WO2015083796A1 - 画像符号化装置 - Google Patents

画像符号化装置 Download PDF

Info

Publication number
WO2015083796A1
WO2015083796A1 PCT/JP2014/082132 JP2014082132W WO2015083796A1 WO 2015083796 A1 WO2015083796 A1 WO 2015083796A1 JP 2014082132 W JP2014082132 W JP 2014082132W WO 2015083796 A1 WO2015083796 A1 WO 2015083796A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
sao
feature amount
intra prediction
Prior art date
Application number
PCT/JP2014/082132
Other languages
English (en)
French (fr)
Inventor
貴之 井對
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015551562A priority Critical patent/JP5951144B2/ja
Publication of WO2015083796A1 publication Critical patent/WO2015083796A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

 SAOパラメータ決定部14が、エッジオフセットEOにおける4個のクラスの中から、イントラ予測部4により選択された最適な方向性イントラ予測モードANG1と直交する方向に近いEOクラス、または、動き補償予測部5から出力された直交変換係数COEF2に対応するEOクラスをSAOパラメータとして選択し、また、入力画像IP1とフィルタ処理後の入力画像IPF1との差分にしたがってSAO処理のエッジオフセットEOにおけるカテゴリ(1)~(4)のオフセット値をSAOパラメータとして決定する。

Description

画像符号化装置
 この発明は、入力画像を圧縮符号化する画像符号化装置に関するものである。
 以下の非特許文献1に記載されている映像符号化国際標準H.265/HEVC(High Efficiency Video Coding:以下、「H.265規格」と称する)は、以下の非特許文献2に記載されている映像符号化国際標準H.264/AVC(Advanced Video Coding:以下、「H.264規格」と称する)と比べて、約2倍の圧縮性能を有すると言われている。
 以下の非特許文献3に記載されているSAO(Sample Adaptive Offset)処理は、H.265規格で新規に導入された符号化ツールであり、復号画像に対して、適応的にオフセット処理を施すことで符号化歪みを補正し、予測符号化効率を高めるものである。
 SAO処理において、適応的にオフセット処理を実施する際に用いるSAOパラメータについては、画像符号化装置が決定する必要がある。
 なお、SAO処理は、H.265規格において、必須のツールではないため、画像符号化装置として、SAO処理を実施する構成部を実装しないという選択肢もある。
 以下の非特許文献4には、各々のSAOパラメータに対して、Rate-Distortion最適化に基づく評価コストを算出することで、最適なSAOパラメータを決定する技術が開示されている。
"High efficiency video coding"、ITU-T Recommendation H.265、International Telecommunication Union、April 2013 "Advanced video coding for generic audiovisual services"、ITU-T Recommendation H.264、International Telecommunication Union、April 2013 Chih-Ming Fu, Elena Alshina, Alexander Alshin, Yu-Wen Huang, Ching-Yeh Chen, Chia-Yang Tsai, Chih-Wei Hsu, Shawmin Lei, Jeong-Hoon Park, Woojin Han著、"Sample Adaptive Offset in the HEVC Standard"、 IEEE Trans. Circuits Syst. Video Techn. 22(12): 1755-1764、 December 2012 "High Efficiency Video Coding (HEVC) Test Model 11 (HM11) Encoder Description"、JCTVC-M1002、Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11、13th Meeting:Incheon,、KR、18-26 April 2013
 従来の画像符号化装置は以上のように構成されているので、H.265規格に準拠する場合、H.264に準拠する場合と比べて、高い圧縮性能が得られるが、符号化パラメータが多様化しているため、回路規模が増加してしまう課題があった。
 また、非特許文献4に開示されている方法(評価コストを算出して最適なSAOパラメータを決定する方法)を適用する場合、多くのハードウェアリソースが要求される。このため、使用可能なハードウェアリソースが少ない場合には、H.265規格において、必須のツールではないSAO処理が画像符号化装置に実装されないことが予想される。このようにSAO処理が実装されない場合、H.265規格における本来の圧縮性能を発揮することができなくなる課題があった。
 この発明は上記のような課題を解決するためになされたもので、大幅な回路規模の増加を招くことなく、SAO処理を実装することができる画像符号化装置を得ることを目的とする。
 この発明に係る画像符号化装置は、入力画像と予測画像の差分画像を圧縮して、その差分画像の圧縮データを出力するデータ圧縮部と、データ圧縮部より出力された圧縮データから差分画像を復元し、その差分画像と予測画像の加算画像である局部復号画像を生成する局部復号画像生成部と、SAO(Sample Adaptive Offset)パラメータを用いて、局部復号画像生成部により生成された局部復号画像の符号化歪みを補正するSAO処理を実施するSAO処理部と、方向性イントラ予測に属する複数の方向性イントラ予測モードの中から、その予測画像の生成に用いられる方向性イントラ予測モードを選択するイントラ予測モード選択部とを設け、SAOパラメータ決定部が、SAO処理のエッジオフセットにおける複数のクラスの中から、イントラ予測モード選択部により選択された方向性イントラ予測モードに対応するクラスを選択し、当該クラスをSAO処理部が用いるSAOパラメータに決定するようにしたものである。
 この発明によれば、SAOパラメータ決定部が、SAO処理のエッジオフセットにおける複数のクラスの中から、イントラ予測モード選択部により選択された方向性イントラ予測モードに対応するクラスを選択し、当該クラスをSAO処理部が用いるSAOパラメータに決定するように構成したので、大幅な回路規模の増加を招くことなく、SAO処理を実装することができる効果がある。
この発明の実施の形態1による画像符号化装置を示す構成図である。 この発明の実施の形態1による画像符号化装置のイントラ予測部4の処理内容を示すフローチャートである。 この発明の実施の形態1による画像符号化装置のSAOパラメータ決定部14の処理内容を示すフローチャートである。 この発明の実施の形態2による画像符号化装置を示す構成図である。 この発明の実施の形態2による画像符号化装置のSAOパラメータ決定部23の処理内容を示すフローチャートである。 画像符号化装置がコンピュータで構成される場合のハードウェア構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。
実施の形態1.
 図1はこの発明の実施の形態1による画像符号化装置を示す構成図である。
 図1において、入力画像メモリ1は外部から与えられた入力画像IP1を格納する記憶媒体である。
 入力画像特徴量抽出部2は入力画像メモリ1により格納された入力画像IP1の画像特徴量FV1を抽出し、その画像特徴量FV1をSAOパラメータ決定部14に出力する処理を実施する。画像特徴量FV1を抽出する単位は、例えば、ピクチャ、符号化単位ブロック、ピクチャ内の一部(ピクチャ中心部、スライス中心部等)等である。
 入力画像フィルタ部3は入力画像メモリ1により格納された入力画像IP1に対するフィルタ処理を実施し、フィルタ処理後の入力画像IPF1をSAOパラメータ決定部14に出力する。
 入力画像フィルタ部3がフィルタ処理で用いるフィルタ係数は事前に設計されており、例えば、入力画像として想定される画像群に対して、デブロッキングフィルタ部11によるデブロッキングフィルタ処理後の局部復号画像ADFLDP1を入力画像IP1に近付けるWienerフィルタが設計されている。フィルタ係数は、ピクチャタイプや量子化パラメータなどの符号化パラメータの値に応じて複数用意して、フィルタ係数を使い分けるようにしてもよい。
 イントラ予測部4は入力画像メモリ1により格納された入力画像IP1と、加算器10から出力されたデブロッキング前の局部復号画像BDFLDP1とに基づいて、方向性イントラ予測に属する複数の方向性イントラ予測モードの中から、イントラ予測画像INTRAPP1の生成に用いる最適な方向性イントラ予測モードANG1を選択し、その最適な方向性イントラ予測モードANG1をSAOパラメータ決定部14に出力する処理を実施する。
 また、イントラ予測部4は、イントラ予測画像INTRAPP1の生成に用いる最適なイントラ予測モードが、方向性イントラ予測モードであれば、その選択した方向性イントラ予測モードANG1を示すイントラ情報MODE1を符号化部15に出力するが、イントラ予測画像INTRAPP1の生成に用いる最適なイントラ予測モードが、方向性イントラ予測モード以外の予測モードである場合、イントラ予測画像INTRAPP1の生成に使用する方向性イントラ予測モード以外のイントラ予測モードを示すイントラ情報MODE1を符号化部15に出力する。この場合、最適な方向性イントラ予測モードANG1はSAOパラメータ決定部14に出力されない。
 イントラ予測部4はイントラ予測画像INTRAPP1の生成に用いる最適なイントラ予測モードが、方向性イントラ予測モードである場合、デブロッキング前の局部復号画像BDFLDP1を参照しながら、最適な方向性イントラ予測モードANG1で、入力画像IP1に対するイントラ予測処理を実施することでイントラ予測画像INTRAPP1を生成し、そのイントラ予測画像INTRAPP1を切替スイッチ6に出力する処理を実施する。
 一方、イントラ予測画像INTRAPP1の生成に用いる最適なイントラ予測モードが、方向性イントラ予測モード以外の予測モードである場合、デブロッキング前の局部復号画像BDFLDP1を参照しながら、方向性イントラ予測モード以外の予測モードで、入力画像IP1に対するイントラ予測処理を実施することでイントラ予測画像INTRAPP1を生成し、そのイントラ予測画像INTRAPP1を切替スイッチ6に出力する処理を実施する。なお、イントラ予測部4はイントラ予測モード選択部を構成している。
 動き補償予測部5は入力画像メモリ1により格納された入力画像IP1と局部復号画像メモリ13により格納された局部復号画像LDP1を比較することで動き探索を実施して動きベクトルMV1を算出し、その動きベクトルMV1を用いて、入力画像IP1に対するインター予測処理(動き補償予測処理)を実施することでインター予測画像INTERPP1を生成し、そのインター予測画像INTERPP1を切替スイッチ6に出力する処理を実施する。
 また、動き補償予測部5は局部復号画像メモリ13により格納されている局部復号画像LDP1のうち、その動きベクトルMV1が指し示す局部復号画像と入力画像IP1の差分画像を算出し、その差分画像を直交変換して、その差分画像の直交変換係数COEF2をSAOパラメータ決定部14に出力するとともに、その動きベクトルMV1を符号化部15に出力する処理を実施する。なお、動き補償予測部5は直交変換部を構成している。
 切替スイッチ6は図示せぬ符号化制御部の指示の下、イントラ予測部4により生成されたイントラ予測画像INTRAPP1又は動き補償予測部5により生成されたインター予測画像INTERPP1を選択し、その選択した予測画像をPP1として減算器7に出力する処理を実施する。
 減算器7は入力画像メモリ1により格納された入力画像IP1と切替スイッチ6から出力された予測画像PP1との差分画像DP1を求め、その差分画像DP1を変換・量子化部8に出力する処理を実施する。
 変換・量子化部8は減算器7から出力された差分画像DP1の変換処理(例えば、予め特定の学習系列に対して基底設計がなされているKL変換等の直交変換処理)を実施するとともに、図示せぬ符号化制御部から与えられた量子化パラメータQP1を用いて、その差分画像DP1の変換係数を量子化することで、量子化後の変換係数である直交変換係数COEF1を差分画像の圧縮データとして、逆変換・逆量子化部9及び符号化部15に出力する処理を実施する。
 なお、減算器7及び変換・量子化部8からデータ圧縮部が構成されている。
 逆変換・逆量子化部9は変換・量子化部8から出力された量子化パラメータQP1(または、図示せぬ符号化制御部から出力された量子化パラメータQP1)を用いて、変換・量子化部8から出力された直交変換係数COEF1を逆量子化し、逆量子化後の直交変換係数COEF1の逆変換処理(例えば、逆KL変換等の逆変換処理)を実施することで、その逆変換処理結果である差分画像DP2を加算器10に出力する処理を実施する。
 加算器10は切替スイッチ6から出力された予測画像PP1と逆変換・逆量子化部9から出力された差分画像DP2を加算することでデブロッキング前の局部復号画像BDFLDP1を生成し、その局部復号画像BDFLDP1をイントラ予測部4及びデブロッキングフィルタ部11に出力する処理を実施する。
 なお、逆変換・逆量子化部9及び加算器10から局部復号画像生成部が構成されている。
 デブロッキングフィルタ部11は変換・量子化部8から出力された量子化パラメータQP1(または、図示せぬ符号化制御部から出力された量子化パラメータQP1)を用いて、加算器10から出力された局部復号画像BDBLDP1に対するデブロッキングフィルタ処理を実施し、デブロッキングフィルタ処理後の局部復号画像ADFLDP1をSAO処理部12に出力する処理を実施する。
 SAO処理部12はSAOパラメータ決定部14から出力されるSAOパラメータSAOPARAM1を用いて、デブロッキングフィルタ部11から出力されたデブロッキングフィルタ処理後の局部復号画像ADFLDP1の符号化歪みを補正するSAO処理を実施し、SAO処理後の局部復号画像LDP1を局部復号画像メモリ13に格納する。
 局部復号画像メモリ13はSAO処理部12から出力された局部復号画像LDP1を格納する記憶媒体である。
 SAOパラメータ決定部14はSAOパラメータSAOPARAM1として、SAO処理のエッジオフセットEO(Edge Offset)におけるカテゴリ(1)~(4)のオフセット値を決定するとともに、SAO処理のエッジオフセットEOにおけるEOクラスを決定する処理を実施する。
 即ち、SAOパラメータ決定部14は入力画像メモリ1により格納された入力画像IP1と入力画像フィルタ部3によるフィルタ処理後の入力画像IPF1との差分画像を求め、その差分画像を構成している各画素の画素値のうち、正値の画素値の平均値を算出するとともに、負値の画素値の平均値を算出し、正値の画素値の平均値をエッジオフセットEOにおけるカテゴリ(1)(2)のオフセット値に決定し、負値の画素値の平均値をエッジオフセットEOにおけるカテゴリ(3)(4)のオフセット値に決定する処理を実施する。
 また、SAOパラメータ決定部14は切替スイッチ6によりイントラ予測画像INTRAPP1が選択される場合、イントラ予測部4により選択された最適な方向性イントラ予測モードANG1と直交する方向に強いエッジがあるため、SAO処理のエッジオフセットEOにおける4個のクラス(非特許文献3を参照)の中から、最適な方向性イントラ予測モードANG1と直交する方向に近いEOクラスを選択する処理を実施する。
 一方、切替スイッチ6によりインター予測画像INTERPP1が選択される場合、動き補償予測部5から出力された直交変換係数COEF2に基づいて、垂直方向の高周波成分と水平方向の高周波成分のうち、どちらの高周波成分が大きいかを判定し、垂直方向の高周波成分の方が大きければ、SAO処理のエッジオフセットEOにおける4個のクラスの中から、垂直方向のEOクラスを選択し、水平方向の高周波成分の方が大きければ、水平方向のEOクラスを選択する処理を実施する。
 SAOパラメータ決定部14はカテゴリ(1)~(4)のオフセット値を決定するとともに、EOクラスを選択すると、カテゴリ(1)~(4)のオフセット値とEOクラスをSAOパラメータSAOPARAM1としてSAO処理部12及び符号化部15に出力する処理を実施する。
 符号化部15は変換・量子化部8から出力された量子化パラメータQP1及び直交変換係数COEF1と、イントラ予測部4から出力されたイントラ情報MODE1又は動き補償予測部5から出力された動きベクトルMV1と、SAOパラメータ決定部14から出力されたSAOパラメータSAOPARA1とを可変長符号化して、その量子化パラメータQP1と、直交変換係数COEF1と、イントラ情報MODE1又は動きベクトルMV1と、SAOパラメータSAOPARA1との符号化データが多重化されているビットストリームCD1を生成する処理を実施する。
 図1の例では、画像符号化装置の構成要素である入力画像メモリ1、入力画像特徴量抽出部2、入力画像フィルタ部3、イントラ予測部4、動き補償予測部5、切替スイッチ6、減算器7、変換・量子化部8、逆変換・逆量子化部9、加算器10、デブロッキングフィルタ部11、SAO処理部12、局部復号画像メモリ13、SAOパラメータ決定部14及び符号化部15のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなど)で構成されているものを想定しているが、画像符号化装置がコンピュータで構成されていてもよい。
 図6は画像符号化装置がコンピュータで構成される場合のハードウェア構成図である。
 画像符号化装置をコンピュータで構成する場合、図6に示すように、入力画像メモリ1及び局部復号画像メモリ13をコンピュータのメモリ51上に構成するとともに、入力画像特徴量抽出部2、入力画像フィルタ部3、イントラ予測部4、動き補償予測部5、切替スイッチ6、減算器7、変換・量子化部8、逆変換・逆量子化部9、加算器10、デブロッキングフィルタ部11、SAO処理部12、SAOパラメータ決定部14及び符号化部15の処理内容を記述しているプログラムをコンピュータのメモリ51に格納し、当該コンピュータのCPUなどのプロセッサ52がメモリ51に格納されているプログラムを実行するようにすればよい。
 次に動作について説明する。
 入力画像メモリ1には、外部から与えられた入力画像IP1が格納される。
 入力画像特徴量抽出部2は、入力画像メモリ1から入力画像IP1を読み出し、その入力画像IP1の画像特徴量FV1を抽出して、その画像特徴量FV1をSAOパラメータ決定部14に出力する。
 画像特徴量FV1を抽出する単位は、例えば、ピクチャ、符号化単位ブロック、ピクチャ内の一部(ピクチャ中心部、スライス中心部等)等である。
 入力画像フィルタ部3は、入力画像メモリ1から入力画像IP1を読み出し、その入力画像IP1に対するフィルタ処理を実施して、フィルタ処理後の入力画像IPF1をSAOパラメータ決定部14に出力する。
 入力画像フィルタ部3がフィルタ処理で用いるフィルタ係数は事前に設計されており、例えば、入力画像として想定される画像群に対して、デブロッキングフィルタ部11によるデブロッキングフィルタ処理後の局部復号画像ADFLDP1を入力画像IP1に近付けるWienerフィルタが設計されている。
 なお、フィルタ係数は、ピクチャタイプや量子化パラメータなどの符号化パラメータの値に応じて複数用意して、フィルタ係数を使い分けるようにしてもよい。
 イントラ予測部4は、入力画像IP1に対するイントラ予測処理を実施することでイントラ予測画像INTRAPP1を生成するが、この実施の形態1では、H.265規格の方向性イントラ予測モードを用いる場合がある。
 H.265規格の方向性イントラ予測モードは、非特許文献1に開示されており、33方向の予測モードがある。
 方向性イントラ予測モードでは、入力画像内の符号化ブロックの周囲画素から1/32精度画素を生成することで、方向性予測画像を生成する。
 1/32精度画素の生成方法については、非特許文献1の125頁の式(8-60)に記載されているように、符号化ブロックの周囲画素の中の2画素の線形補間によって生成される。ただし、式(8-61)が適用される場合には、周囲画素の中の1画素がそのまま予測画素になり、線形補間の必要はない。
 最適な方向性イントラ予測モードとしては、変換・量子化部8から出力される直交変換係数COEF1の高周波成分が小さくなるように、エッジに沿う方向性イントラ予測モードが選ばれる傾向にある。
 図2はこの発明の実施の形態1による画像符号化装置のイントラ予測部4の処理内容を示すフローチャートである。
 以下、図2を参照しながら、イントラ予測部4の処理内容を具体的に説明する。
 イントラ予測部4は、入力画像メモリ1から入力画像IP1を読み出し、その入力画像IP1と、加算器10から出力されたデブロッキング前の局部復号画像BDFLDP1とに基づいて、方向性イントラ予測に属する33方向の方向性イントラ予測モードの中から、イントラ予測画像INTRAPP1の生成に用いる最適な方向性イントラ予測モードANG1を選択する(図2のステップST1)。
 33方向の方向性イントラ予測モードの中からイントラ予測画像INTRAPP1の生成に用いる最適な方向性イントラ予測モードANG1を選択する処理自体は公知の技術であるため、ここでは詳細な説明を省略する。
 イントラ予測部4は、イントラ予測画像INTRAPP1の生成に用いる最適な方向性イントラ予測モードANG1を選択すると、最適な方向性イントラ予測モードANG1をSAOパラメータ決定部14に出力する。
 また、イントラ予測部4は、イントラ予測画像INTRAPP1の生成に用いる最適な方向性イントラ予測モードANG1を示すイントラ情報MODE1を符号化部15に出力するが、イントラ予測画像INTRAPP1の生成に用いる最適なイントラ予測モードが、方向性イントラ予測モード以外の予測モードである場合もある。
 この場合、方向性イントラ予測モード以外の予測モードを示すイントラ情報MODE1を符号化部15に出力する。また、この場合、最適な方向性イントラ予測モードANG1をSAOパラメータ決定部14に出力しない。
 イントラ予測部4は、イントラ予測画像INTRAPP1の生成に用いる最適なイントラ予測モードが、方向性イントラ予測モードである場合、デブロッキング前の局部復号画像BDFLDP1を参照しながら、最適な方向性イントラ予測モードANG1で、入力画像IP1に対するイントラ予測処理を実施することでイントラ予測画像INTRAPP1を生成し、そのイントラ予測画像INTRAPP1を切替スイッチ6に出力する(ステップST2)。
 一方、イントラ予測画像INTRAPP1の生成に用いる最適なイントラ予測モードが、方向性イントラ予測モード以外の予測モードである場合、デブロッキング前の局部復号画像BDFLDP1を参照しながら、方向性イントラ予測モード以外の予測モードで、入力画像IP1に対するイントラ予測処理を実施することでイントラ予測画像INTRAPP1を生成し、そのイントラ予測画像INTRAPP1を切替スイッチ6に出力する。
 この実施の形態1では、説明の便宜上、最適な方向性イントラ予測モードANG1で、入力画像IP1に対するイントラ予測処理を実施しているものとする。
 動き補償予測部5は、入力画像メモリ1から入力画像IP1を読み出し、その入力画像IP1と局部復号画像メモリ13により格納されている局部復号画像LDP1を比較することで動き探索を実施して動きベクトルMV1を算出する。
 動き補償予測部5は、動きベクトルMV1を算出すると、その動きベクトルMV1を用いて、入力画像IP1に対するインター予測処理を実施することでインター予測画像INTERPP1を生成し、そのインター予測画像INTERPP1を切替スイッチ6に出力する。
 動きベクトルMV1の算出処理やインター予測画像の生成処理は公知の技術であるため、ここでは詳細な説明を省略する。
 また、動き補償予測部5は、局部復号画像メモリ13により格納されている局部復号画像LDP1のうち、その動きベクトルMV1が指し示す局部復号画像と入力画像IP1の差分画像を算出する。
 動き補償予測部5は、動きベクトルMV1が指し示す局部復号画像と入力画像IP1の差分画像を算出すると、その差分画像を直交変換して、その差分画像の直交変換係数COEF2をSAOパラメータ決定部14に出力するとともに、その動きベクトルMV1を符号化部15に出力する。
 切替スイッチ6は、図示せぬ符号化制御部の指示の下、イントラ予測部4により生成されたイントラ予測画像INTRAPP1又は動き補償予測部5により生成されたインター予測画像INTERPP1を選択し、その選択した予測画像をPP1として減算器7に出力する。
 減算器7は、入力画像メモリ1から入力画像IP1を読み出し、その入力画像IP1と切替スイッチ6から出力された予測画像PP1との差分画像DP1を求め、その差分画像DP1を変換・量子化部8に出力する。
 変換・量子化部8は、減算器7から差分画像DP1を受けると、その差分画像DP1の変換処理(例えば、予め特定の学習系列に対して基底設計がなされているKL変換等の直交変換処理)を実施する。
 また、変換・量子化部8は、図示せぬ符号化制御部から与えられた量子化パラメータQP1を用いて、その差分画像DP1の変換係数を量子化することで、量子化後の変換係数である直交変換係数COEF1(差分画像の圧縮データ)を逆変換・逆量子化部9及び符号化部15に出力する。また、量子化パラメータQP1を逆変換・逆量子化部9、デブロッキングフィルタ部11及び符号化部15に出力する。
 逆変換・逆量子化部9は、変換・量子化部8から量子化パラメータQP1及び直交変換係数COEF1を受けると、その量子化パラメータQP1を用いて、その直交変換係数COEF1を逆量子化し、逆量子化後の直交変換係数COEF1の逆変換処理(例えば、逆KL変換等の逆変換処理)を実施することで、その逆変換処理結果である差分画像DP2を加算器10に出力する。
 加算器10は、切替スイッチ6から出力された予測画像PP1と逆変換・逆量子化部9から出力された差分画像DP2を加算することで、デブロッキング前の局部復号画像BDFLDP1を生成し、その局部復号画像BDFLDP1をデブロッキングフィルタ部11に出力する。
 デブロッキングフィルタ部11は、加算器10から局部復号画像BDBLDP1を受けると、変換・量子化部8から出力された量子化パラメータQP1を用いて、その局部復号画像BDBLDP1に対するデブロッキングフィルタ処理を実施し、デブロッキングフィルタ処理後の局部復号画像ADFLDP1をSAO処理部12に出力する。
 デブロッキングフィルタ処理は公知の技術であるため、ここでは詳細な説明を省略する。
 SAO処理部12は、デブロッキングフィルタ部11からデブロッキングフィルタ処理後の局部復号画像ADFLDP1を受けると、後述するSAOパラメータ決定部14から出力されるSAOパラメータSAOPARAM1を用いて、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の符号化歪みを補正するSAO処理を実施し、SAO処理後の局部復号画像LDP1を局部復号画像メモリ13に格納する。SAO処理の詳細は、非特許文献3に記載されている。
 SAOパラメータ決定部14は、SAOパラメータSAOPARAM1として、SAO処理のエッジオフセットEOにおけるカテゴリ(1)~(4)のオフセット値を決定するとともに、SAO処理のエッジオフセットEOにおけるEOクラスを決定する処理を実施する。
 図3はこの発明の実施の形態1による画像符号化装置のSAOパラメータ決定部14の処理内容を示すフローチャートである。
 以下、図3を参照しながら、SAOパラメータ決定部14の処理内容を具体的に説明する。
 SAO処理には、2種類のオフセット(エッジオフセットEO、バンドオフセットBO(Band Offset))があり、画像符号化装置は、エッジオフセットEO又はバンドオフセットBOを適応的に使い分ける必要がある。
 非特許文献3の1757頁のFig.4には、エッジオフセットEOの方がバンドオフセットBOより、局部復号画像ADFLDP1の符号化歪みの補正に有利な例が開示されており、非特許文献3の1758頁のFig.6には、バンドオフセットBOの方がエッジオフセットEOより、局部復号画像ADFLDP1の符号化歪みの補正に有利な例が開示されている。
 エッジオフセットEOには、4個のクラスがあり(非特許文献3の1757頁のFig.2を参照)、画像符号化装置は、4個のクラスを適応的に使い分ける必要がある。
 また、エッジオフセットEOには、4つのカテゴリ(1)~(4)があり、画像符号化装置は、4つのカテゴリ(1)~(4)のオフセット値(絶対値)を決定する必要がある。
 バンドオフセットBOの場合、画素値を複数のバンド位置に分類して、オフセットを適用するバンド位置を決定する必要がある(非特許文献3の1758頁のFig.5を参照)。
 まず、SAOパラメータ決定部14は、入力画像特徴量抽出部2から出力された入力画像IP1の画像特徴量FV1を入力する。
 エッジオフセットEOの場合、画素値の変動が大きい場合に有効であるため、入力画像特徴量抽出部2では、入力画像IP1の画像特徴量FV1として、入力画像IP1の画素分散値、画素偏差値、隣接画素との差分絶対値の総和又は最大値、ラプラシアンなどを算出しているものとする。
 SAOパラメータ決定部14は、入力画像IP1の画像特徴量FV1を入力すると、その画像特徴量FV1が、画素値の変動が所定の変動量より大きい旨を示していれば、エッジオフセットEOの方がバンドオフセットBOより、局部復号画像ADFLDP1の符号化歪みの補正に有利であると判定する。一方、画素値の変動が所定の変動量より小さい旨を示していれば、バンドオフセットBOの方がエッジオフセットEOより、局部復号画像ADFLDP1の符号化歪みの補正に有利であると判定する(ステップST11)。
 SAOパラメータ決定部14は、エッジオフセットEOの方が有利であると判定すると(ステップST11でYesの場合)、切替スイッチ6により選択される予測画像PP1が、イントラ予測部4により生成されたイントラ予測画像INTRAPP1である場合、イントラ予測部4により選択された最適な方向性イントラ予測モードANG1と直交する方向に強いエッジがあるため、エッジオフセットEOにおける4個のクラスの中から、最適な方向性イントラ予測モードANG1と直交する方向に近いEOクラスを選択する(ステップST12)。
 一方、切替スイッチ6により選択される予測画像PP1が、動き補償予測部5により生成されたインター予測画像INTERPP1である場合、動き補償予測部5から出力された直交変換係数COEF2に基づいて、垂直方向の高周波成分と水平方向の高周波成分のうち、どちらの高周波成分が大きいかを判定する。
 SAOパラメータ決定部14は、垂直方向の高周波成分の方が大きければ、エッジオフセットEOにおける4個のクラスの中から、垂直方向のEOクラスを選択し、水平方向の高周波成分の方が大きければ、水平方向のEOクラスを選択する(ステップST12)。
 次に、SAOパラメータ決定部14は、入力画像メモリ1から入力画像IP1を読み出し、入力画像フィルタ部3によるフィルタ処理後の入力画像IPF1を入力する。
 そして、SAOパラメータ決定部14は、入力画像IP1とフィルタ処理後の入力画像IPF1との差分画像を求め、その差分画像を構成している各画素の画素値のうち、正値の画素値の平均値と、負値の画素値の平均値とを算出する。
 SAOパラメータ決定部14は、正値の画素値の平均値をエッジオフセットEOにおけるカテゴリ(1)(2)のオフセット値に決定し、負値の画素値の平均値をエッジオフセットEOにおけるカテゴリ(3)(4)のオフセット値に決定する(ステップST13)。
 SAOパラメータ決定部14は、4個のクラスの中から最適な方向性イントラ予測モードANG1と直交する方向に近いEOクラスを選択するとともに、カテゴリ(1)~(4)のオフセット値を決定すると、その選択したEOクラスとカテゴリ(1)~(4)のオフセット値をSAOパラメータSAOPARAM1としてSAO処理部12及び符号化部15に出力する(ステップST14)。
 これにより、SAO処理部12では、その選択したEOクラスとカテゴリ(1)~(4)のオフセット値を用いて、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の符号化歪みを補正するSAO処理を実施する。
 SAOパラメータ決定部14は、バンドオフセットBOの方が有利であると判定すると(ステップST11でNoの場合)、SAO処理を実施しない旨を示すSAOパラメータSAOPARAM1をSAO処理部12及び符号化部15に出力する(ステップST15)。この場合、SAO処理部12では、SAO処理を実施しない。
 なお、エッジオフセットEOでは、デブロッキングフィルタ処理後の局部復号画像ADFLDP1に対して、ローパスフィルタをかけるのと同様の効果が得られるため、リンギングノイズ等が軽減される。このため、SAO処理をエッジオフセットEOに限定して、バンドオフセットBOを適用しなくても、多くの入力画像に対して圧縮性能を得ることが可能である。
 符号化部15は、変換・量子化部8から出力された量子化パラメータQP1及び直交変換係数COEF1と、イントラ予測部4から出力されたイントラ情報MODE1又は動き補償予測部5から出力された動きベクトルMV1と、SAOパラメータ決定部14から出力されたSAOパラメータSAOPARAM1とを可変長符号化して、その量子化パラメータQP1と、直交変換係数COEF1と、イントラ情報MODE1又は動きベクトルMV1と、SAOパラメータSAOPARAM1との符号化データが多重化されているビットストリームCD1を生成する。
 以上で明らかなように、この実施の形態1によれば、SAOパラメータ決定部14が、エッジオフセットEOにおける4個のクラスの中から、イントラ予測部4により選択された最適な方向性イントラ予測モードANG1と直交する方向に近いEOクラスを選択して、そのEOクラスをSAOパラメータとして決定し、または、動き補償予測部5から出力された直交変換係数COEF2に対応するEOクラスをSAOパラメータとして決定するように構成したので、大幅な回路規模の増加を招くことなく、SAO処理を実装することができる効果を奏する。
 また、この実施の形態1によれば、SAOパラメータ決定部14が、入力画像IP1と入力画像フィルタ部3によるフィルタ処理後の入力画像IPF1との差分にしたがってSAO処理のエッジオフセットEOにおけるカテゴリ(1)~(4)のオフセット値をSAOパラメータとして決定するように構成したので、大幅な回路規模の増加を招くことなく、SAO処理を実装することができる効果を奏する。
 即ち、H.264規格やH.265規格などの映像符号化標準に準拠している画像符号化装置では、イントラ予測部4や動き補償予測部5は必須の機能部であり、入力画像特徴量抽出部2や入力画像フィルタ部3は、多くの画像符号化装置に備わっている機能部である。
 この実施の形態1では、それらの機能部で算出されたパラメータをSAOパラメータセットの決定に利用するとともに、SAO処理部12の機能をエッジオフセットEOに限定しているので、回路規模の増加を抑えてSAOパラメータの決定を行うことができる効果を奏する。
実施の形態2.
 図4はこの発明の実施の形態2による画像符号化装置を示す構成図であり、図4において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 デブロッキング後画像フィルタ部21はデブロッキングフィルタ部11によるデブロッキングフィルタ処理後の局部復号画像ADFLDP1に対するフィルタ処理を実施し、フィルタ処理後の画像であるデブロッキング後画像ADBLDPF1をSAOパラメータ決定部23に出力する処理を実施する。
 デブロッキング後画像フィルタ部21がフィルタ処理で用いるフィルタ係数は事前に設計されており、例えば、入力画像として想定される画像群に対して、デブロッキングフィルタ部11によるデブロッキングフィルタ処理後の局部復号画像ADFLDP1を入力画像IP1に近付けるWienerフィルタが設計されている。フィルタ係数は、ピクチャタイプや量子化パラメータなどの符号化パラメータの値に応じて複数用意して、フィルタ係数を使い分けるようにしてもよい。
 デブロッキング後画像特徴量抽出部22はデブロッキングフィルタ部11によるデブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11を抽出し、その画像特徴量FV11をSAOパラメータ決定部23に出力する処理を実施する。
 SAOパラメータ決定部23はSAOパラメータSAOPARAM1として、SAO処理のエッジオフセットEOにおけるカテゴリ(1)~(4)のオフセット値を決定するとともに、SAO処理のエッジオフセットEOにおけるEOクラスを決定する処理を実施する。また、SAO処理のバンドオフセットBOにおけるバンド位置を決定するとともに、バンドオフセットBOのオフセット値を決定する処理を実施する。
 即ち、SAOパラメータ決定部23は入力画像メモリ1により格納された入力画像IP1とデブロッキング後画像フィルタ部21によるデブロッキングフィルタ処理後のデブロッキング後画像ADBLDPF1(または、入力画像フィルタ部3によるフィルタ処理後の入力画像IPF1)との差分画像を求め、その差分画像を構成している各画素の画素値のうち、正値の画素値の平均値を算出するとともに、負値の画素値の平均値を算出し、正値の画素値の平均値をエッジオフセットEOにおけるカテゴリ(1)(2)のオフセット値に決定し、負値の画素値の平均値をエッジオフセットEOにおけるカテゴリ(3)(4)のオフセット値に決定する処理を実施する。
 また、SAOパラメータ決定部23は切替スイッチ6によりイントラ予測画像INTRAPP1が選択される場合、イントラ予測部4により選択された最適な方向性イントラ予測モードANG1と直交する方向に強いエッジがあるため、SAO処理のエッジオフセットEOにおける4個のクラスの中から、最適な方向性イントラ予測モードANG1と直交する方向に近いEOクラスを選択する処理を実施する。
 一方、切替スイッチ6によりインター予測画像INTERPP1が選択される場合、動き補償予測部5から出力された直交変換係数COEF2に基づいて、垂直方向の高周波成分と水平方向の高周波成分のうち、どちらの高周波成分が大きいかを判定し、垂直方向の高周波成分の方が大きければ、SAO処理のエッジオフセットEOにおける4個のクラスの中から、垂直方向のEOクラスを選択し、水平方向の高周波成分の方が大きければ、水平方向のEOクラスを選択する処理を実施する。
 SAOパラメータ決定部23はSAO処理のバンドオフセットBOにおける複数のバンド位置の中から、デブロッキング後画像特徴量抽出部22により抽出された画像特徴量FV11に対応するバンド位置を選択する処理を実施する。
 また、SAOパラメータ決定部23は入力画像特徴量抽出部2により抽出された入力画像IP1の画像特徴量FV1と、デブロッキング後画像特徴量抽出部22により抽出されたデブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11との差分にしたがってバンドオフセットBOのオフセット値を決定する処理を実施する。
 SAOパラメータ決定部23は選択したEOクラス及びカテゴリ(1)~(4)のオフセット値、または、選択したバンド位置及びバンドオフセットBOのオフセット値をSAOパラメータSAOPARAM1として、SAO処理部12及び符号化部15に出力する処理を実施する。
 図4の例では、画像符号化装置の構成要素である入力画像メモリ1、入力画像特徴量抽出部2、入力画像フィルタ部3、イントラ予測部4、動き補償予測部5、切替スイッチ6、減算器7、変換・量子化部8、逆変換・逆量子化部9、加算器10、デブロッキングフィルタ部11、SAO処理部12、局部復号画像メモリ13、符号化部15、デブロッキング後画像フィルタ部21、デブロッキング後画像特徴量抽出部22及びSAOパラメータ決定部23のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなど)で構成されているものを想定しているが、画像符号化装置がコンピュータで構成されていてもよい。
 画像符号化装置をコンピュータで構成する場合、図6に示すように、入力画像メモリ1及び局部復号画像メモリ13をコンピュータのメモリ51上に構成するとともに、入力画像特徴量抽出部2、入力画像フィルタ部3、イントラ予測部4、動き補償予測部5、切替スイッチ6、減算器7、変換・量子化部8、逆変換・逆量子化部9、加算器10、デブロッキングフィルタ部11、SAO処理部12、符号化部15、デブロッキング後画像フィルタ部21、デブロッキング後画像特徴量抽出部22及びSAOパラメータ決定部23の処理内容を記述しているプログラムをコンピュータのメモリ51に格納し、当該コンピュータのCPUなどのプロセッサ52がメモリ51に格納されているプログラムを実行するようにすればよい。
 次に動作について説明する。
 デブロッキング後画像フィルタ部21、デブロッキング後画像特徴量抽出部22及びSAOパラメータ決定部23以外は、上記実施の形態1と同様であるため、ここでは、デブロッキング後画像フィルタ部21、デブロッキング後画像特徴量抽出部22及びSAOパラメータ決定部23の処理内容だけを説明する。
 デブロッキング後画像フィルタ部21は、デブロッキングフィルタ部11からデブロッキングフィルタ処理後の局部復号画像ADFLDP1を受けると、その局部復号画像ADFLDP1に対するデブロッキングフィルタ処理を実施し、デブロッキングフィルタ処理後の画像であるデブロッキング後画像ADBLDPF1をSAOパラメータ決定部23に出力する。
 デブロッキング後画像フィルタ部21がデブロッキングフィルタ処理で用いるフィルタ係数は事前に設計されており、例えば、入力画像として想定される画像群に対して、デブロッキングフィルタ部11によるデブロッキングフィルタ処理後の局部復号画像ADFLDP1を入力画像IP1に近付けるWienerフィルタが設計されている。
 なお、フィルタ係数は、ピクチャタイプや量子化パラメータなどの符号化パラメータの値に応じて複数用意して、フィルタ係数を使い分けるようにしてもよい。
 デブロッキング後画像特徴量抽出部22は、デブロッキングフィルタ部11からデブロッキングフィルタ処理後の局部復号画像ADFLDP1を受けると、その局部復号画像ADFLDP1の画像特徴量FV11を抽出し、その画像特徴量FV11をSAOパラメータ決定部23に出力する。
 エッジオフセットEOの場合、画素値の変動が大きい場合に有効であるため、デブロッキング後画像特徴量抽出部22では、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11として、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の画素分散値、画素偏差値、隣接画素との差分絶対値の総和又は最大値、ラプラシアン、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の画素平均値などを算出するものとする。
 SAOパラメータ決定部23は、SAOパラメータSAOPARAM1として、エッジオフセットEOにおけるEOクラス、エッジオフセットEOにおけるカテゴリ(1)~(4)のオフセット値、バンドオフセットBOにおけるバンド位置及びバンドオフセットBOのオフセット値を決定する処理を実施する。
 図5はこの発明の実施の形態2による画像符号化装置のSAOパラメータ決定部23の処理内容を示すフローチャートである。
 以下、図5を参照しながら、SAOパラメータ決定部23の処理内容を具体的に説明する。
 まず、SAOパラメータ決定部23は、デブロッキング後画像特徴量抽出部22から出力されたデブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11を入力する。
 SAOパラメータ決定部23は、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11を入力すると、その画像特徴量FV11が、画素値の変動が所定の変動量より大きい旨を示していれば、エッジオフセットEOの方がバンドオフセットBOより、局部復号画像ADFLDP1の符号化歪みの補正に有利であると判定する。一方、画素値の変動が所定の変動量より小さい旨を示していれば、バンドオフセットBOの方がエッジオフセットEOより、局部復号画像ADFLDP1の符号化歪みの補正に有利であると判定する(ステップST21)。
 ここでは、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11に基づいて、画素値の変動が所定の変動量より大きいか否かを判断しているが、上記実施の形態1と同様に、入力画像特徴量抽出部2から出力された入力画像IP1の画像特徴量FV1に基づいて、画素値の変動が所定の変動量より大きいか否かを判断するようにしてもよい。
 SAOパラメータ決定部23は、エッジオフセットEOの方が有利であると判定すると(ステップST21でYesの場合)、図1のSAOパラメータ決定部14と同様に、切替スイッチ6により選択される予測画像PP1が、イントラ予測部4により生成されたイントラ予測画像INTRAPP1である場合、イントラ予測部4により選択された最適な方向性イントラ予測モードANG1と直交する方向に強いエッジがあるため、エッジオフセットEOにおける4個のクラスの中から、最適な方向性イントラ予測モードANG1と直交する方向に近いEOクラスを選択する(ステップST22)。
 一方、切替スイッチ6により選択される予測画像PP1が、動き補償予測部5により生成されたインター予測画像INTERPP1である場合、動き補償予測部5から出力された直交変換係数COEF2に基づいて、垂直方向の高周波成分と水平方向の高周波成分のうち、どちらの高周波成分が大きいかを判定する。
 SAOパラメータ決定部23は、垂直方向の高周波成分の方が大きければ、エッジオフセットEOにおける4個のクラスの中から、垂直方向のEOクラスを選択し、水平方向の高周波成分の方が大きければ、水平方向のEOクラスを選択する(ステップST22)。
 次に、SAOパラメータ決定部23は、デブロッキングフィルタ部11によるデブロッキングフィルタ処理後の局部復号画像ADFLDP1と、デブロッキング後画像フィルタ部21によるフィルタ処理後のデブロッキング後画像ADBLDPF1とを入力する。
 そして、SAOパラメータ決定部23は、デブロッキングフィルタ処理後の局部復号画像ADFLDP1とフィルタ処理後のデブロッキング後画像ADBLDPF1との差分画像を求め、その差分画像を構成している各画素の画素値のうち、正値の画素値の平均値と、負値の画素値の平均値とを算出する。
 SAOパラメータ決定部23は、正値の画素値の平均値をエッジオフセットEOにおけるカテゴリ(1)(2)のオフセット値に決定し、負値の画素値の平均値をエッジオフセットEOにおけるカテゴリ(3)(4)のオフセット値に決定する(ステップST23)。
 SAOパラメータ決定部23は、4個のクラスの中から最適な方向性イントラ予測モードANG1と直交する方向に近いEOクラスを選択するとともに、カテゴリ(1)~(4)のオフセット値を決定すると、その選択したEOクラスとカテゴリ(1)~(4)のオフセット値をSAOパラメータSAOPARAM1としてSAO処理部12及び符号化部15に出力する(ステップST24)。
 これにより、SAO処理部12では、その選択したEOクラスとカテゴリ(1)~(4)のオフセット値を用いて、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の符号化歪みを補正するSAO処理を実施する。
 SAOパラメータ決定部23は、バンドオフセットBOの方が有利であると判定すると(ステップST21でNoの場合)、デブロッキング後画像特徴量抽出部22から出力されたデブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11に基づいて、バンドオフセットBOを適用するか否かを判定する(ステップST25)。
 例えば、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11である画素値ヒストグラムから、デブロッキングフィルタ処理後の局部復号画像ADFLDP1における画素値のばらつき具合を判定し、画素値のばらつきが予め設定されている閾値より小さければ、バンドオフセットBOを適用するものとする。
 SAOパラメータ決定部23は、バンドオフセットBOを適用する場合(ステップST25でYesの場合)、SAO処理のバンドオフセットBOにおける複数のバンド位置の中から、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11に対応するバンド位置を選択する(ステップST26)。
 以下、バンド位置の選択処理の一例を説明する。
 ただし、ここでは、説明の簡単化のため、バンドオフセットBOにおけるバンドが0~255の幅を有し、そのバンドが8ビット単位に32分割されている場合を想定する。
 即ち、バンドオフセットBOにおける各バンド位置は、0~7,8~15,16~23,24~31,・・・,248~255である。
 このとき、画像特徴量FV11が画素平均値であり、その画素平均値が例えば“25”であれば、“25”を略中心に含んでいる連続している4個のバンド位置(8~15,16~23,24~31,25~39のバンド位置)を選択する。
 また、画素平均値が例えば“241”であれば、“241”を略中心に含んでいる連続している4個のバンド位置(224~231,232~239,240~247,248~255のバンド位置)を選択する。
 ここでは、画像特徴量FV11が画素平均値である例を示しているが、画像特徴量FV11が画素平均値に限るものではなく、例えば、画像特徴量FV11である画素値ヒストグラムにしたがってバンド位置を選択するようにしてもよい。
 次に、SAOパラメータ決定部23は、入力画像特徴量抽出部2により抽出された入力画像IP1の画像特徴量FV1と、デブロッキング後画像特徴量抽出部22により抽出されたデブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11との差分にしたがってバンドオフセットBOのオフセット値を決定する(ステップST27)。
 例えば、入力画像IP1の画像特徴量FV1が入力画像IP1の画素平均値、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11がデブロッキングフィルタ処理後の局部復号画像ADFLDP1の画素平均値である場合、入力画像IP1の画素平均値とデブロッキングフィルタ処理後の局部復号画像ADFLDP1の画素平均値との差分dを算出する。
 そして、差分dに対して予め設定された定数αを乗算することで、バンドオフセットBOのオフセット値(=d×α)を算出する。
 ここでは、入力画像単位の画素平均値間の差分dを算出しているが、バンド毎の画素平均値を求めて、バンド毎に入力画像IP1の画素平均値とデブロッキングフィルタ処理後の局部復号画像ADFLDP1の画素平均値との差分dを算出することで、バンド毎にバンドオフセットBOのオフセット値(=d×α)を算出するようにしてもよい。
 SAOパラメータ決定部23は、バンドオフセットBOにおける複数のバンド位置の中から、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の画像特徴量FV11に対応するバンド位置を選択するとともに、バンドオフセットBOのオフセット値を決定すると、その選択したバンド位置とバンドオフセットBOのオフセット値をSAOパラメータSAOPARAM1としてSAO処理部12及び符号化部15に出力する(ステップST28)。
 これにより、SAO処理部12では、その選択したバンド位置とバンドオフセットBOのオフセット値を用いて、デブロッキングフィルタ処理後の局部復号画像ADFLDP1の符号化歪みを補正するSAO処理を実施する。
 SAOパラメータ決定部23は、バンドオフセットBOを適用しない場合(ステップST25でNoの場合)、SAO処理を実施しない旨を示すSAOパラメータSAOPARAM1をSAO処理部12及び符号化部15に出力する(ステップST29)。この場合、SAO処理部12では、SAO処理を実施しない。
 H.264規格やH.265規格などの映像符号化標準に準拠している画像符号化装置では、イントラ予測部4や動き補償予測部5は必須の機能部であり、入力画像特徴量抽出部2、デブロッキング後画像フィルタ部21やデブロッキング後画像特徴量抽出部22は、多くの画像符号化装置に備わっている機能部である。
 この実施の形態2では、それらの機能部で算出されたパラメータをSAOパラメータセットの決定に利用しているので、回路規模の増加を抑えてSAOパラメータの決定を行うことができる効果を奏する。
実施の形態3.
 上記実施の形態1,2では、イントラ予測部4が、入力画像メモリ1により格納された入力画像IP1と、加算器10から出力されたデブロッキング前の局部復号画像BDFLDP1とに基づいて、方向性イントラ予測に属する33方向の方向性イントラ予測モードの中から、イントラ予測画像INTRAPP1の生成に用いる最適な方向性イントラ予測モードANG1を選択するものを示したが、方向性イントラ予測に属する33方向の方向性イントラ予測モードのうち、線形補間が不要な方向性イントラ予測モード(45度方向、90度方向、135度方向、180度方向、225度方向の方向性イントラ予測モード)の中から、イントラ予測画像INTRAPP1の生成に用いる最適な方向性イントラ予測モードANG1を選択するようにしてもよい。
 最適な方向性イントラ予測モードANG1の選択対象を33方向の方向性イントラ予測モードから、5方向の方向性イントラ予測モード(45度方向、90度方向、135度方向、180度方向、225度方向の方向性イントラ予測モード)に制限することで、更に回路規模を削減することができる。
 即ち、最適な方向性イントラ予測モードANG1の選択対象を制限することで、例えば、非特許文献1の123頁に記載されているTable8-4におけるIntraPredAngleが、|IntraPredAngle|=32になるため、非特許文献1の125頁に記載されている式(8-50)、(8-51)、(8-58)及び(8-59)の乗算が不要になり、さらに、式(8-51)及び(8-59)において、iFact=0になるため、125頁に記載されている式(8-52)及び(8-60)の実装が不要になる。従って、回路規模を削減することができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る画像符号化装置は、入力画像を圧縮符号化するに際して、大幅な回路規模の増加を招くことなく、SAO処理を実装する必要があるものに適している。
 1 入力画像メモリ、2 入力画像特徴量抽出部、3 入力画像フィルタ部、4 イントラ予測部(イントラ予測モード選択部)、5 動き補償予測部(直交変換部)、6 切替スイッチ、7 減算器(データ圧縮部)、8 変換・量子化部(データ圧縮部)、9 逆変換・逆量子化部(局部復号画像生成部)、10 加算器(局部復号画像生成部)、11 デブロッキングフィルタ部、12 SAO処理部、13 局部復号画像メモリ、14 SAOパラメータ決定部、15 符号化部、21 デブロッキング後画像フィルタ部、22 デブロッキング後画像特徴量抽出部、23 SAOパラメータ決定部、51 メモリ、52 プロセッサ。

Claims (9)

  1.  入力画像と予測画像の差分画像を圧縮して、前記差分画像の圧縮データを出力するデー
    タ圧縮部と、
     前記データ圧縮部より出力された圧縮データから前記差分画像を復元し、前記差分画像と前記予測画像の加算画像である局部復号画像を生成する局部復号画像生成部と、
     SAO(Sample Adaptive Offset)パラメータを用いて、前記局部復号画像生成部により生成された局部復号画像の符号化歪みを補正するSAO処理を実施するSAO処理部と、
     方向性イントラ予測に属する複数の方向性イントラ予測モードの中から、前記予測画像の生成に用いられる方向性イントラ予測モードを選択するイントラ予測モード選択部と、
     前記SAO処理のエッジオフセットにおける複数のクラスの中から、前記イントラ予測モード選択部により選択された方向性イントラ予測モードに対応するクラスを選択し、当該クラスを前記SAO処理部が用いる前記SAOパラメータに決定するSAOパラメータ決定部と
     を備えた画像符号化装置。
  2.  前記イントラ予測モード選択部は、前記方向性イントラ予測に属する複数の方向性イントラ予測モードのうち、線形補間が不要な方向性イントラ予測モードの中から、前記予測画像の生成に用いられる方向性イントラ予測モードを選択することを特徴とする請求項1記載の画像符号化装置。
  3.  前記入力画像に対するフィルタ処理を実施する入力画像フィルタ部を備え、
     前記SAOパラメータ決定部は、前記入力画像と前記入力画像フィルタ部によるフィルタ処理後の入力画像との差分にしたがって前記SAO処理のエッジオフセットにおける複数のカテゴリのオフセット値を決定し、前記複数のカテゴリのオフセット値を前記SAO処理部が用いる前記SAOパラメータに決定することを特徴とする請求項1記載の画像符号化装置。
  4.  前記予測画像を生成する際に探索する動きベクトルが指し示す局部復号画像と前記入力画像の差分画像を直交変換して、前記差分画像の直交変換係数を出力する直交変換部を備え、
     前記SAOパラメータ決定部は、前記SAO処理のエッジオフセットにおける複数のクラスの中から、前記直交変換部から出力された直交変換係数に対応するクラスを選択し、当該クラスを前記SAO処理部が用いる前記SAOパラメータに決定することを特徴とする請求項1記載の画像符号化装置。
  5.  前記入力画像の特徴量を抽出する入力画像特徴量抽出部を備え、
     前記SAOパラメータ決定部は、前記入力画像特徴量抽出部により抽出された特徴量に基づいて、前記SAO処理におけるエッジオフセットとバンドオフセットのうち、どちらのオフセットが前記局部復号画像の符号化歪みの補正に有利であるかを判定し、前記バンドオフセットより前記エッジオフセットの方が有利である場合に限り、前記SAO処理部が用いる前記SAOパラメータを決定することを特徴とする請求項1記載の画像符号化装置。
  6.  前記局部復号画像生成部により生成された局部復号画像に対するデブロッキングフィルタ処理を実施するデブロッキングフィルタ部と、
     前記デブロッキングフィルタ部によるデブロッキングフィルタ処理後の局部復号画像の特徴量を抽出するデブロッキング後画像特徴量抽出部とを備え、
     前記SAOパラメータ決定部は、前記SAO処理のバンドオフセットにおける複数のバンド位置の中から、前記デブロッキング後画像特徴量抽出部により抽出された特徴量に対応するバンド位置を選択し、当該バンド位置を前記SAO処理部が用いる前記SAOパラメータに決定することを特徴とする請求項1記載の画像符号化装置。
  7.  前記SAOパラメータ決定部は、前記デブロッキング後画像特徴量抽出部により抽出された特徴量に基づいて、前記SAO処理におけるバンドオフセットを適用するか否かを判定し、前記バンドオフセットを適用する場合に限り、前記SAO処理部が用いる前記SAOパラメータを決定することを特徴とする請求項6記載の画像符号化装置。
  8.  前記入力画像の特徴量を抽出する入力画像特徴量抽出部と、
     前記局部復号画像生成部により生成された局部復号画像に対するデブロッキングフィルタ処理を実施するデブロッキングフィルタ部と、
     前記デブロッキングフィルタ部によるデブロッキングフィルタ処理後の局部復号画像の特徴量を抽出するデブロッキング後画像特徴量抽出部とを備え、
     前記SAOパラメータ決定部は、前記入力画像特徴量抽出部により抽出された特徴量と前記デブロッキング後画像特徴量抽出部により抽出された特徴量の差分にしたがって前記SAO処理のバンドオフセットのオフセット値を決定し、前記バンドオフセットのオフセット値を前記SAO処理部が用いる前記SAOパラメータに決定することを特徴とする請求項1記載の画像符号化装置。
  9.  前記SAOパラメータ決定部は、前記デブロッキング後画像特徴量抽出部により抽出された特徴量に基づいて、前記SAO処理におけるバンドオフセットを適用するか否かを判定し、前記バンドオフセットを適用する場合に限り、前記SAO処理部が用いる前記SAOパラメータを決定することを特徴とする請求項8記載の画像符号化装置。
PCT/JP2014/082132 2013-12-04 2014-12-04 画像符号化装置 WO2015083796A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551562A JP5951144B2 (ja) 2013-12-04 2014-12-04 画像符号化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-251017 2013-12-04
JP2013251017 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015083796A1 true WO2015083796A1 (ja) 2015-06-11

Family

ID=53273544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082132 WO2015083796A1 (ja) 2013-12-04 2014-12-04 画像符号化装置

Country Status (2)

Country Link
JP (1) JP5951144B2 (ja)
WO (1) WO2015083796A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216626A (ja) * 2014-04-23 2015-12-03 ソニー株式会社 画像処理装置及び画像処理方法
US10419775B2 (en) 2015-10-30 2019-09-17 Canon Kabushiki Kaisha Moving image encoding apparatus, image capturing apparatus, moving image encoding method, and non-transitory computer readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174593A1 (ko) 2017-03-22 2018-09-27 김기백 적응적인 화소 분류 기준에 따른 인루프 필터링 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287315A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 画像符号化方法および装置、画像復号方法
WO2012029181A1 (ja) * 2010-09-03 2012-03-08 株式会社 東芝 動画像符号化方法及び復号化方法、符号化装置及び復号化装置
WO2013046990A1 (ja) * 2011-09-29 2013-04-04 シャープ株式会社 オフセット復号装置、オフセット符号化装置、画像フィルタ装置、および、データ構造
WO2013055923A1 (en) * 2011-10-13 2013-04-18 Qualcomm Incorporated Sample adaptive offset merged with adaptive loop filter in video coding
WO2013073184A1 (ja) * 2011-11-15 2013-05-23 パナソニック株式会社 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置、および画像符号化復号装置
WO2013154026A1 (ja) * 2012-04-13 2013-10-17 ソニー株式会社 画像処理装置および方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287315A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 画像符号化方法および装置、画像復号方法
WO2012029181A1 (ja) * 2010-09-03 2012-03-08 株式会社 東芝 動画像符号化方法及び復号化方法、符号化装置及び復号化装置
WO2013046990A1 (ja) * 2011-09-29 2013-04-04 シャープ株式会社 オフセット復号装置、オフセット符号化装置、画像フィルタ装置、および、データ構造
WO2013055923A1 (en) * 2011-10-13 2013-04-18 Qualcomm Incorporated Sample adaptive offset merged with adaptive loop filter in video coding
WO2013073184A1 (ja) * 2011-11-15 2013-05-23 パナソニック株式会社 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置、および画像符号化復号装置
WO2013154026A1 (ja) * 2012-04-13 2013-10-17 ソニー株式会社 画像処理装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAEHWAN JOO ET AL.: "Fast sample adaptive offset encoding algorithm for HEVC based on intra prediction mode", 2013 IEEE THIRD INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, 9 September 2013 (2013-09-09), BERLIN, pages 50 - 53, XP032549033, DOI: doi:10.1109/ICCE-Berlin.2013.6698011 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216626A (ja) * 2014-04-23 2015-12-03 ソニー株式会社 画像処理装置及び画像処理方法
US10477207B2 (en) 2014-04-23 2019-11-12 Sony Corporation Image processing apparatus and image processing method
US10419775B2 (en) 2015-10-30 2019-09-17 Canon Kabushiki Kaisha Moving image encoding apparatus, image capturing apparatus, moving image encoding method, and non-transitory computer readable storage medium

Also Published As

Publication number Publication date
JP5951144B2 (ja) 2016-07-13
JPWO2015083796A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP7129958B2 (ja) 動画像符号化データ
JP5513740B2 (ja) 画像復号化装置、画像符号化装置、画像復号化方法、画像符号化方法、プログラムおよび集積回路
JP6164660B2 (ja) ビデオ符号化での分割ブロック符号化方法、ビデオ復号化での分割ブロック復号化方法及びこれを実現する記録媒体
EP1675403B1 (en) Moving-picture compression encoding method, apparatus and program
EP2278815B1 (en) Method and apparatus for controlling loop filtering or post filtering in block based motion compensated video coding
EP2755388B1 (en) Method, device, and program for encoding and decoding image
KR102272564B1 (ko) 화상 복호 장치, 화상 부호화 장치, 화상 복호 방법, 화상 부호화 방법 및 기억 매체
EP3751856B1 (en) Methods for motion compensated prediction
JPWO2012008054A1 (ja) 動画像復号装置、動画像復号方法及び動画像符号化装置ならびに動画像符号化方法
KR20170072637A (ko) 영상 부호화/복호화 방법 및 그 장치
JP6459761B2 (ja) 動画像符号化装置、動画像符号化方法及び動画像符号化用コンピュータプログラム
JP5951144B2 (ja) 画像符号化装置
JP2004080786A (ja) 離散コサイン変換係数を参照する動き推定方法及び装置
WO2020057359A1 (en) Methods and apparatuses of quantization scaling of transform coefficients in video coding system
WO2011125314A1 (ja) 動画像符号化装置および動画像復号装置
US11778228B2 (en) Moving image encoding device, moving image encoding method, moving image decoding device, and moving image decoding method
JP5868157B2 (ja) 画像処理方法/装置,映像符号化方法/装置,映像復号方法/装置およびそれらのプログラム
JP2011223319A (ja) 動画像符号化装置および動画像復号装置
JP6030989B2 (ja) 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置、それらのプログラム並びにプログラムを記録した記録媒体
JP6402520B2 (ja) 符号化装置、方法、プログラム及び機器
WO2017104010A1 (ja) 動画像符号化装置および動画像符号化方法
JP2021190718A (ja) 画像符号化装置、画像復号装置及びこれらのプログラム
CN105049846A (zh) 图像和视频编解码的方法和设备
JP6485045B2 (ja) インデックス演算装置、プログラム及び方法
CN116418991A (zh) 处理方法及装置、视频解码方法、视频编码方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867956

Country of ref document: EP

Kind code of ref document: A1