WO2015085564A1 - 多频收发信机及基站 - Google Patents

多频收发信机及基站 Download PDF

Info

Publication number
WO2015085564A1
WO2015085564A1 PCT/CN2013/089338 CN2013089338W WO2015085564A1 WO 2015085564 A1 WO2015085564 A1 WO 2015085564A1 CN 2013089338 W CN2013089338 W CN 2013089338W WO 2015085564 A1 WO2015085564 A1 WO 2015085564A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiplexer
frequency
receiving
transceiver
frequency band
Prior art date
Application number
PCT/CN2013/089338
Other languages
English (en)
French (fr)
Inventor
吕劲松
徐红钢
王珏平
蒲涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/089338 priority Critical patent/WO2015085564A1/zh
Priority to CN201810413883.7A priority patent/CN108768413B/zh
Priority to EP13899042.9A priority patent/EP3068187A4/en
Priority to CN201380003208.2A priority patent/CN103858516B/zh
Publication of WO2015085564A1 publication Critical patent/WO2015085564A1/zh
Priority to US15/180,687 priority patent/US10454505B2/en
Priority to US16/588,480 priority patent/US11038541B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/08Arrangements for combining channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a multi-frequency transceiver and a base station. Background technique
  • a transceiver of a base station can support multiple frequency bands.
  • the prior art uses a traditional transceiver duplex device to process the transmission and reception of multiple frequency bands. Take 1800, 2100, 2600 tri-band 2T4R (where T is the transmission and R is the reception) as an example.
  • 4 multiplexers are arranged in the transceiver of the base station. From top to bottom: six workers, three workers, three workers, six workers, wherein two six workers can be used to simultaneously transmit and receive RF signals of different frequency bands.
  • the channel of the tool is arranged as: 1800RX (for receiving signals in the 1800 band), 1800TX (for transmitting signals in the 1800 band), 2100RX (for receiving signals in the 2100 band), 2100TX (for transmitting signals in the 2100 band) ), 2600RX (for receiving signals in the 2600 band), 2600TX (for transmitting signals in the 2600 band).
  • the four multiplexers of the base transceiver module are respectively connected to four ports of the antenna (the ANT1, ANT2, ANT3, and ANT4 in FIG. 1A respectively) to transmit and receive signals through different array directions of the antennas. .
  • the antenna is represented by an antenna surface, wherein each "X" in FIG. 1b represents two polarization directions of one column of antennas, and four small squares below the plane of the antenna in FIG.
  • T/R1 in Figure lb represents the transceiver interface of the six-worker connected to ANT1 in Figure la, and the six arrows below T/R1 indicate the transceiver frequency band of the six-worker (
  • the distribution is: 1800RX- 1800TX-21 OORX-2100TX-2600RX-2600TX );
  • R3 in Figure lb represents the receiving interface of the triplexer connected to ANT2 in Figure la, and the arrow below R3 indicates the receiving frequency band of the triplexer (distribution)
  • R4 in Figure lb represents the receiving interface of the triplexer connected to ANT3 in Figure la, and the arrow below R4 indicates the receiving frequency band of the triplexer
  • the present invention provides a multi-frequency transceiver and a base station, which can reduce the design technical difficulty of the multiplexer.
  • a first aspect of the present invention provides a multi-frequency transceiver coupled to an antenna, which may include: at least one transmit multiplexer, each transmit multiplexer including a plurality of transmit paths, each transmit path for passing the The antenna transmits a signal of one frequency band;
  • At least one receiving multiplexer each receiving multiplexer comprising a plurality of receiving paths, each receiving path for receiving signals of one frequency band through the antenna.
  • each transmit multiplexer includes a transmit path of each of the N frequency bands; each receive multiplexer includes each of the N frequency bands The receiving path of the frequency band, where N is a positive integer greater than or equal to 2.
  • the at least one transmitting multiplexer includes two transmitting multiplexers, and each transmitting multiplexer includes three frequency bands. a transmission path of each of the frequency bands; the at least one receiving multiplexer includes four receiving multiplexers, each receiving multiplexer including a receiving path of each of the three frequency bands.
  • a second aspect of the present invention provides a multi-frequency transceiver connected to an antenna, including a plurality of multiplexers, wherein each multiplexer includes:
  • a single transmission path for transmitting signals of one frequency band through the antenna at least one receiving path, each receiving path for receiving signals of one frequency band through the antenna.
  • the frequency band transmitted by the transmitting path is the same as the frequency band received by a receiving path of the at least one receiving path.
  • the frequency band transmitted by the transmitting path is different from the frequency band received by any one of the at least one receiving path.
  • the frequency band received by each receiving path is different from any other one of the at least one receiving path.
  • the frequency band received by the receiving path is different from any other one of the at least one receiving path.
  • the multiple multiplexers include at least N multiplexers, and each of the N multiplexers In a multiplexer, a frequency band transmitted by a transmission path is one of N frequency bands, and each receiving path is one of the N frequency bands, and a frequency band transmitted by a transmission path in each multiplexer is different from the above A frequency band transmitted by a transmission path in any of the N multiplexers, where N is a positive integer greater than or equal to 2.
  • the M multiplexers are included in the N multiplexers, and the M multiplexers are included in the M multiplexers
  • Each multiplexer includes the same number of receive paths, where M is a positive integer less than N.
  • the N multiplexers include at least one multiplexer, and the receiving path is included in the multiplexer The number is different from the number of receiving paths in the other at least one multiplexer in the N multiplexers.
  • the total number of receiving paths of any one of the N frequency bands is received in the N multiplexers the same.
  • the N frequency bands include at least one frequency band, and the receiving of the frequency band is received in the N multiplexers The total amount of paths is different from the total number of receive paths in the N multiplexers that receive the other of the N frequency bands.
  • a third aspect of the present invention provides a base station, including the first aspect, the first and second possible implementation manners of the first aspect, the second aspect, and the first to eighth feasible implementation manners of the second aspect Any type of multi-frequency transceiver.
  • a third aspect of the present invention provides a base station, which can include the multi-frequency transceiver of the present invention.
  • the multiplexer used in the multi-frequency transceiver is only used to transmit signals of each frequency band supported by the multi-frequency transceiver, or is only used for receiving. a signal of each frequency band supported by the multi-frequency transceiver, or only for transmitting a signal of one frequency band of the multi-frequency transceiver and receiving a plurality of frequency band signals supported by the multi-frequency transceiver ( Included or not including signals in the same frequency band as the transmitted signal).
  • the embodiment of the present invention can eliminate the influence of the transmission path of the adjacent frequency band on the receiving path of the frequency band, and reduce the suppression requirement of the filter of the multiplexer, and the reduction of the suppression degree can reduce the insertion loss of the multiplexer, especially the edge.
  • the insertion loss is reduced, thereby reducing the multiplexer design difficulty, and the transmission and reception are separated by different multiplexers to reduce the antenna Intermodulation requirements, and, when there is only one band of transmissions per multiplexer, the transmission of each band becomes independently electrically adjustable.
  • Figure la is a schematic structural diagram of a conventional transceiver
  • Figure lb is a schematic diagram of the correspondence between the multiplexer and the antenna port of the transceiver in Figure la;
  • Figure 2a is a schematic structural diagram of an embodiment of a multi-frequency transceiver of the present invention;
  • Figure 2b is a diagram of Figure 2a
  • FIG. 3a is a schematic structural diagram of an embodiment of a multi-frequency transceiver of the present invention;
  • FIG. 3b is a schematic diagram of the structure of a multi-frequency transceiver of the present invention;
  • FIG. 4a is a schematic structural diagram of an embodiment of a multi-frequency transceiver of the present invention;
  • FIG. 4b is a schematic diagram of a multi-frequency transceiver of FIG. 4a; Schematic diagram of the correspondence between the device and the antenna port.
  • the embodiment of the present invention provides a first multi-frequency transceiver connected to an antenna, which may include: at least one transmitting multiplexer, each transmitting multiplexer includes multiple transmitting paths, and each transmitting path is used for passing through The antenna transmits signals of one frequency band; at least one receiving multiplexer, each receiving multiplexer includes a plurality of receiving paths, and each receiving path is used to receive signals of one frequency band through the antenna.
  • each transmit multiplexer includes a transmit path of each of the N frequency bands; each receive multiplexer includes a receive path of each of the N frequency bands, where N is a positive integer greater than or equal to 2.
  • N can be 3, and 3 bands can be 1800, 2100, and 2600, respectively.
  • each transmitting multiplexer includes the transmission paths of the 1800, 2100, and 2600 bands, and each receiving multiplexer includes the receiving paths of the 1800, 2100, and 2600 bands.
  • the at least one transmit multiplexer includes two transmit multiplexers, each transmit multiplexer includes a transmit path of each of three frequency bands; the at least one receive multiplexer The receiver includes four receive multiplexers, each receive multiplexer including a receive path for each of the three frequency bands.
  • each of the two transmit multiplexers may comprise a transmission of 1800 (the transmission of the 1800TX 2100 (2100TX) and 2600's transmit (2600TX) path.
  • Each receive multiplexer of the four receive multiplexers includes 1800 receive (1800RX), 2100 receive (2100RX), and 2600 receive (2600RX) paths.
  • the multi-frequency transceiver can be set according to specific needs (for example, the number of frequency bands to be supported, the number of transmission paths and the number of reception paths of each frequency band) according to specific needs.
  • the number of transmit multiplexers and receive multiplexers can be set according to specific needs (for example, the number of frequency bands to be supported, the number of transmission paths and the number of reception paths of each frequency band) according to specific needs.
  • the number of transmit multiplexers and receive multiplexers can be set according to specific needs (for example, the number of frequency bands to be supported, the number of transmission paths and the number of reception paths of each frequency band) according to specific needs.
  • the number of transmit multiplexers and receive multiplexers for example, the number of frequency bands to be supported, the number of transmission paths and the number of reception paths of each frequency band.
  • the multi-frequency transceiver 2 of the embodiment of the present invention may include ml transmit multiplexers 21 and nl receive multiplexers 22 (where ml and nl are positive integers, for ease of description, ml in Figure 2a) The value is 2, and the value of nl is 4).
  • ml transmit multiplexers 21 and nl receive multiplexers 22 are connected to one port of the antenna (the port is ANT1....ANTN in FIG.
  • the multi-frequency transceiver 2 can realize the architecture of mlTnlR (indicating that the multi-frequency transceiver 2 can realize the ml channel transmission, the nl channel reception), and further, as shown in FIG. 2a, the transmitting multiplexer 21 and the receiving multiplexer 22 may be a kl worker, where k1 represents the number of frequency bands supported by the multi-frequency transceiver 2, for example, kl may take 3 or 4 or others.
  • the specific frequency band supported by the multi-frequency transceiver of the embodiment of the present invention may be determined according to network requirements.
  • the value of kl is 3 in FIG. 2a, and the three frequency bands are respectively: 1800, 2100, and 2600.
  • the transmit multiplexer 21 of the embodiment of the present invention includes multiple transmit paths, and each transmit path is used to transmit a frequency band through the antenna.
  • the transmit multiplexer 21 includes three transmit paths that transmit signals for three frequency bands 1800, 2100, and 2600, respectively.
  • the receiving multiplexer 22 includes a plurality of receiving paths, and each receiving path is used to receive a frequency band through the antenna. For example, when kl is 3 and the supported frequency bands are 1800, 2100, and 2600, The receiving multiplexer 22 includes three receiving paths that receive signals of three frequency bands 1800, 2100, and 2600, respectively.
  • the receiving frequency band of 1800 is usually the frequency of 1710-1785
  • the transmitting frequency band of 1800 is usually the frequency of 1805-1880
  • the receiving frequency band of 2100 is usually The frequency of 1920-1980
  • the transmission frequency of 2100 is usually 2110-2170
  • the receiving frequency of 2600 is usually 2500-2570
  • the transmitting frequency of 2600 is usually 2620-2690.
  • FIG. 2b is another representation of the architecture of FIG. 2a.
  • the antenna is represented by an antenna surface, and each "X" in FIG. 2b represents two polarization directions of the one-column antenna.
  • the small squares below the antenna face in Figure 2b are the ports ANT1....ANTN of the antenna, respectively.
  • N takes a value of 6
  • kl takes a value of 3.
  • T1 in Fig. 2b represents the transmitting interface of the 3 worker connected to ANT1 in Fig. 2a, and 3 arrows below T1 indicate the transmitting frequency band of the 3 worker (distribution: 1800TX-2100TX-2600TX);
  • R1 represents the receiving interface of Figure 3a and ANT2 connected to the 3 device
  • the arrow below R1 indicates the receiving frequency band of the 3 device (distribution: 1800RX-2100RX-2600RX)
  • R2 in Figure 2b indicates the ANT3 in Figure 2a Connect the transmitter's transmitting interface.
  • the arrow below R2 indicates the transmitting frequency band of the 3 (distribution: 1800RX-2100RX-2600RX);
  • T2 in Figure 2b indicates the transmitting interface of the 3 worker connected to ANT4 in Figure 2a.
  • T2 indicate the transmitting frequency band of the 3 device (distribution: 1800TX-2100TX-2600TX);
  • R3 in Figure 2b indicates the transmitting interface of the 3 worker connected to ANT5 in Figure 2a, below R3 3 arrows indicate the receiving frequency band of the 3 device (distribution: 1800RX-2100RX-2600RX);
  • R4 in Figure 2b indicates the transmitting interface of the 3 worker connected to ANT6 in Figure 2a, and 3 arrows below R4.
  • the multi-frequency transceiver of the embodiment of the present invention transmits signals of multiple frequency bands through different multiplexers.
  • the reception and transmission are completely separated, so that the interval between the frequency band signals on each multiplexer is increased.
  • the reception frequency band of the 1800 is usually For the frequency of 1710-1785, the transmitting frequency band of 1800 is usually 1805-1880, the receiving frequency band of 2100 is usually the frequency of 1920-1980, the transmitting frequency band of 2100 is usually the frequency of 2110-2170, and the receiving frequency band of 2600 is usually 250.
  • the frequency of 0-2570, the transmission band of 2600 is usually the frequency of 2620-2690.
  • the transceiver of the same frequency band and the transmission and reception of different frequency bands are all integrated together, and each transceiver of the transceiver is multiplexed.
  • the spacing between the upper frequency bands is increased (in particular, the spacing between the frequency bands below each multiplexer in FIG. 2b is larger than that in FIG. 1b), and thus, the multi-frequency shown in FIG.
  • the transceiver's suppression requirements for the transceiver filter channel of the multiplexer are also reduced, and the multiplexer is filtered due to the widening of the frequency interval between the frequency band transmitted on the same multiplexer or the received frequency band.
  • the number of cavities of the device can be reduced, which is advantageous for miniaturization of the multiplexer, and the consequent insertion loss is also reduced.
  • the transceiver is isolated, the intermodulation requirements for the antenna are also reduced, and the performance requirements of the multi-antenna multi-antenna are reduced, and the cost of the antenna used is also reduced.
  • the embodiment of the present invention further provides a second multi-frequency transceiver connected to the antenna, which includes a plurality of multiplexers, each multiplexer comprising: a single transmission path for transmitting signals to one frequency band through the antenna Transmitting; at least one receiving path, each receiving path for receiving a signal of one frequency band through the antenna.
  • each multiplexer included in the second multi-frequency transceiver includes both a transmission path and a reception path, and thus such a multiplexer can be referred to as a transceiver multiplexer.
  • the frequency band transmitted by the transmission path is the same as the frequency band received by a receiving path of the at least one receiving path.
  • the transmit and receive paths of the 1800 band can be set simultaneously in one multiplexer.
  • the multiplexer may only include the transmission path and the reception path of the 1800 band, and the reception path of other frequency bands may be set in the multiplexer, for example, the reception path of the 2100 band.
  • the frequency ranges of the transmission path and the reception path are different, for example, the frequency range of the transmission path in the 1800 frequency band.
  • the receiving band is usually 1710-1785.
  • the frequency band transmitted by the transmission path is different from the frequency band received by any one of the at least one receiving path.
  • the transmit path of the 1800 band can be set in one multiplexer, and the receive paths of the 2100 and 2600 bands can be set at the same time.
  • the frequency band received by each of the receiving paths is different from the frequency band received by any of the at least one of the receiving paths.
  • a 1800-band transmit path can be set in a multiplexer, and a receive path can be set for each of the 2100 and 2600 bands.
  • the plurality of multiplexers include at least N multiplexers, In each of the N multiplexers, a frequency band transmitted by the transmission path is one of N frequency bands, and each receiving path is one of the N frequency bands, and each multiplexer The frequency band transmitted by the transmission path is different from the frequency band transmitted by the transmission path in any of the N multiplexers, where N is a positive integer greater than or equal to 2.
  • N is a positive integer greater than or equal to 2.
  • three multiplexers can be set, and the transmission path of the 1800 frequency band and the reception paths of the 2100 and 2600 frequency bands are set in the first multiplexer.
  • the 2100 band transmission path and the 1800 and 2600 band reception paths are set in the second multiplexer.
  • the 2600 band transmission path and the 1800 and 2100 band reception paths are set in the third multiplexer.
  • the M multiplexers include at least M multiplexers, and each of the multiplexers includes the same number of receive paths, where , M is a positive integer less than N.
  • M is a positive integer less than N.
  • three multiplexers can be set, and the transmission path of the 1800 band and the reception paths of the 2100 and 2600 bands are set in the first multiplexer.
  • the 2100 band transmission path and the 1800 and 2600 band reception paths are set in the second multiplexer.
  • the 2600 band transmission path and the 1800 and 2100 band reception paths are set in the third multiplexer.
  • each multiplexer contains 2 receive paths.
  • the N multiplexers include at least one multiplexer, and the number of receiving paths is different from the other at least one of the N multiplexers The number of receive paths in the tool.
  • three multiplexers can be set, and the transmission path of the 1800 band and the reception path of the 2100 band are set in the first multiplexer.
  • the 2600 band transmission path and the 1800 band reception path are set in the third multiplexer.
  • a total amount of receiving paths for receiving any one of the N frequency bands is the same.
  • three multiplexers can be set, and the transmission path of the 1800 frequency band and the reception paths of the 2100 and 2600 frequency bands are set in the first multiplexer.
  • the 2100 band transmission path and the 1800 and 2600 band reception paths are set in the second multiplexer.
  • the 2600 band transmission path and the 1800 and 2100 band reception paths are set in the third multiplexer.
  • the total number of receiving paths of the 1800, 2100, and 2600 bands is two.
  • At least one frequency band is included in the N frequency bands, and a total amount of receiving paths receiving the frequency band in the N multiplexers is different from receiving in the N multiplexers The total number of receive paths of the other of the N frequency bands.
  • three multiplexers can be set, and the transmission path of the 1800 band and the reception path of the 2100 band are set in the first multiplexer.
  • the 2100 band transmission path and the 1800 and 2600 band reception paths are set in the second multiplexer.
  • the 2600 band transmission path and the 1800 band reception path are set in the third multiplexer.
  • the transceiver multiplexing in the multi-frequency transceiver can be set according to specific needs (for example, the number of frequency bands to be supported, the number of transmission paths and the number of reception paths of each frequency band). The number of devices.
  • composition of the second multi-frequency transceiver of the present invention will be exemplified below by way of the drawings and specific embodiments.
  • FIG. 3a is a schematic structural diagram of another embodiment of a multi-frequency transceiver of the present invention.
  • the transceiver multiplexer 31 may be a k2 worker, where k2 represents all frequency bands supported by the multi-frequency transceiver 3, for example, k2 may take 3 Or 4 or something else.
  • the specific frequency band supported by the multi-frequency transceiver of the embodiment of the present invention may be determined according to network requirements. For convenience of description, the value of k2 is 3 in FIG. 3a, and the three frequency bands may be: 1800, 2100, and 2600, respectively.
  • the transceiver multiplexer 31 of the embodiment of the present invention may include a single transmission path for transmitting a frequency band by using the antenna, and at the same time, the transceiver multiplexer 31 further includes at least one receiving path.
  • Each of the receiving paths is configured to receive a frequency band by using the antenna, and in this embodiment, the frequency band received by the transceiver multiplexer 31 is different from the frequency band of the transmitting frequency band.
  • the transceiver multiplexer 31 includes a transmission path for transmitting signals of the 1800 band, and also receives reception of signals for the 2100 band and the 2600 band.
  • the path, or the transceiver multiplexer 31 may include a transmission path for transmitting a signal of the 2100 band, and a receiving path for receiving signals of the 1800 band and the 2600 band, or the transceiver multiplexer 31 may include a band for transmitting 2600 bands.
  • the transmission path of the signal also includes a reception path for receiving signals of the 2100 band and the 1800 band. For details, refer to FIG. 3a.
  • the six transceiver multiplexers 31 can be divided into three multiplexer groups, and each multiplexer group includes two multiplexers, wherein the antenna The port ANT1 is connected to the transceiver multiplexer 31 connected to the antenna port ANT4, and the transmission and reception frequency bands of the first group of transceiver multiplexers 31 are: 2600RX-2100RX-1800TX; and the antenna port ANT2 is connected with the antenna port ANT5.
  • the connected transceiver multiplexer 31 is a second group, and the transmission and reception frequency bands of the second group transceiver multiplexer 31 are: 2600RX-2100TX-1800RX; the transceiver multiplexer 31 connected to the antenna port ANT3 and connected to the antenna port ANT6 is In the third group, the transmission and reception frequency bands of the third group of transceiver multiplexers 31 are: 2600TX-1800RX-2100RX. Also, in the present embodiment, each multiplexer includes the same number of receiving paths. Also, the total number of receive paths for each band is the same.
  • FIG. 3b is another representation of the architecture of FIG. 3a.
  • the antenna is represented by an antenna surface, and each "X" in FIG. 3b represents two polarization directions of the one-column antenna.
  • the small squares below the antenna face in Figure 3b are the ports ANT1....ANTN of the antenna, respectively.
  • N takes a value of 6
  • k2 takes a value of 3.
  • T/R1 in FIG. 3b represents the transceiver interface of the 3 worker connected to ANT1 in FIG.
  • T/R1 indicates the transceiver frequency band of the 3 worker (distribution: 2600RX-2100RX-1800TX)
  • T/R2 in Figure 3b represents the transceiver interface of Figure 3a connected to ANT2, and the arrow below T/R2 indicates the transceiver frequency band of the 3 worker (distribution: 2600RX-2100TX-1800RX);
  • the T/R3 indicates the transceiver interface of the ANT3 connected to the 3 device in Figure 3a.
  • T/R3 indicates the transceiver frequency band of the 3 device (distribution: 2600TX-1800RX-2100RX); T/R4 in Figure 3b Indicates the transceiver interface of the 3 worker connected to ANT1 in Figure 3a.
  • the 3 arrows below T/R4 indicate the transceiver frequency band of the 3 worker (distribution: 2600RX-2100RX-1800TX); T/R5 in Figure 3b Indicates the transceiver interface of Figure 3a connected to ANT2.
  • the arrow below T/R5 indicates the transceiver frequency band of the 3 device (distribution: 2600RX-2100TX-1800RX); T/R6 in Figure 3b indicates Figure 3a.
  • FIG. 3a modulates the transmission frequency and the receiving frequency of the multiplexer to be different frequency, and increases the interval of the frequency on each multiplexer. Therefore, when using the embodiment of the present invention, FIG. 3a After the multi-frequency transceiver is shown, compared with the prior art, the transmission and reception of the same frequency band and the transmission and reception of different frequency bands are all integrated, and the spacing between the frequency bands on each multiplexer is increased (in particular, The spacing between the frequency bands below each multiplexer in FIG. 3b is larger than that in FIG. 1b. Thus, the multi-frequency transceiver shown in FIG. 3a has the transmission and reception filter channel suppression degree of the multiplexer.
  • the requirements are reduced, and, by The frequency interval between the frequency band transmitted on the same multiplexer or the received frequency band is widened, so that the number of slots of the filter of the multiplexer can be reduced, which is advantageous for miniaturization of the multiplexer, and thus the insertion loss is also caused.
  • the transceiver is isolated, the intermodulation requirements for the antenna are also reduced, and the performance requirements of the multi-antenna multi-antenna are reduced, and the cost of the antenna used is also reduced.
  • the transceiver multiplexer 41 may be a k3 worker, where k3 represents all frequency bands supported by the multi-frequency transceiver 4, for example, k3 may take 3 Or 4 or something else.
  • the specific frequency band supported by the multi-frequency transceiver of the embodiment of the present invention may be determined according to network requirements. For convenience of description, the value of k3 is 3 in FIG. 4a, and the three frequency bands may be: 1800, 2100, and 2600, respectively.
  • the transceiver multiplexer 41 of the embodiment of the present invention may include a single transmission path for transmitting a frequency band by using the antenna, and at the same time, the transceiver multiplexer 41 further includes at least one receiving path.
  • Each of the receiving paths is configured to receive a frequency band by using the antenna, and in the embodiment, the frequency band received by the transceiver multiplexer 41 is included in the frequency band of the transmitting Signals of the same frequency band and signals in different frequency bands from the transmitted frequency band. For example, when k3 is 3 and the supported frequency bands are 1800, 2100, and 2600, the transceiver multiplexer 41 can be used to transmit signals in the 1800 band and simultaneously receive the 1800 band.
  • the 2100 band can also be received.
  • the signal of the 2600 frequency band, or the transceiver multiplexer 41 can be used to transmit the signal of the 2100 frequency band and simultaneously receive the 2100 frequency band, and on this basis, can also receive the signal of the 1800 frequency band and/or the 2600 frequency band, or the transceiver multiplexer 41 It can be used to transmit signals in the 2600 band and receive 2600 bands at the same time.
  • signals of 2100 bands and/or 1800 bands can also be received.
  • the six transceivers 41 can be divided into three multiplexer groups, and each multiplexer group includes two multiplexers.
  • the transceiver multiplexer 41 connected to the antenna port ANT1 and connected to the antenna port ANT4 is the first group, and the transmission and reception frequency bands of the first group transceiver multiplexer 41 are: 2600RX-1800RX-1800TX; and the antenna port ANT2 is connected and the antenna
  • the transceiver multiplexer 41 connected to the port ANT5 is the second group, and the transmission and reception frequency bands of the second group transceiver multiplexer 31 are: 2100RX-2100TX-1800RX; the transceiver multiplexer connected to the antenna port ANT3 and connected to the antenna port ANT6 41 is the third group, and the transmission and reception frequency bands of the third group of transceiver multiplexers 41 are: 2600TX-2600RX-2100RX.
  • FIG. 4b is another representation of the architecture of FIG. 4a.
  • the antenna is represented by an antenna surface, and each "X" in FIG. 4b represents two polarization directions of the one-column antenna.
  • the small squares below the antenna face in Figure 4b are the ports ANT1....ANTN of the antenna, respectively.
  • N takes a value of 6
  • k3 takes a value of 3.
  • T/R1 in FIG. 4b represents the transceiver interface of the 3 worker connected to ANT1 in FIG.
  • T/R1 indicates the transceiver frequency band of the 3 worker (distribution: 2600RX-1800RX-1800TX)
  • T/R2 in Figure 4b represents the transceiver interface of Figure 3a connected to ANT2, and the arrow below T/R2 indicates the transceiver frequency band of the 3 worker (distribution: 2100RX-2100TX-1800RX);
  • T/R3 indicates the transceiver interface of the ANT3 connected to the 3 device in Figure 4a.
  • T/R3 indicates the transceiver frequency band of the 3 device (distribution: 2600TX-2600RX-2100RX); T/R4 in Figure 4b Indicates the transceiver interface of the 3 worker connected to ANT1 in Figure 4a.
  • the 3 arrows below T/R4 indicate the transceiver frequency band of the 3 worker (distribution: 2600RX-1800RX-1800TX); T/R5 in Figure 4b Indicates the transceiver interface of Figure 3a connected to ANT2.
  • the arrow below T/R5 indicates the transceiver frequency band of the 3 device (distribution: 2100RX-2100TX-1800RX); T/R6 in Figure 4b indicates Figure 4a.
  • the multi-frequency transceiver shown in FIG. 4a of the embodiment of the present invention is used, the spacing between the frequency bands on each multiplexer is increased compared with the scheme of the conventional six-worker transceiver.
  • the specific embodiment is as follows: the interval between the frequency bands below each multiplexer in FIG. 4b is larger than that in FIG. 4b), and thus, the multi-frequency transceiver shown in FIG. 4a transmits and filters the multiplexer according to the embodiment of the present invention.
  • the channel channel suppression requirement is also reduced, and Moreover, since the frequency interval between the frequency band transmitted on the same multiplexer or the received frequency band is widened, the number of slots of the filter of the multiplexer can be reduced, which facilitates miniaturization of the multiplexer, and thus The insertion loss is also reduced. In addition, when the transceiver is isolated, the intermodulation requirements for the antenna are also reduced, and the performance requirements of the multi-antenna multi-antenna are reduced, and the cost of the antenna used is also reduced. .
  • the embodiment of the present invention provides a base station, which can include the multi-frequency transceiver of the foregoing embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本发明公开了一种多频收发信机和基站。该多频收发信机与天线相连,包括:至少一个发射多工器,每一发射多工器包括多条发射路径,每条发射路径用于通过天线对一个频段的信号进行发射;至少一个接收多工器,每一接收多工器包括多条接收路径,每条接收路径用于通过天线对一个频段的信号进行接收。本发明增大了单个多工器收发信号通道之间的间隔,降低了对多工器的滤波器的抑制度要求,利于滤波器小型化。

Description

多频 信机 ½站 技术领域
本发明涉及无线通信领域, 特别涉及一种多频收发信机及基站。 背景技术
随着宽带多频技术的发展,基站的一个收发信机就能支持多个频段,现有 技术采用传统的收发双工装置来对多个频段的收发进行处理。 以 1800、 2100、 2600三频的 2T4R (其中, T代表发射, R代表接收)为例, 如图 la可知, 为 实现 2发 4收的功能, 基站的收发信机内布设 4个多工器, 由上至下分别是: 六工器、 三工器、 三工器、 六工器, 其中, 两个六工器可用于同时收发不同频 段的射频信号, 该现有技术中, 两个六工器的通道排布为: 1800RX (用于接 收 1800频段的信号)、 1800TX (用于发送 1800频段的信号)、 2100RX (用于 接收 2100频段的信号)、 2100TX (用于发送 2100频段的信号)、 2600RX (用 于接收 2600频段的信号)、 2600TX (用于发送 2600频段的信号)。 进一步, 如图 la, 基站收发模块的 4个多工器分别与天线的 4个端口 (分别为图 la中 的 ANT1、 ANT2、 ANT3以及 ANT4 )相连, 以通过天线的不同阵列方向实现 信号的收发。 进一步参考图 lb, 天线通过天线面来表示, 其中, 图 lb中每一 个 " X " 代表 1列天线的两个极化方向, 在图 lb中天线的面下面的四个小方 块分别对应图 la中的 ANT1、 ANT2、 ANT3以及 ANT4, 图 lb中的 T/R1表 示图 la中与 ANT1连接的六工器的收发接口, T/R1下面的 6个箭头, 表示该 六 工 器 的 收 发 频 段 ( 分 布 为 : 1800RX- 1800TX-21 OORX-2100TX-2600RX-2600TX ); 图 lb中的 R3表示图 la 中与 ANT2连接三工器的接收接口, R3下面的箭头表示该三工器的接收频段 (分布为: 1800RX-2100RX-2600RX ); 图 lb中的 R4表示图 la中与 ANT3 连接三工器的接收接口, R4下面的箭头表示该三工器的接收频段(分布为: 1800RX-2100RX-2600RX ); 图 lb中的 T/R2表示图 la中与 ANT4连接的六工 器的收发接口, T/R2下面的 6个箭头, 表示该六工器的收发频段(分布为: 1800RX- 1800TX-21 OORX-2100TX-2600RX-2600TX )。 现有技术通过多工器实 现对基站所有频段的收发,由于将相同频段的收发和不同频段的收发整合在一 起, 对收发隔离的要求较高, 因此给多工器的设计带来了很大的难度。 发明内容
鉴于此, 本发明提供一种多频收发信机和一种基站, 可降低多工器的设计 技术难度。
本发明第一方面提供一种多频收发信机, 与天线相连, 其可包括: 至少一个发射多工器,每一发射多工器包括多条发射路径,每条发射路径 用于通过所述天线对一个频段的信号进行发射;
至少一个接收多工器,每一接收多工器包括多条接收路径,每条接收路径 用于通过所述天线对一个频段的信号进行接收。
结合第一方面, 在第一种可行的实施方式中, 每一发射多工器包含 N个 频段之中每个频段的发射路径; 每一接收多工器包含所述 N个频段之中每个 频段的接收路径, 其中, N为大于或等于 2的正整数。
结合第一方面的第一种可行的实施方式,在第二种可行的实施方式中, 所 述至少一个发射多工器包括两个发射多工器,每一发射多工器包含三个频段之 中每个频段的发射路径; 所述至少一个接收多工器包括四个接收多工器,每一 接收多工器包含所述三个频段之中每个频段的接收路径。
本发明第二方面提供一种多频收发信机, 与天线相连, 包括多个多工器, 其特征在于, 每个多工器包含:
单条发射路径, 用于通过所述天线对一个频段的信号进行发射; 至少一条接收路径,每一接收路径用于通过所述天线对一个频段的信号进 行接收。
结合第二方面,在第一种可行的实施方式中, 所述发射路径所发射的频段 与所述至少一条接收路径中一接收路径所接收的频段相同。
结合第二方面,在第二种可行的实施方式中, 所述发射路径所发射的频段 不同于所述至少一条接收路径中任一接收路径所接收的频段。
结合第二方面的第一种或第二种可行的实施方式,在第三种可行的实施方 式中,每一接收路径所接收的频段不同于所述至少一条接收路径中其他任一接 收路径所接收的频段。
结合第二方面的第三种可行的实施方式,在第四种可行的实施方式中, 所 述多个多工器中至少包含 N个多工器,在所述 N个多工器中的每一多工器内, 发射路径所发射的频段为 N个频段其中之一, 每一接收路径为所述 N个频段 其中之一, 每一多工器内发射路径所发射的频段不同于所述 N个多工器中其 他任一多工器中发射路径所发射的频段, 其中, N为大于或等于 2的正整数。
结合第二方面的第四种可行的实施方式,在第五种可行的实施方式中, 在 所述 N个多工器内, 至少包含 M个多工器, 在所述 M个多工器内, 每一多工 器包含的接收路径的数量相同, 其中, M为小于 N的正整数。
结合第二方面的第四种可行的实施方式,在第六种可行的实施方式中, 在 所述 N个多工器内, 至少包含一个多工器, 在该多工器内, 接收路径的数量 不同于所述 N个多工器内其他至少一个多工器内接收路径的数量。
结合第二方面的第四种可行的实施方式,在第七种可行的实施方式中, 在 所述 N个多工器内,接收所述 N个频段之中任一频段的接收路径的总量相同。
结合第二方面的第四种可行的实施方式,在第八种可行的实施方式中, 在 所述 N个频段中, 至少包含一个频段, 在所述 N个多工器内接收该频段的接 收路径的总量不同于所述 N个多工器内接收所述 N个频段之中另一频段的接 收路径的总量。 本发明第三方面提供一种基站, 包括第一方面、 第一方面的第 一种和第二种可行实施方式、第二方面和第二方面的第一种至第八种可行实施 方式中的任意一种多频收发信机。
本发明第三方面提供一种基站, 其可包括本发明所述的多频收发信机。 由上可见,在本发明的一些可行的实施方式中, 多频收发信机中使用的多 工器仅用于发射所述多频收发信机支持的各频段的信号, 或者,仅用于接收所 述多频收发信机所支持的各频段的信号, 或者,仅用于发射所述多频收发信机 的一个频段的信号并接收所述多频收发信机所支持的多个频段信号(包括或者 不包括与所述发射的信号处于相同频段的信号)。 这样, 本发明实施例可消除 相邻频段发射路径对本频段接收路径的影响,降低了对多工器的滤波器的抑制 度要求, 抑制度减低可使多工器的插损下降, 特别是边缘的插损减少, 从而降 低多工器设计难度,而将发射和接收通过不同的多工器进行隔离可降低天线的 互调要求, 并且, 当每个多工器上仅有一个频段的发射时, 各频段的发射变得 可以独立电调。 附图说明
图 la为现有的一种收发信机的结构组成示意图;
图 lb为图 la中的收发信机的多工器与天线端口的对应关系示意图; 图 2a为本发明的一种多频收发信机的一实施例的结构组成示意图; 图 2b为图 2a中的多频收发信机的多工器与天线端口的对应关系示意图; 图 3a为本发明的一种多频收发信机的一实施例的结构组成示意图; 图 3b为图 3a中的多频收发信机的多工器与天线端口的对应关系示意图; 图 4a为本发明的一种多频收发信机的一实施例的结构组成示意图; 图 4b为图 4a中的多频收发信机的多工器与天线端口的对应关系示意图。 具体实施例
本发明实施例提供了第一种多频收发信机, 与天线相连, 其可包括: 至少 一个发射多工器,每一发射多工器包括多条发射路径,每条发射路径用于通过 所述天线对一个频段的信号进行发射; 至少一个接收多工器,每一接收多工器 包括多条接收路径,每条接收路径用于通过所述天线对一个频段的信号进行接 收。
在一些可行的实施方式中, 每一发射多工器包含 N个频段之中每个频段 的发射路径; 每一接收多工器包含所述 N个频段之中每个频段的接收路径, 其中, N为大于或等于 2的正整数。 比如, N可为 3, 3个频段分别可为 1800、 2100和 2600。 如此一来, 每一发射多工器同时包含 1800、 2100、 2600频段的 发射路径, 每一接收多工器同时包含 1800、 2100、 2600频段的接收路径。
在一些可行的实施方式中, 所述至少一个发射多工器包括两个发射多工 器,每一发射多工器包含三个频段之中每个频段的发射路径; 所述至少一个接 收多工器包括四个接收多工器,每一接收多工器包含所述三个频段之中每个频 段的接收路径。 对应到 1800、 2100和 2600三个频段, 则两个发射多工器中每 个发射多工器可包括 1800 的发射( 1800TX 2100 的发射(2100TX ) 以及 2600 的发射(2600TX )路径。 四个接收多工器的每一接收多工器包含 1800 的接收 (1800RX)、 2100的接收( 2100RX ) 以及 2600的接收( 2600RX )路径。 本领域的技术人员应当明白,在具体实现过程中, 可根据具体需要可根据具体 需要(例如所需支持的频带的数量、 各频带的发射路径和接收路径的数量)来 设置多频收发信机中发射多工器和接收多工器的数量。
下面通过附图和具体的实施例对本发明的第一种多频收发信机的组成结 构进行举例说明。
图 2a为本发明的多频收发信机的一实施例的结构组成示意图。 具体实现 中, 本发明实施例的多频收发信机 2可包括 ml个发射多工器 21和 nl个接收 多工器 22 (其中 ml和 nl为正整数, 为便于后续描述, 图 2a中 ml取值为 2, nl取值为 4 ),每一发射多工器 21和每一接收多工器 22均与天线的一端口(端 口如图 2a中的 ANT1....ANTN, 其中, N为 ml+nl , 当 ml取值为 2, nl取 值为 4时, 图 2a中 N取值为 6 )相连, 以通过天线的不同阵列方向接收或者 发射各频段的射频信号, ml和 nl使得所述多频收发信机 2能实现 mlTnlR(表 示多频收发信机 2能实现 ml路发射, nl路接收) 的架构, 进一步, 如图 2a 所示, 发射多工器 21和接收多工器 22均可为 kl工器, 其中, kl表示所述多 频收发信机 2支持的频段的数量, 比如, kl可取 3或 4或者其他。 具体实现 中, 本发明实施例的多频收发信机所支持的具体频段可根据网络需要而定。 为 便于描述,图 2a中以 kl取值为 3举例,且所述 3个频段分别可为: 1800、 2100 以及 2600。
具体实现中, 本发明实施例的发射多工器 21包括多条发射路径, 每条发 射路径用于通过所述天线对一个频段进行发射, 比如, 当 kl取值为 3 , 且支 持的频段为 1800、 2100以及 2600时, 发射多工器 21包括 3条发射路径, 该 三条发射路径分别对 1800、 2100及 2600三个频段的信号进行发射。所述接收 多工器 22包括多条接收路径, 每条接收路径用于通过所述天线对一个频段进 行接收, 比如, 当 kl取值为 3 , 且支持的频段为 1800、 2100以及 2600时, 接收多工器 22包括 3条接收路径, 该三条接收路径分别接收 1800、 2100及 2600三个频段的信号。 具体实现中, 1800的接收频段通常为 1710-1785的频 率, 1800 的发射频段通常为 1805-1880 的频率, 2100 的接收频段通常为 1920-1980的频率, 2100的发射频段通常为 2110-2170的频率, 2600的接收频 段通常为 2500-2570的频率, 2600的发射频段通常为 2620-2690的频率。
进一步, 图 2b为图 2a的架构的另一种表现方式, 在图 2b中, 将天线通 过天线面来表示, 则图 2b中的每个 " X " 代表 1列天线的两个极化方向, 在 图 2b中天线面下面的小方块分别为天线的端口 ANT1....ANTN。 为了便于描 述,在图 2b中 N取值为 6, kl取值为 3。则图 2b中的 T1表示图 2a中与 ANT1 连接的 3工器的发射接口, T1下面的 3个箭头,表示该 3工器的发射频段(分 布为: 1800TX-2100TX-2600TX ); 图 2b中的 R1表示图 2a中与 ANT2连接 3 工器的接收接口, R1 下面的箭头表示该 3 工器的接收频段 (分布为: 1800RX-2100RX-2600RX );图 2b中的 R2表示图 2a中与 ANT3连接 3工器的 发射接口, R2 下面的箭头表示该 3 工器的发射频段 (分布为: 1800RX-2100RX-2600RX ); 图 2b中的 T2表示图 2a中与 ANT4连接的 3工器 的发射接口, T2 下面的 3 个箭头, 表示该 3 工器的发射频段(分布为: 1800TX-2100TX-2600TX ); 图 2b中的 R3表示图 2a中与 ANT5连接的 3工器 的发射接口, R3 下面的 3 个箭头, 表示该 3 工器的接收频段(分布为: 1800RX-2100RX-2600RX );图 2b中的 R4表示图 2a中与 ANT6连接的 3工器 的发射接口, R4 下面的 3 个箭头, 表示该 3 工器的接收频段(分布为: 1800RX-2100RX-2600RX )„ 需要说明的是, 图 2a和图 2b是以 ml为 2, nl 为 4以及 kl为 3举例形成的 2T4R的多频收发信机的结构, 具体实现中, 根 据 ml、 nl以及 kl取值的不同, 多频收发信机包括的发射多工器和接收多工 器的数量可不同,以及发射多工器和接收多工器具体发射或接收的频段数量也 不同。但图 2a-2b所示实施例体现的是一个将多频率发射和多频率接收通过不 同的多工器完全分离的技术方案。 参见图 2b可知, 由于本发明实施例的多频 收发信机通过不同的多工器将多频段的信号的接收和发射进行了完全分离,这 样在每个多工器上的频段信号之间的间隔就增大了, 比如, 针对 1800、 2100 以及 2600三个频段,具体实现中, 1800的接收频段通常为 1710-1785的频率, 1800的发射频段通常为 1805-1880的频率, 2100的接收频段通常为 1920-1980 的频率, 2100的发射频段通常为 2110-2170的频率, 2600的接收频段通常为 2500-2570的频率, 2600的发射频段通常为 2620-2690的频率。 所以, 当采用 本发明实施例图 2a所示的多频收发信机将收发频段分离之后 , 比现有技术的 将相同频段的收发和不同频段的收发全部整合在一起的方案,收发信机每个多 工器上的频段之间的间距均增大(具体体现为: 图 2b中每个多工器下面的频 段间的间隔比图 lb中大), 由此, 本发明实施例图 2a所示的多频收发信机对 多工器的收发滤波器通道抑制度要求也就减低了, 并且, 由于同一多工器上发 射的频段或者接收的频段之间的频率间隔拉大,使得多工器的滤波器的腔数可 以减少, 利于多工器小型化, 这样随之而来的插损也减小。 另外, 当将收发进 行隔离之后,对天线的互调要求也降低了, 多频收发信机多天线的性能要求也 就降低了, 进而使用的天线的成本也就降低了。
本发明实施例还提供了第二种多频收发信机, 与天线相连, 其包括多个多 工器, 每个多工器包含: 单条发射路径, 用于通过所述天线对一个频段的信号 进行发射;至少一条接收路径, 每一接收路径用于通过所述天线对一个频段的 信号进行接收。 不难理解, 第二种多频收发信机中包含的每个多工器既包含发 射路径又包含接收路径, 因此这种多工器可称为收发多工器。
在一些可行的实施方式中,所述发射路径所发射的频段与所述至少一条接 收路径中一接收路径所接收的频段相同。 例如, 可在一个多工器内同时设置 1800频段的发射路径和接收路径。 在这种情况下, 该多工器内可仅包含 1800 频段的发射路径和接收路径,也可在该多工器内设置其他频段的接收路径, 例 如 2100频段的接收路径。 本领域的技术人员应当明白, 尽管在该多工器内同 时设置了 1800频段的发射路径和接收路径, 但发射路径与接收路径的频率范 围是不同的, 例如, 1800频段内发射路径的频率范围为 1805-1880, 接收频段 通常为 1710-1785。
在一些可行的实施方式中,所述发射路径所发射的频段不同于所述至少一 条接收路径中任一接收路径所接收的频段。例如,可在一个多工器内设置 1800 频段的发射路径, 同时设置 2100和 2600频段的接收路径。
在一些可行的实施方式中,每一接收路径所接收的频段不同于所述至少一 条接收路径中其他任一接收路径所接收的频段。例如, 可在一个多工器内设置 1800频段的发射路径, 同时为 2100和 2600频段各设置一条接收路径。
在一些可行的实施方式中, 所述多个多工器中至少包含 N个多工器, 在 所述 N个多工器中的每一多工器内, 发射路径所发射的频段为 N个频段其中 之一, 每一接收路径为所述 N个频段其中之一, 每一多工器内发射路径所发 射的频段不同于所述 N个多工器中其他任一多工器中发射路径所发射的频段, 其中, N为大于或等于 2的正整数。 例如, 为实现对 1800、 2100和 2600这 3 个频段的收发, 可设置 3个多工器, 在第一个多工器内设置 1800频段的发射 路径, 以及 2100和 2600频段的接收路径。 在第二个多工器内设置 2100频段 的发射路径,以及 1800和 2600频段的接收路径。在第三个多工器内设置 2600 频段的发射路径, 以及 1800和 2100频段的接收路径。
在一些可行的实施方式中,在所述 N个多工器内,至少包含 M个多工器, 在所述 M个多工器内, 每一多工器包含的接收路径的数量相同, 其中, M为 小于 N的正整数。 例如, 为实现对 1800、 2100和 2600这 3个频段的收发, 可设置 3个多工器, 在第一个多工器内设置 1800频段的发射路径, 以及 2100 和 2600频段的接收路径。在第二个多工器内设置 2100频段的发射路径, 以及 1800和 2600频段的接收路径。 在第三个多工器内设置 2600频段的发射路径, 以及 1800和 2100频段的接收路径。在这种情况下,每个多工器均包含 2条接 收路径。
在一些可行的实施方式中, 在所述 N个多工器内, 至少包含一个多工器, 在该多工器内, 接收路径的数量不同于所述 N个多工器内其他至少一个多工 器内接收路径的数量。例如,为实现对 1800、 2100和 2600这 3个频段的收发, 可设置 3个多工器, 在第一个多工器内设置 1800频段的发射路径, 以及 2100 频段的接收路径。 在第二个多工器内设置 2100 频段的发射路径, 以及 1800 和 2600频段的接收路径。在第三个多工器内设置 2600频段的发射路径, 以及 1800频段的接收路径。
在一些可行的实施方式中, 在所述 N个多工器内, 接收所述 N个频段之 中任一频段的接收路径的总量相同。 例如, 为实现对 1800、 2100和 2600这 3 个频段的收发, 可设置 3个多工器, 在第一个多工器内设置 1800频段的发射 路径, 以及 2100和 2600频段的接收路径。 在第二个多工器内设置 2100频段 的发射路径,以及 1800和 2600频段的接收路径。在第三个多工器内设置 2600 频段的发射路径, 以及 1800和 2100频段的接收路径。 在这种情况下, 在包含 上述 3个多工器的收发信机内, 1800、 2100和 2600频段的接收路径的总量均 为 2条。
在一些可行的实施方式中, 在所述 N个频段中, 至少包含一个频段, 在 所述 N个多工器内接收该频段的接收路径的总量不同于所述 N个多工器内接 收所述 N个频段之中另一频段的接收路径的总量。例如,为实现对 1800、 2100 和 2600这 3个频段的收发, 可设置 3个多工器, 在第一个多工器内设置 1800 频段的发射路径, 以及 2100 频段的接收路径。 在第二个多工器内设置 2100 频段的发射路径, 以及 1800和 2600频段的接收路径。在第三个多工器内设置 2600频段的发射路径, 以及 1800频段的接收路径。 因此, 在包含上述 3个多 工器的收发信机内, 1800的接收路径为 2条, 2100频段的接收路径为 1条, 2600频段的接收路径为 1条。 本领域的技术人员应当明白, 在具体实现过程 中, 可根据具体需要(例如所需支持的频带的数量、 各频带的发射路径和接收 路径的数量 )来设置多频收发信机中收发多工器的数量。
下面通过附图和具体的实施例对本发明的第二种多频收发信机的组成结 构进行举例说明。
图 3a为本发明的多频收发信机的另一实施例的结构组成示意图。 具体实 现中, 本发明实施例的多频收发信机 3可包括 m2个收发多工器 31 (其中 m2 为正整数, 表示了多工器与天线阵列的连接通路数, 为便于后续描述, 图 3a 中 m2 取值为 6 ), 每一收发多工器 31 均与天线的一端口 (图 3a 中的 ANT1....ANTN, 其中, N=m2 )相连, 以通过天线的不同阵列方向接收或者 发射各频段的射频信号, 进一步, 如图 3a所示, 收发多工器 31均可为 k2工 器, 其中, k2表示所述多频收发信机 3支持的所有频段, 比如, k2可取 3或 4或者其他。 具体实现中, 本发明实施例的多频收发信机所支持的具体频段可 根据网络需要而定。 为便于描述, 图 3a中以 k2取值为 3举例, 且所述 3个频 段分别可为: 1800、 2100以及 2600。
具体实现中, 本发明实施例的收发多工器 31可包括单条发射路径, 用于 通过所述天线对一个频段进行发射, 与此同时, 所述收发多工器 31还包括至 少一条接收路径,每一接收路径用于通过所述天线对一个频段进行接收,且在 本实施例中, 所述收发多工器 31接收的频段, 与所述发射的频段为不同频段。 比如, 当 k2取值为 3, 且支持的频段为 1800、 2100以及 2600时, 收发多工 器 31包括用于发射 1800频段的信号的发射路径,还包括接收 2100频段和 2600 频段的信号的接收路径, 或者, 收发多工器 31可包括用于发射 2100频段的信 号的发射路径, 还包括接收 1800频段和 2600频段的信号的接收路径, 或者, 收发多工器 31可包括用于发射 2600频段的信号的发射路径,还包括用于接收 2100频段和 1800频段的信号的接收路径。 具体可参见图 3a, 当 m2取值为 6 时, 所述 6个收发多工器 31可划分为 3个多工器组, 每个多工器组包括 2个 多工器,其中,与天线端口 ANT1连接和与天线端口 ANT4连接的收发多工器 31 为第一组, 第一组收发多 工器 31 的收发频段分布为 : 2600RX-2100RX-1800TX;与天线端口 ANT2连接和与天线端口 ANT5连接的 收发多工器 31 为第二组, 第二组收发多工器 31 的收发频段分布为: 2600RX-2100TX-1800RX;与天线端口 ANT3连接和与天线端口 ANT6连接的 收发多工器 31 为第三组, 第三组收发多工器 31 的收发频段分布为: 2600TX-1800RX-2100RX。 并且, 在本实施例中, 每个多工器包括的接收路径 的数量相同。 并且, 每个频段的接收路径的总量相同。
进一步, 图 3b为图 3a的架构的另一种表现方式, 在图 3b中, 将天线通 过天线面来表示, 则图 3b中的每个 " X " 代表 1列天线的两个极化方向, 在 图 3b中天线面下面的小方块分别为天线的端口 ANT1....ANTN。 为了便于描 述, 在图 3b中 N取值为 6, k2取值为 3。 则图 3b中的 T/R1表示图 3a中与 ANT1连接的 3工器的收发接口, T/R1下面的 3个箭头,表示该 3工器的收发 频段(分布为: 2600RX-2100RX-1800TX ); 图 3b 中的 T/R2表示图 3a中与 ANT2连接 3工器的收发接口, T/R2下面的箭头表示该 3工器的收发频段(分 布为: 2600RX-2100TX-1800RX ); 图 3b中的 T/R3表示图 3a中与 ANT3连接 3 工器的收发接口, T/R3 下面的箭头表示该 3 工器的收发频段(分布为: 2600TX-1800RX-2100RX ); 图 3b中的 T/R4表示图 3a中与 ANT1连接的 3工 器的收发接口, T/R4下面的 3个箭头, 表示该 3工器的收发频段(分布为: 2600RX-2100RX-1800TX ); 图 3b中的 T/R5表示图 3a中与 ANT2连接 3工器 的收发接口, T/R5 下面的箭头表示该 3 工器的收发频段 (分布为: 2600RX-2100TX- 1800RX ); 图 3b中的 T/R6表示图 3a中与 ANT3连接 3工器 的收发接口, T/R6 下面的箭头表示该 3 工器的收发频段 (分布为: 2600TX-1800RX-2100RX )„ 需要说明的是, 图 3a和图 3b是以 m2为 6, k2 为 3举例的多频收发信机的结构, 具体实现中, 根据 m2和 k2取值的不同多 频收发信机包括的收发多工器的数量可不同 ,以及每个收发多工器具体发射和 接收的频率数量也不同。 但图 3a所示实施例体现的多工器发射频率和接收频 率设置为异频的方式, 增加每个多工器上的频率的间隔, 所以, 当采用本发明 实施例图 3a所示的多频收发信机之后, 比现有技术的将相同频段的收发和不 同频段的收发全部整合在一起的方案,每个多工器上的频段之间的间距均增大 (具体体现为: 图 3b中每个多工器下面的频段间的间隔比图 lb中大), 由此, 本发明实施例图 3a所示的多频收发信机对多工器的收发滤波器通道抑制度要 求也就减低了, 并且, 由于同一多工器上发射的频段或者接收的频段之间的频 率间隔拉大, 使得多工器的滤波器的腔数可以减少, 利于多工器小型化, 这样 随之而来的插损也减小。 另外, 当将收发进行隔离之后, 对天线的互调要求也 降低了, 多频收发信机多天线的性能要求也就降低了,进而使用的天线的成本 也就降低了。
图 4a为本发明的多频收发信机的另一实施例的结构组成示意图。 具体实 现中, 本发明实施例的多频收发信机 4可包括 m3个收发多工器 41 (其中 m3 为正整数, 表示了多工器与天线阵列的连接通路数, 为便于后续描述, 图 4a 中 m3 取值为 6 ), 每一收发多工器 41 均与天线的一端口 (图 4a 中的 ANT1....ANTN, 其中, N=m3 )相连, 以通过天线的不同阵列方向接收或者 发射各频段的射频信号, 进一步, 如图 4a所示, 收发多工器 41均可为 k3工 器, 其中, k3表示所述多频收发信机 4支持的所有频段, 比如, k3可取 3或 4或者其他。 具体实现中, 本发明实施例的多频收发信机所支持的具体频段可 根据网络需要而定。 为便于描述, 图 4a中以 k3取值为 3举例, 且所述 3个频 段分别可为: 1800、 2100以及 2600。
具体实现中, 本发明实施例的收发多工器 41可包括单条发射路径, 用于 通过所述天线对一个频段进行发射, 与此同时, 所述收发多工器 41还包括至 少一条接收路径, 每一接收路径用于通过所述天线对一个频段进行接收,, 且 在本实施例中, 所述收发多工器 41接收的频段, 包括与所述发射的频段处于 相同频段的信号和与所述发射的频段处于不同频段的信号。 比如, 当 k3取值 为 3, 且支持的频段为 1800、 2100以及 2600时, 收发多工器 41可用于发射 1800频段的信号并同时接收 1800频段, 在此基础上还可接收 2100频段和 /或 2600频段的信号, 或者, 收发多工器 41可用于发射 2100频段的信号并同时 接收 2100频段,在此基础上还可接收 1800频段和 /或 2600频段的信号,或者, 收发多工器 41可用于发射 2600频段的信号并同时接收 2600频段, 在此基础 上还可接收 2100频段和 /或 1800频段的信号。 具体可参见图 4a的示例, 当 m3取值为 6时, 所述 6个收发多工器 41可划分为 3个多工器组,每个多工器 组包括 2个多工器,其中,与天线端口 ANT1连接和与天线端口 ANT4连接的 收发多工器 41 为第一组, 第一组收发多工器 41 的收发频段分布为: 2600RX- 1800RX- 1800TX;与天线端口 ANT2连接和与天线端口 ANT5连接的 收发多工器 41 为第二组, 第二组收发多工器 31 的收发频段分布为: 2100RX-2100TX-1800RX;与天线端口 ANT3连接和与天线端口 ANT6连接的 收发多工器 41 为第三组, 第三组收发多工器 41 的收发频段分布为: 2600TX-2600RX-2100RX。
进一步, 图 4b为图 4a的架构的另一种表现方式, 在图 4b中, 将天线通 过天线面来表示, 则图 4b中的每个 " X " 代表 1列天线的两个极化方向, 在 图 4b中天线面下面的小方块分别为天线的端口 ANT1....ANTN。 为了便于描 述, 在图 4b中 N取值为 6, k3取值为 3。 则图 4b中的 T/R1表示图 4a中与 ANT1连接的 3工器的收发接口, T/R1下面的 3个箭头,表示该 3工器的收发 频段(分布为: 2600RX-1800RX-1800TX ); 图 4b 中的 T/R2表示图 4a中与 ANT2连接 3工器的收发接口, T/R2下面的箭头表示该 3工器的收发频段(分 布为: 2100RX-2100TX-1800RX ); 图 4b中的 T/R3表示图 4a中与 ANT3连接 3 工器的收发接口, T/R3 下面的箭头表示该 3 工器的收发频段(分布为: 2600TX-2600RX-2100RX ); 图 4b中的 T/R4表示图 4a中与 ANT1连接的 3工 器的收发接口, T/R4下面的 3个箭头, 表示该 3工器的收发频段(分布为: 2600RX-1800RX-1800TX ); 图 4b中的 T/R5表示图 4a中与 ANT2连接 3工器 的收发接口, T/R5 下面的箭头表示该 3 工器的收发频段 (分布为: 2100RX-2100TX-1800RX ); 图 4b中的 T/R6表示图 4a中与 ANT3连接 3工器 的收发接口, T/R6 下面的箭头表示该 3 工器的收发频段 (分布为: 2600TX-2600RX-2100RX )„ 需要说明的是, 图 4a和图 4b是以 m3为 6, k3 为 3举例的多频收发信机的结构, 具体实现中, 根据 m3和 k3取值的不同多 频收发信机包括的收发多工器的数量可不同 ,以及每个收发多工器具体发射和 接收的频率数量也不同。 但图 4a所示实施例体现的多工器发射频率和接收频 率设置在满足一个频段同频的前提下,接收其他异频的信号, 由此增加每个多 工器上的频率的间隔, 所以, 当采用本发明实施例图 4a所示的多频收发信机 之后, 比现有技术的六工器收发共用的方案,每个多工器上的频段之间的间距 均增大(具体体现为: 图 4b中每个多工器下面的频段间的间隔比图 4b中大), 由此, 本发明实施例图 4a所示的多频收发信机对多工器的收发滤波器通道抑 制度要求也就减低了, 并且, 由于同一多工器上发射的频段或者接收的频段之 间的频率间隔拉大,使得多工器的滤波器的腔数可以减少,利于多工器小型化, 这样随之而来的插损也减小。 另外, 当将收发进行隔离之后, 对天线的互调要 求也降低了, 多频收发信机多天线的性能要求也就降低了, 进而使用的天线的 成本也就降低了。
相应的, 本发明实施例提供了一种基站, 该基站可包括本发明前述各实施 例的多频收发信机。
总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限定本 发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种多频收发信机, 与天线相连, 其特征在于, 所述多频收发信机包 括:
至少一个发射多工器,每一发射多工器包括多条发射路径,每条发射路径 用于通过所述天线对一个频段的信号进行发射;
至少一个接收多工器,每一接收多工器包括多条接收路径,每条接收路径 用于通过所述天线对一个频段的信号进行接收。
2、 如权利要求 1所述的多频收发信机, 其特征在于, 每一发射多工器包 含 N个频段之中每个频段的发射路径; 每一接收多工器包含所述 N个频段之 中每个频段的接收路径, 其中, N为大于或等于 2的正整数。
3、 如权利要求 2所述的多频收发信机, 其特征在于, 所述至少一个发射 多工器包括两个发射多工器,每一发射多工器包含三个频段之中每个频段的发 射路径; 所述至少一个接收多工器包括四个接收多工器,每一接收多工器包含 所述三个频段之中每个频段的接收路径。
4、 一种多频收发信机, 与天线相连, 包括多个多工器, 其特征在于, 每 个多工器包含:
单条发射路径, 用于通过所述天线对一个频段的信号进行发射; 至少一条接收路径,每一接收路径用于通过所述天线对一个频段的信号进 行接收。
5、 如权利要求 4所述的多频收发信机, 其特征在于, 所述发射路径所发 射的频段与所述至少一条接收路径中一接收路径所接收的频段相同。
6、 如权利要求 4所述的多频收发信机, 其特征在于, 所述发射路径所发 射的频段不同于所述至少一条接收路径中任一接收路径所接收的频段。
7、 如权利要求 5或者 6所述的多频收发信机, 其特征在于, 每一接收路 径所接收的频段不同于所述至少一条接收路径中其他任一接收路径所接收的 频段。
8、 如权利要求 7中所述的多频收发信机, 其特征在于, 所述多个多工器 中至少包含 N个多工器, 在所述 N个多工器中的每一多工器内, 发射路径所 发射的频段为 N个频段其中之一, 每一接收路径为所述 N个频段其中之一, 每一多工器内发射路径所发射的频段不同于所述 N个多工器中其他任一多工 器中发射路径所发射的频段, 其中, N为大于或等于 2的正整数。
9、 如权利要求 8中所述的多频收发信机, 其特征在于, 在所述 N个多工 器内, 至少包含 M个多工器, 在所述 M个多工器内, 每一多工器包含的接收 路径的数量相同, 其中, M为小于 N的正整数。
10、 如权利要求 8中所述的多频收发信机, 其特征在于, 在所述 N个多 工器内, 至少包含一个多工器, 在该多工器内, 接收路径的数量不同于所述 N 个多工器内其他至少一个多工器内接收路径的数量。
11、 如权利要求 8中所述的多频收发信机, 其特征在于, 在所述 N个多 工器内, 接收所述 N个频段之中任一频段的接收路径的总量相同。
12、 如权利要求 8中所述的收发信机, 其特征在于, 在所述 N个频段中, 至少包含一个频段, 在所述 N个多工器内接收该频段的接收路径的总量不同 于所述 N个多工器内接收所述 N个频段之中另一频段的接收路径的总量。
13、 一种基站, 其特征在于, 包括如权利要求 1-12 中任一项所述的多频 收发信机。
PCT/CN2013/089338 2013-12-13 2013-12-13 多频收发信机及基站 WO2015085564A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2013/089338 WO2015085564A1 (zh) 2013-12-13 2013-12-13 多频收发信机及基站
CN201810413883.7A CN108768413B (zh) 2013-12-13 2013-12-13 多频收发信机及基站
EP13899042.9A EP3068187A4 (en) 2013-12-13 2013-12-13 MULTI-FREQUENCY TRANSCEIVER AND BASE STATION
CN201380003208.2A CN103858516B (zh) 2013-12-13 2013-12-13 多频收发信机及基站
US15/180,687 US10454505B2 (en) 2013-12-13 2016-06-13 Multi-frequency transceiver and base station
US16/588,480 US11038541B2 (en) 2013-12-13 2019-09-30 Multi-frequency transceiver and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089338 WO2015085564A1 (zh) 2013-12-13 2013-12-13 多频收发信机及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/180,687 Continuation US10454505B2 (en) 2013-12-13 2016-06-13 Multi-frequency transceiver and base station

Publications (1)

Publication Number Publication Date
WO2015085564A1 true WO2015085564A1 (zh) 2015-06-18

Family

ID=50864363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089338 WO2015085564A1 (zh) 2013-12-13 2013-12-13 多频收发信机及基站

Country Status (4)

Country Link
US (2) US10454505B2 (zh)
EP (1) EP3068187A4 (zh)
CN (2) CN103858516B (zh)
WO (1) WO2015085564A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858516B (zh) * 2013-12-13 2018-06-05 华为技术有限公司 多频收发信机及基站
CN104133119A (zh) * 2014-07-29 2014-11-05 中国电子科技集团公司第四十一研究所 一种基于多工器的宽频带rcs测试方法
CN106301491A (zh) * 2015-05-18 2017-01-04 北京富华胜科技中心 一种基于多输入多输出的数据传输方法
WO2018027538A1 (en) * 2016-08-09 2018-02-15 Tongyu Communication Inc. Antenna unit, multi-array antenna system and base station thereof
CN110545123B (zh) * 2019-08-30 2022-02-01 广州维德科技有限公司 用于窄带传输中单个频点数据传输的双接收基站
EP4356527A1 (en) * 2021-06-14 2024-04-24 Telefonaktiebolaget LM Ericsson (publ) Filter unit for wideband multicarrier fdd operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913379A (zh) * 2005-03-29 2007-02-14 美国博通公司 多频带多入多出收发器集成电路
CN201479381U (zh) * 2009-07-07 2010-05-19 深圳市中兴移动通信有限公司 一种多频段移动通信终端的发射功率耦合电路
CN103444088A (zh) * 2011-02-11 2013-12-11 阿尔卡特朗讯 有源天线阵列

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010012788A1 (en) * 1998-06-12 2001-08-09 R. Keith Gammon Pcs cell site system for allowing a plurality of pcs providers to share cell site antennas
EP1537677A1 (en) * 2002-08-29 2005-06-08 Koninklijke Philips Electronics N.V. Transceiver apparatus for use in a multi-frequency communication system, base station of a multi-frequency communication system, method for use of the transceiver apparatus, method of transceiving a multi-frequency signal in a multi-frequency communication system
US20070243832A1 (en) 2004-03-15 2007-10-18 Hyung-Weon Park Multimode/Multiband Mobile Station and Method for Operating the Same
US7187945B2 (en) * 2004-04-30 2007-03-06 Nokia Corporation Versatile antenna switch architecture
US7395040B2 (en) 2005-03-29 2008-07-01 Broadcom Corporation Multiple band multiple input multiple output transceiver integrated circuit
US9755681B2 (en) * 2007-09-26 2017-09-05 Intel Mobile Communications GmbH Radio-frequency front-end and receiver
CN101316105A (zh) * 2008-06-11 2008-12-03 苏州中科半导体集成技术研发中心有限公司 多标准多模无线收发器
JPWO2009157357A1 (ja) * 2008-06-25 2011-12-15 日立金属株式会社 高周波回路、高周波部品及び通信装置
US8204031B2 (en) * 2008-09-24 2012-06-19 Rockstar Bidco, LP Duplexer/multiplexer having filters that include at least one band reject filter
CN101534141A (zh) * 2009-04-15 2009-09-16 华为技术有限公司 一种射频模块的支持多频段共存的方法及装置
CN201594574U (zh) * 2010-01-25 2010-09-29 苏州艾福电子通讯有限公司 一种多工器多系统模块
CN102104392B (zh) * 2010-12-15 2013-10-09 华为技术有限公司 多频段多路收发设备及方法、基站系统
US9312888B2 (en) * 2012-06-29 2016-04-12 Qualcomm Incorporated Antenna interface circuits for carrier aggregation on multiple antennas
CN103858516B (zh) * 2013-12-13 2018-06-05 华为技术有限公司 多频收发信机及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913379A (zh) * 2005-03-29 2007-02-14 美国博通公司 多频带多入多出收发器集成电路
CN201479381U (zh) * 2009-07-07 2010-05-19 深圳市中兴移动通信有限公司 一种多频段移动通信终端的发射功率耦合电路
CN103444088A (zh) * 2011-02-11 2013-12-11 阿尔卡特朗讯 有源天线阵列

Also Published As

Publication number Publication date
US20200028527A1 (en) 2020-01-23
US20160285480A1 (en) 2016-09-29
CN108768413B (zh) 2021-05-18
CN108768413A (zh) 2018-11-06
EP3068187A1 (en) 2016-09-14
CN103858516A (zh) 2014-06-11
US11038541B2 (en) 2021-06-15
EP3068187A4 (en) 2016-11-23
US10454505B2 (en) 2019-10-22
CN103858516B (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2015085564A1 (zh) 多频收发信机及基站
US9219594B2 (en) Dual antenna integrated carrier aggregation front end solution
CN104685708B (zh) 具有用于双频带接收和传送的天线布置的无线通信节点
US9136612B2 (en) Front-end apparatus of wireless transceiver using RF passive elements
US9014068B2 (en) Antenna having active and passive feed networks
US20100029350A1 (en) Full-duplex wireless transceiver design
US11303043B2 (en) Antenna arrangement for multiple frequency band operation
US20190393923A1 (en) Radio frequency front-end apparatus
US9917627B2 (en) Base station device in mobile communication system and circulator arrangement to increase isolation between co-located antennas
EP2741566B1 (en) Multi-band antenna feeder sharing method and base station radio frequency unit
KR102128606B1 (ko) 이동통신 시스템의 기지국 장치
US9917626B2 (en) Base station device in mobile communication system and circulator arrangement to increase isolation between co-located antennas
KR102128604B1 (ko) 이동통신 시스템의 기지국 장치
JP2022549412A (ja) 時間-偏波の分離可能な4重偏波アンテナモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899042

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013899042

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE