WO2015085561A1 - 调度方法、装置与系统 - Google Patents

调度方法、装置与系统 Download PDF

Info

Publication number
WO2015085561A1
WO2015085561A1 PCT/CN2013/089328 CN2013089328W WO2015085561A1 WO 2015085561 A1 WO2015085561 A1 WO 2015085561A1 CN 2013089328 W CN2013089328 W CN 2013089328W WO 2015085561 A1 WO2015085561 A1 WO 2015085561A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
scheduler
real
centralized virtual
cells
Prior art date
Application number
PCT/CN2013/089328
Other languages
English (en)
French (fr)
Inventor
方志鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020167017733A priority Critical patent/KR101796409B1/ko
Priority to BR112016013334-0A priority patent/BR112016013334B1/pt
Priority to PCT/CN2013/089328 priority patent/WO2015085561A1/zh
Priority to EP13899234.2A priority patent/EP3070988B1/en
Priority to JP2016537017A priority patent/JP6336596B2/ja
Priority to CN201380002787.9A priority patent/CN103843437B/zh
Publication of WO2015085561A1 publication Critical patent/WO2015085561A1/zh
Priority to US15/181,349 priority patent/US10165583B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Definitions

  • Embodiments of the present invention relate to the field of communications technologies and, more particularly, to scheduling methods, apparatus, and systems. Background technique
  • LTE Long Term Evolution, Long term evolution
  • the OFDM Orthogonal Frequency Division Multiplexing
  • the LTE system has higher requirements on spectrum utilization. Therefore, the same-frequency networking method is introduced to improve spectrum utilization, but the problem of inter-cell interference is introduced. For example, if neighboring cells use the same spectrum resource in the overlapping area they cover, the overlapping area will produce severe ICI (Inter-Cell Interference). It can be seen that in the LTE communication system, the main interference affecting system performance comes from inter-cell interference.
  • each cell independently performs power control and adjusts the respective downlink transmit power.
  • distributed control lacks a global view, can only be partially optimized, and cannot achieve optimal network performance, resulting in poor system performance.
  • Embodiments of the present invention provide a scheduling method, apparatus, and system to improve network performance as a whole.
  • a centralized virtual scheduler In a communication system for multiple cells, each of the multiple cells corresponds to a real scheduler, and the centralized virtual scheduler includes: a determining unit, configured to: Determining a transmit power of the first cell, where the first cell is each of a plurality of cells in the communication system, and an interface unit, configured to send the determining unit to a real scheduler corresponding to the first cell Determining the transmit power to indicate that the real scheduler corresponding to the first cell schedules the user equipment in the first cell by using the transmit power determined by the determining unit.
  • the determining unit is specifically used And: determining the transmit power on the RB unit of each resource block of the first cell, where the RB unit includes a physical resource block PRB or a resource block group RBG, where the interface unit is specifically configured to: correspond to the first cell
  • the real scheduler sends the transmit power on each RB unit of the first cell to indicate that the real scheduler corresponding to the first cell is determined by using the determining unit on each RB unit of the first cell.
  • the transmit power is scheduled for the user equipment.
  • the multiple cells are divided into at least one cluster, and the determining unit is specifically configured to perform clustering determination The transmit power of each cell within a cluster.
  • the centralized virtual scheduler further includes a first acquiring unit, configured to acquire first channel information and first historical scheduling information, The first channel information and the first historical scheduling information respectively include channel information and historical scheduling information of all cells in the cluster where the first cell is located; the determining unit is specifically configured to be acquired according to the first acquiring unit.
  • the centralized virtual scheduler further includes a second acquiring unit, configured to acquire first load information, where The first load information includes load information of all cells in the cluster where the first cell is located; the determining unit is further configured to determine a load balancing result according to the first load information, where the load balancing result is the first cell Scheduling an edge user equipment of the second cell, where the first cell and the second cell are neighboring cells in the cluster where the first cell is located; the interface unit is further configured to: perform real scheduling corresponding to the first cell The load balancing result is sent to indicate that the real scheduler corresponding to the first cell schedules the edge user equipment of the second cell.
  • the communications system is a distributed base station networking mode
  • the coordinator is deployed, and each base station of the communication system is interconnected with the coordinator.
  • the real scheduler corresponding to each cell is located at a base station corresponding to the cell, and the centralized virtual scheduler is located at the coordinator.
  • the interface unit is further configured to: send, to the real scheduler corresponding to the third cell, on the downlink receiving frame number and the subframe number Receiving a measurement request message, receiving, by the uplink transmission frame number and the subframe number, a measurement response message sent by the real scheduler corresponding to the third cell, where the round-trip transmission delay RTT of the real scheduler corresponding to the third cell is the communication a maximum RTT of the plurality of cells of the system, the RTT indicating a difference between the uplink transmission frame number and the subframe number and the downlink receiving frame number and the subframe number; the determining unit is further configured to: according to the real scheduling corresponding to the third cell The RTT of the device determines the effective time; the interface unit is further configured to enable the real scheduler corresponding to the first cell to schedule the user equipment at the effective time.
  • the baseband processing unit BBU of the communication system is centrally placed,
  • the real scheduler corresponding to each of the multiple cells is located in a BBU corresponding to the cell, and the centralized virtual scheduler is located in any BBU in the centrally placed BBU.
  • a real scheduler where a communication system is used in a plurality of cells, where each of the multiple cells corresponds to one real scheduler, and the real scheduler includes: an interface unit, configured to: Receiving, by the centralized virtual scheduler, the transmit power of the first cell, where the first cell is each of the multiple cells in the communication system, and the scheduling unit is configured to adopt the interface in the first cell The transmitting power determined by the centralized virtual scheduler received by the unit schedules the user equipment.
  • the interface unit is specifically configured to: receive a transmit power of each resource block RB unit of the first cell that is determined by the centralized virtual scheduler
  • the RB unit includes a physical resource block PRB or a resource block group RBG.
  • the scheduling unit is specifically configured to: use, by using the centralized virtual scheduler, the transmit power to the user equipment on each RB unit of the first cell. Schedule.
  • the interface unit is further configured to: receive a load balancing result determined by the centralized virtual scheduler,
  • the load balancing result is that the first cell schedules an edge user equipment of the second cell, where the first cell and the second cell are neighboring cells in the multiple cells, and are located in the same cluster; And configured to: schedule an edge user equipment of the second cell according to the load balancing result.
  • the communications system is a distributed base station networking mode and a coordinator is deployed, where the communications
  • Each of the base stations of the system is interconnected with the coordinator, and a real scheduler corresponding to each of the plurality of cells is located at a base station corresponding to the cell, and the centralized virtual scheduler is located at the coordinator.
  • the interface unit is further configured to: receive, by using the downlink receiving frame number and the subframe number, the measurement sent by the centralized virtual scheduler Sending a measurement response message to the centralized virtual scheduler on the uplink transmission frame number and the subframe number, so that the centralized virtual scheduler sends the frame number and the subframe number and the downlink receiving frame number and the subframe according to the uplink Obtaining a round-trip transmission delay RTT of the real scheduler, selecting a maximum RTT from all RTTs of the plurality of cells in the communication system, and determining an effective time according to a maximum RTT, where the RTT indicates an uplink transmission frame The difference between the number and the subframe number and the downlink receiving frame number and the subframe number; the interface unit is further configured to: receive the effective time sent by the centralized virtual scheduler, and instruct the scheduling unit to serve the user at the effective time The device is scheduled.
  • the baseband processing unit BBU of the communication system is centrally placed, in the multiple cells
  • the real scheduler corresponding to each cell is located in a BBU corresponding to the cell, and the centralized virtual scheduler is located in any BBU in the centrally placed BBU.
  • a scheduling system comprising any of the above-described centralized virtual schedulers and at least one of the above-described real schedulers.
  • a fourth aspect provides a scheduling method, where the method is applicable to a communication system of a plurality of cells, where the communication system includes a centralized virtual scheduler and at least one real scheduler, and each of the plurality of cells corresponds to one a real scheduler, the method includes: the centralized virtual scheduler determining a transmit power of a first cell, where the first cell is each of a plurality of cells in the communication system; The real scheduler corresponding to the first cell sends the transmit power determined by the centralized virtual scheduler, to indicate that the real scheduler corresponding to the first cell is determined by the centralized virtual scheduler in the first cell. The transmit power of the user equipment is scheduled.
  • the determining, by the centralized virtual scheduler, the transmit power of the first cell includes: determining a transmit power of each resource block RB unit of the first cell
  • the RB unit includes a physical resource block PRB or a resource block group RBG;
  • the sending, by the centralized virtual scheduler, the transmit power determined by the centralized virtual scheduler to the real scheduler corresponding to the first cell includes: sending, to the real scheduler corresponding to the first cell, the first cell
  • the transmit power on the RB unit is used to indicate that the real scheduler corresponding to the first cell schedules the user equipment by using the transmit power determined by the centralized virtual scheduler on each RB unit of the first cell.
  • the method further includes: dividing the multiple cells into at least one cluster;
  • the transmit power of a cell includes: the centralized virtual scheduler clustering determines the transmit power of each cell within each cluster.
  • the determining, by the centralized virtual scheduler, the transmit power of the first cell, Channel information and first historical scheduling information, the first channel information and the first historical scheduling information respectively include channel information and historical scheduling information of all cells in the cluster where the first cell is located; according to the first channel information and a historical scheduling information, calculating a network utility value of the first cell at a plurality of candidate powers, and selecting a candidate power with the best network utility value as the transmit power of the first cell; or, according to the first Channel information and first historical scheduling information, calculating a network utility value of each RB unit of the first cell at a plurality of candidate powers, and selecting a candidate power with the best network utility value as the currently calculated RB unit transmission power.
  • the method further includes: the centralized virtual scheduler acquiring first load information, the first load The information includes load information of all the cells in the cluster where the first cell is located; determining a load balancing result according to the first load information, where the load balancing result is that the first cell schedules an edge user equipment of the second cell, The first cell and the second cell are neighboring cells in the cluster where the first cell is located; the centralized virtual scheduler sends the load balancing result to the real scheduler corresponding to the first cell, to indicate the The real scheduler of the first cell schedules the edge user equipment of the second cell.
  • the communication system is a distributed base station networking mode
  • the coordinator is deployed, and each base station of the communication system is interconnected with the coordinator.
  • the real scheduler corresponding to each cell is located at a base station corresponding to the cell, and the centralized virtual scheduler is located at the coordinator.
  • the method further includes: the realizing, by the centralized virtual scheduler, the third cell in the downlink receiving frame number and the subframe number
  • the scheduler sends a measurement request message;
  • the centralized virtual scheduler receives the measurement response message sent by the real scheduler of the third cell on the uplink transmission frame number and the subframe number, and the round-trip transmission of the real scheduler of the third cell
  • the delay RTT is a maximum RTT of the plurality of cells of the communication system, and the RTT indicates a difference between an uplink transmission frame number and a subframe number and a downlink reception frame number and a subframe number;
  • the centralized virtual scheduler is configured according to the third
  • the RTT of the real scheduler corresponding to the cell determines the effective time, and sends the effective time to the real scheduler corresponding to the first cell, so that the real scheduler corresponding to the first cell is at the effective time to the user equipment.
  • Schedule the realizing, by the centralized virtual scheduler, the third cell in the downlink receiving
  • the baseband processing unit BBU of the communication system is centrally placed,
  • the real scheduler corresponding to each of the multiple cells is located in a BBU corresponding to the cell, and the centralized virtual scheduler is located in any BBU in the centrally placed BBU.
  • a fifth aspect provides a scheduling method, where the method is applicable to a communication system of multiple cells, where the communication system includes a centralized virtual scheduler and at least one real scheduler, and each of the multiple cells corresponds to one a real scheduler, the method includes: a real scheduler of the first cell receives the transmit power of the first cell determined by the centralized virtual scheduler, where the first cell is a plurality of cells in the communication system Each of the cells; the real scheduler scheduling the user equipment by using the transmit power determined by the centralized virtual scheduler in the first cell.
  • the real scheduler of the first cell receives the transmit power of the first cell that is determined by the centralized virtual scheduler, and includes: the real scheduling Receiving, by the centralized virtual scheduler, transmit power on each resource block RB unit of the first cell, where the RB unit includes a physical resource block PRB or a resource block group RBG; the real scheduler is in the
  • the scheduling, by the first cell, the user equipment, by using the transmit power determined by the centralized virtual scheduler includes: determining, by the real scheduler, the centralized virtual scheduler on each RB unit of the first cell. The transmit power is used to schedule the user equipment.
  • the method further includes: the real scheduler receiving a load balancing result sent by the centralized virtual scheduler
  • the load balancing result is that the first cell schedules an edge user equipment of the second cell, where the first cell and the second cell are neighboring cells in the multiple cells, and are located in the same cluster;
  • the real scheduler sets the edge user of the second cell according to the load balancing result Prepare for scheduling.
  • the communication system is a distributed base station networking mode, and a coordinator is deployed, where the communication is performed.
  • Each of the base stations of the system is interconnected with the coordinator, and a real scheduler corresponding to each of the plurality of cells is located at a base station corresponding to the cell, and the centralized virtual scheduler is located at the coordinator.
  • the method further includes: the real scheduler receiving the centralized virtual scheduler on a downlink receiving frame number and a subframe number Sending the measurement request message; the real scheduler sends a measurement response message to the centralized virtual scheduler on the uplink transmission frame number and the subframe number, so that the centralized virtual scheduler sends the frame number and the subframe number according to the uplink And obtaining, by the downlink receiving frame number and the subframe number, a round-trip transmission delay RTT of the real scheduler, selecting a maximum RTT from all RTTs of the multiple cells in the communication system, and determining an effective time according to the maximum RTT, where The RTT indicates the difference between the uplink transmission frame number and the subframe number and the downlink receiving frame number and the subframe number; receiving the effective time sent by the centralized virtual scheduler, and scheduling the user equipment at the effective time.
  • the baseband processing unit BBU of the communication system is centrally placed, and each of the multiple cells
  • the real scheduler corresponding to the cell is located in the BBU corresponding to the cell
  • the centralized virtual scheduler is located in any BBU in the centrally placed BBU.
  • the scheduling method of the embodiment of the present invention is applicable to a communication system of multiple cells, where the communication system includes an upper layer centralized virtual scheduler and a lower layer at least one real scheduler, and the centralized virtual scheduler determines the transmission of each of the plurality of cells. Power, transmitting the transmit power of the cell to the real scheduler of each cell to instruct the real scheduler to schedule the UE in the cell using the transmit power determined by the centralized virtual scheduler. Therefore, with the hierarchical scheduling architecture of the present invention, the upper layer centralized virtual scheduler integrally coordinates the transmission power between multiple cells to indicate that the lower layer real scheduler schedules the UE with its coordinated transmit power. It can reduce interference between cells and improve network performance as a whole. DRAWINGS
  • 1 is a schematic diagram of a conventional spectrum resource coordination method
  • FIG. 2 is a schematic diagram of a conventional power resource coordination method
  • FIG. 3 is a schematic block diagram of a scheduling system according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a scheduling system according to another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a scheduling system according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a scenario in which the present invention is applicable to a communication network according to an embodiment of the present invention
  • FIG. 7 is a schematic block diagram of a scheduling system according to another embodiment of the present invention
  • FIG. 8A is a schematic diagram of time synchronization between a coordinator and a base station according to an embodiment of the present invention
  • FIG. 8B is a schematic diagram of time synchronization between a coordinator and a base station according to another embodiment of the present invention
  • FIG. 8C is another embodiment of the present invention
  • FIG. 9 is a schematic block diagram of a hierarchical scheduling deployment of coordinated power control according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a scheduling system according to another embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of hierarchical scheduling for coordinated power control according to an embodiment of the present invention
  • FIG. 12 is a schematic block diagram of hierarchical scheduling for coordinated power control according to another embodiment of the present invention
  • FIG. 13 is an implementation of the present invention.
  • FIG. 14 is a schematic block diagram of hierarchical scheduling for coordinating load balancing according to another embodiment of the present invention
  • FIG. 15 is a flowchart of a scheduling method according to an embodiment of the present invention; ;
  • 16 is a flowchart of a scheduling method according to another embodiment of the present invention.
  • FIG. 17 is a schematic block diagram of a centralized virtual scheduler according to an embodiment of the present invention.
  • FIG. 18 is a schematic block diagram of a real scheduler according to an embodiment of the present invention.
  • FIG. 19 is a schematic block diagram of a centralized virtual scheduler according to another embodiment of the present invention.
  • FIG. 20 is a schematic block diagram of a real scheduler according to another embodiment of the present invention. detailed description
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service, General Packet Radio Service
  • LTE Long Term Evolution
  • LTE FDD Frequency Division Duplex
  • LTE TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • the UE User Equipment
  • the user equipment may be referred to as a terminal, an MS (Mobile Station), a mobile terminal (Mobile Terminal), etc.
  • the user equipment may be RAN (Radio Access).
  • Network, radio access network communicates with one or more core networks, for example, the user equipment can be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., for example, the user device can also be portable , pocket, handheld, built-in or on-board mobile devices.
  • the base station may be a BTS (Base Transceiver Station) in GSM or CDMA, or an NB (NodeB, base station) in WCDMA or a BS (Base Station in UMTS), or an eNodeB in LTE.
  • BTS Base Transceiver Station
  • NB NodeB, base station
  • BS Base Station in UMTS
  • eNodeB eNodeB in LTE.
  • eNodeB evolved base station
  • connection between one component and another component may include wired and/or wireless connections.
  • the wired method may include, but is not limited to, a cable composed of various media, such as an optical fiber, a conductive cable, or a semiconductor circuit; or other forms such as an internal bus, a circuit, a backplane, and the like.
  • the wireless mode is a connection method capable of wireless communication, including but not limited to radio frequency, infrared, Bluetooth, and the like. There may be internal or external interfaces between the two components, which may be physical or logical interfaces.
  • ICIC Inter-Cell Interference Coordination
  • the basic idea of ICIC is to limit the use of resources in a coordinated manner between cells, including limiting which time-frequency resources are available, or limiting their transmit power on certain time-frequency resources.
  • interference coordination techniques can be divided into frequency domain coordination and time domain coordination.
  • the frequency domain coordination can be implemented by dividing different edge bands by different cells, and the time domain coordination can be implemented by configuring a transmission power spectrum of each transmission time interval (transmission time interval) of each cell.
  • the spectrum resource coordination method is schematically shown in FIG. 1.
  • the frequency resource is divided into three parts, wherein the user equipment located at the cell center can use all frequency resources, and the user equipment located at the cell edge uses only part of the frequency resource. Moreover, the frequency resources used by the cell edge users of the neighboring cells are different, thereby reducing interference of the cell edge user equipment.
  • the power resource coordination method is schematically shown in FIG. 2.
  • the frequency resource is divided into three parts, and all cells can use all frequency resources, but different cell types can only allow a part of frequencies to use higher transmit power.
  • the user equipment at the edge of the cell can use the part of the frequency, and the frequency sets of different cell types are different, thereby reducing the interference of the user equipment at the edge of the cell.
  • the above coordination scheme is not flexible enough to adjust the use of frequency resources of each cell according to the status of the existing network, so that the resource utilization efficiency is low.
  • the above coordination scheme is a kind of cell-level coordination, which is not fine enough to solve the problem of inter-cell interference, and has a coarse granularity.
  • the embodiments of the present invention provide a hierarchical scheduling architecture, including an upper layer centralized virtual scheduler and a lower layer real scheduler.
  • the centralized virtual scheduler of the upper layer can collect information reported by UEs in all cells in the control range, and use the information to perform virtual scheduling, and predict changes in network performance after modifying the transmit power of the cell, thereby selecting the transmit power with the best network performance. Sending to indicate that the real scheduler of the lower layer schedules the UE with the best transmit power.
  • the hierarchical architecture can adjust the use of frequency resources of each cell according to the status of the existing network to improve resource utilization efficiency.
  • the centralized virtual scheduler may further determine the transmit power on each RB (Resource Block) unit of each cell, and then notify the real scheduler to perform real scheduling on each RB unit according to the determined transmit power.
  • RB Resource Block
  • the RB unit mentioned here may be a PRB (Physical Resource Block) or an RBG (Resource Block Group) composed of a plurality of PRBs.
  • FIG. 3 is a schematic block diagram of a scheduling system provided by an embodiment of the present invention.
  • the scheduling system 300 is configured to coordinate resource usage between multiple cells to reduce inter-cell interference, and the scheduling system 300 includes at least one real scheduler and a centralized virtual scheduler 302.
  • the centralized virtual scheduler 302 is configured to determine the transmit power of each cell, and send the transmit power of the cell to the real scheduler of each cell; the real scheduler of each cell is configured to adopt the centralized virtual scheduler 302 in the cell.
  • the determined transmit power schedules the UE.
  • the centralized virtual scheduler 302 can determine a finer-grained transmit power, that is, determine the transmit power on each RB (Resource Block) unit of each cell.
  • the RB unit includes a PRB or an RBG, and sends a transmission power determination result to the real scheduler of each cell to instruct the real scheduler to schedule the UE using the transmit power determined by the centralized virtual scheduler 302 on each PRB or RBG of the cell. .
  • the power coordination of the RB level can be realized, the coordination granularity is finer, and the problem of inter-cell interference is more advantageously solved.
  • centralized virtual scheduler and real scheduler may be referred to as a centralized virtual scheduling entity and a real scheduling entity, and may be a functional entity or a logical entity. It can be implemented in the form of software, the program code is implemented by the processor, or it can be in the form of hardware, for example, in the form of a chip or a specific integrated circuit.
  • Figure 3 shows examples of N real schedulers, namely real scheduler 301-1, real scheduler 301-2, ..., real scheduler 301-(N-1), real scheduler 301-N, Where N is a positive integer.
  • the centralized virtual scheduler 302 is connected to the N real schedulers, respectively. It should be understood that the number of real schedulers is not limited in the embodiment of the present invention, and may be one or more.
  • Each of the cells that can be scheduled by the real scheduler may be one or more.
  • a real scheduler may be set on one base station, and the cells under the base station may be scheduled by the real scheduler.
  • a plurality of real schedulers corresponding to the plurality of cells may be set in a base station including a plurality of cells.
  • the process by which the centralized virtual scheduler 302 determines the transmit power of each RB unit per cell or per cell may be a virtual scheduling (or referred to as pre-scheduling) process of power traversal.
  • the centralized virtual scheduler collects information of all cells in the control range, and calculates a utility value (or a performance value) of the current network according to the information; and predicts the network performance after modifying the transmit power of the cell according to the information of each cell. Transform, select the best transmit power to deliver.
  • the information of the cell may include channel information and historical scheduling information of the cell.
  • the channel information may be downlink channel information, for example, measurement information reported by the UE, or may be uplink channel information, for example, measurement information obtained by measuring, by each cell, an uplink reference signal sent by a UE in one of the cells.
  • the process of determining the transmit power of each cell by the centralized virtual scheduler includes: acquiring channel information and historical scheduling information of the multiple cells; and calculating, according to the obtained channel information and historical scheduling information, each candidate in multiple candidates
  • the network utility value under power, and the candidate power with the best network utility value is selected as the transmit power of the currently calculated cell; or, according to the obtained channel information and historical scheduling information, each RB unit of each cell is calculated.
  • the network utility value under the candidate power, and the candidate power with the best network utility value is selected as the current calculated RB unit. Shooting power.
  • the plurality of candidate powers may be multiple power levels that are incremented by a certain power step, or may be multiple power levels set in advance.
  • the embodiment of the invention does not impose any limitation.
  • the measurement information reported by the UE may include, for example, one or more of the following information: CSI (channel state information, CSI), RSRP, RSRQ, or RSSI (Received Signal Strength Indication), where the CSI includes but It is not limited to CQI, RI or PMI (Precoding Matrix Indicator).
  • the uplink channel information obtained by the cell measurement may include RSRP or RSRQ.
  • the historical scheduling information may include a historical scheduling priority, a scheduling rate, and a previously scheduled transmission power.
  • the utility value of the network can be embodied by a total utility function, which can be a logarithmic summation of the scheduling rates of all UEs, or the sum of the average scheduling priorities of all cells.
  • the best utility can mean: all UE scheduling rate weighted sum is maximum; or the sum of the average scheduling rate of each cell is the lowest.
  • the modification of the transmission power may be performed in such a manner that power is increased in proportion to all cells, or may be performed in a single 'j, area, and power is increased.
  • the present invention does not impose any limitation on the virtual scheduling algorithm of the centralized virtual scheduler.
  • Those skilled in the art can select different algorithms according to needs, as long as the power combination that makes the network performance optimal can be selected from multiple power combinations.
  • the reporting of the information of the above cell may be configured in advance.
  • the above system 300 may further expand its functions, including the configuration unit 303.
  • the configuration unit 303 can be configured to configure the content and period of the information of the reported cell.
  • those skilled in the art can adjust the content and period of the report as needed to meet the needs of different scenarios. Referring to FIG. 4, in the embodiment, for convenience of description, only one real scheduler is shown, and the real scheduler is located on a baseband board 310 of the base station, and the baseband board 310 is connected to the centralized controller 320, and concentrated.
  • the virtual scheduler 302 and the configuration unit 303 are disposed in the centralized controller 310.
  • the configuration unit 303 is configured to configure information of the cell reported by the baseband board 310, such as reporting content and period.
  • a reporting unit 304 may be configured on the baseband board 310 for storing information reported by the UE, historical scheduling information, and other information, such as CSI, RSRP, scheduling priority, and MCS (Modulation and Coding Scheme). ), list of neighboring relationships, etc.
  • the reporting unit 304 can report the corresponding information according to the configuration of the configuration unit 303, so that the centralized virtual scheduler 302 determines the transmitting power of the corresponding cell.
  • the centralized controller 320 can be located on another baseband board of the base station. Alternatively, it may be located on a baseband board of another base station, or may be located on an independently arranged network node (hereinafter referred to as a coordinator (ECO (ecoordinator)), which is used to centrally manage a plurality of distributed base stations. And these distributed base stations can be connected through an IP (Internet Protocol) network.
  • ECO electronic coordinator
  • IP Internet Protocol
  • a centralized virtual scheduler can be set for each cluster to coordinate the inter-cell transmit power.
  • system 300 can further expand its functionality. Referring to FIG. 5, in the embodiment, the system 300 may further include a clustering unit 305.
  • the clustering unit 305 is configured to divide a plurality of cells in the communication system into at least one cell cluster, taking M cell clusters as an example, where M is a positive integer, and sending the information of the divided M cell clusters to the centralized virtual scheduling
  • the centralized virtual scheduler 302 can be configured to determine the transmit power of each cell in units of clusters; or, each cluster corresponds to a subunit of a centralized virtual scheduler, and each subunit determines each cell in its corresponding cluster. Transmit power on each RB.
  • one cell cluster includes no more than 36 cells.
  • the clustering unit 305 may be configured to divide multiple cells in the communication system into multiple cell clusters.
  • the clustering unit 305 may be further configured to determine, according to the information reported by each cell reporting unit, an interference value between any two cells in the multiple cells, according to interference between any two cells in the multiple cells.
  • the value divides a plurality of cells into M cell clusters, and the cells can be dynamically clustered periodically.
  • a plurality of cells of the communication network are divided into at least one cell cluster by inter-cell interference, and a plurality of cells, which are particularly large, are divided into the same cell cluster, and multiple cells of the same cell cluster are
  • the use of resources is coordinated to achieve cell power optimization within the cluster to avoid downlink interference between cells.
  • the embodiment of the present invention does not limit the manner of cell clustering, and may also be in number or bit. Set the way to divide the cluster of cells.
  • the above configuration unit, the reporting unit, and the clustering unit may be functional entities or logical entities. That is, it can be in the form of software, and the program code is executed by the processor to realize its function; or it can be implemented in the form of hardware, for example, in the form of a chip or a specific integrated circuit.
  • System 300 can further extend its functionality as another embodiment of the present invention, in addition to being used for CSCP (Coordinated Scheduling Power Control) scheduling.
  • System 300 can also be used to coordinate the load balancing of multiple cells, referred to as CLB (Coordinated Load Balancing) scheduling.
  • CLB Coordinated Load Balancing
  • the CLB virtual scheduling may be implemented by the centralized virtual scheduler 302
  • the CLB real scheduling may be implemented by the real scheduler.
  • the centralized virtual scheduler may be used to determine a load balancing result; the centralized virtual scheduler sends a load balancing result to a real scheduler of the first cell of the plurality of cells to indicate that the real scheduler schedules the edge user equipment of the second cell
  • the first cell and the second cell are adjacent to each other and are located in one cluster.
  • CLB virtual scheduling and CSCP virtual scheduling can be implemented by different centralized virtual schedulers.
  • CLB real scheduling and CSCP real scheduling can be implemented by different real schedulers, respectively. This embodiment of the present invention is not limited thereto.
  • the device that implements the CSCP virtual scheduling function is called the first centralized virtual scheduler
  • the device that implements the CLB virtual scheduling function is called the second centralized virtual scheduler.
  • the first centralized virtual scheduler and the second centralized virtual scheduler are only divided into one logical function. The actual implementation may be combined or integrated into one physical entity, or may be physically separated and distributed in different In a network device.
  • the second centralized virtual scheduler may determine the load balancing result in units of clusters; or, each cluster corresponds to a second centralized virtual scheduler, and the centralized virtual scheduler determines load balancing results of each cell in the corresponding cluster.
  • each cluster corresponds to a second centralized virtual scheduler, and the centralized virtual scheduler determines load balancing results of each cell in the corresponding cluster.
  • the second centralized virtual scheduler may be configured to coordinate load balancing according to load information of each cell.
  • the second centralized virtual scheduler may be further configured to determine a priority of each of the plurality of cells according to the load information of each cell, and configure the first cell of the multiple cells to schedule the edge user equipment of the second cell, the first cell and The second cell is adjacent and the priority of the second cell is higher than the priority of the first cell. The higher the cell priority, the heavier the cell load.
  • CLB virtual scheduling can be performed periodically.
  • the sum of the priorities of all cells in the cluster is determined as The objective function, the greater the difference in the priority of each cell, the larger the target function, the one that maximizes the objective function can be preferentially selected (eg, the second cell is a heavy-duty cell, and the first cell is a light-load cell, such that two cells
  • the priority of the user is different.
  • the scheduling of the edge user is configured, and the cell priority is affected by changing the scheduling cell of the edge user to implement load balancing of the cell, thereby improving network coverage performance.
  • each base station of the communication system is interconnected with a coordinator, and a real scheduler of each cell may be located corresponding to the cell.
  • the base station, centralized virtual scheduler can be located in the coordinator.
  • the baseband processing unit BBU of each base station of the communication system is placed centrally (Cloud BB)
  • the real scheduler of each cell can be associated with the BBU of the cell
  • the centralized virtual scheduler can be located in any BBU of the centrally placed BBUs.
  • the distributed base station is interconnected with the ECO through an IP backhaul line (Backhaul), and the real scheduler of each cell is located in a base station corresponding to the cell, optionally, each cell
  • the reporting unit may be located in a base station corresponding to the cell.
  • the first centralized virtual scheduler is deployed in the ECO for CSPC virtual scheduling.
  • the clustering unit can be deployed in the ECO, or the configuration unit can also be deployed.
  • resource usage between multiple cells of two cell clusters is coordinated, which are each cell of cell cluster 1 and a partial cell of cell cluster 2.
  • the BBU of the base station in the network is interconnected with the USU (Universal Switching Unit) and connected to the RRU through the optical fiber.
  • the real scheduler of each cell may be a BBU corresponding to the cell.
  • the upper unit of each cell may be located in a BBU corresponding to the cell.
  • a BBU is deployed to deploy the first centralized virtual scheduler for CSPC virtual scheduling.
  • a clustering unit may be deployed in the BBU, or a configuration unit may be deployed.
  • the scenario in Cloud BB also shows two cell clusters, which are cell cluster 3 and a partial cell of cell cluster 2.
  • each cell in the cell cluster 2 can be jointly scheduled by the ECO and the BBU for CSPC.
  • ECO can achieve large-scale (greater than a certain coverage area or number of cells), slow (such as 20ms-40ms) centralized scheduling, Cloud BB can achieve small-range, fast (such as lms-5ms) centralized scheduling.
  • the scenario diagram of FIG. 6 is only schematic.
  • the number of cells clustered, the number of cells included in each cluster, the number of base stations, the number of cells under one base station, and the number of BBUs are not
  • the type of the base station may be a macro base station, a micro base station, a pico base station, a femto base station, or a home base station, which is not limited in this embodiment of the present invention.
  • the coordinator performs CSPC virtual scheduling
  • FIG. 7 a schematic diagram of the scheduling system is shown in FIG. 7.
  • the ECO includes a first centralized virtual scheduler 702, a configuration unit 703, and a clustering unit 705.
  • the real scheduler of the cell may be located in a baseband board of the base station corresponding to the cell (not shown), and each distributed base station (such as a main control board of the base station) may be deployed with a measurement configuration unit, and the measurement configuration unit may be used.
  • the measurement configuration information is sent to the user equipment of each cell under the base station, so that the user equipment measures the downlink reference signal according to the measurement configuration information, and the measurement configuration unit can also be used to receive the information reported by the user equipment, and the measurement configuration unit can also implement the foregoing report.
  • the measurement configuration unit may be configured to measure the uplink reference signal of the user equipment of each cell under the base station, and may also be used to determine the interference information, and report the interference information to the first centralized virtual scheduler 702.
  • the ECO is connected to various distributed base stations.
  • the optimization period of the CSPC is usually 20 ms-ls, and the time required for the coordinator processing is about 10 ms-15 ms, and the time required for the base station processing is approximately 2ms, where the transmission delay is about 3ms-63ms. Therefore, the transmission delay between the coordinator and the base station should not be too large, and the delay difference between different base stations to the coordinator should not be too large.
  • the result of the scheduling enables all cells in the cluster to be active at the same time (ie, real scheduling). There is a need to achieve synchronization between the coordinator and the base station, ie time alignment.
  • the power calculated by the coordinator can be valid in the same frame number in the same cluster.
  • Steps 1 and 2 are in the delay measurement phase.
  • Step 1 Obtain the time correspondence between the uplink coordinator and the base station, as shown in FIG. 8B, specifically: 1) The coordinator sends a "cycle measurement start message" to the base station, and the start message carries the period of the measurement report, and the number of times of reporting is measured;
  • the base station starts to send a measurement response message to the coordinator, and carries the "frame number + subframe number" of the time of transmitting the base station;
  • the coordinator obtains the coordinator local time when receiving the measurement response message of the base station, and obtains the correspondence between the base station and the coordinator time;
  • Each base station performs a measurement to obtain an uplink time correspondence (coordinator local time, frame number N+subframe 0);
  • the time correspondence of all base stations is unified to a frame number and a subframe number, which facilitates subsequent comparison between different base stations;
  • Step 2 Obtain the time correspondence between the downlink coordinator and the base station, as shown in FIG. 8C, specifically:
  • the measurement request message is sent by the coordinator period, and carries the local time of the coordinator of the transmission time;
  • the base station after receiving the measurement request message, the base station backfills the "coordinator local time" and the frame number + subframe number of the base station receiving time in the measurement response message;
  • the uplink-downlink time relationship is associated, and the uplink-downlink correspondence (coordinator local time, uplink transmission frame N+subframe n, downlink reception frame M+subframe m) is obtained, and the uplink and downlink subtraction obtains the RTT delay.
  • Step 4 CSPC optimization cycle calculation
  • the calculation start time point is obtained by the uplink time correspondence relationship, and the start period timer (the timer length is the reporting period) waits for the measurement report MR of the base station.
  • the power delivery time point is obtained by the downlink time correspondence.
  • the time point after the CSPC completes the calculation should be less than the power delivery time point, ensuring that the power transmission can reach the base station in advance.
  • the first centralized virtual scheduler 702 is configured to receive the frame number and the subframe number on the downlink.
  • the real scheduler of a cell sends a measurement request message, and receives a measurement response message sent by the real scheduler of the first cell on the uplink transmission frame number and the subframe number, and the RTT delay of the real scheduler of the first cell is in multiple cells.
  • the maximum RTT (round trip time) delay, and the RTT delay indicates the difference between the uplink transmission frame number and the subframe number and the downlink reception frame number and the subframe number.
  • the first centralized virtual scheduler 702 is configured to obtain, according to the uplink sending frame number and the subframe number, a start time for determining the transmit power of each cell, and obtain, according to the downlink receiving frame number and the subframe number, the transmit power of each cell to the cell.
  • the time of the real scheduler In this way, it can be ensured that the completion time of the CSPC virtual scheduling by the coordinator is less than the time point of the scheduling result.
  • the first centralized virtual scheduler 702 is further configured to: according to the RTT delay of the first cell, the duration of determining the transmit power of the cell by the coordinator (that is, the duration of the CSPC virtual scheduling by the coordinator), and the partial margin is obtained.
  • the offset (Offset) determines the clustering period of the clustering unit 705 or the virtual scheduling period of the first centralized virtual scheduler 702 according to the offset.
  • the duration and delivery margin of the CSPC virtual scheduling by the coordinator is fixed and configurable.
  • the process of the first centralized virtual scheduler 702 for determining the downlink transmission frame number and the subframe number may be: the first centralized virtual scheduler 702 sends a measurement request message to the real scheduler of each cell in each cell cluster, where The measurement request message carries the period and the number of times the report information is sent.
  • the real scheduler of each cell sends a measurement response message to the coordinator, carrying the subframe and the subframe number of the sending moment, and when the first centralized virtual scheduler 702 receives the measurement response message, the coordinator is obtained according to the local time of the coordinator.
  • Uplink time correspondence between cells (such as transmission delay).
  • a stable uplink time correspondence can be obtained multiple times.
  • the process of the first centralized virtual scheduler 702 for determining the downlink transmission frame number and the subframe number may be: the first centralized virtual scheduler 702 sends a measurement request message to the real scheduler of each cell in each cell cluster, the measurement The request message carries the local time of the coordinator. After receiving the measurement request message, the real scheduler of each cell backfills the local time of the coordinator and the subframe and subframe number of the receiving moment in the measurement response message, when the first set When receiving the measurement response message, the virtual scheduler 702 can obtain a downlink time correspondence (such as a transmission delay) between the coordinator and the cell.
  • a downlink time correspondence such as a transmission delay
  • a stable uplink time correspondence may be obtained multiple times.
  • the difference between the uplink transmission frame number and the subframe number and the downlink reception frame number and the subframe number is The RTT of the cell.
  • the sum of the maximum RTT of the cell, the duration of the CSPC centralized scheduling by the coordinator, and the amount of the remaining margin is determined as the offset.
  • the first centralized virtual scheduler 702 is further configured to receive information reported by each cell in the base station from a control plane of each base station, where the control plane and the coordinator interface of the main control board adopt SCTP (Stream Control Transmission Protocol, Flow Control Transmission Protocol).
  • SCTP Stream Control Transmission Protocol, Flow Control Transmission Protocol
  • the first centralized virtual scheduler 702 is further configured to receive, from the user plane of each base station, the information reported by each cell under the base station, and the user plane and the coordinator interface of the main control board adopts GTP-U (GPRS (General Packet Radio) Service, General Packet Radio Service) Tunnel Protocol-User, General Packet Radio Service Tunneling Protocol - User Plane Protocol.
  • GTP-U GPRS (General Packet Radio) Service, General Packet Radio Service) Tunnel Protocol-User, General Packet Radio Service Tunneling Protocol - User Plane Protocol.
  • a base station may be selected in the distributed base station, and the second centralized virtual scheduler (also referred to as CLB virtual) may be deployed in a dedicated baseband board of the base station, such as a dedicated centralized scheduling board or an enhanced scheduling mode baseband board. Scheduler)
  • the second centralized virtual scheduler can also be deployed in a common baseband board. It should be understood that the embodiments of the present invention are not limited thereto.
  • the real scheduler of each cell may include a Downlink Priority Renew (DL PRI Renew) unit, and specifically, each downlink priority update unit is configured to send according to the first centralized virtual scheduler 702.
  • the downlink transmit power of the cell is modified by a subband or a full-band MCS (Modulation and Coding Scheme) of the user equipment.
  • DL PRI Renew Downlink Priority Renew
  • MCS Modulation and Coding Scheme
  • each cell adopts a downlink priority update unit for real scheduling, and can perform scheduling periodically.
  • the coordinator performs cluster level processing (Cluster level processing), such as performing CSPC virtual scheduling of a cell cluster, and performing main station level processing on the main control board of the base station, reporting the base station as above.
  • cluster level processing such as performing CSPC virtual scheduling of a cell cluster
  • main station level processing on the main control board of the base station, reporting the base station as above.
  • the information of the next cell or the load information, etc., and the baseband board performs cell level processing, such as MCS correction by a certain cell (performed by the downlink priority update unit) or scheduling of edge users of the neighboring cell (can be performed by DL SCH (Downlink Schedule)
  • the downlink scheduling) unit performs) and so on.
  • FIG. 10 a schematic diagram of the scheduling system is shown in FIG. 10, in which a certain BBU, such as the baseband board of the BBU 1, may be ordinary.
  • the baseband may also be a dedicated baseband board, and the first centralized virtual scheduler 1002, the clustering unit 1005, and the second centralized virtual scheduler 1006 are deployed, and the real scheduler of each cell may be located in a BBU corresponding to the cell (not shown). ).
  • Each BBU is deployed with a measurement configuration sheet.
  • the measurement configuration unit may be configured to send the measurement configuration information to the user equipment of each cell in the BBU, so that the user equipment measures the downlink reference signal according to the measurement configuration information, and the measurement configuration unit may further be configured to receive the information reported by the user equipment.
  • the measurement configuration unit can also implement the functions of the above reporting unit.
  • the measurement configuration unit may be configured to measure the uplink reference signal of the user equipment of each cell in the BBU, and may also be used to determine the interference information, and report the interference information to the first centralized virtual scheduler 1002.
  • the first centralized virtual scheduler 1002 and the clustering unit 1005 may both be located on a common baseband board or a dedicated baseband board of the first BBU, and the measurement configuration unit may be deployed on the main control board of the BBU.
  • a BBU may be selected in the Cloud BB, and the second centralized virtual scheduler (also referred to as a CLB virtual scheduler) is deployed in the dedicated baseband board of the BBU (such as a dedicated centralized scheduling board or an enhanced scheduling mode baseband board). ), of course, the second centralized virtual scheduler can also be deployed in a common baseband board. It should be understood that the embodiments of the present invention are not limited thereto.
  • the baseband board of the first BBU may reserve at least one core to implement the function of the first centralized virtual scheduler 1002.
  • the core load sharing mode of the baseband board may be specifically: when the CSB is full, the downlink transmit power of each cell in the first cell cluster is determined by one of the at least one core. That is to say, the cores perform load sharing by cell clusters, and the CSPC virtual scheduling of one cell cluster is handled by one core. Or, when the sub-band CSPC is used, the downlink transmit power of each cell in the first cell cluster may be jointly determined by at least one core.
  • the sub-band may be shared according to the sub-band, and each core processes different sub-bands, and when When the remaining resources are available, at least one core can also jointly process other cell clusters.
  • a cluster-processed first centralized virtual scheduler is deployed in a certain baseband board.
  • a downlink priority update unit is configured on the baseband board of each BBU.
  • each downlink priority update unit is configured to perform subband or full-band MCS of the user equipment according to the downlink transmit power of the cell sent by the first centralized virtual scheduler 1002. Corrected. In this way, to determine the initial transmission or Retransmit the scheduled MCS. That is, each cell adopts a downlink priority update unit for real scheduling, and can perform scheduling periodically.
  • the real scheduler for each cell may include DL SCH units, and DL SCH units are deployed on the baseband boards of the respective BBUs, as schematically illustrated in Figures 12A and 12B.
  • the DL SCH unit is used for performing CLB real scheduling, and may be used to schedule edge user equipments of other cells according to the result of coordinated cell load balancing sent by the second centralized virtual scheduler.
  • the first centralized virtual scheduler implements power control of multiple cells by using information of the cell, and coordinates downlink transmit power of each cell, thereby effectively reducing downlink interference between cells.
  • the second centralized virtual scheduler implements load balancing of the cell by using load information of each cell, thereby improving network coverage performance.
  • Figure 15 is a flow chart of a scheduling method in accordance with one embodiment of the present invention.
  • the method is implemented by a centralized virtual scheduler and is applicable to a communication system of multiple cells, and coordinates resource usage between multiple cells to reduce inter-cell interference.
  • the communication system includes a centralized virtual scheduler and at least one real scheduler. .
  • the centralized virtual scheduler determines a transmit power of the first cell, where the first cell is each of a plurality of cells in the communication system.
  • the centralized virtual scheduler sends the transmit power determined by the centralized virtual scheduler to the real scheduler corresponding to the first cell, to indicate that the real scheduler corresponding to the first cell uses the transmit power determined by the centralized virtual scheduler in the first cell to the UE. Schedule.
  • each of the cells that can be scheduled by each real scheduler may be one or more.
  • a real scheduler may be set on a base station, and the cells under the base station may be scheduled by the real scheduler.
  • a plurality of real schedulers respectively corresponding to the plurality of cells may be set in a base station including a plurality of cells.
  • the centralized virtual scheduler and the real scheduler in the embodiment of the present invention may also be referred to as a centralized virtual scheduling entity and a real scheduling entity, and may be a functional entity or a logical entity. That is, it can be in the form of software, and the program code is executed by the processor to realize its function; or it can be set in hardware form, for example, in the form of a chip or a specific integrated circuit on the baseband board.
  • the scheduling method of the embodiment of the present invention is applicable to a communication system of multiple cells, where the communication system includes an upper layer centralized virtual scheduler and a lower layer at least one real scheduler, and the centralized virtual scheduler determines the transmission of each of the plurality of cells. Power, sending the cell to the real scheduler of each cell Transmitting power to indicate that the real scheduler schedules the UE in the cell using the transmit power determined by the centralized virtual scheduler. Therefore, with the layered scheduling architecture of the present invention, the centralized virtual scheduler of the upper layer coordinates the use of resources between the multiple cells, and selects the best transmit power of the network to be sent to indicate that the real scheduler of the lower layer is the most Good transmit power scheduling UE. It can reduce interference between cells and improve resource utilization efficiency.
  • Fig. 15 can be implemented by the centralized virtual scheduler in the scheduling system of Figs. 3 to 14, and thus the repeated description is omitted as appropriate.
  • the centralized virtual scheduler may determine a finer-grained transmit power.
  • the centralized virtual scheduler may determine transmit power on each resource block RB unit of the first cell, that is, determine Transmit power on each RB unit of each cell.
  • the RB unit includes a PRB or an RBG.
  • the real scheduler corresponding to the first cell sends the transmit power on each RB unit of the first cell to indicate that the real scheduler corresponding to the first cell is in each RB of the first cell.
  • the UE is scheduled by using the transmit power determined by the centralized virtual scheduler on the unit. In this way, the power coordination of the RB level can be realized, which makes the coordination granularity more fine, and is more conducive to solving the problem of small-area interference.
  • the cells in the network need to be clustered according to the computing power and the interference situation, so that the inter-cluster interference is as low as possible and the intra-cluster interference is cohesive.
  • multiple cells of the communication network are divided into at least one cell cluster by inter-cell interference, and multiple cells with larger interference are divided into the same cell cluster, and between multiple cells of the same cell cluster.
  • Resource usage is coordinated to optimize cell power in the cluster to avoid downlink interference between cells.
  • the embodiment of the present invention does not limit the cell clustering manner, and may also divide the cell cluster according to the number or location.
  • the embodiment of the present invention does not limit the cell clustering manner, and may also divide the cell cluster according to the number or location.
  • small clusters reference may be made to the above, and details are not described herein again.
  • a centralized virtual scheduler can be set for each cluster to coordinate the inter-cell transmit power.
  • the centralized virtual scheduler may divide the multiple cells into at least one cluster; or, in step 1501, the centralized virtual scheduler clusters to determine the transmit power of each cell in each cluster.
  • one cell cluster includes no more than 36 cells.
  • the centralized virtual scheduler may acquire first channel information and first historical scheduling information, where the first channel information and the first historical scheduling information respectively include a cluster in which the first cell is located. Channel information and historical scheduling information for all cells. Calculating network utility of the first cell under multiple candidate powers according to the first channel information and the first historical scheduling information a value, and selecting a candidate power with the best network utility value as the transmit power of the first cell; or, calculating, according to the first channel information and the first historical scheduling information, each RB unit of the first cell is under multiple candidate powers The network utility value, and the candidate power with the best network utility value is selected as the transmit power of the currently calculated RB unit.
  • the multiple candidate powers may be multiple power levels that are incremented by a certain power step, or may be multiple power levels that are preset. The embodiment of the invention does not impose any limitation.
  • the process of the centralized virtual scheduler determining the transmit power of each RB unit of each cell or each cell may be a virtual scheduling (or called pre-scheduling) process of power traversal.
  • the centralized virtual scheduler collects information of all cells in the control range, and calculates a utility value (or a performance value) of the current network according to the information; and predicts the network performance after modifying the transmit power of the cell according to the information of each cell. Transform, select the best transmit power to deliver.
  • the information of the cell may include channel information and historical scheduling information of the cell.
  • the channel information may be downlink channel information, for example, measurement information reported by the UE; or may be uplink channel information, for example, measurement information obtained by measuring, by each cell, an uplink reference signal sent by a UE in one of the cells.
  • the measurement information of >3 ⁇ 4 on the UE may include, for example, one or more of the following information: CSI, RSRP, RSRQ, or RSSI, etc., where the CSI includes but is not limited to CQI, RI, or PMI.
  • the uplink channel information measured by the cell may include RSRP or RSRQ.
  • the history scheduling information may include a history scheduling priority, a scheduling rate, and a previously scheduled transmission power.
  • the utility value of the network can be embodied by a total utility function, which can be a logarithmic summation of the scheduling rates of all UEs, or the sum of the average scheduling priorities of all cells.
  • the best utility can mean: all UE scheduling rate weighted sum is maximum; or the sum of the average scheduling rates of each cell is the lowest. Further, the modification of the transmission power may be performed in such a manner that power is increased in proportion to all cells, or may be performed in such a manner that power is increased by a single cell.
  • the present invention does not impose any limitation on the virtual scheduling algorithm of the centralized virtual scheduler.
  • Those skilled in the art can select different algorithms according to needs, as long as the power combination that makes the network performance optimal can be selected from multiple power combinations.
  • the centralized virtual scheduler may also perform CLB virtual scheduling. Specifically, the centralized virtual scheduler may acquire first load information, where the first load information includes loads of all cells in the cluster where the first cell is located. The information is determined according to the first load information, where the load balancing result is that the first cell schedules the edge UE of the second cell, and the first cell and the second cell are neighboring cells in the cluster where the first cell is located. Central virtual scheduler to the true corresponding to the first cell The real scheduler sends a load balancing result to indicate that the real scheduler of the first cell schedules the edge UE of the second cell.
  • load balancing is coordinated according to load information of each cell.
  • the method may further be used to determine a priority of each of the multiple cells according to the load information of each cell, and configure a first cell of the multiple cells to schedule an edge UE of the second cell, where the first cell and the second cell are adjacent and The priority of the second cell is higher than the priority of the first cell. The higher the cell priority, the heavier the cell load.
  • CLB virtual scheduling can be performed periodically.
  • the sum of the priorities of all the cells in the cluster is determined as the objective function in each period, and the greater the difference of the priority of each cell, the larger the objective function is, and the cell with the largest objective function can be preferentially selected (for example, The second cell is a reloaded cell, and the first cell is a light-loaded cell, so that the priorities of the two cells are different.
  • the cell priority is affected by changing the scheduling cell of the edge user, and the load balance of the cell is achieved, thereby improving the coverage performance of the network.
  • the centralized virtual scheduler implements the functions of CLB virtual scheduling and CSCP virtual scheduling only for one logical function division.
  • the actual implementation may be combined or integrated into one physical entity, or may be physically separated and distributed differently.
  • the real scheduler implements the functions of CLB real scheduling and CSCP real scheduling. It is only a logical function partition.
  • the actual implementation can be combined or integrated into one physical entity, or it can be physically separated and distributed in different networks. In the device.
  • each base station of the communication system is interconnected with a coordinator, and a real scheduler of each cell may be located corresponding to the cell.
  • the base station, centralized virtual scheduler can be located in the coordinator.
  • the real scheduler of each cell may be a BBU corresponding to the cell, and the centralized virtual scheduler may be located in any BBU of the centrally placed BBUs.
  • the coordinator performs CSPC virtual scheduling, in order to ensure that the measurement information used by the coordinator for calculating the CSPC can arrive at the same time, and the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the centralized virtual scheduler may send a measurement request message to the real scheduler of the third cell on the downlink receiving frame number and the subframe number, and receive the third cell on the uplink sending frame number and the subframe number. Measurement response message sent by the real scheduler, round-trip transmission delay of the real scheduler of the third cell
  • the RTT is the largest RTT among the plurality of cells of the communication system, and the RTT indicates the difference between the uplink transmission frame number and the subframe number and the downlink reception frame number and the subframe number.
  • the centralized virtual scheduler determines the effective time according to the RTT of the real scheduler corresponding to the third cell, and sends the effective time to the real scheduler corresponding to the first cell, so that the real scheduler corresponding to the first cell schedules the UE at the effective time. .
  • the centralized virtual scheduler determines the effective time according to the RTT of the real scheduler corresponding to the third cell, and sends the effective time to the real scheduler corresponding to the first cell, so that the real scheduler corresponding to the first cell schedules the UE at the effective time.
  • the centralized virtual scheduler may further receive information reported by each cell under the base station from the control plane of each base station, and the control plane of the main control board and the coordinator interface are adopted. SCTP protocol.
  • the centralized virtual scheduler may further receive information reported by each cell under the base station from the user plane of each base station, and the user plane and the coordinator interface of the main control board adopt the GTP-U protocol. It should be understood that the transmission protocol used by the interface between the base station and the coordinator in the embodiment of the present invention is not limited.
  • a base station may be selected in the distributed base station, and the function of the CLB virtual scheduling, that is, CSPC virtual scheduling and CLB virtual, is deployed in a dedicated baseband board of the base station, such as a dedicated centralized scheduling board or an enhanced scheduling mode baseband board.
  • the scheduled functional entities can be distributed among different network devices.
  • the centralized virtual scheduler may be deployed on the common baseband or the dedicated baseband board of the first BBU, and the real scheduler of each cell may be located in the BBU corresponding to the cell. In the baseband board.
  • the baseband board of the first BBU may reserve at least one core to implement the function of the centralized virtual scheduler. Since the complexity of CSPC virtual scheduling increases linearly with the number of cells and the number of subbands, the CSPC virtual scheduling of the same cell cluster can be paralleled by subbands.
  • the core load sharing mode of the baseband board may be: In the full-band CSPC, the downlink transmit power of each cell in the first cell cluster is determined by one of the at least one core. That is to say, the cores perform load sharing by cell clusters, and the CSPC virtual scheduling of one cell cluster is handled by one core. Or, when the sub-band CSPC is used, the downlink transmit power of each cell in the first cell cluster may be jointly determined by at least one core.
  • the sub-band may be shared according to the sub-band, and each core processes different sub-bands, and when When the remaining resources are available, at least one core can also jointly process other cell clusters.
  • the complexity of the CSPC centralized virtual scheduling increases linearly with the number of cells only with the number of cells. Therefore, the cores can perform load sharing by cell clusters, and the CSPC centralized virtual scheduling of one cell cluster is handled by one core.
  • the centralized virtual scheduler deployed in the first BBU can also implement CLB virtual scheduling.
  • the function, that is, the functional entities of CSPC virtual scheduling and CLB virtual scheduling can be integrated on one physical entity.
  • the real scheduler of each cell may perform sub-band or full-band MCS correction of the UE according to the downlink transmit power of the cell sent by the centralized virtual scheduler. In this way, to determine the MCS of the initial or retransmission schedule. Real scheduling can be done periodically.
  • the 16 is a flow chart of a scheduling method according to another embodiment of the present invention.
  • the method is applicable to a communication system of multiple cells, and coordinates resource usage between multiple cells to reduce interference between cells.
  • the communication system includes a centralized virtual scheduler and at least one real scheduler.
  • the method is performed by a real scheduler of a certain one of a plurality of cells (referred to as a first cell), and corresponds to the method of Fig. 15, and thus the description overlapping with the embodiment of Fig. 15 will be omitted as appropriate.
  • the real scheduler of the first cell receives the transmit power of the first cell determined by the centralized virtual scheduler, where the first cell is each of the multiple cells in the communication system.
  • the real scheduler schedules the UE by using the transmit power determined by the centralized virtual scheduler in the first cell.
  • each of the cells that can be scheduled by each real scheduler may be one or more.
  • a real scheduler may be set on a base station, and the cells under the base station may be scheduled by the real scheduler.
  • a plurality of real schedulers respectively corresponding to the plurality of cells may be set in a base station including a plurality of cells.
  • the centralized virtual scheduler and the real scheduler in the embodiment of the present invention may also be referred to as a centralized virtual scheduling entity and a real scheduling entity, and may be a functional entity or a logical entity. That is, it can be in the form of software, and the program code is executed by the processor to realize its function; or it can be set in hardware form, for example, in the form of a chip or a specific integrated circuit on the baseband board.
  • the scheduling method of the embodiment of the present invention is applicable to a communication system of multiple cells, where the communication system includes an upper layer centralized virtual scheduler and a lower layer at least one real scheduler, and the centralized virtual scheduler is used to determine multiple cells in the communication system.
  • the transmit power of each cell, the real scheduler of a cell in the plurality of cells receives the transmit power of the cell sent by the centralized virtual scheduler, and the UE is scheduled to use the transmit power determined by the centralized virtual scheduler. Therefore, with the layered scheduling architecture of the present invention, the centralized virtual scheduler of the upper layer coordinates the use of resources between multiple cells, and selects the best transmit power of the network to deliver, and the real scheduler of the lower layer uses the best The transmit power schedules the UE. It can reduce interference between cells and improve resource utilization efficiency.
  • the method of FIG. 16 can be implemented by the real scheduler in the scheduling system in FIGS. 3 to 14, and thus the repeated description is omitted as appropriate.
  • the real scheduler may receive the transmit power on each RB unit of the first cell sent by the centralized virtual scheduler, where the RB unit includes a PRB or an RBG.
  • the real scheduler may schedule the UE with the transmit power determined by the centralized virtual scheduler on each RB unit of the first cell. In this way, the power coordination of the RB level can be realized, the coordination granularity is finer, and the problem of inter-cell interference is more advantageously solved.
  • the real scheduler may further receive a load balancing result sent by the centralized virtual scheduler, where the load balancing result is that the first cell schedules the edge UE of the second cell, and the first cell and the second cell are multiple. Adjacent cells in the cells are located in the same cluster.
  • the real scheduler may also schedule the edge UE of the second cell according to the load balancing result. Therefore, the cell priority is affected by changing the scheduling cell of the edge user, and the load balancing of the cell is implemented, thereby improving the coverage performance of the network.
  • each base station of the communication system is interconnected with a coordinator, and a real scheduler of each cell may be located corresponding to the cell.
  • the base station, centralized virtual scheduler can be located in the coordinator.
  • the real scheduler of each cell may be a BBU corresponding to the cell, and the centralized virtual scheduler may be located in any BBU of the centrally placed BBUs.
  • the coordinator performs CSPC virtual scheduling, in order to ensure that the measurement information used by the coordinator for calculating the CSPC can arrive at the same time, and the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the real scheduler receives the measurement request message sent by the centralized virtual scheduler on the downlink receiving frame number and the subframe number, and sends a measurement response message to the centralized virtual scheduler on the uplink sending frame number and the subframe number, so as to concentrate the virtual scheduler.
  • the RTT indicates the difference between the uplink transmission frame number and the subframe number and the downlink receiving frame number and the subframe number.
  • the real scheduler receives the effective time sent by the centralized virtual scheduler, and schedules the UE at the effective time. In this way, coordination can be ensured
  • the completion time of the CSPC virtual scheduling is smaller than the time when the scheduling result is delivered.
  • a centralized virtual scheduler may be deployed on a common baseband or dedicated baseband board of any BBU (first BBU), and a real scheduler of each cell may be located in the cell. Corresponding BBU in the baseband board.
  • the baseband board of the first BBU may reserve at least one function of verifying the centralized virtual scheduler. Since the complexity of CSPC virtual scheduling increases linearly with the number of cells and the number of subbands, the CSPC virtual scheduling of the same cell cluster can be paralleled by subbands.
  • the core load sharing mode of the baseband board may be specifically: when the CSB is full, the downlink transmit power of each cell in the first cell cluster is determined by one of the at least one core. That is to say, the cores perform load sharing by cell clusters, and the CSPC virtual scheduling of one cell cluster is handled by one core. Or, when the sub-band CSPC is used, the downlink transmit power of each cell in the first cell cluster may be jointly determined by at least one core.
  • the sub-band may be shared according to the sub-band, and each core processes different sub-bands, and when When the remaining resources are available, at least one core can also jointly process other cell clusters.
  • the complexity of the CSPC centralized virtual scheduling increases linearly with the number of cells only with the number of cells. Therefore, the cores can perform load sharing by cell clusters, and the CSPC centralized virtual scheduling of one cell cluster is handled by one core.
  • the real scheduler may perform sub-band or full-band MCS correction of the UE according to downlink transmit power of the cell sent by the centralized virtual scheduler.
  • the MCS of the initial transmission or retransmission schedule is determined. Real scheduling can be done periodically.
  • FIG. 17 is a schematic structural diagram of a centralized virtual scheduler according to an embodiment of the present invention.
  • the centralized virtual scheduler 1700 of Fig. 17 is an example of a centralized virtual scheduler in the above-described scheduling system, and includes a determining unit 1701 and an interface unit 1702.
  • the determining unit 1701 is configured to determine a transmit power of the first cell, where the first cell is each of a plurality of cells in the communication system.
  • the interface unit 1702 is configured to send, to the real scheduler corresponding to the first cell, the transmit power determined by the determining unit 1701, to indicate that the real scheduler corresponding to the first cell schedules the UE by using the transmit power determined by the determining unit 1701.
  • the number of real schedulers is not limited in the embodiment of the present invention, and may be one or more.
  • the real cell that can be scheduled by each real scheduler may be one or more.
  • a real scheduler may be set on one base station, and the cell under the base station may be configured by the real schedule. Dispatcher.
  • a plurality of real schedulers respectively corresponding to the plurality of cells may be set in a base station including a plurality of cells.
  • the centralized virtual scheduler and the real scheduler in the embodiment of the present invention may also be referred to as a centralized virtual scheduling entity and a real scheduling entity, and may be a functional entity or a logical entity. That is, it can be in the form of software, and the program code is executed by the processor to realize its function; or it can be set in hardware form, for example, in the form of a chip or a specific integrated circuit on the baseband board.
  • the virtual scheduler determines the transmit power of each of the multiple cells in the communication system, and sends the transmit power of the cell to the real scheduler of each cell to indicate that the real scheduler is concentrated in the cell.
  • the UE is scheduled by the transmit power determined by the virtual scheduler. Therefore, with the layered scheduling architecture of the present invention, the centralized virtual scheduler of the upper layer coordinates the use of resources between the multiple cells, and selects the best transmit power of the network to be sent to indicate that the real scheduler of the lower layer is the most Good transmit power scheduling UE. It can reduce interference between cells and improve resource utilization efficiency.
  • the centralized virtual scheduler 1700 can implement the steps involved in the centralized virtual scheduler in the methods of Figs. 15 and 16, and will not be described in detail to avoid repetition.
  • the determining unit 1701 may be specifically configured to determine a finer-grained transmit power, that is, determine a transmit power on each RB unit of the first cell, where the RB unit includes a PRB or an RBG.
  • the interface unit 1702 may be configured to send the transmit power on each RB unit of the first cell to the real scheduler corresponding to the first cell, to indicate that the real scheduler corresponding to the first cell is used on each RB unit of the first cell.
  • the transmit power determined by the determining unit 1701 schedules the UE. In this way, the power coordination of the RB level can be realized, the coordination granularity is finer, and the problem of inter-cell interference is more advantageously solved.
  • the cells in the network need to be clustered according to the computing power and the interference situation, so that the inter-cluster interference is as low as possible and the intra-cluster interference is cohesive.
  • multiple cells of the communication network are divided into at least one cell cluster by inter-cell interference, and multiple cells with larger interference are divided into the same cell cluster, and between multiple cells of the same cell cluster.
  • Resource usage is coordinated to optimize cell power in the cluster to avoid downlink interference between cells.
  • the embodiment of the present invention does not limit the cell clustering manner, and may also divide the cell cluster according to the number or location.
  • the embodiment of the present invention does not limit the cell clustering manner, and may also divide the cell cluster according to the number or location.
  • small clusters reference may be made to the above, and details are not described herein again.
  • a centralized virtual scheduler can be set for each cluster to coordinate the inter-cell transmit power.
  • multiple cells are divided into at least one cluster, and the determining unit is
  • the 1701 may be specifically configured to determine the transmit power of each cell in each cluster by clustering, that is, determine the transmit power of each cell in units of clusters.
  • one cell cluster includes no more than 36 cells.
  • the centralized virtual scheduler 1700 may further include a first acquiring unit 1703, where the first acquiring unit 1703 is configured to acquire first channel information and first historical scheduling information, first channel information, and first
  • the historical scheduling information includes channel information and historical scheduling information of all cells in the cluster where the first cell is located, respectively.
  • the determining unit 1701 may be specifically configured to calculate, according to the first channel information acquired by the first acquiring unit 1703 and the first historical scheduling information, a network utility value of the first cell at multiple candidate powers, and select a network utility value that is optimal. Candidate power, as the transmit power of the first cell.
  • the determining unit 1701 may be specifically configured to calculate, according to the first channel information acquired by the first acquiring unit 1703 and the first historical scheduling information, a network utility value of each RB unit of the first cell at multiple candidate powers, and The candidate power with the best network utility value is selected as the transmit power of the currently calculated RB unit.
  • the multiple candidate powers may be multiple power levels that are incremented by a certain power step, or may be multiple power levels that are preset.
  • the present invention does not impose any limitation on the virtual scheduling algorithm of the centralized virtual scheduler, and those skilled in the art may select different algorithms according to requirements, as long as the power combination that optimizes network performance can be selected from multiple power combinations. .
  • the centralized virtual scheduler 1700 may further include a second obtaining unit 1704, where the second acquiring unit 1704 is configured to acquire first load information, where the first load information includes all cells in the cluster where the first cell is located. Load information.
  • the determining unit 1701 is further configured to determine, according to the first load information, a load balancing result, where the load balancing result is that the first cell schedules an edge UE of the second cell, where the first cell and the second cell are in the cluster where the first cell is located. Adjacent cell.
  • the interface unit 1702 is further configured to send a load balancing result to the real scheduler corresponding to the first cell, to indicate that the real scheduler corresponding to the first cell schedules the edge UE of the second cell.
  • the determining unit 1701 may be specifically configured to coordinate load balancing according to load information of each cell.
  • the method may further be used to determine a priority of each of the multiple cells according to the load information of each cell, and configure a first cell of the multiple cells to schedule an edge user equipment of the second cell, where the first cell and the second cell are adjacent to each other.
  • the priority of the second cell is higher than the priority of the first cell. The higher the cell priority, the heavier the cell load.
  • CLB virtual scheduling can be performed periodically.
  • the sum of the priorities of all cells in the cluster is determined as an objective function in each cycle, each small
  • each base station of the communication system is interconnected with a coordinator, and a real scheduler of each cell may be located corresponding to the cell.
  • the base station, centralized virtual scheduler can be located in the coordinator.
  • the real scheduler of each cell may be a BBU corresponding to the cell, and the centralized virtual scheduler may be located in any BBU of the centrally placed BBUs.
  • the coordinator performs CSPC virtual scheduling, in order to ensure that the measurement information used by the coordinator for calculating the CSPC can arrive at the same time, and the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the interface unit 1702 is further configured to send, to the real scheduler corresponding to the third cell, a measurement request message on the downlink receiving frame number and the subframe number, and receive the real scheduling corresponding to the third cell on the uplink sending frame number and the subframe number. Measurement response message sent by the device.
  • the RTT of the real scheduler of the third cell is the largest RTT of the plurality of cells of the communication system, and the RTT indicates the difference between the uplink transmission frame number and the subframe number and the downlink reception frame number and the subframe number.
  • the determining unit 1701 is further configured to determine an effective time according to an RTT of the real scheduler corresponding to the third cell.
  • the interface unit 1702 is further configured to send the effective time generated by the determining unit 1701 to the real scheduler corresponding to the first cell, so that the real scheduler corresponding to the first cell schedules the UE at the effective time.
  • the specific time synchronization process can refer to the above, and will not be described here.
  • the interface unit 1702 may further be configured to receive, from the control plane of each base station, the information reported by each cell under the base station, the control panel and the coordinator of the main control board.
  • the interface uses the SCTP protocol.
  • the interface unit 1702 is further configured to receive, from the user plane of each base station, information reported by each cell under the base station, and the user plane and the coordinator interface of the main control board adopt a GTP-U protocol. It should be understood that the transmission protocol used by the interface between the base station and the coordinator in the embodiment of the present invention is not limited.
  • a base station may be selected in the distributed base station, and the dedicated baseband board of the base station (eg, The function of the CLB virtual scheduling is deployed in the dedicated centralized scheduling board or the enhanced scheduling mode baseband board, that is, the functional entities of the CSPC virtual scheduling and the CLB virtual scheduling may be distributed in different network devices.
  • the dedicated baseband board of the base station eg, The function of the CLB virtual scheduling is deployed in the dedicated centralized scheduling board or the enhanced scheduling mode baseband board, that is, the functional entities of the CSPC virtual scheduling and the CLB virtual scheduling may be distributed in different network devices.
  • a centralized virtual scheduler may be deployed on a common baseband or dedicated baseband board of any BBU (first BBU), and a real scheduler of each cell may be located in the cell. Corresponding BBU in the baseband board.
  • the baseband board of the first BBU may reserve at least one function of verifying the centralized virtual scheduler. Since the complexity of CSPC virtual scheduling increases linearly with the number of cells and the number of subbands, the CSPC virtual scheduling of the same cell cluster can be paralleled by subbands.
  • the core load sharing mode of the baseband board may be specifically: when the CSB is full, the downlink transmit power of each cell in the first cell cluster is determined by one of the at least one core. That is to say, the cores perform load sharing by cell clusters, and the CSPC virtual scheduling of one cell cluster is handled by one core. Or, when the sub-band CSPC is used, the downlink transmit power of each cell in the first cell cluster may be jointly determined by at least one core.
  • the sub-band may be shared according to the sub-band, and each core processes different sub-bands, and when When the remaining resources are available, at least one core can also jointly process other cell clusters.
  • the complexity of the CSPC centralized virtual scheduling increases linearly with the number of cells only with the number of cells. Therefore, the cores can perform load sharing by cell clusters, and the CSPC centralized virtual scheduling of one cell cluster is handled by one core.
  • the centralized virtual scheduler deployed in the first BBU can also implement the function of the CLB virtual scheduling, that is, the functional entities of the CSPC virtual scheduling and the CLB virtual scheduling can be integrated on one physical entity.
  • FIG. 18 is a schematic structural diagram of a real scheduler according to an embodiment of the present invention.
  • the centralized virtual scheduler 1800 of Figure 18 is an example of a real scheduler in the above described scheduling system, including an interface unit 1801 and a scheduling unit 1802.
  • the interface unit 1801 is configured to receive the transmit power of the first cell determined by the centralized virtual scheduler, where the first cell is each of the multiple cells in the communication system.
  • the scheduling unit 1802 is configured to schedule the UE by using the transmit power determined by the centralized virtual scheduler in the first cell.
  • the number of real schedulers is not limited in the embodiment of the present invention, and may be one or more.
  • the cell that can be scheduled by each real scheduler may be one or more.
  • a real scheduler may be set on one base station, and the cell under the base station may be scheduled by the real scheduler.
  • a base station including multiple cells may be respectively configured corresponding to the multiple cells. Multiple real schedulers.
  • the centralized virtual scheduler and the real scheduler in the embodiment of the present invention may also be referred to as a centralized virtual scheduling entity and a real scheduling entity, and may be a functional entity or a logical entity. That is, it can be in the form of software, and the program code is executed by the processor to realize its function; or it can be set in hardware form, for example, in the form of a chip or a specific integrated circuit on the baseband board.
  • the real scheduler of a cell receives the transmit power of the cell sent by the centralized virtual scheduler, and the UE uses the transmit power determined by the centralized virtual scheduler to schedule the UE, and the real scheduling of a certain cell in multiple cells.
  • the real scheduler 1800 can implement the steps involved in the real scheduler in the methods of Figs. 15 and 16, and will not be described in detail to avoid repetition.
  • the interface unit 1801 may be configured to receive transmit power on each RB unit of the first cell sent by the centralized virtual scheduler, where the RB unit includes a PRB or an RBG.
  • the scheduling unit 1802 may be specifically configured to schedule the UE by using a transmit power determined by the centralized virtual scheduler on each RB unit of the first cell. In this way, the power coordination of the RB level can be realized, the coordination granularity is finer, and the problem of inter-cell interference is more advantageously solved.
  • the interface unit 1801 is further configured to receive a load balancing result determined by the centralized virtual scheduler, where the load balancing result is that the first cell schedules the edge UE of the second cell, the first cell and the second cell. It is a neighboring cell in multiple cells and is located in the same cluster.
  • the scheduling unit 1802 is further configured to schedule the edge UE of the second cell according to the load balancing result. Therefore, the cell priority is affected by changing the scheduling cell of the edge user, and the load balance of the cell is achieved, thereby improving the coverage performance of the network.
  • each base station of the communication system is interconnected with a coordinator, and a real scheduler of each cell may be located corresponding to the cell.
  • the base station, centralized virtual scheduler can be located in the coordinator.
  • the real scheduler of each cell may be a BBU corresponding to the cell, and the centralized virtual scheduler may be located in any BBU of the centrally placed BBUs.
  • the scene map of the communication system can refer to FIG. 6 above. It should be understood that the embodiment of the present invention Not limited, it can also be applied to other communication systems.
  • the coordinator performs CSPC virtual scheduling, in order to ensure that the measurement information used by the coordinator for calculating the CSPC can arrive at the same time, and the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the interface unit 1801 is further configured to receive, by using the downlink receiving frame number and the subframe number, a measurement request message sent by the centralized virtual scheduler, and send a measurement response message to the centralized virtual scheduler on the uplink sending frame number and the subframe number, so that The centralized virtual scheduler obtains the RTT of the real scheduler according to the uplink transmission frame number and the subframe number and the downlink reception frame number and the subframe number, selects the largest RTT from all the RTTs of the multiple cells in the communication system, and determines the validity according to the maximum RTT. time. Where RTT represents the difference between the uplink transmission frame number and the subframe number and the downlink reception frame number and the subframe number.
  • the interface unit 1801 is further configured to receive the effective time sent by the centralized virtual scheduler, and instruct the scheduling unit 1802 to schedule the user equipment at the effective time.
  • the specific time synchronization process can refer to the above, and will not be described here.
  • a centralized virtual scheduler may be deployed on a common baseband or dedicated baseband board of any BBU (first BBU), and a real scheduler of each cell may be located in the cell. Corresponding BBU in the baseband board.
  • the baseband board of the first BBU may reserve at least one function of verifying the centralized virtual scheduler. Since the complexity of CSPC virtual scheduling increases linearly with the number of cells and the number of subbands, the CSPC virtual scheduling of the same cell cluster can be paralleled by subbands.
  • the core load sharing mode of the baseband board may be specifically: when the CSB is full, the downlink transmit power of each cell in the first cell cluster is determined by one of the at least one core. That is to say, the cores perform load sharing by cell clusters, and the CSPC virtual scheduling of one cell cluster is handled by one core. Or, when the sub-band CSPC is used, the downlink transmit power of each cell in the first cell cluster may be jointly determined by at least one core.
  • the sub-band may be shared according to the sub-band, and each core processes different sub-bands, and when When the remaining resources are available, at least one core can also jointly process other cell clusters.
  • the complexity of the CSPC centralized virtual scheduling increases linearly with the number of cells only with the number of cells. Therefore, the cores can perform load sharing by cell clusters, and the CSPC centralized virtual scheduling of one cell cluster is handled by one core.
  • the scheduling unit 1802 may be specifically configured to perform subband or full-band MCS correction of the user equipment according to the downlink transmit power of the cell sent by the centralized virtual scheduler. In this way, the MCS of the initial transmission or retransmission schedule is determined. Real scheduling can be done periodically.
  • the interface unit in the above embodiment may be an interface circuit.
  • the determining unit may be a separately set processor, or may be integrated in one of the base stations, or may be stored in the memory of the base station in the form of program code, and is called by one of the base stations and executes the above. Track the function of the task creation unit.
  • the implementation of the first acquisition unit, the second acquisition unit, and the scheduling unit is the same as the determination unit.
  • the processor described herein can be a central processor
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FIG. 19 is a schematic structural diagram of a centralized virtual scheduler according to another embodiment of the present invention.
  • the centralized virtual scheduler 1900 of Figure 19 is an example of a centralized virtual scheduler in the above described scheduling system.
  • the centralized virtual scheduler 1900 includes a processor 1901, a memory 1902, and an interface circuit 1903.
  • the processor 1901 controls the operation of the device 1900, which may be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • Memory 1902 can include read only memory and random access memory and provides instructions and data to processor 1901.
  • a portion of memory 1902 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • bus system 1910 The processor 1901, the memory 1902 and the interface circuit 1903 are coupled together by a bus system 1910, wherein the bus system 1910 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • bus system 1910 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 1910 in the figure.
  • the functions involved in the centralized virtual scheduler in the scheduling system of the embodiment of the present invention described above may be implemented by using the centralized virtual scheduler 1900.
  • the processor 1901 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1901 or an instruction in the form of software.
  • the processor 1901 described above may be a general-purpose processor, including a CPU or an NP, etc.; it may also be a DSP, an ASIC, an FPGA, or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor can be a microprocessor or the processor can be any conventional processor or the like.
  • the processor 1901 is configured to determine a transmit power of the first cell, where the first cell is each of a plurality of cells in the communication system; the interface circuit 1903 is configured to use a real scheduler corresponding to the first cell. Transmitting the transmit power determined by the centralized virtual scheduler to indicate that the real scheduler corresponding to the first cell adjusts the UE by using the transmit power determined by the centralized virtual scheduler in the first cell. Degree.
  • each of the cells that can be scheduled by each real scheduler may be one or more.
  • a real scheduler may be set on a base station, and the cells under the base station may be scheduled by the real scheduler.
  • a plurality of real schedulers respectively corresponding to the plurality of cells may be set in a base station including a plurality of cells.
  • the centralized virtual scheduler and the real scheduler in the embodiment of the present invention may also be referred to as a centralized virtual scheduling entity and a real scheduling entity, and may be a functional entity or a logical entity. That is, it can be in the form of software, and the program code is executed by the processor to realize its function; or it can be set in hardware form, for example, in the form of a chip or a specific integrated circuit on the baseband board.
  • the virtual scheduler determines the transmit power of each of the multiple cells in the communication system, and sends the transmit power of the cell to the real scheduler of each cell to indicate that the real scheduler is concentrated in the cell.
  • the UE is scheduled by the transmit power determined by the virtual scheduler. Therefore, with the layered scheduling architecture of the present invention, the centralized virtual scheduler of the upper layer coordinates the use of resources between the multiple cells, and selects the best transmit power of the network to be sent to indicate that the real scheduler of the lower layer is the most Good transmit power scheduling UE. It can reduce interference between cells and improve resource utilization efficiency.
  • the centralized virtual scheduler 1900 can implement the steps involved in the centralized virtual scheduler in the methods of Figs. 15 and 16, and will not be described in detail to avoid repetition.
  • the processor 1901 may be specifically configured to specifically determine a finer-grained transmit power, that is, determine a transmit power on each RB unit of the first cell, where the RB unit includes a PRB or an RBG.
  • the interface circuit 1903 may be configured to send the transmit power on each RB unit of the first cell to the real scheduler corresponding to the first cell, to indicate that the real scheduler corresponding to the first cell is used on each RB unit of the first cell.
  • the transmit power determined by the processor 1901 schedules the UE. . In this way, the power coordination of the RB level can be realized, the coordination granularity is finer, and the problem of inter-cell interference is more advantageously solved.
  • the cells in the network need to be clustered according to the computing power and the interference situation, so that the inter-cluster interference is as low as possible and the intra-cluster interference is relatively cohesive.
  • multiple cells of the communication network are divided into at least one cell cluster by inter-cell interference, and multiple cells with larger interference are divided into the same cell cluster, and between multiple cells of the same cell cluster. Coordination of resource usage to achieve cell power optimization within the cluster, avoiding inter-cell Downside interference.
  • the embodiment of the present invention does not limit the cell clustering manner, and may also divide the cell cluster according to the number or location.
  • the embodiment of the present invention does not limit the cell clustering manner, and may also divide the cell cluster according to the number or location.
  • small clusters reference may be made to the above, and details are not described herein again.
  • a centralized virtual scheduler can be set for each cluster to coordinate the inter-cell transmit power.
  • multiple cells are divided into at least one cluster, and the processor 1901 may be specifically configured to determine, by clustering, the transmit power of each cell in each cluster, that is, determine each in clusters.
  • the transmit power of the cell Preferably, one cell cluster includes no more than 36 cells.
  • the processor 1901 may be further configured to acquire first channel information and first historical scheduling information, where the first channel information and the first historical scheduling information respectively include all cells in the cluster where the first cell is located. Channel information and historical scheduling information.
  • the processor 1901 may be specifically configured to calculate, according to the acquired first channel information and the first historical scheduling information, a network utility value of the first cell at multiple candidate powers, and select a candidate power with the best network utility value as the first The transmit power of the cell.
  • the processor 1901 may be configured to calculate, according to the acquired first channel information and the first historical scheduling information, a network utility value of each RB unit of the first cell at multiple candidate powers, and select a network utility value. Good candidate power, as the transmit power of the currently calculated RB unit.
  • the plurality of candidate powers may be multiple power levels that are incremented by a certain power step, or may be multiple power levels set in advance.
  • the embodiment of the invention does not impose any limitation. For specific embodiments, reference may be made to the above, and details are not described herein again.
  • the present invention does not impose any limitation on the virtual scheduling algorithm of the centralized virtual scheduler, and those skilled in the art may select different algorithms according to requirements, as long as the power combination that optimizes network performance can be selected from multiple power combinations. .
  • the processor 1901 may be further configured to acquire first load information, where the first load information includes load information of all cells in the cluster where the first cell is located, and determine load balancing according to the first load information.
  • the load balancing result is that the first cell schedules the edge UE of the second cell, and the first cell and the second cell are neighboring cells in the cluster where the first cell is located.
  • the interface circuit 1903 is further configured to send a load balancing result to the real scheduler corresponding to the first cell, to indicate that the real scheduler corresponding to the first cell schedules the edge UE of the second cell.
  • the processor 1901 may be specifically configured to determine a load balancing result in units of clusters.
  • the processor 1901 may be specifically configured to coordinate load balancing according to load information of each cell.
  • the method may further be used to determine a priority of each of the multiple cells according to the load information of each cell, and configure the first cell of the multiple cells to schedule the edge user equipment of the second cell, where the first small The zone is adjacent to the second cell and the priority of the second cell is higher than the priority of the first cell. The higher the cell priority, the heavier the cell load.
  • CLB virtual scheduling can be performed periodically.
  • the sum of the priorities of all the cells in the cluster is determined as the objective function in each period, and the greater the difference of the priority of each cell, the larger the objective function is, and the cell with the largest objective function can be preferentially selected (for example, The second cell is a reloaded cell, and the first cell is a light-loaded cell, so that the priorities of the two cells are different.
  • the cell priority is affected by changing the scheduling cell of the edge user, and the load balancing of the cell is implemented, thereby improving the coverage performance of the network.
  • each base station of the communication system is interconnected with a coordinator, and a real scheduler of each cell may be located corresponding to the cell.
  • the base station, centralized virtual scheduler can be located in the coordinator.
  • the real scheduler of each cell may be a BBU corresponding to the cell, and the centralized virtual scheduler may be located in any BBU of the centrally placed BBUs.
  • the coordinator performs CSPC virtual scheduling, in order to ensure that the measurement information used by the coordinator for calculating the CSPC can arrive at the same time, and the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the interface circuit 1903 is further configured to send, to the real scheduler corresponding to the third cell, a measurement request message on the downlink receiving frame number and the subframe number, and receive the real scheduling corresponding to the third cell on the uplink sending frame number and the subframe number. Measurement response message sent by the device.
  • the RTT of the real scheduler of the third cell is the largest RTT of the plurality of cells of the communication system, and the RTT indicates the difference between the uplink transmission frame number and the subframe number and the downlink reception frame number and the subframe number.
  • the processor 1901 is further configured to determine an effective time according to an RTT of the real scheduler corresponding to the third cell.
  • the interface circuit 1903 is further configured to send the effective time generated by the determining unit 1701 to the real scheduler corresponding to the first cell, so that the real scheduler corresponding to the first cell schedules the UE at the effective time.
  • the interface circuit 1903 may be further configured to receive, from the control plane of each base station, the information reported by each cell under the base station, the control panel and the coordinator of the main control board.
  • the interface uses the SCTP protocol.
  • the interface circuit 1903 can be further configured to receive information reported by each cell under the base station from a user plane of each base station, and a user plane of the main control board
  • the coordinator interface uses the GTP-U protocol. It should be understood that the transmission protocol used by the interface between the base station and the coordinator in the embodiment of the present invention is not limited.
  • a base station may be selected in the distributed base station, and the function of the CLB virtual scheduling, that is, CSPC virtual scheduling and CLB virtual, is deployed in a dedicated baseband board of the base station, such as a dedicated centralized scheduling board or an enhanced scheduling mode baseband board.
  • the scheduled functional entities can be distributed among different network devices.
  • a centralized virtual scheduler may be deployed on a common baseband or dedicated baseband board of any BBU (first BBU), and a real scheduler of each cell may be located in the cell. Corresponding BBU in the baseband board.
  • the baseband board of the first BBU may reserve at least one function of verifying the centralized virtual scheduler. Since the complexity of CSPC virtual scheduling increases linearly with the number of cells and the number of subbands, the CSPC virtual scheduling of the same cell cluster can be paralleled by subbands.
  • the core load sharing mode of the baseband board may be specifically: when the CSB is full, the downlink transmit power of each cell in the first cell cluster is determined by one of the at least one core. That is to say, the cores perform load sharing by cell clusters, and the CSPC virtual scheduling of one cell cluster is handled by one core. Or, when the sub-band CSPC is used, the downlink transmit power of each cell in the first cell cluster may be jointly determined by at least one core.
  • the sub-band may be shared according to the sub-band, and each core processes different sub-bands, and when When the remaining resources are available, at least one core can also jointly process other cell clusters.
  • the complexity of the CSPC centralized virtual scheduling increases linearly with the number of cells only with the number of cells. Therefore, the cores can perform load sharing by cell clusters, and the CSPC centralized virtual scheduling of one cell cluster is handled by one core.
  • the centralized virtual scheduler deployed in the first BBU can also implement the function of the CLB virtual scheduling, that is, the functional entities of the CSPC virtual scheduling and the CLB virtual scheduling can be integrated on one physical entity.
  • the real scheduler 2000 of FIG. 20 is an example of a real scheduler in the above-described scheduling system, and the real scheduler 2000 includes a processor 2001, a memory 2002, and an interface circuit 2003.
  • the processor 2001 controls the operation of the device 2000, which may be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 2002 can include read only memory and random access memory and provides instructions and data to the processor 2001. A portion of the memory 2002 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • bus system 2010 The processor 2001, the memory 2002 and the interface circuit 2003 are coupled together by a bus system 2010, wherein the bus system 2010 is packaged In addition to the data bus, it also includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 2010 in the figure.
  • the real scheduler in the scheduling system of the embodiment of the present invention described above can be implemented by applying the real scheduler 2000 described above.
  • the processor 2001 may be an integrated circuit chip with signal processing capability.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 2001 or an instruction in a form of software.
  • the processor 2001 described above may be a general-purpose processor, including a CPU or an NP, etc.; it may also be a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component.
  • the methods, steps, and logic blocks disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the interface circuit 2003 is configured to receive the transmit power of the first cell determined by the centralized virtual scheduler, wherein the first cell is each of the plurality of cells in the communication system.
  • the processor 2001 is configured to schedule the UE with the transmit power determined by the centralized virtual scheduler in the first cell.
  • each of the cells that can be scheduled by each real scheduler may be one or more.
  • a real scheduler may be set on a base station, and the cells under the base station may be scheduled by the real scheduler.
  • a plurality of real schedulers respectively corresponding to the plurality of cells may be set in a base station including a plurality of cells.
  • the centralized virtual scheduler and the real scheduler in the embodiment of the present invention may also be referred to as a centralized virtual scheduling entity and a real scheduling entity, and may be a functional entity or a logical entity. That is, it can be in the form of software, and the program code is executed by the processor to realize its function; or it can be set in hardware form, for example, in the form of a chip or a specific integrated circuit on the baseband board.
  • the real scheduler of a cell receives the transmit power of the cell sent by the centralized virtual scheduler, and the UE uses the transmit power determined by the centralized virtual scheduler to schedule the UE, and the real scheduling of a certain cell in multiple cells.
  • the real scheduler 2000 can implement the steps involved in the real scheduler in the methods of FIGS. 15 and 16. In order to avoid repetition, it will not be described in detail.
  • the interface circuit 2003 may be configured to receive transmit power on each RB unit of the first cell sent by the centralized virtual scheduler, where the RB unit includes a PRB or an RBG.
  • the processor 2001 may be specifically configured to schedule the UE by using a transmit power determined by the centralized virtual scheduler on each RB unit of the first cell. In this way, the power coordination of the RB level can be realized, the coordination granularity is finer, and the problem of inter-cell interference is more advantageously solved.
  • the interface circuit 2003 may be further configured to receive a load balancing result sent by the centralized virtual scheduler, where the load balancing result is determined by the centralized virtual scheduler.
  • the processor 2001 is further configured to schedule an edge user equipment of the second cell according to the load balancing result, where the first cell and the second cell are adjacent. Therefore, the cell priority is affected by changing the scheduling cell of the edge user, and the load balancing of the cell is implemented, thereby improving the coverage performance of the network.
  • each base station of the communication system is interconnected with a coordinator, and a real scheduler of each cell may be located corresponding to the cell.
  • the base station, centralized virtual scheduler can be located in the coordinator.
  • the real scheduler of each cell may be a BBU corresponding to the cell, and the centralized virtual scheduler may be located in any BBU of the centrally placed BBUs.
  • the coordinator performs CSPC virtual scheduling, in order to ensure that the measurement information used by the coordinator for calculating the CSPC can arrive at the same time, and the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the power optimization result given to the coordinator can be effective in all the cells in the cluster at the air interface.
  • the interface circuit 2003 is further configured to receive, by using the downlink receiving frame number and the subframe number, a measurement request message sent by the centralized virtual scheduler, and send a measurement response message to the centralized virtual scheduler on the uplink sending frame number and the subframe number, where Sending a measurement response message to the centralized virtual scheduler on the uplink sending frame number and the subframe number, so that the centralized virtual scheduler obtains the RTT of the real scheduler according to the uplink sending frame number and the subframe number and the downlink receiving frame number and the subframe number, from the communication system.
  • the largest RTT is selected among all RTTs of multiple cells, and the effective time is determined according to the maximum RTT.
  • the RTT indicates the difference between the uplink transmission frame number and the subframe number and the downlink reception frame number and the subframe number.
  • the interface circuit 2003 can also be configured to receive the effective time sent by the centralized virtual scheduler, and instruct the processor 2001 to schedule the user equipment at the effective time.
  • a centralized virtual scheduler may be deployed on a common baseband or dedicated baseband board of any BBU (first BBU), and a real scheduler of each cell may be located in the cell. Corresponding BBU in the baseband board.
  • the baseband board of the first BBU may reserve at least one core to implement the function of the centralized virtual scheduler. Since the complexity of the CSPC virtual scheduling increases linearly with the number of cells and the number of subbands, the CSPC virtual scheduling of the same cell cluster can be paralleled by subbands.
  • the core load sharing mode of the baseband board may be specifically: when the CSB is full, the downlink transmit power of each cell in the first cell cluster is determined by one of the at least one core. That is to say, the cores perform load sharing by cell clusters, and the CSPC virtual scheduling of one cell cluster is handled by one core.
  • the downlink transmit power of each cell in the first cell cluster may be jointly determined by at least one core.
  • the sub-band may be shared according to the sub-band, and each core processes different sub-bands, and when When the remaining resources are available, at least one core can also jointly process other cell clusters. Since the CLB is a full-band processing, the complexity of the CSPC centralized virtual scheduling increases linearly with the number of cells only with the number of cells. Therefore, the cores can perform load sharing by cell clusters, and the CSPC centralized virtual scheduling of one cell cluster is processed by one core.
  • the processor 2001 may be specifically configured to perform subband or full-band MCS correction of the user equipment according to the downlink transmit power of the cell sent by the centralized virtual scheduler. In this way, to determine the MCS of the initial or retransmission schedule. Real scheduling can be done periodically.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling through some interfaces, devices or units.
  • a communication connection which can be electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Abstract

 本发明实施例提供一种调度方法、装置与系统,用于多个小区的通信系统中,所述多个小区中每个小区对应一个真实调度器,集中虚拟调度器包括确定单元,用于确定第一小区的发射功率,所述第一小区为所述通信系统中的多个小区中的每个小区;接口单元,用于向所述第一小区对应的真实调度器发送所述确定单元确定的所述发射功率,以指示所述第一小区对应的真实调度器在所述第一小区采用所述确定单元确定的所述发射功率对用户设备进行调度。因此,采用本发明的分层调度架构,上层的集中虚拟调度器对多个小区间的发射功率进行整体协调,以指示下层的真实调度器以其协调的发射功率调度UE。能够降低小区间的干扰,整体提高网络性能。

Description

调度方法、 装置与系统 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及调度方法、 装置 与系统。 背景技术
随着移动通信与宽带无线接入技术的各自的发展, 两者的业务互相渗 透, 为了满足移动通信宽带化的需求并应对宽带通信移动化的挑战, 移动通 信技术引入了 LTE ( Long Term Evolution, 长期演进)通信系统。
在 LTE通信系统中, 由于采用了 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用)技术, 使得各子信道之间正交, 从而较好的解 决了小区内干扰的问题。然而, LTE系统对频谱利用率有较高的要求, 因此, 引入了同频组网的方式来提高频谱利用率, 然而却引入了小区间干扰的问 题。 例如, 如果相邻小区在它们覆盖的重叠区域使用相同的频谱资源, 则该 重叠区域将产生严重的 ICI ( Inter-Cell Interference , 小区间干扰)。 可见, 在 LTE通信系统中, 影响系统性能的主要干扰来自小区间干扰。
为了降低小区间的干扰, 各个小区独立地进行功率控制, 调整各自的下 行发射功率。 但是, 分布式控制缺乏全局观, 只能局部优化, 不能实现最优 的全网性能, 导致系统性能不佳。 发明内容
本发明实施例提供一种调度方法、 装置与系统, 以整体提高网络性能。 第一方面, 提供了一种集中虚拟调度器, 用于多个小区的通信系统中, 所述多个小区中每个小区对应一个真实调度器, 该集中虚拟调度器包括: 确 定单元, 用于确定第一小区的发射功率, 所述第一小区为所述通信系统中的 多个小区中的每个小区; 接口单元, 用于向所述第一小区对应的真实调度器 发送所述确定单元确定的所述发射功率, 以指示所述第一小区对应的真实调 度器在所述第一小区采用所述确定单元确定的所述发射功率对用户设备进 行调度。
结合第一方面, 在第一方面的第一种实现方式中, 所述确定单元具体用 于: 确定所述第一小区的每个资源块 RB单元上的发射功率, 所述 RB单元 包括物理资源块 PRB或资源块组 RBG; 所述接口单元具体用于: 向所述第 一小区对应的真实调度器发送所述第一小区的每个 RB单元上的发射功率, 以指示所述第一小区对应的真实调度器在所述第一小区的每个 RB单元上采 用所述确定单元确定的发射功率对用户设备进行调度。
结合第一方面或第一方面的第一种实现方式,在第一方面的第二种实现 方式中, 所述多个小区被划分为至少一个簇, 所述确定单元具体用于分簇确 定每个簇内的每个小区的发射功率。
结合第一方面的第二种实现方式, 在第一方面的第三种实现方式中, 所 述集中虚拟调度器还包括第一获取单元, 用于获取第一信道信息和第一历史 调度信息, 所述第一信道信息和第一历史调度信息分别包括所述第一小区所 在簇内所有小区的信道信息和历史调度信息; 所述确定单元, 具体用于根据 所述第一获取单元所获取的所述第一信道信息和所述第一历史调度信息,计 算所述第一小区在多个候选功率下的网络效用值, 并选择网络效用值最佳的 候选功率, 作为所述第一小区的发射功率; 或者, 根据所述第一获取单元所 获取的所述第一信道信息和所述第一历史调度信息,计算所述第一小区的每 个 RB单元在多个候选功率下的网络效用值, 并选择网络效用值最佳的候选 功率, 作为当前计算的 RB单元的发射功率。
结合第一方面的第二种或第三种实现方式,在第一方面的第四种实现方 式中, 所述集中虚拟调度器还包括第二获取单元, 用于获取第一负载信息, 所述第一负载信息包括所述第一小区所在簇内所有小区的负载信息; 所述确 定单元, 还用于根据所述第一负载信息确定负载平衡结果, 所述负载平衡结 果为所述第一小区调度第二小区的边缘用户设备,所述第一小区和第二小区 为所述第一小区所在簇内的相邻小区; 所述接口单元还用于: 向所述第一小 区对应的真实调度器发送所述负载平衡结果, 以指示所述第一小区对应的真 实调度器调度所述第二小区的边缘用户设备。
结合第一方面或第一方面的第一种至第四种实现方式中的任一种实现 方式, 在第一方面的第五种实现方式中, 所述通信系统为分布式基站组网模 式且部署协调器, 所述通信系统的各个基站与所述协调器互连, 所述每个小 区所对应的真实调度器位于与该小区对应的基站、所述集中虚拟调度器位于 所述协调器。 结合第一方面的第五种实现方式, 在第一方面的第六种实现方式中, 所 述接口单元还用于: 在下行接收帧号和子帧号上向第三小区对应的真实调度 器发送测量请求消息,在上行发送帧号和子帧号上接收所述第三小区对应的 真实调度器发送的测量响应消息, 所述第三小区对应的真实调度器的往返传 输时延 RTT为所述通信系统的多个小区中的最大 RTT, 所述 RTT表示上行 发送帧号和子帧号与下行接收帧号和子帧号的差; 所述确定单元还用于: 根 据所述第三小区对应的真实调度器的 RTT确定生效时间; 所述接口单元还 调度器,使得所述第一小区对应的真实调度器在所述生效时间对用户设备进 行调度。
结合第一方面或第一方面的第一种至第四种实现方式中的任一种实现 方式,在第一方面的第七种实现方式中,所述通信系统的基带处理单元 BBU 集中放置, 所述多个小区中每个小区所对应的真实调度器位于与该小区对应 的 BBU, 所述集中虚拟调度器位于集中放置的 BBU中的任一 BBU。
第二方面, 提供了一种真实调度器, 用于多个小区的通信系统中, 所述 多个小区中每个小区对应一个所述真实调度器, 该真实调度器包括: 接口单 元, 用于接收集中虚拟调度器确定的第一小区的发射功率, 所述第一小区为 所述通信系统中的多个小区中的每个小区; 调度单元, 用于在所述第一小区 采用所述接口单元接收的所述集中虚拟调度器确定的所述发射功率对用户 设备进行调度。
结合第二方面, 在第二方面的第一种实现方式中, 所述接口单元具体用 于: 接收所述集中虚拟调度器确定的所述第一小区的每个资源块 RB单元上 的发射功率, 所述 RB单元包括物理资源块 PRB或资源块组 RBG; 所述调 度单元具体用于: 在所述第一小区的每个 RB单元上采用所述集中虚拟调度 器确定的发射功率对用户设备进行调度。
结合第二方面或第二方面的第一种实现方式,在第二方面的第二种实现 方式中, 所述接口单元还用于: 接收所述集中虚拟调度器确定的负载平衡结 果, 所述负载平衡结果为所述第一小区调度第二小区的边缘用户设备, 所述 第一小区和第二小区为所述多个小区中相邻的小区, 且位于同一簇内; 所述 调度单元还用于: 根据所述负载平衡结果对所述第二小区的边缘用户设备进 行调度。 结合第二方面或第二方面的第一种或第二种实现方式,在第二方面的第 三种实现方式中, 所述通信系统为分布式基站组网模式且部署协调器, 所述 通信系统的各个基站与所述协调器互连, 所述多个小区中每个小区所对应的 真实调度器位于与该小区对应的基站、 所述集中虚拟调度器位于所述协调 器。
结合第二方面的第三种实现方式, 在第二方面的第四种实现方式中, 所 述接口单元还用于: 在下行接收帧号和子帧号上接收所述集中虚拟调度器发 送的测量请求消息,在上行发送帧号和子帧号上向所述集中虚拟调度器发送 测量响应消息, 以便所述集中虚拟调度器根据所述上行发送帧号和子帧号和 所述下行接收帧号和子帧号获得所述真实调度器的往返传输时延 RTT,从所 述通信系统中多个小区的所有 RTT中选择最大的 RTT, 并根据最大的 RTT 确定生效时间, 其中, 所述 RTT表示上行发送帧号和子帧号与下行接收帧 号和子帧号的差; 所述接口单元还用于: 接收所述集中虚拟调度器发送的所 述生效时间, 并指示所述调度单元在所述生效时间对用户设备进行调度。
结合第二方面或第二方面的第一种或第二第种实现方式,在第二方面的 第五种实现方式中, 所述通信系统的基带处理单元 BBU集中放置, 所述多 个小区中每个小区所对应的真实调度器位于与该小区对应的 BBU, 所述集 中虚拟调度器位于集中放置的 BBU中的任一 BBU。
第三方面, 提供了一种调度系统, 该调度系统包括任一上述集中虚拟调 度器和至少一个任一上述真实调度器。
第四方面,提供了一种调度方法,该方法适用于多个小区的通信系统中, 所述通信系统包括集中虚拟调度器和至少一个真实调度器, 所述多个小区中 每个小区对应一个真实调度器, 该方法包括: 所述集中虚拟调度器确定第一 小区的发射功率, 所述第一小区为所述通信系统中的多个小区中的每个小 区; 所述集中虚拟调度器向所述第一小区对应的真实调度器发送所述集中虚 拟调度器确定的所述发射功率, 以指示所述第一小区对应的真实调度器在所 述第一小区采用所述集中虚拟调度器确定的所述发射功率对用户设备进行 调度。
结合第四方面, 在第四方面的第一种实现方式中, 所述集中虚拟调度器 确定第一小区的发射功率, 包括: 确定所述第一小区的每个资源块 RB单元 上的发射功率, 所述 RB单元包括物理资源块 PRB或资源块组 RBG; 且所 述集中虚拟调度器向所述第一小区对应的真实调度器发送所述集中虚拟调 度器确定的所述发射功率, 包括: 向所述第一小区对应的真实调度器发送所 述第一小区每个 RB单元上的发射功率, 以指示所述第一小区对应的真实调 度器在所述第一小区的每个 RB单元上采用所述集中虚拟调度器确定的发射 功率对用户设备进行调度。
结合第四方面或第四方面的第一种实现方式,在第四方面的第二种实现 方式中, 还包括: 将所述多个小区划分为至少一个簇; 所述集中虚拟调度器 确定第一小区的发射功率包括: 所述集中虚拟调度器分簇确定每个簇内的每 个小区的发射功率。
结合第四方面的第二种实现方式, 在第四方面的第三种实现方式中, 所 述集中虚拟调度器确定所述第一小区的发射功率, 包括: 所述集中虚拟调度 器获取第一信道信息和第一历史调度信息, 所述第一信道信息和第一历史调 度信息分别包括所述第一小区所在簇内所有小区的信道信息和历史调度信 息; 根据所述第一信道信息和第一历史调度信息, 计算所述第一小区在多个 候选功率下的网络效用值, 并选择网络效用值最佳的候选功率, 作为所述第 一小区的发射功率; 或者, 根据所述第一信道信息和第一历史调度信息, 计 算所述第一小区的每个 RB单元在多个候选功率下的网络效用值, 并选择网 络效用值最佳的候选功率, 作为当前计算的 RB单元的发射功率。
结合第四方面的第二种或第三种实现方式,在第四方面的第四种实现方 式中, 所述方法还包括: 所述集中虚拟调度器获取第一负载信息, 所述第一 负载信息包括所述第一小区所在簇内所有小区的负载信息; 根据所述第一负 载信息确定负载平衡结果, 所述负载平衡结果为所述第一小区调度第二小区 的边缘用户设备, 所述第一小区和第二小区为所述第一小区所在簇内的相邻 小区; 所述集中虚拟调度器向所述第一小区所对应的真实调度器发送所述负 载平衡结果, 以指示所述第一小区的真实调度器对所述第二小区的边缘用户 设备进行调度。
结合第四方面或第四方面的第一种至第四种实现方式中的任一种实现 方式, 在第四方面的第五种实现方式中, 所述通信系统为分布式基站组网模 式且部署协调器, 所述通信系统的各个基站与所述协调器互连, 所述每个小 区所对应的真实调度器位于与该小区对应的基站、所述集中虚拟调度器位于 所述协调器。 结合第四方面的第五种实现方式, 在第四方面的第六种实现方式中, 所 述方法还包括: 所述集中虚拟调度器在下行接收帧号和子帧号上向第三小区 的真实调度器发送测量请求消息; 所述集中虚拟调度器在上行发送帧号和子 帧号上接收所述第三小区的真实调度器发送的测量响应消息, 所述第三小区 的真实调度器的往返传输时延 RTT 为所述通信系统的多个小区中的最大 RTT , 所述 RTT表示上行发送帧号和子帧号与下行接收帧号和子帧号的差; 所述集中虚拟调度器根据所述第三小区对应的真实调度器的 RTT确定生效 时间, 并将所述生效时间发送给所述第一小区对应的真实调度器, 使得所述 第一小区对应的真实调度器在所述生效时间对用户设备进行调度。
结合第四方面或第四方面的第一种至第四种实现方式中的任一种实现 方式,在第四方面的第七种实现方式中,所述通信系统的基带处理单元 BBU 集中放置, 所述多个小区中每个小区所对应的真实调度器位于与该小区对应 的 BBU, 所述集中虚拟调度器位于集中放置的 BBU中的任一 BBU。
第五方面,提供了一种调度方法,该方法适用于多个小区的通信系统中, 所述通信系统包括集中虚拟调度器和至少一个真实调度器, 所述多个小区中 每个小区对应一个真实调度器, 该方法包括: 第一小区的真实调度器接收所 述集中虚拟调度器确定的所述第一小区的发射功率, 其中, 所述第一小区为 所述通信系统中的多个小区中的每个小区; 所述真实调度器在所述第一小区 采用所述集中虚拟调度器确定的所述发射功率对用户设备进行调度。
结合第五方面, 在第五方面的第一种实现方式中, 所述第一小区的真实 调度器接收所述集中虚拟调度器确定的所述第一小区的发射功率, 包括: 所 述真实调度器接收所述集中虚拟调度器确定的所述第一小区的每个资源块 RB单元上的发射功率,所述 RB单元包括物理资源块 PRB或资源块组 RBG; 所述真实调度器在所述第一小区采用所述集中虚拟调度器确定的所述发射 功率对用户设备进行调度, 包括: 所述真实调度器在所述第一小区的每个 RB单元上采用所述集中虚拟调度器确定的发射功率对用户设备进行调度。
结合第五方面或第五方面的第一种实现方式,在第五方面的第二种实现 方式中, 所述方法还包括: 所述真实调度器接收所述集中虚拟调度器发送的 负载平衡结果,所述负载平衡结果为所述第一小区调度第二小区的边缘用户 设备, 所述第一小区和第二小区为所述多个小区中相邻的小区, 且位于同一 簇内; 所述真实调度器根据所述负载平衡结果对所述第二小区的边缘用户设 备进行调度。
结合第五方面或第五方面的第一种或第二种实现方式,在第五方面的第 三种实现方式中, 所述通信系统为分布式基站组网模式且部署协调器, 所述 通信系统的各个基站与所述协调器互连, 所述多个小区中每个小区所对应的 真实调度器位于与该小区对应的基站、 所述集中虚拟调度器位于所述协调 器。
结合第五方面的第三种实现方式, 在第五方面的第四种实现方式中, 所 述方法还包括: 所述真实调度器在下行接收帧号和子帧号上接收所述集中虚 拟调度器发送的测量请求消息; 所述真实调度器在上行发送帧号和子帧号上 向所述集中虚拟调度器发送测量响应消息, 以便所述集中虚拟调度器根据所 述上行发送帧号和子帧号和所述下行接收帧号和子帧号获得所述真实调度 器的往返传输时延 RTT, 从所述通信系统中多个小区的所有 RTT中选择最 大的 RTT, 并根据最大的 RTT确定生效时间, 其中, 所述 RTT表示上行发 送帧号和子帧号与下行接收帧号和子帧号的差;接收所述集中虚拟调度器发 送的所述生效时间, 并在所述生效时间对用户设备进行调度。
结合第五方面或第五方面的第一种或第二种实现方式,在第五方面的另 一种实现方式中, 所述通信系统的基带处理单元 BBU集中放置, 所述多个 小区中每个小区所对应的真实调度器位于与该小区对应的 BBU, 所述集中 虚拟调度器位于集中放置的 BBU中的任一 BBU。
本发明实施例的调度方法适用于多个小区的通信系统中, 该通信系统包 括上层的集中虚拟调度器和下层的至少一个真实调度器, 集中虚拟调度器确 定多个小区中每个小区的发射功率, 向每个小区的真实调度器发送该小区的 发射功率, 以指示该真实调度器在该小区采用集中虚拟调度器确定的发射功 率调度 UE。 因此, 采用本发明的分层调度架构, 上层的集中虚拟调度器通 过对多个小区间的发射功率进行整体协调, 以指示下层的真实调度器以其协 调的发射功率调度 UE。 能够降低小区间的干扰, 整体提高网络性能。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有的一种频谱资源协调方法的示意图;
图 2是现有的一种功率资源协调方法的示意图;
图 3是本发明一个实施例的调度系统的示意性框图;
图 4是本发明另一个实施例的调度系统的示意性框图;
图 5是本发明另一个实施例的调度系统的示意性框图;
图 6是本发明是可应用于本发明实施例的通信网络的场景示意图; 图 7是本发明另一个实施例的调度系统的示意性框图;
图 8 A是本发明一个实施例的协调器和基站之间时间同步的示意图; 图 8B是本发明另一个实施例的协调器和基站之间时间同步的示意图; 图 8C是本发明另一个实施例的协调器和基站之间时间同步的示意图; 图 9 是本发明一个实施例的协调功率控制的分层调度部署的示意性框 图;
图 10是本发明另一个实施例的调度系统的示意性框图;
图 11是本发明一个实施例的协调功率控制的分层调度的示意性框图; 图 12是本发明另一个实施例的协调功率控制的分层调度的示意性框图; 图 13是本发明一个实施例的协调负载平衡的分层调度的示意性框图; 图 14是本发明另一个实施例的协调负载平衡的分层调度的示意性框图; 图 15是本发明一个实施例的调度方法的流程图;
图 16是本发明另一个实施例的调度方法的流程图;
图 17是本发明一个实施例的集中虚拟调度器的示意性框图;
图 18是本发明一个实施例的真实调度器的示意性框图;
图 19是本发明另一个实施例的集中虚拟调度器的示意性框图; 图 20是本发明另一个实施例的真实调度器的示意性框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如: GSM ( Global System for Mobile Communications, 全球移动通信) 系统、 CDMA ( Code Division Multiple Access ,码分多址)系统、 WCDMA ( Wideband Code Division Multiple Access, 宽带码分多址)系统、 GPRS ( General Packet Radio Service,通用分组无线业务)系统、 LTE系统、 LTE FDD ( Frequency Division Duplex, 频分双工) 系统、 LTE TDD ( Time Division Duplex, 时分双工) 系 统、 UMTS ( Universal Mobile Telecommunications System, 通用移动通信) 系统等。 应理解, 本发明对此并不限定。
在本发明实施例中, UE ( User Equipment, 用户设备 ) 可称之为终端 ( Terminal ), MS ( Mobile Station, 移动台)、 移动终端 ( Mobile Terminal ) 等, 该用户设备可以经 RAN ( Radio Access Network, 无线接入网)与一个 或多个核心网进行通信, 例如, 用户设备可以是移动电话(或称为 "蜂窝" 电话)、 具有移动终端的计算机等, 例如, 用户设备还可以是便携式、 袖珍 式、 手持式、 计算机内置的或者车载的移动装置。
基站可以是 GSM或 CDMA中的 BTS ( Base Transceiver Station,基站;), 也可以是 WCDMA中的 NB( NodeB ,基站)或者 UMTS中的 BS( Base Station, 基站;), 还可以是 LTE中的 eNodeB ( Evolutional Node B , 演进型基站;), 也 称为 eNB , 等等, 本发明并不限定。
在本发明实施例中, 一个部件与另一部件之间(例如本发明的子系统之 间或模块之间)的连接, 可包括有线和 /或无线方式的连接。有线方式可包括 但不限于各种介质构成的线缆, 如光纤、 导电线缆或半导体线路等; 或者包 括其他形式, 如内部总线、 电路、 背板等。 无线方式是能够实现无线通信的 连接方式, 包括但不限于射频、 红外线、 蓝牙等。 两个部件之间可存在内部 或外部的接口, 所述接口可以是物理接口或逻辑接口。
下面将以 LTE网络为例进行说明, 在 LTE同频网络中, 相邻小区之间 存在干扰。 目前, 可以通过 ICIC ( Inter-Cell Interference Coordination, 小区 间干扰协调)技术来降低小区之间的干扰。 ICIC的基本思想是以小区间协调 的方式对资源的使用进行限制, 包括限制哪些时频资源可用, 或者在一定的 时频资源上限制其发射功率。 例如, 从协调的维度来看, 可以将干扰协调技 术划分为频域协调和时域协调。 其中, 频域协调可以通过不同小区划分不同 的边缘频带来实现, 时域协调可以通过配置每个小区每个 ΤΉ ( Transmission Time Interval , 传输时间间隔) 的发射功率谱来实现。 例如, 频谱资源协调方法示意性地如图 1所示, 频率资源被划分为 3部 分, 其中位于小区中心的用户设备可以使用所有的频率资源, 而位于小区边 缘的用户设备只使用部分频率资源, 并且相邻小区的小区边缘用户所使用的 频率资源不同, 从而降低小区边缘用户设备的干扰。
再例如, 功率资源协调方法示意性地如图 2所示, 频率资源被划分为 3 部分, 所有小区都可以使用全部的频率资源, 但是不同的小区类型只允许一 部分频率可以使用较高的发射功率。 比如, 位于小区边缘的用户设备可以使 用这部分频率, 而且不同小区类型的频率集合不同, 从而降低小区边缘用户 设备的干扰。
以上协调方案不够灵活,难以满足根据现网状态调整各小区频率资源的 使用, 使得资源利用效率低下。 另外, 以上协调方案是一种小区级的协调, 在解决小区间干扰的问题上不够精细, 粒度较粗。
有鉴于此, 本发明实施例提供一种分层调度架构, 包括上层的集中虚拟 调度器和下层的真实调度器。 其中, 上层的集中虚拟调度器可以收集控制范 围内所有小区内 UE上报的信息, 利用这些信息进行虚拟调度, 预估修改小 区发射功率后网络性能的变化, 从而选择网络性能最佳的发射功率下发, 以 指示下层的真实调度器以该最佳的发射功率调度 UE。 可见, 这种分层架构, 可以根据现网状态调整各小区频率资源的使用, 以提高资源利用效率。
此外, 集中虚拟调度器可以进一步确定每个小区的每个 RB ( Resource Block, 资源块)单元上的发射功率, 然后通知真实调度器按照其确定的发 射功率, 在每个 RB单元上进行真实调度。 可见, 通过这种分层调度的架构, 还可以实现 RB级的功率协调, 使得协调粒度更加精细, 更加有利于解决小 区间干扰的问题。 这里所说的 RB单元可以是一个 PRB ( Physical Resource Block, 物理资源块), 也可以是若干个 PRB组成的 RBG ( Resource Block Group, 资源块组)。
请参考图 3 , 其是本发明一个实施例的提供的调度系统的示意性框图。 该调度系统 300用于对多个小区间的资源使用进行协调, 以降低小区间的干 扰, 且该调度系统 300包括至少一个真实调度器和集中虚拟调度器 302。 其 中, 集中虚拟调度器 302用于确定每个小区的发射功率, 并向每个小区的真 实调度器发送该小区的发射功率; 每个小区的真实调度器用于在该小区采用 集中虚拟调度器 302确定的发射功率调度 UE。 进一步的, 集中虚拟调度器 302可以确定更细粒度的发射功率, 即确定 每个小区的每个 RB ( Resource Block, 资源块)单元上的发射功率。 RB单 元包括 PRB或 RBG, 并向每个小区的真实调度器发送发射功率确定结果, 以指示该真实调度器在该小区的每个 PRB 或 RBG上采用集中虚拟调度器 302确定的发射功率调度 UE。 如此, 可以实现 RB级的功率协调, 使得协调 粒度更加精细, 更加有利于解决小区间干扰的问题。
需要说明的是, 以上集中虚拟调度器和真实调度器又可以称之为集中虚 拟调度实体和真实调度实体, 且可以是功能实体, 也可以是逻辑实体。 即可 以为软件形式,通过处理器执行程序代码来实现其功能;也可以为硬件形式, 例如, 以芯片或者是特定集成电路的形式设置于基带板上。
图 3给出了 N个真实调度器的例子, 分别是真实调度器 301-1 , 真实调 度器 301-2, ……, 真实调度器 301-(N-1), 真实调度器 301-N, 其中 N为正 整数。 集中虚拟调度器 302分别与 N个真实调度器相连接。 应理解, 本发明 实施例对真实调度器的数目不作限定, 可以是 1个或多个。 且每个真实调度 器可以调度的小区可以是一个也可以是多个, 例如, 一个基站上可以设置一 个真实调度器, 该基站下的小区, 都可以由该真实调度器调度。 或者, 在包 括多个小区的基站中可以设置与该多个小区分别对应的多个真实调度器。
集中虚拟调度器 302确定每个小区或每个小区每个 RB单元的发射功率 的过程可以是一个功率遍历的虚拟调度(或称之为预调度)过程。 例如, 集 中虚拟调度器收集控制范围内所有小区的信息,根据这些信息计算当前网络 的效用值(或称之为性能值); 并根据各小区的信息预估修改小区的发射功 率后网络性能的变换, 选择效用最佳的发射功率下发。 其中, 小区的信息可 以包括该小区的信道信息和历史调度信息。 信道信息可以为下行信道信息, 例如, UE上报的测量信息; 也可以为上行信道信息, 例如每个小区对其中 一个小区内的 UE发送的上行参考信号测量得到的测量信息。
具体的, 集中虚拟调度器确定每个小区的发射功率的过程, 包括: 获取 以上多个小区的信道信息和历史调度信息; 根据获得的信道信息和历史调度 信息, 计算每个小区在多个候选功率下的网络效用值, 并选择网络效用值最 佳的候选功率, 作为当前计算的小区的发射功率; 或者, 根据获得的信道信 息和历史调度信息, 计算每个小区的每个 RB单元在多个候选功率下的网络 效用值, 并选择网络效用值最佳的候选功率, 作为当前计算的 RB单元的发 射功率。
以上多个候选功率可以为按一定功率步长递增的多个功率等级,也可以 为预先设置的多个功率等级。 本发明实施例不做任何限制。
其中, UE上报的测量信息例如可以包括以下信息中的一个或多个: CSI ( channel state information, CSI ), RSRP, RSRQ或 RSSI ( Received Signal Strength Indication, 接收信号强度指示)等, 其中 CSI包括但不限于 CQI、 RI或 PMI ( Precoding Matrix Indicator, 预编码矩阵指示)。 小区测量得到的 上行信道信息可以包括 RSRP或 RSRQ。 历史调度信息可以包括历史调度优 先级、 调度速率、 以及上次调度的发送功率等。 网络的效用值可以通过总效 用函数来体现, 总效用函数可以是所有 UE的调度速率取对数求和, 或是所 有小区的平均调度优先级之和。 效用最佳可以是指: 所有 UE调度速率加权 和最大;或每个小区平均调度速率之和最低等。另外, 关于发射功率的修改, 可以以所有小区等比例增加功率的方式进行,也可以以单一' j、区增加功率的 方式进行。
总之, 本发明不对集中虚拟调度器的虚拟调度算法做任何限制, 本领域 技术人员可以根据需要选择不同的算法, 只要可以从多种功率组合中选择出 使得网络性能最佳的功率组合即可。
需要说明的是, 以上小区的信息的上报可以预先进行配置, 例如作为本 发明的另一个实施例, 以上系统 300还可以进一步扩展其功能, 包括配置单 元 303。该配置单元 303可以用于配置上报的小区的信息的内容和周期。且, 本领域技术人员可以根据需要调整上报的内容和周期, 以满足不同场景的需 求。 请参考图 4, 在本实施例中, 为了方便说明, 仅示出了一个真实调度器, 且真实调度器位于基站的一个基带板 310上,该基带板 310与集中控制器 320 连接, 且集中虚拟调度器 302和配置单元 303设置于集中控制器 310中。 配 置单元 303用于配置基带板 310所上报的小区的信息,例如上报内容和周期。 此时, 基带板 310上可以设置一个上报单元 304, 用于存储 UE上报的信息、 历史调度信息以及一些其它信息等, 例如 CSI、 RSRP, 调度优先级、 MCS ( Modulation and Coding Scheme, 调制编码方式)、 邻区关系列表等。 如此, 当上报周期到来时, 上报单元 304便可以根据配置单元 303的配置上报相应 的信息, 以供集中虚拟调度器 302确定对应小区的发射功率。
需要说明的是, 该集中控制器 320可以位于本基站的另一个基带板上, 或者位于其它基站的基带板上, 也可以位于一个独立布置的网络节点(以下 称之为协调器(ECO ( eCoordinator, 协调器))上, 该网络节点用于集中管 理多个分布式的基站, 且可以通过 IP ( Internet Protocol ) 网络与这些分布式 基站连接。
考虑到计算复杂度的约束,当网络到达一定规模后,需要根据计算能力、 干扰情况等将网络中的小区进行分簇, 使得簇间干扰尽可能低、 簇内干扰比 较内聚。针对每个簇可以设置一个集中虚拟调度器进行小区间发射功率的协 调。
以上实施例中的描述就是针对一个簇内的多个小区的调度进行描述的, 每个簇内的小区调度都可以参考以上实施例的描述。 当通信系统中的小区被 划分为一个簇时, 可以仅设置一个集中虚拟调度器即可。 当被划分为多个簇 时, 可以针对每个簇设置一个子单元, 每个子单元用于确定对应簇内小区的 发射功率。 即, 集中虚拟调度器分簇确定每个簇内的每个小区的发射功率。 作为本发明的另一个实施例, 系统 300还可以进一步扩展其功能。 请参考图 5 , 在本实施例中, 系统 300还可以包括分簇单元 305。 分簇单元 305 , 用于 将通信系统中的多个小区划分成至少一个小区簇, 以 M 个小区簇为例, M 为正整数, 并将划分的 M个小区簇的信息发送给集中虚拟调度器 302, 集中 虚拟调度器 302可以用于以簇为单位确定每个小区的发射功率; 或者, 每个 簇对应一个集中虚拟调度器的子单元,每个子单元确定其对应簇内每个小区 的每个 RB上的发射功率。 优选地, 一个小区簇包括的小区不超过 36个。
可选地, 当通信网络的小区较多, 如通信系统中的小区数目大于某个阈 值时, 分簇单元 305可以用于将通信系统中的多个小区划分成多个小区簇。
可选地, 分簇单元 305 , 可以进一步用于根据每个小区上报单元上报的 信息确定多个小区中任两个小区之间的干扰值,根据多个小区中任两个小区 之间的干扰值将多个小区划分成 M个小区簇, 可以周期性地对小区进行动 态分簇。
这样,通过小区间的干扰情况来将通信网络的多个小区划分成至少一个 小区簇, 将干 4尤较大的多个小区划分成同一个小区簇, 对该同一个小区簇的 多个小区间的资源使用进行协调, 实现簇内小区功率优化, 避免小区间的下 行干扰。
应理解, 本发明实施例对小区分簇方式并不限定, 也可以按照数目或位 置等方式来划分小区簇。
需要说明的是, 以上配置单元、 上报单元和分簇单元可以是功能实体, 也可以是逻辑实体。 即可以为软件形式, 通过处理器执行程序代码来实现其 功能; 也可以为硬件形式, 例如, 以芯片或者是特定集成电路的形式来实现 其功能。
系统 300 除了可以用于进行 CSCP ( Coordinated Scheduling Power Control, 协调调度功率控制)调度外, 作为本发明的另一个实施例, 系统 300还可以进一步扩展其功能。 系统 300还可以用于协调多个小区的负载平 衡, 称为 CLB ( Coordinated Load Balancing, 协调负载平衡)调度。 可选地, CLB虚拟调度可以由上述集中虚拟调度器 302来实现, CLB真实调度可以 由上述真实调度器来实现。 例如, 集中虚拟调度器可以用于确定负载平衡结 果; 集中虚拟调度器向多个小区中的第一小区的真实调度器发送负载平衡结 果, 以指示该真实调度器调度第二小区的边缘用户设备, 第一小区和第二小 区相邻, 且位于一个簇内。 当然, CLB虚拟调度和 CSCP虚拟调度可以分别 由不同的集中虚拟调度器来实现, 类似地, CLB真实调度和 CSCP真实调度 可以分别由不同的真实调度器来实现。 本发明实施例对此并不限定。 为了进 行区分, 在下面的例子中, 将实现 CSCP虚拟调度功能的装置称为第一集中 虚拟调度器, 实现 CLB虚拟调度功能的装置称为第二集中虚拟调度器。 需 要指出的是, 第一集中虚拟调度器和第二集中虚拟调度器仅仅为一种逻辑功 能划分, 实际实现时可以结合或者集成到一个物理实体, 也可以是物理上分 开的, 分布在不同的网络设备中。
可选地,第二集中虚拟调度器可以以簇为单位确定负载平衡结果;或者, 每个簇对应一个第二集中虚拟调度器, 集中虚拟调度器确定其对应簇内每个 小区的负载平衡结果。 小区分簇的例子可以参考上述图 5的实施例, 此处不 再赘述。
可选地, 第二集中虚拟调度器可以用于根据每个小区的负载信息协调负 载平衡。第二集中虚拟调度器可以进一步用于根据每个小区的负载信息确定 多个小区中各个小区的优先级, 配置多个小区中的第一小区调度第二小区的 边缘用户设备, 第一小区和第二小区相邻且第二小区的优先级高于第一小区 的优先级。 小区优先级越高表示小区负载越重。 可选地, 可以周期性地进行 CLB虚拟调度。具体地,在每个周期内以簇内所有小区的优先级之和确定为 目标函数, 各个小区优先级的差异越大, 则目标函数越大, 可以优先选出使 得目标函数最大的小区(如上述第二小区为重载小区,第一小区为轻载小区, 使得两小区的优先级差别较大)来配置边缘用户的调度, 通过变化边缘用户 的调度小区来影响小区优先级, 实现小区的负载平衡, 从而提升网络的覆盖 性能。
可选地, 作为另一个实施例, 当通信系统为分布式基站组网模式且部署 协调器, 通信系统的各个基站与协调器互连, 每个小区的真实调度器可以位 于与该小区对应的基站、 集中虚拟调度器可以位于协调器。 或者当通信系统 的各个基站的基带处理单元 BBU集中放置(Cloud BB ), 每个小区的真实调 度器可以与该小区对应的 BBU, 集中虚拟调度器可以位于集中放置的 BBU 中的任一 BBU。
具体地,如图 6所示的网络场景,分布式基站通过 IP回程线路( Backhaul ) 与 ECO互联, 每个小区的真实调度器位于与该小区对应的基站中, 可选地, 每个小区的上报单元可以位于与该小区对应的基站中。 ECO中部署第一集中 虚拟调度器进行 CSPC虚拟调度, 可选地, 在 ECO中可以部署分簇单元, 或者还可以部署配置单元。在该场景下对两个小区簇的多个小区间的资源使 用进行协调, 分别是小区簇 1的各个小区和小区簇 2中的部分小区。 在另一 种 Cloud BB的组网场景下, 将网络中基站的 BBU集中放置( Cloud BB )与 USU ( Universal Switching Unit, 通用交换单元 ) 互联, 并通过光纤与 RRU 连接。 每个小区的真实调度器可以与该小区对应的 BBU, 可选地, 每个小 区的上 单元可以位于与该小区对应的 BBU中。在该 Cloud BB中选择一个 BBU部署第一集中虚拟调度器进行 CSPC虚拟调度, 可选地, 在该 BBU中 可以部署分簇单元, 或者还可以部署配置单元。 在 Cloud BB的场景也示出 两个小区簇, 分别是小区簇 3和小区簇 2的部分小区。 也就是说, 小区簇 2 中的各个小区可以由 ECO和 BBU共同进行 CSPC虚拟调度。 ECO可实现大 范围 (大于一定覆盖面积或小区数量)、 慢速(如 20ms-40ms ) 集中调度, Cloud BB可实现小范围、 快速 (如 lms-5ms ) 集中调度。
应注意的是, 图 6的场景图仅仅是示意性的, 本发明实施例对小区分簇 的数目, 各个簇包括的小区数目、 基站的数目、 一个基站下的小区数目以及 BBU 的数目并不限定, 基站的类型可以是宏基站、 微基站、 微微基站、 毫 微微基站或家庭基站等, 本发明实施例对此也不作限定。 在协调器进行 CSPC虚拟调度的情况下, 可选地, 调度系统的示意图如 图 7所示, 在该图中, ECO包括第一集中虚拟调度器 702、 配置单元 703和 分簇单元 705 , 每个小区的真实调度器可以位于与该小区对应的基站的基带 板中 (未示出), 各个分布式基站 (如可以是基站的主控板)可以部署有测 量配置单元, 测量配置单元可以用于向基站下的各个小区的用户设备发送测 量配置信息, 以便用户设备根据测量配置信息对下行参考信号测量, 测量配 置单元还可以用于接收用户设备上报的信息, 测量配置单元还可以实现上述 上报单元的功能。 测量配置单元可以用于对该基站下的各个小区的用户设备 的上行参考信号进行测量, 还可以用于确定干扰信息, 上报给第一集中虚拟 调度器 702。 ECO和各个分布式基站相连接。
在协调器进行 CSPC虚拟调度的情况下, 由于 CSPC实时性要求较高, 例如, 通常 CSPC的优化周期为 20ms-ls, 而协调器处理需要的时间大约为 10ms-15ms, 基站处理需要时间大约为 2ms, 其中传输时延约在 3ms-63ms。 因此, 协调器到基站之间的传输时延不能过大, 并且不同的基站到协调器之 间的时延差异也不能过大。 为保证协调器在进行虚拟调度时簇内各个小区的 第二测量信息能够到达, 并且调度的结果能够使簇内所有小区在空口同时生 效(即真实调度)。 需要实现协调器和基站之间的同步, 即时间对齐。
在一个簇中协调器和基站之间存在传输时延,不同的基站和协调器之间时 延不一样, 为了保证协调器用于计算 CSPC的测量信息能够同时到达, 同时 对于协调器给出的功率优化结果能够在簇内所有小区在空口同时生效, 示意 性地如图 8A所示, 要求必须做到:
1 , 计算协调器到各个基站传输时延差。
2, 能够控制基站上传的数据的时刻, 尽量在可控时延(给要求给基站 预留一定的緩沖时间, 比如 5ms )做到均衡分布, 避免造成传输尖峰。
3 , 协调器计算出的功率能够在同一个簇内同一帧号生效。
下面考虑基站和基站之间传输时延的测量方式, 整个 CSPC优化周期生 效方案如图 8A所示, 通过如下四步骤来实现协调器和基站之间的同步: 步骤 1和 2在时延测量阶段获得上行、下行双向的协调器与基站时间对 应关系:
步骤 1 : 上行方向协调器与基站的时间对应关系获取, 如图 8B所示, 具体地: 1 )协调器向基站下发 "周期测量启动消息", 启动消息中携带测量上报 的周期, 测量上报的次数;
2 )基站开始周期向协调器发送测量响应消息,携带基站发送时刻的 "帧 号 +子帧号";
3 )协调器在收到基站的测量响应消息时, 获取协调器本地时间, 得到 基站与协调器时间对应关系;
4 ) 为了克服时延抖动的影响, 经过 N次测量上报后, 协调器得到一个 稳定的上行时间对应关系;
5 )每个基站都进行一次测量, 获得上行时间对应关系 (协调器本地时 间, 帧号 N+子帧 0 );
所有基站的时间对应关系都统一到一个帧号和子帧号, 方便后续不同基 站之间的比较;
步骤 2: 下行方向协调器与基站的时间对应关系获取, 如图 8C所示, 具体地:
1 )协调器周期下发测量请求消息, 携带发送时刻协调器本地时间;
2 )基站收到测量请求消息后, 在测量响应消息中回填 "协调器本地时 间" 与基站接收时刻的帧号 +子帧号;
3 ) 为了克服时延抖动的影响, 经过 N次测量上报后, 协调器得到一个 稳定的下行时间对应关系;
4 )上下行时间关系关联, 得到上下行时间对应关系 (协调器本地时间、 上行发送帧 N+子帧 n、下行接收帧 M+子帧 m ),上下行相减得到 RTT时延。
步骤 3: 簇划分
簇划分确定参与簇的小区后,获取簇内小区的最大 RTT时延,通过 RTT 时延得到偏移量(offset ), 其中 Offset =簇内基站的 RTT时延 +协调器计算 时长(固定, 可配置) +下发余量(固定、 可配置)。
步骤 4、 CSPC优化周期计算
1 )通过上行时间对应关系得到计算开始时间点, 开启周期定时器(定 时器长度为上报周期)等待基站的测量报告 MR。
2 )通过下行时间对应关系得到功率下发时间点, CSPC完成计算后的时 间点应该小于功率下发时间点, 确保功率下发能提前到达基站。
可选地, 第一集中虚拟调度器 702用于在下行接收帧号和子帧号上向第 一小区的真实调度器发送测量请求消息,在上行发送帧号和子帧号上接收第 一小区的真实调度器发送的测量响应消息, 第一小区的真实调度器的 RTT 时延为多个小区中的最大 RTT ( Round Trip Time,往返传输时延 )时延, RTT 时延表示上行发送帧号和子帧号与下行接收帧号和子帧号的差。第一集中虚 拟调度器 702用于根据上行发送帧号和子帧号获得确定每个小区的发射功率 的开始时间,根据下行接收帧号和子帧号获得将每个小区的发射功率发送给 该小区的真实调度器的时间。 这样, 能够确保协调器进行 CSPC虚拟调度的 完成时间点小于调度结果下发的时间点, 在簇内各个小区真实调度时, 虚拟 调度确定的功率都已提前到达簇内各个基站。
可选地, 第一集中虚拟调度器 702还可以用于根据第一小区的 RTT时 延、协调器确定小区发射功率的时长(即协调器进行 CSPC虚拟调度的时长) 和下发余量得到偏移量(Offset ), 根据偏移量确定分簇单元 705的分簇周期 或第一集中虚拟调度器 702的虚拟调度周期。 其中协调器进行 CSPC虚拟调 度的时长和下发余量是固定可以配置的。
具体地,第一集中虚拟调度器 702用于确定下行发送帧号和子帧号的过 程可以是: 第一集中虚拟调度器 702向各个小区簇内各个小区的真实调度器 发送测量请求消息, 在该测量请求消息中携带上报信息的周期和次数。 每个 小区的真实调度器向协调器发送测量响应消息,携带发送时刻的子帧和子帧 号, 当第一集中虚拟调度器 702接收到该测量响应消息时根据协调器的本地 时间得到协调器与小区之间的上行时间对应关系 (如传输时延), 可选地, 为了克服时延抖动的影响, 可以多次测量得到一个稳定的上行时间对应关 系。
类似地, 第一集中虚拟调度器 702用于确定下行发送帧号和子帧号的过 程可以是: 第一集中虚拟调度器 702向各个小区簇内各个小区的真实调度器 发送测量请求消息, 该测量请求消息携带协调器的本地时间, 每个小区的真 实调度器接收到该测量请求消息后,在测量响应消息中回填该协调器的本地 时间以及接收时刻的子帧和子帧号, 当第一集中虚拟调度器 702接收到该测 量响应消息时可以得到协调器与小区之间的下行时间对应关系 (如传输时 延)。
可选地, 为了克服时延抖动的影响, 可以多次测量得到一个稳定的上行 时间对应关系。上行发送帧号和子帧号与下行接收帧号和子帧号的差即为该 小区的 RTT。 示意性地如图 8A所示, 小区的最大 RTT、 协调器进行 CSPC 集中调度的时长和下发余量之和确定为偏移量。
可选地, 第一集中虚拟调度器 702, 进一步用于从每个基站的控制面接 收该基站下的各个小区上报的信息, 主控板控制面与协调器接口采用 SCTP ( Stream Control Transmission Protocol, 流控制传输协议)协议。 或者第一 集中虚拟调度器 702, 进一步用于从每个基站的用户面接收该基站下的各个 小区上报的信息,主控板的用户面与协调器接口采用 GTP-U( GPRS( General Packet Radio Service, 通用分组无线业务) Tunnel Protocol-User, 通用分组 无线业务隧道协议-用户面)协议。 应理解, 本发明实施例基站和协调器之 间的接口采用何种传输协议并不限定。
可选地,可以在分布式基站中选择一个基站,在该基站的专用基带板(如 专用集中调度板或增强调度模式基带板)中部署该第二集中虚拟调度器(也 可以称为 CLB虚拟调度器), 当然, 也可以在普通基带板中部署第二集中虚 拟调度器。 应理解, 本发明实施例对此并不限定。
可选地, 每个小区的真实调度器可以包括下行优先级更新 (Downlink Priority Renew, DL PRI Renew )单元, 具体地, 每个下行优先级更新单元用 于根据第一集中虚拟调度器 702发送的小区的下行发射功率进行用户设备的 子带或全带 MCS ( Modulation and Coding Scheme, 调制编码方式)修正。
这样, 以确定初传或重传调度的 MCS。 即各个小区采用下行优先级更 新单元进行真实调度, 可以周期性地进行调度。
以一个基站为例, 示意性地如图 9所示, 协调器进行簇级处理(Cluster 级处理), 如进行小区簇的 CSPC虚拟调度、 基站的主控板进行基站级处理, 如上报该基站下的小区的信息或负载信息等, 而基带板进行小区级处理, 如 某个小区进行 MCS修正(由下行优先级更新单元执行)或调度相邻小区的 边缘用户 (可以由 DL SCH ( Downlink Schedule下行调度)单元执行)等真 实调度。
在 BBU进行 CSPC虚拟调度的情况下, 如上述 Cloud BB的场景, 可选 地, 调度系统的示意图如图 10所示, 在该图中, 某个 BBU, 如 BBU 1的基 带板, 可以是普通基带本也可以是专用基带板, 部署第一集中虚拟调度器 1002、 分簇单元 1005和第二集中虚拟调度器 1006, 每个小区的真实调度器 可以位于与该小区对应的 BBU (未示出)。 各个 BBU均部署有测量配置单 元, 测量配置单元可以用于向该 BBU下的各个小区的用户设备发送测量配 置信息, 以便用户设备根据测量配置信息对下行参考信号测量, 测量配置单 元还可以用于接收用户设备上报的信息, 测量配置单元还可以实现上述上报 单元的功能。 测量配置单元可以用于对该 BBU下的各个小区的用户设备的 上行参考信号进行测量, 还可以用于确定干扰信息, 上报给第一集中虚拟调 度器 1002。
可选地, 第一集中虚拟调度器 1002和分簇单元 1005可以均位于第一 BBU的普通基带板或专用基带板,测量配置单元可以部署在 BBU的主控板。 可选地, 可以在 Cloud BB中选择一个 BBU, 在该 BBU的专用基带板 (如 专用集中调度板或增强调度模式基带板)中部署该第二集中虚拟调度器(也 称为 CLB虚拟调度器), 当然, 也可以在普通基带板中部署第二集中虚拟调 度器。 应理解, 本发明实施例对此并不限定。
可选地, 当第一集中虚拟调度器 1002位于第一 BBU的普通基带板时, 第一 BBU的基带板可以预留至少 1个核实现第一集中虚拟调度器 1002的功 能。
由于 CSPC虚拟调度的复杂度随小区数目和子带数线性增加, 同一小区 簇的 CSPC虚拟调度可以按照子带并行。基带板的核负载分担方式具体可以 是: 在全带 CSPC时, 由至少 1个核中的一个核确定第一小区簇中各小区的 下行发射功率。也就是说,核间按小区簇进行负荷分担,一个小区簇的 CSPC 虚拟调度由一个核处理。 或者在子带 CSPC时, 可以由至少 1个核联合确定 第一小区簇中各小区的下行发射功率, 可选地, 可以按照子带进行分担, 每 个核处理不同的子带, 当还有剩余的资源时, 至少 1个核还可以联合处理其 它小区簇。
由于 CLB为全带处理, CSPC集中虚拟调度的复杂度随小区数目仅随小 区数目线性增加,因此核间可以按小区簇进行负荷分担,一个小区簇的 CSPC 集中虚拟调度由一个核处理。 地如图 11A和图 11B所示, 其中在某块基带板中部署有簇级处理的第一集 中虚拟调度器。 在各个 BBU的基带板部署下行优先级更新单元, 具体地, 每个下行优先级更新单元用于根据第一集中虚拟调度器 1002发送的小区的 下行发射功率进行用户设备的子带或全带 MCS修正。 这样, 以确定初传或 重传调度的 MCS。 即各个小区采用下行优先级更新单元进行真实调度, 可 以周期性地进行调度。
相应地, 每个小区的真实调度器可以包括 DL SCH单元, 在各个 BBU 的基带板部署 DL SCH单元, 示意性地如图 12A和图 12B所示。 DL SCH单 元用于进行 CLB真实调度, 可以用于根据第二集中虚拟调度器发送的协调 小区负载平衡的结果调度其它小区的边缘用户设备。
基于上述方案, 第一集中虚拟调度器通过小区的信息来实现多小区的功 率控制, 协调各小区的下行发射功率, 能够有效地降低小区间的下行干扰。 另外, 第二集中虚拟调度器通过各个小区的负载信息来实现小区的负载平 衡, 从而提升网络的覆盖性能。
图 15是本发明一个实施例的调度方法的流程图。 该方法由集中虚拟调 度器执行, 适用于多个小区的通信系统中, 对多个小区间的资源使用进行协 调, 以降低小区间的干扰, 通信系统包括集中虚拟调度器和至少一个真实调 度器。
1501 , 集中虚拟调度器确定第一小区的发射功率, 第一小区为通信系统 中的多个小区中的每个小区。
1502, 集中虚拟调度器向第一小区对应的真实调度器发送集中虚拟调度 器确定的发射功率, 以指示第一小区对应的真实调度器在第一小区采用集中 虚拟调度器确定的发射功率对 UE进行调度。
应理解, 本发明实施例对真实调度器的数目不作限定, 可以是 1个或多 个。 且每个真实调度器可以调度的小区可以是一个也可以是多个, 例如, 一 个基站上可以设置一个真实调度器, 该基站下的小区, 都可以由该真实调度 器调度。 或者, 在包括多个小区的基站中可以设置与该多个小区分别对应的 多个真实调度器。
需要说明的是,本发明实施例的集中虚拟调度器和真实调度器又可以称 之为集中虚拟调度实体和真实调度实体, 且可以是功能实体, 也可以是逻辑 实体。 即可以为软件形式, 通过处理器执行程序代码来实现其功能; 也可以 为硬件形式, 例如, 以芯片或者是特定集成电路的形式设置于基带板上。
本发明实施例的调度方法适用于多个小区的通信系统中, 该通信系统包 括上层的集中虚拟调度器和下层的至少一个真实调度器, 集中虚拟调度器确 定多个小区中每个小区的发射功率, 向每个小区的真实调度器发送该小区的 发射功率, 以指示该真实调度器在该小区采用集中虚拟调度器确定的发射功 率调度 UE。 因此, 采用本发明的分层调度架构, 上层的集中虚拟调度器通 过对多个小区间的资源使用进行协调, 选择网络性能最佳的发射功率下发, 以指示下层的真实调度器以该最佳的发射功率调度 UE。 能够降低小区间的 干扰, 提高资源利用效率。
图 15的方法可以由图 3-图 14中的调度系统中的集中虚拟调度器实现, 因此适当省略重复的描述。
可选地, 作为一个实施例, 集中虚拟调度器可以确定更细粒度的发射功 率, 在步骤 1501 中, 集中虚拟调度器可以确定第一小区的每个资源块 RB 单元上的发射功率, 即确定每个小区的每个 RB单元上的发射功率。 RB单 元包括 PRB或 RBG,在 1502中, 第一小区对应的真实调度器发送第一小区 每个 RB单元上的发射功率, 以指示第一小区对应的真实调度器在第一小区 的每个 RB单元上采用集中虚拟调度器确定的发射功率对 UE进行调度。 如 此, 可以实现 RB级的功率协调, 使得协调粒度更加精细, 更加有利于解决 小区间干扰的问题。
考虑到计算复杂度的约束,当网络到达一定规模后,需要根据计算能力、 干扰情况等将网络中的小区进行分簇, 使得簇间干扰尽可能低、 簇内干扰比 较内聚。 这样, 通过小区间的干扰情况来将通信网络的多个小区划分成至少 一个小区簇, 将干扰较大的多个小区划分成同一个小区簇, 对该同一个小区 簇的多个小区间的资源使用进行协调, 实现簇内小区功率优化, 避免小区间 的下行干扰。
应理解, 本发明实施例对小区分簇方式并不限定, 也可以按照数目或位 置等方式来划分小区簇。 小区分簇的例子可以参考上述, 此处不再赘述。
针对每个簇可以设置一个集中虚拟调度器进行小区间发射功率的协调。 可选地, 作为另一个实施例, 集中虚拟调度器可以将多个小区划分为至 少一个簇; 或者, 在步骤 1501 中, 集中虚拟调度器分簇确定每个簇内的每 个小区的发射功率。 优选地, 一个小区簇包括的小区不超过 36个。
可选地, 作为另一个实施例, 在步骤 1501 中, 集中虚拟调度器可以获 取第一信道信息和第一历史调度信息, 第一信道信息和第一历史调度信息分 别包括第一小区所在簇内所有小区的信道信息和历史调度信息。根据第一信 道信息和第一历史调度信息, 计算第一小区在多个候选功率下的网络效用 值, 并选择网络效用值最佳的候选功率, 作为第一小区的发射功率; 或者, 根据第一信道信息和第一历史调度信息, 计算第一小区的每个 RB单元在多 个候选功率下的网络效用值, 并选择网络效用值最佳的候选功率, 作为当前 计算的 RB单元的发射功率。 以上多个候选功率可以为按一定功率步长递增 的多个功率等级, 也可以为预先设置的多个功率等级。 本发明实施例不做任 何限制。
具体地, 集中虚拟调度器确定每个小区或每个小区每个 RB单元的发射 功率的过程可以是一个功率遍历的虚拟调度(或称之为预调度 )过程。例如, 集中虚拟调度器收集控制范围内所有小区的信息,根据这些信息计算当前网 络的效用值(或称之为性能值); 并根据各小区的信息预估修改小区的发射 功率后网络性能的变换, 选择效用最佳的发射功率下发。 其中, 小区的信息 可以包括该小区的信道信息和历史调度信息。 信道信息可以为下行信道信 息, 例如, UE上报的测量信息; 也可以为上行信道信息, 例如每个小区对 其中一个小区内的 UE发送的上行参考信号测量得到的测量信息。
其中, UE上>¾的测量信息例如可以包括以下信息中的一个或多个: CSI、 RSRP、 RSRQ或 RSSI等, 其中 CSI包括但不限于 CQI、 RI或 PMI。 小区测 量得到的上行信道信息可以包括 RSRP或 RSRQ。 历史调度信息可以包括历 史调度优先级、 调度速率、 以及上次调度的发送功率等。 网络的效用值可以 通过总效用函数来体现,总效用函数可以是所有 UE的调度速率取对数求和, 或是所有小区的平均调度优先级之和。 效用最佳可以是指: 所有 UE调度速 率加权和最大; 或每个小区平均调度速率之和最低等。 另外, 关于发射功率 的修改, 可以以所有小区等比例增加功率的方式进行, 也可以以单一小区增 加功率的方式进行。
总之, 本发明不对集中虚拟调度器的虚拟调度算法做任何限制, 本领域 技术人员可以根据需要选择不同的算法, 只要可以从多种功率组合中选择出 使得网络性能最佳的功率组合即可。
可选地, 作为另一个实施例, 集中虚拟调度器还可以进行 CLB虚拟调 度, 具体地, 集中虚拟调度器可以获取第一负载信息, 第一负载信息包括第 一小区所在簇内所有小区的负载信息; 根据第一负载信息确定负载平衡结 果, 负载平衡结果为第一小区调度第二小区的边缘 UE, 第一小区和第二小 区为第一小区所在簇内的相邻小区。 集中虚拟调度器向第一小区所对应的真 实调度器发送负载平衡结果, 以指示第一小区的真实调度器对第二小区的边 缘 UE进行调度。
具体地, 根据每个小区的负载信息协调负载平衡。 可以进一步用于根据 每个小区的负载信息确定多个小区中各个小区的优先级, 配置多个小区中的 第一小区调度第二小区的边缘 UE, 第一小区和第二小区相邻且第二小区的 优先级高于第一小区的优先级。小区优先级越高表示小区负载越重。可选地, 可以周期性地进行 CLB虚拟调度。 具体地, 在每个周期内以簇内所有小区 的优先级之和确定为目标函数, 各个小区优先级的差异越大, 则目标函数越 大, 可以优先选出使得目标函数最大的小区 (如上述第二小区为重载小区, 第一小区为轻载小区, 使得两小区的优先级差别较大)来配置边缘用户的调 度。 这样, 通过变化边缘用户的调度小区来影响小区优先级, 实现小区的负 载平衡, 从而提升网络的覆盖性能。
需要说明的是, 集中虚拟调度器实现 CLB虚拟调度和 CSCP虚拟调度 的功能仅仅为一种逻辑功能划分, 实际实现时可以结合或者集成到一个物理 实体, 也可以是物理上分开的, 分布在不同的网络设备中。 类似地, 真实调 度器实现 CLB真实调度和 CSCP真实调度的功能也仅仅为一种逻辑功能划 分,实际实现时可以结合或者集成到一个物理实体,也可以是物理上分开的, 分布在不同的网络设备中。
可选地, 作为另一个实施例, 当通信系统为分布式基站组网模式且部署 协调器, 通信系统的各个基站与协调器互连, 每个小区的真实调度器可以位 于与该小区对应的基站、 集中虚拟调度器可以位于协调器。 或者当通信系统 的各个基站的基带处理单元 BBU集中放置, 每个小区的真实调度器可以与 该小区对应的 BBU, 集中虚拟调度器可以位于集中放置的 BBU 中的任一 BBU。 通信系统的场景图可以参考上述图 6。 应理解, 本发明实施例对此并 不限定, 还可以应用到其它通信系统中。
可选地, 在协调器进行 CSPC虚拟调度的情况下, 为了保证协调器用于 计算 CSPC的测量信息能够同时到达, 同时对于协调器给出的功率优化结果 能够在簇内所有小区在空口同时生效。 需要实现协调器和基站之间的同步, 即时间对齐。
具体地, 集中虚拟调度器可以在下行接收帧号和子帧号上向第三小区的 真实调度器发送测量请求消息,在上行发送帧号和子帧号上接收第三小区的 真实调度器发送的测量响应消息, 第三小区的真实调度器的往返传输时延
RTT为通信系统的多个小区中的最大 RTT, RTT表示上行发送帧号和子帧号 与下行接收帧号和子帧号的差。 集中虚拟调度器根据第三小区对应的真实调 度器的 RTT确定生效时间, 并将生效时间发送给第一小区对应的真实调度 器, 使得第一小区对应的真实调度器在生效时间对 UE进行调度。 具体的时 间同步过程可以参考上述, 此处不再赘述。
可选地, 在协调器进行 CSPC虚拟调度的情况下, 集中虚拟调度器可以 进一从每个基站的控制面接收该基站下的各个小区上报的信息,主控板控制 面与协调器接口采用 SCTP协议。 或者集中虚拟调度器可以进一步从每个基 站的用户面接收该基站下的各个小区上报的信息,主控板的用户面与协调器 接口采用 GTP-U协议。 应理解, 本发明实施例基站和协调器之间的接口采 用何种传输协议并不限定。
可选地,可以在分布式基站中选择一个基站,在该基站的专用基带板(如 专用集中调度板或增强调度模式基带板) 中部署该 CLB虚拟调度的功能, 即 CSPC虚拟调度和 CLB虚拟调度的功能实体可以分布在不同的网络设备 中。
可选地, 在 BBU进行 CSPC虚拟调度的情况下, 可以在第一 BBU的普 通基带本或专用基带板上部署集中虚拟调度器,每个小区的真实调度器可以 位于与该小区对应的 BBU的基带板中。 当集中虚拟调度器位于第一 BBU的 普通基带板时, 第一 BBU的基带板可以预留至少 1个核实现集中虚拟调度 器的功能。 由于 CSPC虚拟调度的复杂度随小区数目和子带数线性增加, 同 一小区簇的 CSPC虚拟调度可以按照子带并行。基带板的核负载分担方式具 体可以是: 在全带 CSPC时, 由至少 1个核中的一个核确定第一小区簇中各 小区的下行发射功率。 也就是说, 核间按小区簇进行负荷分担, 一个小区簇 的 CSPC虚拟调度由一个核处理。 或者在子带 CSPC时, 可以由至少 1个核 联合确定第一小区簇中各小区的下行发射功率, 可选地, 可以按照子带进行 分担, 每个核处理不同的子带, 当还有剩余的资源时, 至少 1个核还可以联 合处理其它小区簇。 由于 CLB为全带处理, CSPC集中虚拟调度的复杂度随 小区数目仅随小区数目线性增加, 因此核间可以按小区簇进行负荷分担, 一 个小区簇的 CSPC集中虚拟调度由一个核处理。
可选地,部署在第一 BBU的集中虚拟调度器还可以实现 CLB虚拟调度 的功能, 即 CSPC虚拟调度和 CLB虚拟调度的功能实体可以集成在一个物 理实体上。
可选地,每个小区的真实调度器可以根据集中虚拟调度器发送的小区的 下行发射功率进行 UE的子带或全带 MCS修正。 这样, 以确定初传或重传 调度的 MCS。 可以周期性地进行真实调度。
图 16是本发明另一个实施例的调度方法的流程图。 该方法适用于多个 小区的通信系统中, 对多个小区间的资源使用进行协调, 以降低小区间的干 扰, 通信系统包括集中虚拟调度器和至少一个真实调度器。 该方法由多个小 区中的某个小区 (称为第一小区) 的真实调度器执行, 并且与图 15 的方法 相对应, 因此将适当省略与图 15的实施例重复的描述。
1601 , 第一小区的真实调度器接收集中虚拟调度器确定的第一小区的发 射功率, 其中, 第一小区为通信系统中的多个小区中的每个小区。
1602, 真实调度器在第一小区采用集中虚拟调度器确定的发射功率对 UE进行调度。
应理解, 本发明实施例对真实调度器的数目不作限定, 可以是 1个或多 个。 且每个真实调度器可以调度的小区可以是一个也可以是多个, 例如, 一 个基站上可以设置一个真实调度器, 该基站下的小区, 都可以由该真实调度 器调度。 或者, 在包括多个小区的基站中可以设置与该多个小区分别对应的 多个真实调度器。
需要说明的是,本发明实施例的集中虚拟调度器和真实调度器又可以称 之为集中虚拟调度实体和真实调度实体, 且可以是功能实体, 也可以是逻辑 实体。 即可以为软件形式, 通过处理器执行程序代码来实现其功能; 也可以 为硬件形式, 例如, 以芯片或者是特定集成电路的形式设置于基带板上。
本发明实施例的调度方法适用于多个小区的通信系统中,该通信系统包 括上层的集中虚拟调度器和下层的至少一个真实调度器, 集中虚拟调度器用 于确定通信系统中的多个小区中每个小区的发射功率, 多个小区中的某个小 区的真实调度器接收集中虚拟调度器发送的该小区的发射功率,在该小区采 用集中虚拟调度器确定的发射功率调度 UE。 因此, 采用本发明的分层调度 架构, 上层的集中虚拟调度器通过对多个小区间的资源使用进行协调, 选择 网络性能最佳的发射功率下发, 下层的真实调度器以该最佳的发射功率调度 UE。 能够降低小区间的干扰, 提高资源利用效率。 图 16的方法可以由图 3-图 14中的调度系统中的真实调度器实现, 因此 适当省略重复的描述。
可选地, 作为另一个实施例, 在步骤 1601 中, 真实调度器可以接收集 中虚拟调度器发送的第一小区每个 RB单元上的发射功率, RB单元包括 PRB 或 RBG。 在步骤 1602中, 真实调度器可以在第一小区的每个 RB单元上采 用集中虚拟调度器确定的发射功率调度 UE。 如此, 可以实现 RB级的功率 协调, 使得协调粒度更加精细, 更加有利于解决小区间干扰的问题。
可选地, 作为另一个实施例, 真实调度器还可以接收集中虚拟调度器发 送的负载平衡结果, 负载平衡结果为第一小区调度第二小区的边缘 UE, 第 一小区和第二小区为多个小区中相邻的小区, 且位于同一簇内。 真实调度器 还可以根据负载平衡结果对第二小区的边缘 UE进行调度。 因此, 通过变化 边缘用户的调度小区来影响小区优先级, 实现小区的负载平衡, 从而提升网 络的覆盖性能。
可选地, 作为另一个实施例, 当通信系统为分布式基站组网模式且部署 协调器, 通信系统的各个基站与协调器互连, 每个小区的真实调度器可以位 于与该小区对应的基站、 集中虚拟调度器可以位于协调器。 或者当通信系统 的各个基站的基带处理单元 BBU集中放置, 每个小区的真实调度器可以与 该小区对应的 BBU, 集中虚拟调度器可以位于集中放置的 BBU 中的任一 BBU。 通信系统的场景图可以参考上述图 6。 应理解, 本发明实施例对此并 不限定, 还可以应用到其它通信系统中。
可选地, 在协调器进行 CSPC虚拟调度的情况下, 为了保证协调器用于 计算 CSPC的测量信息能够同时到达, 同时对于协调器给出的功率优化结果 能够在簇内所有小区在空口同时生效。 需要实现协调器和基站之间的同步, 即时间对齐。
具体地,真实调度器在下行接收帧号和子帧号上接收集中虚拟调度器发 送的测量请求消息,在上行发送帧号和子帧号上向集中虚拟调度器发送测量 响应消息, 以便集中虚拟调度器根据上行发送帧号和子帧号和下行接收帧号 和子帧号获得真实调度器的 RTT, 从通信系统中多个小区的所有 RTT中选 择最大的 RTT, 并根据最大的 RTT确定生效时间。 其中, RTT表示上行发 送帧号和子帧号与下行接收帧号和子帧号的差; 真实调度器接收集中虚拟调 度器发送的生效时间, 并在生效时间对 UE进行调度。 这样, 能够确保协调 器进行 CSPC虚拟调度的完成时间点小于调度结果下发的时间点 , 在簇内各 个小区真实调度时, 虚拟调度确定的功率都已提前到达簇内各个基站。 具体 的时间同步过程可以参考上述, 此处不再赘述。
可选地, 在 BBU进行 CSPC虚拟调度的情况下, 可以在任一 BBU (第 一 BBU ) 的普通基带本或专用基带板上部署集中虚拟调度器, 每个小区的 真实调度器可以位于与该小区对应的 BBU的基带板中。 当集中虚拟调度器 位于第一 BBU的普通基带板时,第一 BBU的基带板可以预留至少 1个核实 现集中虚拟调度器的功能。 由于 CSPC虚拟调度的复杂度随小区数目和子带 数线性增加, 同一小区簇的 CSPC虚拟调度可以按照子带并行。 基带板的核 负载分担方式具体可以是: 在全带 CSPC时, 由至少 1个核中的一个核确定 第一小区簇中各小区的下行发射功率。 也就是说, 核间按小区簇进行负荷分 担, 一个小区簇的 CSPC虚拟调度由一个核处理。 或者在子带 CSPC时, 可 以由至少 1个核联合确定第一小区簇中各小区的下行发射功率, 可选地, 可 以按照子带进行分担, 每个核处理不同的子带, 当还有剩余的资源时, 至少 1个核还可以联合处理其它小区簇。 由于 CLB为全带处理, CSPC集中虚拟 调度的复杂度随小区数目仅随小区数目线性增加, 因此核间可以按小区簇进 行负荷分担, 一个小区簇的 CSPC集中虚拟调度由一个核处理。
可选地,真实调度器可以根据集中虚拟调度器发送的小区的下行发射功 率进行 UE的子带或全带 MCS修正。这样, 以确定初传或重传调度的 MCS。 可以周期性地进行真实调度。
图 17是本发明一个实施例的集中虚拟调度器的示意性结构图。 图 17的 集中虚拟调度器 1700是上述调度系统中集中虚拟调度器的一个例子, 包括 确定单元 1701和接口单元 1702。
确定单元 1701用于确定第一小区的发射功率, 第一小区为通信系统中 的多个小区中的每个小区。
接口单元 1702用于向第一小区对应的真实调度器发送确定单元 1701确 定的发射功率, 以指示第一小区对应的真实调度器在第一小区采用确定单元 1701确定的发射功率对 UE进行调度。
应理解, 本发明实施例对真实调度器的数目不作限定, 可以是 1个或多 个。 且每个真实调度器可以调度的小区可以是一个也可以是多个, 例如, 一 个基站上可以设置一个真实调度器, 该基站下的小区, 都可以由该真实调度 器调度。 或者, 在包括多个小区的基站中可以设置与该多个小区分别对应的 多个真实调度器。
需要说明的是,本发明实施例的集中虚拟调度器和真实调度器又可以称 之为集中虚拟调度实体和真实调度实体, 且可以是功能实体, 也可以是逻辑 实体。 即可以为软件形式, 通过处理器执行程序代码来实现其功能; 也可以 为硬件形式, 例如, 以芯片或者是特定集成电路的形式设置于基带板上。
本发明实施例集中虚拟调度器确定通信系统中的多个小区中每个小区 的发射功率, 向每个小区的真实调度器发送该小区的发射功率, 以指示该真 实调度器在该小区采用集中虚拟调度器确定的发射功率调度 UE。 因此, 采 用本发明的分层调度架构, 上层的集中虚拟调度器通过对多个小区间的资源 使用进行协调, 选择网络性能最佳的发射功率下发, 以指示下层的真实调度 器以该最佳的发射功率调度 UE。 能够降低小区间的干扰, 提高资源利用效 率。
集中虚拟调度器 1700可实现图 15和 16的方法中涉及集中虚拟调度器 的各个步骤, 为避免重复, 不再详细描述。
可选地, 作为一个实施例, 确定单元 1701可以具体用于确定更细粒度 的发射功率, 即确定第一小区的每个 RB单元上的发射功率, RB单元包括 PRB或 RBG。 接口单元 1702可以用于向第一小区对应的真实调度器发送第 一小区的每个 RB单元上的发射功率, 以指示第一小区对应的真实调度器在 第一小区的每个 RB单元上采用确定单元 1701确定的发射功率对 UE进行调 度。 如此, 可以实现 RB级的功率协调, 使得协调粒度更加精细, 更加有利 于解决小区间干扰的问题。
考虑到计算复杂度的约束,当网络到达一定规模后,需要根据计算能力、 干扰情况等将网络中的小区进行分簇, 使得簇间干扰尽可能低、 簇内干扰比 较内聚。 这样, 通过小区间的干扰情况来将通信网络的多个小区划分成至少 一个小区簇, 将干扰较大的多个小区划分成同一个小区簇, 对该同一个小区 簇的多个小区间的资源使用进行协调, 实现簇内小区功率优化, 避免小区间 的下行干扰。
应理解, 本发明实施例对小区分簇方式并不限定, 也可以按照数目或位 置等方式来划分小区簇。 小区分簇的例子可以参考上述, 此处不再赘述。
针对每个簇可以设置一个集中虚拟调度器进行小区间发射功率的协调。 可选地, 作为另一个实施例, 多个小区被划分为至少一个簇, 确定单元
1701可以具体用于分簇确定每个簇内的每个小区的发射功率,即以簇为单位 确定每个小区的发射功率。 优选地, 一个小区簇包括的小区不超过 36个。
可选地, 作为另一个实施例, 集中虚拟调度器 1700还可以包括第一获 取单元 1703, 第一获取单元 1703用于获取第一信道信息和第一历史调度信 息, 第一信道信息和第一历史调度信息分别包括第一小区所在簇内所有小区 的信道信息和历史调度信息。 确定单元 1701可以具体用于根据第一获取单 元 1703所获取的第一信道信息和第一历史调度信息, 计算第一小区在多个 候选功率下的网络效用值, 并选择网络效用值最佳的候选功率, 作为第一小 区的发射功率。 或者, 确定单元 1701可以具体用于根据第一获取单元 1703 所获取的第一信道信息和第一历史调度信息, 计算第一小区的每个 RB单元 在多个候选功率下的网络效用值, 并选择网络效用值最佳的候选功率, 作为 当前计算的 RB单元的发射功率。 以上多个候选功率可以为按一定功率步长 递增的多个功率等级, 也可以为预先设置的多个功率等级。 本发明实施例不 做任何限制。 具体的实施例可以参考上述, 此处不再赘述。
应理解, 本发明不对集中虚拟调度器的虚拟调度算法做任何限制, 本领 域技术人员可以根据需要选择不同的算法, 只要可以从多种功率组合中选择 出使得网络性能最佳的功率组合即可。
可选地, 作为另一个实施例, 集中虚拟调度器 1700还可以包括第二获 取单元 1704, 第二获取单元 1704用于获取第一负载信息, 第一负载信息包 括第一小区所在簇内所有小区的负载信息。 确定单元 1701还可以用于根据 所述第一负载信息确定负载平衡结果, 负载平衡结果为第一小区调度第二小 区的边缘 UE, 第一小区和第二小区为所述第一小区所在簇内的相邻小区。 接口单元 1702还可以用于向第一小区对应的真实调度器发送负载平衡结果, 以指示第一小区对应的真实调度器调度第二小区的边缘 UE。
具体地, 确定单元 1701 可以具体用于根据每个小区的负载信息协调负 载平衡。可以进一步用于根据每个小区的负载信息确定多个小区中各个小区 的优先级, 配置多个小区中的第一小区调度第二小区的边缘用户设备, 第一 小区和第二小区相邻且第二小区的优先级高于第一小区的优先级。 小区优先 级越高表示小区负载越重。 可选地, 可以周期性地进行 CLB虚拟调度。 具 体地, 在每个周期内以簇内所有小区的优先级之和确定为目标函数, 各个小 区优先级的差异越大, 则目标函数越大, 可以优先选出使得目标函数最大的 小区 (如上述第二小区为重载小区, 第一小区为轻载小区, 使得两小区的优 先级差别较大)来配置边缘用户的调度。 这样, 通过变化边缘用户的调度小 区来影响小区优先级, 实现小区的负载平衡, 从而提升网络的覆盖性能。
可选地, 作为另一个实施例, 当通信系统为分布式基站组网模式且部署 协调器, 通信系统的各个基站与协调器互连, 每个小区的真实调度器可以位 于与该小区对应的基站、 集中虚拟调度器可以位于协调器。 或者当通信系统 的各个基站的基带处理单元 BBU集中放置, 每个小区的真实调度器可以与 该小区对应的 BBU, 集中虚拟调度器可以位于集中放置的 BBU 中的任一 BBU。 通信系统的场景图可以参考上述图 6。 应理解, 本发明实施例对此并 不限定, 还可以应用到其它通信系统中。
可选地, 在协调器进行 CSPC虚拟调度的情况下, 为了保证协调器用于 计算 CSPC的测量信息能够同时到达, 同时对于协调器给出的功率优化结果 能够在簇内所有小区在空口同时生效。 需要实现协调器和基站之间的同步, 即时间对齐。
具体地, 接口单元 1702还可以用于在下行接收帧号和子帧号上向第三 小区对应的真实调度器发送测量请求消息,在上行发送帧号和子帧号上接收 第三小区对应的真实调度器发送的测量响应消息。第三小区的真实调度器的 RTT为通信系统的多个小区中的最大 RTT, RTT表示上行发送帧号和子帧号 与下行接收帧号和子帧号的差。 确定单元 1701 还可以用于根据第三小区对 应的真实调度器的 RTT确定生效时间。 接口单元 1702还可以用于将确定单 元 1701生成的生效时间发送给第一小区对应的真实调度器, 使得第一小区 对应的真实调度器在生效时间对 UE进行调度。 具体的时间同步过程可以参 考上述, 此处不再赘述。
可选地, 在协调器进行 CSPC虚拟调度的情况下, 接口单元 1702还可 以用于进一从每个基站的控制面接收该基站下的各个小区上报的信息, 主控 板控制面与协调器接口采用 SCTP协议。 或者接口单元 1702还可以用于从 每个基站的用户面接收该基站下的各个小区上报的信息, 主控板的用户面与 协调器接口采用 GTP-U协议。 应理解, 本发明实施例基站和协调器之间的 接口采用何种传输协议并不限定。
可选地,可以在分布式基站中选择一个基站,在该基站的专用基带板(如 专用集中调度板或增强调度模式基带板) 中部署该 CLB虚拟调度的功能, 即 CSPC虚拟调度和 CLB虚拟调度的功能实体可以分布在不同的网络设备 中。
可选地, 在 BBU进行 CSPC虚拟调度的情况下, 可以在任一 BBU (第 一 BBU ) 的普通基带本或专用基带板上部署集中虚拟调度器, 每个小区的 真实调度器可以位于与该小区对应的 BBU的基带板中。 当集中虚拟调度器 位于第一 BBU的普通基带板时,第一 BBU的基带板可以预留至少 1个核实 现集中虚拟调度器的功能。 由于 CSPC虚拟调度的复杂度随小区数目和子带 数线性增加, 同一小区簇的 CSPC虚拟调度可以按照子带并行。 基带板的核 负载分担方式具体可以是: 在全带 CSPC时, 由至少 1个核中的一个核确定 第一小区簇中各小区的下行发射功率。 也就是说, 核间按小区簇进行负荷分 担, 一个小区簇的 CSPC虚拟调度由一个核处理。 或者在子带 CSPC时, 可 以由至少 1个核联合确定第一小区簇中各小区的下行发射功率, 可选地, 可 以按照子带进行分担, 每个核处理不同的子带, 当还有剩余的资源时, 至少 1个核还可以联合处理其它小区簇。 由于 CLB为全带处理, CSPC集中虚拟 调度的复杂度随小区数目仅随小区数目线性增加, 因此核间可以按小区簇进 行负荷分担, 一个小区簇的 CSPC集中虚拟调度由一个核处理。
可选地,部署在第一 BBU的集中虚拟调度器还可以实现 CLB虚拟调度 的功能, 即 CSPC虚拟调度和 CLB虚拟调度的功能实体可以集成在一个物 理实体上。
图 18是本发明一个实施例的真实调度器的示意性结构图。 图 18的集中 虚拟调度器 1800是上述调度系统中真实调度器的一个例子, 包括接口单元 1801和调度单元 1802。
接口单元 1801 , 用于接收集中虚拟调度器确定的第一小区的发射功率, 其中, 第一小区为通信系统中的多个小区中的每个小区。
调度单元 1802,用于在第一小区采用集中虚拟调度器确定的发射功率对 UE进行调度。
应理解, 本发明实施例对真实调度器的数目不作限定, 可以是 1个或多 个。 且每个真实调度器可以调度的小区可以是一个也可以是多个, 例如, 一 个基站上可以设置一个真实调度器, 该基站下的小区, 都可以由该真实调度 器调度。 或者, 在包括多个小区的基站中可以设置与该多个小区分别对应的 多个真实调度器。
需要说明的是,本发明实施例的集中虚拟调度器和真实调度器又可以称 之为集中虚拟调度实体和真实调度实体, 且可以是功能实体, 也可以是逻辑 实体。 即可以为软件形式, 通过处理器执行程序代码来实现其功能; 也可以 为硬件形式, 例如, 以芯片或者是特定集成电路的形式设置于基带板上。
本发明实施例某个小区的真实调度器接收集中虚拟调度器发送的该小 区的发射功率, 在该小区采用集中虚拟调度器确定的发射功率调度 UE, 多 个小区中的某个小区的真实调度器,其中集中虚拟调度器用于确定通信系统 中的多个小区中每个小区的发射功率, 多个小区包括该小区。 因此, 采用本 发明的分层调度架构,上层的集中虚拟调度器通过对多个小区间的资源使用 进行协调, 选择网络性能最佳的发射功率下发, 下层的真实调度器以该最佳 的发射功率调度 UE。 能够降低小区间的干扰, 提高资源利用效率。
真实调度器 1800可实现图 15和 16的方法中涉及真实调度器的各个步 骤, 为避免重复, 不再详细描述。
可选地, 作为另一个实施例, 接口单元 1801 可以用于接收集中虚拟调 度器发送的第一小区每个 RB单元上的发射功率, RB单元包括 PRB或 RBG。 调度单元 1802可以具体用于在第一小区的每个 RB单元上采用集中虚拟调 度器确定的发射功率调度 UE。 如此, 可以实现 RB级的功率协调, 使得协 调粒度更加精细, 更加有利于解决小区间干扰的问题。
可选地, 作为另一个实施例, 接口单元 1801还可以用于接收集中虚拟 调度器确定的负载平衡结果, 负载平衡结果为第一小区调度第二小区的边缘 UE, 第一小区和第二小区为多个小区中相邻的小区, 且位于同一簇内。 调 度单元 1802还可以用于根据负载平衡结果对第二小区的边缘 UE进行调度。 因此, 通过变化边缘用户的调度小区来影响小区优先级, 实现小区的负载平 衡, 从而提升网络的覆盖性能。
可选地, 作为另一个实施例, 当通信系统为分布式基站组网模式且部署 协调器, 通信系统的各个基站与协调器互连, 每个小区的真实调度器可以位 于与该小区对应的基站、 集中虚拟调度器可以位于协调器。 或者当通信系统 的各个基站的基带处理单元 BBU集中放置, 每个小区的真实调度器可以与 该小区对应的 BBU, 集中虚拟调度器可以位于集中放置的 BBU 中的任一 BBU。 通信系统的场景图可以参考上述图 6。 应理解, 本发明实施例对此并 不限定, 还可以应用到其它通信系统中。
可选地, 在协调器进行 CSPC虚拟调度的情况下, 为了保证协调器用于 计算 CSPC的测量信息能够同时到达, 同时对于协调器给出的功率优化结果 能够在簇内所有小区在空口同时生效。 需要实现协调器和基站之间的同步, 即时间对齐。
具体地, 接口单元 1801还可以用于在下行接收帧号和子帧号上接收集 中虚拟调度器发送的测量请求消息,在上行发送帧号和子帧号上向集中虚拟 调度器发送测量响应消息, 以便集中虚拟调度器根据上行发送帧号和子帧号 和下行接收帧号和子帧号获得真实调度器的 RTT,从通信系统中多个小区的 所有 RTT中选择最大的 RTT,并根据最大的 RTT确定生效时间。其中, RTT 表示上行发送帧号和子帧号与下行接收帧号和子帧号的差。 接口单元 1801 还可以用于接收集中虚拟调度器发送的生效时间, 并指示调度单元 1802在 生效时间对用户设备进行调度。 具体的时间同步过程可以参考上述, 此处不 再赘述。
可选地, 在 BBU进行 CSPC虚拟调度的情况下, 可以在任一 BBU (第 一 BBU ) 的普通基带本或专用基带板上部署集中虚拟调度器, 每个小区的 真实调度器可以位于与该小区对应的 BBU的基带板中。 当集中虚拟调度器 位于第一 BBU的普通基带板时,第一 BBU的基带板可以预留至少 1个核实 现集中虚拟调度器的功能。 由于 CSPC虚拟调度的复杂度随小区数目和子带 数线性增加, 同一小区簇的 CSPC虚拟调度可以按照子带并行。 基带板的核 负载分担方式具体可以是: 在全带 CSPC时, 由至少 1个核中的一个核确定 第一小区簇中各小区的下行发射功率。 也就是说, 核间按小区簇进行负荷分 担, 一个小区簇的 CSPC虚拟调度由一个核处理。 或者在子带 CSPC时, 可 以由至少 1个核联合确定第一小区簇中各小区的下行发射功率, 可选地, 可 以按照子带进行分担, 每个核处理不同的子带, 当还有剩余的资源时, 至少 1个核还可以联合处理其它小区簇。 由于 CLB为全带处理, CSPC集中虚拟 调度的复杂度随小区数目仅随小区数目线性增加, 因此核间可以按小区簇进 行负荷分担, 一个小区簇的 CSPC集中虚拟调度由一个核处理。
可选地, 调度单元 1802可以具体用于根据集中虚拟调度器发送的小区 的下行发射功率进行用户设备的子带或全带 MCS修正。 这样, 以确定初传 或重传调度的 MCS。 可以周期性地进行真实调度。 需要说明的是, 以上实施例中的接口单元可以为接口电路。 确定单元可 以为单独设立的处理器, 也可以集成在基站的某一个处理器中实现, 此外, 也可以以程序代码的形式存储于基站的存储器中, 由基站的某一个处理器调 用并执行以上跟踪任务建立单元的功能。 第一获取单元、 第二获取单元和调 度单元的实现同确定单元。 这里所述的处理器可以是一个中央处理器
( Central Processing Unit, CPU ), 或者是特定集成电路 ( Application Specific Integrated Circuit, ASIC ), 或者是被配置成实施本发明实施例的一个或多个 集成电路。
图 19是本发明另一个实施例的集中虚拟调度器的示意性结构图。 图 19 的集中虚拟调度器 1900是上述调度系统中集中虚拟调度器的一个例子, 集 中虚拟调度器 1900包括处理器 1901 , 存储器 1902和接口电路 1903。 处理 器 1901控制设备 1900的操作,处理器 1901可以是一个 CPU,或者是 ASIC, 或者是被配置成实施本发明实施例的一个或多个集成电路。 存储器 1902可 以包括只读存储器和随机存取存储器, 并向处理器 1901提供指令和数据。 存储器 1902的一部分还可以包括非易失行随机存取存储器(NVRAM )。 处 理器 1901 , 存储器 1902和接口电路 1903通过总线系统 1910耦合在一起, 其中总线系统 1910除包括数据总线之外, 还包括电源总线、 控制总线和状 态信号总线。 但是为了清楚说明起见, 在图中将各种总线都标为总线系统 1910。
上述本发明实施例调度系统中集中虚拟调度器涉及的功能可以应用上 述的集中虚拟调度器 1900来实现。 其中, 处理器 1901可能是一种集成电路 芯片, 具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过处 理器 1901 中的硬件的集成逻辑电路或者软件形式的指令完成。 上述的处理 器 1901可以是通用处理器,包括 CPU或 NP等;还可以是 DSP、ASIC、FPGA 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可 以实现或者执行本发明实施例中的公开的各方法、 步骤及逻辑框图。 通用处 理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在该实施例中, 处理器 1901用于确定第一小区的发射功率, 第一小区 为通信系统中的多个小区中的每个小区; 接口电路 1903用于向第一小区对 应的真实调度器发送集中虚拟调度器确定的发射功率, 以指示第一小区对应 的真实调度器在第一小区采用集中虚拟调度器确定的发射功率对 UE进行调 度。
应理解, 本发明实施例对真实调度器的数目不作限定, 可以是 1个或多 个。 且每个真实调度器可以调度的小区可以是一个也可以是多个, 例如, 一 个基站上可以设置一个真实调度器, 该基站下的小区, 都可以由该真实调度 器调度。 或者, 在包括多个小区的基站中可以设置与该多个小区分别对应的 多个真实调度器。
需要说明的是,本发明实施例的集中虚拟调度器和真实调度器又可以称 之为集中虚拟调度实体和真实调度实体, 且可以是功能实体, 也可以是逻辑 实体。 即可以为软件形式, 通过处理器执行程序代码来实现其功能; 也可以 为硬件形式, 例如, 以芯片或者是特定集成电路的形式设置于基带板上。
本发明实施例集中虚拟调度器确定通信系统中的多个小区中每个小区 的发射功率, 向每个小区的真实调度器发送该小区的发射功率, 以指示该真 实调度器在该小区采用集中虚拟调度器确定的发射功率调度 UE。 因此, 采 用本发明的分层调度架构, 上层的集中虚拟调度器通过对多个小区间的资源 使用进行协调, 选择网络性能最佳的发射功率下发, 以指示下层的真实调度 器以该最佳的发射功率调度 UE。 能够降低小区间的干扰, 提高资源利用效 率。
集中虚拟调度器 1900可实现图 15和 16的方法中涉及集中虚拟调度器 的各个步骤, 为避免重复, 不再详细描述。
可选地, 作为一个实施例, 处理器 1901可以具体用于可以具体用于确 定更细粒度的发射功率, 即确定第一小区的每个 RB单元上的发射功率, RB 单元包括 PRB或 RBG。接口电路 1903可以用于向第一小区对应的真实调度 器发送第一小区的每个 RB单元上的发射功率, 以指示第一小区对应的真实 调度器在第一小区的每个 RB单元上采用处理器 1901确定的发射功率对 UE 进行调度。。 如此, 可以实现 RB 级的功率协调, 使得协调粒度更加精细, 更加有利于解决小区间干扰的问题。
考虑到计算复杂度的约束,当网络到达一定规模后,需要根据计算能力、 干扰情况等将网络中的小区进行分簇, 使得簇间干扰尽可能低、 簇内干扰比 较内聚。 这样, 通过小区间的干扰情况来将通信网络的多个小区划分成至少 一个小区簇, 将干扰较大的多个小区划分成同一个小区簇, 对该同一个小区 簇的多个小区间的资源使用进行协调, 实现簇内小区功率优化, 避免小区间 的下行干扰。
应理解, 本发明实施例对小区分簇方式并不限定, 也可以按照数目或位 置等方式来划分小区簇。 小区分簇的例子可以参考上述, 此处不再赘述。
针对每个簇可以设置一个集中虚拟调度器进行小区间发射功率的协调。 可选地,作为另一个实施例,多个小区被划分为至少一个簇,处理器 1901 可以具体用于分簇确定每个簇内的每个小区的发射功率, 即以簇为单位确定 每个小区的发射功率。 优选地, 一个小区簇包括的小区不超过 36个。
可选地, 作为另一个实施例, 处理器 1901 还可以用于获取第一信道信 息和第一历史调度信息, 第一信道信息和第一历史调度信息分别包括第一小 区所在簇内所有小区的信道信息和历史调度信息。 处理器 1901 可以具体用 于根据获取的第一信道信息和第一历史调度信息,计算第一小区在多个候选 功率下的网络效用值, 并选择网络效用值最佳的候选功率, 作为第一小区的 发射功率。 或者, 处理器 1901可以具体用于根据所获取的第一信道信息和 第一历史调度信息, 计算第一小区的每个 RB单元在多个候选功率下的网络 效用值, 并选择网络效用值最佳的候选功率, 作为当前计算的 RB单元的发 射功率。 以上多个候选功率可以为按一定功率步长递增的多个功率等级, 也 可以为预先设置的多个功率等级。 本发明实施例不做任何限制。 具体的实施 例可以参考上述, 此处不再赘述。
应理解, 本发明不对集中虚拟调度器的虚拟调度算法做任何限制, 本领 域技术人员可以根据需要选择不同的算法, 只要可以从多种功率组合中选择 出使得网络性能最佳的功率组合即可。
可选地, 作为另一个实施例, 处理器 1901 还可以用于获取第一负载信 息, 第一负载信息包括第一小区所在簇内所有小区的负载信息, 根据所述第 一负载信息确定负载平衡结果, 负载平衡结果为第一小区调度第二小区的边 缘 UE, 第一小区和第二小区为所述第一小区所在簇内的相邻小区。 接口电 路 1903还可以用于向第一小区对应的真实调度器发送负载平衡结果, 以指 示第一小区对应的真实调度器调度第二小区的边缘 UE。 进一步地, 处理器 1901还可以具体用于以簇为单位确定负载平衡结果。
具体地, 处理器 1901可以具体用于根据每个小区的负载信息协调负载 平衡。可以进一步用于根据每个小区的负载信息确定多个小区中各个小区的 优先级, 配置多个小区中的第一小区调度第二小区的边缘用户设备, 第一小 区和第二小区相邻且第二小区的优先级高于第一小区的优先级。 小区优先级 越高表示小区负载越重。 可选地, 可以周期性地进行 CLB虚拟调度。 具体 地, 在每个周期内以簇内所有小区的优先级之和确定为目标函数, 各个小区 优先级的差异越大, 则目标函数越大, 可以优先选出使得目标函数最大的小 区(如上述第二小区为重载小区, 第一小区为轻载小区, 使得两小区的优先 级差别较大)来配置边缘用户的调度。 这样, 通过变化边缘用户的调度小区 来影响小区优先级, 实现小区的负载平衡, 从而提升网络的覆盖性能。
可选地, 作为另一个实施例, 当通信系统为分布式基站组网模式且部署 协调器, 通信系统的各个基站与协调器互连, 每个小区的真实调度器可以位 于与该小区对应的基站、 集中虚拟调度器可以位于协调器。 或者当通信系统 的各个基站的基带处理单元 BBU集中放置, 每个小区的真实调度器可以与 该小区对应的 BBU, 集中虚拟调度器可以位于集中放置的 BBU 中的任一 BBU。 通信系统的场景图可以参考上述图 6。 应理解, 本发明实施例对此并 不限定, 还可以应用到其它通信系统中。
可选地, 在协调器进行 CSPC虚拟调度的情况下, 为了保证协调器用于 计算 CSPC的测量信息能够同时到达, 同时对于协调器给出的功率优化结果 能够在簇内所有小区在空口同时生效。 需要实现协调器和基站之间的同步, 即时间对齐。
具体地, 接口电路 1903还可以用于在下行接收帧号和子帧号上向第三 小区对应的真实调度器发送测量请求消息,在上行发送帧号和子帧号上接收 第三小区对应的真实调度器发送的测量响应消息。第三小区的真实调度器的 RTT为通信系统的多个小区中的最大 RTT, RTT表示上行发送帧号和子帧号 与下行接收帧号和子帧号的差。 处理器 1901还可以用于根据第三小区对应 的真实调度器的 RTT确定生效时间。 接口电路 1903还可以用于将确定单元 1701生成的生效时间发送给第一小区对应的真实调度器,使得第一小区对应 的真实调度器在生效时间对 UE进行调度。 具体的时间同步过程可以参考上 述, 此处不再赘述。
可选地, 在协调器进行 CSPC虚拟调度的情况下, 接口电路 1903还可 以用于进一从每个基站的控制面接收该基站下的各个小区上报的信息, 主控 板控制面与协调器接口采用 SCTP协议。 或者接口电路 1903还可以用于从 每个基站的用户面接收该基站下的各个小区上报的信息, 主控板的用户面与 协调器接口采用 GTP-U协议。 应理解, 本发明实施例基站和协调器之间的 接口采用何种传输协议并不限定。
可选地,可以在分布式基站中选择一个基站,在该基站的专用基带板(如 专用集中调度板或增强调度模式基带板) 中部署该 CLB虚拟调度的功能, 即 CSPC虚拟调度和 CLB虚拟调度的功能实体可以分布在不同的网络设备 中。
可选地, 在 BBU进行 CSPC虚拟调度的情况下, 可以在任一 BBU (第 一 BBU ) 的普通基带本或专用基带板上部署集中虚拟调度器, 每个小区的 真实调度器可以位于与该小区对应的 BBU的基带板中。 当集中虚拟调度器 位于第一 BBU的普通基带板时,第一 BBU的基带板可以预留至少 1个核实 现集中虚拟调度器的功能。 由于 CSPC虚拟调度的复杂度随小区数目和子带 数线性增加, 同一小区簇的 CSPC虚拟调度可以按照子带并行。 基带板的核 负载分担方式具体可以是: 在全带 CSPC时, 由至少 1个核中的一个核确定 第一小区簇中各小区的下行发射功率。 也就是说, 核间按小区簇进行负荷分 担, 一个小区簇的 CSPC虚拟调度由一个核处理。 或者在子带 CSPC时, 可 以由至少 1个核联合确定第一小区簇中各小区的下行发射功率, 可选地, 可 以按照子带进行分担, 每个核处理不同的子带, 当还有剩余的资源时, 至少 1个核还可以联合处理其它小区簇。 由于 CLB为全带处理, CSPC集中虚拟 调度的复杂度随小区数目仅随小区数目线性增加, 因此核间可以按小区簇进 行负荷分担, 一个小区簇的 CSPC集中虚拟调度由一个核处理。
可选地,部署在第一 BBU的集中虚拟调度器还可以实现 CLB虚拟调度 的功能, 即 CSPC虚拟调度和 CLB虚拟调度的功能实体可以集成在一个物 理实体上。
图 20是本发明另一个实施例的真实调度器的示意性结构图。 图 20的真 实调度器 2000是上述调度系统中真实调度器的一个例子, 真实调度器 2000 包括处理器 2001 ,存储器 2002和接口电路 2003。处理器 2001控制设备 2000 的操作, 处理器 2001可以是一个 CPU, 或者是 ASIC, 或者是被配置成实施 本发明实施例的一个或多个集成电路。 存储器 2002可以包括只读存储器和 随机存取存储器, 并向处理器 2001提供指令和数据。 存储器 2002的一部分 还可以包括非易失行随机存取存储器( NVRAM )。处理器 2001 ,存储器 2002 和接口电路 2003通过总线系统 2010耦合在一起, 其中总线系统 2010除包 括数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 但是为了清 楚说明起见, 在图中将各种总线都标为总线系统 2010。
上述本发明实施例调度系统中真实调度器可以应用上述的真实调度器 2000来实现。 其中, 处理器 2001可能是一种集成电路芯片, 具有信号的处 理能力。 在实现过程中, 上述方法的各步骤可以通过处理器 2001 中的硬件 的集成逻辑电路或者软件形式的指令完成。 上述的处理器 2001可以是通用 处理器, 包括 CPU或 NP等; 还可以是 DSP、 ASIC, FPGA或者其他可编 程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可以实现或者执 行本发明实施例中的公开的各方法、 步骤及逻辑框图。 通用处理器可以是微 处理器或者该处理器也可以是任何常规的处理器等。
在该实施例中, 接口电路 2003用于接收集中虚拟调度器确定的第一小 区的发射功率, 其中, 第一小区为通信系统中的多个小区中的每个小区。 处 理器 2001用于在在第一小区采用集中虚拟调度器确定的发射功率对 UE进 行调度。
应理解, 本发明实施例对真实调度器的数目不作限定, 可以是 1个或多 个。 且每个真实调度器可以调度的小区可以是一个也可以是多个, 例如, 一 个基站上可以设置一个真实调度器, 该基站下的小区, 都可以由该真实调度 器调度。 或者, 在包括多个小区的基站中可以设置与该多个小区分别对应的 多个真实调度器。
需要说明的是,本发明实施例的集中虚拟调度器和真实调度器又可以称 之为集中虚拟调度实体和真实调度实体, 且可以是功能实体, 也可以是逻辑 实体。 即可以为软件形式, 通过处理器执行程序代码来实现其功能; 也可以 为硬件形式, 例如, 以芯片或者是特定集成电路的形式设置于基带板上。
本发明实施例某个小区的真实调度器接收集中虚拟调度器发送的该小 区的发射功率, 在该小区采用集中虚拟调度器确定的发射功率调度 UE, 多 个小区中的某个小区的真实调度器,其中集中虚拟调度器用于确定通信系统 中的多个小区中每个小区的发射功率, 多个小区包括该小区。 因此, 采用本 发明的分层调度架构,上层的集中虚拟调度器通过对多个小区间的资源使用 进行协调, 选择网络性能最佳的发射功率下发, 下层的真实调度器以该最佳 的发射功率调度 UE。 能够降低小区间的干扰, 提高资源利用效率。
真实调度器 2000可实现图 15和 16的方法中涉及真实调度器的各个步 骤, 为避免重复, 不再详细描述。
可选地, 作为另一个实施例, 接口电路 2003 可以用于接收集中虚拟调 度器发送的第一小区每个 RB单元上的发射功率, RB单元包括 PRB或 RBG。 处理器 2001 可以具体用于在第一小区的每个 RB单元上采用集中虚拟调度 器确定的发射功率调度 UE。 如此, 可以实现 RB级的功率协调, 使得协调 粒度更加精细, 更加有利于解决小区间干扰的问题。
可选地, 作为另一个实施例, 接口电路 2003还可以用于接收集中虚拟 调度器发送的负载平衡结果, 负载平衡结果是由集中虚拟调度器确定的。 处 理器 2001 还可以用于根据负载平衡结果调度第二小区的边缘用户设备, 第 一小区和第二小区相邻。 因此, 通过变化边缘用户的调度小区来影响小区优 先级, 实现小区的负载平衡, 从而提升网络的覆盖性能。
可选地, 作为另一个实施例, 当通信系统为分布式基站组网模式且部署 协调器, 通信系统的各个基站与协调器互连, 每个小区的真实调度器可以位 于与该小区对应的基站、 集中虚拟调度器可以位于协调器。 或者当通信系统 的各个基站的基带处理单元 BBU集中放置, 每个小区的真实调度器可以与 该小区对应的 BBU, 集中虚拟调度器可以位于集中放置的 BBU 中的任一 BBU。 通信系统的场景图可以参考上述图 6。 应理解, 本发明实施例对此并 不限定, 还可以应用到其它通信系统中。
可选地, 在协调器进行 CSPC虚拟调度的情况下, 为了保证协调器用于 计算 CSPC的测量信息能够同时到达, 同时对于协调器给出的功率优化结果 能够在簇内所有小区在空口同时生效。 需要实现协调器和基站之间的同步, 即时间对齐。
具体地, 接口电路 2003还可以用于在下行接收帧号和子帧号上接收集 中虚拟调度器发送的测量请求消息,在上行发送帧号和子帧号上向集中虚拟 调度器发送测量响应消息,在上行发送帧号和子帧号上向集中虚拟调度器发 送测量响应消息, 以便集中虚拟调度器根据上行发送帧号和子帧号和下行接 收帧号和子帧号获得真实调度器的 RTT,从通信系统中多个小区的所有 RTT 中选择最大的 RTT, 并根据最大的 RTT确定生效时间。 其中, RTT表示上 行发送帧号和子帧号与下行接收帧号和子帧号的差。 接口电路 2003还可以 用于接收集中虚拟调度器发送的生效时间, 并指示处理器 2001在生效时间 对用户设备进行调度。 具体的时间同步过程可以参考上述, 此处不再赘述。 可选地, 在 BBU进行 CSPC虚拟调度的情况下, 可以在任一 BBU (第 一 BBU ) 的普通基带本或专用基带板上部署集中虚拟调度器, 每个小区的 真实调度器可以位于与该小区对应的 BBU的基带板中。 当集中虚拟调度器 位于第一 BBU的普通基带板时,第一 BBU的基带板可以预留至少 1个核实 现集中虚拟调度器的功能。 由于 CSPC虚拟调度的复杂度随小区数目和子带 数线性增加, 同一小区簇的 CSPC虚拟调度可以按照子带并行。 基带板的核 负载分担方式具体可以是: 在全带 CSPC时, 由至少 1个核中的一个核确定 第一小区簇中各小区的下行发射功率。 也就是说, 核间按小区簇进行负荷分 担, 一个小区簇的 CSPC虚拟调度由一个核处理。 或者在子带 CSPC时, 可 以由至少 1个核联合确定第一小区簇中各小区的下行发射功率, 可选地, 可 以按照子带进行分担, 每个核处理不同的子带, 当还有剩余的资源时, 至少 1个核还可以联合处理其它小区簇。 由于 CLB为全带处理, CSPC集中虚拟 调度的复杂度随小区数目仅随小区数目线性增加, 因此核间可以按小区簇进 行负荷分担, 一个小区簇的 CSPC集中虚拟调度由一个核处理。
可选地, 处理器 2001可以具体用于根据集中虚拟调度器发送的小区的 下行发射功率进行用户设备的子带或全带 MCS修正。 这样, 以确定初传或 重传调度的 MCS。 可以周期性地进行真实调度。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种集中虚拟调度器, 其特征在于, 用于多个小区的通信系统中, 所述多个小区中每个小区对应一个真实调度器, 所述集中虚拟调度器包括: 确定单元, 用于确定第一小区的发射功率, 所述第一小区为所述通信系 统中的多个小区中的每个小区;
接口单元, 用于向所述第一小区对应的真实调度器发送所述确定单元确 定的所述发射功率, 以指示所述第一小区对应的真实调度器在所述第一小区 采用所述确定单元确定的所述发射功率对用户设备进行调度。
2、 根据权利要求 1所述的集中虚拟调度器, 其特征在于:
所述确定单元具体用于: 确定所述第一小区的每个资源块 RB单元上的 发射功率, 所述 RB单元包括物理资源块 PRB或资源块组 RBG;
所述接口单元具体用于: 向所述第一小区对应的真实调度器发送所述第 一小区的每个 RB单元上的发射功率, 以指示所述第一小区对应的真实调度 器在所述第一小区的每个 RB单元上采用所述确定单元确定的发射功率对用 户设备进行调度。
3、 根据权利要求 1或 2所述的集中虚拟调度器, 其特征在于, 所述多 个小区被划分为至少一个簇, 所述确定单元具体用于分簇确定每个簇内的每 个小区的发射功率。
4、 根据权利要求 3所述的集中虚拟调度器, 其特征在于, 还包括: 第一获取单元, 用于获取第一信道信息和第一历史调度信息, 所述第一 信道信息和第一历史调度信息分别包括所述第一小区所在簇内所有小区的 信道信息和历史调度信息;
所述确定单元, 具体用于根据所述第一获取单元所获取的所述第一信道 信息和所述第一历史调度信息,计算所述第一小区在多个候选功率下的网络 效用值,并选择网络效用值最佳的候选功率,作为所述第一小区的发射功率; 或者,根据所述第一获取单元所获取的所述第一信道信息和所述第一历史调 度信息,计算所述第一小区的每个 RB单元在多个候选功率下的网络效用值, 并选择网络效用值最佳的候选功率, 作为当前计算的 RB单元的发射功率。
5、 根据权利要求 3或 4所述的集中虚拟调度器, 其特征在于, 还包括: 第二获取单元, 用于获取第一负载信息, 所述第一负载信息包括所述第 一小区所在簇内所有小区的负载信息;
所述确定单元, 还用于根据所述第一负载信息确定负载平衡结果, 所述 负载平衡结果为所述第一小区调度第二小区的边缘用户设备, 所述第一小区 和第二小区为所述第一小区所在簇内的相邻小区;
所述接口单元还用于: 向所述第一小区对应的真实调度器发送所述负载 平衡结果, 以指示所述第一小区对应的真实调度器调度所述第二小区的边缘 用户设备。
6、 根据权利要求 1-5任一项所述的集中虚拟调度器, 其特征在于, 所 述通信系统为分布式基站组网模式且部署协调器,所述通信系统的各个基站 与所述协调器互连, 所述每个小区所对应的真实调度器位于与该小区对应的 基站、 所述集中虚拟调度器位于所述协调器。
7、 根据权利要求 6所述的集中虚拟调度器, 其特征在于,
所述接口单元还用于: 在下行接收帧号和子帧号上向第三小区对应的真 实调度器发送测量请求消息,在上行发送帧号和子帧号上接收所述第三小区 对应的真实调度器发送的测量响应消息, 所述第三小区对应的真实调度器的 往返传输时延 RTT为所述通信系统的多个小区中的最大 RTT, 所述 RTT表 示上行发送帧号和子帧号与下行接收帧号和子帧号的差;
所述确定单元还用于: 根据所述第三小区对应的真实调度器的 RTT确 定生效时间; 第一小区对应的真实调度器,使得所述第一小区对应的真实调度器在所述生 效时间对用户设备进行调度。
8、 如权利要求 1-5任一项所述的集中虚拟调度器, 其特征在于, 所述 通信系统的基带处理单元 BBU集中放置, 所述多个小区中每个小区所对应 的真实调度器位于与该小区对应的 BBU, 所述集中虚拟调度器位于集中放 置的 BBU中的任一 BBU。
9、 一种真实调度器, 用于多个小区的通信系统中, 所述多个小区中每 个小区对应一个所述真实调度器, 其特征在于, 所述真实调度器包括: 接口单元, 用于接收集中虚拟调度器确定的第一小区的发射功率, 所述 第一小区为所述通信系统中的多个小区中的每个小区;
调度单元, 用于在所述第一小区采用所述接口单元接收的所述集中虚拟 调度器确定的所述发射功率对用户设备进行调度。
10、 根据权利要求 9所述的真实调度器, 其特征在于:
所述接口单元具体用于:接收所述集中虚拟调度器确定的所述第一小区 的每个资源块 RB单元上的发射功率,所述 RB单元包括物理资源块 PRB或 资源块组 RBG;
所述调度单元具体用于: 在所述第一小区的每个 RB单元上采用所述集 中虚拟调度器确定的发射功率对用户设备进行调度。
11、 根据权利要求 9或 10所述的真实调度器, 其特征在于,
所述接口单元还用于: 接收所述集中虚拟调度器确定的负载平衡结果, 所述负载平衡结果为所述第一小区调度第二小区的边缘用户设备, 所述第一 小区和第二小区为所述多个小区中相邻的小区, 且位于同一簇内;
所述调度单元还用于: 根据所述负载平衡结果对所述第二小区的边缘用 户设备进行调度。
12、根据权利要求 9-11任一项所述的真实调度器, 其特征在于, 所述通 信系统为分布式基站组网模式且部署协调器, 所述通信系统的各个基站与所 述协调器互连,所述多个小区中每个小区所对应的真实调度器位于与该小区 对应的基站、 所述集中虚拟调度器位于所述协调器。
13、 根据权利要求 12所述的真实调度器, 其特征在于,
所述接口单元还用于: 在下行接收帧号和子帧号上接收所述集中虚拟调 度器发送的测量请求消息,在上行发送帧号和子帧号上向所述集中虚拟调度 器发送测量响应消息, 以便所述集中虚拟调度器根据所述上行发送帧号和子 帧号和所述下行接收帧号和子帧号获得所述真实调度器的往返传输时延 RTT,从所述通信系统中多个小区的所有 RTT中选择最大的 RTT, 并根据最 大的 RTT确定生效时间, 其中, 所述 RTT表示上行发送帧号和子帧号与下 行接收帧号和子帧号的差;
所述接口单元还用于: 接收所述集中虚拟调度器发送的所述生效时间, 并指示所述调度单元在所述生效时间对用户设备进行调度。
14、如权利要求 9-11任一项所述的真实调度器, 其特征在于, 所述通信 系统的基带处理单元 BBU集中放置, 所述多个小区中每个小区所对应的真 实调度器位于与该小区对应的 BBU, 所述集中虚拟调度器位于集中放置的 BBU中的任一 BBU。
15、 一种调度系统, 其特征在于, 用于多个小区的通信系统中, 所述调 度系统包括如权利要求 1至 8任一项所述的集中虚拟调度器和如权利要求 9 至 14任一项所述的至少一个真实调度器, 且所述多个小区中每个小区对应 一个真实调度器。
16、 一种调度方法, 其特征在于, 所述方法适用于多个小区的通信系统 中, 所述通信系统包括集中虚拟调度器和至少一个真实调度器, 所述多个小 区中每个小区对应一个真实调度器, 所述方法包括:
所述集中虚拟调度器确定第一小区的发射功率, 所述第一小区为所述通 信系统中的多个小区中的每个小区;
所述集中虚拟调度器向所述第一小区对应的真实调度器发送所述集中 虚拟调度器确定的所述发射功率, 以指示所述第一小区对应的真实调度器在 所述第一小区采用所述集中虚拟调度器确定的所述发射功率对用户设备进 行调度。
17、 根据权利要求 16所述的方法, 其特征在于, 所述集中虚拟调度器 确定第一小区的发射功率, 包括: 确定所述第一小区的每个资源块 RB单元 上的发射功率, 所述 RB单元包括物理资源块 PRB或资源块组 RBG; 且 所述集中虚拟调度器向所述第一小区对应的真实调度器发送所述集中 虚拟调度器确定的所述发射功率, 包括:
向所述第一小区对应的真实调度器发送所述第一小区每个 RB单元上的 发射功率, 以指示所述第一小区对应的真实调度器在所述第一小区的每个 RB单元上采用所述集中虚拟调度器确定的发射功率对用户设备进行调度。
18、 根据权利要求 16或 17所述的方法, 其特征在于, 还包括: 将所述多个小区划分为至少一个簇;
所述集中虚拟调度器确定第一小区的发射功率包括: 所述集中虚拟调度 器分簇确定每个簇内的每个小区的发射功率。
19、 根据权利要求 18所述的方法, 其特征在于, 所述集中虚拟调度器 确定所述第一小区的发射功率, 包括:
所述集中虚拟调度器获取第一信道信息和第一历史调度信息, 所述第一 信道信息和第一历史调度信息分别包括所述第一小区所在簇内所有小区的 信道信息和历史调度信息;
根据所述第一信道信息和第一历史调度信息,计算所述第一小区在多个 候选功率下的网络效用值, 并选择网络效用值最佳的候选功率, 作为所述第 一小区的发射功率; 或者,
根据所述第一信道信息和第一历史调度信息,计算所述第一小区的每个
RB单元在多个候选功率下的网络效用值, 并选择网络效用值最佳的候选功 率, 作为当前计算的 RB单元的发射功率。
20、根据权利要求 18或 19所述的方法,其特征在于,所述方法还包括: 所述集中虚拟调度器获取第一负载信息, 所述第一负载信息包括所述第 一小区所在簇内所有小区的负载信息;
根据所述第一负载信息确定负载平衡结果, 所述负载平衡结果为所述第 一小区调度第二小区的边缘用户设备, 所述第一小区和第二小区为所述第一 小区所在簇内的相邻小区;
所述集中虚拟调度器向所述第一小区所对应的真实调度器发送所述负 载平衡结果, 以指示所述第一小区的真实调度器对所述第二小区的边缘用户 设备进行调度。
21、 根据权利要求 16-20任一项所述的方法, 其特征在于, 所述通信系 统为分布式基站组网模式且部署协调器, 所述通信系统的各个基站与所述协 调器互连, 所述每个小区所对应的真实调度器位于与该小区对应的基站、 所 述集中虚拟调度器位于所述协调器。
22、 根据权利要求 21所述的方法, 其特征在于, 所述方法还包括: 所述集中虚拟调度器在下行接收帧号和子帧号上向第三小区的真实调 度器发送测量请求消息;
所述集中虚拟调度器在上行发送帧号和子帧号上接收所述第三小区的 真实调度器发送的测量响应消息, 所述第三小区的真实调度器的往返传输时 延 RTT为所述通信系统的多个小区中的最大 RTT, 所述 RTT表示上行发送 帧号和子帧号与下行接收帧号和子帧号的差;
所述集中虚拟调度器根据所述第三小区对应的真实调度器的 RTT确定 生效时间, 并将所述生效时间发送给所述第一小区对应的真实调度器, 使得 所述第一小区对应的真实调度器在所述生效时间对用户设备进行调度。
23、 如权利要求 16-20任一项所述的方法, 其特征在于, 所述通信系统 的基带处理单元 BBU集中放置, 所述多个小区中每个小区所对应的真实调 度器位于与该小区对应的 BBU, 所述集中虚拟调度器位于集中放置的 BBU 中的任一 BBU。
24、 一种调度方法, 其特征在于, 所述方法适用于多个小区的通信系统 中, 所述通信系统包括集中虚拟调度器和至少一个真实调度器, 所述多个小 区中每个小区对应一个真实调度器, 所述方法包括:
第一小区的真实调度器接收所述集中虚拟调度器确定的所述第一小区 的发射功率, 其中, 所述第一小区为所述通信系统中的多个小区中的每个小 区;
所述真实调度器在所述第一小区采用所述集中虚拟调度器确定的所述 发射功率对用户设备进行调度。
25、 根据权利要求 9所述的方法, 其特征在于: 所述第一小区的真实调 度器接收所述集中虚拟调度器确定的所述第一小区的发射功率, 包括:
所述真实调度器接收所述集中虚拟调度器确定的所述第一小区的每个 资源块 RB单元上的发射功率,所述 RB单元包括物理资源块 PRB或资源块 组 RBG;
所述真实调度器在所述第一小区采用所述集中虚拟调度器确定的所述 发射功率对用户设备进行调度, 包括:
所述真实调度器在所述第一小区的每个 RB单元上采用所述集中虚拟调 度器确定的发射功率对用户设备进行调度。
26、根据权利要求 24或 25所述的方法,其特征在于,所述方法还包括: 所述真实调度器接收所述集中虚拟调度器发送的负载平衡结果, 所述负 载平衡结果为所述第一小区调度第二小区的边缘用户设备, 所述第一小区和 第二小区为所述多个小区中相邻的小区, 且位于同一簇内;
所述真实调度器根据所述负载平衡结果对所述第二小区的边缘用户设 备进行调度。
27、 根据权利要求 24-26任一项所述的方法, 其特征在于, 所述通信系 统为分布式基站组网模式且部署协调器, 所述通信系统的各个基站与所述协 调器互连, 所述多个小区中每个小区所对应的真实调度器位于与该小区对应 的基站、 所述集中虚拟调度器位于所述协调器。
28、 根据权利要求 27所述的方法, 其特征在于, 所述方法还包括: 所述真实调度器在下行接收帧号和子帧号上接收所述集中虚拟调度器 发送的测量请求消息; 所述真实调度器在上行发送帧号和子帧号上向所述集中虚拟调度器发 送测量响应消息, 以便所述集中虚拟调度器根据所述上行发送帧号和子帧号 和所述下行接收帧号和子帧号获得所述真实调度器的往返传输时延 RTT,从 所述通信系统中多个小区的所有 RTT中选择最大的 RTT,并根据最大的 RTT 确定生效时间, 其中, 所述 RTT表示上行发送帧号和子帧号与下行接收帧 号和子帧号的差;
接收所述集中虚拟调度器发送的所述生效时间, 并在所述生效时间对用 户设备进行调度。
29、 如权利要求 24-26任一项所述的方法, 其特征在于,
所述通信系统的基带处理单元 BBU集中放置, 所述多个小区中每个小 区所对应的真实调度器位于与该小区对应的 BBU, 所述集中虚拟调度器位 于集中放置的 BBU中的任一 BBU。
PCT/CN2013/089328 2013-12-13 2013-12-13 调度方法、装置与系统 WO2015085561A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167017733A KR101796409B1 (ko) 2013-12-13 2013-12-13 스케줄링 방법, 장치 및 시스템
BR112016013334-0A BR112016013334B1 (pt) 2013-12-13 2013-12-13 Programador virtual centralizado, programador real, sistema de programação e método de programação
PCT/CN2013/089328 WO2015085561A1 (zh) 2013-12-13 2013-12-13 调度方法、装置与系统
EP13899234.2A EP3070988B1 (en) 2013-12-13 2013-12-13 Scheduling method, device and system
JP2016537017A JP6336596B2 (ja) 2013-12-13 2013-12-13 集中仮想スケジューラ、リアルスケジューラ、スケジューリングシステム、方法、及びプログラム
CN201380002787.9A CN103843437B (zh) 2013-12-13 2013-12-13 调度方法、装置与系统
US15/181,349 US10165583B2 (en) 2013-12-13 2016-06-13 Scheduling method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089328 WO2015085561A1 (zh) 2013-12-13 2013-12-13 调度方法、装置与系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/181,349 Continuation US10165583B2 (en) 2013-12-13 2016-06-13 Scheduling method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2015085561A1 true WO2015085561A1 (zh) 2015-06-18

Family

ID=50804826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089328 WO2015085561A1 (zh) 2013-12-13 2013-12-13 调度方法、装置与系统

Country Status (7)

Country Link
US (1) US10165583B2 (zh)
EP (1) EP3070988B1 (zh)
JP (1) JP6336596B2 (zh)
KR (1) KR101796409B1 (zh)
CN (1) CN103843437B (zh)
BR (1) BR112016013334B1 (zh)
WO (1) WO2015085561A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478977A (zh) * 2016-07-19 2019-03-15 高通股份有限公司 实现多簇传输
CN112752304A (zh) * 2019-10-31 2021-05-04 上海华为技术有限公司 一种处理上行参考信号的方法和相关装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9319916B2 (en) 2013-03-15 2016-04-19 Isco International, Llc Method and appartus for signal interference processing
CN104639448B (zh) * 2014-12-18 2018-10-16 北京北方烽火科技有限公司 一种lte-a系统中基站转发方法和系统
CN106612518A (zh) * 2015-10-26 2017-05-03 普天信息技术有限公司 一种干扰管理的方法及系统
CN107087306A (zh) * 2016-02-12 2017-08-22 台扬科技股份有限公司 用于无线信源调度的方法
JP6782188B2 (ja) * 2016-05-27 2020-11-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 電子制御ユニット、通信方法及び車載ネットワークシステム
WO2017210056A1 (en) 2016-06-01 2017-12-07 Isco International, Llc Method and apparatus for performing signal conditioning to mitigate interference detected in a communication system
CN108243440B (zh) * 2016-12-26 2020-11-20 大唐移动通信设备有限公司 一种板间速率切换方法及装置
US10298279B2 (en) * 2017-04-05 2019-05-21 Isco International, Llc Method and apparatus for increasing performance of communication paths for communication nodes
US10812121B2 (en) 2017-08-09 2020-10-20 Isco International, Llc Method and apparatus for detecting and analyzing passive intermodulation interference in a communication system
US10284313B2 (en) 2017-08-09 2019-05-07 Isco International, Llc Method and apparatus for monitoring, detecting, testing, diagnosing and/or mitigating interference in a communication system
US10674518B2 (en) * 2017-12-27 2020-06-02 Comcast Cable Communications, Llc Dynamic management of interference and coverage in wireless communications
CN109743149B (zh) * 2019-01-22 2021-04-20 中国电子科技集团公司第五十四研究所 异构网络中基于载波聚合的干扰协调方法
WO2020165485A1 (en) * 2019-02-11 2020-08-20 Nokia Technologies Oy Apparatus, method and computer program for ue cell selection control in non-terrestial networks
CN111786758B (zh) * 2019-04-04 2022-01-11 华为技术有限公司 一种通信方法及装置
US11617145B2 (en) 2019-11-13 2023-03-28 Electronics And Telecommunications Research Institute Method and apparatus for timing control in wireless communication system
KR102335687B1 (ko) * 2019-12-31 2021-12-06 주식회사 포스코아이씨티 클러스터링 구성 및 원격제어가 가능한 스케줄러 서버 시스템
WO2021190914A1 (en) * 2020-03-23 2021-09-30 Telefonaktiebolaget Lm Ericsson (Publ) Network scheduling of multiple entities
CN111836306B (zh) * 2020-07-15 2022-11-29 中国联合网络通信集团有限公司 功率协调方法及装置
CN114451001B (zh) * 2021-12-28 2024-03-19 北京小米移动软件有限公司 信息上报方法、装置、设备及存储介质
JP7318047B1 (ja) 2022-03-24 2023-07-31 ソフトバンク株式会社 通信中継装置、遠隔制御装置、システム、エリア制御方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1501607A (zh) * 2002-09-30 2004-06-02 ���ǵ�����ʽ���� 频分复用移动通信系统中分配虚拟小区资源的设备和方法
CN102348268A (zh) * 2010-08-03 2012-02-08 中兴通讯股份有限公司 一种lte系统上行功率控制的方法和系统
CN102547994A (zh) * 2012-01-18 2012-07-04 中兴通讯股份有限公司 一种消除小区间干扰的方法及系统
CN103167557A (zh) * 2013-03-19 2013-06-19 东南大学 Lte-a系统中基于虚拟小区呼吸的负载均衡方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1204283A1 (en) * 2000-11-06 2002-05-08 Telefonaktiebolaget L M Ericsson (Publ) Cellular radio network reusing frequencies
US20070280175A1 (en) 2006-06-01 2007-12-06 Fang-Chen Cheng Coordinating transmission scheduling among multiple base stations
US8559325B2 (en) * 2009-09-15 2013-10-15 Qualcomm Incorporated Systems and methods for over the air load indicator for wireless scheduling
JP5380411B2 (ja) * 2010-09-28 2014-01-08 Kddi株式会社 無線通信システム、及び基地局管理装置
US20120122512A1 (en) * 2010-11-17 2012-05-17 Sairamesh Nammi Cellular network, base station and method for self-optimizing transmit power to user equipments
EP2493235A1 (en) 2011-02-25 2012-08-29 Alcatel Lucent Scheduling of data on shared radio resources
WO2013027952A2 (ko) * 2011-08-19 2013-02-28 엘지전자 주식회사 무선 통신 시스템에서 핸드오버 방법 및 장치
WO2013093973A1 (ja) * 2011-12-21 2013-06-27 富士通株式会社 無線通信システム、無線通信方法、及び無線通信装置
EP2621211B1 (en) * 2012-01-27 2014-04-02 Alcatel Lucent Method for determining cell configuration parameters in a wireless telecommunication network
KR20130090669A (ko) * 2012-02-06 2013-08-14 삼성전자주식회사 이종 네크워크에서 셀간 간섭을 조정하는 중앙집중형 스케쥴링 방법 및 장치
KR101668315B1 (ko) * 2012-03-19 2016-10-21 삼성전자 주식회사 캐리어 집적을 위한 이동통신 시스템에서 파워 헤드룸 보고를 위한 방법 및 장치
WO2014014404A2 (en) * 2012-07-20 2014-01-23 Telefonaktiebolaget L M Ericsson (Publ) Semi-decentralized scheduling in a wireless network
US9509483B2 (en) * 2012-11-12 2016-11-29 Qualcomm Incorporated Uplink control and data transmission in multiflow-enabled networks
US9936470B2 (en) * 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
US9826489B2 (en) * 2013-11-07 2017-11-21 Lg Electronics Inc. Method for reporting a power headroom and communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1501607A (zh) * 2002-09-30 2004-06-02 ���ǵ�����ʽ���� 频分复用移动通信系统中分配虚拟小区资源的设备和方法
CN102348268A (zh) * 2010-08-03 2012-02-08 中兴通讯股份有限公司 一种lte系统上行功率控制的方法和系统
CN102547994A (zh) * 2012-01-18 2012-07-04 中兴通讯股份有限公司 一种消除小区间干扰的方法及系统
CN103167557A (zh) * 2013-03-19 2013-06-19 东南大学 Lte-a系统中基于虚拟小区呼吸的负载均衡方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070988A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478977A (zh) * 2016-07-19 2019-03-15 高通股份有限公司 实现多簇传输
US11405917B2 (en) 2016-07-19 2022-08-02 Qualcomm Incorporated Enabling multi-cluster transmissions
CN112752304A (zh) * 2019-10-31 2021-05-04 上海华为技术有限公司 一种处理上行参考信号的方法和相关装置
CN112752304B (zh) * 2019-10-31 2022-08-26 上海华为技术有限公司 一种处理上行参考信号的方法和相关装置

Also Published As

Publication number Publication date
CN103843437A (zh) 2014-06-04
EP3070988A1 (en) 2016-09-21
US20160295601A1 (en) 2016-10-06
JP6336596B2 (ja) 2018-06-06
BR112016013334B1 (pt) 2022-12-13
JP2017503396A (ja) 2017-01-26
EP3070988A4 (en) 2016-11-23
US10165583B2 (en) 2018-12-25
CN103843437B (zh) 2018-02-02
KR101796409B1 (ko) 2017-11-09
EP3070988B1 (en) 2019-06-19
KR20160094419A (ko) 2016-08-09
BR112016013334A2 (pt) 2017-09-19

Similar Documents

Publication Publication Date Title
US10165583B2 (en) Scheduling method, apparatus, and system
US10039122B2 (en) Scheduling virtualization for mobile cloud for low latency backhaul
CN107079513B (zh) 被配置用于报告双连接的非周期性信道状态信息的装置
US10143002B2 (en) System and method to facilitate centralized radio resource management in a split radio access network environment
CN110691419B (zh) 平衡用于双连接的上行链路传输
KR20210117960A (ko) O-ran 기반 성능 최적화 및 구성을 위한 방법 및 장치
US20150163794A1 (en) Uplink control information feedback method, base station, and user equipment
WO2014101243A1 (zh) 负载均衡的方法和网络控制节点
WO2016142888A1 (en) Power allocation for device-to-device communication underlaying cellular networks
WO2015085563A1 (zh) 干扰协调方法、装置和系统
US20140140295A1 (en) Apparatus and Method for Proactive Inter-Cell Interference Coordination
CN107432019B (zh) 第一和第二网络节点以及其中的方法
US20210234648A1 (en) Method and apparatus for distribution and synchronization of radio resource assignments in a wireless communication system
JP2013121035A (ja) 無線通信システム、基地局、ユーザ端末、および通信制御方法
EP3704803B1 (en) Mu-mimo-aware sector-carrier allocation
CN116324723A (zh) 用于管理网络节点的负载的方法和装置
EP3097731B1 (en) Scheduling for heterogeneous networks
JP6956123B2 (ja) 基地局システム及び無線通信装置
WO2015085562A1 (zh) 协调负载平衡的系统、设备和方法
CN114793364A (zh) 一种下行干扰避免的调度方法、设备、装置及存储介质
WO2021028025A1 (en) Information exchange between network devices for coordination of sidelink communications
WO2017024570A1 (zh) 一种确定小区簇子帧配置的方法及装置
WO2023200483A1 (en) Time division duplex pattern configuration for cellular networks
CN115699653A (zh) 用于可观测性的通用资源模型
EP3000271B1 (en) Signalling scheme

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013899234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201604429

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20167017733

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016013334

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016013334

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160609