WO2015083913A1 - Chamber structure of solid oxide fuel battery - Google Patents

Chamber structure of solid oxide fuel battery Download PDF

Info

Publication number
WO2015083913A1
WO2015083913A1 PCT/KR2014/005396 KR2014005396W WO2015083913A1 WO 2015083913 A1 WO2015083913 A1 WO 2015083913A1 KR 2014005396 W KR2014005396 W KR 2014005396W WO 2015083913 A1 WO2015083913 A1 WO 2015083913A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
chamber
solid oxide
oxide fuel
present
Prior art date
Application number
PCT/KR2014/005396
Other languages
French (fr)
Korean (ko)
Inventor
권오웅
Original Assignee
지브이퓨얼셀 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지브이퓨얼셀 주식회사 filed Critical 지브이퓨얼셀 주식회사
Publication of WO2015083913A1 publication Critical patent/WO2015083913A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2435High-temperature cells with solid electrolytes with monolithic core structure, e.g. honeycombs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a chamber structure of a solid oxide fuel cell, and more particularly to a chamber structure of a solid oxide fuel cell that can improve the output value of the fuel cell.
  • Solid Oxide Fuel Cells operate at the highest temperatures (700-1000 ° C) of fuel cells using solid oxides with oxygen or hydrogen ion conductivity as electrolytes.
  • solid oxide fuel cells have a simpler structure than other fuel cells because all components are solid, there is no problem of electrolyte loss, replenishment and corrosion, no precious metal catalyst, and fuel supply through direct internal reforming. This is easy.
  • it has the advantage that thermal combined cycle power generation using waste heat is possible because the high-temperature gas is discharged.
  • a typical solid oxide fuel cell is composed of a dense electrolyte layer of oxygen ion conductivity and a porous cathode and anode located on both sides thereof.
  • the operating principle is that oxygen permeates through the porous cathode and reaches the electrolyte surface. Oxygen ions generated by the oxygen reduction reaction move to the fuel electrode through the dense electrolyte and react with hydrogen supplied to the porous anode to generate water. At this time, since electrons are generated at the anode and electrons are consumed at the cathode, electricity flows when the two electrodes are connected to each other.
  • Figure 1 is a photograph showing a cross-sectional view of a single cell of the anode-supported solid oxide fuel cell according to the prior art 1.
  • a unit cell includes a porous anode support, a cathode functional layer, an electrolyte layer, and a composite cathode layer, and the composite cathode layer is further composed of a cathode functional layer, an anode, and a current collector layer.
  • the metal support-type metal oxide fuel cell of the related art 2 includes a metal support 101; A first electrode 103 formed on one surface of the metal support 101; An electrolyte 107 formed on one surface of the first electrode 103 and a second electrode 109 formed on one surface of the electrolyte 107 are formed in a stacked stack to supply and discharge fuel or air. It includes a manifold 110, the first electrode 103 and the second electrode 109 is composed of different electrodes of the air electrode or fuel electrode.
  • An object of the present invention is to solve the problems of the prior art as described above, it is possible to connect the fuel cell cells arranged in the chamber in the state in which the cathode chamber and the anode chamber alternately stacked in order to increase the output value of the fuel cell It is to provide a chamber structure of a solid oxide fuel cell that can be improved.
  • the chamber material can be made of stainless steel to reduce the unit cost, and the chamber structure of the solid oxide fuel cell made possible to solve the problem that the stainless steel is collected with the fuel cell cells through the insulator material To provide.
  • the layer layer is bonded with silver paste and sealant (Gas Leakage) It is to provide a chamber structure of a solid oxide fuel cell that can suppress the generation.
  • the present invention for achieving the object as described above, the present invention, the anode chamber into which fuel is introduced; A cathode chamber stacked on each of the front and rear surfaces of the anode chamber and into which air is introduced; A fuel cell disposed in the anode chamber; And an insulator interfering with the anode chamber and a contact portion of the fuel cell with the chamber structure of the solid oxide fuel cell.
  • the solid oxide fuel cell of the present invention may be closed by the cathode chamber at both ends, and the anode chamber and the cathode chamber may be alternately disposed between the cathode chambers.
  • the outer side of the cathode chamber in the present invention may be a fuel cell is provided on one side of the inner wall adjacent to the anode chamber, the inner side of the cathode chamber may be provided on both sides of the inner wall adjacent to the anode chamber.
  • anode chamber in the present invention may be formed of a stainless (Stainless) material.
  • the insulator in the present invention may be characterized in that the alumina plate (Al 2 O 3 ).
  • the fuel cell according to the present invention may be connected by silver wire in a state in which the silver paste is bonded to the silver paste.
  • the fuel cell according to the present invention may be stacked and electrically connected sequentially.
  • the fuel cell cells disposed in the chamber can be connected in series in a state where the cathode chamber and the anode chamber are alternately stacked, there is an effect of improving the output value of the fuel cell.
  • the present invention can reduce the unit cost by manufacturing the chamber material of stainless steel, there is an effect that can be solved through the insulator material through the problem that the stainless steel is collected with the fuel cell.
  • the present invention in order to electrically connect the stacked fuel cell cells through the silver wire (Ag wire), the layer layer is bonded with silver paste and sealant to suppress the occurrence of gas leakage (Gas Leakage) It can be effected.
  • FIG. 1 is a cross-sectional view of a single cell of a cathode support solid oxide fuel cell according to the related art.
  • FIG. 2 is a cross-sectional view showing an example of a metal support-type solid oxide fuel cell according to the prior art 2.
  • FIG 3 is a side sectional view showing the chamber structure of the solid oxide fuel cell according to the first embodiment of the present invention.
  • FIG. 4 is a side sectional view showing a chamber structure of a solid oxide fuel cell according to a second embodiment of the present invention.
  • FIG. 5 is a side sectional view showing a chamber structure of a solid oxide fuel cell according to a third embodiment of the present invention.
  • the present invention for achieving the object as described above, the present invention, the anode chamber into which fuel is introduced; A cathode chamber stacked on each of the front and rear surfaces of the anode chamber and into which air is introduced; A fuel cell disposed in the anode chamber; And an insulator interfering with the anode chamber and a contact portion of the fuel cell with the chamber structure of the solid oxide fuel cell.
  • the solid oxide fuel cell of the present invention may be closed by the cathode chamber at both ends, and the anode chamber and the cathode chamber may be alternately disposed between the cathode chambers.
  • the outer side of the cathode chamber in the present invention may be a fuel cell is provided on one side of the inner wall adjacent to the anode chamber, the inner side of the cathode chamber may be provided on both sides of the inner wall adjacent to the anode chamber.
  • anode chamber in the present invention may be formed of a stainless (Stainless) material.
  • the insulator in the present invention may be characterized in that the alumina plate (Al 2 O 3 ).
  • the fuel cell according to the present invention may be connected by silver wire in a state in which the silver paste is bonded to the silver paste.
  • the fuel cell according to the present invention may be stacked and electrically connected sequentially.
  • FIG 3 is a side cross-sectional view of a chamber structure of a solid oxide fuel cell according to a first embodiment of the present invention.
  • the chamber structure of the solid oxide fuel cell according to the first embodiment includes an anode chamber 100, a cathode chamber 110, an insulator 120, and a fuel cell cell 130.
  • the three-stage type chamber in which the cathode chamber 110 is in close contact with the upper and lower sides has been described as an example, but the present invention is not limited thereto.
  • the anode chamber 100 is a chamber in which an inlet is formed so that fuel including hydrogen or methanol, ethanol, hydrocarbons, and the like is introduced therein, and is formed of a stainless material.
  • the cathode chamber 110 is stacked on the front and rear surfaces of the anode chamber 100 to form an inlet through which air is introduced, and may be formed of the same material as the anode chamber 100.
  • the insulator 120 may solve the problem that stainless steel, which is a material of the anode chamber 100, collects with the fuel cell 130 by intervening in contact between the anode chamber 100 and the fuel cell 130. have.
  • the insulator 120 is formed of a ceramic or the like that is used as an insulator material, and processed into an alumina plate (Al 2 O 3 ) among the ceramics to form a plate, and then the fuel cell 130 is inserted into the plate surface. Form a groove.
  • the fuel cell 130 has a bottom surface supported by the support 132, and includes an anode electrode, an electrodelable layer, and a cathode electrode, and the support 132 is provided on the bottom surface of the anode electrode.
  • the support 132 refers to an anodized aluminum oxide (AAO) substrate.
  • the fuel cell cells 130 may be bonded to each other using a paste and a sealant. Suppress gas leakage.
  • the fuel cell cells 130 may be electrically connected in series and sequentially connected to each of the stacked fuel cell cells 130 while connecting silver wires to the ends of the insulator 120 on which the fuel cell 130 is seated so as to allow current collection.
  • the fuel cell 130 is provided on the lower end of the upper cathode chamber 110 and the upper end of the lower cathode chamber 110 when the chamber of the solid oxide fuel cell of the present embodiment has a three-stage configuration.
  • hydrogen or methanol as fuel is introduced into the inlet of the anode chamber 100, and air is introduced into the inlet of the cathode chamber 110. Since the fuel cell 130 seals the insulator 120 supported by the fuel cell 130, gas leakage does not occur while fuel is introduced into the cathode chamber 110.
  • the cathode chambers 110 are stacked on both surfaces of the anode chamber 100 and the fuel cell cells 130 are connected in series to each other, the fuel cell cells 130 have higher output values. do.
  • FIG. 4 is a side cross-sectional view of a chamber structure of a solid oxide fuel cell according to a second embodiment of the present invention.
  • the chamber structure of the solid oxide fuel cell according to the second embodiment includes an anode chamber 100, a cathode chamber 110, an insulator 120, and a fuel cell cell 130.
  • anode chamber 100, the cathode chamber 110, and the anode chamber 100 are alternately stacked between the cathode chambers 110 arranged above, a five-stage type chamber has been described as an example, but is not limited thereto. The increase and decrease of is possible.
  • both surfaces of the cathode chamber 110 disposed at the center and the cathode chambers 110 disposed at the upper and lower ends of the fuel cell 110 are disposed at the center of the solid oxide fuel cell.
  • the anode chamber 100 is interposed between the opposing surfaces of the) and the electrical connection structure of the insulator 120, the fuel cell 130, and the fuel cell 130 is the same as in the previous embodiment. Description is omitted.
  • the fuel cell 130 is disposed only on one side of the anode chamber 100 in contact with the cathode chamber 110 disposed at the outer edges of the upper and lower ends of the fuel cell, and the anode chamber 100 disposed inside the fuel cell. In the fuel cell 130 is disposed on both sides.
  • the chamber structure of the solid oxide fuel cell may be configured as a five-stage chamber, thereby achieving a higher output value than the first exemplary embodiment.
  • FIG. 5 is a side cross-sectional view of a chamber structure of a solid oxide fuel cell according to a third embodiment of the present invention.
  • the chamber structure of the solid oxide fuel cell according to the third embodiment includes an anode chamber 100, a cathode chamber 110, an insulator 120, and a fuel cell cell 130.
  • the anode chamber 100, the cathode chamber 110, the anode chamber 100, the cathode chamber 110, and the anode chamber 100 are alternately stacked between the cathode chambers 110 arranged in a total of seven stages.
  • the chamber has been described as an example, a single increase and decrease is possible.
  • the cathode chamber 110, the anode chamber 100, and the cathode chamber are disposed on both surfaces of the anode chamber 100 disposed at the center with the anode chamber 100 disposed at the center of the solid oxide fuel cell.
  • the points 110 are different from each other, and the electrical connection structure of the insulator 120, the fuel cell 130, and the fuel cell 130 is the same as in the previous embodiment, and thus a detailed description thereof will be omitted.
  • the fuel cell 130 is disposed only on one side of the anode chamber 100 in contact with the cathode chamber 110 disposed at the outer edges of the upper and lower ends of the fuel cell, and the anode chamber 100 disposed inside the fuel cell. In the fuel cell 130 is disposed on both sides.
  • the chamber structure of the solid oxide fuel cell is configured as a seven-stage chamber, so that the output value higher than that of the first and second embodiments can be realized.
  • the present invention relates to a chamber structure of a solid oxide fuel cell, and more particularly to a chamber structure of a solid oxide fuel cell that can improve the output value of the fuel cell.
  • the fuel cell cells disposed in the chamber can be connected in series in a state where the cathode chamber and the anode chamber are alternately stacked, there is an effect of improving the output value of the fuel cell.
  • the present invention can reduce the unit cost by manufacturing the chamber material of stainless steel, there is an effect that can be solved through the insulator material through the problem that the stainless steel is collected with the fuel cell.
  • the present invention in order to electrically connect the stacked fuel cell cells through the silver wire (Ag wire), the layer layer is bonded with silver paste and sealant to suppress the occurrence of gas leakage (Gas Leakage) It can be effected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a chamber structure of a solid oxide fuel battery. The present invention comprises: anode chambers into which fuel is inserted; cathode chambers layered on both the surface and the back of the anode chambers such that air is inserted thereinto; and fuel battery cells, supported by supporting bodies, disposed inside the anode chambers. The present invention can connect the fuel battery cells disposed in the chambers in series while the cathode chambers and the anode chambers are alternately layered, thereby improving the output value of a fuel battery; can reduce the unit price by manufacturing the chambers using stainless material; can solve a problem that stainless collects current from the fuel battery cell by an intervening insulating material; and can suppress generation of gas leakage by bonding the layered fuel battery cells on top of one another by means of silver (Ag) paste and sealant in order to electrically connect the fuel battery cells through a silver (Ag) wire.

Description

고체 산화물 연료전지의 챔버 구조Chamber Structure of Solid Oxide Fuel Cell
본 발명은 고체 산화물 연료전지의 챔버 구조에 관한 것으로, 더욱 상세하게는 연료전지의 출력 값을 향상시킬 수 있는 고체 산화물 연료전지의 챔버 구조에 관한 것이다.The present invention relates to a chamber structure of a solid oxide fuel cell, and more particularly to a chamber structure of a solid oxide fuel cell that can improve the output value of the fuel cell.
고체 산화물 연료전지(Solid Oxide Fuel Cell)는 산소 또는 수소 이온전도성을 띄는 고체 산화물을 전해질로 사용하여 연료 전지 중 가장 높은 온도(700∼1000 ℃)에서 작동한다.Solid Oxide Fuel Cells operate at the highest temperatures (700-1000 ° C) of fuel cells using solid oxides with oxygen or hydrogen ion conductivity as electrolytes.
특히, 고체 산화물 연료전지는 모든 구성 요소가 고체로 이루어져 있기 때문에 다른 연료 전지에 비해 구조가 간단하고, 전해질의 손실 및 보충과 부식의 문제가 없으며, 귀금속 촉매가 필요 없고 직접 내부 개질을 통한 연료 공급이 용이하다. 또한, 고온의 가스를 배출하기 때문에 폐열을 이용한 열 복합 발전이 가능하다는 장점도 지니고 있다. In particular, solid oxide fuel cells have a simpler structure than other fuel cells because all components are solid, there is no problem of electrolyte loss, replenishment and corrosion, no precious metal catalyst, and fuel supply through direct internal reforming. This is easy. In addition, it has the advantage that thermal combined cycle power generation using waste heat is possible because the high-temperature gas is discharged.
일반적인 고체 산화물 연료전지는 산소 이온전도성의 치밀한 전해질층과 그 양면에 위치한 다공성의 공기극(Cathode) 및 연료극(Anode)으로 이루어져 있다. 작동원리는 다공성의 공기극에서는 산소가 투과하여 전해질 면에 이르고 산소의 환원 반응에 의해 생성된 산소이온이 치밀한 전해질을 통해 연료극으로 이동하여 다시 다공성의 연료극에 공급된 수소와 반응함으로써 물을 생성하게 되고, 이때, 연료극에서는 전자가 생성되고 공기극에서는 전자가 소모되므로 두 전극을 서로 연결하면 전기가 흐르게 되는 것이다.A typical solid oxide fuel cell is composed of a dense electrolyte layer of oxygen ion conductivity and a porous cathode and anode located on both sides thereof. The operating principle is that oxygen permeates through the porous cathode and reaches the electrolyte surface. Oxygen ions generated by the oxygen reduction reaction move to the fuel electrode through the dense electrolyte and react with hydrogen supplied to the porous anode to generate water. At this time, since electrons are generated at the anode and electrons are consumed at the cathode, electricity flows when the two electrodes are connected to each other.
이러한 고체 산화물 연료전지와 관련된 기술이 특허등록 제0717130호와, 공개특허 제2012-0075242호에 제안된 바 있다.The technology related to such a solid oxide fuel cell has been proposed in Patent Registration No. 0717130 and Patent Publication No. 2012-0075242.
이하에서 종래기술로서 특허등록 제0717130호와, 공개특허 제2012-0075242호에 개시된 고체 산화물 연료전지를 간략히 설명한다.Hereinafter, a solid oxide fuel cell disclosed in Korean Patent No. 0817130 and Japanese Patent Laid-Open No. 2012-0075242 will be briefly described.
도 1에는 종래기술 1에 의한 연료극 지지형 고체산화물 연료전지의 단전지 단면을 보인 사진이 기재되어 있다. 도 1을 참조하면, 단전지는 다공성 연료극지지체, 연료극 기능성층, 전해질층, 복합 공기극층으로 구성을 가지며, 복합 공기극층은 다시 공기극 기능성층과 공기극 그리고 집전층으로 구성된다. Figure 1 is a photograph showing a cross-sectional view of a single cell of the anode-supported solid oxide fuel cell according to the prior art 1. Referring to FIG. 1, a unit cell includes a porous anode support, a cathode functional layer, an electrolyte layer, and a composite cathode layer, and the composite cathode layer is further composed of a cathode functional layer, an anode, and a current collector layer.
도 2에는 종래기술 2에 의한 금속 지지체형 고체 산화물 연료전지의 일 예가 단면도로 도시되어 있다. 도 2를 참조하면, 종래 기술 2의 금속 지지체형 금속 산화물 연료전지는 금속 지지체(101); 상기 금속 지지체(101)의 일면에 형성된 제1 전극(103); 상기 제1 전극(103)의 일면에 형성되는 전해질(107) 및 상기 전해질(107)의 일면에 형성되는 제2 전극(109)이 적층된 적층체에 형성되어, 연료 또는 공기의 공급 및 배출을 위한 매니폴드(110)를 포함하고, 상기 제1 전극(103) 및 제2 전극(109)은 공기극 또는 연료극의 서로 다른 전극으로 구성된다.2 is a cross-sectional view of an example of a metal support-type solid oxide fuel cell according to the related art 2. Referring to FIG. 2, the metal support-type metal oxide fuel cell of the related art 2 includes a metal support 101; A first electrode 103 formed on one surface of the metal support 101; An electrolyte 107 formed on one surface of the first electrode 103 and a second electrode 109 formed on one surface of the electrolyte 107 are formed in a stacked stack to supply and discharge fuel or air. It includes a manifold 110, the first electrode 103 and the second electrode 109 is composed of different electrodes of the air electrode or fuel electrode.
그러나 종래기술 1, 2에 의한 고체 산화물 연료전지는 반응 면적의 한계에 따른 출력이 한정되므로 이를 해결할 수 있는 방안의 모색이 요구되고 있다.However, since the output of the solid oxide fuel cells according to the prior arts 1 and 2 is limited according to the limit of the reaction area, there is a demand for a solution to solve this problem.
본 발명의 목적은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 캐소드 챔버와 애노드 챔버를 교번되게 적층시킨 상태에서 챔버 내부에 배치된 연료전지 셀을 직렬 연결 가능하므로 연료전지의 출력 값을 향상시킬 수 있게 한 고체 산화물 연료전지의 챔버 구조를 제공하는 것이다.An object of the present invention is to solve the problems of the prior art as described above, it is possible to connect the fuel cell cells arranged in the chamber in the state in which the cathode chamber and the anode chamber alternately stacked in order to increase the output value of the fuel cell It is to provide a chamber structure of a solid oxide fuel cell that can be improved.
또한, 본 발명의 다른 목적은, 챔버 재질을 스테인리스로 제작하여 단가를 줄일 수 있으며, 스테인리스가 연료전지 셀과 집전하게 되는 문제를 개입되는 절연체 물질을 통해 해결 가능하게 한 고체 산화물 연료전지의 챔버 구조를 제공하는 것이다.In addition, another object of the present invention, the chamber material can be made of stainless steel to reduce the unit cost, and the chamber structure of the solid oxide fuel cell made possible to solve the problem that the stainless steel is collected with the fuel cell cells through the insulator material To provide.
또한, 본 발명의 또 다른 목적은, 적층 배치된 연료전지 셀을 은 와이어(Ag wire)를 통해 전기적으로 접속시키기 위해 은 페이스트(Ag paste)와 실런트(Sealant)로 층층이 접착시켜 가스 누수(Gas Leakage) 발생을 억제시킬 수 있게 한 고체 산화물 연료전지의 챔버 구조를 제공하는 것이다.In addition, another object of the present invention, in order to electrically connect the stacked fuel cell cells through the silver wire (Ag wire), the layer layer is bonded with silver paste and sealant (Gas Leakage) It is to provide a chamber structure of a solid oxide fuel cell that can suppress the generation.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은, 연료가 유입되는 애노드 챔버; 상기 애노드 챔버의 표면과 이면에 각각 적층되어 공기가 유입되는 캐소드 챔버; 상기 애노드 챔버의 내부에 배치된 연료전지 셀; 및 상기 애노드 챔버와 상기 연료전지 셀과의 접촉 부위에 개입시키는 절연체를 포함하는 고체 산화물 연료전지의 챔버 구조를 통해 달성된다.According to a feature of the present invention for achieving the object as described above, the present invention, the anode chamber into which fuel is introduced; A cathode chamber stacked on each of the front and rear surfaces of the anode chamber and into which air is introduced; A fuel cell disposed in the anode chamber; And an insulator interfering with the anode chamber and a contact portion of the fuel cell with the chamber structure of the solid oxide fuel cell.
또한, 본 발명에서의 상기 고체 산화물 연료전지는 양 끝단에서 상기 캐소드 챔버에 의해 마감되며, 상기 캐소드 챔버의 사이에 상기 애노드 챔버와 상기 캐소드 챔버가 교번되게 배치될 수 있다.In addition, the solid oxide fuel cell of the present invention may be closed by the cathode chamber at both ends, and the anode chamber and the cathode chamber may be alternately disposed between the cathode chambers.
또한, 본 발명에서의 상기 캐소드 챔버 중 외곽측은 연료전지 셀이 상기 애노드 챔버와 인접한 내벽 일측에 구비되고, 상기 캐소드 챔버 중 내곽측은 상기 연료전지 셀이 상기 애노드 챔버와 인접한 내벽 양측에 구비될 수 있다.In addition, the outer side of the cathode chamber in the present invention may be a fuel cell is provided on one side of the inner wall adjacent to the anode chamber, the inner side of the cathode chamber may be provided on both sides of the inner wall adjacent to the anode chamber. .
또한, 본 발명에서의 상기 애노드 챔버는 스테인리스(Stainless) 재질로 형성될 수 있다.In addition, the anode chamber in the present invention may be formed of a stainless (Stainless) material.
또한, 본 발명에서의 상기 절연체는 알루미나 플레이트(Al2O3)인 것을 특징으로 할 수 있다.In addition, the insulator in the present invention may be characterized in that the alumina plate (Al 2 O 3 ).
또한, 본 발명에서의 상기 연료전지 셀은 은 페이스트(Ag paste)와 실런트(Sealant)로 접착시킨 상태에서 은 와이어(Ag wire)로 연결할 수 있다.In addition, the fuel cell according to the present invention may be connected by silver wire in a state in which the silver paste is bonded to the silver paste.
또한, 본 발명에서의 상기 연료전지 셀은 적층 배치되어 전기적으로 순차 연결할 수 있다.In addition, the fuel cell according to the present invention may be stacked and electrically connected sequentially.
본 발명에 의하면, 캐소드 챔버와 애노드 챔버를 교번되게 적층시킨 상태에서 챔버 내부에 배치된 연료전지 셀을 직렬 연결 가능하므로 연료전지의 출력 값을 향상시킬 수 있는 효과가 있다.According to the present invention, since the fuel cell cells disposed in the chamber can be connected in series in a state where the cathode chamber and the anode chamber are alternately stacked, there is an effect of improving the output value of the fuel cell.
또한, 본 발명은, 챔버 재질을 스테인리스로 제작하여 단가를 줄일 수 있으며, 스테인리스가 연료전지 셀과 집전하게 되는 문제를 개입되는 절연체 물질을 통해 해결 가능한 효과가 있다.In addition, the present invention can reduce the unit cost by manufacturing the chamber material of stainless steel, there is an effect that can be solved through the insulator material through the problem that the stainless steel is collected with the fuel cell.
또한, 본 발명은, 적층 배치된 연료전지 셀을 은 와이어(Ag wire)를 통해 전기적으로 접속시키기 위해 은 페이스트(Ag paste)와 실런트(Sealant)로 층층이 접착시켜 가스 누수(Gas Leakage) 발생을 억제시킬 수 있는 효과가 있다.In addition, the present invention, in order to electrically connect the stacked fuel cell cells through the silver wire (Ag wire), the layer layer is bonded with silver paste and sealant to suppress the occurrence of gas leakage (Gas Leakage) It can be effected.
도 1은 종래기술 1에 대한 연료극 지지형 고체산화물 연료전지의 단전지 단면을 보인 사진이다.1 is a cross-sectional view of a single cell of a cathode support solid oxide fuel cell according to the related art.
도 2는 종래기술 2에 대한 금속 지지체형 고체 산화물 연료전지의 일 예가 도시된 단면도이다.2 is a cross-sectional view showing an example of a metal support-type solid oxide fuel cell according to the prior art 2.
도 3은 본 발명의 제1 실시예에 의한 고체 산화물 연료전지의 챔버 구조를 도시한 측단면도이다.3 is a side sectional view showing the chamber structure of the solid oxide fuel cell according to the first embodiment of the present invention.
도 4는 본 발명의 제2 실시예에 의한 고체 산화물 연료전지의 챔버 구조를 도시한 측단면도이다.4 is a side sectional view showing a chamber structure of a solid oxide fuel cell according to a second embodiment of the present invention.
도 5는 본 발명의 제3 실시예에 의한 고체 산화물 연료전지의 챔버 구조를 도시한 측단면도이다.5 is a side sectional view showing a chamber structure of a solid oxide fuel cell according to a third embodiment of the present invention.
< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>
100: 애노드 챔버100: anode chamber
110: 캐소드 챔버110: cathode chamber
120: 절연체 120: insulator
130: 연료전지 셀130: fuel cell
132: 지지체132: support
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은, 연료가 유입되는 애노드 챔버; 상기 애노드 챔버의 표면과 이면에 각각 적층되어 공기가 유입되는 캐소드 챔버; 상기 애노드 챔버의 내부에 배치된 연료전지 셀; 및 상기 애노드 챔버와 상기 연료전지 셀과의 접촉 부위에 개입시키는 절연체를 포함하는 고체 산화물 연료전지의 챔버 구조를 통해 달성된다.According to a feature of the present invention for achieving the object as described above, the present invention, the anode chamber into which fuel is introduced; A cathode chamber stacked on each of the front and rear surfaces of the anode chamber and into which air is introduced; A fuel cell disposed in the anode chamber; And an insulator interfering with the anode chamber and a contact portion of the fuel cell with the chamber structure of the solid oxide fuel cell.
또한, 본 발명에서의 상기 고체 산화물 연료전지는 양 끝단에서 상기 캐소드 챔버에 의해 마감되며, 상기 캐소드 챔버의 사이에 상기 애노드 챔버와 상기 캐소드 챔버가 교번되게 배치될 수 있다.In addition, the solid oxide fuel cell of the present invention may be closed by the cathode chamber at both ends, and the anode chamber and the cathode chamber may be alternately disposed between the cathode chambers.
또한, 본 발명에서의 상기 캐소드 챔버 중 외곽측은 연료전지 셀이 상기 애노드 챔버와 인접한 내벽 일측에 구비되고, 상기 캐소드 챔버 중 내곽측은 상기 연료전지 셀이 상기 애노드 챔버와 인접한 내벽 양측에 구비될 수 있다.In addition, the outer side of the cathode chamber in the present invention may be a fuel cell is provided on one side of the inner wall adjacent to the anode chamber, the inner side of the cathode chamber may be provided on both sides of the inner wall adjacent to the anode chamber. .
또한, 본 발명에서의 상기 애노드 챔버는 스테인리스(Stainless) 재질로 형성될 수 있다.In addition, the anode chamber in the present invention may be formed of a stainless (Stainless) material.
또한, 본 발명에서의 상기 절연체는 알루미나 플레이트(Al2O3)인 것을 특징으로 할 수 있다.In addition, the insulator in the present invention may be characterized in that the alumina plate (Al 2 O 3 ).
또한, 본 발명에서의 상기 연료전지 셀은 은 페이스트(Ag paste)와 실런트(Sealant)로 접착시킨 상태에서 은 와이어(Ag wire)로 연결할 수 있다.In addition, the fuel cell according to the present invention may be connected by silver wire in a state in which the silver paste is bonded to the silver paste.
또한, 본 발명에서의 상기 연료전지 셀은 적층 배치되어 전기적으로 순차 연결할 수 있다.In addition, the fuel cell according to the present invention may be stacked and electrically connected sequentially.
본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims are meant to be consistent with the technical spirit of the present invention on the basis of the principle that the inventor can appropriately define the concept of the term in order to best explain his invention. It must be interpreted as and concepts.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless otherwise stated.
이하 도면을 참고하여 본 발명에 의한 고체 산화물 연료전지의 챔버 구조에 대한 실시 예의 구성을 상세하게 설명하기로 한다.Hereinafter, a configuration of an embodiment of a chamber structure of a solid oxide fuel cell according to the present invention will be described in detail with reference to the drawings.
<제1 실시예><First Embodiment>
도 3에는 본 발명의 제1 실시예에 의한 고체 산화물 연료전지의 챔버 구조가 측단면도로 도시되어 있다.3 is a side cross-sectional view of a chamber structure of a solid oxide fuel cell according to a first embodiment of the present invention.
이 도면에 의하면, 제1 실시예에 따른 고체 산화물 연료전지의 챔버 구조는 애노드 챔버(100), 캐소드 챔버(110), 절연체(120) 및 연료전지 셀(130)을 포함하며, 상기 애노드 챔버(100)를 기점으로 상하에 상기 캐소드 챔버(110)가 밀착된 3단 형태의 챔버를 예를 들어 설명하였으나 이에 한정하지 않고 단수의 증감이 가능하다.According to this drawing, the chamber structure of the solid oxide fuel cell according to the first embodiment includes an anode chamber 100, a cathode chamber 110, an insulator 120, and a fuel cell cell 130. For example, the three-stage type chamber in which the cathode chamber 110 is in close contact with the upper and lower sides has been described as an example, but the present invention is not limited thereto.
애노드 챔버(Anode chamber: 100)는 수소 또는 메탄올, 에탄올 및 탄화수소계열 등이 포함되는 연료가 유입되도록 유입구가 형성되는 챔버로, 스테인리스(Stainless) 재질 등으로 형성된다.The anode chamber 100 is a chamber in which an inlet is formed so that fuel including hydrogen or methanol, ethanol, hydrocarbons, and the like is introduced therein, and is formed of a stainless material.
캐소드 챔버(Cathode chamber: 110)는 애노드 챔버(100)의 표면과 이면에 각각 적층되어 공기가 유입되는 유입구가 형성되며, 상기 애노드 챔버(100)와 동일 재질로 형성될 수 있다.The cathode chamber 110 is stacked on the front and rear surfaces of the anode chamber 100 to form an inlet through which air is introduced, and may be formed of the same material as the anode chamber 100.
절연체(120)는 애노드 챔버(100)와 연료전지 셀(130)과의 접촉 부위에 개입시켜 상기 애노드 챔버(100)의 재질인 스테인리스가 상기 연료전지 셀(130)과 집전하게 되는 문제를 해결할 수 있다.The insulator 120 may solve the problem that stainless steel, which is a material of the anode chamber 100, collects with the fuel cell 130 by intervening in contact between the anode chamber 100 and the fuel cell 130. have.
이때, 상기 절연체(120)는 절연체 물질로 사용되고 있는 세라믹 등으로 형성되며, 세라믹 중에서도 알루미나 플레이트(Al2O3) 등으로 가공하여 플레이트 형태로 만든 후 플레이트 표면에 연료전지 셀(130)이 삽입되는 홈을 형성한다.In this case, the insulator 120 is formed of a ceramic or the like that is used as an insulator material, and processed into an alumina plate (Al 2 O 3 ) among the ceramics to form a plate, and then the fuel cell 130 is inserted into the plate surface. Form a groove.
연료전지 셀(130)은 저면이 지지체(132)로 지지되며, 애노드 전극, 절해질층 및 캐소드 전극으로 이루어져, 상기 애노드 전극의 저면에 상기 지지체(132)가 구비된다. 이때, 상기 지지체(132)는 양극 알루미나 산화물(Anodized Aluminum Oxide: AAO) 기판을 말한다. The fuel cell 130 has a bottom surface supported by the support 132, and includes an anode electrode, an electrodelable layer, and a cathode electrode, and the support 132 is provided on the bottom surface of the anode electrode. In this case, the support 132 refers to an anodized aluminum oxide (AAO) substrate.
더욱이, 연료전지 셀(130)은 적층된 상기 연료전지 셀(130)을 전기적으로 접속시키기 위해 은 와이어(Ag wire)로 연결하는 과정에서 페이스트(Ag paste)와 실런트(Sealant)로 층층이 접착시켜 가스 누수(Gas Leakage) 발생을 억제한다.In addition, in the process of connecting the fuel cell cells 130 stacked with silver wires to electrically connect the stacked fuel cell cells 130, the fuel cell cells 130 may be bonded to each other using a paste and a sealant. Suppress gas leakage.
즉, 상기 연료전지 셀(130)이 안착된 절연체(120)의 끝단에는 각각 집전을 시킬 수 있도록 은 와이어를 위아래로 연결하면서 적층된 상기 연료전지 셀(130)마다 전기적으로 순차 연결하여 직렬연결 할 수 있는 구조를 구현할 수 있게 된다.That is, the fuel cell cells 130 may be electrically connected in series and sequentially connected to each of the stacked fuel cell cells 130 while connecting silver wires to the ends of the insulator 120 on which the fuel cell 130 is seated so as to allow current collection. You can implement a structure that can
한편, 상기 연료전지 셀(130)은 본 실시예에서의 고체 산화물 연료전지의 챔버가 3단 형태인 경우 상측 캐소드 챔버(110)의 하단과 하측 캐소드 챔버(110)의 상단에 설치된다.On the other hand, the fuel cell 130 is provided on the lower end of the upper cathode chamber 110 and the upper end of the lower cathode chamber 110 when the chamber of the solid oxide fuel cell of the present embodiment has a three-stage configuration.
그러므로 본 실시예에 따른 고체 산화물 연료전지의 챔버 구조는 애노드 챔버(100)의 유입구로 연료인 수소 또는 메탄올이 유입되고, 캐소드 챔버(110)의 유입구로 공기가 유입되는 과정에서, 상기 애노드 챔버(100)에서 연료전지 셀(130)이 지지된 절연체(120)를 밀봉하므로 상기 캐소드 챔버(110)로 연료가 유입되는 과정에서 가스 누수가 발생하지 않는다.Therefore, in the chamber structure of the solid oxide fuel cell according to the present embodiment, hydrogen or methanol as fuel is introduced into the inlet of the anode chamber 100, and air is introduced into the inlet of the cathode chamber 110. Since the fuel cell 130 seals the insulator 120 supported by the fuel cell 130, gas leakage does not occur while fuel is introduced into the cathode chamber 110.
더욱이, 상기 애노드 챔버(100)를 기준으로 양 표면에 캐소드 챔버(110)를 적층시키고, 그 내부의 연료전지 셀(130)을 직렬 연결하므로 각각의 상기 연료전지 셀(130) 들은 출력 값이 높아지게 된다.Furthermore, since the cathode chambers 110 are stacked on both surfaces of the anode chamber 100 and the fuel cell cells 130 are connected in series to each other, the fuel cell cells 130 have higher output values. do.
<제2 실시예>Second Embodiment
도 4에는 본 발명의 제2 실시예에 의한 고체 산화물 연료전지의 챔버 구조가 측단면도로 도시되어 있다.4 is a side cross-sectional view of a chamber structure of a solid oxide fuel cell according to a second embodiment of the present invention.
이 도면에 의하면, 제2 실시예에 따른 고체 산화물 연료전지의 챔버 구조는 애노드 챔버(100), 캐소드 챔버(110), 절연체(120) 및 연료전지 셀(130)을 포함하며, 상하 양 끝단에 배치된 상기 캐소드 챔버(110)의 사이를 애노드 챔버(100), 캐소드 챔버(110) 및 애노드 챔버(100)가 교번되게 적층되어 총 5단 형태의 챔버를 예를 들어 설명하였으나 이에 한정하지 않고 단수의 증감이 가능하다.According to this drawing, the chamber structure of the solid oxide fuel cell according to the second embodiment includes an anode chamber 100, a cathode chamber 110, an insulator 120, and a fuel cell cell 130. Although the anode chamber 100, the cathode chamber 110, and the anode chamber 100 are alternately stacked between the cathode chambers 110 arranged above, a five-stage type chamber has been described as an example, but is not limited thereto. The increase and decrease of is possible.
본 실시예에서는 상기 고체 산화물 연료전지의 중심부에 캐소드 챔버(110)를 배치한 상태에서 중심에 배치된 상기 캐소드 챔버(110)의 양 표면과, 연료전지 상하 양 끝단에 배치된 상기 캐소드 챔버(110)의 대향면 사이에 애노드 챔버(100)가 각각 개입되는 점이 상이하며, 절연체(120), 연료전지 셀(130) 및 상기 연료전지 셀(130)의 전기적 연결구조는 앞선 실시예와 동일하므로 상세한 설명은 생략한다.In the present exemplary embodiment, both surfaces of the cathode chamber 110 disposed at the center and the cathode chambers 110 disposed at the upper and lower ends of the fuel cell 110 are disposed at the center of the solid oxide fuel cell. The anode chamber 100 is interposed between the opposing surfaces of the) and the electrical connection structure of the insulator 120, the fuel cell 130, and the fuel cell 130 is the same as in the previous embodiment. Description is omitted.
이때, 상기 연료전지의 상하 양 끝단 외곽에 배치된 상기 캐소드 챔버(110)와 접촉하는 애노드 챔버(100)측에만 한쪽에 연료전지 셀(130)이 배치되고, 내곽에 배치된 애노드 챔버(100)에는 양쪽에 상기 연료전지 셀(130)이 배치되는 것이다.At this time, the fuel cell 130 is disposed only on one side of the anode chamber 100 in contact with the cathode chamber 110 disposed at the outer edges of the upper and lower ends of the fuel cell, and the anode chamber 100 disposed inside the fuel cell. In the fuel cell 130 is disposed on both sides.
그러므로 본 실시예에서는 고체 산화물 연료전지의 챔버 구조가 5단 형태의 챔버로 구성되어 제1 실시예보다 높은 출력 값을 구현할 수 있다.Therefore, in the present exemplary embodiment, the chamber structure of the solid oxide fuel cell may be configured as a five-stage chamber, thereby achieving a higher output value than the first exemplary embodiment.
<제3 실시예>Third Embodiment
도 5에는 본 발명의 제3 실시예에 의한 고체 산화물 연료전지의 챔버 구조가 측단면도로 도시되어 있다.5 is a side cross-sectional view of a chamber structure of a solid oxide fuel cell according to a third embodiment of the present invention.
이 도면에 의하면, 제3 실시예에 따른 고체 산화물 연료전지의 챔버 구조는 애노드 챔버(100), 캐소드 챔버(110), 절연체(120) 및 연료전지 셀(130)을 포함하며, 상하 양 끝단에 배치된 상기 캐소드 챔버(110)의 사이를 애노드 챔버(100), 캐소드 챔버(110), 애노드 챔버(100), 캐소드 챔버(110) 및 애노드 챔버(100)가 교번되게 적층되어 총 7단 형태의 챔버를 예를 들어 설명하였으나 이에 한정하지 않고 단수의 증감이 가능하다.According to this drawing, the chamber structure of the solid oxide fuel cell according to the third embodiment includes an anode chamber 100, a cathode chamber 110, an insulator 120, and a fuel cell cell 130. The anode chamber 100, the cathode chamber 110, the anode chamber 100, the cathode chamber 110, and the anode chamber 100 are alternately stacked between the cathode chambers 110 arranged in a total of seven stages. Although the chamber has been described as an example, a single increase and decrease is possible.
본 실시예에서는 상기 고체 산화물 연료전지의 중심부에 애노드 챔버(100)를 배치한 상태에서 중심에 배치된 상기 애노드 챔버(100)의 양 표면에 캐소드 챔버(110), 애노드 챔버(100) 및 캐소드 챔버(110)가 각각 배치되는 점이 상이하며, 절연체(120), 연료전지 셀(130) 및 상기 연료전지 셀(130)의 전기적 연결구조는 앞선 실시예와 동일하므로 상세한 설명은 생략한다.In the present embodiment, the cathode chamber 110, the anode chamber 100, and the cathode chamber are disposed on both surfaces of the anode chamber 100 disposed at the center with the anode chamber 100 disposed at the center of the solid oxide fuel cell. The points 110 are different from each other, and the electrical connection structure of the insulator 120, the fuel cell 130, and the fuel cell 130 is the same as in the previous embodiment, and thus a detailed description thereof will be omitted.
이때, 상기 연료전지의 상하 양 끝단 외곽에 배치된 상기 캐소드 챔버(110)와 접촉하는 애노드 챔버(100)측에만 한쪽에 연료전지 셀(130)이 배치되고, 내곽에 배치된 애노드 챔버(100)에는 양쪽에 상기 연료전지 셀(130)이 배치되는 것이다.At this time, the fuel cell 130 is disposed only on one side of the anode chamber 100 in contact with the cathode chamber 110 disposed at the outer edges of the upper and lower ends of the fuel cell, and the anode chamber 100 disposed inside the fuel cell. In the fuel cell 130 is disposed on both sides.
그러므로 본 실시예에서는 고체 산화물 연료전지의 챔버 구조가 7단 형태의 챔버로 구성되어 제1, 2 실시예보다 높은 출력 값을 구현할 수 있다.Therefore, in the present embodiment, the chamber structure of the solid oxide fuel cell is configured as a seven-stage chamber, so that the output value higher than that of the first and second embodiments can be realized.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the claims below but also by the equivalents of the claims.
본 발명은 고체 산화물 연료전지의 챔버 구조에 관한 것으로, 더욱 상세하게는 연료전지의 출력 값을 향상시킬 수 있는 고체 산화물 연료전지의 챔버 구조에 관한 것이다.The present invention relates to a chamber structure of a solid oxide fuel cell, and more particularly to a chamber structure of a solid oxide fuel cell that can improve the output value of the fuel cell.
본 발명에 의하면, 캐소드 챔버와 애노드 챔버를 교번되게 적층시킨 상태에서 챔버 내부에 배치된 연료전지 셀을 직렬 연결 가능하므로 연료전지의 출력 값을 향상시킬 수 있는 효과가 있다.According to the present invention, since the fuel cell cells disposed in the chamber can be connected in series in a state where the cathode chamber and the anode chamber are alternately stacked, there is an effect of improving the output value of the fuel cell.
또한, 본 발명은, 챔버 재질을 스테인리스로 제작하여 단가를 줄일 수 있으며, 스테인리스가 연료전지 셀과 집전하게 되는 문제를 개입되는 절연체 물질을 통해 해결 가능한 효과가 있다.In addition, the present invention can reduce the unit cost by manufacturing the chamber material of stainless steel, there is an effect that can be solved through the insulator material through the problem that the stainless steel is collected with the fuel cell.
또한, 본 발명은, 적층 배치된 연료전지 셀을 은 와이어(Ag wire)를 통해 전기적으로 접속시키기 위해 은 페이스트(Ag paste)와 실런트(Sealant)로 층층이 접착시켜 가스 누수(Gas Leakage) 발생을 억제시킬 수 있는 효과가 있다.In addition, the present invention, in order to electrically connect the stacked fuel cell cells through the silver wire (Ag wire), the layer layer is bonded with silver paste and sealant to suppress the occurrence of gas leakage (Gas Leakage) It can be effected.

Claims (7)

  1. 연료가 유입되는 애노드 챔버;An anode chamber into which fuel is introduced;
    상기 애노드 챔버의 표면과 이면에 각각 적층되어 공기가 유입되는 캐소드 챔버;A cathode chamber stacked on each of the front and rear surfaces of the anode chamber and into which air is introduced;
    상기 애노드 챔버의 내부에 배치된 연료전지 셀; 및A fuel cell disposed in the anode chamber; And
    상기 애노드 챔버와 상기 연료전지 셀과의 접촉 부위에 개입시키는 절연체를 포함하는 고체 산화물 연료전지의 챔버 구조.A chamber structure of a solid oxide fuel cell comprising an insulator interfering with a contact portion between the anode chamber and the fuel cell.
  2. 제1항에 있어서,The method of claim 1,
    상기 고체 산화물 연료전지는 양 끝단에서 상기 캐소드 챔버에 의해 마감되며, 상기 캐소드 챔버의 사이에 상기 애노드 챔버와 상기 캐소드 챔버가 교번되게 배치되는 고체 산화물 연료전지의 챔버 구조.The solid oxide fuel cell is terminated by the cathode chamber at both ends, and the anode chamber and the cathode chamber are alternately disposed between the cathode chamber chamber structure of a solid oxide fuel cell.
  3. 제2항에 있어서,The method of claim 2,
    상기 캐소드 챔버 중 외곽측은 연료전지 셀이 상기 애노드 챔버와 인접한 내벽 일측에 구비되고, 상기 캐소드 챔버 중 내곽측은 상기 연료전지 셀이 상기 애노드 챔버와 인접한 내벽 양측에 구비되는 고체 산화물 연료전지의 챔버 구조.The outer side of the cathode chamber is a fuel cell cell is provided on one side of the inner wall adjacent to the anode chamber, the inner side of the cathode chamber of the solid oxide fuel cell chamber structure is provided on both sides of the inner wall adjacent to the anode chamber.
  4. 제1항에 있어서,The method of claim 1,
    상기 애노드 챔버는 스테인리스(Stainless) 재질로 형성되는 고체 산화물 연료전지의 챔버 구조.The anode chamber is a chamber structure of a solid oxide fuel cell is formed of stainless (Stainless) material.
  5. 제1항에 있어서,The method of claim 1,
    상기 절연체는 알루미나 플레이트(Al2O3)인 고체 산화물 연료전지의 챔버 구조.The insulator is an alumina plate (Al 2 O 3 ) chamber structure of a solid oxide fuel cell.
  6. 제1항에 있어서, The method of claim 1,
    상기 연료전지 셀은 은 페이스트(Ag paste)와 실런트(Sealant)로 접착시킨 상태에서 은 와이어(Ag wire)로 연결하는 고체 산화물 연료전지의 챔버 구조.The fuel cell is a chamber structure of a solid oxide fuel cell connected to the silver paste (Ag wire) in a state in which the paste (Ag paste) and sealant (Sealant).
  7. 제6항에 있어서,The method of claim 6,
    상기 연료전지 셀은 적층 배치되어 전기적으로 순차 연결하는 고체 산화물 연료전지의 챔버 구조.Wherein the fuel cell is stacked and electrically connected sequentially.
PCT/KR2014/005396 2013-12-06 2014-06-19 Chamber structure of solid oxide fuel battery WO2015083913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0151228 2013-12-06
KR1020130151228A KR20150066103A (en) 2013-12-06 2013-12-06 Chamber structure of solid oxide fuel cell

Publications (1)

Publication Number Publication Date
WO2015083913A1 true WO2015083913A1 (en) 2015-06-11

Family

ID=53273638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005396 WO2015083913A1 (en) 2013-12-06 2014-06-19 Chamber structure of solid oxide fuel battery

Country Status (2)

Country Link
KR (1) KR20150066103A (en)
WO (1) WO2015083913A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080081206A (en) * 2006-01-31 2008-09-08 혼다 기켄 고교 가부시키가이샤 Fuel cell
KR20110136148A (en) * 2010-06-14 2011-12-21 포항공과대학교 산학협력단 Internal reforming tubular type solid oxide fuel cell stacks and their manufacturing methods
JP2013008687A (en) * 2012-08-24 2013-01-10 Sharp Corp Fuel cell stack
KR101271889B1 (en) * 2011-08-11 2013-06-05 주식회사 포스코 Fuel cell unit cell for accurate performance testing
KR20130076119A (en) * 2011-12-28 2013-07-08 주식회사 효성 Fuel cell apparatus being capable of measuring voltage with sealing structure
KR20130113592A (en) * 2012-04-06 2013-10-16 한국에너지기술연구원 Flat-tubular solid oxide cell stack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080081206A (en) * 2006-01-31 2008-09-08 혼다 기켄 고교 가부시키가이샤 Fuel cell
KR20110136148A (en) * 2010-06-14 2011-12-21 포항공과대학교 산학협력단 Internal reforming tubular type solid oxide fuel cell stacks and their manufacturing methods
KR101271889B1 (en) * 2011-08-11 2013-06-05 주식회사 포스코 Fuel cell unit cell for accurate performance testing
KR20130076119A (en) * 2011-12-28 2013-07-08 주식회사 효성 Fuel cell apparatus being capable of measuring voltage with sealing structure
KR20130113592A (en) * 2012-04-06 2013-10-16 한국에너지기술연구원 Flat-tubular solid oxide cell stack
JP2013008687A (en) * 2012-08-24 2013-01-10 Sharp Corp Fuel cell stack

Also Published As

Publication number Publication date
KR20150066103A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
RU2415498C2 (en) Configurations of batteries of tubular solid-oxide fuel elements
WO2014208869A1 (en) Solid oxide fuel cell stack
WO2010123219A2 (en) Stack for a solid oxide fuel cell using a flat tubular structure
WO2014104584A1 (en) Stack structure for fuel cell
WO2011126289A2 (en) Flat tubular solid oxide fuel cell stack
WO2018034490A1 (en) Solid oxide fuel cell
WO2013129787A1 (en) Unit cell for solid-oxide fuel cell and solid-oxide fuel cell using same
WO2013183884A1 (en) Current collector plate for fuel cell and stack structure comprising same
WO2013183885A1 (en) Stack structure for fuel cell and composition thereof
EP1685621B1 (en) Multi-cell fuel layer and system
WO2012015113A1 (en) Flat tubular solid oxide cell stack
WO2012115485A2 (en) Flat tubular solid-oxide fuel cell, and flat tubular solid-oxide water electrolysis apparatus
WO2020040515A1 (en) Apparatus and method for plasticizing solid oxide fuel cell
WO2015083913A1 (en) Chamber structure of solid oxide fuel battery
WO2016093604A1 (en) Polymer electrolyte-type fuel cell, fuel cell stack and end plate
CN113948730B (en) Self-sealing metal flat tube supporting type solid oxide fuel cell/electrolytic cell structure
CN105810971A (en) Solid oxide fuel cell unit group
WO2017146359A1 (en) Fuel cell separator plate and fuel cell stack having same
WO2012081792A1 (en) Bipolar plates of fuel cell and stack structure using same
WO2014119931A1 (en) Method for manufacturing stack of thin film-type solid oxide fuel cell using nanopowder
WO2011052843A1 (en) Solid-oxide fuel cell and a production method therefor
WO2014092357A1 (en) Stack structure for fuel cell
WO2012043903A1 (en) Separation plate of solid oxide fuel cell stack using bonding process
WO2018034489A1 (en) Planar solid oxide fuel cell
WO2014119925A1 (en) Reformer integrated thin film solid oxide fuel cell and method for fabricating same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 23-09-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 14867753

Country of ref document: EP

Kind code of ref document: A1