WO2015084193A1 - Réacteur de traitement de déchets polyvalent - Google Patents

Réacteur de traitement de déchets polyvalent Download PDF

Info

Publication number
WO2015084193A1
WO2015084193A1 PCT/PL2013/000156 PL2013000156W WO2015084193A1 WO 2015084193 A1 WO2015084193 A1 WO 2015084193A1 PL 2013000156 W PL2013000156 W PL 2013000156W WO 2015084193 A1 WO2015084193 A1 WO 2015084193A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
feedstock
appliances
waste treatment
rotating
Prior art date
Application number
PCT/PL2013/000156
Other languages
English (en)
Inventor
Marek PILAWSKI
Gianluca MARCORELLI
Giovanni Sella
Filip ZIĘTEK
Original Assignee
Get Energy Prime Italy Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Get Energy Prime Italy Srl filed Critical Get Energy Prime Italy Srl
Priority to PCT/PL2013/000156 priority Critical patent/WO2015084193A1/fr
Publication of WO2015084193A1 publication Critical patent/WO2015084193A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0273Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using indirect heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/10Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/20Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1269Heating the gasifier by radiating device, e.g. radiant tubes
    • C10J2300/1276Heating the gasifier by radiating device, e.g. radiant tubes by electricity, e.g. resistor heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/005Rotary drum or kiln gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/10Continuous processes using external heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/301Treating pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/302Treating pyrosolids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/20Rotary drum furnace
    • F23G2203/21Rotary drum furnace with variable speed of rotation

Definitions

  • the drawback of such disclosed methods and apparatuses for waste treatment is that all such apparatuses are specialised in treatment of only one type of waste and in application of only one treatment technology: thermal decomposition, pyrolysis, gasification or incineration.
  • Another drawback of such disclosed methods and apparatuses for waste treatment is that only one product is obtained, which requires management on the market.
  • Still another drawback of such disclosed methods and apparatuses for waste treatment is that reactors, when it is necessary to clean solid residues of reactions of them, must be rendered out of operation and opened.
  • Versatile Waste Treatment Reactors according to the invention which are constructed and operate such that treatment of various waste type groups can be executed alternately or simultaneously, whereby applying one of disclosed treatment technologies or multiple such technologies together.
  • Such Versatile Waste Treatment Reactors according to the invention include in addition a system of continuous discharge of all reaction products from the reaction area and a system of reactor interior self-cleaning, owing to which they need not be rendered out of operation, or opened, to perform the aforementioned actions.
  • Versatile Waste Treatment Reactors according to the invention can operate permanently.
  • the Versatile Waste Treatment Reactor according to the invention is constructed of three types of apparatuses: Rotating Reactor Unit, Input Appliances and Output Appliances.
  • the Rotating Reactor Unit includes a pipe cylindrical Rotating Reactor ended at ends with an Input Flange and an Output Flange.
  • Passive Driving Components e.g. gears, which work with Active Driving Components founded on the base.
  • heaters permanently fixed with said circuit, e.g. l Electrical Heaters. Between Electrical Heaters are distributed Thermal - Electrical Insulation Spacers. To Thermal - Electrical Insulation Spacers are fixed Internal Ring Electrical Sliding Contacts.
  • the Input Flange of the Rotating Reactor works with the Supply Flange of the Input Appliance via an Input Sliding Seal.
  • One end of the Feedstock Worm Pipe, supported on the Feedstock Worm Pipe Support, is firmly fixed with the Supply Flange.
  • Inside the Feedstock Worm Pipe is the Feedstock Worm Pipe Shaft with the Feedstock Worm Wormwheel located on its surface.
  • the other end of the Feedstock Worm Pipe Shaft includes the drive of the Feedstock Worm Pipe Shaft and the Component Valve.
  • Feedstock Worm Pipe Shaft's interior includes another smaller Component Worm, incorporated at one end by the Component Worm Drive.
  • the top part of the Feedstock Worm Pipe includes a Vertical Feeder, to which Production Feedstock is supplied.
  • the Vertical Feeder's upper part has the conical shape, and its lower part - the cylindrical shape. Inside the Vertical Feeder operates the Vertical Feeder Worm.
  • the Output Flange on the other side of the Rotating Reactor works with the Discharge Flange of the Output Appliance via the Output Sliding Seal.
  • An Output Manifold is permanently fixed to the Discharge Flange.
  • the Rotating Reactor is continuously supplying the Product Gaseous Fraction and Product Solid Fraction to the Output Manifold, which Fractions are poured over by the Rotating Reactor's Spiral at each rotation thereof.
  • the lower part of the Output Manifold includes the Solid Fraction Outlet Hole ended with the Solid Fraction Tank, where Solid Fraction accumulates, which may be still rich in organic carbon.
  • a Modular Condensation Cooler to which the Product Gaseous Fraction penetrates.
  • the Product Gaseous Fraction is divided into condensing product vapours and non-condensing process gas. Condensed product vapours form Product Liquid Fraction discharged out of the Modular Condensation Cooler via the Product Liquid Fraction Valve.
  • the Non-Condensed Product Gaseous Fraction in turn, moves to farther parts of the Modular Condensation Cooler, whence it is discharged out via the Product Gaseous Fraction Valve.
  • Second air is supplied to the Solid Fraction Tank, which may still be rich in organic carbon.
  • the formed additional power gas, Syngas is mixed with the Non-Condensed Product Gaseous Fraction.
  • the operation of the Versatile Waste Treatment Reactor according to the invention consists in that the Rotating Reactor Unit works at the input side with the immobile Input Appliance and simultaneously works at the output side with the immobile Output Appliance.
  • the Versatile Waste Treatment Reactor is constructed such that it enables thermal and chemical treatment of various waste type groups individually or mixed, conducting thereon separately or jointly such processes as: thermal decomposition, thermocatalytic decomposition, partially pyrolysis and partially gasification or incineration.
  • Simultaneously the Versatile Waste Treatment Reactor is constructed such that it enables continuous supply of process components thereto and continuous discharge of solid and gaseous reaction products therefrom, and enables its cleaning without its stopping and opening.
  • Solid and shredded Production Feedstock is supplied to the Vertical Feeder, preferably with conical shape, wherein the Vertical Feeder Worm operates.
  • the lower part of the Vertical Feeder has cylindrical shape and serves for thickening of the supplied Production Feedstock and removing air therefrom.
  • the Production Feedstock thickened in the cylindrical part of the Vertical Feeder constitutes the closure of the reaction space of the Rotating Reactor.
  • the Vertical Feeder supplies Production Feedstock to the Feedstock Worm Pipe ended on one side by a firmly attached Supply Flange and supported on the base by means of the Feedstock Worm Pipe Support. Axially in the Feedstock Worm Pipe is placed the Feedstock Worm Pipe Shaft, whereon the Feedstock Worm Wormwheel is coiled.
  • the Feedstock Worm Pipe Shaft includes the Feedstock Worm Pipe Shaft Drive, and owing to the possible adjustment of the rotational speed of the Feedstock Worm Pipe Shaft it is possible to control the efficiency of the Production Feedstock treatment process.
  • axially inside the Feedstock Worm Pipe Shaft is placed the Component Worm driven by the Component Worm Drive.
  • the upper part of the Feedstock Worm Pipe Shaft includes the Component Valve intended for supplying such Components to the work space of the Component Worm as: catalyst, fluid organic waste (pyrolitic oil of used up car tyres, waste bioglycerine, used up car oils), as well as gaseous components (nitrogen - in order to nitrify the waste, hydrogen - in order to hydrogenate the waste, air and/or steam in order to gasify the waste), etc.
  • catalyst pyrolitic oil of used up car tyres, waste bioglycerine, used up car oils
  • gaseous components nitrogen - in order to nitrify the waste
  • hydrogen - in order to hydrogenate the waste
  • air and/or steam in order to gasify the waste
  • the Supply Flange immobile in space, works via the Sliding Seal with the Rotating Reactor's Input Flange, which is mobile and operates by rotation. Via centrally located holes in the Supply Flange, Input Sliding Seal and Input Flange, the Production Feedstock together with components moves to the Rotating Reactor's reaction space.
  • the internal surface of the Rotating Reactor is incorporated by a Spiral of helical structure, rotating along with the Rotating Reactor with rotational speed ⁇ , owing to which Production Feedstock with Components move axially in the direction of the Output Appliance of the Versatile Waste Treatment Reactor.
  • the adjustable rotational speed of the Rotating Reactor, and thereby the adjustable efficiency thereof, is ensured by Active Driving Components fixed to the base and working with Passive Driving Components installed on the Rotating Reactor.
  • Active Driving Components fixed to the base and working with Passive Driving Components installed on the Rotating Reactor.
  • Heaters preferably electrical contact or radiant heaters, insulated from one another thermally and electrically via Thermal Electrical Insulation Spacers, which for example serve as an item on which Internal Ring Electrical Sliding Contacts are attached, to which, in turn, Heater Internal Electrical Connections are made, constitute the mobile part of the power supply system of the Versatile Waste Treatment Reactor, whose immobile part is External Sliding Electrical Contacts, powered, in turn, by Electrical Phase Conductors from the external electrical grid.
  • Production Feedstock together with supplied Components are subjected in the Rotating Reactor to thermal treatment, thereby undergoing continuous pouring and mixing as well as moving in the direction of Output Appliances.
  • the Rotating Reactor is ended at the Output Appliances side with the Output Flange, which being in the rotational motion together with the Rotating Reactor works via the Output Sliding Seal with the Discharge Flange which is immobile in space.
  • the Output Manifold is fixed to the Discharge Flange.
  • the Rotating Reactor supplies generally two products to the Output Manifold: Product Solid Fraction and Product Gaseous Fraction.
  • the lower part of the Output Manifold includes the Solid Fraction Outlet Hole, via which such Product Solid Fraction is poured to the Solid Fraction Tank, where it is temporarily stored as Solid Fraction.
  • Product Gaseous Fraction moves in turn farther to the Modular Condensation Cooler, where being subject to cooling it is divided into condensable vapours and non-condensable process gas.
  • Condensed vapours form Product Liquid Fraction discharged out via Product Liquid Fraction Valve.
  • the non-condensable process gas constitutes Non-Condensable Product Gaseous Fraction discharged out via Product Gaseous Fraction valve.
  • Solid Fraction which may still be rich in organic carbon, is deposited in the Solid Fraction Tank. Therefore, second air is supplied there for the purpose of gasification. As a result of such gasification, additional power gas - Syngas - is created, which mixes with Non-Condensed Product Gaseous Fraction in the Modular Condensation Cooler.
  • FIG. 1 presents the Versatile Waste Treatment Reactor constructed of three types of appliances: Rotating Reactor Unit (1), Input Appliances (2) and Output Appliances (3).
  • the Rotating Reactor Unit (1) includes a pipe cylindrical Rotating Reactor (4) ended at ends with an Input Flange (5) and an Output Flange (6).
  • Passive Driving Components (8) e.g. gears, which work with Active Driving Components (7) founded on the base.
  • heaters permanently fixed with said circuit, e.g. Electrical Heaters (9).
  • Thermal - Electrical Insulation Spacers 10
  • Thermal - Electrical Insulation Spacers 10
  • Internal Ring Electrical Sliding Contacts (11)
  • Internal Electrical Connections (12) on one side, while on the other side - External Electrical Sliding Contacts (13), farther connected with Electrical Phase Conductors (14).
  • the rotating surface of the Rotating Reactor (4) is covered in a Thermal Insulation Material Layer (15), and thereon a second Electrical Insulation Material Layer (16) is placed.
  • the internal surface of the Rotating Reactor (4) is incorporated by a Spiral (17) of helical structure.
  • the Input Flange of the Rotating Reactor (5) works with the Supply Flange (18) of the Input Appliance (2) via an Input Sliding Seal (19).
  • Inside the Feedstock Worm Pipe (20) is the Feedstock Worm Pipe Shaft (22) with the Feedstock Worm Wormwheel (23) located on its surface.
  • the other end of the Feedstock Worm Pipe Shaft (22) includes the drive of the Feedstock Worm Pipe Shaft (24) and the Component Valve (30).
  • Feedstock Worm Pipe Shaft's (22) interior includes another smaller Component Worm (28), incorporated at one end by the Component Worm Drive (29).
  • the top part of the Feedstock Worm Pipe (20) includes a Vertical Feeder (25), to which Production Feedstock (26) is supplied.
  • the Vertical Feeder's (25) upper part has the conical shape, and its lower part - the cylindrical shape. Inside the Vertical Feeder (25) operates the Vertical Feeder Worm (27).
  • the Output Flange (6) on the other side of the Rotating Reactor (4) works with the Discharge Flange (32) of the Output Appliance (3) via the Output Sliding Seal (33).
  • An Output Manifold (34) is permanently fixed to the Discharge Flange (32).
  • the Rotating Reactor (4) is continuously supplying the Product Gaseous Fraction (36) and Product Solid Fraction (35) to the Output Manifold (34), which Fractions are poured over by the Rotating Reactor's (4) Spiral (17) at each rotation thereof.
  • the lower part of the Output Manifold (34) includes the Solid Fraction Outlet Hole (37) ended with the Solid Fraction Tank (38), where Solid Fraction (39) accumulates.
  • the Product Gaseous Fraction (36) is divided into condensing product vapours and non-condensing process gas. Condensed product vapours form Product Liquid Fraction (42) discharged out of the Modular Condensation Cooler (40) via the Product Liquid Fraction Valve (41).
  • the Non-Condensed Product Gaseous Fraction (44) moves to farther parts of the Modular Condensation Cooler (40), whence it is discharged out via the Product Gaseous Fraction Valve (43).
  • Second air (46) is supplied to the Solid Fraction Tank (38). Syngas (46) formed in the Solid Fraction Tank (38) is mixed with the Non-Condensed Product Gaseous Fraction (44).
  • Fig. 1 presents the mobile Rotating Reactor Unit (1) working at the input side with the immobile Input Appliance (2) and simultaneously working at the output side with the immobile Output Appliance (3).
  • the Versatile Waste Treatment Reactor is constructed such that it enables thermal and chemical treatment of various waste type groups individually or mixed, conducting thereon separately or jointly such processes as: thermal decomposition, thermocatalytic decomposition, partially pyrolysis and partially gasification or incineration.
  • the Versatile Waste Treatment Reactor is constructed such that it enables continuous supply of process components thereto and continuous discharge of solid and gaseous reaction products therefrom, and enables its cleaning without the need to stop and open it.
  • Solid and shredded Production Feedstock (26) is supplied to the Vertical Feeder (25), preferably with conical shape, wherein the Vertical Feeder Worm (27) operates.
  • the lower part of the Vertical Feeder (25) has cylindrical shape and serves for thickening of the supplied Production Feedstock (26) and removing air therefrom.
  • the Production Feedstock (26) thickened in the cylindrical part of the Vertical Feeder (25) constitutes the closure of the reaction space of the Rotating Reactor (4).
  • the Vertical Feeder (25) supplies Production Feedstock (26) to the Feedstock Worm Pipe (20) ended on one side by a firmly attached Supply Flange (18) and supported on the base by means of the Feedstock Worm Pipe Support
  • the (22) includes the Feedstock Worm Pipe Shaft Drive (24), and owing to the possible adjustment of the rotational speed of the Feedstock Worm Pipe Shaft (22) it is possible to control the efficiency of the Production Feedstock (26) treatment process.
  • axially inside the Feedstock Worm Pipe Shaft (22) is placed the Component Worm (28) driven by the Component Worm Drive (29).
  • the upper part of the Feedstock Worm Pipe Shaft (22) includes the Component Valve (30) intended for supplying such Components (31) to the work space of the Component Worm (29) as: catalyst, fluid organic waste (pyrolitic oil of used up car tyres, waste bioglycerine, used up car oils), as well as gaseous components (nitrogen - in order to nitrify the waste, hydrogen - in order to hydrogenate the waste, air and/or steam in order to gasify the waste), etc.
  • Component Valve (30) intended for supplying such Components (31) to the work space of the Component Worm (29) as: catalyst, fluid organic waste (pyrolitic oil of used up car tyres, waste bioglycerine, used up car oils), as well as gaseous components (nitrogen - in order to nitrify the waste, hydrogen - in order to hydrogenate the waste, air and/or steam in order to gasify the waste), etc.
  • the internal surface of the Rotating Reactor (4) is incorporated by a Spiral (17) of helical structure, rotating along with the Rotating Reactor (4) with rotational speed ⁇ , owing to which Production Feedstock (26) with Components (31) move axially in the direction of the Output Appliance (3) of the Versatile Waste Treatment Reactor.
  • the adjustable rotational speed of the Rotating Reactor (4), and thereby the adjustable efficiency thereof, is ensured by Active Driving Components (7) fixed to the base and working with Passive Driving Components (8) installed on the Rotating Reactor (4).
  • Active Driving Components (7) fixed to the base and working with Passive Driving Components (8) installed on the Rotating Reactor (4).
  • Passive Driving Components (8) installed on the Rotating Reactor (4).
  • Heaters (9) preferably electrical contact or radiant heaters, insulated from one another thermally and electrically via Thermal Electrical Insulation Spacers (10), which for example serve as an item on which Internal Ring Electrical Sliding Contacts (11) are attached, to which, in turn, Internal Electrical Connections (12) of Heaters (9) are made.
  • the Rotating Reactor (4) is ended at the Output Appliances (3) side with the Output Flange (6), which being in the rotational motion together with the Rotating Reactor (4) works via the Output Sliding Seal (33) with the Discharge Flange (32) which is immobile in space.
  • the Output Manifold (34) is fixed to the Discharge Flange (32).
  • the Rotating Reactor (4) supplies generally two products to the Output Manifold (34): Product Solid Fraction (35) and Product Gaseous Fraction (36).
  • the lower part of the Output Manifold (34) includes the Solid Fraction Outlet Hole (37), via which such Product Solid Fraction (35) is poured to the Solid Fraction Tank (38), where it is temporarily stored as Solid Fraction (39).
  • Product Gaseous Fraction (36) moves in turn farther to the Modular Condensation Cooler (40), where being subject to cooling it is divided into condensable vapours and non- condensable process gas. Condensed vapours form Product Liquid Fraction (42) discharged out via Product Liquid Fraction Valve (41). The non-condensable process gas constitutes Non-Condensable Product Gaseous Fraction (44) discharged out via Product Gaseous Fraction valve (43).
  • Second air (46) is supplied to the Solid Fraction Tank (38), wherein Solid Fraction (35) can be still rich in organic carbon, owing to which power Syngas (46) is additionally formed in the Solid Fraction Tank (38), which mixes with Non-Condensed Product Gaseous Fraction (44).
  • the Versatile Waste Treatment Reactor can operate continuously on a long-term basis. However, where it is necessary to clean the interior of the Rotating Reactor (4), e.g. of fly ash, e.g. sand, gravel, small ceramic items with sharp edges (fine construction aggregate) or small metal items (nuts, bolts), undisclosed in the drawing, are supplied thereto.
  • fly ash e.g. sand, gravel
  • small ceramic items with sharp edges (fine construction aggregate) or small metal items (nuts, bolts) are supplied thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

L'invention concerne un réacteur de traitement de déchets polyvalent comprenant trois types d'appareils : une unité de réacteur rotatif (1), des appareils d'entrée (2) et des appareils de sortie (3). L'unité de réacteur rotatif (1) comprend un réacteur rotatif cylindrique à tuyau (4) se terminant aux extrémités avec une bride d'entrée (5) et une bride de sortie (6). Des éléments d'entraînement passif (8), par exemple des engrenages, sont fixés au réacteur rotatif et travaillent avec des éléments d'entraînement actif (7) présents sur la base. Sur le circuit du réacteur rotatif (4) se trouvent des éléments chauffants fixés de façon permanente audit circuit, par exemple des éléments chauffants électriques (9). Des dispositifs d'espacement d'isolation thermique/électrique (10) sont répartis entre les éléments chauffants électriques (9). Des contacts coulissants électriques annulaires internes sont fixés aux dispositifs d'espacement d'isolation thermique/électrique (10). Des raccordements électriques internes (12) sont reliés aux contacts coulissants électriques annulaires internes (11) sur un premier côté, et des conducteurs à phase électrique (14) sont reliés aux contacts coulissants électriques externes (13) sur l'autre côté. La surface rotative du réacteur rotatif (4) est recouverte dans une couche de matériau d'isolation thermique (15), et une seconde couche de matériau d'isolation électrique (16) est placée sur cette dernière. La surface interne du réacteur rotatif (4) est incorporée par une spirale (17) de structure hélicoïdale. Le réacteur de traitement de déchets polyvalent est conçu de telle sorte qu'il permet le traitement thermique et chimique de groupes de divers types de déchets, individuels ou mélangés, réalisant séparément ou conjointement les opérations suivantes : une décomposition thermique, une décomposition thermocatalytique, une pyrolyse partielle et une gazéification ou incinération partielle. Simultanément, le réacteur de traitement de déchets polyvalent est conçu de telle sorte qu'il permet l'alimentation continue d'éléments de traitement et la décharge continue de produits de réaction solides et gazeux, et permet son nettoyage sans devoir l'arrêter ni l'ouvrir.
PCT/PL2013/000156 2013-12-04 2013-12-04 Réacteur de traitement de déchets polyvalent WO2015084193A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/PL2013/000156 WO2015084193A1 (fr) 2013-12-04 2013-12-04 Réacteur de traitement de déchets polyvalent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/PL2013/000156 WO2015084193A1 (fr) 2013-12-04 2013-12-04 Réacteur de traitement de déchets polyvalent

Publications (1)

Publication Number Publication Date
WO2015084193A1 true WO2015084193A1 (fr) 2015-06-11

Family

ID=50231475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PL2013/000156 WO2015084193A1 (fr) 2013-12-04 2013-12-04 Réacteur de traitement de déchets polyvalent

Country Status (1)

Country Link
WO (1) WO2015084193A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925945B1 (ja) * 2015-08-24 2016-05-25 株式会社ケンテック研究所 廃棄物処理装置及び廃棄物処理方法
CN106322386A (zh) * 2016-09-09 2017-01-11 缪卫东 漆渣热解工艺及其装置
ITUB20156873A1 (it) * 2015-12-09 2017-06-09 Ivan Bordonzotti Procedimento ed impianto per la trasformazione di materiali combustibili in gas pulito esente da catrami.
DK201570784A1 (en) * 2015-12-01 2017-07-10 A J Inventing V/A Jarl Jacobsen Method and apparatus for storing renewable energy as gas
EP3219777A1 (fr) 2015-12-09 2017-09-20 Ivan Bordonzotti Procede et installation pour la transformation de matériaux combustibles dans des gaz purifiés sans goudrons

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023948A1 (fr) * 1994-03-03 1995-09-08 Anglo American Corporation Of South Africa Limited Four
WO2009028541A1 (fr) * 2007-08-28 2009-03-05 Kabushiki Kaisha Hakujisha Appareil de décomposition thermochimique réduisant les températures élevées pour biomasse
WO2010020662A1 (fr) * 2008-08-20 2010-02-25 Universität Kassel Réacteur à convoyeur à vis d’archimède
WO2011044943A1 (fr) * 2009-10-15 2011-04-21 Pyromex Holding Ag Four à haute température et procédé pour transformer des matières organiques en gaz de synthèse
WO2011100695A2 (fr) * 2010-02-13 2011-08-18 Mcalister Roy E Biens durables à base de carbone et combustible renouvelable issu de la dissociation de déchets de biomasse
US20130089470A1 (en) * 2010-06-16 2013-04-11 Makoto Takafuji Gasification furnace raw material supplying apparatus
DE202012002872U1 (de) * 2012-03-20 2013-06-21 Stadtwerke Rosenheim Gmbh & Co. Kg Biomassevergaser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023948A1 (fr) * 1994-03-03 1995-09-08 Anglo American Corporation Of South Africa Limited Four
WO2009028541A1 (fr) * 2007-08-28 2009-03-05 Kabushiki Kaisha Hakujisha Appareil de décomposition thermochimique réduisant les températures élevées pour biomasse
WO2010020662A1 (fr) * 2008-08-20 2010-02-25 Universität Kassel Réacteur à convoyeur à vis d’archimède
WO2011044943A1 (fr) * 2009-10-15 2011-04-21 Pyromex Holding Ag Four à haute température et procédé pour transformer des matières organiques en gaz de synthèse
WO2011100695A2 (fr) * 2010-02-13 2011-08-18 Mcalister Roy E Biens durables à base de carbone et combustible renouvelable issu de la dissociation de déchets de biomasse
US20130089470A1 (en) * 2010-06-16 2013-04-11 Makoto Takafuji Gasification furnace raw material supplying apparatus
DE202012002872U1 (de) * 2012-03-20 2013-06-21 Stadtwerke Rosenheim Gmbh & Co. Kg Biomassevergaser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925945B1 (ja) * 2015-08-24 2016-05-25 株式会社ケンテック研究所 廃棄物処理装置及び廃棄物処理方法
WO2017033345A1 (fr) * 2015-08-24 2017-03-02 株式会社ケンテック研究所 Appareil et procédé de traitement de déchets
DK201570784A1 (en) * 2015-12-01 2017-07-10 A J Inventing V/A Jarl Jacobsen Method and apparatus for storing renewable energy as gas
ITUB20156873A1 (it) * 2015-12-09 2017-06-09 Ivan Bordonzotti Procedimento ed impianto per la trasformazione di materiali combustibili in gas pulito esente da catrami.
EP3219777A1 (fr) 2015-12-09 2017-09-20 Ivan Bordonzotti Procede et installation pour la transformation de matériaux combustibles dans des gaz purifiés sans goudrons
CN106322386A (zh) * 2016-09-09 2017-01-11 缪卫东 漆渣热解工艺及其装置
CN106322386B (zh) * 2016-09-09 2018-03-30 缪卫东 漆渣热解工艺及其装置

Similar Documents

Publication Publication Date Title
WO2015084193A1 (fr) Réacteur de traitement de déchets polyvalent
DE10356245B4 (de) Verfahren zur Erzeugung von Dieselöl aus kohlenwasserstoffhaltigen Reststoffen sowie eine Vorrichtung zur Durchführung dieses Verfahrens
US20090050525A1 (en) Method for deploymerising residues containing hydrocarbons and device for carrying out said method
AU2013221354B2 (en) Dual stage, zone-delineated pyrolysis apparatus
US9631153B2 (en) Adaptable universal method for producing synthetic products
WO2011054138A1 (fr) Appareil pour réaction de craquage à racleur centrifuge formant un film et procédé l'utilisant
RU2459843C1 (ru) Способ переработки отходов термопластов и установка для его реализации
US11959037B2 (en) System and processes for upgrading synthetic gas produced from waste materials, municipal solid waste or biomass
CA3019711A1 (fr) Reacteur stationnaire et ses elements internes pour production du combustible liquide a partir de gaz d`hydrocarbures residuels et/ou de matieres organiques et/ou d`huiles contaminees, procedes thermiques, utilisations et systemes de gestion associes
JP2012144609A (ja) 廃プラスチックの接触分解炉および廃プラスチック連続油化装置
WO2014198075A1 (fr) Système et procédé de traitement de matière organique
RU2688568C1 (ru) Способ переработки органического сырья с получением синтетического высококалорийного газа в установке высокотемпературного абляционного пиролиза
RU2408819C1 (ru) Установка для переработки твердых органических отходов
CA2969070C (fr) Methode et appareil d'utilisation de plastique et d'autres materiaux dechets
RU159025U1 (ru) Устройство для термической переработки твердого органического сырья
CA3005593A1 (fr) Equipement de traitement thermique compact destine a traiter un materiau d'alimentation, procedes de fabrication des equipements, procedes thermiques de production de combustiblesliquides a l'aide de l'equipement et utilisations des combustibles liquides ainsi produits
RO120487B1 (ro) Procedeu şi instalaţie de descompunere a deşeurilor de cauciuc şi mase plastice
JP2013082857A (ja) 集塵装置
CN104673350B (zh) 可移动的倾斜式炼油装置
RU2002110990A (ru) Способ утилизации отходов резинотехнических изделий и устройство для его осуществления
RU2479617C1 (ru) Газогенератор обращенного процесса газификации
CN104087316A (zh) 旋转床干馏炉
RU157525U1 (ru) Энергонезависимая мобильная шнековая установка непрерывного действия
RU167118U1 (ru) Устройство для термической деструкции отходов полиэтилена и полипропилена
CN219950901U (zh) 热裂解炼油处理装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834376

Country of ref document: EP

Kind code of ref document: A1