the message in the network
  • the wireless device After detecting the packet, the wireless device continuously detects that the packet is sent, and records the end time.
  • the message detected in the text includes one of a complete message, a partial message or a beacon frame; if a complete message is detected, high-precision one-way time synchronization can be realized; if some message is detected A lower precision time synchronization is achieved; if a beacon frame is detected, the neighbor discovery is directly completed.
  • the neighbor discovery is achieved by the following methods:
  • the packet listening algorithm is designed, and any time slot is selected as a starting point to start monitoring the message, and the monitored time slot and channel are completely executed according to the designed message monitoring algorithm;
  • Designing a message listening algorithm includes the following steps -
  • Analyze the wireless network neighbor discovery model, and the conditions for obtaining the neighbor discovery are: the listening time on each channel is not less than one superframe length; the same time slot can only search for a single channel; guarantee all possible time slots and channel combinations Are searched;
  • the time consumed by the packet detection refers to the number of time slots consumed by the wireless device from the start of monitoring to the detection of the first message; the frame count of the message can be in the message with at least 5 bytes of the auxiliary security header. Obtained, the value is the current absolute slot number SN ⁇ reclude', if the message does not contain the frame count, the range of the current absolute slot number ⁇ SN "' is estimated; a recent occurrence of the beacon frame may occur
  • the wireless device includes a wireless adapter that takes power from a 4-20 mA loop and other types of wireless devices that need to replenish energy from the outside; the wireless adapter is powered by a circuit, a storage capacitor, an energy storage monitoring module, and a microprocessor.
  • the power supply circuit and the wireless transceiver module are formed; the power take-off circuit is connected to the energy storage capacitor and the microprocessor; the energy storage capacitor is connected to the energy storage monitoring module and the power supply circuit; the energy storage monitoring module and the microprocessor
  • the microprocessor is connected to the power supply circuit and the wireless transceiver module; the wireless transceiver module is connected to the power supply circuit and the microprocessor.
  • the interaction between the wireless device and the wireless network is implemented through message interaction: the assignment of the network address, the distribution of the network route, and the management of the security key in the network are completed during the interaction.
  • the invention achieves the balance of power take-off and power consumption of the 4-20 mA loop by controlling the use of power in the networking process. Since the 4-20 mA loop has limited power consumption, it cannot support the power consumption required for continuous radio frequency turn-on during networking. Therefore, the replacement page (Article 26)
  • the use of appropriate sleep control power, combined with the power detection function, can ensure that the average power consumption during networking is less than the power consumption obtained from the network, and achieve uninterrupted operation of the device.
  • the present invention obtains a packet by a fast channel search, because the packet transmission on the network device is performed according to the time slot, and if the packet can be detected, even the incomplete packet passes the end of the packet. Time, the time slot start time can also be inferred, thereby achieving one-way time synchronization. This method reduces the average power and total power consumption of the search process.
  • the invention utilizes the connection between the ordinary message and the beacon frame in the network, and predicts the position of the beacon frame by listening to the ordinary message. Because the number of ordinary packets is large, it is easy to monitor; at the same time, it is required to monitor the ordinary message. The time is shorter, so that the beacon frame can be monitored by a limited number of times of monitoring, the monitoring efficiency is improved, the energy waste caused by the blind monitoring is reduced, and the monitoring energy is saved.
  • the present invention considers the internal sleep of the time slot, can sleep after listening to the message, the sleep time becomes longer, saves the monitoring energy, and each time slot performs the RF switch, so the switching channel does not bring extra to the system. Energy consumption.
  • the present invention performs real-time power monitoring of the energy storage capacitors, and uses the monitoring results to control the networking process.
  • the network setup process is suspended and waits for the energy to continue before continuing.
  • This method indirectly reduces the average power of the networking process and avoids network failure caused by energy exhaustion during networking.
  • FIG. 1 is a schematic diagram of power take-off of a wireless adapter loop according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a star wireless network constructed in an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a tree-type wireless network to which the present invention is applicable;
  • FIG. 4 is a schematic structural diagram of a mesh wireless network to which the present invention is applicable.
  • FIG. 5 is a schematic diagram of a structure of a wireless network superframe
  • FIG. 8 is a flowchart of neighbor discovery in an embodiment of the present invention. detailed description
  • the invention provides a low power consumption networking method for an 802.15.4e wireless device based on a 4-20 mA loop, comprising the following steps:
  • the wireless device loop takes power
  • the wireless device implements one-way time synchronization based on the above wireless network
  • Neighbor discovery is completed based on the above time synchronization
  • the wireless device interacts with the wireless network
  • the wireless adapter is composed of a power take-off circuit, a storage capacitor, an energy storage monitoring module, a microprocessor, a power supply circuit, and a wireless transceiver module;
  • the power taking circuit is connected with the storage capacitor and the microprocessor;
  • the storage capacitor is connected with the energy storage monitoring module and the power supply circuit;
  • the energy storage monitoring module is connected with the microprocessor;
  • the microprocessor is connected with the power supply circuit and the wireless transceiver module;
  • the wireless transceiver module is connected to the power supply circuit and the microprocessor.
  • the wireless adapter is connected to the 4-20 mA loop, wherein the microprocessor monitors the current of the power take-off circuit.
  • the loop current is greater than 4 mA
  • the storage capacitor is charged, and the charging speed is determined by the loop current;
  • the energy storage monitoring module detects When the storage capacitor voltage reaches the amount of power required to complete the one-way time synchronization, the storage capacitor starts to supply power to the wireless transceiver module through the power supply circuit; when the power consumption of the wireless transceiver module is greater than the charge amount of the storage capacitor, the storage capacitor
  • the energy storage monitoring module sends the monitoring result to the microprocessor, and the microprocessor sends the wireless transceiver module, and the module is in a sleep state.
  • the technology involved in the present invention is directed to a wireless network for ultra-low power consumption applications, which is a full-slot star wireless network based on the IEEE802.15.4e standard, including two types of nodes: a coordinator and a wireless node. Each wireless node only communicates with the coordinator. 3 and 4 are full-slot tree-type wireless networks and mesh wireless networks based on the IEEE 802.15.4e standard, including three types of nodes: a coordinator, a router, and a wireless node.
  • a superframe includes a beacon portion, a management slot portion, an uplink slot portion, and a bidirectional communication slot portion. among them-
  • Each beacon portion has only one time slot, in which the coordinator transmits a beacon frame
  • Management time slots include uplink and downlink, and are mainly used for network management message transmission and reception;
  • the unidirectional time synchronization based on the above wireless network of the present invention is implemented by the following method -
  • S1 Fast channel search, that is, continuously switching the actual available channel to obtain the message in the network;
  • IEEE802.15.4e there are 16 available channels on the 2.4G channel, and the wireless device keeps switching in 16 channels.
  • the format of the message is shown in Figure 6.
  • the wireless device Upon detecting the packet, the wireless device continuously detects the end of the packet transmission, and records the end time; the detected packet includes one of a complete packet, a partial packet, or a beacon frame; High-precision one-way time synchronization can be achieved by a complete message; lower-precision time synchronization is achieved if part of the message is detected; neighbor discovery is directly completed if a beacon frame is detected;
  • the neighbor discovery according to the present invention is implemented by the following method, as shown in FIG. 8 - analyzing the wireless network neighbor discovery model, because the new wireless device is not in the network when the neighbor discovery is performed, and there is no link, and the message cannot be sent outside. Interact. Therefore, neighbor discovery will be accomplished by passive monitoring.
  • each time a slot is occupied on a certain channel for all cs Ct e T , x e , t describes that the listening node performs a discovery on channel c and time slot t -
  • the listening time on each channel is not less than one superframe length, ie e ⁇ ;:; c, , > 2 b — .
  • the same time slot can only search for a single channel, ie Vt e TY C - , , ⁇ 1 ;
  • the sequence of time slots and channels that satisfy the above restrictions is the listening sequence.
  • the packet type and the time consumed by the packet detection are recorded, and the packet is detected to have a frame count.
  • the frame count of the packet is at least 5 bytes of the auxiliary security header.
  • the value is the current absolute slot number ASN ⁇ reiller, if the message does not contain the frame count, the range of the current absolute slot number ⁇ 5N ⁇ is estimated; the absolute slot number Indicates the number of time slots from the start of the coordinator to the current time; the first time the coordinator starts working is to send the first beacon frame; the absolute slot number of the beacon frame satisfies the time slot of the transmitted beacon frame: S ⁇ 3 ⁇ 4 ⁇ .
  • folk mod 2 6 0, where 6 is the beacon frame order in the network.
  • the packet type includes a beacon frame, a management packet, and a data packet, and is used to determine the distance between the current time slot and the beacon frame time slot; if it is a beacon frame, the neighbor discovery is directly completed; if it is a management message In the wireless network, the time slot of the management message and the beacon frame are different from each other by 0 or 1 time slot, that is, l ⁇ SNTM ⁇ , mod2 A ⁇ 2 ; if it is a data packet, the data message exists at a position More, not coincident with the time slot of the beacon frame, ie The range of optimization b can be narrowed according to the message type.
  • high-precision one-way time synchronization of the wireless device can be achieved at the same time.
  • the time consumed by the packet detection refers to the number of time slots consumed by the wireless device from the start of monitoring to the detection of the first message, and can be used to narrow the range of b, that is, to exclude the value of b in the relationship 2 A >.
  • the beacon frame order can be predicted according to the message type, the time of the message detection, and the current absolute slot number.
  • a recent time slot T in which a beacon frame may appear is predicted based on the smallest b value in the range of beacon frame order b:
  • T ASN ASN where is the current time slot, ⁇ Nn ⁇ ⁇ is the current absolute time slot number,
  • n is the absolute slot number of the beacon frame; sleeps to slot T, reducing power consumption.
  • the slot ⁇ the channel specified by ⁇ - ⁇ is monitored. If the beacon is not monitored, the current 6 value is excluded, and the prediction is more and more accurate; if the beacon is detected, the interception is stopped, and the neighbor discovery is completed.
  • the network After the neighbor discovery is complete, the network sends a network access request to the neighbor. After the network access request arrives at the coordinator, it enters the network interaction phase after verification. The network address assignment, network route assignment, and network security key management are completed during the interaction. After the completion, the wireless device starts to work normally and the network is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种基于4-20mA回路取电的802.15.4e无线设备低功耗组网方法,包括以下步骤:无线设备回路取电;构建面向超低能耗应用的无线网络;无线设备实现基于上述无线网络的单向时间同步;基于上述时间同步的基础上完成邻居发现;无线设备同无线网络交互;上述过程随着储能监测模块监测电量的结果进行暂停。本发明通过不停地切换信道来检测报文实现快速节能的单向时间同步,在时间同步的基础上通过监听普通报文代替传统的监听信标帧,改进邻居发现的监听次序,仅在信标帧可能出现的时隙打开监听,其余时间休眠,既节省了信道搜索的时间,又降低了邻居发现所产生的能耗,进而降低整个网络组建的时间和能耗。

Description

基于 4-20mA回路取电的 802. 15. 4e无线设备低功耗组网方法 技术领域
本发明涉及无线传感器网络组网技术, 具体地说明是一种基于 4-20mA 回路取电的 802.15.4e无线设备低功耗组网方法。 背景技术
4-20mA电流回路信号常用于工业环境, 实现远距测量数据传输, Hart协议就是在这个 信号上进行传输的。 这种信号传输方式之所以成为人们的首选, 因为它简单便捷、 抗噪、 安 全, 并且可以在没有数据损坏的情况下实现远距离传输。 4-20mA分为 2线制和 3线制两种 规格。 2线制情况下, 信号和电源使用相同电缆, 可以为无线设备提供电源供应。 而这些取 电设备的功耗必须非常低, 因为来自 4-20mA电流回路的能源相当有限, 其正常工作时的最 小电流仅为 4mA, 而在报警或错误的情况下, 电流值最低可达 0mA。 在回路取电量有限的 情况下, 需要对网络中的电能消耗进行控制, 保证单位周期内的耗电量小于或等于取电量, 维持无线设备长期稳定的工作。
目前, 工业应用对无线设备的要求除了高可靠性、高实时性之外, 低功耗也是工业应用 的一大迫切需求。 工业无线取代有线, 能量问题是实际应用中关注的热点, 而通信协议的改 进又是提高能效的重要措施。在 WSN协议栈中, MAC层决定着信道分配与使用方法, 在协 议栈能耗中有举足轻重的地位。 为此, TG4e (IEEE 802.15.4e) 工作组于 2008年正式成立, 其目的是在 MAC层提高和增加 IEEE802.15.4-2006对于工业领域无线应用以及 TG4c的支 持, 增强并增加 MAC的功能性。
IEEE802.15.4e网络与其他自组织网络一样, 网络组建包括时间同步、 邻居发现和组网 交互的过程。其中, 邻居发现是网络组建的一个非常重要的步骤, 是 MAC协议、路由发现、 拓扑管理算法的基础, 快速的邻居发现对于提高网络性能具有重要意义。
近年来, 关于邻居发现方面的研究引起了很大关注, 但多集中在 CSMA单信道网络, 由于 IEEE802.15.4e网络采用了多信道通信, 无法直接使用单信道的各种邻居发现方法。 因 为多信道的特性, 使得搜索空间直接扩展了一个维度, 不确定性增加, 组网的问题也就变成 了信道搜索和邻居发现两个问题,实际完成时间也大大增加。例如 IEEE802.15.4网络中一种 被动邻居发现方法 PSV(Passive Discovery,被动发现), 通过轮流在所有可用信道上进行邻居 发现,每个信道上持续监听信标间隔时间,直到某个信道上监听到信标帧。该方法简单实用, 但是在无法确定信标间隔的情况下, 将消耗大量的时间和能量。针对信道搜索时间过长的问 题, 有文献充分利用了 IEEE802.15.4e中使用时隙通信的特点, 使用线性规划的方法对问题 进行了优化, 并提出了 OPT策略, 降低了信道搜索过程中的第一次、 平均和最长搜索时间。 然而, 该策略仅仅针对搜索时间进行了优化, 并没有针对能量消耗进行优化, 无法应用于一
1
替换页 (细则第 26条) 些面向超低能耗的网络中;同时该策略监听的目标是信标帧,而没有考虑到普通报文的监听: 此外, 该策略实现的前提是设备已经完成时间同步并按时隙运行, 然而, 在实际工程中, 新 设备入网前尚未同步, 在这种情况下, 不存在时隙结构, 因此该策略无法直接应用在实际工 程中。 发明内容
本发明的目的在于克服现有技术的缺点与不足, 提供一种基于 4-20mA 回路取电的 802.15.4e (即 IEEE802.15.4e) 无线设备低功耗组网方法。
本发明的目的通过下述技术方案实现:
一种基于 4-20mA回路取电的 802. 15. 4e无线设备低功耗组网方法, 包括以下步骤:
51、 无线设备回路取电;
52、 构建面向超低能耗应用的无线网络;
53、 无线设备实现基于上述无线网络的单向时间同步;
54、 基于上述时间同步的基础上完成邻居发现;
55、 无线设备同无线网络交互;
上述各个步骤切换前要进行电量检测, 如果剩余电量不能满足后续步骤消耗, 则会暂停 直至储存足够电量为止再继续后续步骤。
其中, 无线设备回路取电的步骤为:
511、 无线设备接入到 4-20mA回路中;
512、 无线设备通过取电电路为储能电容充电, 充电的速度由回路电流决定;
513、 当储能电容电压达到能够完成单向时间同步所需的电量时, 储能电容通过供电电 路开始为无线收发模块供电;
514、 无线收发模块的耗电量大于储能电容的充电量时, 储能电容电压降低, 当储能监 测模块监测到储能电容的剩余电量小于完成邻居发现所需电量时,无线收发模块处于休眠状 态。
所述无线网络是一种基于 IEEE802.15.4e标准的全时隙无线网络, 其中协调器发送信标 帧, 在一个超帧周期内至少有一个信标帧出现; 所述的一个超帧包括信标部分、 管理时隙部 分、 上行时隙部分和双向通信时隙部分, 其中:
( 1 ) 每个信标部分只有一个时隙, 在这个时隙中, 协调器发送信标帧;
(2) 管理时隙包括上行链路和下行链路, 主要用于网络管理报文收发;
(3 ) 上行时隙, 主要用于报文重传;
(4) 双向通信时隙, 用于网络中其他报文的收发或应答。
所述的单向时间同步通过以下方法实现:
S3 快速的信道搜索, 即不停地切换实际可用信道来获取网络中的报文;
S32、 无线设备一旦检测到报文, 则持续检测到报文发送结束, 并记录结束时间;
2 替换页 (细则第 26条) S33、 根据报文的结束时间推测报文发送开始的时隙范围, 实现单向时间同步。
文中所述检测的报文包括一条完整报文、部分报文或者信标帧中的一种; 若检测到一条 完整的报文则可以实现高精度的单向时间同步;若检测到部分报文则实现较低精度的时间同 步; 若检测到信标帧则直接完成邻居发现。
所述邻居发现通过以下方法实现:
541、 单向时间同步后, 设计报文监听算法, 选择任意时隙为起始点, 开始监听报文, 监听的时隙和信道完全按照设计的报文监听算法执行;
542、 当监听到第一条报文后, 记录报文类型和报文检测消耗的时间, 根据报文是否包 含帧计数来记录和估算当前的绝对时隙号 的值和范围, 通过这些信息来计算信标帧 可能出现的最近一个时隙 T:
543、 休眠至时隙 T, 在时隙 Τ监听报文监听算法指定的信道, 若未监听到信标帧, 则 排除当前时隙 Τ, 返回 S2, 若监听到信标帧, 则停止监听, 完成邻居发现。
设计报文监听算法包括以下步骤-
5411、 分析无线网络邻居发现模型, 获取完成邻居发现需满足的条件包括: 每个信道上 监听时间不小于一个超帧长度; 同一时隙只能搜索单个信道; 保证所有可能的时隙和信道组 合均被搜索;
5412、 计算某一时刻监听到报文并且是第一条报文的概率;
5413、假设报文分布的时隙和信道是随机的, 优化报文检测消耗的时间, 使报文平均检 测时间最小, 进而设计出一个报文监听序列。
报文检测消耗的时间是指无线设备从开始监听到检测到第一条报文所消耗的时隙数目; 所述报文的帧计数在带有至少 5字节辅助安全头的报文中才能获得,其数值为当前的绝对时 隙号 SN^re„', 若报文中不含帧计数, 则估算当前绝对时隙号^ SN "'的范围; 所述信标帧 可能出现的一个最近时隙 T, 通过以下公式计算获悉: T -tw, = ASNBe - ASNw,,其中, 为当前时隙, AWc„ w为当前绝对时隙号, S V eac。„为信标帧的绝对时隙号。
所述的无线设备包括从 4-20mA回路取电的无线适配器以及其他类型的需要从外界补充 能量的无线设备; 所述的无线适配器由取电电路、 储能电容、 储能监测模块、 微处理器、 供 电电路和无线收发模块组成; 所述取电电路与储能电容和微处理器连接; 所述储能电容与储 能监测模块和供电电路连接; 所述储能监测模块与微处理器连接; 所述微处理器与供电电路 和无线收发模块连接; 所述无线收发模块与供电电路和微处理器连接。
所述无线设备同无线网络交互是通过报文交互实现的: 交互过程中完成网络地址的分 配、 网络路由的分配和网络中安全密钥的管理。
本发明相对于现有技术具有如下的优点及效果:
1、 本发明通过控制组网过程中电量的使用达到 4-20mA回路取电和用电的平衡。 由于 4-20mA回路取电量有限, 不能支持组网过程中的射频连续开启所需要的用电量, 因此, 通 替换页 (细则第 26条) 过适当的休眠控制电量的使用, 同时配合电量检测功能, 可以保证组网过程中的平均功耗小 于从网络中获取的功耗, 实现设备的不间断工作。
2、 本发明通过快速的信道搜索来获取报文, 由于在网设备的报文发送是按照时隙来进 行的, 如果能够检测到报文, 即使是不完整的报文, 通过报文的结束时间, 也可推断出时隙 开始时间, 进而实现单向的时间同步。 该方法降低了搜索过程的平均功率和总功率消耗。
3、 本发明利用网络中普通报文与信标帧之间的联系, 通过监听普通报文来预测信标帧 的位置, 由于普通报文数量较多, 容易监听; 同时, 监听普通报文所需要的时间更短, 从而 保证有限次监听即能监听到信标帧, 提高了监听效率, 降低盲目监听造成的能源浪费, 节省 较多的监听能量。
4、 本发明考虑了时隙内部休眠, 监听到报文后即可进行休眠, 休眠时间变长, 节省监 听能量, 每个时隙都进行射频开关, 因此切换信道也不会为系统带来额外能耗。
5、本发明对储能电容进行实时电量监测, 并利用监测结果控制组网过程。当存储的电量 过低时, 暂停网络组建过程, 等待蓄满能量之后继续。 该方法间接地降低了组网过程的平均 功率, 避免组网过程中能量耗尽造成组网失败。 附图说明
图 1为本发明实施例中无线适配器回路取电示意图;
图 2为本发明实施例中构建的星型无线网络示意图;
图 3为本发明适用的树型无线网络结构示意图;
图 4为本发明适用的网状无线网络结构示意图;
图 5为无线网络超帧结构示意图;
图 6为本发明基于 IEEE802.15.4e标准的报文格式表;
图 7为本发明实施例中 E-OPT算法设计的报文监听序列;
图 8为本发明实施例中邻居发现流程图。 具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述, 但本发明的实施方式不限于此。 实施例
本发明一种基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方法, 包括以下步 骤:
无线设备回路取电;
构建面向超低能耗应用的无线网络;
无线设备实现基于上述无线网络的单向时间同步;
基于上述时间同步的基础上完成邻居发现;
无线设备同无线网络交互;
4 替换页 (细则第 26条) 上述步骤切换前要进行电量检测, 如果剩余电量不能满足后续步骤消耗, 则会暂停直至 储存足够电量为止再继续。
如图 1所示, 本发明无线适配器回路取电示意图, 从图中可以看出, 无线适配器由取电 电路、 储能电容、 储能监测模块、 微处理器、 供电电路和无线收发模块组成; 其中, 取电电 路与储能电容和微处理器连接; 储能电容与储能监测模块和供电电路连接; 储能监测模块与 微处理器连接; 微处理器与供电电路和无线收发模块连接; 无线收发模块与供电电路和微处 理器连接。
无线适配器接入到 4-20mA回路中, 其中微处理器监测取电电路电流大小, 回路电流大 于 4mA时, 开始为储能电容充电, 充电的速度由回路电流决定; 当储能监测模块监测到储 能电容电压达到能够完成单向时间同步所需的电量时,储能电容通过供电电路开始为无线收 发模块供电; 当无线收发模块的耗电量大于储能电容的充电量时, 储能电容电压降低, 当储 能监测模块监测到储能电容的剩余电量小于完成邻居发现所需电量时,储能监测模块将监测 结果发送微处理器, 微处理器发送无线收发模块, 模块处于休眠状态。
如图 2 所示, 本发明涉及的技术针对面向超低功耗应用的无线网络是一种基于 IEEE802.15.4e标准的全时隙星型无线网络, 包括两类节点: 协调器和无线节点, 每个无线 节点只与协调器进行通信。 图 3和图 4为基于 IEEE802.15.4e标准的全时隙树型无线网络和 网状无线网络,包括三类节点:协调器、路由器和无线节点。无线网络使用多信道进行通信, 具有可用信道集合 C={Cl, c2, ..., cmax }, |C|标示集合中的信道个数。
如图 5所示, 协调器发送信标帧, 在一个超帧周期内只有一个信标帧出现, 协调器发送 信标的周期称为信标帧间隔, 同时也是无线网络的超帧长度, 记为 BI, BI ^ 2b x z , 其中 6 为信标帧次序, 6 e JB , B={bmin,..., bmax}, |B|表示 3中的元素数目, z为常数。 一个超帧包括 信标部分、 管理时隙部分、 上行时隙部分和双向通信时隙部分。 其中-
*每个信标部分只有一个时隙, 在这个时隙中, 协调器发送信标帧;
•管理时隙包括上行链路和下行链路, 主要用于网络管理报文收发;
*上行时隙, 主要用于报文重传;
*双向通信时隙, 用于网络中其他报文的收发或应答。
本发明基于上述无线网络的单向时间同步是通过以下方法实现的-
S1 : 快速的信道搜索, 即不停地切换实际可用信道来获取网络中的报文; 在 IEEE802.15.4e中, 2.4G频道上存在 16个可用信道, 无线设备不停地在 16个信道切换来检 测报文, 报文格式如图 6所示;
S2: 无线设备一旦检测到报文, 则持续检测到报文发送结束, 并记录结束时间; 检测到 的报文包括一条完整的报文、部分报文或者信标帧中的一种; 若检测到一条完整的报文则可 以实现高精度的单向时间同步; 若检测到部分报文则实现较低精度的时间同步; 若检测到信 标帧则直接完成邻居发现;
替换页 (细则第 26条) S3: 根据报文的结束时间推测报文发送开始的时隙范围, 实现单向时间同步。
本发明所述的邻居发现是通过以下方法实现的, 如图 8所示- 分析无线网络邻居发现模型, 由于进行邻居发现时新无线设备并未在网,还不存在 link, 无法对外发送报文进行交互。 因此, 邻居发现会釆用被动监听的方式来完成。
基于被动监听的邻居发现方法中, 每次在某个信道上占用一个时隙, 对于所有的 c s Ct e T , xet描述监听节点在信道 c和时隙 t上执行一次发现-
Figure imgf000008_0001
采用被动监听完成邻居发现需满足以下条件:
每个信道上监听时间不小于一个超帧长度, 即 e ∑;:; c, , > 2b— . 同一时隙只能搜索单个信道, 即 Vt e TYC- , , < 1 ;
保 证 所 有 可 能 的 时 隙 和 信 道 组 合 均 被 搜 索 , 即
Figure imgf000008_0002
满足以上限制条件的时隙和信道的序列即为监听序列。
选择任意时隙作为起始点, 开始监听报文, 监听的时隙和信道完全按照图 7所示。 当监听到第一个报文后, 计录报文类型和报文检测消耗的时间, 同时检测报文是否含有 帧计数, 所述报文的帧计数在带有至少 5字节辅助安全头的报文中才可以获得, 其数值为当 前的绝对时隙号 ASN^re„,, 若报文中不含帧计数, 则估算当前绝对时隙号 ^5N^^,的范围; 绝对时隙号表示从协调器开始工作到当前时间经过的时隙数;协调器第一次开始工作就是发 送第一个信标帧; 信标帧的绝对时隙号与发送信标帧的时隙满足关系: S\¾^。„ mod 26 = 0, 其中 6为网络中的信标帧次序。
报文类型包括信标帧、 管理报文和数据报文, 用于判断当前时隙与信标帧时隙之间的距 离; 若为信标帧, 则直接完成了邻居发现; 若为管理报文, 无线网络中, 管理报文的时隙与 信标帧之间相差 0或 1个时隙, 即 l≤^SN™^,mod2A≤2 ; 若为数据报文, 数据报文存在的 位置较多, 与信标帧所处时隙不重合, 即
Figure imgf000008_0003
根据报文类型可以缩小优化 b 的范围。
监听到第一条报文后, 同时可实现无线设备的高精度单向时间同步。
报文检测消耗的时间是指无线设备从开始监听到检测到第一条报文所消耗的时隙数目, 可用来缩小 b的范围, 即排除满足关系式 2A > 中 b的值。
因此, 可以根据报文类型、报文检测消耗的时间和当前绝对时隙号预测信标帧次序 6的
替换页 (细则第 26条) 范围。 根据信标帧次序 b的范围中最小的 b值来预测信标帧可能出现的一个最近时隙 T:
T ASN ASN , 其中, 为当前时隙, ^ Nn^ ^为当前绝对时隙号,
^SNs^。n为信标帧的绝对时隙号; 休眠至时隙 T, 降低功耗。在时隙 Τ中监听 Ε-ΟΡΤ指定的 信道, 如果未监听到信标, 则排除当前 6值, 做到预测越来越准; 若监听到信标, 则停止监 听, 完成邻居发现。
邻居发现完成后, 向邻居发送入网请求, 入网请求到达协调器后, 经过验证开始进入入 网交互阶段, 交互过程中完成网络地址的分配、 网络路由的分配和网络中安全密钥的管理, 入网交互完成后, 无线设备开始正常工作, 入网完成。
上述实施例为本发明较佳的实施方式, 但本发明的实施方式并不受上述实施例的限制, 其他的任何未背离本发明的精神实质与原理下所作的改变、 修饰、 替代、 组合、 简化, 均应 为等效的置换方式, 都包含在本发明的保护范围之内。
7
替换页 (细则第 26条)

Claims

& 禾 U ΐ
1、 一种基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方法, 其特征在于, 包 括以下步骤:
Sl、 无线设备回路取电;
52、 构建面向超低能耗应用的无线网络;
53、 无线设备实现基于上述无线网络的单向时间同步;
54、 基于上述时间同步的基础上完成邻居发现;
55、 无线设备同无线网络交互;
上述各个步骤切换前要进行电量检测, 如果剩余电量不能满足后续步骤消耗, 则会暂停 直至储存足够电量为止再继续后续步骤。
2、根据权利要求 1所述的基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方法, 其特征在于, 步骤 S1中, 无线设备回路取电的步骤为:
Sll、 无线设备接入到 4-20mA回路中;
S12、 无线设备通过取电电路为储能电容充电, 充电的速度由回路电流决定;
513、 当储能电容电压达到能够完成单向时间同步所需的电量时, 储能电容通过供电电 路开始为无线收发模块供电;
514、 无线收发模块的耗电量大于储能电容的充电量时, 储能电容电压降低, 当储能监 测模块监测到储能电容的剩余电量小于完成邻居发现所需电量时,无线收发模块处于休眠状 态。
3、根据权利要求 1所述的基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方法, 其特征在于, 步骤 S2中, 所述无线网络是一种基于 IEEE802.15.4e标准的全时隙无线网络, 其中协调器发送信标帧, 在一个超帧周期内至少有一个信标帧出现; 所述的一个超帧包括信 标部分、 管理时隙部分、 上行时隙部分和双向通信时隙部分, 其中:
( 1 ) 每个信标部分只有一个时隙, 在这个时隙中, 协调器发送信标帧;
(2) 管理时隙包括上行链路和下行链路, 主要用于网络管理报文收发;
(3 ) 上行时隙, 主要用于报文重传;
(4) 双向通信时隙, 用于网络中其他报文的收发或应答。
4、根据权利要求 1所述的基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方法, 其特征在于, 步骤 S3中, 所述的单向时间同步通过以下方法实现:
531、 快速的信道搜索, 即不停地切换实际可用信道来获取网络中的报文;
532、 无线设备一旦检测到报文, 则持续检测到报文发送结束, 并记录结束时间;
533、 根据报文的结束时间推测报文发送开始的时隙范围, 实现单向时间同步。
5、根据权利要求 4所述的基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方法, 其特征在于,步骤 S32中,检测的报文包括一条完整的报文、部分报文或者信标帧中的一种; 若检测到一条完整的报文则可以实现高精度的单向时间同步;若检测到部分报文则实现较低 精度的时间同步; 若检测到信标帧则直接完成邻居发现。
6、根据权利要求 1所述的基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方法, 其特征在于, 步骤 S4中, 所述邻居发现通过以下方法实现:
541、 单向时间同步后, 设计报文监听算法, 选择任意时隙为起始点, 开始监听报文, 监听的时隙和信道完全按照设计的报文监听算法执行;
542、 当监听到第一条报文后, 记录报文类型和报文检测消耗的时间, 根据报文是否包 含帧计数来记录和估算当前的绝对时隙号 ASNcUm:nt的值和范围, 通过这些信息来计算信标帧 可能出现的最近一个时隙 T ;
543、 休眠至时隙 T, 在时隙 Τ监听报文监听算法指定的信道, 若未监听到信标帧, 则 排除当前时隙 Τ, 返回 S2, 若监听到信标帧, 则停止监听, 完成邻居发现。
7、根据权利要求 6所述的基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方法, 其特征在于, 步骤 S41中, 设计报文监听算法包括以下步骤:
S411、 分析无线网络邻居发现模型, 获取完成邻居发现需满足的条件包括: 每个信道上 监听时间不小于一个超帧长度; 同一时隙只能搜索单个信道; 保证所有可能的时隙和信道组 合均被搜索;
5412、 计算某一时刻监听到报文并且是第一条报文的概率;
5413、 假设报文分布的时隙和信道是随机的, 优化报文检测消耗的时间, 使报文平均检 测时间最小, 进而设计出一个报文监听序列。
8、根据权利要求 6所述的基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方法, 其特征在于, 步骤 S42中, 报文检测消耗的时间是指无线设备从开始监听到检测到第一条报 文所消耗的时隙数目; 所述报文的帧计数在带有至少 5字节辅助安全头的报文中才能获得, 其数值为当前的绝对时隙号 ASN™™" , 若报文中不含帧计数, 则估算当前绝对时隙号 ASNcU nt W范围; 所述信标帧可能出现的一个最近时隙 T, 通过以下公式计算获悉:
Τ - tcurrent = ASNseacon - ASNcurrent, 其中, tcu t为当前时隙, ASNCUrrent为当前绝对时隙号, ASNBeacon为信标帧的绝对时隙号。
9、根据权利要求 1所述的基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方法, 其特征在于, 步骤 S 1中, 所述的无线设备包括从 4-20mA回路取电的无线适配器以及其他 类型的需要从外界补充能量的无线设备; 所述的无线适配器由取电电路、 储能电容、 储能监 测模块、 微处理器、 供电电路和无线收发模块组成; 所述取电电路与储能电容和微处理器连 接; 所述储能电容与储能监测模块和供电电路连接; 所述储能监测模块与微处理器连接; 所 述微处理器与供电电路和无线收发模块连接; 所述无线收发模块与供电电路和微处理器连 接。
10、 根据权利要求 1所述的基于 4-20mA回路取电的 802.15.4e无线设备低功耗组网方 法, 其特征在于, 步骤 S5中, 无线设备同无线网络交互是通过报文交互实现的: 交互过程 中完成网络地址的分配、 网络路由的分配和网络中安全密钥的管理
PCT/CN2014/085238 2013-12-13 2014-08-27 基于4-20mA回路取电的802.15.4e无线设备低功耗组网方法 WO2015085793A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/900,558 US10383056B2 (en) 2013-12-13 2014-08-27 Low power consumption networking method of 802.15.4e wireless device that takes power based on 4-20mA loop

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310690826.0A CN103619057B (zh) 2013-12-13 2013-12-13 基于4‑20mA回路取电的802.15.4e无线设备低功耗组网方法
CN201310690826.0 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015085793A1 true WO2015085793A1 (zh) 2015-06-18

Family

ID=50169760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085238 WO2015085793A1 (zh) 2013-12-13 2014-08-27 基于4-20mA回路取电的802.15.4e无线设备低功耗组网方法

Country Status (3)

Country Link
US (1) US10383056B2 (zh)
CN (1) CN103619057B (zh)
WO (1) WO2015085793A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107071729A (zh) * 2017-04-06 2017-08-18 河南师范大学 一种无线粮情测控传感器节点定位系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619057B (zh) 2013-12-13 2017-06-20 中国科学院沈阳自动化研究所 基于4‑20mA回路取电的802.15.4e无线设备低功耗组网方法
US9652963B2 (en) * 2015-07-29 2017-05-16 Dell Products, Lp Provisioning and managing autonomous sensors
CN105488977A (zh) * 2015-12-08 2016-04-13 上海工业自动化仪表研究院 一种现场仪表自取电式无线适配系统
CN108430088B (zh) * 2018-05-17 2023-09-05 广西大学 一种无线传感网络系统及其节点唤醒方法
CN114698074A (zh) * 2022-04-07 2022-07-01 广州航天海特系统工程有限公司 一种节能方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262481A (zh) * 2010-12-17 2013-08-21 思科技术公司 有向无环图(dag)中的动态重路由调度
CN103327572A (zh) * 2013-07-11 2013-09-25 广州中国科学院沈阳自动化研究所分所 一种IEEE802.15.4e网络的邻居发现方法
CN103619057A (zh) * 2013-12-13 2014-03-05 中国科学院沈阳自动化研究所 基于4-20mA回路取电的802.15.4e无线设备低功耗组网方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7409022B2 (en) * 2004-10-01 2008-08-05 Mitsubishi Electric Research Laboratories, Inc. Synchronizing clocks in wireless personal area networks
JP4792851B2 (ja) * 2004-11-01 2011-10-12 横河電機株式会社 フィールド機器
US8451809B2 (en) * 2007-04-13 2013-05-28 Hart Communication Foundation Wireless gateway in a process control environment supporting a wireless communication protocol
KR101255228B1 (ko) * 2008-11-11 2013-04-16 한국전자통신연구원 무선 애드-혹 네트워크에서 분산채널호핑방법
CN102193615A (zh) * 2010-03-11 2011-09-21 纬创资通股份有限公司 电源管理方法、电源管理装置及便携式计算机系统
CN101976092A (zh) * 2010-08-13 2011-02-16 上海工业自动化仪表研究院 一种压降自动调整的串联回路取电电路
US9439142B2 (en) * 2013-03-15 2016-09-06 Samsung Electronics Co., Ltd. Power saving for low latency deterministic networks in wireless personal area networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262481A (zh) * 2010-12-17 2013-08-21 思科技术公司 有向无环图(dag)中的动态重路由调度
CN103327572A (zh) * 2013-07-11 2013-09-25 广州中国科学院沈阳自动化研究所分所 一种IEEE802.15.4e网络的邻居发现方法
CN103619057A (zh) * 2013-12-13 2014-03-05 中国科学院沈阳自动化研究所 基于4-20mA回路取电的802.15.4e无线设备低功耗组网方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107071729A (zh) * 2017-04-06 2017-08-18 河南师范大学 一种无线粮情测控传感器节点定位系统
CN107071729B (zh) * 2017-04-06 2023-07-11 河南师范大学 一种无线粮情测控传感器节点定位系统

Also Published As

Publication number Publication date
US10383056B2 (en) 2019-08-13
CN103619057A (zh) 2014-03-05
US20160157176A1 (en) 2016-06-02
CN103619057B (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
CN106792916B (zh) 一种混合型远距离无线传感器网络系统及其通信方法
WO2015085793A1 (zh) 基于4-20mA回路取电的802.15.4e无线设备低功耗组网方法
US9439142B2 (en) Power saving for low latency deterministic networks in wireless personal area networks
US9936479B2 (en) Traffic advertisement and scheduling in a neighbor aware network data link
US8588119B2 (en) Asynchronous low-power multi-channel media access control
US8923174B2 (en) Wireless apparatus capable of reducing receiver power
JP6449427B2 (ja) 近隣認識ネットワークデータリンクにおけるトラフィックの告知およびスケジューリング
KR101174406B1 (ko) 환경 에너지 획득 기반 센서네트워크를 위한 저전력 mac 통신 방법
US20110002251A1 (en) Time synchronization and routing method in wireless sensor network, and apparatus for enabling the method
JP5177416B2 (ja) 情報処理装置および方法、プログラム、並びに通信方法
JP2017521947A (ja) 近隣認識ネットワークデータリンクにおけるトラフィックの告知およびスケジューリング
WO2010066194A1 (zh) 主控节点的协商方法及装置
JP6570879B2 (ja) 通信システム、スマートメータ、ゲートウェイ装置及び通信プログラム
US20140105063A1 (en) Duty cycle control method and apparatus to mitigate latency for duty cycle-based wireless low-power mac
Liendo et al. Efficient bluetooth low energy operation for low duty cycle applications
CN106714264B (zh) 物联网节点节能方法及系统
CN103327572B (zh) 一种IEEE802.15.4e网络的邻居发现方法
Kawabata et al. Mixed synchronous and asynchronous duty-cycling protocol in sensor networks
CN102917467B (zh) 无线传感器网络的异步预约信道接入方法
US11916683B2 (en) Overloading broadcast dwell intervals in unsynchronized channel hopping mesh networks
Liang Energy-efficient, reliable cross-layer optimization routing protocol for wireless sensor network
Koskela et al. Energy efficient MAC for wireless sensor networks
JP5158511B2 (ja) 無線lan通信ネットワークシステム、無線lan通信ネットワークシステム管理プログラム、及び無線lan通信ネットワークシステム管理プログラムを記憶したコンピュータ読み取り可能な記憶媒体
Lopez-Gomez et al. A lightweight and energy-efficient architecture for wireless sensor networks
JP2013219550A (ja) 通信システム、加入者側装置、局側装置および省電力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869341

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14900558

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869341

Country of ref document: EP

Kind code of ref document: A1