WO2015083656A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2015083656A1
WO2015083656A1 PCT/JP2014/081707 JP2014081707W WO2015083656A1 WO 2015083656 A1 WO2015083656 A1 WO 2015083656A1 JP 2014081707 W JP2014081707 W JP 2014081707W WO 2015083656 A1 WO2015083656 A1 WO 2015083656A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
center
rotor core
outer peripheral
rotation
Prior art date
Application number
PCT/JP2014/081707
Other languages
French (fr)
Japanese (ja)
Inventor
和慶 土田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480064148.XA priority Critical patent/CN105992872B/en
Priority to JP2015551498A priority patent/JP6038351B2/en
Priority to CN201420761176.4U priority patent/CN204316209U/en
Publication of WO2015083656A1 publication Critical patent/WO2015083656A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/04Balancing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor

Definitions

  • the present invention relates to a compressor.
  • Patent Document 1 discloses an electric motor that drives a compression mechanism in a compressor.
  • a member called a balance weight is attached to the rotor in order to reduce vibration and noise generated with the rotation of the eccentric portion of the compression mechanism.
  • a non-magnetic material is used for the balance weight described above so as not to reduce the magnetic force generated in the electric motor.
  • vibration and noise during rotation can be reduced without providing a balance weight.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a compressor capable of reducing the vibration generated with the rotation of the eccentric portion of the compression mechanism without depending on a dedicated vibration suppressing member. Objective.
  • a compressor according to the present invention is a compressor including an electric motor and a compression mechanism driven by the electric motor, and the electric motor rotates in opposition to the stator and the stator.
  • a rotor provided in a possible manner, the rotor including a first portion and a second portion arranged in a direction in which the rotation center RC of the rotor extends, an air gap between the first portion and the stator, and The air gap between the second part and the stator is non-uniform in the circumferential direction, the outer peripheral shapes of the first part and the second part are point-symmetric, and the point The outer peripheral center of the symmetrical outer peripheral shape is shifted from the rotational center RC of the rotor, and the outer peripheral center of the first part and the outer peripheral center of the second part are the rotational center of the rotor as viewed from the side. R Across, it is located opposite to each other.
  • the compressor of the present invention it is possible to reduce the vibration generated with the rotation of the eccentric portion of the compression mechanism without depending on the dedicated vibration suppressing member.
  • Embodiment 1 of this invention It is a longitudinal cross-sectional view of the rotary compressor which concerns on Embodiment 1 of this invention. It is a figure which shows an internal structure at the time of seeing an electric motor on the surface which makes a rotating shaft line a perpendicular line. It is a figure which shows the rotor single-piece
  • FIG. 7 It is a figure which shows the structure which combined the shaft of FIG. 7, and the rotor of FIG. It is a figure which shows the integral rotating structure of a rotor, a piston, and a rotating shaft (shaft) regarding Embodiment 2 of this invention. It is a figure of the same aspect as FIG. 5 regarding Embodiment 3 of this invention. It is a figure which shows the structure of the rotor core seen from the arrow VIII of FIG. It is a figure of the same aspect as FIG. 3 regarding Embodiment 4 of this invention. It is a figure which extracts and shows only the outer periphery shape of a rotor core regarding this Embodiment 4. FIG. It is a figure of the same aspect as FIG.
  • FIG. 13 regarding Embodiment 5 of this invention. It is a figure of the same aspect as FIG.13 and FIG.14 regarding this Embodiment 5.
  • FIG. 15 regarding Embodiment 6 of this invention. It is a figure of the same aspect as FIG. 16 regarding this Embodiment 6.
  • FIG. 17 regarding Embodiment 7 of this invention. It is a figure of the same aspect as FIG. 18 regarding this Embodiment 7.
  • FIG. 18 regarding this Embodiment 7.
  • FIG. 1 is a longitudinal sectional view of a rotary compressor according to Embodiment 1 of the present invention.
  • the type of the compressor of the present invention is not limited to the rotary compressor.
  • the rotary compressor 100 includes an electric motor 1 and a compression mechanism 103 in a sealed container 101. Although not shown in the figure, refrigeration oil that lubricates each sliding portion of the compression mechanism 103 is stored at the bottom of the sealed container 101.
  • the compression mechanism 103 includes, as main elements, a cylinder 104, a rotation shaft 107 (shaft 13 described later) that is a shaft that is rotated by the electric motor 1, a piston 109 that is fitted into the rotation shaft 107, and a suction side inside the cylinder 104. And a vane (not shown) that is divided into a compression side, a pair of upper and lower frames 111 and 113, and a pair of upper and lower frames 111 and 113, in which a rotating shaft 107 is rotatably inserted and closes the upper and lower ends of the cylinder 104
  • the muffler 115 attached to the frame 113 is included.
  • the stator 3 of the electric motor 1 is directly attached and held on the sealed container 101 by a method such as shrink fitting or welding. Electric power is supplied to the coil of the stator 3 from a glass terminal fixed to the sealed container 101.
  • the rotor 5 is disposed on the inner diameter side of the stator 3 via a gap, and is freely rotatable by the bearing portions (the upper frame 111 and the lower frame 113) of the compression mechanism 103 via the rotation shaft 107 at the center of the rotor 5. It is held in the correct state.
  • FIG. 2 is a diagram illustrating an internal configuration when the electric motor is viewed from a plane having a rotation axis as a perpendicular line.
  • FIG. 3 is a diagram showing a single rotor in FIG.
  • FIG. 4 is a view showing the rotor of FIG. 3 from the side.
  • the electric motor 1 includes a stator 3 and a rotor 5 that is rotatably provided to face the stator.
  • the stator 3 includes a stator core 17 having a plurality of tooth portions 7. Each of the plurality of tooth portions 7 is adjacent to another tooth portion 7 via a corresponding slot portion 9.
  • the plurality of tooth portions 7 and the plurality of slot portions 9 are arranged so as to be alternately arranged at equal intervals in the circumferential direction.
  • a known stator winding (not shown) is wound around each of the plurality of tooth portions 7 in a known manner.
  • Each of the tooth portions 7 extends in the radial direction and protrudes toward the rotation center RC. Further, most of the tooth portion 7 has a substantially equal circumferential width from the radially outer side to the radially inner side, but the tooth tip portion is located at the tip end that is the radially inner side of the tooth portion 7. 7a.
  • Each of the tooth tip portions 7a is formed in an umbrella shape in which both side portions extend in the circumferential direction. Furthermore, the front end surface of the tooth tooth tip portion 7a is curved in an arc shape.
  • the rotor 5 has a rotor core 11 and a shaft 13.
  • the shaft 13 is connected to the rotor core 11 by shrink fitting, press fitting, or the like, and transmits rotational energy to the rotor core 11.
  • An air gap 15 is secured between the outer peripheral surface of the rotor 5 and the inner peripheral surface of the stator 3.
  • the rotor core 11 and the stator core 17 are configured by punching a predetermined thickness of an electromagnetic steel sheet into a required shape and laminating a predetermined number of electromagnetic steel sheets while being fastened with caulking.
  • the rotor core 11 is provided with a plurality of permanent magnets (not shown).
  • the installation mode of the permanent magnet is not particularly limited and may be a known mode.
  • the plurality of permanent magnets may be attached to the outer surface of the rotor core 11 or embedded in the rotor core 11.
  • the electric motor 1 has a rotation center RC.
  • the rotor 5 rotates around the rotation center RC.
  • the arcuate curvature of the tip surfaces of the plurality of teeth tooth tips 7a described above is formed so as to be positioned on one circle centered on the rotation center RC.
  • the outer diameter of the shaft 13 and the inner diameter of the rotor core 11 are defined by a circle centered on the rotation center RC.
  • the electric motor 1 has a rotor outer circumferential center EC which is the center (centroid) of the circular outer shape of the rotor core 11.
  • the rotor outer circumferential center EC is shifted in the radial direction with respect to the rotation center RC. That is, as for the rotor 5, the center of outer peripheral shape is eccentric with respect to the center of rotation.
  • the refrigerant gas supplied from the accumulator 117 is sucked into the cylinder 104 through a suction pipe 119 fixed to the hermetic container 101.
  • the electric motor 1 is rotated by energization of the inverter, the piston 109 fitted to the rotating shaft 107 is rotated in the cylinder 104.
  • the refrigerant is compressed in the cylinder 104.
  • the refrigerant passes through the muffler 115, the refrigerant rises in the sealed container 101. At this time, refrigeration oil is mixed in the compressed refrigerant.
  • the mixture of the refrigerant and the refrigerating machine oil passes through the air holes provided in the rotor core 11, the separation of the refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil can be prevented from flowing into the discharge pipe 121. In this way, the compressed refrigerant is supplied to the high-pressure side of the refrigeration cycle through the discharge pipe 121 provided in the sealed container 101.
  • the center of the outer peripheral shape of the rotor 5 is eccentric with respect to the center of rotation of the rotor 5. For this reason, while the compressor is driven, the rotor 5 rotates while swinging, and the air gap 15 between the stator 3 and the rotor 5 is not uniform in the circumferential direction, that is, nonuniform in the circumferential direction. As a result, an imbalance occurs with respect to the magnetic attractive force acting on the rotor 5, and it is possible to reduce the vibration generated with the rotation of the eccentric portion of the compression mechanism 103 of the compressor, and the balance is a dedicated member for suppressing vibration. Weights can be deleted or reduced.
  • the shape between the rotor outer periphery and the inner periphery such as a magnet insertion hole is used in order to use the unbalance of the magnetic attractive force caused by the rotor swinging around. Implementation is possible without any relation.
  • the distance of the deviation between the rotor outer circumference center EC and the rotation center RC should be 5% or more of the laminated plate thickness.
  • the vibration generated with the rotation of the eccentric portion of the compression mechanism without depending on the dedicated vibration suppressing member. can be reduced.
  • FIG. 5 is a diagram of the same mode as FIG. 4 regarding the second embodiment.
  • FIG. 6 is a diagram showing the configuration of the rotor core as seen from the arrow VI in FIG. 3 illustrates the first embodiment, the configuration of the rotor core as seen from the arrow III in FIG. 5 is the same as that in FIG. 3 with respect to the second embodiment.
  • this Embodiment 2 shall be comprised similarly to the said Embodiment 1 except the part demonstrated below.
  • the rotor 105 of the electric motor provided in the compressor includes a rotor core 11a as a first step portion (first portion) aligned in the direction in which the rotation center RC extends and a second step portion (first step). And a rotor core 11b as two parts).
  • the air gap between the rotor core 11a that is the first part and the stator 3 and the air gap between the rotor core 11b that is the second part and the stator 3 are nonuniform in the circumferential direction, respectively.
  • the outer peripheral shapes of the rotor core 11a and the rotor core 11b are point-symmetric.
  • the rotor outer periphery center ECa of the rotor core 11a and the rotor rotation center RC are shifted from each other, and the rotor outer periphery center ECb of the rotor core 11b and the rotor rotation center RC are shifted from each other.
  • the rotor outer periphery center ECa of the rotor core 11a as the first step portion and the rotor outer periphery center ECb of the rotor core 11b as the second step portion are opposite to each other across the rotation center RC (an example). Is 180 opposite).
  • the rotor cores 11a and 11b are provided as portions having the same height dimension (dimension in the direction in which the rotation center RC extends).
  • FIG. 7 shows a shaft including a piston. Since the center axis PC of the piston 109 is in an eccentric position with respect to the rotation center RC of the rotation shaft 107 (shaft 13), when the rotation shaft 107 (shaft 13) rotates about the rotation center RC, the piston 109 Centrifugal force acts in the eccentric direction (arrow direction in FIG. 7). For this reason, the rotating shaft 107 (shaft 13) exerts a force that swings around during rotation.
  • a balance weight 6 'made of a non-magnetic member having a large specific gravity is attached to both end surfaces in the axial direction of the rotor 5'.
  • FIG. 9 shows a configuration in which the shaft of FIG. 7 and the rotor of FIG. 8 are combined.
  • the balance weight 6 ′ attached above the rotor 5 ′ and the balance weight 6 ′ attached below the rotor 5 ′ have a center of gravity as viewed from the side as shown in FIG. 9. The positions are biased so that they do not line up and down. Further, the center of gravity of the balance weight 6 ′ attached above the rotor 5 ′ and the center of gravity of the balance weight 6 ′ attached below the rotor 5 ′ are both offset from the rotation center RC of the rotating shaft. For this reason, at the time of rotation, centrifugal force acts on each balance weight 6 ′ of the rotor 5 ′ as described for the piston.
  • the vibration / noise reduction technique based on the existence of such balance weights involves other problems such as an increase in the size of the rotor, an increase in the weight of the rotor, and an increase in cost. Therefore, it is very preferable if the vibration generated with the rotation of the eccentric portion of the compression mechanism can be reduced without depending on a dedicated vibration suppressing member only for vibration suppressing action such as a balance weight.
  • FIG. 10 is a diagram showing an integral rotating structure of a rotor, a piston, and a rotating shaft (shaft) in the second embodiment.
  • the rotor outer circumference center ECa of the rotor core 11a and the rotation center RC of the rotor are deviated, and the rotor outer circumference center ECb of the rotor core 11b is rotated with the rotation of the rotor.
  • the rotor outer periphery center ECa of the rotor core 11a and the rotor outer periphery center ECb of the rotor core 11b are shifted from each other in opposite directions with respect to the rotation center RC.
  • the rotor core 11 b as the second part is between the rotor core 11 a as the first part and the piston 109 (the direction in which the rotation center RC extends).
  • the rotor outer circumferential center ECa of the rotor core 11a and the central axis PC of the piston 109 are on the same side with respect to the rotation center RC (see FIG. 10).
  • the rotor outer circumferential center ECb of the rotor core 11b is located on the opposite side of the rotor outer circumferential center ECa of the rotor core 11a and the central axis PC of the piston 109 (in FIG. 10) across the rotation center RC. (Right side of the center of rotation RC).
  • the rotor 105 itself can produce an action of canceling the centrifugal force acting on the piston 109, thereby greatly increasing the balance weight provided to the rotor 105.
  • the vibration can be reduced even if it is reduced to, or the vibration can be reduced without providing a balance weight itself.
  • the fact that the rotor outer circumference center ECa of the rotor core 11a and the rotor outer circumference center ECb of the rotor core 11b are shifted from the rotation center RC of the rotor simply means that the center of gravity position of the rotor core 11a and the center of gravity of the rotor core 11b are the rotation center of the rotor. Not only does it deviate from the RC, but there is also a difference between how the air gap between the rotor core 11 a and the stator 3 is biased and how the air gap between the rotor core 11 b and the stator 3 is biased.
  • vibrations can be reduced by utilizing not only the force caused by the inertial force (center of gravity position) but also the force caused by magnetism (air gap). That is, in each of the rotor core 11a and the rotor core 11b, the air gap between the rotor and the stator 3 is non-uniform in the circumferential direction, and in each of the rotor core 11a and the rotor core 11b, the magnetic gap is changed according to the non-uniform mode of the air gap. Magnetic imbalance due to resistance difference occurs. Due to this magnetic imbalance, a magnetic attractive force in the same direction as the centrifugal force due to the above-described center of gravity position acts on each of the rotor core 11a and the rotor core 11b. Therefore, these magnetic attractive forces also act to cancel out the centrifugal force of the piston, thereby promoting low vibration and low noise.
  • Embodiment 2 can also reduce the vibration generated with the rotation of the eccentric part of the compression mechanism without depending on the dedicated vibration suppressing member.
  • FIG. 11 is a diagram of the same mode as FIG. 4 and FIG. 5 regarding the third embodiment.
  • FIG. 12 is a diagram showing the configuration of the rotor core as seen from the arrow VIII in FIG.
  • the configuration of the rotor core viewed from the arrow III in FIG. 11 is the same as that in FIG. 3, and the configuration of the rotor core viewed from the arrow VI in FIG.
  • this Embodiment 3 shall be comprised similarly to the said Embodiment 2 except the part demonstrated below.
  • the rotor 205 of the electric motor provided in the compressor has a rotor core 11a as a first step portion (first portion) arranged in the following order in the direction in which the rotation center RC extends, a third step.
  • the rotor outer circumferential centers ECa and ECb are both displaced in the radial direction with respect to the rotation center RC, but the rotor outer circumferential center ECa of the rotor core 11a as the first step portion and the second step portion.
  • the rotor outer circumference center ECb of the rotor core 11b is shifted in the opposite direction (for example, opposite to 180) across the rotation center RC. Further, the rotor core 11c as the third step portion is located between the rotor core 11a as the first step portion and the rotor core 11b as the second step portion, and the rotor outer circumference center of the rotor core 11c as the third step portion ECc coincides with the rotation center RC.
  • the rotor cores 11a and 11b are provided as a part of the same height dimension, and the height dimension of the rotor core 11c as a 3rd step part is the rotor core 11a and 2nd as a 1st step part. It is larger than the height dimension of the rotor core 11b as the stepped portion.
  • the vibration generated with the rotation of the eccentric portion of the compression mechanism can be reduced without depending on the dedicated vibration suppressing member as in the first embodiment.
  • the rotor core 11a and the rotor core 11b of FIG. 11 of the third embodiment also function in the same manner as the rotor core 11a and the rotor core 11b of FIG. 5 of the second embodiment. Advantages similar to those of Embodiment 2 are obtained.
  • Embodiment 4 the air gap between the theta and the rotor is not uniform in the circumferential direction.
  • the rotor outer shape is point-symmetric and the point-symmetric outer shape rotor. It may be achieved that the outer periphery center and the rotation center are deviated.
  • the outer peripheral shape of the rotor when viewed from a plane having a rotation axis as a perpendicular line, the outer peripheral shape of the rotor is point-symmetric, and the rotor outer peripheral center and the rotational center of the point-symmetric outer peripheral shape are
  • This is a compressor vibration reduction method in which the air gap between the data and the rotor is nonuniform in the circumferential direction due to the deviation.
  • Embodiments 1 to 3 described above are examples of the first aspect.
  • the fourth embodiment will be described as another example of the first aspect.
  • this Embodiment 4 shall be comprised similarly to the said Embodiment 1 except the part demonstrated below.
  • FIG. 13 is a diagram of the same mode as FIG. 3 regarding the fourth embodiment.
  • FIG. 14 is a diagram showing only the outer peripheral shape of the rotor core in the fourth embodiment.
  • the rotor core 11 d has a plurality of notches 51 formed on the outer peripheral surface thereof, but the outer peripheral shape is point-symmetric with respect to the rotor outer peripheral center EC as shown in FIG. 14. It has become.
  • Such a rotor core 11d is combined with the shaft 13, and as shown in FIG. 13, the rotor outer circumferential center EC is shifted in the radial direction with respect to the rotation center RC.
  • Embodiment 5 FIG. The fifth embodiment is an example of the first aspect, and is an example different from the first to fourth embodiments.
  • FIGS. 15 and 16 are views of the same mode as FIGS. 13 and 14 regarding the fifth embodiment.
  • this Embodiment 5 shall be comprised similarly to the said Embodiment 1 except the part demonstrated below.
  • the rotor core 11e has a plurality of protrusions (bulges) 53 formed on the outer peripheral surface thereof, but the outer peripheral shape thereof is the rotor outer peripheral center EC as shown in FIG. Is point-symmetric.
  • the rotor core 11e is combined with the shaft 13, and as shown in FIG. 15, the rotor outer circumferential center EC is shifted in the radial direction with respect to the rotation center RC.
  • the protrusion part 53 has a circular arc shape whose diameter is smaller than outer peripheral parts other than the protrusion part 53 of the rotor core 11e, it is not limited to this.
  • the vibration generated with the rotation of the eccentric portion of the compression mechanism can be reduced without depending on the dedicated vibration suppressing member, as in the first embodiment.
  • each rotor core in the fourth and fifth embodiments can be used as one or both of the rotor core 11a as the first step portion and the rotor core 11b as the second step portion in the second or third embodiment. Good.
  • the non-uniform air gap between the data and the rotor in the circumferential direction is achieved as a second aspect by using a rotor whose outer peripheral shape is asymmetric with respect to the rotation center RC. It may be. That is, the second aspect of the present invention is that the air gap between the rotor and the rotor is circumferential in the circumferential direction by using a rotor whose outer peripheral shape is asymmetric with respect to the axis of rotation when viewed from the plane having the rotation axis as a perpendicular line. This is a method of reducing the vibration of the compressor, which is non-uniform over the whole area.
  • FIGS. 17 and 18 are views of the same mode as FIGS. 15 and 16 regarding the sixth embodiment.
  • this Embodiment 6 shall be comprised similarly to the said Embodiment 1 except the part demonstrated below.
  • the rotor core 11f has only one protrusion (swelled portion) 55 formed on the outer peripheral surface thereof. Therefore, the outer peripheral shape of the rotor core 11f is asymmetrical as shown in FIG.
  • the protrusion part 55 has a circular arc shape whose diameter is smaller than outer peripheral parts other than the protrusion part 55 of the rotor core 11f, it is not limited to this.
  • the rotor outer peripheral center EC of the approximate point-symmetric outer peripheral shape X coincides with the rotation center RC in the illustration of FIG.
  • the sixth embodiment is not limited to this, and the rotor outer circumference center EC may be displaced in the radial direction with respect to the rotation center RC.
  • Embodiment 7 FIG. The seventh embodiment is an example of the second aspect, and is an example further different from the sixth embodiment. 19 and 20 are views of the same mode as in FIGS. 17 and 18 regarding the seventh embodiment. In addition, this Embodiment 7 shall be comprised similarly to the said Embodiment 1 except the part demonstrated below.
  • the rotor core 11g has a plurality of protrusions (bulges) 57 formed on the outer peripheral surface thereof, but the outer peripheral shape of the rotor core 11g is astigmatic as shown in FIG. It is symmetrical.
  • the protrusion part 57 has a circular arc shape with a diameter smaller than outer peripheral parts other than the protrusion part 57 of the rotor core 11g, it is not limited to this.
  • the rotor outer peripheral center EC of the approximate point-symmetric outer peripheral shape X matches the rotational center RC in the illustration of FIG.
  • the sixth embodiment is not limited to this, and the rotor outer circumference center EC may be displaced in the radial direction with respect to the rotation center RC.
  • the vibration generated with the rotation of the eccentric portion of the compression mechanism can be reduced without depending on the dedicated vibration suppressing member as in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

A compressor (100) is provided with an electric motor (1) and a compression mechanism (103) which is driven by the electric motor (1). The electric motor includes a stator (3) and a rotor (5) which is rotatably provided facing the stator (3). The air gap (15) between the stator (3) and the rotor (5) is nonuniform circumferentially. The rotor may be configured either in such a manner that the outer peripheral shape of the rotor is point-symmetrical and the center (EC) of the point-symmetrical outer peripheral shape and the center (RC) of rotation of the rotor are offset from each other or in such a manner that the outer peripheral shape of the rotor is not point-symmetrical.

Description

圧縮機Compressor
 本発明は、圧縮機に関するものである。 The present invention relates to a compressor.
 特許文献1には、圧縮機における圧縮機構を駆動する電動機が開示されている。このような圧縮機用の電動機では、圧縮機構の偏心部の回転に伴い発生する振動・騒音を低減するため、ロータに、バランスウエイトと呼ばれる部材が取り付けられている。 Patent Document 1 discloses an electric motor that drives a compression mechanism in a compressor. In such an electric motor for a compressor, a member called a balance weight is attached to the rotor in order to reduce vibration and noise generated with the rotation of the eccentric portion of the compression mechanism.
特開平9-200986号公報Japanese Patent Laid-Open No. 9-200986
 上で述べたバランスウエイトには、電動機において生じている磁力を低下させないように、一般的には、非磁性体が使用されている。しかしながら、バランスウエイトを設けることなく、回転時の振動・騒音を低減することができれば、理想的である。 In general, a non-magnetic material is used for the balance weight described above so as not to reduce the magnetic force generated in the electric motor. However, it is ideal if vibration and noise during rotation can be reduced without providing a balance weight.
 本発明は、上記に鑑みてなされたものであり、専用の振動抑制部材に依存することなく圧縮機構の偏心部の回転に伴い発生する振動を低減することができる、圧縮機を提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a compressor capable of reducing the vibration generated with the rotation of the eccentric portion of the compression mechanism without depending on a dedicated vibration suppressing member. Objective.
 上述した目的を達成するため、本発明の圧縮機は、電動機と、該電動機によって駆動される圧縮機構とを備えた圧縮機であって、前記電動機は、ステータと、該ステータに対向して回転可能に設けられたロータとを含み、前記ロータは、前記ロータの回転中心RCの延びる方向に並ぶ第1部分および第2部分を含み、前記第1部分と前記ステータとの間のエアギャップ、および、前記第2部分と前記ステータとの間のエアギャップは、それぞれ、周方向にわたって不均一であり、前記第1部分および第2部分のそれぞれの外周形状は、点対称であり、且つ、その点対称の外周形状の外周中心と前記ロータの回転中心RCとは、ずれており、前記第1部分の外周中心と、前記第2部分の外周中心とは、側方からみて、前記ロータの回転中心RCを挟んで、相互に反対側に位置している。 In order to achieve the above-described object, a compressor according to the present invention is a compressor including an electric motor and a compression mechanism driven by the electric motor, and the electric motor rotates in opposition to the stator and the stator. A rotor provided in a possible manner, the rotor including a first portion and a second portion arranged in a direction in which the rotation center RC of the rotor extends, an air gap between the first portion and the stator, and The air gap between the second part and the stator is non-uniform in the circumferential direction, the outer peripheral shapes of the first part and the second part are point-symmetric, and the point The outer peripheral center of the symmetrical outer peripheral shape is shifted from the rotational center RC of the rotor, and the outer peripheral center of the first part and the outer peripheral center of the second part are the rotational center of the rotor as viewed from the side. R Across, it is located opposite to each other.
 本発明の圧縮機によれば、専用の振動抑制部材に依存することなく圧縮機構の偏心部の回転に伴い発生する振動を低減することができる。 According to the compressor of the present invention, it is possible to reduce the vibration generated with the rotation of the eccentric portion of the compression mechanism without depending on the dedicated vibration suppressing member.
本発明の実施の形態1に係るロータリ圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the rotary compressor which concerns on Embodiment 1 of this invention. 電動機を、回転軸線を垂線とする面でみた場合の内部構成を示す図である。It is a figure which shows an internal structure at the time of seeing an electric motor on the surface which makes a rotating shaft line a perpendicular line. 図2におけるロータ単体を示す図である。It is a figure which shows the rotor single-piece | unit in FIG. 図3のロータ単体を側方から示す図である。It is a figure which shows the rotor single-piece | unit of FIG. 3 from the side. 本発明の実施の形態2に関する、図4と同態様の図である。It is a figure of the same aspect as FIG. 4 regarding Embodiment 2 of this invention. 図5の矢印VIからみたロータコアの構成を示す図である。It is a figure which shows the structure of the rotor core seen from the arrow VI of FIG. ピストンを含めたシャフトを示す図である。It is a figure which shows the shaft containing a piston. バランスウエイトが設けられたロータを示す図である。It is a figure which shows the rotor provided with the balance weight. 図7のシャフトと、図8のロータとを組み合わせた構成を示す図である。It is a figure which shows the structure which combined the shaft of FIG. 7, and the rotor of FIG. 本発明の実施の形態2に関し、ロータとピストンと回転軸(シャフト)との一体回転構造体を示す図である。It is a figure which shows the integral rotating structure of a rotor, a piston, and a rotating shaft (shaft) regarding Embodiment 2 of this invention. 本発明の実施の形態3に関する、図5と同態様の図である。It is a figure of the same aspect as FIG. 5 regarding Embodiment 3 of this invention. 図11の矢印VIIIからみたロータコアの構成を示す図である。It is a figure which shows the structure of the rotor core seen from the arrow VIII of FIG. 本発明の実施の形態4に関する、図3と同態様の図である。It is a figure of the same aspect as FIG. 3 regarding Embodiment 4 of this invention. 本実施の形態4に関し、ロータコアの外周形状だけを抽出して示す図である。It is a figure which extracts and shows only the outer periphery shape of a rotor core regarding this Embodiment 4. FIG. 本発明の実施の形態5に関する、図13と同態様の図である。It is a figure of the same aspect as FIG. 13 regarding Embodiment 5 of this invention. 本実施の形態5に関する、図13及び図14と同態様の図である。It is a figure of the same aspect as FIG.13 and FIG.14 regarding this Embodiment 5. FIG. 本発明の実施の形態6に関する、図15と同態様の図である。It is a figure of the same aspect as FIG. 15 regarding Embodiment 6 of this invention. 本実施の形態6に関する、図16と同態様の図である。It is a figure of the same aspect as FIG. 16 regarding this Embodiment 6. FIG. 本発明の実施の形態7に関する、図17と同態様の図である。It is a figure of the same aspect as FIG. 17 regarding Embodiment 7 of this invention. 本実施の形態7に関する、図18と同態様の図である。It is a figure of the same aspect as FIG. 18 regarding this Embodiment 7. FIG.
 以下、本発明をロータリ圧縮機に適用した場合の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。 Hereinafter, an embodiment when the present invention is applied to a rotary compressor will be described with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.
 実施の形態1.
 図1は、本発明の実施の形態1に係るロータリ圧縮機の縦断面図である。なお、本発明の圧縮機の種別は、ロータリ圧縮機に限定されるものではない。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view of a rotary compressor according to Embodiment 1 of the present invention. The type of the compressor of the present invention is not limited to the rotary compressor.
 ロータリ圧縮機100は、密閉容器101内に、電動機1と、圧縮機構103とを備えている。なお、図示省略するが、密閉容器101の底部には、圧縮機構103の各摺動部を潤滑する冷凍機油が貯留されている。 The rotary compressor 100 includes an electric motor 1 and a compression mechanism 103 in a sealed container 101. Although not shown in the figure, refrigeration oil that lubricates each sliding portion of the compression mechanism 103 is stored at the bottom of the sealed container 101.
 圧縮機構103は、主な要素として、シリンダ104と、電動機1により回転するシャフトである回転軸107(後述するシャフト13)と、回転軸107に嵌挿されるピストン109と、シリンダ104内を吸入側と圧縮側とに分けるベーン(図示せず)と、回転軸107が回転自在に嵌挿され、シリンダ104の上下端面を閉塞する上下一対の上部フレーム111及び下部フレーム113と、上部フレーム111及び下部フレーム113にそれぞれ装着されたマフラ115とを含んでいる。 The compression mechanism 103 includes, as main elements, a cylinder 104, a rotation shaft 107 (shaft 13 described later) that is a shaft that is rotated by the electric motor 1, a piston 109 that is fitted into the rotation shaft 107, and a suction side inside the cylinder 104. And a vane (not shown) that is divided into a compression side, a pair of upper and lower frames 111 and 113, and a pair of upper and lower frames 111 and 113, in which a rotating shaft 107 is rotatably inserted and closes the upper and lower ends of the cylinder 104 The muffler 115 attached to the frame 113 is included.
 電動機1のステータ3は、密閉容器101に焼嵌または溶接等の方法により直接取り付けられ保持されている。ステータ3のコイルには、密閉容器101に固定されるガラス端子から電力が供給される。 The stator 3 of the electric motor 1 is directly attached and held on the sealed container 101 by a method such as shrink fitting or welding. Electric power is supplied to the coil of the stator 3 from a glass terminal fixed to the sealed container 101.
 ロータ5は、ステータ3の内径側に、空隙を介して配置されており、ロータ5の中心部の回転軸107を介して圧縮機構103の軸受け部(上部フレーム111及び下部フレーム113)により回転自在な状態で保持されている。 The rotor 5 is disposed on the inner diameter side of the stator 3 via a gap, and is freely rotatable by the bearing portions (the upper frame 111 and the lower frame 113) of the compression mechanism 103 via the rotation shaft 107 at the center of the rotor 5. It is held in the correct state.
 次に、本実施の形態1に関する電動機1について説明する。図2は、電動機を、回転軸線を垂線とする面でみた場合の内部構成を示す図である。図3は、図2におけるロータ単体を示す図である。図4は、図3のロータ単体を側方から示す図である。 Next, the electric motor 1 related to the first embodiment will be described. FIG. 2 is a diagram illustrating an internal configuration when the electric motor is viewed from a plane having a rotation axis as a perpendicular line. FIG. 3 is a diagram showing a single rotor in FIG. FIG. 4 is a view showing the rotor of FIG. 3 from the side.
 電動機1は、ステータ3と、ステータに対向して回転可能に設けられたロータ5とを備える。ステータ3は、複数のティース部7を有するステータコア17を備えている。複数のティース部7はそれぞれ、対応するスロット部9を介して別のティース部7と隣り合っている。複数のティース部7と複数のスロット部9とは、周方向に交互に且つ等間隔で並ぶように配置されている。複数のティース部7には、それぞれ、図示省略する公知のステータ巻線が公知の態様で巻回されている。 The electric motor 1 includes a stator 3 and a rotor 5 that is rotatably provided to face the stator. The stator 3 includes a stator core 17 having a plurality of tooth portions 7. Each of the plurality of tooth portions 7 is adjacent to another tooth portion 7 via a corresponding slot portion 9. The plurality of tooth portions 7 and the plurality of slot portions 9 are arranged so as to be alternately arranged at equal intervals in the circumferential direction. A known stator winding (not shown) is wound around each of the plurality of tooth portions 7 in a known manner.
 ティース部7はそれぞれ、径方向を延びており、回転中心RCに向けて突出する。また、ティース部7の大部分は、径方向外側から径方向内側にかけて略等しい周方向の幅を有しているが、ティース部7の最も径方向内側となる先端部には、ティース歯先部7aを有している。ティース歯先部7aはそれぞれ、その両側部が周方向に広がる傘状の形状に形成されている。さらに、ティース歯先部7aの先端面は、弧状に湾曲している。 Each of the tooth portions 7 extends in the radial direction and protrudes toward the rotation center RC. Further, most of the tooth portion 7 has a substantially equal circumferential width from the radially outer side to the radially inner side, but the tooth tip portion is located at the tip end that is the radially inner side of the tooth portion 7. 7a. Each of the tooth tip portions 7a is formed in an umbrella shape in which both side portions extend in the circumferential direction. Furthermore, the front end surface of the tooth tooth tip portion 7a is curved in an arc shape.
 ロータ5は、ロータコア11と、シャフト13とを有している。シャフト13は、ロータコア11に、焼嵌、圧入等により連結されており、ロータコア11に回転エネルギーを伝達する。ロータ5の外周面と、ステータ3の内周面との間には、エアギャップ15が確保されている。 The rotor 5 has a rotor core 11 and a shaft 13. The shaft 13 is connected to the rotor core 11 by shrink fitting, press fitting, or the like, and transmits rotational energy to the rotor core 11. An air gap 15 is secured between the outer peripheral surface of the rotor 5 and the inner peripheral surface of the stator 3.
 ロータコア11及びステータコア17は、所定厚さの電磁鋼板を必要な形状に打ち抜き、所定枚数の電磁鋼板をカシメで締結しながら積層して構成される。 The rotor core 11 and the stator core 17 are configured by punching a predetermined thickness of an electromagnetic steel sheet into a required shape and laminating a predetermined number of electromagnetic steel sheets while being fastened with caulking.
 ロータコア11には、図示省略する複数の永久磁石が設けられている。永久磁石の設置態様は、特に限定されず公知の態様でよい。例えば、複数の永久磁石は、ロータコア11の外表面に張り付けられていたり、ロータコア11の内部に埋め込まれていたりしてもよい。 The rotor core 11 is provided with a plurality of permanent magnets (not shown). The installation mode of the permanent magnet is not particularly limited and may be a known mode. For example, the plurality of permanent magnets may be attached to the outer surface of the rotor core 11 or embedded in the rotor core 11.
 図2~図4に示されるように、電動機1は、回転中心RCを有している。ロータ5は、この回転中心RCを中心に回転する。また、前述した複数のティース歯先部7aの先端面の弧状の湾曲は、回転中心RCを中心するとする一つの円上に位置するように形成されている。さらに、シャフト13の外径及びロータコア11の内径は、回転中心RCを中心するとする円で規定される。一方、電動機1は、ロータコア11の円形の外形形状の中心(図心)であるロータ外周中心ECを有している。このロータ外周中心ECは、回転中心RCに対して径方向にずれている。つまり、ロータ5は、外周形状の中心が回転の中心に対して偏心している。 As shown in FIGS. 2 to 4, the electric motor 1 has a rotation center RC. The rotor 5 rotates around the rotation center RC. Further, the arcuate curvature of the tip surfaces of the plurality of teeth tooth tips 7a described above is formed so as to be positioned on one circle centered on the rotation center RC. Furthermore, the outer diameter of the shaft 13 and the inner diameter of the rotor core 11 are defined by a circle centered on the rotation center RC. On the other hand, the electric motor 1 has a rotor outer circumferential center EC which is the center (centroid) of the circular outer shape of the rotor core 11. The rotor outer circumferential center EC is shifted in the radial direction with respect to the rotation center RC. That is, as for the rotor 5, the center of outer peripheral shape is eccentric with respect to the center of rotation.
 次に、かかるロータリ圧縮機100の動作について説明する。アキュムレータ117から供給された冷媒ガスは、密閉容器101に固定された吸入パイプ119よりシリンダ104内へ吸入される。インバータの通電によって電動機1が回転されていることで、回転軸107に嵌合されたピストン109がシリンダ104内で回転される。それにより、シリンダ104内では冷媒の圧縮が行われる。冷媒は、マフラ115を経た後、密閉容器101内を上昇する。このとき、圧縮された冷媒には冷凍機油が混入している。この冷媒と冷凍機油との混合物は、ロータコア11に設けた風穴を通過する際に、冷媒と冷凍機油との分離を促進され、冷凍機油が吐出パイプ121へ流入するのを防止できる。このようにして、圧縮された冷媒が、密閉容器101に設けられた吐出パイプ121を通って冷凍サイクルの高圧側へと供給される。 Next, the operation of the rotary compressor 100 will be described. The refrigerant gas supplied from the accumulator 117 is sucked into the cylinder 104 through a suction pipe 119 fixed to the hermetic container 101. When the electric motor 1 is rotated by energization of the inverter, the piston 109 fitted to the rotating shaft 107 is rotated in the cylinder 104. Thereby, the refrigerant is compressed in the cylinder 104. After the refrigerant passes through the muffler 115, the refrigerant rises in the sealed container 101. At this time, refrigeration oil is mixed in the compressed refrigerant. When the mixture of the refrigerant and the refrigerating machine oil passes through the air holes provided in the rotor core 11, the separation of the refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil can be prevented from flowing into the discharge pipe 121. In this way, the compressed refrigerant is supplied to the high-pressure side of the refrigeration cycle through the discharge pipe 121 provided in the sealed container 101.
 また、本実施の形態1では、前述したように、ロータ5の外周形状の中心がロータ5の回転の中心に対して偏心している。このため、圧縮機の駆動中、ロータ5は振れながら回ることとなり、ステータ3とロータ5との間のエアギャップ15は周方向にわたって一様ではなくつまり周方向にわたって不均一になる。これにより、ロータ5に働く磁気吸引力に関してアンバランスが生じ、圧縮機の圧縮機構103の偏心部の回転に伴い発生する振動を低減することが可能となり、振動抑制のための専用部材であるバランスウエイトを削除または削減することが可能となる。また、本実施の形態1は、外周形状が対称なロータにおいて、ロータが振れ回ることによる磁気吸引力のアンバランスを利用するため、磁石挿入孔などのロータ外周と内周の間の形状には一切関係なく実施が可能である。 In the first embodiment, as described above, the center of the outer peripheral shape of the rotor 5 is eccentric with respect to the center of rotation of the rotor 5. For this reason, while the compressor is driven, the rotor 5 rotates while swinging, and the air gap 15 between the stator 3 and the rotor 5 is not uniform in the circumferential direction, that is, nonuniform in the circumferential direction. As a result, an imbalance occurs with respect to the magnetic attractive force acting on the rotor 5, and it is possible to reduce the vibration generated with the rotation of the eccentric portion of the compression mechanism 103 of the compressor, and the balance is a dedicated member for suppressing vibration. Weights can be deleted or reduced. Further, in the first embodiment, in the rotor having a symmetrical outer periphery shape, the shape between the rotor outer periphery and the inner periphery such as a magnet insertion hole is used in order to use the unbalance of the magnetic attractive force caused by the rotor swinging around. Implementation is possible without any relation.
 なお、ロータ外周中心ECと回転中心RCとを隔てる場合、金型のプレス精度を考えると、ロータ外周中心ECと回転中心RCとのずれの距離は、積層される板厚の5%以上であれば、実施可能であろう。 When separating the rotor outer circumference center EC and the rotation center RC, considering the press accuracy of the mold, the distance of the deviation between the rotor outer circumference center EC and the rotation center RC should be 5% or more of the laminated plate thickness. Would be feasible.
 以上説明したように、本実施の形態1の圧縮機、及び、圧縮機の振動低減方法によれば、専用の振動抑制部材に依存することなく圧縮機構の偏心部の回転に伴い発生する振動を低減することができる。 As described above, according to the compressor and the vibration reduction method of the compressor according to the first embodiment, the vibration generated with the rotation of the eccentric portion of the compression mechanism without depending on the dedicated vibration suppressing member. Can be reduced.
 実施の形態2.
 次に、図5~図9を用いて、本発明の実施の形態2について説明する。図5は、本実施の形態2に関する、図4と同態様の図である。また、図6は、図5の矢印VIからみたロータコアの構成を示す図である。また、図3は、上記実施の形態1を説明するものであったが、本実施の形態2に関し、図5の矢印IIIからみたロータコアの構成も、図3と同じである。なお、本実施の形態2は、以下に説明する部分を除いては、上記実施の形態1と同様に構成されているものとする。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a diagram of the same mode as FIG. 4 regarding the second embodiment. FIG. 6 is a diagram showing the configuration of the rotor core as seen from the arrow VI in FIG. 3 illustrates the first embodiment, the configuration of the rotor core as seen from the arrow III in FIG. 5 is the same as that in FIG. 3 with respect to the second embodiment. In addition, this Embodiment 2 shall be comprised similarly to the said Embodiment 1 except the part demonstrated below.
 本実施の形態2おいては、圧縮機に設けられた電動機のロータ105は、回転中心RCの延びる方向に並ぶ第1段部(第1部分)としてのロータコア11aと、第2段部(第2部分)としてのロータコア11bとを含んでいる。第1部分であるロータコア11aとステータ3との間のエアギャップ、および、第2部分であるロータコア11bとステータ3との間のエアギャップは、それぞれ、周方向にわたって不均一である。ロータコア11aおよびロータコア11bのそれぞれの外周形状は、点対称である。また、ロータコア11aのロータ外周中心ECaと、ロータの回転中心RCとは、ずれており、且つ、ロータコア11bのロータ外周中心ECbと、ロータの回転中心RCとは、ずれている。第1段部としてのロータコア11aのロータ外周中心ECaと、第2段部としてのロータコア11bのロータ外周中心ECbとは、側方からみて、回転中心RCを挟んで相互に反対方向(一例であるが180反対)にずれている。なお、一例であるが、ロータコア11a及び11bは、同じ高さ寸法(回転中心RCの延びる方向の寸法)の部分として設けられている。 In the second embodiment, the rotor 105 of the electric motor provided in the compressor includes a rotor core 11a as a first step portion (first portion) aligned in the direction in which the rotation center RC extends and a second step portion (first step). And a rotor core 11b as two parts). The air gap between the rotor core 11a that is the first part and the stator 3 and the air gap between the rotor core 11b that is the second part and the stator 3 are nonuniform in the circumferential direction, respectively. The outer peripheral shapes of the rotor core 11a and the rotor core 11b are point-symmetric. Further, the rotor outer periphery center ECa of the rotor core 11a and the rotor rotation center RC are shifted from each other, and the rotor outer periphery center ECb of the rotor core 11b and the rotor rotation center RC are shifted from each other. The rotor outer periphery center ECa of the rotor core 11a as the first step portion and the rotor outer periphery center ECb of the rotor core 11b as the second step portion are opposite to each other across the rotation center RC (an example). Is 180 opposite). As an example, the rotor cores 11a and 11b are provided as portions having the same height dimension (dimension in the direction in which the rotation center RC extends).
 さらに、上記のように構成された本実施の形態2の優れた利点について説明する。まず、図7~図9を用いて、偏心部として機能するピストンについて説明する。図7に、ピストンを含めたシャフトを示す。回転軸107(シャフト13)の回転中心RCに対し、ピストン109の中心軸PCは、偏心した位置にあるため、回転軸107(シャフト13)が回転中心RCを中心として回転すると、ピストン109には、偏心方向(図7の矢印方向)に遠心力が働く。このため、回転軸107(シャフト13)には、回転時に振れ回るような力が働く。 Further, the excellent advantages of the second embodiment configured as described above will be described. First, a piston functioning as an eccentric portion will be described with reference to FIGS. FIG. 7 shows a shaft including a piston. Since the center axis PC of the piston 109 is in an eccentric position with respect to the rotation center RC of the rotation shaft 107 (shaft 13), when the rotation shaft 107 (shaft 13) rotates about the rotation center RC, the piston 109 Centrifugal force acts in the eccentric direction (arrow direction in FIG. 7). For this reason, the rotating shaft 107 (shaft 13) exerts a force that swings around during rotation.
 ここで、上述した回転時の振れを低減する手法の一つとして、図8に示されるように、バランスウエイトが設けられたロータを用いる手法がある。図8に示されるように、ロータ5’の軸方向両端面には、比重の大きい非磁性の部材から構成されたバランスウエイト6’が取り付けられる。 Here, as one of the methods for reducing the above-described vibration during rotation, there is a method using a rotor provided with a balance weight as shown in FIG. As shown in FIG. 8, a balance weight 6 'made of a non-magnetic member having a large specific gravity is attached to both end surfaces in the axial direction of the rotor 5'.
 そして、図9に、図7のシャフトと、図8のロータとを組み合わせた構成を示す。図9に示されるように、ロータ5’の上方に取り付けられるバランスウエイト6’と、ロータ5’の下方に取り付けられるバランスウエイト6’とは、図9に示すように側方からみて、重心の位置が上下に揃わないように偏っている。さらに、ロータ5’の上方に取り付けられるバランスウエイト6’の重心と、ロータ5’の下方に取り付けられるバランスウエイト6’の重心とは、ともに、回転軸の回転中心RCから偏心した位置にある。このため、回転時には、ロータ5’のそれぞれのバランスウエイト6’にも、ピストンに関して述べたように、遠心力が働く。 FIG. 9 shows a configuration in which the shaft of FIG. 7 and the rotor of FIG. 8 are combined. As shown in FIG. 9, the balance weight 6 ′ attached above the rotor 5 ′ and the balance weight 6 ′ attached below the rotor 5 ′ have a center of gravity as viewed from the side as shown in FIG. 9. The positions are biased so that they do not line up and down. Further, the center of gravity of the balance weight 6 ′ attached above the rotor 5 ′ and the center of gravity of the balance weight 6 ′ attached below the rotor 5 ′ are both offset from the rotation center RC of the rotating shaft. For this reason, at the time of rotation, centrifugal force acts on each balance weight 6 ′ of the rotor 5 ′ as described for the piston.
 このため、図9に示されるようなバランスウエイト6’、ロータ5’およびピストンが含まれる一体回転構造体においては、バランスウエイト6’およびピストンのそれぞれに、矢印で示すような遠心力が働き、これにより、ピストンにおける遠心力が、バランスウエイト6’における遠心力で打ち消される関係となり、一体回転構造体、全体でみて、回転時に振れ回る力が抑制され、低振動・低騒音化が促されている。 For this reason, in the integral rotating structure including the balance weight 6 ′, the rotor 5 ′ and the piston as shown in FIG. 9, a centrifugal force as indicated by an arrow acts on each of the balance weight 6 ′ and the piston. As a result, the centrifugal force in the piston is canceled by the centrifugal force in the balance weight 6 ', and the integral rotating structure, as a whole, suppresses the force that swings around during rotation, and promotes low vibration and low noise. Yes.
 しかしながら、このようなバランスウエイトの存在に依拠した振動・騒音の低減手法は、ロータの大型化、ロータの重量増加、コスト増大といった別の問題を伴うこととなる。よって、バランスウエイトのような振動抑制作用のためだけの専用の振動抑制部材に依存することなく、圧縮機構の偏心部の回転に伴い発生する振動を低減することができれば非常に好ましい。 However, the vibration / noise reduction technique based on the existence of such balance weights involves other problems such as an increase in the size of the rotor, an increase in the weight of the rotor, and an increase in cost. Therefore, it is very preferable if the vibration generated with the rotation of the eccentric portion of the compression mechanism can be reduced without depending on a dedicated vibration suppressing member only for vibration suppressing action such as a balance weight.
 そこで、本実施の形態2では、上述したロータ105が用いられている。図10は、本実施の形態2に関し、ロータとピストンと回転軸(シャフト)との一体回転構造体を示す図である。 Therefore, in the second embodiment, the above-described rotor 105 is used. FIG. 10 is a diagram showing an integral rotating structure of a rotor, a piston, and a rotating shaft (shaft) in the second embodiment.
 図10に示されるように、本実施の形態2では、ロータコア11aのロータ外周中心ECaと、ロータの回転中心RCとは、ずれており、且つ、ロータコア11bのロータ外周中心ECbと、ロータの回転中心RCとは、ずれており、さらに、ロータコア11aのロータ外周中心ECaと、ロータコア11bのロータ外周中心ECbとは、側方からみて、回転中心RCを挟んで相互に反対方向にずれている。 As shown in FIG. 10, in the second embodiment, the rotor outer circumference center ECa of the rotor core 11a and the rotation center RC of the rotor are deviated, and the rotor outer circumference center ECb of the rotor core 11b is rotated with the rotation of the rotor. The rotor outer periphery center ECa of the rotor core 11a and the rotor outer periphery center ECb of the rotor core 11b are shifted from each other in opposite directions with respect to the rotation center RC.
 特に、本実施の形態2の好ましい一例では、図10に示されるように、第2部分であるロータコア11bが、第1部分であるロータコア11aと、ピストン109との間(回転中心RCの延びる方向でみた間)に位置する関係において、ロータコア11aのロータ外周中心ECaと、ピストン109の中心軸PCとは、側方からみて、回転中心RCを基準に同じ側(図10においてみて回転中心RCの左側)に位置しており、ロータコア11bのロータ外周中心ECbは、側方からみて、回転中心RCを挟んで、ロータコア11aのロータ外周中心ECaおよびピストン109の中心軸PCと反対側(図10においてみて回転中心RCの右側)に位置している。 In particular, in a preferred example of the second embodiment, as shown in FIG. 10, the rotor core 11 b as the second part is between the rotor core 11 a as the first part and the piston 109 (the direction in which the rotation center RC extends). The rotor outer circumferential center ECa of the rotor core 11a and the central axis PC of the piston 109 are on the same side with respect to the rotation center RC (see FIG. 10). The rotor outer circumferential center ECb of the rotor core 11b is located on the opposite side of the rotor outer circumferential center ECa of the rotor core 11a and the central axis PC of the piston 109 (in FIG. 10) across the rotation center RC. (Right side of the center of rotation RC).
 図10に示すような偏心態様の一体回転構造体によれば、ロータ105それ自体が、ピストン109に作用する遠心力を打ち消す作用を生み出すことができ、それにより、ロータ105に設けるバランスウエイトを大幅に縮小しても振動を低減することができるか、あるいは、バランスウエイト自体を設けることなく振動を低減することができる。 According to the eccentric rotary structure as shown in FIG. 10, the rotor 105 itself can produce an action of canceling the centrifugal force acting on the piston 109, thereby greatly increasing the balance weight provided to the rotor 105. The vibration can be reduced even if it is reduced to, or the vibration can be reduced without providing a balance weight itself.
 さらに、ロータコア11aのロータ外周中心ECaおよびロータコア11bのロータ外周中心ECbが、ロータの回転中心RCとずれていることは、単に、ロータコア11aの重心位置およびロータコア11bの重心位置が、ロータの回転中心RCとずれていることに止まるだけではなく、ロータコア11aとステータ3とのエアギャップの偏り方と、ロータコア11bとステータ3とのエアギャップの偏り方との間に、差異をもたらしている。つまり、慣性力(重心位置)に起因した力だけに止まらず、磁気(エアギャップ)に起因した力をも活用して、振動を低減することができる。すなわち、ロータコア11aおよびロータコア11bのそれぞれにおいて、ロータとステータ3との間のエアギャップは、周方向にわたって不均一であり、ロータコア11aおよびロータコア11bのそれぞれにおいて、エアギャップの不均一態様に応じ、磁気抵抗の差による磁気アンバランスが発生する。そして、この磁気アンバランスに起因し、ロータコア11aおよびロータコア11bのそれぞれにおいて、上述した重心位置に起因した遠心力と同じ向きの磁気吸引力が働く。よって、これらの磁気吸引力もまた、ピストンの遠心力を打ち消す働きをするように作用し、低振動・低騒音化が促される。 Further, the fact that the rotor outer circumference center ECa of the rotor core 11a and the rotor outer circumference center ECb of the rotor core 11b are shifted from the rotation center RC of the rotor simply means that the center of gravity position of the rotor core 11a and the center of gravity of the rotor core 11b are the rotation center of the rotor. Not only does it deviate from the RC, but there is also a difference between how the air gap between the rotor core 11 a and the stator 3 is biased and how the air gap between the rotor core 11 b and the stator 3 is biased. That is, vibrations can be reduced by utilizing not only the force caused by the inertial force (center of gravity position) but also the force caused by magnetism (air gap). That is, in each of the rotor core 11a and the rotor core 11b, the air gap between the rotor and the stator 3 is non-uniform in the circumferential direction, and in each of the rotor core 11a and the rotor core 11b, the magnetic gap is changed according to the non-uniform mode of the air gap. Magnetic imbalance due to resistance difference occurs. Due to this magnetic imbalance, a magnetic attractive force in the same direction as the centrifugal force due to the above-described center of gravity position acts on each of the rotor core 11a and the rotor core 11b. Therefore, these magnetic attractive forces also act to cancel out the centrifugal force of the piston, thereby promoting low vibration and low noise.
 このような本実施の形態2によっても、専用の振動抑制部材に依存することなく圧縮機構の偏心部の回転に伴い発生する振動を低減することができる。 Such Embodiment 2 can also reduce the vibration generated with the rotation of the eccentric part of the compression mechanism without depending on the dedicated vibration suppressing member.
 実施の形態3.
 次に、図11及び図12に基づいて、本発明の実施の形態3について説明する。図11は、本実施の形態3に関する、図4や図5と同態様の図である。また、図12は、図11の矢印VIIIからみたロータコアの構成を示す図である。また、本実施の形態3に関し、図11の矢印IIIからみたロータコアの構成は、図3と同じであり、図11の矢印VIからみたロータコアの構成は、図6と同じである。なお、本実施の形態3は、以下に説明する部分を除いては、上記実施の形態2と同様に構成されているものとする。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described based on FIGS. FIG. 11 is a diagram of the same mode as FIG. 4 and FIG. 5 regarding the third embodiment. FIG. 12 is a diagram showing the configuration of the rotor core as seen from the arrow VIII in FIG. Further, with respect to the third embodiment, the configuration of the rotor core viewed from the arrow III in FIG. 11 is the same as that in FIG. 3, and the configuration of the rotor core viewed from the arrow VI in FIG. In addition, this Embodiment 3 shall be comprised similarly to the said Embodiment 2 except the part demonstrated below.
 本実施の形態3おいては、圧縮機に設けられた電動機のロータ205は、回転中心RCの延びる方向に以下の順で並ぶ第1段部(第1部分)としてのロータコア11a、第3段部としてのロータコア11c及び第2段部(第2部分)としてのロータコア11bを有している。ロータコア11a及び11bは、共に、ロータ外周中心ECa及びECbが、回転中心RCに対して径方向にずれているが、第1段部としてのロータコア11aのロータ外周中心ECaと、第2段部としてのロータコア11bのロータ外周中心ECbとは、回転中心RCを挟んで反対方向(一例であるが180反対)にずれている。また、第3段部としてのロータコア11cは、第1段部としてのロータコア11a及び、第2段部としてのロータコア11bの間に位置しており、第3段部としてのロータコア11cのロータ外周中心ECcは、回転中心RCと一致している。なお、一例であるが、ロータコア11a及び11bは、同じ高さ寸法の部分として設けられており、第3段部としてのロータコア11cの高さ寸法は、第1段部としてのロータコア11a及び第2段部としてのロータコア11bの高さ寸法よりも大きくなっている。 In the third embodiment, the rotor 205 of the electric motor provided in the compressor has a rotor core 11a as a first step portion (first portion) arranged in the following order in the direction in which the rotation center RC extends, a third step. A rotor core 11c as a part and a rotor core 11b as a second step part (second part). In the rotor cores 11a and 11b, the rotor outer circumferential centers ECa and ECb are both displaced in the radial direction with respect to the rotation center RC, but the rotor outer circumferential center ECa of the rotor core 11a as the first step portion and the second step portion. The rotor outer circumference center ECb of the rotor core 11b is shifted in the opposite direction (for example, opposite to 180) across the rotation center RC. Further, the rotor core 11c as the third step portion is located between the rotor core 11a as the first step portion and the rotor core 11b as the second step portion, and the rotor outer circumference center of the rotor core 11c as the third step portion ECc coincides with the rotation center RC. In addition, although it is an example, the rotor cores 11a and 11b are provided as a part of the same height dimension, and the height dimension of the rotor core 11c as a 3rd step part is the rotor core 11a and 2nd as a 1st step part. It is larger than the height dimension of the rotor core 11b as the stepped portion.
 このような本実施の形態3によっても、上記実施の形態1と同様、専用の振動抑制部材に依存することなく圧縮機構の偏心部の回転に伴い発生する振動を低減することができる。また、本実施の形態3の図11のロータコア11aおよびロータコア11bもまた、本実施の形態2の図5のロータコア11aおよびロータコア11bと同様に機能し、本実施の形態3においても、上記実施の形態2と同様な利点が得られている。 Also according to the third embodiment, the vibration generated with the rotation of the eccentric portion of the compression mechanism can be reduced without depending on the dedicated vibration suppressing member as in the first embodiment. Further, the rotor core 11a and the rotor core 11b of FIG. 11 of the third embodiment also function in the same manner as the rotor core 11a and the rotor core 11b of FIG. 5 of the second embodiment. Advantages similar to those of Embodiment 2 are obtained.
 実施の形態4.
 本発明において、テータとロータとの間のエアギャップが周方向にわたって不均一であることは、第1の態様として、ロータの外周形状が点対称であり、且つ、その点対称の外周形状のロータ外周中心と回転中心とがずれていることで、達成されていてもよい。すなわち、本発明は、第1の態様としては、回転軸線を垂線とする面でみた場合、ロータの外周形状が点対称であり、且つ、その点対称の外周形状のロータ外周中心と回転中心とがずれていることによって、テータとロータとの間のエアギャップが周方向にわたって不均一にしている、圧縮機の振動低減の方法である。上述した実施の形態1~3はそれぞれ、かかる第1の態様の例である。そして、かかる第1の態様の他の例として、本実施の形態4を説明する。なお、本実施の形態4は、以下に説明する部分を除いては、上記実施の形態1と同様に構成されているものとする。
Embodiment 4 FIG.
In the present invention, the air gap between the theta and the rotor is not uniform in the circumferential direction. As a first aspect, the rotor outer shape is point-symmetric and the point-symmetric outer shape rotor. It may be achieved that the outer periphery center and the rotation center are deviated. That is, in the present invention, as a first aspect, when viewed from a plane having a rotation axis as a perpendicular line, the outer peripheral shape of the rotor is point-symmetric, and the rotor outer peripheral center and the rotational center of the point-symmetric outer peripheral shape are This is a compressor vibration reduction method in which the air gap between the data and the rotor is nonuniform in the circumferential direction due to the deviation. Embodiments 1 to 3 described above are examples of the first aspect. The fourth embodiment will be described as another example of the first aspect. In addition, this Embodiment 4 shall be comprised similarly to the said Embodiment 1 except the part demonstrated below.
 図13は、本実施の形態4に関する、図3と同態様の図である。図14は、実施の形態4に関し、ロータコアの外周形状だけを抽出して示す図である。図13に示されるように、ロータコア11dは、その外周面に、複数の切り欠き51が形成されているものの、その外周形状は、図14に示されるように、ロータ外周中心ECに関する点対称となっている。このようなロータコア11dは、シャフト13と組み合わされて、図13に示されるように、ロータ外周中心ECが、回転中心RCに対して径方向にずれている。 FIG. 13 is a diagram of the same mode as FIG. 3 regarding the fourth embodiment. FIG. 14 is a diagram showing only the outer peripheral shape of the rotor core in the fourth embodiment. As shown in FIG. 13, the rotor core 11 d has a plurality of notches 51 formed on the outer peripheral surface thereof, but the outer peripheral shape is point-symmetric with respect to the rotor outer peripheral center EC as shown in FIG. 14. It has become. Such a rotor core 11d is combined with the shaft 13, and as shown in FIG. 13, the rotor outer circumferential center EC is shifted in the radial direction with respect to the rotation center RC.
 このような本実施の形態4によっても、上記実施の形態1と同様、専用の振動抑制部材に依存することなく圧縮機構の偏心部の回転に伴い発生する振動を低減することができる。 Also in this fourth embodiment, as in the first embodiment, it is possible to reduce the vibration generated with the rotation of the eccentric portion of the compression mechanism without depending on the dedicated vibration suppressing member.
 実施の形態5.
 本実施の形態5は、第1の態様の一例であって、上記実施の形態1~4とはさらに異なる例である。図15及び図16は、本実施の形態5に関する、図13及び図14と同態様の図である。なお、本実施の形態5は、以下に説明する部分を除いては、上記実施の形態1と同様に構成されているものとする。
Embodiment 5 FIG.
The fifth embodiment is an example of the first aspect, and is an example different from the first to fourth embodiments. FIGS. 15 and 16 are views of the same mode as FIGS. 13 and 14 regarding the fifth embodiment. In addition, this Embodiment 5 shall be comprised similarly to the said Embodiment 1 except the part demonstrated below.
 図15に示されるように、ロータコア11eは、その外周面に、複数の突出部(膨らみ部)53が形成されているものの、その外周形状は、図16に示されるように、ロータ外周中心ECに関する点対称となっている。このようなロータコア11eは、シャフト13と組み合わされて、図15に示されるように、ロータ外周中心ECが、回転中心RCに対して径方向にずれている。なお、突出部53は、ロータコア11eの突出部53以外の外周部よりも径の小さな円弧形状を有しているが、これに限定されるものではない。 As shown in FIG. 15, the rotor core 11e has a plurality of protrusions (bulges) 53 formed on the outer peripheral surface thereof, but the outer peripheral shape thereof is the rotor outer peripheral center EC as shown in FIG. Is point-symmetric. Such a rotor core 11e is combined with the shaft 13, and as shown in FIG. 15, the rotor outer circumferential center EC is shifted in the radial direction with respect to the rotation center RC. In addition, although the protrusion part 53 has a circular arc shape whose diameter is smaller than outer peripheral parts other than the protrusion part 53 of the rotor core 11e, it is not limited to this.
 このような本実施の形態5によっても、上記実施の形態1と同様、専用の振動抑制部材に依存することなく圧縮機構の偏心部の回転に伴い発生する振動を低減することができる。 Also in this fifth embodiment, the vibration generated with the rotation of the eccentric portion of the compression mechanism can be reduced without depending on the dedicated vibration suppressing member, as in the first embodiment.
 なお、上述した本実施の形態4及び5は何れも、上述した実施の形態2及び3と組み合せて実施することもできる。すなわち、実施の形態4及び5のそれぞれのロータコアは、上述した実施の形態2又は3における第1段部としてのロータコア11a及び第2段部としてのロータコア11bの一方又は双方として用いられていてもよい。 It should be noted that both the above-described fourth and fifth embodiments can be implemented in combination with the above-described second and third embodiments. That is, each rotor core in the fourth and fifth embodiments may be used as one or both of the rotor core 11a as the first step portion and the rotor core 11b as the second step portion in the second or third embodiment. Good.
 実施の形態6.
 本発明において、テータとロータとの間のエアギャップが周方向にわたって不均一であることは、第2の態様として、外周形状が回転中心RCに関して非点対称であるロータを用いることで、達成されていてもよい。すなわち、本発明は、第2の態様としては、回転軸線を垂線とする面でみた場合、外周形状が非点対称であるロータを用いることによって、テータとロータとの間のエアギャップが周方向にわたって不均一にしている、圧縮機の振動低減の方法である。そして、かかる第2の態様の一例として、本実施の形態6を説明する。図17及び図18は、本実施の形態6に関する、図15及び図16と同態様の図である。なお、本実施の形態6は、以下に説明する部分を除いては、上記実施の形態1と同様に構成されているものとする。
Embodiment 6 FIG.
In the present invention, the non-uniform air gap between the data and the rotor in the circumferential direction is achieved as a second aspect by using a rotor whose outer peripheral shape is asymmetric with respect to the rotation center RC. It may be. That is, the second aspect of the present invention is that the air gap between the rotor and the rotor is circumferential in the circumferential direction by using a rotor whose outer peripheral shape is asymmetric with respect to the axis of rotation when viewed from the plane having the rotation axis as a perpendicular line. This is a method of reducing the vibration of the compressor, which is non-uniform over the whole area. And this Embodiment 6 is demonstrated as an example of this 2nd aspect. FIGS. 17 and 18 are views of the same mode as FIGS. 15 and 16 regarding the sixth embodiment. In addition, this Embodiment 6 shall be comprised similarly to the said Embodiment 1 except the part demonstrated below.
 図17に示されるように、ロータコア11fは、その外周面に、突出部(膨らみ部)55が一つだけ形成されている。よって、ロータコア11fの外周形状は、図18に示されるように、非点対称となっている。なお、突出部55は、ロータコア11fの突出部55以外の外周部よりも径の小さな円弧形状を有しているが、これに限定されるものではない。さらに、ロータコア11fの外周形状と最も重なり範囲の多い近似の点対称外周形状Xを考えた場合、図17の図示では、近似点対称外周形状Xのロータ外周中心ECは、回転中心RCと一致しているが、本実施の形態6はこれに限定されず、ロータ外周中心ECが、回転中心RCに対して径方向にずれていてもよい。 As shown in FIG. 17, the rotor core 11f has only one protrusion (swelled portion) 55 formed on the outer peripheral surface thereof. Therefore, the outer peripheral shape of the rotor core 11f is asymmetrical as shown in FIG. In addition, although the protrusion part 55 has a circular arc shape whose diameter is smaller than outer peripheral parts other than the protrusion part 55 of the rotor core 11f, it is not limited to this. Further, when considering the approximate point-symmetric outer peripheral shape X having the largest overlapping range with the outer peripheral shape of the rotor core 11f, the rotor outer peripheral center EC of the approximate point-symmetric outer peripheral shape X coincides with the rotation center RC in the illustration of FIG. However, the sixth embodiment is not limited to this, and the rotor outer circumference center EC may be displaced in the radial direction with respect to the rotation center RC.
 このような本実施の形態6によっても、上記実施の形態1と同様、専用の振動抑制部材に依存することなく圧縮機構の偏心部の回転に伴い発生する振動を低減することができる。 Also in this sixth embodiment, as in the first embodiment, it is possible to reduce the vibration generated with the rotation of the eccentric portion of the compression mechanism without depending on the dedicated vibration suppressing member.
 実施の形態7.
 本実施の形態7は、第2の態様の一例であって、上記実施の形態6とはさらに異なる例である。図19及び図20は、本実施の形態7に関する、図17及び図18と同態様の図である。なお、本実施の形態7は、以下に説明する部分を除いては、上記実施の形態1と同様に構成されているものとする。
Embodiment 7 FIG.
The seventh embodiment is an example of the second aspect, and is an example further different from the sixth embodiment. 19 and 20 are views of the same mode as in FIGS. 17 and 18 regarding the seventh embodiment. In addition, this Embodiment 7 shall be comprised similarly to the said Embodiment 1 except the part demonstrated below.
 図19に示されるように、ロータコア11gは、その外周面に、複数の突出部(膨らみ部)57が形成されているが、ロータコア11gの外周形状は、図20に示されるように、非点対称となっている。なお、突出部57は、ロータコア11gの突出部57以外の外周部よりも径の小さな円弧形状を有しているが、これに限定されるものではない。さらに、ロータコア11gの外周形状と最も重なり範囲の多い近似の点対称外周形状Xを考えた場合、図19の図示では、近似点対称外周形状Xのロータ外周中心ECは、回転中心RCと一致しているが、本実施の形態6はこれに限定されず、ロータ外周中心ECが、回転中心RCに対して径方向にずれていてもよい。 As shown in FIG. 19, the rotor core 11g has a plurality of protrusions (bulges) 57 formed on the outer peripheral surface thereof, but the outer peripheral shape of the rotor core 11g is astigmatic as shown in FIG. It is symmetrical. In addition, although the protrusion part 57 has a circular arc shape with a diameter smaller than outer peripheral parts other than the protrusion part 57 of the rotor core 11g, it is not limited to this. Further, when considering the approximate point-symmetric outer peripheral shape X having the largest overlapping range with the outer peripheral shape of the rotor core 11g, the rotor outer peripheral center EC of the approximate point-symmetric outer peripheral shape X matches the rotational center RC in the illustration of FIG. However, the sixth embodiment is not limited to this, and the rotor outer circumference center EC may be displaced in the radial direction with respect to the rotation center RC.
 このような本実施の形態7によっても、上記実施の形態1と同様、専用の振動抑制部材に依存することなく圧縮機構の偏心部の回転に伴い発生する振動を低減することができる。 Also according to the seventh embodiment, the vibration generated with the rotation of the eccentric portion of the compression mechanism can be reduced without depending on the dedicated vibration suppressing member as in the first embodiment.
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。 Although the contents of the present invention have been specifically described with reference to the preferred embodiments, various modifications can be made by those skilled in the art based on the basic technical idea and teachings of the present invention. It is self-explanatory.
 1 電動機、3 ステータ、105、205 ロータ、11 ロータコア、15 エアギャップ、100 ロータリ圧縮機、103 圧縮機構、107 回転軸、109 ピストン。 1 electric motor, 3 stator, 105, 205 rotor, 11 rotor core, 15 air gap, 100 rotary compressor, 103 compression mechanism, 107 rotating shaft, 109 piston.

Claims (2)

  1.  電動機と、該電動機によって駆動される圧縮機構とを備えた圧縮機であって、
     前記電動機は、ステータと、該ステータに対向して回転可能に設けられたロータとを含み、
     前記ロータは、前記ロータの回転中心RCの延びる方向に並ぶ第1部分および第2部分を含み、
     前記第1部分と前記ステータとの間のエアギャップ、および、前記第2部分と前記ステータとの間のエアギャップは、それぞれ、周方向にわたって不均一であり、
     前記第1部分および第2部分のそれぞれの外周形状は、点対称であり、且つ、その点対称の外周形状の外周中心と前記ロータの回転中心RCとは、ずれており、
     前記第1部分の外周中心と、前記第2部分の外周中心とは、側方からみて、前記ロータの回転中心RCを挟んで、相互に反対側に位置している、
    圧縮機。
    A compressor comprising an electric motor and a compression mechanism driven by the electric motor,
    The electric motor includes a stator and a rotor that is rotatably provided to face the stator,
    The rotor includes a first portion and a second portion that are aligned in a direction in which the rotation center RC of the rotor extends.
    The air gap between the first part and the stator and the air gap between the second part and the stator are each non-uniform over the circumferential direction,
    Each of the outer peripheral shapes of the first part and the second part is point-symmetric, and the outer peripheral center of the point-symmetric outer peripheral shape is shifted from the rotation center RC of the rotor,
    The outer periphery center of the first portion and the outer periphery center of the second portion are located on opposite sides of the rotation center RC of the rotor as viewed from the side,
    Compressor.
  2.  前記圧縮機構は、ピストンを含んでおり、
     前記第2部分は、前記第1部分と、前記ピストンとの間にあり、
     前記第1部分の外周中心と、前記ピストンの中心軸PCとは、側方からみて、前記ロータの回転中心RCを基準に同じ側に位置しており、
     前記第2部分の外周中心は、側方からみて、前記ロータの回転中心RCを挟んで、前記第1部分の外周中心と、前記ピストンの中心軸PCと反対側に位置している、
    請求項1の圧縮機。
    The compression mechanism includes a piston,
    The second part is between the first part and the piston;
    The outer peripheral center of the first part and the central axis PC of the piston are located on the same side with respect to the rotation center RC of the rotor as viewed from the side,
    The outer peripheral center of the second part is located on the opposite side of the outer peripheral center of the first part and the central axis PC of the piston across the rotation center RC of the rotor as viewed from the side.
    The compressor according to claim 1.
PCT/JP2014/081707 2013-12-05 2014-12-01 Compressor WO2015083656A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480064148.XA CN105992872B (en) 2013-12-05 2014-12-01 Compressor
JP2015551498A JP6038351B2 (en) 2013-12-05 2014-12-01 Compressor
CN201420761176.4U CN204316209U (en) 2013-12-05 2014-12-05 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2013/082674 2013-12-05
PCT/JP2013/082674 WO2015083261A1 (en) 2013-12-05 2013-12-05 Compressor

Publications (1)

Publication Number Publication Date
WO2015083656A1 true WO2015083656A1 (en) 2015-06-11

Family

ID=53273054

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/082674 WO2015083261A1 (en) 2013-12-05 2013-12-05 Compressor
PCT/JP2014/081707 WO2015083656A1 (en) 2013-12-05 2014-12-01 Compressor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082674 WO2015083261A1 (en) 2013-12-05 2013-12-05 Compressor

Country Status (3)

Country Link
JP (1) JP6038351B2 (en)
CN (1) CN105992872B (en)
WO (2) WO2015083261A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272493A (en) * 1985-05-25 1986-12-02 Toshiba Corp Rotary type compressor
JPS6413282U (en) * 1987-07-14 1989-01-24
JPH057557B2 (en) * 1983-11-02 1993-01-29 Matsushita Refrigeration
JPH0712074A (en) * 1993-06-25 1995-01-17 Sanyo Electric Co Ltd Rotary compressor
JP2001020883A (en) * 1999-07-01 2001-01-23 Sanyo Electric Co Ltd Multicylinder rotary compressor
JP2006200527A (en) * 2004-12-21 2006-08-03 Daikin Ind Ltd Compressor
US20080292484A1 (en) * 2007-03-21 2008-11-27 Jeong-Hwan Suh Compressor and device for reducing vibration therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153508A (en) * 2001-08-29 2003-05-23 Matsushita Electric Ind Co Ltd Motor
JP4816358B2 (en) * 2006-09-19 2011-11-16 ダイキン工業株式会社 Motor and compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057557B2 (en) * 1983-11-02 1993-01-29 Matsushita Refrigeration
JPS61272493A (en) * 1985-05-25 1986-12-02 Toshiba Corp Rotary type compressor
JPS6413282U (en) * 1987-07-14 1989-01-24
JPH0712074A (en) * 1993-06-25 1995-01-17 Sanyo Electric Co Ltd Rotary compressor
JP2001020883A (en) * 1999-07-01 2001-01-23 Sanyo Electric Co Ltd Multicylinder rotary compressor
JP2006200527A (en) * 2004-12-21 2006-08-03 Daikin Ind Ltd Compressor
US20080292484A1 (en) * 2007-03-21 2008-11-27 Jeong-Hwan Suh Compressor and device for reducing vibration therefor

Also Published As

Publication number Publication date
CN105992872A (en) 2016-10-05
CN105992872B (en) 2017-12-05
JPWO2015083656A1 (en) 2017-03-16
WO2015083261A1 (en) 2015-06-11
JP6038351B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6080967B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP5944014B2 (en) Permanent magnet embedded electric motor and compressor
JP6037361B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
WO2010113766A1 (en) Electric motor rotor and compressor provided with the same
JP6680779B2 (en) Compressor and refrigeration cycle device
JP5858076B2 (en) Compressor motor rotor
JP2007174776A (en) Motor and compressor
WO2019043850A1 (en) Rotor, electric motor, compressor, and air conditioning device
EP3163083B1 (en) Electric compressor
JP2015065758A (en) Compressor
JP2014204592A (en) Electric motor and compressor comprising the same
JP5862332B2 (en) Rotor and compressor
JP6038351B2 (en) Compressor
JP5446482B2 (en) Stator for adder motor
JP2010041852A (en) Stator, motor and compressor
JP2008263663A (en) Manufacturing method of permanent magnet embedded rotor and permanent magnet embedded rotor manufactured using method
JP2011102543A (en) Compressor
US10714993B2 (en) Rotor, interior permanent magnet motor, and compressor
US20170070112A1 (en) Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device
CN204316209U (en) Compressor
JP2004293446A (en) Hermetic compressor
JPWO2019123531A1 (en) Stator and electric motor equipped with the stator
JP2012139045A (en) Rotor, motor, and compressor
JP2012139044A (en) Rotor, motor, and compressor
JP2014107948A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866995

Country of ref document: EP

Kind code of ref document: A1