WO2015083652A1 - Additive for drilling fluid, drilling fluid composition and ground excavating method - Google Patents

Additive for drilling fluid, drilling fluid composition and ground excavating method Download PDF

Info

Publication number
WO2015083652A1
WO2015083652A1 PCT/JP2014/081684 JP2014081684W WO2015083652A1 WO 2015083652 A1 WO2015083652 A1 WO 2015083652A1 JP 2014081684 W JP2014081684 W JP 2014081684W WO 2015083652 A1 WO2015083652 A1 WO 2015083652A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
water
drilling mud
diisocyanate
Prior art date
Application number
PCT/JP2014/081684
Other languages
French (fr)
Japanese (ja)
Inventor
学 鶴田
雅彦 三塚
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2015551494A priority Critical patent/JPWO2015083652A1/en
Publication of WO2015083652A1 publication Critical patent/WO2015083652A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3275Hydroxyamines containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic

Definitions

  • the present invention relates to an additive for drilling mud used for the purpose of stabilizing mud used for ground excavation in excavation methods such as petroleum, natural gas, civil engineering, and mining.
  • the present invention also relates to a drilling mud composition containing the drilling mud additive and a ground excavation method for excavating the ground in the presence of the drilling mud composition.
  • bentonite mud water, polymer, etc. When excavating the ground, bentonite mud water, polymer, etc. are used to absorb frictional heat generated during excavation, to transport excavated debris to the ground, to maintain the excavation surface, to prevent the ejection of groundwater and gas, and to support earth pressure. Stabilizing liquid such as mud is used.
  • the object of the present invention is to solve the problems of additives added to the muddy water used for ground excavation, even when muddy water using fresh water, seawater containing electrolyte, etc. are mixed in the muddy water.
  • Another object of the present invention is to provide an additive for drilling mud that can prevent a decrease in fluidity and can ensure excellent stability with a small amount of addition.
  • the present inventors have conducted extensive research. As a result, it has been found that the above problems can be solved by using an additive for drilling mud made of water-soluble polyurethane having a specific structure, and the present invention has been completed. More specifically, the present invention provides the following. (1) A repeating unit (a) represented by the following general formula (I) and a repeating unit (b) represented by the following general formula (II), the repeating unit (a) and the repeating unit (b) The ratio of the number of moles of the repeating unit (a) to the total number of moles of water is an additive for drilling mud, which is made of water-soluble polyurethane that is 0.5 to 0.99.
  • A represents a divalent linking group containing poly (oxyalkylene); B represents a divalent linking group.
  • D represents a divalent linking group having two or more monovalent hydrocarbon groups having 4 to 21 carbon atoms in the molecule; B represents a divalent linking group.
  • D is a group represented by the following general formula (III) and / or the following general formula (IV).
  • R 1 is a hydrocarbon group or a nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms
  • R 2 and R 3 may be the same or different and are hydrocarbon groups having 4 to 21 carbon atoms
  • at least part of the hydrogen atoms in R 1 , R 2 , and R 3 may be substituted with at least one atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Y and Y ′ may be the same or different and are any one selected from the group consisting of a hydrogen atom, a methyl group, and a CH 2 Cl group
  • Z and Z ′ may be the same or different and are any selected from the group consisting of an oxygen atom, a sulfur atom, and a CH 2 group
  • n and n ′ may be the same or different, n is an integer of 0 to 15 when Z is an oxygen atom, and is 0 when Z is a sulfur atom or a CH2 group, n ′ is an integer of 0 to 15 when Z ′ is an oxygen atom, and 0 when Z ′ is a sulfur atom or a CH 2 group.
  • R 4 is an alkylene group having 2 to 4 carbon atoms in total
  • R 5 is a hydrocarbon group having 1 to 21 carbon atoms
  • R 6 and R 7 may be the same or different and each is a hydrocarbon group having 4 to 21 carbon atoms;
  • at least part of the hydrogen atoms in R 4 , R 5 , R 6 and R 7 may be substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • S, S ′, and S ′′ may be the same or different and are any one selected from the group consisting of a hydrogen atom, a methyl group, and a CH 2 Cl group
  • T and T ′ may be the same or different and are any one selected from the group consisting of an oxygen atom, a sulfur atom, and a CH 2 group
  • P and P ′ may be the same or different
  • P is an integer of 0 to 15 when T is an oxygen atom, and 0 when T is a
  • a drilling mud composition comprising the drilling mud additive according to any one of (1) to (3), an inorganic mud and water.
  • a ground excavation method characterized by excavating the ground in the presence of the drilling mud composition according to (4).
  • the ground excavation method as described in (5) including the process of carrying out excavation waste to the ground using the said drilling mud composition.
  • drilling mud additive of the present invention even when seawater, cement, etc. are mixed in the mud, it is possible to prevent a decrease in the fluidity of the drilling mud composition with a small amount of addition, and to stabilize it.
  • a drilling mud composition having excellent properties can be provided.
  • the additive for drilling mud according to the present invention comprises a water-soluble polyurethane having the following structure.
  • the water-soluble polyurethane used in the present invention comprises a repeating unit (a) represented by the following general formula (I) and a repeating unit (b) represented by the following general formula (II) as essential constituent units. is there. As long as the repeating unit (a) and the repeating unit (b) are included, a small amount of any other repeating unit may be included.
  • A represents a divalent linking group containing a poly (oxyalkylene) group
  • B represents a divalent linking group.
  • D represents a divalent linking group having two or more monovalent hydrocarbon groups having 4 to 21 carbon atoms in the molecule; B represents a divalent linking group.
  • the ratio of the number of moles of the repeating unit (a) to the total number of moles of the repeating unit (a) and the repeating unit (b) is usually 0.5 or more and 0.99 or less, preferably 0.70 or more. It is 0.99 or less, More preferably, it is 0.80 or more and 0.90 or less.
  • Other optional repeating units (c) may or may not be included, but when included, the ratio of the number of moles of the repeating unit (c) to the total number of moles of the repeating unit (a) and the repeating unit (b). For example, it can be 0.1 or less.
  • the divalent linking group containing the poly (oxyalkylene) group of A is — (C k H 2k O) 1 —C k H 2k — (wherein k is an integer of 2 to 8, l represents an integer of 1 or more, and C k H 2k may include a branched chain, and k in l may be the same or different.) be able to. More preferred are poly (oxyalkylene) residues having an alkylene group having 2 to 6 carbon atoms, such as poly (oxyethylene) residues and poly (oxypropylene) residues.
  • the divalent linking group represented by B in the general formulas (I) and (II) is a divalent hydrocarbon group, for example, a divalent chain aliphatic hydrocarbon group or a divalent cyclic aliphatic hydrocarbon.
  • B preferably has 1 to 16 carbon atoms.
  • the divalent linking group represented by D in the general formula (II) has two or more monovalent hydrocarbon groups having 4 to 21 carbon atoms. Since monovalent hydrocarbon groups having 4 to 21 carbon atoms have low polarity, the interaction between the hydrocarbon groups in water causes a hydrophobic interaction between the polymer chains of the water-soluble polyurethane. For this reason, even a polyurethane having a relatively low molecular weight can exhibit sufficient water retention.
  • Examples of D include the above-described general formula (III) and general formula (IV).
  • the water-soluble polyurethane of the present invention includes, for example, a polyoxyalkylene polyol represented by HO—A—OH, a diisocyanate represented by OCN—B—NCO, and a diol represented by HO—D—OH. It can be produced by reacting. HO-D-OH may be referred to as “comb diol”.
  • Polyoxyalkylene polyol HO-A-OH
  • the polyoxyalkylene polyol HO—A—OH having a hydroxyl group at both ends as a constituent material of the repeating unit (a) represented by the general formula (I) is not particularly limited, A polyoxyalkylene polyol having 2 to 6 alkylene groups can be preferably used.
  • polyethylene glycol PEG
  • polypropylene glycol PPG
  • a copolymer of polyethylene oxide and polypropylene oxide PTMEG
  • polyhexamethylene ether glycol PEG
  • Polyethylene glycol (PEG) is particularly preferably used because polyurethane is water-soluble.
  • the number average molecular weight (Mn) of the polyoxyalkylene polyol HO—A—OH having a hydroxyl group at both ends, which is a constituent material of the repeating unit (a), is preferably 400 or more and 100,000 or less, more preferably 400 or more and 20 or more. , 000 or less, more preferably in the range of 900 or more and 9,000 or less. If the number average molecular weight is 400 or more, a water-soluble polyurethane having sufficient water retention can be obtained. On the other hand, if the number average molecular weight is 100,000 or less, a sufficient polymerization reaction can be performed.
  • the polyoxyalkylene polyol HO-A-OH having a hydroxyl group at both ends which is a constituent material of the repeating unit (a), can be used not only alone but in combination of two or more polyoxyalkylene polyols. May be used.
  • polyethylene glycol and polypropylene glycol or polytetramethylene ether glycol can be used in combination. Since polyurethane is water-soluble, it is more preferable to use 70% by mass or more of polyethylene glycol (PEG).
  • low molecular weight glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tetramethylene glycol, hexamethylene glycol and the like are used in combination with the above polyoxyalkylene polyols. May be.
  • the diisocyanate OCN-B-NCO which is a constituent material of the repeating units (a) and (b) represented by the general formula (I) and the general formula (II), is not particularly limited. Examples thereof include a diisocyanate compound selected from the group consisting of chain aliphatic diisocyanates, cycloaliphatic diisocyanates, and aromatic diisocyanates. Among these, it is preferable to use diisocyanates having 3 to 18 carbon atoms (including carbon atoms of the NCO group).
  • Chain aliphatic diisocyanates are polyisocyanate compounds having a structure in which NCO groups are connected by a linear or branched alkylene group. Specific examples include methylene diisocyanate, ethylene diisocyanate, trimethylene diisocyanate, 1-methylethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, 2-methylbutane-1,4-di- Isocyanate, hexamethylene diisocyanate (HMDI), heptamethylene diisocyanate, 2,2′-dimethylpentane-1,5-diisocyanate, lysine diisocyanate methyl ester (LDI), octamethylene diisocyanate, 2,5-dimethylhexane-1,6-diisocyanate, 2,2,4-trimethylpentane-1,5-diisocyanate, nonamethylene diisocyanate, 2,4,4-trimethylhex
  • Cycloaliphatic diisocyanates are polyisocyanate compounds having a structure in which NCO groups are connected by an alkylene group having a cyclic structure. Specific examples include cyclohexane-1,2-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, 1-methylcyclohexane-2,4-diisocyanate, 1- Methylcyclohexane-2,6-diisocyanate, 1-ethylcyclohexane-2,4-diisocyanate, 4,5-dimethylcyclohexane-1,3-diisocyanate, 1,2-dimethylcyclohexane- ⁇ , ⁇ ′ -Diisocyanate, 1,4-dimethylcyclohexane- ⁇ , ⁇ '-diisocyanate, isophorone diisocyanate (IPDI), dicyclo
  • Aromatic diisocyanates are polyisocyanates having a structure in which NCO groups are connected by aromatic groups such as phenylene groups, alkyl-substituted phenylene groups, and aralkylene groups, or hydrocarbon groups containing aromatic groups. It is a nate compound. Specific examples include 1,3- and 1,4-phenylene diisocyanate, 1-methyl-2,4-phenylene diisocyanate (2,4-TDI), 1-methyl-2,6-phenylene diisocyanate.
  • the comb diol HO-D-OH which is a constituent material of the repeating unit (b) represented by the general formula (II), has at least two monovalent hydrocarbon groups having 4 to 21 carbon atoms in the molecule. It is a diol having.
  • a plurality of monovalent hydrocarbon groups are grafted as side chains on the molecular skeleton of diols, and from this shape, they are called “comb diols”.
  • the monovalent hydrocarbon group having 4 to 21 carbon atoms is not particularly limited, and examples thereof include an alkyl group, an alkenyl group, an aralkyl group, and an aryl group.
  • the graft position of the monovalent hydrocarbon group having 4 to 21 carbon atoms may be directly grafted to the molecular skeleton of the diol, or may be a methylene group or an ether group. In addition, it may be bonded to the molecular skeleton via a thioether group, a polyether group or the like.
  • the molecular skeleton of the comb-shaped diol HO-D-OH may be composed only of hydrocarbons, but an ether group (—O—), a polyether group, a tertiary amino group (—N (R) —), etc.
  • a diol having the polar group in the molecular skeleton is also preferably used in the present invention.
  • the method for producing such a comb diol is not particularly limited, and can be obtained by a known method. Known methods include, for example, methods described in JP-A-11-343328 and JP-A-2000-297133, and methods described in JP-A-2004-169011.
  • Examples of the comb diol HO-D-OH preferably used in the present invention include comb diols represented by the following general formula (IIIa) and the following general formula (IVa).
  • the comb diols represented by the following general formula (IIIa) and general formula (IVa) may be used alone or in combination of two or more.
  • the comb-type diol may be mixed with the comb-type diol represented by the general formula (IVa).
  • R 1 is a hydrocarbon group or nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms, more preferably 4 to 12 carbon atoms
  • R 2 and R 3 may be the same or different and are hydrocarbon groups having 4 to 21 carbon atoms, more preferably 4 to 12 carbon atoms
  • at least part of the hydrogen atoms in R 1 , R 2 , and R 3 may be substituted with at least one atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Y and Y ′ may be the same or different and are any one selected from the group consisting of a hydrogen atom, a methyl group, and a CH 2 Cl group
  • Z and Z ′ may be the same or different and are any selected from the group consisting of an oxygen atom, a sulfur atom, and a CH 2 group
  • n and n ′ may be the same or different, n is an integer of 0 to 15 when Z is an oxygen atom, and 0 when Z is a sulfur atom or a CH 2 group, n ′ is an integer of 0 to 15 when Z ′ is an oxygen atom, and 0 when Z ′ is a sulfur atom or a CH 2 group.
  • R 4 is an alkylene group having 2 to 4 carbon atoms in total
  • R 5 is a hydrocarbon group having 1 to 21 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 4 to 12 carbon atoms
  • R 6 and R 7 may be the same or different and are hydrocarbon groups having 4 to 21 carbon atoms, more preferably 4 to 12 carbon atoms
  • at least part of the hydrogen atoms in R 4 , R 5 and R 6 may be substituted with a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom
  • At least a part of the hydrogen atoms in R 7 may be substituted with a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom
  • S, S ′, and S ′′ may be the same or different and are any one selected from the group consisting of a hydrogen atom, a methyl group, and a CH 2 Cl group
  • the method for producing the water-soluble polyurethane used in the present invention is not particularly limited, and any known method can be employed.
  • a method for producing a water-soluble polyurethane for example, the method described in JP-A-11-343328 and JP-A-2000-297133 or the method described in JP-A-2004-169011 is used. be able to.
  • the method described in JP-A No. 2004-169011 is particularly excellent in that the particle diameters of the obtained polyurethane are uniform and the average particle diameter can be easily reduced to 200 ⁇ m or less.
  • the viscosity of the water-soluble polyurethane used in the present invention was measured with a B-type viscometer (up to 100,000 mPa ⁇ s using a BL-type viscometer at 6 rpm, and higher viscosity using a BH-type viscometer 4 rpm) 20
  • the viscosity of the 2% aqueous solution at 0 ° C. is preferably in the range of 1 mPa ⁇ s to 500,000 mPa ⁇ s, more preferably 10 mPa ⁇ s to 100,000 mPa ⁇ s.
  • the viscosity of a 2% aqueous solution is 100 mPa ⁇ s or more and 80,000 mPa ⁇ s or less.
  • the range is preferable, and a range of 1,000 mPa ⁇ s to 50,000 mPa ⁇ s is optimal. If the viscosity of the 2% aqueous solution is 1,000 mPa ⁇ s or more, the water retention can be sufficiently increased with a small addition amount of 0.01%, while if it is 50,000 mPa ⁇ s or less, the dissolution time is shortened. can do.
  • the viscosity of the 2% aqueous solution can be adjusted as appropriate by changing the type and ratio of the raw materials used in the production of the water-soluble polyurethane.
  • the water-soluble polyurethane used in the present invention can be dried after production and stored in a powder state.
  • the particle diameter of the powder is preferably finer from the viewpoint of easy stirring and dissolution. However, since it is difficult to handle if it is too fine, the average particle diameter is preferably 10 ⁇ m or more and 300 ⁇ m or less, more preferably about 50 ⁇ m or more and 200 ⁇ m or less.
  • the drilling mud composition of the present invention contains the drilling mud additive made of the water-soluble polyurethane, an inorganic mud, and water.
  • polymer-based drilling mud additives have a large molecular weight, and by increasing the viscosity, the mud is thickened to reduce the amount of dehydration and to give thixotropy. Since the additive for drilling mud of the present invention uses the water-soluble polyurethane having the above-mentioned specific structure, even a polyurethane having a relatively low molecular weight exhibits sufficient water retention, but its molecular weight or addition to the composition By appropriately setting the amount, it can be suitably used as an additive for drilling mud.
  • the amount of water-soluble polyurethane added cannot be unconditionally because the viscosity of the mud varies greatly depending on the type and proportion of the inorganic mud to be blended, the presence or absence of the cement, and the blending proportion.
  • the water-soluble polyurethane is preferably 0.01 to 2.0 parts by weight, more preferably 0.02 to 1.0 parts by weight with respect to 100 parts by weight. However, other amounts may be used as long as the viscosity can be adjusted to a desired value and a stable mud composition can be obtained without coagulating and sedimenting inorganic mud.
  • Examples of the inorganic mud include bentonite, attapulgite, and hydrous magnesium silicate. Bentonite is preferable from the viewpoint of effects.
  • a large amount of cement used in the soil cement method may be blended, and barite, chalk, iron oxide, or the like may be added to increase the density.
  • the mixing ratio of the inorganic mud in the drilling mud composition of the present invention is preferably 1.0 to 30 parts by mass, more preferably 2.0 to 20 parts per 100 parts by mass of water. Part by mass.
  • the water may be fresh water or sea water, and fresh water and sea water may be mixed.
  • a fresh water drilling mud composition that maintains the characteristics of the drilling mud composition can be obtained even when the additive amount of the drilling mud additive of the present invention is less than that of seawater.
  • the salt concentration of seawater is not particularly limited, but may be, for example, 10,000 ppm or more.
  • the drilling mud composition of the present invention can contain other additives as optional components.
  • Other additives are not particularly limited.
  • carboxymethyl cellulose poly (meth) acrylic acid polymer or copolymer; zeolites; dispersants; inorganic salts; electrolytes; lignin sulfonates, tannins And various organic salt substances of lignite; water-soluble polymers such as polyvinyl alcohol, polyethylene glycol (PEG), polyethylene oxide (PEO), rhamsan gum, guar gum, xanthan gum, and welan gum.
  • the drilling mud composition of the present invention includes a lubricant, an anti-sludge agent, an emulsion resin, a surfactant, an air entraining agent (AE agent), an antifoaming agent, and a shrinkage within a range not impairing the object of the present invention.
  • a lubricant such as a reducing agent, curing accelerator, curing retarder, and various fibers (rock wool, glass fiber, carbon fiber, cellulose fiber, pulp fiber, various synthetic resin fibers) and the like are appropriately blended depending on the application. May be.
  • the method for using the drilling mud additive, the method for adding the drilling mud additive and other components, the order of addition, etc. are not particularly limited. If the agent is present in the drilling mud composition, it will be effective.
  • the additive of the present invention and other additives as required are added to a mixture of inorganic mud and water and mixed together (wherein the additives are added at the same time or sequentially)
  • the additive for drilling mud according to the present invention When using the additive for drilling mud according to the present invention, it can be easily suspended, swollen, thickened by simply stirring with a stirrer normally used at a drilling site, and is suitable for well conditions.
  • a drilling mud composition having the following characteristics can be obtained. Moreover, the characteristics of the drilling mud composition can be easily selected and adjusted according to the state of the well.
  • a drilling mud composition having a viscosity of 15 mPa ⁇ s or more can be easily prepared even when seawater having a salt concentration of 10,000 ppm or more is used.
  • the drilling mud composition obtained here can be adjusted by adjusting the viscosity of the drilling mud composition by splitting with seawater or adding the additive for drilling mud of the present invention, and other characteristics as a drilling mud composition. Therefore, the work can be facilitated from the management aspect.
  • the present invention also relates to a ground excavation method characterized by excavating the ground in the presence of the drilling mud composition according to the present invention.
  • the construction method includes a step of carrying out drilling waste to the ground using the drilling mud composition according to the present invention, and includes drilling of an ore deposit that can be used as a resource, such as oil and natural gas.
  • this method is suitable for excavating the seabed ground where a large amount of seawater is mixed.
  • DBTDL dibutyltin dilaurate
  • DBTDL dibutyltin dilaurate
  • DBTDL dibutyltin dilaurate
  • DBTDL dibutyltin dilaurate
  • DBTDL dibutyltin dilaurate
  • the temperature was lowered to 40 ° C., the product was taken out from the flask, filtered and dried to obtain a water-soluble polyurethane (PU-6).
  • the average particle diameter of the obtained resin powder was 120 ⁇ m, and the viscosity of a 2% aqueous solution at 20 ° C. was 200,000 mPa ⁇ s (BH viscometer, 4 rpm).
  • ⁇ Manufacturing method> Using a Hobart mixer with a rotation speed of 383 rpm, the kneaded water and clay were stirred for 10 minutes, then water and additives were added and stirred for 1 minute to obtain a drilling mud composition. In Examples 2, 4, 8, 10, 12, 15, 17, and Comparative Examples 6 and 7, a cement was further added and stirred for 5 minutes to obtain a drilling mud composition.
  • Comparative Examples 1 and 2 are examples in which CMC is used as an additive, but a normal CMC with a substitution degree of 0.7 cannot be used because of a large amount of dehydration due to seawater contamination.
  • the salt-resistant CMC having a substitution degree of 1.5 in Comparative Example 3 is less deteriorated than that having a substitution degree of 0.7, but the amount of dewatering is large and the mud wall performance in the implementation process is inferior.
  • Comparative Example 4 is an example in which HPMC, which is a nonionic water-soluble cellulose ether, is used as an additive. However, due to the foaming property of HPMC, muddy water is foamed and cannot be used practically.
  • Comparative Examples 5 and 6 are welan gum, which is a kind of water-soluble polysaccharide
  • Comparative Example 7 is an example using sodium polyacrylate as a water-soluble polymer. Although there is little, there is deterioration due to cement mixing, exceeding the target value of normal dehydration amount of 50 ml or less, and more addition is necessary.
  • Examples 1 to 17 are examples in which the water-soluble polyurethane of the present invention is used as an additive, but it does not agglomerate even when mixed with seawater and cement, and the amount of dewatering is small and the mud wall performance is excellent. In addition, it is easy to use in construction without foaming even with long-time stirring.
  • the drilling mud composition of the present invention has low viscosity and high drainage in basic performance and is excellent in dispersibility.
  • seawater resistance and cement resistance it can be seen that the effect of reducing the tendency to breathing and gelation and suppressing the increase in the amount of filtered water (high drainage) can be seen and excellent effects can be exhibited.
  • the additive for drilling mud of the present invention can be suitably used for stabilizing a drilling mud composition used for ground excavation in drilling methods such as petroleum, natural gas, civil engineering, and mining.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

An additive for a drilling fluid, consisting of a water-soluble polyurethane which comprises repeating units (a) represented by general formula (I) and repeating units (b) represented by general formula (II) at a ratio of the molar amount of the repeating units (a) to the total molar amount of the repeating units (a) and the repeating units (b) of 0.5 to 0.99. In the general formulae, A is a divalent linking group which contains a poly(oxyalkylene) group, D is a divalent linking group which contains two or more C4-21 monovalent hydrocarbon groups in the molecule, and B is a divalent linking group.

Description

掘削泥水用添加剤、掘削泥水組成物及び地盤掘削工法Drilling mud additive, drilling mud composition and ground excavation method
 本発明は、石油、天然ガス、土木、鉱山などの掘削工法において地盤掘削の際に用いられる泥水の安定化を目的に使用する掘削泥水用添加剤に関する。また、本発明はこの掘削泥水用添加剤を含む掘削泥水組成物並びにこの掘削泥水組成物の存在下で地盤を掘削する地盤掘削工法に関する。 The present invention relates to an additive for drilling mud used for the purpose of stabilizing mud used for ground excavation in excavation methods such as petroleum, natural gas, civil engineering, and mining. The present invention also relates to a drilling mud composition containing the drilling mud additive and a ground excavation method for excavating the ground in the presence of the drilling mud composition.
 地盤を掘削するに際し、掘削時に発生する摩擦熱の吸収、掘削屑の地上への搬出、掘削面の維持、地下水およびガスなどの噴出防止、土圧の支えなどの目的で、ベントナイト系泥水、ポリマー系泥水などの安定液が使用されている。 When excavating the ground, bentonite mud water, polymer, etc. are used to absorb frictional heat generated during excavation, to transport excavated debris to the ground, to maintain the excavation surface, to prevent the ejection of groundwater and gas, and to support earth pressure. Stabilizing liquid such as mud is used.
 しかしながら、これらの安定液(泥水)は、セメント、海水、その他の電解質の混入により性能が劣化することが知られている。このためリグニンスルフォン酸化合物や、カルボキシメチルセルロース、ポリアクリル酸系重合体または共重合体などのポリカルボン酸類を添加して、泥水の安定性を高める方法が数多く提案されている(特許文献1,2参照)。さらに、泥水の安定性を高める目的で、疎水性相互作用を有するポリカルボン酸系ポリマーの利用や(特許文献3参照)、塩類による劣化の少ない増粘剤として、非イオン性の水溶性セルロースエーテルや、ウエランガムなどの増粘多糖類の利用も検討されている(特許文献4参照)。 However, it is known that the performance of these stabilizers (muddy water) deteriorates due to mixing of cement, seawater, and other electrolytes. For this reason, many methods have been proposed to increase the stability of mud water by adding lignin sulfonic acid compounds and polycarboxylic acids such as carboxymethyl cellulose, polyacrylic acid polymers or copolymers (Patent Documents 1 and 2). reference). Furthermore, for the purpose of enhancing the stability of mud water, nonionic water-soluble cellulose ether is used as a thickener with little deterioration due to the use of polycarboxylic acid polymer having hydrophobic interaction (see Patent Document 3) and salts. The use of thickening polysaccharides such as welan gum has also been studied (see Patent Document 4).
特開平10-316963号公報Japanese Patent Laid-Open No. 10-316963 特開2001-31959号公報JP 2001-31959 A 特開2011-225758号公報JP 2011-225758 A 特開平5-17763号公報Japanese Patent Laid-Open No. 5-17763
 しかしながら、近年、湾岸地区での地盤掘削工事が増え、また、エネルギー関連の掘削は海上で行われることが多く、泥水に大量の海水が混入する場合があり、掘削用の泥水の使用条件は非常に過酷になってきている。泥水に大量の海水が混入すると、前述の各種ポリカルボン酸類の添加剤を泥水に多量に添加しても、泥水の粘度が低下し、泥水中の水分が地層中に失われて流動性が低下して、地盤掘削が困難となる。また、泥水に大量の海水が混入すると、泥水中のベントナイトが分離して泥水の安定性が低下し、掘削屑の搬送能力が低下するなどの問題が発生する。また、泥水の安定性を補うために添加している各種非イオン性のセルロース系、多糖類系ポリマーには、起泡性や、天然物由来であり、高価で安定供給に不安があるなどの問題があった。 However, in recent years, there has been an increase in ground excavation work in the Gulf area, and energy-related drilling is often carried out at sea, and there is a case where a large amount of seawater is mixed in the muddy water. It is getting harsh. If a large amount of seawater is mixed in the muddy water, the viscosity of the muddy water will be reduced and the fluidity will be lost due to the loss of water in the muddy water even if a large amount of the aforementioned polycarboxylic acid additives are added to the muddy water. Therefore, ground excavation becomes difficult. In addition, when a large amount of seawater is mixed in the muddy water, the bentonite in the muddy water is separated, so that the stability of the muddy water is lowered and the excavation waste conveying ability is lowered. In addition, various nonionic cellulose-based and polysaccharide-based polymers added to supplement the stability of muddy water are foaming and derived from natural products. There was a problem.
 したがって本発明の目的は、地盤掘削に使用される泥水に添加される添加剤の問題点を解決し、清水を用いた泥水をはじめ、電解質を含む海水などが泥水に混入した場合であっても、少量の添加で、流動性の低下を防止することができるとともに、優れた安定性を確保することができる掘削泥水用の添加剤を提供することである。 Therefore, the object of the present invention is to solve the problems of additives added to the muddy water used for ground excavation, even when muddy water using fresh water, seawater containing electrolyte, etc. are mixed in the muddy water. Another object of the present invention is to provide an additive for drilling mud that can prevent a decrease in fluidity and can ensure excellent stability with a small amount of addition.
 本発明者らは、上記課題を解決するため、鋭意研究を重ねた。その結果、特定の構造を有する水溶性ポリウレタンからなる掘削泥水用添加剤を用いることで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。
(1)下記一般式(I)で表わされる繰り返し単位(a)と、下記一般式(II)で表される繰り返し単位(b)とを含み、前記繰り返し単位(a)及び繰り返し単位(b)の総モル数に対する前記繰り返し単位(a)のモル数の比は、0.5以上0.99以下である水溶性ポリウレタンからなる掘削泥水用添加剤。
In order to solve the above-mentioned problems, the present inventors have conducted extensive research. As a result, it has been found that the above problems can be solved by using an additive for drilling mud made of water-soluble polyurethane having a specific structure, and the present invention has been completed. More specifically, the present invention provides the following.
(1) A repeating unit (a) represented by the following general formula (I) and a repeating unit (b) represented by the following general formula (II), the repeating unit (a) and the repeating unit (b) The ratio of the number of moles of the repeating unit (a) to the total number of moles of water is an additive for drilling mud, which is made of water-soluble polyurethane that is 0.5 to 0.99.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、
 Aは、ポリ(オキシアルキレン)を含む2価の連結基を示し、
 Bは、2価の連結基を示す。)
(Where
A represents a divalent linking group containing poly (oxyalkylene);
B represents a divalent linking group. )
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、
 Dは、分子内に炭素数4から21の1価炭化水素基を2個以上有する2価の連結基を示し、
 Bは、2価の連結基を示す。)
 (2)Dは、下記一般式(III)及び/又は下記一般式(IV)で表わされる基である(1)記載の掘削泥水用添加剤。
(Where
D represents a divalent linking group having two or more monovalent hydrocarbon groups having 4 to 21 carbon atoms in the molecule;
B represents a divalent linking group. )
(2) The additive for drilling mud according to (1), wherein D is a group represented by the following general formula (III) and / or the following general formula (IV).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、
 Rは、炭素原子数1から20の炭化水素基又は窒素含有炭化水素基であり、
 R及びRは、同一でも異なっていてもよく、炭素原子数4から21の炭化水素基であり、
 ここで、R、R、及びRにおける水素原子の少なくとも一部は、フッ素原子、塩素原子、臭素原子、及び沃素原子からなる群より選ばれる少なくとも1種の原子で置換されていてもよく、
 Y及びY’は、同一でも異なっていてもよく、水素原子、メチル基、及びCHCl基からなる群より選ばれるいずれかであり、
 Z及びZ’は、同一でも異なっていてもよく、酸素原子、硫黄原子、及びCH基からなる群より選ばれるいずれかであり、
 n及びn’は、同一でも異なっていてもよく、
 nは、Zが酸素原子の場合には0から15の整数であり、Zが硫黄原子又はCH2基の場合には0であり、
 n’は、Z’が酸素原子の場合には0から15の整数であり、Z’が硫黄原子又はCH2基の場合には0である。)
(Where
R 1 is a hydrocarbon group or a nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms,
R 2 and R 3 may be the same or different and are hydrocarbon groups having 4 to 21 carbon atoms,
Here, at least part of the hydrogen atoms in R 1 , R 2 , and R 3 may be substituted with at least one atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Often,
Y and Y ′ may be the same or different and are any one selected from the group consisting of a hydrogen atom, a methyl group, and a CH 2 Cl group,
Z and Z ′ may be the same or different and are any selected from the group consisting of an oxygen atom, a sulfur atom, and a CH 2 group,
n and n ′ may be the same or different,
n is an integer of 0 to 15 when Z is an oxygen atom, and is 0 when Z is a sulfur atom or a CH2 group,
n ′ is an integer of 0 to 15 when Z ′ is an oxygen atom, and 0 when Z ′ is a sulfur atom or a CH 2 group. )
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、
 Rは、全炭素原子数2から4のアルキレン基であり、
 Rは、炭素原子数1から21の炭化水素基であり、
 R及びRは、同一でも異なっていてもよく、炭素原子数4から21の炭化水素基であり、
 ここで、R、R、R及びRにおける水素原子の少なくとも一部は、フッ素原子、塩素原子、臭素原子、又は沃素原子で置換されていてもよく、
 S、S’、及びS”は、同一でも異なっていてもよく、水素原子、メチル基、及びCHCl基からなる群より選ばれるいずれかであり、
 T及びT’は、同一でも異なっていてもよく、酸素原子、硫黄原子、及びCH基からなる群より選ばれるいずれかであり、
 P及びP’は、同一でも異なっていてもよく、
 Pは、Tが酸素原子の場合には0から15の整数であり、Tが硫黄原子又はCH基の場合には0であり、
 P’は、T’が酸素原子の場合には0から15の整数であり、T’が硫黄原子又はCH基の場合には0であり、
 Qは、0から15の整数である。)
(3)20℃での2%水溶液粘度が10~100,000mPa・sである(1)ないし(2)のいずれかに記載の掘削泥水用添加剤。
(4) (1)ないし(3)のいずれかに記載の掘削泥水用添加剤、無機系泥質および水を含む掘削泥水組成物。
(5) (4)に記載の掘削泥水組成物の存在下で地盤を掘削することを特徴とする地盤掘削工法。
(6) 前記掘削泥水組成物を用いて掘削屑を地上へ搬出する工程を含む(5)に記載の地盤掘削工法。
(7) 坑井を掘削することを特徴とする(5)または(6)に記載の地盤掘削工法。
(8) 海底の地盤を掘削することを特徴とする(5)~(7)のいずれかに記載の地盤掘削工法。
(Where
R 4 is an alkylene group having 2 to 4 carbon atoms in total,
R 5 is a hydrocarbon group having 1 to 21 carbon atoms,
R 6 and R 7 may be the same or different and each is a hydrocarbon group having 4 to 21 carbon atoms;
Here, at least part of the hydrogen atoms in R 4 , R 5 , R 6 and R 7 may be substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom,
S, S ′, and S ″ may be the same or different and are any one selected from the group consisting of a hydrogen atom, a methyl group, and a CH 2 Cl group,
T and T ′ may be the same or different and are any one selected from the group consisting of an oxygen atom, a sulfur atom, and a CH 2 group,
P and P ′ may be the same or different,
P is an integer of 0 to 15 when T is an oxygen atom, and 0 when T is a sulfur atom or a CH 2 group,
P ′ is an integer of 0 to 15 when T ′ is an oxygen atom, and is 0 when T ′ is a sulfur atom or a CH 2 group,
Q is an integer from 0 to 15. )
(3) The additive for drilling mud according to any one of (1) to (2), wherein the viscosity of a 2% aqueous solution at 20 ° C. is 10 to 100,000 mPa · s.
(4) A drilling mud composition comprising the drilling mud additive according to any one of (1) to (3), an inorganic mud and water.
(5) A ground excavation method characterized by excavating the ground in the presence of the drilling mud composition according to (4).
(6) The ground excavation method as described in (5) including the process of carrying out excavation waste to the ground using the said drilling mud composition.
(7) The ground excavation method according to (5) or (6), wherein a well is excavated.
(8) The ground excavation method according to any one of (5) to (7), wherein the ground of the seabed is excavated.
 本発明の掘削泥水用添加剤によれば、海水、セメントなどが泥水に混入した場合であっても、少量の添加で、掘削泥水組成物の流動性の低下を防止することができるとともに、安定性に優れた掘削泥水組成物を提供することができる。 According to the drilling mud additive of the present invention, even when seawater, cement, etc. are mixed in the mud, it is possible to prevent a decrease in the fluidity of the drilling mud composition with a small amount of addition, and to stabilize it. A drilling mud composition having excellent properties can be provided.
 <掘削泥水用添加剤>
 本発明の掘削泥水用添加剤は、下記の構造を有する水溶性ポリウレタン、からなるものである。
<Additive for drilling mud>
The additive for drilling mud according to the present invention comprises a water-soluble polyurethane having the following structure.
 [水溶性ポリウレタン]
 本発明に用いられる水溶性ポリウレタンは、下記一般式(I)で表わされる繰り返し単位(a)と、下記一般式(II)で表される繰り返し単位(b)とを必須構成単位とするものである。繰り返し単位(a)と、繰り返し単位(b)とを含むものであれば、その他の任意の繰り返し単位を少量含んでいてもよい。
[Water-soluble polyurethane]
The water-soluble polyurethane used in the present invention comprises a repeating unit (a) represented by the following general formula (I) and a repeating unit (b) represented by the following general formula (II) as essential constituent units. is there. As long as the repeating unit (a) and the repeating unit (b) are included, a small amount of any other repeating unit may be included.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、
 Aは、ポリ(オキシアルキレン)基を含む2価の連結基を示し、
 Bは、2価の連結基を示す。)
(Where
A represents a divalent linking group containing a poly (oxyalkylene) group,
B represents a divalent linking group. )
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、
 Dは、分子内に炭素数4から21の1価炭化水素基を2個以上有する2価の連結基を示し、
 Bは2価の連結基を示す。)
(Where
D represents a divalent linking group having two or more monovalent hydrocarbon groups having 4 to 21 carbon atoms in the molecule;
B represents a divalent linking group. )
 また、前記繰り返し単位(a)及び繰り返し単位(b)の総モル数に対する前記繰り返し単位(a)のモル数の比は、通常0.5以上0.99以下であり、好ましくは0.70以上0.99以下、更に好ましくは0.80以上0.90以下である。
 その他の任意の繰り返し単位(c)は含んでも含まなくてもよいが、含む場合、前記繰り返し単位(a)及び繰り返し単位(b)の総モル数に対する繰り返し単位(c)のモル数の比を例えば0.1以下とすることができる。
The ratio of the number of moles of the repeating unit (a) to the total number of moles of the repeating unit (a) and the repeating unit (b) is usually 0.5 or more and 0.99 or less, preferably 0.70 or more. It is 0.99 or less, More preferably, it is 0.80 or more and 0.90 or less.
Other optional repeating units (c) may or may not be included, but when included, the ratio of the number of moles of the repeating unit (c) to the total number of moles of the repeating unit (a) and the repeating unit (b). For example, it can be 0.1 or less.
 一般式(I)においてAのポリ(オキシアルキレン)基を含む2価の連結基としては、-(C2kO)-C2k-(式中kは2~8の整数、lは1以上の整数を表し、C2kは分岐鎖を含んでいても良く、l中のkは同一でも異なっていても良い。)で表されるポリ(オキシアルキレン)残基を挙げることができる。より好ましくは、ポリ(オキシエチレン)残基、ポリ(オキシプロピレン)残基等の炭素原子数2~6のアルキレン基を有するポリ(オキシアルキレン)残基が好ましい。
 一般式(I)および(II)においてBで示される2価の連結基としては、2価の炭化水素基、例えば、2価の鎖状脂肪族炭化水素基、2価の環状脂肪族炭化水素基、2価の芳香族炭化水素基及びこれらの2種以上を組み合わせた基を挙げることができる。Bの炭素原子数は1~16であることが好ましい。
In the general formula (I), the divalent linking group containing the poly (oxyalkylene) group of A is — (C k H 2k O) 1 —C k H 2k — (wherein k is an integer of 2 to 8, l represents an integer of 1 or more, and C k H 2k may include a branched chain, and k in l may be the same or different.) be able to. More preferred are poly (oxyalkylene) residues having an alkylene group having 2 to 6 carbon atoms, such as poly (oxyethylene) residues and poly (oxypropylene) residues.
The divalent linking group represented by B in the general formulas (I) and (II) is a divalent hydrocarbon group, for example, a divalent chain aliphatic hydrocarbon group or a divalent cyclic aliphatic hydrocarbon. A group, a divalent aromatic hydrocarbon group, and a group obtained by combining two or more of these. B preferably has 1 to 16 carbon atoms.
 一般式(II)においてDで示される2価の連結基は、炭素数4~21の1価の炭化水素基を2個またはそれ以上有している。
 炭素数4~21の1価の炭化水素基は極性が低いため、水中においては炭化水素基同士の相互作用により、水溶性ポリウレタンの高分子鎖間に疎水的相互作用が生じる。このため比較的分子量の低いポリウレタンであっても十分な保水性を発揮することができる。
 Dとしては、例えば前述の一般式(III)、一般式(IV)を挙げることができる。
The divalent linking group represented by D in the general formula (II) has two or more monovalent hydrocarbon groups having 4 to 21 carbon atoms.
Since monovalent hydrocarbon groups having 4 to 21 carbon atoms have low polarity, the interaction between the hydrocarbon groups in water causes a hydrophobic interaction between the polymer chains of the water-soluble polyurethane. For this reason, even a polyurethane having a relatively low molecular weight can exhibit sufficient water retention.
Examples of D include the above-described general formula (III) and general formula (IV).
 一般式(III)または(IV)の構造を有する水溶性ポリウレタンからなる掘削泥水用添加剤を用いることにより、より短時間の混練で十分な保水性を発現することができる。
 前記A,B,Dについては、水溶性ポリウレタンの製造方法の項目で詳述する。
By using an additive for drilling mud composed of a water-soluble polyurethane having a structure of the general formula (III) or (IV), sufficient water retention can be expressed by kneading in a shorter time.
A, B, and D will be described in detail in the item of the method for producing a water-soluble polyurethane.
 〔水溶性ポリウレタンの製造方法〕
 本発明の水溶性ポリウレタンは、例えば、HO-A-OHで表されるポリオキシアルキレンポリオールと、OCN-B-NCOで表されるジイソシアナートと、HO-D-OHで表されるジオールを反応させることにより製造することができる。HO-D-OHを「櫛形ジオール」と称することがある。
[Method for producing water-soluble polyurethane]
The water-soluble polyurethane of the present invention includes, for example, a polyoxyalkylene polyol represented by HO—A—OH, a diisocyanate represented by OCN—B—NCO, and a diol represented by HO—D—OH. It can be produced by reacting. HO-D-OH may be referred to as “comb diol”.
 〔ポリオキシアルキレンポリオール:HO-A-OH〕
 上記一般式(I)で表される繰り返し単位(a)の構成材料となる、両末端に水酸基を有するポリオキシアルキレンポリオールHO-A-OHとしては、特に限定されるものではないが、炭素数2から6のアルキレン基を有するポリオキシアルキレンポリオールを好適に用いることができる。
[Polyoxyalkylene polyol: HO-A-OH]
The polyoxyalkylene polyol HO—A—OH having a hydroxyl group at both ends as a constituent material of the repeating unit (a) represented by the general formula (I) is not particularly limited, A polyoxyalkylene polyol having 2 to 6 alkylene groups can be preferably used.
 より具体的には、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリエチレンオキシドとポリプロピレンオキシドとの共重合体、ポリテトラメチレンエーテルグリコール(PTMEG)、ポリヘキサメチレンエーテルグリコール等を好ましく用いることができる。ポリウレタンが水溶性であることから、特に好ましくはポリエチレングリコール(PEG)が用いられる。 More specifically, polyethylene glycol (PEG), polypropylene glycol (PPG), a copolymer of polyethylene oxide and polypropylene oxide, polytetramethylene ether glycol (PTMEG), polyhexamethylene ether glycol and the like can be preferably used. . Polyethylene glycol (PEG) is particularly preferably used because polyurethane is water-soluble.
 繰り返し単位(a)の構成材料となる、両末端に水酸基を有するポリオキシアルキレンポリオールHO-A-OHの数平均分子量(Mn)は、好ましくは400以上100,000以下、より好ましくは400以上20,000以下、更に好ましくは900以上9,000以下の範囲内にある。数平均分子量が400以上であれば、十分な保水性を有する水溶性ポリウレタンを得ることができる。一方で、数平均分子量が100,000以下であれば、充分な重合反応を行ことができる。 The number average molecular weight (Mn) of the polyoxyalkylene polyol HO—A—OH having a hydroxyl group at both ends, which is a constituent material of the repeating unit (a), is preferably 400 or more and 100,000 or less, more preferably 400 or more and 20 or more. , 000 or less, more preferably in the range of 900 or more and 9,000 or less. If the number average molecular weight is 400 or more, a water-soluble polyurethane having sufficient water retention can be obtained. On the other hand, if the number average molecular weight is 100,000 or less, a sufficient polymerization reaction can be performed.
 尚、繰り返し単位(a)の構成材料となる、両末端に水酸基を有するポリオキシアルキレンポリオールHO-A-OHとしては、1種の単独使用のみならず、2種類以上のポリオキシアルキレンポリオールを組み合わせて用いてもよい。例えば、ポリエチレングリコールと、ポリプロピレングリコール又はポリテトラメチレンエーテルグリコールとを、組み合わせて用いることも可能である。ポリウレタンが水溶性であることから、より好ましくはポリエチレングリコール(PEG)を70質量%以上用いることである。 The polyoxyalkylene polyol HO-A-OH having a hydroxyl group at both ends, which is a constituent material of the repeating unit (a), can be used not only alone but in combination of two or more polyoxyalkylene polyols. May be used. For example, polyethylene glycol and polypropylene glycol or polytetramethylene ether glycol can be used in combination. Since polyurethane is water-soluble, it is more preferable to use 70% by mass or more of polyethylene glycol (PEG).
 また、全ポリオール類の20質量%までであれば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、テトラメチレングリコール、ヘキサメチレングリコール等の低分子量グリコールを、上記のポリオキシアルキレンポリオール類と併用してもよい。 Moreover, if it is up to 20% by mass of the total polyols, low molecular weight glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tetramethylene glycol, hexamethylene glycol and the like are used in combination with the above polyoxyalkylene polyols. May be.
 〔ジイソシアナート:OCN-B-NCO〕
 上記一般式(I)及び一般式(II)で表される繰り返し単位(a)及び(b)の構成材料となる、ジイソシアナートOCN-B-NCOとしては、特に限定されるものではない。例えば、鎖状脂肪族ジイソシアナート類、環状脂肪族ジイソシアナート類、及び芳香族ジイソシアナートよりなる群から選ばれるジイソシアナート化合物を挙げることができる。これらの中では、全炭素原子数が(NCO基の炭素原子を含めて)3から18のジイソシアナート類を用いることが好ましい。
[Diisocyanate: OCN-B-NCO]
The diisocyanate OCN-B-NCO, which is a constituent material of the repeating units (a) and (b) represented by the general formula (I) and the general formula (II), is not particularly limited. Examples thereof include a diisocyanate compound selected from the group consisting of chain aliphatic diisocyanates, cycloaliphatic diisocyanates, and aromatic diisocyanates. Among these, it is preferable to use diisocyanates having 3 to 18 carbon atoms (including carbon atoms of the NCO group).
 鎖状脂肪族ジイソシアナート類とは、NCO基の間を、直鎖もしくは分岐鎖を有するアルキレン基で繋いだ構造をもつポリイソシアナート化合物である。具体例としては、メチレンジイソシアナート、エチレンジイソシアナート、トリメチレンジイソシアナート、1-メチルエチレンジイソシアナート、テトラメチレンジイソシアナート、ペンタメチレンジイソシアナート、2-メチルブタン-1,4-ジイソシアナート、ヘキサメチレンジイソシアナート(HMDI)、ヘプタメチレンジイソシアナート、2,2’-ジメチルペンタン-1,5-ジイソシアナート、リジンジイソシアナートメチルエステル(LDI)、オクタメチレンジイソシアナート、2,5-ジメチルヘキサン-1,6-ジイソシアナート、2,2,4-トリメチルペンタン-1,5-ジイソシアナート、ノナメチレンジイソシアナート、2,4,4-トリメチルヘキサン-1,6-ジイソシアナート、デカメチレンジイソシアナート、ウンデカメチレンジイソシアナート、ドデカメチレンジイソシアナート、トリデカメチレンジイソシアナート、テトラデカメチレンジイソシアナート、ペンタデカメチレンジイソシアナート、ヘキサデカメチレンジイソシアナート等のジイソシアナートが挙げられる。 Chain aliphatic diisocyanates are polyisocyanate compounds having a structure in which NCO groups are connected by a linear or branched alkylene group. Specific examples include methylene diisocyanate, ethylene diisocyanate, trimethylene diisocyanate, 1-methylethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, 2-methylbutane-1,4-di- Isocyanate, hexamethylene diisocyanate (HMDI), heptamethylene diisocyanate, 2,2′-dimethylpentane-1,5-diisocyanate, lysine diisocyanate methyl ester (LDI), octamethylene diisocyanate, 2,5-dimethylhexane-1,6-diisocyanate, 2,2,4-trimethylpentane-1,5-diisocyanate, nonamethylene diisocyanate, 2,4,4-trimethylhexane-1,6 -Diisocyanate, decamethylene dii Cyanate, undecamethylene diisocyanate, dodecamethylene diisocyanate, tridecamethylene diisocyanate, tetradecamethylene diisocyanate, pentadecamethylene diisocyanate include diisocyanates such as hexamethylene decamethylene diisocyanate.
 環状脂肪族ジイソシアナート類とは、NCO基の間を、環状構造をもつアルキレン基で繋いだ構造を持つポリイソシアナート化合物である。具体例としては、シクロヘキサン-1,2-ジイソシアナート、シクロヘキサン-1,3-ジイソシアナート、シクロヘキサン-1,4-ジイソシアナート、1-メチルシクロヘキサン-2,4-ジイソシアナート、1-メチルシクロヘキサン-2,6-ジイソシアナート、1-エチルシクロヘキサン-2,4-ジイソシアナート、4,5-ジメチルシクロヘキサン-1,3-ジイソシアナート、1,2-ジメチルシクロヘキサン-ω,ω’-ジイソシアナート、1,4-ジメチルシクロヘキサン-ω,ω’-ジイソシアナート、イソホロンジイソシアナート(IPDI)、ジシクロヘキシルメチルメタン-4,4’-ジイソシアナート、2,2’-ジメチルジシクロヘキシルメタン-4,4’-ジイソシアナート、3,3’-ジメチルジシクロヘキシルメタン-4,4’-ジイソシアナート、イソプロピリデンビス(4-シクロヘキシルイソシアナート)(IPCI)、1,3-ビス(イソシアナトメチル)シクロヘキサン、水素化トリレンジイソシアナート(H-TDI)、水素化4,4’-ジフェニルメタンジイソシアナート(H-MDI)、水素化キシリレンジイソシアナート(H-XDI)、ノルボルナンジイソシアナートメチル(NBDI)等のジイソシアナートが挙げられる。 Cycloaliphatic diisocyanates are polyisocyanate compounds having a structure in which NCO groups are connected by an alkylene group having a cyclic structure. Specific examples include cyclohexane-1,2-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, 1-methylcyclohexane-2,4-diisocyanate, 1- Methylcyclohexane-2,6-diisocyanate, 1-ethylcyclohexane-2,4-diisocyanate, 4,5-dimethylcyclohexane-1,3-diisocyanate, 1,2-dimethylcyclohexane-ω, ω ′ -Diisocyanate, 1,4-dimethylcyclohexane-ω, ω'-diisocyanate, isophorone diisocyanate (IPDI), dicyclohexylmethylmethane-4,4'-diisocyanate, 2,2'-dimethyldicyclohexylmethane -4,4'-diisocyanate, 3,3'-dimethyldisic Hexylmethane-4,4′-diisocyanate, isopropylidenebis (4-cyclohexylisocyanate) (IPCI), 1,3-bis (isocyanatomethyl) cyclohexane, hydrogenated tolylene diisocyanate (H-TDI), Examples thereof include diisocyanates such as hydrogenated 4,4′-diphenylmethane diisocyanate (H-MDI), hydrogenated xylylene diisocyanate (H-XDI), norbornane diisocyanate methyl (NBDI), and the like.
 芳香族ジイソシアナート類とは、NCO基の間を、フェニレン基、アルキル置換フェニレン基、及びアラルキレン基等の芳香族基、又は芳香族基を含有する炭化水素基で繋いだ構造を持つポリイソシアナート化合物である。具体例としては、1,3-及び1,4-フェニレンジイソシアナート、1-メチル-2,4-フェニレンジイソシアナート(2,4-TDI)、1-メチル-2,6-フェニレンジイソシアナート(2,6-TDI)、1-メチル-2,5-フェニレンジイソシアナート、1-メチル-3,5-フェニレンジイソシアナート、1-エチル-2,4-フェニレンジイソシアナート、1-イソプロピル-2,4-フェニレンジイソシアナート、1,3-ジメチル-2,4-フェニレンジイソシアナート、1,3-ジメチル-4,6-フェニレンジイソシアナート、1,4-ジメチル-2,5-フェニレンジイソシアナート、m-キシリレンジイソシアナート、ジエチルベンゼンジイソシアナート、ジイソプロピルベンゼンジイソシアナート、1-メチル-3,5-ジエチルベンゼン-2,4-ジイソシアナート、3-メチル-1,5-ジエチルベンゼン-2,4-ジイソシアナート、1,3,5-トリエチルベンゼン-2,4-ジイソシアナート、ナフタレン-1,4-ジイソシアナート、ナフタレン-1,5-ジイソシアナート、1-メチルナフタレン-1,5-ジイソシアナート、ナフタレン-2,6-ジイソシアナート、ナフタレン-2,7-ジイソシアナート、1,1-ジナフチル-2,2’-ジイソシアナート、ビフェニル-2,4’-ジイソシアナート、ビフェニル-4,4’-ジイソシアナート、1,3-ビス(1-イソシアナト-1-メチルエチル)ベンゼン、3,3’-ジメチルビフェニル-4,4’-ジイソシアナート、ジフェニルメタン-4,4’-ジイソシアナート(MDI)、ジフェニルメタン-2,2’-ジイソシアナート、ジフェニルメタン-2,4’-ジイソシアナート、p-キシリレンジイソシアナート(XDI)等のジイソシアナートが挙げられる。 Aromatic diisocyanates are polyisocyanates having a structure in which NCO groups are connected by aromatic groups such as phenylene groups, alkyl-substituted phenylene groups, and aralkylene groups, or hydrocarbon groups containing aromatic groups. It is a nate compound. Specific examples include 1,3- and 1,4-phenylene diisocyanate, 1-methyl-2,4-phenylene diisocyanate (2,4-TDI), 1-methyl-2,6-phenylene diisocyanate. Nert (2,6-TDI), 1-methyl-2,5-phenylene diisocyanate, 1-methyl-3,5-phenylene diisocyanate, 1-ethyl-2,4-phenylene diisocyanate, 1- Isopropyl-2,4-phenylene diisocyanate, 1,3-dimethyl-2,4-phenylene diisocyanate, 1,3-dimethyl-4,6-phenylene diisocyanate, 1,4-dimethyl-2,5 -Phenylene diisocyanate, m-xylylene diisocyanate, diethylbenzene diisocyanate, diisopropylbenzene diisocyanate, 1- Til-3,5-diethylbenzene-2,4-diisocyanate, 3-methyl-1,5-diethylbenzene-2,4-diisocyanate, 1,3,5-triethylbenzene-2,4-diisocyanate , Naphthalene-1,4-diisocyanate, naphthalene-1,5-diisocyanate, 1-methylnaphthalene-1,5-diisocyanate, naphthalene-2,6-diisocyanate, naphthalene-2,7- Diisocyanate, 1,1-dinaphthyl-2,2′-diisocyanate, biphenyl-2,4′-diisocyanate, biphenyl-4,4′-diisocyanate, 1,3-bis (1-isocyanate -1-methylethyl) benzene, 3,3′-dimethylbiphenyl-4,4′-diisocyanate, diphenylmethane-4,4′-diisocyanate Over preparative (MDI), diphenylmethane-2,2'-diisocyanate, diphenylmethane-2,4'-diisocyanate, include diisocyanates such as p- xylylene diisocyanate (XDI).
 〔櫛形ジオール:HO-D-OH〕
 上記一般式(II)で表される繰り返し単位(b)の構成材料となる、櫛形ジオールHO-D-OHは、分子内に炭素原子数4から21の1価炭化水素基を少なくとも2個以上有するジオール類である。ここで、1価炭化水素基は、ジオール類の分子骨格に側鎖として複数個がグラフトしており、このような形状から「櫛形ジオール」と称している。炭素原子数4から21の1価炭化水素基としては特に限定されるものではないが、例えば、アルキル基、アルケニル基、アラルキル基、アリール基等が挙げられる。
[Comb diol: HO-D-OH]
The comb diol HO-D-OH, which is a constituent material of the repeating unit (b) represented by the general formula (II), has at least two monovalent hydrocarbon groups having 4 to 21 carbon atoms in the molecule. It is a diol having. Here, a plurality of monovalent hydrocarbon groups are grafted as side chains on the molecular skeleton of diols, and from this shape, they are called “comb diols”. The monovalent hydrocarbon group having 4 to 21 carbon atoms is not particularly limited, and examples thereof include an alkyl group, an alkenyl group, an aralkyl group, and an aryl group.
 また、櫛形ジオールHO-D-OHにおいて、炭素原子数4から21の1価炭化水素基のグラフト位置は、ジオール類の分子骨格に直接グラフトする場合であっても、また、メチレン基、エーテル基、チオエーテル基、ポリエーテル基等を介して分子骨格に結合する場合であってもよい。 Further, in the comb diol HO-D-OH, the graft position of the monovalent hydrocarbon group having 4 to 21 carbon atoms may be directly grafted to the molecular skeleton of the diol, or may be a methylene group or an ether group. In addition, it may be bonded to the molecular skeleton via a thioether group, a polyether group or the like.
 櫛形ジオールHO-D-OHの分子骨格は、炭化水素のみからなっていてもよいが、エーテル基(-O-)、ポリエーテル基、或いは、3級アミノ基(-N(R)-)等の極性基を分子骨格に有するジオールも、本発明においては好適に用いられる。このような櫛形ジオールの製造方法は特に限定されるものではなく、公知の方法により得ることができる。公知の方法としては、例えば、特開平11-343328号公報や特開2000-297133号公報に記載されている方法、特開2004-169011号公報に記載されている方法を挙げることができる。 The molecular skeleton of the comb-shaped diol HO-D-OH may be composed only of hydrocarbons, but an ether group (—O—), a polyether group, a tertiary amino group (—N (R) —), etc. A diol having the polar group in the molecular skeleton is also preferably used in the present invention. The method for producing such a comb diol is not particularly limited, and can be obtained by a known method. Known methods include, for example, methods described in JP-A-11-343328 and JP-A-2000-297133, and methods described in JP-A-2004-169011.
 本発明に好ましく用いられる櫛形ジオールHO-D-OHとしては、例えば、下記一般式(IIIa)及び下記一般式(IVa)で表わされる櫛形ジオールを挙げることができる。下記一般式(IIIa)及一般式(IVa)で表される櫛形ジオールは、1種単独であっても、また複数種を同時に併用してもよい。例えば、一般式(IIIa)で表される櫛型ジオールの複数種を使用する場合、一般式(IVa)で表される櫛型ジオールの複数種を使用する場合、一般式(IIIa)で表される櫛型ジオールと一般式(IVa)で表される櫛型ジオールとを混在させる場合のいずれであってもよい。 Examples of the comb diol HO-D-OH preferably used in the present invention include comb diols represented by the following general formula (IIIa) and the following general formula (IVa). The comb diols represented by the following general formula (IIIa) and general formula (IVa) may be used alone or in combination of two or more. For example, when using a plurality of kinds of comb-shaped diols represented by the general formula (IIIa), when using a plurality of kinds of comb-shaped diols represented by the general formula (IVa), it is represented by the general formula (IIIa). The comb-type diol may be mixed with the comb-type diol represented by the general formula (IVa).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、
 Rは、炭素原子数1から20、より好ましくは炭素原子数4から12の炭化水素基又は窒素含有炭化水素基であり、
 R及びRは、同一でも異なっていてもよく、炭素原子数4から21、より好ましくは炭素原子数4から12の炭化水素基であり、
 ここで、R、R、及びRにおける水素原子の少なくとも一部は、フッ素原子、塩素原子、臭素原子、及び沃素原子からなる群より選ばれる少なくとも1種の原子で置換されていてもよく、
 Y及びY’は、同一でも異なっていてもよく、水素原子、メチル基、及びCHCl基からなる群より選ばれるいずれかであり、
 Z及びZ’は、同一でも異なっていてもよく、酸素原子、硫黄原子、及びCH基からなる群より選ばれるいずれかであり、
 n及びn’は、同一でも異なっていてもよく、
 nは、Zが酸素原子の場合には0から15の整数であり、Zが硫黄原子又はCH基の場合には0であり、
 n’は、Z’が酸素原子の場合には0から15の整数であり、Z’が硫黄原子又はCH基の場合には0である。)
(Where
R 1 is a hydrocarbon group or nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms, more preferably 4 to 12 carbon atoms,
R 2 and R 3 may be the same or different and are hydrocarbon groups having 4 to 21 carbon atoms, more preferably 4 to 12 carbon atoms,
Here, at least part of the hydrogen atoms in R 1 , R 2 , and R 3 may be substituted with at least one atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Often,
Y and Y ′ may be the same or different and are any one selected from the group consisting of a hydrogen atom, a methyl group, and a CH 2 Cl group,
Z and Z ′ may be the same or different and are any selected from the group consisting of an oxygen atom, a sulfur atom, and a CH 2 group,
n and n ′ may be the same or different,
n is an integer of 0 to 15 when Z is an oxygen atom, and 0 when Z is a sulfur atom or a CH 2 group,
n ′ is an integer of 0 to 15 when Z ′ is an oxygen atom, and 0 when Z ′ is a sulfur atom or a CH 2 group. )
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、
 Rは、全炭素原子数2から4のアルキレン基であり、
 Rは、炭素原子数1から21、好ましくは炭素原子数1から20、より好ましくは炭素原子数4から12の炭化水素基であり、
 R及びRは、同一でも異なっていてもよく、炭素原子数4から21、より好ましくは炭素原子数4から12の炭化水素基であり、
 ここで、R、R及びRにおける水素原子の少なくとも一部は、フッ素原子、塩素原子、臭素原子、又は沃素原子で置換されていてもよく、
における水素原子の少なくとも一部は、フッ素原子、塩素原子、臭素原子、又は沃素原子で置換されていてもよく、
 S、S’、及びS”は、同一でも異なっていてもよく、水素原子、メチル基、及びCHCl基からなる群より選ばれるいずれかであり、
 T及びT’は、同一でも異なっていてもよく、酸素原子、硫黄原子、及びCH基からなる群より選ばれるいずれかであり、
 P及びP’は、同一でも異なっていてもよく、
 Pは、Tが酸素原子の場合には0から15の整数であり、Tが硫黄原子又はCH基の場合には0であり、
 P’は、T’が酸素原子の場合には0から15の整数であり、T’が硫黄原子又はCH基の場合には0であり、
 Qは、0から15の整数である。)
(Where
R 4 is an alkylene group having 2 to 4 carbon atoms in total,
R 5 is a hydrocarbon group having 1 to 21 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 4 to 12 carbon atoms,
R 6 and R 7 may be the same or different and are hydrocarbon groups having 4 to 21 carbon atoms, more preferably 4 to 12 carbon atoms,
Here, at least part of the hydrogen atoms in R 4 , R 5 and R 6 may be substituted with a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom,
At least a part of the hydrogen atoms in R 7 may be substituted with a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom,
S, S ′, and S ″ may be the same or different and are any one selected from the group consisting of a hydrogen atom, a methyl group, and a CH 2 Cl group,
T and T ′ may be the same or different and are any one selected from the group consisting of an oxygen atom, a sulfur atom, and a CH 2 group,
P and P ′ may be the same or different,
P is an integer of 0 to 15 when T is an oxygen atom, and 0 when T is a sulfur atom or a CH 2 group,
P ′ is an integer of 0 to 15 when T ′ is an oxygen atom, and is 0 when T ′ is a sulfur atom or a CH 2 group,
Q is an integer from 0 to 15. )
 本発明に用いられる水溶性ポリウレタンの製造方法は特に限定されるものではなく、公知の任意の方法を採用することができる。水溶性ポリウレタンの製造方法としては、例えば、特開平11-343328号公報や特開2000-297133号公報に記載されている方法、或いは、特開2004-169011号公報に記載されている方法を用いることができる。なかでも、特開2004-169011号公報に記載されている方法は、得られるポリウレタンの粒子径が揃っており、且つ、平均粒子径を容易に200μm以下にできる点で、特に優れている。 The method for producing the water-soluble polyurethane used in the present invention is not particularly limited, and any known method can be employed. As a method for producing a water-soluble polyurethane, for example, the method described in JP-A-11-343328 and JP-A-2000-297133 or the method described in JP-A-2004-169011 is used. be able to. Among them, the method described in JP-A No. 2004-169011 is particularly excellent in that the particle diameters of the obtained polyurethane are uniform and the average particle diameter can be easily reduced to 200 μm or less.
 〔水溶性ポリウレタンの物性〕
 本発明に用いられる水溶性ポリウレタンの粘度は、B型粘度計(100,000mPa・sまではBL型粘度計を用い6rpmで、それ以上の粘度ではBH型粘度計を用い4rpm)で測定した20℃での2%水溶液の粘度が、好ましくは1mPa・s以上500,000mPa・s以下、より好ましくは10mPa・s以上100,000mPa・sの範囲であることが適当である。
[Physical properties of water-soluble polyurethane]
The viscosity of the water-soluble polyurethane used in the present invention was measured with a B-type viscometer (up to 100,000 mPa · s using a BL-type viscometer at 6 rpm, and higher viscosity using a BH-type viscometer 4 rpm) 20 The viscosity of the 2% aqueous solution at 0 ° C. is preferably in the range of 1 mPa · s to 500,000 mPa · s, more preferably 10 mPa · s to 100,000 mPa · s.
 特に、本発明に係る水溶性ポリウレタンを掘削泥水用添加剤として無機系泥質及び水を含む掘削泥水組成物に用いる場合、2%水溶液の粘度は、100mPa・s以上80,000mPa・s以下の範囲が好ましく、1,000mPa・s以上50,000mPa・s以下のものが最適である。2%水溶液の粘度が1,000mPa・s以上あれば、0.01%の少ない添加量で保水性を十分高めることができ、一方で、50,000mPa・s以下であれば、溶解時間を短くすることができる。2%水溶液の粘度は、水溶性ポリウレタンの製造に用いる原料の種類や比率を変更することにより適宜調整することができる。 In particular, when the water-soluble polyurethane according to the present invention is used for a drilling mud composition containing an inorganic mud and water as an additive for drilling mud, the viscosity of a 2% aqueous solution is 100 mPa · s or more and 80,000 mPa · s or less. The range is preferable, and a range of 1,000 mPa · s to 50,000 mPa · s is optimal. If the viscosity of the 2% aqueous solution is 1,000 mPa · s or more, the water retention can be sufficiently increased with a small addition amount of 0.01%, while if it is 50,000 mPa · s or less, the dissolution time is shortened. can do. The viscosity of the 2% aqueous solution can be adjusted as appropriate by changing the type and ratio of the raw materials used in the production of the water-soluble polyurethane.
 また、本発明に用いられる水溶性ポリウレタンは、製造後に乾燥して粉体の状態で保存することができる。この粉体の粒子径は、攪拌溶解しやすい観点から、細かい方が好ましい。ただし、あまりに細かいと取り扱いにくいことから、平均粒子径が好ましくは10μm以上300μm以下、より好ましくは50μm以上200μm以下程度であることが好適である。 Also, the water-soluble polyurethane used in the present invention can be dried after production and stored in a powder state. The particle diameter of the powder is preferably finer from the viewpoint of easy stirring and dissolution. However, since it is difficult to handle if it is too fine, the average particle diameter is preferably 10 μm or more and 300 μm or less, more preferably about 50 μm or more and 200 μm or less.
 [掘削泥水組成物]
 本発明の掘削泥水組成物は、上記水溶性ポリウレタンからなる掘削泥水用添加剤と無機系泥質と水を含んでいる。
[Drilling mud composition]
The drilling mud composition of the present invention contains the drilling mud additive made of the water-soluble polyurethane, an inorganic mud, and water.
 一般に、ポリマー系の掘削泥水用添加剤は、分子量が大きく、粘度を大きくすることにより泥水を増粘させ脱水量を減少させると共にチキソトロピー性を与える。本発明の掘削泥水用添加剤は、上記した特定の構造の水溶性ポリウレタンを用いるため、比較的分子量の低いポリウレタンであっても十分な保水性を発揮するが、その分子量或いは組成物への添加量を適宜設定することにより、掘削泥水用添加剤として好適に使用することができる。 In general, polymer-based drilling mud additives have a large molecular weight, and by increasing the viscosity, the mud is thickened to reduce the amount of dehydration and to give thixotropy. Since the additive for drilling mud of the present invention uses the water-soluble polyurethane having the above-mentioned specific structure, even a polyurethane having a relatively low molecular weight exhibits sufficient water retention, but its molecular weight or addition to the composition By appropriately setting the amount, it can be suitably used as an additive for drilling mud.
 水溶性ポリウレタンの添加量は、配合する無機系泥質の種類や配合割合、セメントの配合の有無や配合割合によって泥水の粘度が大きく異なるために一概には言えないが、一般的には、水100質量部に対して水溶性ポリウレタンが0.01~2.0質量部が好ましく、0.02~1.0質量部がより好ましい。しかし、目的とする粘度に調整でき、無機系泥質を凝集沈降せず安定な泥水組成物を得られるならば、それ以外の量であってもよい。 The amount of water-soluble polyurethane added cannot be unconditionally because the viscosity of the mud varies greatly depending on the type and proportion of the inorganic mud to be blended, the presence or absence of the cement, and the blending proportion. The water-soluble polyurethane is preferably 0.01 to 2.0 parts by weight, more preferably 0.02 to 1.0 parts by weight with respect to 100 parts by weight. However, other amounts may be used as long as the viscosity can be adjusted to a desired value and a stable mud composition can be obtained without coagulating and sedimenting inorganic mud.
 無機系泥質としては、ベントナイト、アタパルジャイト、含水マグネシウムケイ酸塩などを挙げることができるが、効果の点でベントナイトが好ましい。また、ソイルセメント工法で使用されるセメントを多量に配合したものであってもよく、密度を高めるため、バライト、チョーク、酸化鉄などを添加することもできる。 Examples of the inorganic mud include bentonite, attapulgite, and hydrous magnesium silicate. Bentonite is preferable from the viewpoint of effects. In addition, a large amount of cement used in the soil cement method may be blended, and barite, chalk, iron oxide, or the like may be added to increase the density.
 本発明の掘削泥水組成物における無機系泥質の配合割合は、水100質量部に対して、無機系泥質1.0~30質量部であることが好ましく、より好ましくは2.0~20質量部である。
 水は清水でも海水でもよく、清水と海水を混合してもよい。
The mixing ratio of the inorganic mud in the drilling mud composition of the present invention is preferably 1.0 to 30 parts by mass, more preferably 2.0 to 20 parts per 100 parts by mass of water. Part by mass.
The water may be fresh water or sea water, and fresh water and sea water may be mixed.
 水が清水である場合、本発明の掘削泥水用添加剤の添加量が海水の場合の添加量より少なくても、掘削泥水組成物の特性を維持した清水掘削泥水組成物が得られる。
 海水の塩類濃度は特に制限はないが例えば10,000ppm 以上であってもよい。
When the water is fresh water, a fresh water drilling mud composition that maintains the characteristics of the drilling mud composition can be obtained even when the additive amount of the drilling mud additive of the present invention is less than that of seawater.
The salt concentration of seawater is not particularly limited, but may be, for example, 10,000 ppm or more.
 [その他成分]
 本発明の掘削泥水組成物には、任意成分として、その他添加剤を配合することが可能である。その他添加剤としては、特に限定されるものではなく、例えば、カルボキシメチルセルロース;ポリ(メタ)アクリル酸系重合体または共重合体;ゼオライト類;分散剤;無機塩類;電解質;リグニンスルフォン酸塩、タンニン、リグナイトの各種有機塩類物質;水溶性ポリマーである、ポリビニルアルコール、ポリエチレングリコール(PEG)、ポリエチレンオキサイド(PEO)、ラムザンガム、グアーガム、キサンタンガム、ウエランガム等が挙げられる。
[Other ingredients]
The drilling mud composition of the present invention can contain other additives as optional components. Other additives are not particularly limited. For example, carboxymethyl cellulose; poly (meth) acrylic acid polymer or copolymer; zeolites; dispersants; inorganic salts; electrolytes; lignin sulfonates, tannins And various organic salt substances of lignite; water-soluble polymers such as polyvinyl alcohol, polyethylene glycol (PEG), polyethylene oxide (PEO), rhamsan gum, guar gum, xanthan gum, and welan gum.
 更に、本発明の掘削泥水組成物には、本発明の目的を損なわない範囲で、潤滑剤、逸泥防止剤、エマルション樹脂、界面活性剤、空気連行剤(AE剤)、消泡剤、収縮低減剤、硬化促進剤、硬化遅延剤、各種繊維類(ロックウール、ガラス繊維、カーボン繊維、セルロース繊維、パルプ繊維、各種合成樹脂繊維)等の公知の添加剤を、その用途に応じて適宜配合してもよい。 Further, the drilling mud composition of the present invention includes a lubricant, an anti-sludge agent, an emulsion resin, a surfactant, an air entraining agent (AE agent), an antifoaming agent, and a shrinkage within a range not impairing the object of the present invention. Known additives such as a reducing agent, curing accelerator, curing retarder, and various fibers (rock wool, glass fiber, carbon fiber, cellulose fiber, pulp fiber, various synthetic resin fibers) and the like are appropriately blended depending on the application. May be.
 本発明の掘削泥水組成物の調製方法において、掘削泥水用添加剤の使用方法、掘削泥水用添加剤やその他成分の添加方法、添加順序等は特に制限はなく、掘削を行う時に掘削泥水用添加剤が掘削泥水組成物中に存在していれば効果を発揮する。例えば、(1)無機系泥質と水との混合物に本発明の添加剤と必要に応じて他の添加剤を加えて混合する方法(ここで添加剤は逐次添加しても同時に添加してもよい。)、(2)無機系泥質と水を適宜な方法で混練した物(a)と、水に本発明の添加剤と必要に応じて他の添加剤を溶解した水相(b)を各々準備しておき、掘削泥水組成物の調製時に(a)と(b)を混合する方法、(3)無機系泥質、水、本発明の添加剤、必要に応じて他の添加剤を適宜な方法で均一に混練し粉末化して、水に懸濁する方法、等を採用することができる。 In the method for preparing a drilling mud composition of the present invention, the method for using the drilling mud additive, the method for adding the drilling mud additive and other components, the order of addition, etc. are not particularly limited. If the agent is present in the drilling mud composition, it will be effective. For example, (1) A method in which the additive of the present invention and other additives as required are added to a mixture of inorganic mud and water and mixed together (wherein the additives are added at the same time or sequentially) (2) A product obtained by kneading an inorganic mud and water by an appropriate method (a), and an aqueous phase (b) in which the additive of the present invention and other additives are dissolved in water as required. ), And a method of mixing (a) and (b) during preparation of the drilling mud composition, (3) inorganic mud, water, additives of the present invention, and other additions as required A method in which the agent is uniformly kneaded by an appropriate method, pulverized, and suspended in water can be employed.
 本発明の掘削泥水用添加剤を用いる場合、掘削現場で通常使用している撹拌機で撹拌するだけで、容易に懸濁、膨潤し、増粘効果を示し、坑井の状況に適合する特性を持った掘削泥水組成物を得ることができる。また、坑井の状況に応じて、その掘削泥水組成物の特性を容易に選択、調整することができる。 When using the additive for drilling mud according to the present invention, it can be easily suspended, swollen, thickened by simply stirring with a stirrer normally used at a drilling site, and is suitable for well conditions. A drilling mud composition having the following characteristics can be obtained. Moreover, the characteristics of the drilling mud composition can be easily selected and adjusted according to the state of the well.
 また、本発明によれば、塩濃度が10,000ppm 以上の海水を用いた場合でも容易に15mPa・s以上の粘性を持った掘削泥水組成物を調製することができる。ここで得られる掘削泥水組成物は、海水で割水することまたは本発明の掘削泥水用添加剤を添加すること等により掘削泥水組成物の粘性の調整や、その他の掘削泥水組成物としての特性の調整等をも可能にするため、管理面からも作業を容易にすることができる。 Further, according to the present invention, a drilling mud composition having a viscosity of 15 mPa · s or more can be easily prepared even when seawater having a salt concentration of 10,000 ppm or more is used. The drilling mud composition obtained here can be adjusted by adjusting the viscosity of the drilling mud composition by splitting with seawater or adding the additive for drilling mud of the present invention, and other characteristics as a drilling mud composition. Therefore, the work can be facilitated from the management aspect.
 また、本発明は、本発明に係る掘削泥水組成物の存在下で地盤を掘削することを特徴とする地盤掘削工法に関する。該工法は、本発明に係る掘削泥水組成物を用いて掘削屑を地上へ搬出する工程を含み、資源として利用できる元素や石油・天然ガスなどの鉱床の掘削を含む。特に、大量の海水が混入する海底の地盤を掘削するのに適した工法である。 The present invention also relates to a ground excavation method characterized by excavating the ground in the presence of the drilling mud composition according to the present invention. The construction method includes a step of carrying out drilling waste to the ground using the drilling mud composition according to the present invention, and includes drilling of an ore deposit that can be used as a resource, such as oil and natural gas. In particular, this method is suitable for excavating the seabed ground where a large amount of seawater is mixed.
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, although an example and a comparative example are shown and the present invention is explained concretely, the present invention is not limited to these examples.
 <水溶性ポリウレタンPU-1の合成>
 [櫛形ジオール-1の合成]
 500mLの丸底フラスコに、マグネチックスターラー、温度計、及び滴下ロートを設置し、ラウリルアミン(関東化学社製)83.0gを仕込み、フラスコ内を窒素で置換した。引き続き、フラスコをオイルバスで90℃に加熱し、攪拌しながら、滴下ロートを用いてラウリルグリシジルエーテル(関東化学社製)317.0gを40分かけて滴下した。滴下終了後、オイルバスの温度を120℃に上げて、フラスコを10時間加熱した。続いて、オイルバスの温度を150℃に上げて、真空ポンプを用いて、3mmHgの真空度で少量の未反応物を減圧留去した。これにより、ラウリルアミン1モルに対してラウリルグリシジルエーテルが2モルの比率で付加した櫛形ジオール-1(OH価からの平均分子量:797)を収率95%で得た。
<Synthesis of water-soluble polyurethane PU-1>
[Synthesis of Comb Diol-1]
A magnetic stirrer, a thermometer, and a dropping funnel were placed in a 500 mL round bottom flask, 83.0 g of laurylamine (manufactured by Kanto Chemical Co., Inc.) was charged, and the inside of the flask was replaced with nitrogen. Subsequently, 317.0 g of lauryl glycidyl ether (manufactured by Kanto Chemical Co., Inc.) was dropped over 40 minutes using a dropping funnel while the flask was heated to 90 ° C. in an oil bath and stirred. After completion of dropping, the temperature of the oil bath was raised to 120 ° C., and the flask was heated for 10 hours. Subsequently, the temperature of the oil bath was raised to 150 ° C., and a small amount of unreacted material was distilled off under reduced pressure using a vacuum pump at a degree of vacuum of 3 mmHg. As a result, comb-shaped diol-1 (average molecular weight from OH value: 797) in which lauryl glycidyl ether was added at a ratio of 2 moles to 1 mole of laurylamine was obtained in a yield of 95%.
 [プレポリマー-1の合成]
 100mLガラス製フラスコに、上記で得られた櫛形ジオール-1を33.0g、ヘキサメチレンジイソシアネート(HDI)を67.0g加えた。フラスコを80℃に8時間加熱し、プレポリマー-1を得た。
[Synthesis of Prepolymer-1]
To the 100 mL glass flask, 33.0 g of the comb-shaped diol-1 obtained above and 67.0 g of hexamethylene diisocyanate (HDI) were added. The flask was heated to 80 ° C. for 8 hours to obtain Prepolymer-1.
 [水溶性ポリウレタンPU-1の合成]
 特開2004-169011の実施例8に記載された方法に準じて合成した。
 2,000mLのガラス製セパラブルフラスコに、市販のポリエチレングリコール(三洋化成社製、商品名:PEG#6000、数平均分子量:8,630)を500g仕込み、窒素シール下で150℃にて溶融した。これを攪拌しながら、減圧下(3mmHg)で3時間乾燥した。乾燥後、70℃まで温度を下げ、フラスコ内を1気圧の窒素で満たした。引き続き、上記で得られたプレポリマー-1を15.15g、ヘキサメチレンジイソシアネート(HDI)を0.18g、酸化防止剤としてBHT(ジ-ter-ブチルヒドロキシトルエン)を1,000ppm加えて攪拌後、溶剤としてのイソオクタン(和光純薬社製)を350g、分散剤を1.5g加え、ディスパーで分散させた。ここで、繰り返し単位(a)と、繰り返し単位(b)の比率は0.85、0.15であった。 フラスコ内を攪拌しながら、触媒としてジブチルスズジラウレート(DBTDL)を0.05g添加し、90℃で6時間反応させた。引き続き、40℃まで温度を下げ、フラスコから生成物を取り出し、ろ過乾燥することにより、水溶性ポリウレタン(PU-1)を得た。得られた樹脂粉末の平均粒子径は100μm、2%水溶液の20℃での粘度は27,000mPa・s(BL型粘度計、6rpm)であった。
[Synthesis of water-soluble polyurethane PU-1]
The compound was synthesized according to the method described in Example 8 of JP-A No. 2004-169011.
Into a 2,000 mL separable flask made of glass, 500 g of commercially available polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd., trade name: PEG # 6000, number average molecular weight: 8,630) was charged and melted at 150 ° C. under a nitrogen seal. . While stirring this, it was dried under reduced pressure (3 mmHg) for 3 hours. After drying, the temperature was lowered to 70 ° C., and the flask was filled with 1 atm of nitrogen. Subsequently, 15.15 g of the prepolymer-1 obtained above, 0.18 g of hexamethylene diisocyanate (HDI), 1,000 ppm of BHT (di-ter-butylhydroxytoluene) as an antioxidant were added and stirred, 350 g of isooctane (manufactured by Wako Pure Chemical Industries, Ltd.) as a solvent and 1.5 g of a dispersant were added and dispersed with a disper. Here, the ratio of the repeating unit (a) to the repeating unit (b) was 0.85 and 0.15. While stirring the flask, 0.05 g of dibutyltin dilaurate (DBTDL) was added as a catalyst and reacted at 90 ° C. for 6 hours. Subsequently, the temperature was lowered to 40 ° C., the product was taken out from the flask, and filtered and dried to obtain a water-soluble polyurethane (PU-1). The average particle diameter of the obtained resin powder was 100 μm, and the viscosity of a 2% aqueous solution at 20 ° C. was 27,000 mPa · s (BL viscometer, 6 rpm).
 <水溶性ポリウレタンPU-2の合成>
 [プレポリマー-2の合成]
 100mLガラス製フラスコに、上記で得られた櫛形ジオール-1を32.5g、ヘキサメチレンジイソシアネート(HDI)を67.5g加えた。フラスコを80℃に8時間加熱し、プレポリマー-2を得た。
<Synthesis of water-soluble polyurethane PU-2>
[Synthesis of Prepolymer-2]
To a 100 mL glass flask, 32.5 g of the comb-shaped diol-1 obtained above and 67.5 g of hexamethylene diisocyanate (HDI) were added. The flask was heated to 80 ° C. for 8 hours to obtain Prepolymer-2.
 [水溶性ポリウレタンPU-2の合成]
 特開2004-169011の実施例8に記載された方法に準じて合成した。
 2,000mLのガラス製セパラブルフラスコに、市販のポリエチレングリコール(三洋化成社製、商品名:PEG#6000、数平均分子量:8,630)を500g仕込み、窒素シール下で150℃にて溶融した。これを攪拌しながら、減圧下(3mmHg)で3時間乾燥した。乾燥後、70℃まで温度を下げ、フラスコ内を1気圧の窒素で満たした。引き続き、上記で得られたプレポリマー-2を15.38g、ヘキサメチレンジイソシアネート(HDI)を0.16g、酸化防止剤としてBHT(ジ-ter-ブチルヒドロキシトルエン)を1,000ppm加えて攪拌後、溶剤としてのイソオクタン(和光純薬社製)を350g、分散剤を1.5g加え、ディスパーで分散させた。ここで、繰り返し単位(a)と、繰り返し単位(b)の比率は0.85、0.15であった。 フラスコ内を攪拌しながら、触媒としてジブチルスズジラウレート(DBTDL)を0.05g添加し、90℃で6時間反応させた。引き続き、40℃まで温度を下げ、フラスコから生成物を取り出し、ろ過乾燥することにより、水溶性ポリウレタン(PU-2)を得た。得られた樹脂粉末の平均粒子径は100μm、2%水溶液の20℃での粘度は48,000mPa・s(BL型粘度計、6rpm)であった。
[Synthesis of water-soluble polyurethane PU-2]
The compound was synthesized according to the method described in Example 8 of JP-A No. 2004-169011.
Into a 2,000 mL separable flask made of glass, 500 g of commercially available polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd., trade name: PEG # 6000, number average molecular weight: 8,630) was charged and melted at 150 ° C. under a nitrogen seal. . While stirring this, it was dried under reduced pressure (3 mmHg) for 3 hours. After drying, the temperature was lowered to 70 ° C., and the flask was filled with 1 atm of nitrogen. Subsequently, 15.38 g of the prepolymer-2 obtained above, 0.16 g of hexamethylene diisocyanate (HDI), 1,000 ppm of BHT (di-ter-butylhydroxytoluene) as an antioxidant were added and stirred, 350 g of isooctane (manufactured by Wako Pure Chemical Industries, Ltd.) as a solvent and 1.5 g of a dispersant were added and dispersed with a disper. Here, the ratio of the repeating unit (a) to the repeating unit (b) was 0.85 and 0.15. While stirring the flask, 0.05 g of dibutyltin dilaurate (DBTDL) was added as a catalyst and reacted at 90 ° C. for 6 hours. Subsequently, the temperature was lowered to 40 ° C., the product was taken out from the flask, filtered and dried to obtain a water-soluble polyurethane (PU-2). The average particle diameter of the obtained resin powder was 100 μm, and the viscosity of a 2% aqueous solution at 20 ° C. was 48,000 mPa · s (BL viscometer, 6 rpm).
 <水溶性ポリウレタンPU-3の合成>
 [櫛形ジオール-2の合成]
 500mLの丸底フラスコに、マグネチックスターラー、温度計、及び滴下ロートを設置し、オクチルアミン(関東化学社製)65.0gを仕込み、フラスコ内を窒素で置換した。引き続き、フラスコをオイルバスで90℃に加熱し、攪拌しながら、滴下ロートを用いてラウリルグリシジルエーテル(関東化学社製)248.0gを40分かけて滴下した。滴下終了後、オイルバスの温度を120℃に上げて、フラスコを10時間加熱した。続いて、オイルバスの温度を150℃に上げて、真空ポンプを用いて、3mmHgの真空度で少量の未反応物を減圧留去した。これにより、オクチルアミン1モルに対してラウリルグリシジルエーテルが2モルの比率で付加した櫛形ジオール-2(OH価からの平均分子量:613)を収率95%で得た。
<Synthesis of water-soluble polyurethane PU-3>
[Synthesis of Comb Diol-2]
A magnetic stirrer, a thermometer, and a dropping funnel were placed in a 500 mL round bottom flask, charged with 65.0 g of octylamine (manufactured by Kanto Chemical Co., Inc.), and the inside of the flask was replaced with nitrogen. Subsequently, 248.0 g of lauryl glycidyl ether (manufactured by Kanto Chemical Co., Inc.) was dropped over 40 minutes using a dropping funnel while the flask was heated to 90 ° C. in an oil bath and stirred. After completion of dropping, the temperature of the oil bath was raised to 120 ° C., and the flask was heated for 10 hours. Subsequently, the temperature of the oil bath was raised to 150 ° C., and a small amount of unreacted material was distilled off under reduced pressure using a vacuum pump at a degree of vacuum of 3 mmHg. As a result, comb-shaped diol-2 (average molecular weight from OH value: 613) in which lauryl glycidyl ether was added at a ratio of 2 mol to 1 mol of octylamine was obtained in a yield of 95%.
 [プレポリマー-3の合成]
 100mLガラス製フラスコに、上記で得られた櫛形ジオール-2を32.0g、ヘキサメチレンジイソシアネート(HDI)を67.0g加えた。フラスコを80℃に8時間加熱し、プレポリマー-3を得た。
[Synthesis of Prepolymer-3]
To a 100 mL glass flask, 32.0 g of the comb-shaped diol-2 obtained above and 67.0 g of hexamethylene diisocyanate (HDI) were added. The flask was heated to 80 ° C. for 8 hours to obtain Prepolymer-3.
 [水溶性ポリウレタンPU-3の合成]
 特開2004-169011の実施例8に記載された方法に準じて合成した。
 2,000mLのガラス製セパラブルフラスコに、市販のポリエチレングリコール(三洋化成社製、商品名:PEG#6000、数平均分子量:8,630)を500g仕込み、窒素シール下で150℃にて溶融した。これを攪拌しながら、減圧下(3mmHg)で3時間乾燥した。乾燥後、70℃まで温度を下げ、フラスコ内を1気圧の窒素で満たした。引き続き、上記で得られたプレポリマー-3を15.4g、ヘキサメチレンジイソシアネート(HDI)を0.17g、酸化防止剤としてBHT(ジ-ter-ブチルヒドロキシトルエン)を1,000ppm加えて攪拌後、溶剤としてのイソオクタン(和光純薬社製)を350g、分散剤を1.5g加え、ディスパーで分散させた。ここで、繰り返し単位(a)と、繰り返し単位(b)の比率は0.85、0.15であった。 フラスコ内を攪拌しながら、触媒としてジブチルスズジラウレート(DBTDL)を0.05g添加し、90℃で6時間反応させた。引き続き、40℃まで温度を下げ、フラスコから生成物を取り出し、ろ過乾燥することにより、水溶性ポリウレタン(PU-3)を得た。得られた樹脂粉末の平均粒子径は100μm、2%水溶液の20℃での粘度は22,000mPa・s(BL型粘度計、6rpm)であった。
[Synthesis of water-soluble polyurethane PU-3]
The compound was synthesized according to the method described in Example 8 of JP-A No. 2004-169011.
Into a 2,000 mL separable flask made of glass, 500 g of commercially available polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd., trade name: PEG # 6000, number average molecular weight: 8,630) was charged and melted at 150 ° C. under a nitrogen seal. . While stirring this, it was dried under reduced pressure (3 mmHg) for 3 hours. After drying, the temperature was lowered to 70 ° C., and the flask was filled with 1 atm of nitrogen. Subsequently, 15.4 g of the prepolymer-3 obtained above, 0.17 g of hexamethylene diisocyanate (HDI) and 1,000 ppm of BHT (di-ter-butylhydroxytoluene) as an antioxidant were added and stirred. 350 g of isooctane (manufactured by Wako Pure Chemical Industries, Ltd.) as a solvent and 1.5 g of a dispersant were added and dispersed with a disper. Here, the ratio of the repeating unit (a) to the repeating unit (b) was 0.85 and 0.15. While stirring the flask, 0.05 g of dibutyltin dilaurate (DBTDL) was added as a catalyst and reacted at 90 ° C. for 6 hours. Subsequently, the temperature was lowered to 40 ° C., the product was taken out from the flask, filtered and dried to obtain a water-soluble polyurethane (PU-3). The average particle diameter of the obtained resin powder was 100 μm, and the viscosity of a 2% aqueous solution at 20 ° C. was 22,000 mPa · s (BL viscometer, 6 rpm).
 <水溶性ポリウレタンPU-4の合成>
 [プレポリマー-4の合成]
 100mLガラス製フラスコに、上記で得られた櫛形ジオール-2を31.8g、ヘキサメチレンジイソシアネート(HDI)を68.2g加えた。フラスコを80℃に8時間加熱し、プレポリマー-4を得た。
<Synthesis of water-soluble polyurethane PU-4>
[Synthesis of Prepolymer-4]
31.8 g of the comb-shaped diol-2 obtained above and 68.2 g of hexamethylene diisocyanate (HDI) were added to a 100 mL glass flask. The flask was heated to 80 ° C. for 8 hours to obtain Prepolymer-4.
 [水溶性ポリウレタンPU-4の合成]
 特開2004-169011の実施例8に記載された方法に準じて合成した。
 2,000mLのガラス製セパラブルフラスコに、市販のポリエチレングリコール(三洋化成社製、商品名:PEG#6000、数平均分子量:8,630)を500g仕込み、窒素シール下で150℃にて溶融した。これを攪拌しながら、減圧下(3mmHg)で3時間乾燥した。乾燥後、70℃まで温度を下げ、フラスコ内を1気圧の窒素で満たした。引き続き、上記で得られたプレポリマー-4を16.7g、ヘキサメチレンジイソシアネート(HDI)を0.13g、酸化防止剤としてBHT(ジ-ter-ブチルヒドロキシトルエン)を1,000ppm加えて攪拌後、溶剤としてのイソオクタン(和光純薬社製)を350g、分散剤を1.5g加え、ディスパーで分散させた。ここで、繰り返し単位(a)と、繰り返し単位(b)の比率は0.85、0.15であった。 フラスコ内を攪拌しながら、触媒としてジブチルスズジラウレート(DBTDL)を0.05g添加し、90℃で6時間反応させた。引き続き、40℃まで温度を下げ、フラスコから生成物を取り出し、ろ過乾燥することにより、水溶性ポリウレタン(PU-4)を得た。得られた樹脂粉末の平均粒子径は100μm、2%水溶液の20℃での粘度は40,000mPa・s(BL型粘度計、6rpm)であった。
[Synthesis of water-soluble polyurethane PU-4]
The compound was synthesized according to the method described in Example 8 of JP-A No. 2004-169011.
Into a 2,000 mL separable flask made of glass, 500 g of commercially available polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd., trade name: PEG # 6000, number average molecular weight: 8,630) was charged and melted at 150 ° C. under a nitrogen seal. . While stirring this, it was dried under reduced pressure (3 mmHg) for 3 hours. After drying, the temperature was lowered to 70 ° C., and the flask was filled with 1 atm of nitrogen. Subsequently, 16.7 g of the prepolymer-4 obtained above, 0.13 g of hexamethylene diisocyanate (HDI), 1,000 ppm of BHT (di-ter-butylhydroxytoluene) as an antioxidant were added and stirred, 350 g of isooctane (manufactured by Wako Pure Chemical Industries, Ltd.) as a solvent and 1.5 g of a dispersant were added and dispersed with a disper. Here, the ratio of the repeating unit (a) to the repeating unit (b) was 0.85 and 0.15. While stirring the flask, 0.05 g of dibutyltin dilaurate (DBTDL) was added as a catalyst and reacted at 90 ° C. for 6 hours. Subsequently, the temperature was lowered to 40 ° C., the product was taken out from the flask, filtered and dried to obtain a water-soluble polyurethane (PU-4). The average particle diameter of the obtained resin powder was 100 μm, and the viscosity of a 2% aqueous solution at 20 ° C. was 40,000 mPa · s (BL viscometer, 6 rpm).
 <水溶性ポリウレタンPU-5の合成>
 [櫛形ジオール-3の合成]
 500mLの丸底フラスコに、マグネチックスターラー、温度計、及び滴下ロートを設置し、2-エチルヘキシルアミン(関東化学社製)64.6gを仕込み、フラスコ内を窒素で置換した。引き続き、フラスコをオイルバスで90℃に加熱し、攪拌しながら、滴下ロートを用いて2-エチルヘキシルグリシジルエーテル(関東化学社製)190.0gを40分かけて滴下した。滴下終了後、オイルバスの温度を120℃に上げて、フラスコを10時間加熱した。続いて、オイルバスの温度を150℃に上げて、真空ポンプを用いて、3mmHgの真空度で少量の未反応物を減圧留去した。これにより、2-エチルヘキシルアミン1モルに対して2-エチルヘキシルグリシジルエーテルが2モルの比率で付加した櫛形ジオール-3(OH価からの平均分子量:510)を収率95%で得た。
<Synthesis of water-soluble polyurethane PU-5>
[Synthesis of comb-shaped diol-3]
A magnetic stirrer, thermometer, and dropping funnel were placed in a 500 mL round bottom flask, charged with 64.6 g of 2-ethylhexylamine (manufactured by Kanto Chemical Co., Inc.), and the inside of the flask was replaced with nitrogen. Subsequently, 190.0 g of 2-ethylhexyl glycidyl ether (manufactured by Kanto Chemical Co., Inc.) was dropped over 40 minutes using a dropping funnel while the flask was heated to 90 ° C. in an oil bath and stirred. After completion of dropping, the temperature of the oil bath was raised to 120 ° C., and the flask was heated for 10 hours. Subsequently, the temperature of the oil bath was raised to 150 ° C., and a small amount of unreacted material was distilled off under reduced pressure using a vacuum pump at a degree of vacuum of 3 mmHg. As a result, comb-shaped diol-3 (average molecular weight from OH value: 510) in which 2-ethylhexyl glycidyl ether was added at a ratio of 2 mol to 1 mol of 2-ethylhexylamine was obtained in a yield of 95%.
 [プレポリマー-5の合成]
 100mLガラス製フラスコに、上記で得られた櫛形ジオール-3を20g、ヘキサメチレンジイソシアネート(HDI)を45.5g加えた。フラスコを80℃に8時間加熱し、プレポリマー-5を得た。
[Synthesis of Prepolymer-5]
20 g of the comb-shaped diol-3 obtained above and 45.5 g of hexamethylene diisocyanate (HDI) were added to a 100 mL glass flask. The flask was heated to 80 ° C. for 8 hours to obtain Prepolymer-5.
 [水溶性ポリウレタンPU-5の合成]
 特開2004-169011の実施例8に記載された方法に準じて合成した。
 2,000mLのガラス製セパラブルフラスコに、市販のポリエチレングリコール(三洋化成社製、商品名:PEG#6000、数平均分子量:8,630)を500g仕込み、窒素シール下で150℃にて溶融した。これを攪拌しながら、減圧下(3mmHg)で3時間乾燥した。乾燥後、70℃まで温度を下げ、フラスコ内を1気圧の窒素で満たした。引き続き、上記で得られたプレポリマー-5を16.4g、ヘキサメチレンジイソシアネート(HDI)を0.10g、酸化防止剤としてBHT(ジ-ter-ブチルヒドロキシトルエン)を1,000ppm加えて攪拌後、溶剤としてのイソオクタン(和光純薬社製)を350g、分散剤を1.5g加え、ディスパーで分散させた。ここで、繰り返し単位(a)と、繰り返し単位(b)の比率は0.85、0.15であった。 フラスコ内を攪拌しながら、触媒としてジブチルスズジラウレート(DBTDL)を0.05g添加し、90℃で6時間反応させた。引き続き、40℃まで温度を下げ、フラスコから生成物を取り出し、ろ過乾燥することにより、水溶性ポリウレタン(PU-5)を得た。得られた樹脂粉末の平均粒子径は100μm、2%水溶液の20℃での粘度は42,000mPa・s(BL型粘度計、6rpm)であった。
[Synthesis of water-soluble polyurethane PU-5]
The compound was synthesized according to the method described in Example 8 of JP-A No. 2004-169011.
Into a 2,000 mL separable flask made of glass, 500 g of commercially available polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd., trade name: PEG # 6000, number average molecular weight: 8,630) was charged and melted at 150 ° C. under a nitrogen seal. . While stirring this, it was dried under reduced pressure (3 mmHg) for 3 hours. After drying, the temperature was lowered to 70 ° C., and the flask was filled with 1 atm of nitrogen. Subsequently, 16.4 g of the prepolymer-5 obtained above, 0.10 g of hexamethylene diisocyanate (HDI), 1,000 ppm of BHT (di-ter-butylhydroxytoluene) as an antioxidant were added and stirred, 350 g of isooctane (manufactured by Wako Pure Chemical Industries, Ltd.) as a solvent and 1.5 g of a dispersant were added and dispersed with a disper. Here, the ratio of the repeating unit (a) to the repeating unit (b) was 0.85 and 0.15. While stirring the flask, 0.05 g of dibutyltin dilaurate (DBTDL) was added as a catalyst and reacted at 90 ° C. for 6 hours. Subsequently, the temperature was lowered to 40 ° C., the product was taken out from the flask, filtered and dried to obtain a water-soluble polyurethane (PU-5). The average particle size of the obtained resin powder was 100 μm, and the viscosity of a 2% aqueous solution at 20 ° C. was 42,000 mPa · s (BL viscometer, 6 rpm).
 <水溶性ポリウレタンPU-6の合成>
 [櫛形ジオール-4の合成]
 500mLの丸底フラスコに、マグネチックスターラー、温度計、及び滴下ロートを設置し、3-ラウリルオキシプロピルアミン(関東化学社製)64.6gを仕込み、フラスコ内を窒素で置換した。引き続き、フラスコをオイルバスで90℃に加熱し、攪拌しながら、滴下ロートを用いて2-エチルヘキシルグリシジルエーテル(関東化学社製)100.7gを40分かけて滴下した。滴下終了後、オイルバスの温度を120℃に上げて、フラスコを10時間加熱した。続いて、オイルバスの温度を150℃に上げて、真空ポンプを用いて、3mmHgの真空度で少量の未反応物を減圧留去した。これにより、3-ラウリルオキシプロピルアミン1モルに対して2-エチルヘキシルグリシジルエーテルが2モルの比率で付加した櫛形ジオール-4(OH価からの平均分子量:630)を収率95%で得た。
<Synthesis of water-soluble polyurethane PU-6>
[Synthesis of Comb Diol-4]
A magnetic stirrer, thermometer, and dropping funnel were placed in a 500 mL round bottom flask, charged with 64.6 g of 3-lauryloxypropylamine (manufactured by Kanto Chemical Co., Inc.), and the inside of the flask was replaced with nitrogen. Subsequently, 100.7 g of 2-ethylhexyl glycidyl ether (manufactured by Kanto Chemical Co., Inc.) was added dropwise over 40 minutes using a dropping funnel while the flask was heated to 90 ° C. in an oil bath and stirred. After completion of dropping, the temperature of the oil bath was raised to 120 ° C., and the flask was heated for 10 hours. Subsequently, the temperature of the oil bath was raised to 150 ° C., and a small amount of unreacted material was distilled off under reduced pressure using a vacuum pump at a degree of vacuum of 3 mmHg. As a result, comb-shaped diol-4 (average molecular weight from OH number: 630) in which 2-ethylhexyl glycidyl ether was added at a ratio of 2 moles to 1 mole of 3-lauryloxypropylamine was obtained in a yield of 95%.
 [プレポリマー-6の合成]
 100mLガラス製フラスコに、上記で得られた櫛形ジオール-4を20g、ヘキサメチレンジイソシアネート(HDI)を44g加えた。フラスコを80℃に6時間加熱し、プレポリマー-6を得た。
[Synthesis of Prepolymer-6]
20 g of the comb-shaped diol-4 obtained above and 44 g of hexamethylene diisocyanate (HDI) were added to a 100 mL glass flask. The flask was heated to 80 ° C. for 6 hours to obtain Prepolymer-6.
 [水溶性ポリウレタンPU-6の合成]
 特開2004-169011の実施例8に記載された方法に準じて合成した。
 2,000mLのガラス製セパラブルフラスコに、市販のポリエチレングリコール(三洋化成社製、商品名:PEG#6000、数平均分子量:8,630)を500g仕込み、窒素シール下で150℃にて溶融した。これを攪拌しながら、減圧下(3mmHg)で3時間乾燥した。乾燥後、70℃まで温度を下げ、フラスコ内を1気圧の窒素で満たした。引き続き、上記で得られたプレポリマー-6を16.0g、酸化防止剤としてジ-ter-ブチルヒドロキシトルエン(BHT)を1,000ppm加えて攪拌後、溶剤としてのイソオクタン(和光純薬社製)を350g、分散剤を1.5g加え、ディスパーで分散させた。ここで、繰り返し単位(a)と、繰り返し単位(b)の比率は0.88、0.12であった。 フラスコ内を攪拌しながら、触媒としてジブチルスズジラウレート(DBTDL)を0.05g添加し、90℃で6時間反応させた。引き続き、40℃まで温度を下げ、フラスコから生成物を取り出し、ろ過乾燥させ、水溶性ポリウレタン(PU-6)を得た。得られた樹脂粉末の平均粒子径は120μm、2%水溶液の20℃での粘度は200,000mPa・s(BH型粘度計、4rpm)であった。
[Synthesis of water-soluble polyurethane PU-6]
The compound was synthesized according to the method described in Example 8 of JP-A No. 2004-169011.
Into a 2,000 mL separable flask made of glass, 500 g of commercially available polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd., trade name: PEG # 6000, number average molecular weight: 8,630) was charged and melted at 150 ° C. under a nitrogen seal. . While stirring this, it was dried under reduced pressure (3 mmHg) for 3 hours. After drying, the temperature was lowered to 70 ° C., and the flask was filled with 1 atm of nitrogen. Subsequently, 16.0 g of the prepolymer-6 obtained above and 1,000 ppm of di-ter-butylhydroxytoluene (BHT) as an antioxidant were added and stirred, and then isooctane as a solvent (manufactured by Wako Pure Chemical Industries, Ltd.) 350 g and a dispersant 1.5 g were added and dispersed with a disper. Here, the ratio of the repeating unit (a) to the repeating unit (b) was 0.88 and 0.12. While stirring the flask, 0.05 g of dibutyltin dilaurate (DBTDL) was added as a catalyst and reacted at 90 ° C. for 6 hours. Subsequently, the temperature was lowered to 40 ° C., the product was taken out from the flask, filtered and dried to obtain a water-soluble polyurethane (PU-6). The average particle diameter of the obtained resin powder was 120 μm, and the viscosity of a 2% aqueous solution at 20 ° C. was 200,000 mPa · s (BH viscometer, 4 rpm).
 以下、本発明の具体的態様を実施例および比較例により説明する。
 実施例1~17、比較例1~7
1)水道水
2)海水:人工海水(八州薬品株式会社製の商品名「アクアマリンS」)
3)粘土:ベントナイト、群馬県産、 200メッシュ
4)セメント:普通ポルトランドセメント(日本セメント社製)
5)水溶性多糖類:ウエランガム(メルク社ケルコ事業部製)
6)非イオン性セルロースエーテル:ヒドロキシプロピルメチルセルロース(以下、HPMCと略す)置換度: 0.7
7)カルボキシメチルセルロース(以下、CMCと略す)置換度: 0.7
8)耐塩性カルボキシメチルセルロース(以下、耐塩性CMCと略す)置換度: 1.5
9)市販のポリアクリル酸ナトリウム(重量平均分子量1万~1.4万)の水溶液(不揮発分濃度41.0%)(三洋化成製の商品名「SuperSlurry B」))
及び上記水溶性ポリウレタン(PU-1~PU6)の各成分を表1に示す割合で配合して掘削泥水組成物を得た。
Hereinafter, specific embodiments of the present invention will be described with reference to Examples and Comparative Examples.
Examples 1 to 17 and Comparative Examples 1 to 7
1) Tap water 2) Seawater: Artificial seawater (trade name “Aquamarine S” manufactured by Hachishu Pharmaceutical Co., Ltd.)
3) Clay: Bentonite, Gunma Prefecture, 200 mesh 4) Cement: Ordinary Portland cement (manufactured by Nippon Cement)
5) Water-soluble polysaccharide: Welan gum (Merck Kelco Division)
6) Nonionic cellulose ether: hydroxypropyl methylcellulose (hereinafter abbreviated as HPMC) Degree of substitution: 0.7
7) Degree of substitution with carboxymethylcellulose (hereinafter abbreviated as CMC): 0.7
8) Salt-resistant carboxymethylcellulose (hereinafter abbreviated as salt-resistant CMC) Degree of substitution: 1.5
9) Commercially available sodium polyacrylate (weight average molecular weight 10,000-14,000) aqueous solution (non-volatile content concentration 41.0%) (trade name “SuperSlurry B” manufactured by Sanyo Kasei))
And each component of the water-soluble polyurethane (PU-1 to PU6) was blended in the proportions shown in Table 1 to obtain a drilling mud composition.
 <製造方法>
 回転数383rpmのホバート式ミキサーを用いて、混練水と粘土を10分撹拌し、次いで水と添加剤を添加して1分撹拌して掘削泥水組成物を得た。
 実施例2、4、8、10、12、15、17、比較例6、7では、その後さらにセメントを添加して5分撹拌して掘削泥水組成物を得た。
<Manufacturing method>
Using a Hobart mixer with a rotation speed of 383 rpm, the kneaded water and clay were stirred for 10 minutes, then water and additives were added and stirred for 1 minute to obtain a drilling mud composition.
In Examples 2, 4, 8, 10, 12, 15, 17, and Comparative Examples 6 and 7, a cement was further added and stirred for 5 minutes to obtain a drilling mud composition.
 得られた掘削泥水組成物について、次の方法で性状の測定を行い、その結果を表1に併記した。
1)比重:1000mlのメスシリンダーに泥水1000mlを入れ、その重量を測定した。
2)起泡率:以下の式により起泡率を算出した。
  起泡率={(初期比重-撹拌後比重)/初期比重}×100
 実施例2、4、8、10、12、15、17、比較例6、7では、セメント添加、5分後の比重を初期比重、その後、25分撹拌した後の比重を撹拌後比重とした。
 その他の実施例、比較例では、25分撹拌撹拌する前と後の比重を各々初期比重、撹拌後比重とした。
3)ファンネル粘性:ファンネルコーンに泥水 500mlを入れ、流下に要する時間を測定した。
4)脱水量:API濾過試験器の容器に泥水 500mlを入れ、二酸化炭素ガスにより加圧(0.3MPa(3kgf/cm))し、30分経過後の濾過水量(脱水量)を測定した。
About the obtained drilling mud composition, the property was measured with the following method and the result was written together in Table 1.
1) Specific gravity: 1000 ml of muddy water was put into a 1000 ml graduated cylinder, and its weight was measured.
2) Foaming rate: The foaming rate was calculated by the following formula.
Foaming rate = {(initial specific gravity−specific gravity after stirring) / initial specific gravity} × 100
In Examples 2, 4, 8, 10, 12, 15, 17 and Comparative Examples 6 and 7, the specific gravity after 5 minutes of cement addition was the initial specific gravity, and then the specific gravity after stirring for 25 minutes was the specific gravity after stirring. .
In other examples and comparative examples, the specific gravity before and after stirring for 25 minutes was set as the initial specific gravity and the specific gravity after stirring, respectively.
3) Funnel viscosity: 500 ml of muddy water was added to the funnel cone, and the time required for flow down was measured.
4) Dewatering amount: 500 ml of muddy water was put into a container of an API filtration tester, pressurized with carbon dioxide gas (0.3 MPa (3 kgf / cm 2 )), and the amount of filtered water (dehydrated amount) after 30 minutes was measured. .
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 比較例1~2は添加剤としてCMCを用いた例であるが、通常のCMCである置換度0.7のものでは海水の汚染により脱水量が多く使用できない。
 比較例3の置換度 1.5の耐塩性CMCでは置換度 0.7のものと比較して劣化は少ないが、脱水量が多く実施工程での泥壁性能に劣り問題となる。
Comparative Examples 1 and 2 are examples in which CMC is used as an additive, but a normal CMC with a substitution degree of 0.7 cannot be used because of a large amount of dehydration due to seawater contamination.
The salt-resistant CMC having a substitution degree of 1.5 in Comparative Example 3 is less deteriorated than that having a substitution degree of 0.7, but the amount of dewatering is large and the mud wall performance in the implementation process is inferior.
 比較例4は添加剤として非イオン性水溶性セルロースエーテルであるHPMCを用いた例であるが、HPMCの起泡性のために泥水は泡立ち、実用上使用不能である。
 添加剤として比較例5、6は水溶性多糖類の1種であるウエランガム、比較例7は水溶性ポリマーのポリアクリル酸ナトリウムを用いた例であるが、耐塩性CMCと比較して脱水量は少ないが、セメント混入による劣化があり、通常の脱水量の目標値である50ml以下を超え、さらに多くの添加が必要である。
Comparative Example 4 is an example in which HPMC, which is a nonionic water-soluble cellulose ether, is used as an additive. However, due to the foaming property of HPMC, muddy water is foamed and cannot be used practically.
As additives, Comparative Examples 5 and 6 are welan gum, which is a kind of water-soluble polysaccharide, and Comparative Example 7 is an example using sodium polyacrylate as a water-soluble polymer. Although there is little, there is deterioration due to cement mixing, exceeding the target value of normal dehydration amount of 50 ml or less, and more addition is necessary.
 実施例1~17は添加剤として本発明の水溶性ポリウレタンを用いた例であるが、海水、セメントの混入によっても凝集せず脱水量が少なく泥壁性能に優れる。また長時間の撹拌でも起泡せず実施工での使用が容易である。 Examples 1 to 17 are examples in which the water-soluble polyurethane of the present invention is used as an additive, but it does not agglomerate even when mixed with seawater and cement, and the amount of dewatering is small and the mud wall performance is excellent. In addition, it is easy to use in construction without foaming even with long-time stirring.
 <まとめ>
 上記の結果から、本発明の掘削泥水組成物は、基本性能において低粘度でかつ高濾水性であり、分散性に優れることがわかる。また、耐海水性、耐セメント性についても、ブリージング・ゲル化傾向低減、濾水量の増大抑制(高濾水性)効果が見られ、優れた効果が発揮できることがわかる。
<Summary>
From the above results, it can be seen that the drilling mud composition of the present invention has low viscosity and high drainage in basic performance and is excellent in dispersibility. In addition, regarding seawater resistance and cement resistance, it can be seen that the effect of reducing the tendency to breathing and gelation and suppressing the increase in the amount of filtered water (high drainage) can be seen and excellent effects can be exhibited.
 本発明の掘削泥水用添加剤は、石油、天然ガス、土木、鉱山などの掘削工法において地盤掘削の際に用いられる掘削泥水組成物の安定化に好適に利用できる。 The additive for drilling mud of the present invention can be suitably used for stabilizing a drilling mud composition used for ground excavation in drilling methods such as petroleum, natural gas, civil engineering, and mining.

Claims (8)

  1.  下記一般式(I)で表わされる繰り返し単位(a)と、下記一般式(II)で表される繰り返し単位(b)とを含み、
     前記繰り返し単位(a)及び繰り返し単位(b)の総モル数に対する前記繰り返し単位(a)のモル数の比は、0.5以上0.99以下である水溶性ポリウレタンからなる掘削泥水用添加剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     Aは、ポリ(オキシアルキレン)基を含む2価の連結基を示し、Bは、2価の連結基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     Dは、分子内に炭素数4から21の1価炭化水素基を2個以上有する2価の連結基を示し、
     Bは、2価の連結基を示す。)
    A repeating unit (a) represented by the following general formula (I) and a repeating unit (b) represented by the following general formula (II):
    Drilling mud additive comprising water-soluble polyurethane, wherein the ratio of the number of moles of the repeating unit (a) to the total number of moles of the repeating unit (a) and the repeating unit (b) is 0.5 or more and 0.99 or less. .
    Figure JPOXMLDOC01-appb-C000001
    (Where
    A represents a divalent linking group containing a poly (oxyalkylene) group, and B represents a divalent linking group. )
    Figure JPOXMLDOC01-appb-C000002
    (Where
    D represents a divalent linking group having two or more monovalent hydrocarbon groups having 4 to 21 carbon atoms in the molecule;
    B represents a divalent linking group. )
  2.  Dは、下記一般式(III)及び/又は下記一般式(IV)で表わされる基である請求項1記載の掘削泥水用添加剤。
    Figure JPOXMLDOC01-appb-C000003
    (式中、
     Rは、炭素原子数1から20の炭化水素基又は窒素含有炭化水素基であり、
     R及びRは、同一でも異なっていてもよく、炭素原子数4から21の炭化水素基であり、
     ここで、R、R、及びRにおける水素原子の少なくとも一部は、フッ素原子、塩素原子、臭素原子、及び沃素原子からなる群より選ばれる少なくとも1種の原子で置換されていてもよく、
     Y及びY’は、同一でも異なっていてもよく、水素原子、メチル基、及びCHCl基からなる群より選ばれるいずれかであり、
     Z及びZ’は、同一でも異なっていてもよく、酸素原子、硫黄原子、及びCH基からなる群より選ばれるいずれかであり、
     n及びn’は、同一でも異なっていてもよく、
     nは、Zが酸素原子の場合には0から15の整数であり、Zが硫黄原子又はCH基の場合には0であり、
     n’は、Z’が酸素原子の場合には0から15の整数であり、Z’が硫黄原子又はCH基の場合には0である。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、
     Rは、全炭素原子数2から4のアルキレン基であり、
     Rは、炭素原子数1から21の炭化水素基であり、
     R及びRは、同一でも異なっていてもよく、炭素原子数4から21の炭化水素基であり、
     ここで、R、R、R及びRにおける水素原子の少なくとも一部は、フッ素原子、塩素原子、臭素原子、又は沃素原子で置換されていてもよく、
     S、S’、及びS”は、同一でも異なっていてもよく、水素原子、メチル基、及びCHCl基からなる群より選ばれるいずれかであり、
     T及びT’は、同一でも異なっていてもよく、酸素原子、硫黄原子、及びCH基からなる群より選ばれるいずれかであり、
     P及びP’は、同一でも異なっていてもよく、
     Pは、Tが酸素原子の場合には0から15の整数であり、Tが硫黄原子又はCH基の場合には0であり、
     P’は、T’が酸素原子の場合には0から15の整数であり、T’が硫黄原子又はCH基の場合には0であり、
     Qは、0から15の整数である。)
    The additive for drilling mud according to claim 1, wherein D is a group represented by the following general formula (III) and / or the following general formula (IV).
    Figure JPOXMLDOC01-appb-C000003
    (Where
    R 1 is a hydrocarbon group having 1 to 20 carbon atoms or a nitrogen-containing hydrocarbon group,
    R 2 and R 3 may be the same or different and are hydrocarbon groups having 4 to 21 carbon atoms,
    Here, at least part of the hydrogen atoms in R 1 , R 2 , and R 3 may be substituted with at least one atom selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Often,
    Y and Y ′ may be the same or different and are any one selected from the group consisting of a hydrogen atom, a methyl group, and a CH 2 Cl group,
    Z and Z ′ may be the same or different and are any selected from the group consisting of an oxygen atom, a sulfur atom, and a CH 2 group,
    n and n ′ may be the same or different,
    n is an integer of 0 to 15 when Z is an oxygen atom, and 0 when Z is a sulfur atom or a CH 2 group,
    n ′ is an integer of 0 to 15 when Z ′ is an oxygen atom, and 0 when Z ′ is a sulfur atom or a CH 2 group. )
    Figure JPOXMLDOC01-appb-C000004
    (Where
    R 4 is an alkylene group having 2 to 4 carbon atoms in total,
    R 5 is a hydrocarbon group having 1 to 21 carbon atoms,
    R 6 and R 7 may be the same or different and each is a hydrocarbon group having 4 to 21 carbon atoms;
    Here, at least part of the hydrogen atoms in R 4 , R 5 , R 6 and R 7 may be substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom,
    S, S ′, and S ″ may be the same or different and are any one selected from the group consisting of a hydrogen atom, a methyl group, and a CH 2 Cl group,
    T and T ′ may be the same or different and are any one selected from the group consisting of an oxygen atom, a sulfur atom, and a CH 2 group,
    P and P ′ may be the same or different,
    P is an integer of 0 to 15 when T is an oxygen atom, and 0 when T is a sulfur atom or a CH 2 group,
    P ′ is an integer of 0 to 15 when T ′ is an oxygen atom, and is 0 when T ′ is a sulfur atom or a CH 2 group,
    Q is an integer from 0 to 15. )
  3.  20℃での2%水溶液粘度が10~100,000mPa・sである請求項1ないし2のいずれかに記載の掘削泥水用添加剤。 The additive for drilling mud according to any one of claims 1 to 2, wherein the viscosity of a 2% aqueous solution at 20 ° C is 10 to 100,000 mPa · s.
  4.  請求項1ないし3のいずれかに記載の掘削泥水用添加剤、無機系泥質及び水を含む掘削泥水組成物。 Drilling mud composition comprising the drilling mud additive according to any one of claims 1 to 3, an inorganic mud and water.
  5.  請求項4に記載の掘削泥水組成物の存在下で地盤を掘削することを特徴とする地盤掘削工法。 A ground excavation method characterized by excavating the ground in the presence of the drilling mud composition according to claim 4.
  6.  前記掘削泥水組成物を用いて掘削屑を地上へ搬出する工程を含む請求項5に記載の地盤掘削工法。 The ground excavation method according to claim 5, including a step of carrying out excavation waste to the ground using the excavation mud composition.
  7.  坑井を掘削することを特徴とする請求項5または6に記載の地盤掘削工法。 The ground excavation method according to claim 5 or 6, wherein a well is excavated.
  8.  海底の地盤を掘削することを特徴とする請求項5~7のいずれかに記載の地盤掘削工法。 The ground excavation method according to any one of claims 5 to 7, wherein the ground on the seabed is excavated.
PCT/JP2014/081684 2013-12-04 2014-12-01 Additive for drilling fluid, drilling fluid composition and ground excavating method WO2015083652A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551494A JPWO2015083652A1 (en) 2013-12-04 2014-12-01 Drilling mud additive, drilling mud composition and ground excavation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-250952 2013-12-04
JP2013250952 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015083652A1 true WO2015083652A1 (en) 2015-06-11

Family

ID=53273415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081684 WO2015083652A1 (en) 2013-12-04 2014-12-01 Additive for drilling fluid, drilling fluid composition and ground excavating method

Country Status (2)

Country Link
JP (1) JPWO2015083652A1 (en)
WO (1) WO2015083652A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045406A (en) * 2018-09-18 2020-03-26 五洋建設株式会社 Additive material for underground drilling, salty muddy water, and method of preparing salty muddy water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776684A (en) * 1993-09-08 1995-03-20 Sanyo Chem Ind Ltd Adjustor for excavation slurry
JPH10316963A (en) * 1997-05-20 1998-12-02 Lion Corp Dispersant for excavation slurry
JPH11343328A (en) * 1998-03-31 1999-12-14 Mitsui Chem Inc Water-soluble polyurethane having comb-like hydrophobic group and extrusion aid
JP2000297133A (en) * 1999-04-14 2000-10-24 Mitsui Chemicals Inc Comb-shaped diol, water-soluble polyurethane and extrusion molding aid
JP2004169011A (en) * 2002-10-30 2004-06-17 Mitsui Chemicals Inc Preparation process of water-soluble polyurethane
JP2011225758A (en) * 2010-04-21 2011-11-10 Sumitomo Seika Chem Co Ltd Additive for drilling mud

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776684A (en) * 1993-09-08 1995-03-20 Sanyo Chem Ind Ltd Adjustor for excavation slurry
JPH10316963A (en) * 1997-05-20 1998-12-02 Lion Corp Dispersant for excavation slurry
JPH11343328A (en) * 1998-03-31 1999-12-14 Mitsui Chem Inc Water-soluble polyurethane having comb-like hydrophobic group and extrusion aid
JP2000297133A (en) * 1999-04-14 2000-10-24 Mitsui Chemicals Inc Comb-shaped diol, water-soluble polyurethane and extrusion molding aid
JP2004169011A (en) * 2002-10-30 2004-06-17 Mitsui Chemicals Inc Preparation process of water-soluble polyurethane
JP2011225758A (en) * 2010-04-21 2011-11-10 Sumitomo Seika Chem Co Ltd Additive for drilling mud

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045406A (en) * 2018-09-18 2020-03-26 五洋建設株式会社 Additive material for underground drilling, salty muddy water, and method of preparing salty muddy water
JP7229632B2 (en) 2018-09-18 2023-02-28 五洋建設株式会社 Underground Drilling Additive, Brine Mud, and Method for Preparing Brine Mud

Also Published As

Publication number Publication date
JPWO2015083652A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
CN102827340B (en) Organosilicon-modified waterborne polyurethane composite material and applications thereof
CN103562339B (en) Curable compositions as loss circulation material
CN102718462B (en) Chemical grouting material for reinforcing loose and broken bedrock
EP1184364A1 (en) Comb-shaped diol, water-soluble polyurethane, and use thereof
CN105254240A (en) Multicomponent composition for filling and/or grouting cracks, flaws, and cavities in structures or earth and stone formations
RU2008140514A (en) COMPOSITION PRODUCED FROM DIISOCIANATE AND MONOAMINE AND METHOD FOR PREPARING IT
JP2009132832A (en) One-component type polyurethane-based curable composition and adhesive using this
WO2015083652A1 (en) Additive for drilling fluid, drilling fluid composition and ground excavating method
CN104341572A (en) Preparation method of solvent-free water-based polyurethane resin
CN101885916B (en) Organosilicon composition and preparation method thereof
CN111378183A (en) Hybrid dynamic polymer containing reversible free radical type dynamic covalent bond and application thereof
CN115260449B (en) Polyurethane anchoring agent with low slurry viscosity and high anchoring body strength and preparation method thereof
CN110396389A (en) A kind of dedicated solvent-free polyurethane adhesive of polyester nib
JP3908406B2 (en) Comb diol and water-soluble polyurethane and extrusion aid
JP2002146351A (en) Natural ground-consolidating composition
CA2553260A1 (en) Hydrophobic, water-insoluble polyurethane thickeners in granule or powder form and their use for thickening aqueous systems
AU2011220013B2 (en) Macromolecular amphiphilic compounds as water retention agents for construction chemical systems, especially for cementing of boreholes
US20110207845A1 (en) Macromolecular, amphiphilic compounds as water retention agents for construction chemistry systems, in particular for well cementing
JP2006233054A (en) Impregnating agent composition for consolidation of rock bed or ground, and soil stabilizing and enhancing water sealing construction method using the same
US20090203809A1 (en) Novel polyurethanes with a high water content, method for the production and application thereof
RU2573511C1 (en) Polyurethane composition
JP5646136B2 (en) Water retention agent composition for mortar
JP5855437B2 (en) Modified water-soluble polyalkylene oxide
JP2005162585A (en) Dust reducing agent
CN117285697A (en) Single-component water-soluble polyurethane grouting material and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866932

Country of ref document: EP

Kind code of ref document: A1