WO2015083637A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2015083637A1
WO2015083637A1 PCT/JP2014/081553 JP2014081553W WO2015083637A1 WO 2015083637 A1 WO2015083637 A1 WO 2015083637A1 JP 2014081553 W JP2014081553 W JP 2014081553W WO 2015083637 A1 WO2015083637 A1 WO 2015083637A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
outer rotor
inner rotor
rotor
hole
Prior art date
Application number
PCT/JP2014/081553
Other languages
French (fr)
Japanese (ja)
Inventor
祥平 松本
修士 湯本
弘文 藤原
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2015083637A1 publication Critical patent/WO2015083637A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors

Definitions

  • the present invention relates to a rotating electrical machine, and more particularly to a double rotor type rotating electrical machine mounted on a hybrid vehicle equipped with an engine.
  • a rotating electrical machine mounted on a hybrid vehicle has an inner rotor, an outer rotor disposed around the inner rotor, and a stator disposed around the outer rotor.
  • Three-phase alternating current is supplied to the coils of the inner rotor and the stator, and the outer rotor is rotated by the rotating magnetic field generated thereby, and the wheels of the vehicle are driven through an axle mechanically connected to the outer rotor.
  • the inner rotor is rotationally driven by the engine and generates power.
  • traveling of the vehicle when the rotating electrical machine is driving wheels without generating power is referred to as EV mode traveling.
  • traveling of the vehicle when the rotating electrical machine is generating power and driving wheels at the same time is called RE (range extend) mode traveling.
  • Patent Document 1 describes a configuration for circulating oil inside a rotating electrical machine to lubricate and cool components of the rotating electrical machine.
  • oil flows through an elongated hole 300 formed inside the rotation shaft 202 of the inner rotor 10.
  • the rotary shaft 202 of the inner rotor 10 is provided with a jet port 301 communicating the outer peripheral surface of the rotary shaft 202 with the elongated hole 300.
  • the oil in the long hole 300 flows out from the jet port 301 to the outer peripheral surface of the rotating shaft 202.
  • This invention is made in order to solve such a problem, and even if it is not the case where the inner rotor is rotating, it aims at providing the rotary electric machine which can cool an inner rotor efficiently.
  • a rotary electric machine comprises: a rotary shaft; an inner rotor which is integrally rotatably provided on an outer peripheral surface of the rotary shaft and which is mechanically connected to an internal combustion engine or an axle; An outer rotor disposed outside the rotor and mechanically coupled to the internal combustion engine or the axle, an outer rotor bracket supporting the outer rotor and rotatably supported on the rotary shaft via a bearing, the outer rotor An oil supply passage through which oil flows is formed inside the rotary shaft, and an oil circulation passage communicating with the oil supply passage between the rotary shaft and the outer rotor bracket.
  • the oil flow path has an oil outlet located radially inward of the inner rotor. That.
  • the rotary electric machine according to the present invention is provided on the rotary shaft and the inner rotor which is integrally rotatably provided on the outer peripheral surface of the rotary shaft and mechanically connected to the internal combustion engine or the axle, and is arranged outside the inner rotor.
  • an outer rotor that is mechanically coupled to the internal combustion engine or the axle, an outer rotor bracket that supports the outer rotor and is rotatably supported by the rotating shaft via a bearing, and a stator that is disposed outside the outer rotor.
  • an oil supply passage through which oil flows is formed inside the rotary shaft, and an oil circulation passage communicating with the oil supply passage is formed between the rotary shaft and the outer rotor bracket, and the outer rotor bracket
  • a communication hole is formed in the oil supply through hole, and the communication hole is It may have a communication hole outlet located radially inward of the rotor.
  • the rotary electric machine includes a rotary shaft, an inner rotor which is integrally rotatably provided on an outer peripheral surface of the rotary shaft and which is mechanically coupled to an internal combustion engine or an axle, and is arranged outside the inner rotor. And an outer rotor that is mechanically coupled to the internal combustion engine or the axle, an outer rotor bracket that supports the outer rotor and is rotatably supported by the rotating shaft via a bearing, and a stator that is disposed outside the outer rotor.
  • an oil supply passage through which oil flows is formed inside the rotary shaft, and an oil circulation passage communicating with the oil supply passage is formed between the rotary shaft and the outer rotor bracket, and the outer rotor bracket And an oil flow path in communication with the oil flow path and provided adjacent to the bearing.
  • the notch groove may have a cutout groove outlet located radially inwardly of the inner rotor.
  • the rotary shaft of the rotary electric machine includes an oil supply unit that supplies oil to the inner rotor without passing through the oil flow path, and oil supply by the oil supply unit when the rotation of the inner rotor is stopped. May be provided with an oil blocking mechanism to stop the
  • the inner rotor can be efficiently cooled even when the inner rotor is not rotating.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1 and schematically showing a part of the structure of a rotating shaft.
  • the rotary electric machine shown in FIG. 1 WHEREIN: It is the figure which expanded the structure of oil distribution route vicinity.
  • the rotary electric machine which concerns on Embodiment 2 of this invention WHEREIN: It is the figure which expanded the structure of the oil distribution channel and the communication hole vicinity.
  • the rotary electric machine which concerns on Embodiment 3 of this invention WHEREIN It is the figure which expanded the oil distribution channel and the structure of notch groove vicinity.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 6 and schematically showing a part of the structure of the rotating shaft.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 6 and schematically showing a part of the structure of the rotary shaft.
  • Embodiment 1 The rotary electric machine 101 according to the embodiment of the present invention will be described as a double rotor type rotary electric machine mounted on a hybrid vehicle including the engine 6.
  • the rotary electric machine 101 includes an inner rotor 10, an outer rotor 20, and a stator 30 which are accommodated inside the housing 1.
  • Each of the inner rotor 10, the outer rotor 20, and the stator 30 has a substantially cylindrical shape, and is arranged concentrically sequentially from the inside to the outside.
  • a rotary shaft 40 is rotatably supported via a first bearing 42 and a second bearing 48 and extends outside the housing 1.
  • the slip ring 4 is fixed to one end of the rotating shaft 40 outside the housing 1 and the output shaft of the internal combustion engine, that is, the engine 6 is mechanically connected to the other end via a gear mechanism or the like.
  • the direction in which the slip ring 4 is provided is taken as the direction X
  • the direction in which the engine 6 is connected is taken as the direction Y.
  • oil for lubricating or cooling components of the rotary electric machine 101 is stored below the rotary shaft 40.
  • the rotary electric machine 101 is mounted on a car with the bottom portion 1a positioned downward.
  • the inner rotor 10 is integrally rotatably fixed to and supported by the outer circumferential surface 40 d of the rotary shaft 40. Further, the inner rotor 10 has a first core 11 fixed to the rotating shaft 40 and a first coil 12 provided at both ends of the first core 11 along the circumferential direction. The first coil 12 of the inner rotor 10 and the slip ring 4 are electrically connected to each other through the conductor 4 a provided inside the rotary shaft 40. Further, the inner rotor 10 is mechanically coupled to the engine 6 via the rotating shaft 40.
  • a substantially disc-shaped first outer rotor bracket 24 is integrally provided at an end of the outer rotor 20 in the direction X side.
  • the first outer rotor bracket 24 is rotatably supported on the rotating shaft 40 via the third bearing 47.
  • the second outer rotor bracket 25 is integrally provided at an end of the outer rotor 20 in the direction Y as well.
  • the second outer rotor bracket 25 has a plate-like portion 25 a facing the first outer rotor bracket 24 and a cylindrical portion 25 b projecting and extending from the plate-like portion 25 a in the direction Y.
  • the plate-like portion 25a has an annular projecting portion 25c formed on the direction X side so as to surround the rotary shaft 40.
  • the end of the protrusion 25 c is located radially inward of the first coil 12 of the inner rotor 10.
  • the “radially inner side” of the first coil 12 means being located at a portion corresponding to the inner diameter of the first coil and being disposed at the same position as the first coil 12 in the axial direction of the rotary shaft 40.
  • a fourth bearing 43 is disposed between the projecting portion 25 c of the second outer rotor bracket 25 and the rotary shaft 40, and a needle bearing 45 is disposed between the cylindrical portion 25 b and the rotary shaft 40. That is, the second outer rotor bracket 25 is rotatably supported on the rotating shaft 40 via the fourth bearing 43 and the needle bearing 45.
  • the first outer rotor bracket 24 and the second outer rotor bracket 25 support the outer rotor 20 so as to be rotatable relative to the rotating shaft 40.
  • a space formed between the protrusion 25 c of the second outer rotor bracket 25 and the rotary shaft 40 constitutes an oil flow path 46. That is, the oil circulation path 46 is a space partitioned by the inner peripheral surface of the second outer rotor bracket 25 as the outer rotor bracket and the outer peripheral surface 40 d of the rotating shaft 40.
  • the oil flow path 46 has an oil outlet 46a adjacent to the end of the protrusion 25c.
  • the oil outlet 46a is a region located on the extension of the end of the protrusion 25c inside the protrusion 25c, and the end of the protrusion 25c and the oil outlet 46a are flush.
  • the fourth bearing 43 is disposed such that the end on the direction X side is flush with the end of the protrusion 25c at the oil outlet 46a.
  • a first permanent magnet 20a facing the stator 30 and a second permanent magnet 20b facing the inner rotor 10 are provided inside the outer rotor 20, a first permanent magnet 20a facing the stator 30 and a second permanent magnet 20b facing the inner rotor 10 are provided.
  • the pinion gear 5 is attached to the outer peripheral surface of the cylindrical portion 25 b of the second outer rotor bracket 25.
  • the pinion gear 5 is engaged with a driven gear 15 mechanically connected to an axle 7 and a wheel 8 of the vehicle. That is, the outer rotor 20 is mechanically connected to the axle 7 via a gear mechanism such as the driven gear 15 or the like.
  • the stator 30 is fixed to the inner circumferential surface of the housing 1.
  • the stator 30 has a second core 31 fixed to the housing 1 and a second coil 32 provided at both ends of the second core 31 along the circumferential direction.
  • An oil supply through hole 44 extending in the axial direction of the rotary shaft 40 is formed inside the rotary shaft 40.
  • the oil supply through hole 44 extends from a position near the first bearing 42 to a position corresponding to the central portion of the first core 11 of the inner rotor 10.
  • three oil receiving holes 44 a are formed in the portion corresponding to the II-II line in FIG. 1 in the rotating shaft 40 and is in communication with the oil supply through hole 44.
  • the three oil receiving holes 44 a are spaced apart from each other by about 120 degrees around the oil supply through hole 44.
  • a first oil outflow hole 40a communicating with the oil supply through hole 44 is formed at a position corresponding to the needle bearing 45.
  • a second oil outflow hole 40b for communicating the oil supply through hole 44 with the oil circulation path 46 is formed. Further, in the vicinity of the end portion on the direction X side of the oil supply through hole 44, a plurality of third oil outflow holes 40c are formed in a ring shape in the rotating shaft 40 and communicated with the oil supply through hole 44.
  • the first oil outlet hole 40a, the second oil outlet hole 40b, the third oil outlet hole 40c, the oil supply through hole 44, and the oil receiving hole 44a constitute an oil supply passage.
  • a substantially cylindrical rotary joint 63 is attached to the rotating shaft 40 so as to cover the oil receiving hole 44a.
  • a circumferential groove 63a is formed on the inner peripheral surface of the rotary joint 63 so as to communicate with the oil receiving hole 44a.
  • An oil supply pipe 62 extending in the vertical direction is connected to the lower portion of the rotary joint 63.
  • the oil supply pipe 62 communicates with the circumferential groove 63a.
  • an oil pump 61 is connected to the lower end of the oil supply pipe 62, and the oil pump 61 is positioned to be immersed in the oil stored in the bottom portion 1 a of the housing 1.
  • a three-phase alternating current flows from the storage battery (not shown) to the second coil 32 of the stator 30.
  • a rotating magnetic field is generated between the second coil 32 of the stator 30 and the first permanent magnet 20 a of the outer rotor 20.
  • a three-phase alternating current also flows from the storage battery to the first coil 12 of the inner rotor 10 via the slip ring 4 and the conductor 4a.
  • a rotating magnetic field is also generated between the first coil 12 of the inner rotor 10 and the second permanent magnet 20 b of the outer rotor 20.
  • the outer rotor 20 starts its rotational motion by the rotating magnetic field generated between the stator 30 and the outer rotor 20 and between the inner rotor 10 and the outer rotor 20, and via the pinion gear 5, the driven gear 15 and the axle 7. Drive the wheels 8 of the vehicle. At this time, the rotating shaft 40 is restrained by the brake mechanism (not shown) so as to stop the rotation so that the inner rotor 10 does not rotate.
  • a three-phase alternating current is supplied from the storage battery to the second coil 32 of the stator 30, and between the second coil 32 of the stator 30 and the first permanent magnet 20 a of the outer rotor 20.
  • the outer rotor 20 rotationally moves by the rotating magnetic field as in the EV mode traveling, and drives the wheels 8 of the vehicle through the pinion gear 5, the driven gear 15 and the axle 7.
  • the rotating shaft 40 is released from restraint by the brake mechanism and is rotationally driven by the engine 6.
  • the inner rotor 10 is also rotationally driven by the engine 6 via the rotary shaft 40.
  • the flow of oil in the rotary electric machine 101 will be described with reference to FIG.
  • the oil stored in the bottom portion 1a of the housing 1 is sucked up by the oil pump 61, flows through the oil supply pipe 62, and is pumped to the circumferential groove 63a of the rotary joint 63. Be done. Then, the oil flows from the circumferential groove 63a of the rotary joint 63 into the oil supply through hole 44 via the oil receiving hole 44a. Then, part of the oil flowing through the oil supply through hole 44 flows into the third oil outflow hole 40c (arrow A4).
  • the oil flowing through the third oil outflow hole 40 c is not subjected to the centrifugal force due to the rotation of the inner rotor 10, and the first coil 12 of the inner rotor 10 is It will not be blown away and supplied.
  • the other part of the oil flowing through the oil supply through hole 44 lubricates the needle bearing 45 via the first oil outflow hole 40a and flows into the oil circulation path 46 (arrow A1). Further, part of the remaining oil also flows into the second oil outflow hole 40b and flows into the oil flow path 46 (arrow A2).
  • the oil flow path 46 is provided between the outer rotor 20 and the rotating shaft 40 as a part of means for supplying the cooling oil to the inner rotor 10 There is.
  • the oil in the oil circulation path 46 is urged by the centrifugal force by the rotation of the outer rotor 20, and the oil outlet 46a It is designed to be ejected radially outward from.
  • the oil outlet 46 a of the oil flow path 46 is positioned on the inner side in the radial direction of the inner rotor 10, most of the oil blown off from the oil outlet 46 a is supplied to the inner rotor 10.
  • the inner rotor 10 whose temperature is increased by energization can be cooled more efficiently.
  • FIG. 2 The configuration of a rotary electric machine 102 according to Embodiment 2 of the present invention is shown in FIG.
  • the same reference numerals as those in FIG. 1 denote the same or similar constituent elements, and a detailed description thereof will be omitted.
  • a second outer rotor bracket 125 is attached to an end of the outer rotor 20 in the direction Y side.
  • the second outer rotor bracket 125 has a plate-like portion 125 a facing the first outer rotor bracket 24 and a cylindrical portion 125 b projecting and extending from the plate-like portion 125 a in the direction Y.
  • the plate-like portion 125 a has an annular projecting portion 125 c formed on the direction X side so as to surround the rotary shaft 40.
  • a communication hole 125d is formed in the protrusion 125c.
  • the communication hole 125d communicates the oil flow path 46 with the space inside the second outer rotor bracket 125, and has the communication hole inlet 125e on the oil flow path 46 side and the communication hole outlet 125f on the inner rotor 10 side. doing.
  • the communication hole inlet 125 e is provided adjacent to the fourth bearing 43.
  • the communication hole outlet 125 f is provided so as to be located radially inward of the first coil 12 of the inner rotor 10.
  • the communication hole outlet 125f is located closer to the direction X than the communication hole inlet 125e. Therefore, in the projecting portion 125c of the second outer rotor bracket 125, the communication hole 125d is formed in a diagonally linear shape along the direction of the oil flow.
  • the flow of oil in the EV mode traveling of the vehicle in the rotary electric machine 102 will be described.
  • the oil flowing through the oil supply through hole 44 flows into the oil flow path 46 through the first oil outflow hole 40a and the second oil outflow hole 40b (arrows A1, A2) as in the first embodiment.
  • part of the oil flowing through the oil flow path 46 flows into the communication hole 125d from the communication hole inlet 125e, and flows out to the inner rotor 10 side from the communication hole outlet 125f (arrow A6).
  • the oil flowing out of the communication hole outlet 125 f is blown away by the centrifugal force of the second outer rotor bracket 125 rotating with the outer rotor 20, and is supplied to the first coil 12 of the inner rotor 10.
  • the remaining oil that does not flow in the communication hole 125 d flows as shown by the arrow A3, as in the first embodiment. That is, the oil that has passed through the fourth bearing 43 is urged by the centrifugal force due to the rotation of the outer rotor 20, spatters radially outward from the oil outlet 46 a, and is supplied to the first coil 12 of the inner rotor 10. Furthermore, as in the first embodiment, a part of the oil flowing through the oil supply through hole 44 flows into the third oil outflow hole 40c (arrow A4), but is supplied to the first coil 12 of the inner rotor 10 It will not be done.
  • the communication hole 125d is formed, so that the oil flowing through the communication hole 125d can be used for the inner rotor 10 as well as the oil passing through the fourth bearing 43.
  • One coil 12 can be cooled. Therefore, the first coil 12 of the inner rotor 10 can be cooled more efficiently.
  • the communication hole outlet 125f of the communication hole 125d is positioned radially inward of the inner rotor 10, most of the oil scattered from the communication hole outlet 125f is directly supplied to the inner rotor 10.
  • the inner rotor 10 is sufficiently cooled only by the centrifugal force due to the rotation of the outer rotor 20. be able to.
  • FIG. 3 The structure of the rotary electric machine 103 which concerns on Embodiment 3 of this invention is shown in FIG.
  • the same reference numerals as those in FIG. 1 denote the same or similar constituent elements, and a detailed description thereof will be omitted.
  • a second outer rotor bracket 225 is attached to an end of the outer rotor 20 on the direction Y side.
  • the second outer rotor bracket 225 has a plate-like portion 225 a facing the first outer rotor bracket 24 and a cylindrical portion 225 b protruding and extending from the plate-like portion 225 a in the direction Y.
  • the plate-like portion 225a has an annular projecting portion 225c formed on the direction X side so as to surround the rotary shaft 40.
  • a notch groove 225d is formed adjacent to the fourth bearing 43 in the vicinity of the oil outlet 46a on a part of the inner peripheral surface of the protrusion 225c.
  • the notch groove 225d has a notch groove outlet 225e provided adjacent to the oil outlet 46a. That is, the notch groove outlet 225 e is located radially inward of the first coil 12 of the inner rotor 10. Further, the length of the notch groove 225 d is formed to be longer than the fourth bearing 43 in the axial direction of the rotary shaft 40.
  • the flow of oil in the rotary electric machine 103 will be described.
  • the oil (arrows A1 and A2) that has flowed into the oil flow path 46 through the first oil outflow hole 40a and the second oil outflow hole 40b lubricates the fourth bearing 43 during traveling in the EV mode, and the fourth bearing It circulates the notch groove 225d adjacent to 43 (arrow A7). Then, the oil flows out from the notch groove outlet 225 e, is splashed by the centrifugal force of the second outer rotor bracket 125 rotating with the outer rotor 20, and is supplied to the first coil 12 of the inner rotor 10.
  • part of the oil flowing through the oil supply through hole 44 is the first oil of the inner rotor 10 through the third oil outflow hole 40c. It flows so as to cool the coil 12 (arrows A4, A5).
  • the oil lubricates the fourth bearing 43 by forming the cutout groove 225d, and the oil flows through the cutout groove 225d adjacent to the fourth bearing 43 and the inner
  • the first coil 12 of the rotor 10 is circulated. Therefore, the oil flows through the oil flow path 46 more smoothly, and the first coil 12 of the inner rotor 10 can be cooled more efficiently.
  • the oil discharged from the notch groove outlet 225 e is directly supplied to the inner rotor 10 by the notch groove outlet 225 e of the notch groove 225 d being positioned inward of the inner rotor 10 in the radial direction.
  • the inner rotor 10 is sufficiently cooled only by the centrifugal force due to the rotation of the outer rotor 20. be able to.
  • FIGS. The configuration of a rotary electric machine 104 according to a fourth embodiment of the present invention is shown in FIGS.
  • the same reference numerals as those in FIG. 1 denote the same or similar constituent elements, and a detailed description thereof will be omitted.
  • a rotary shaft 140 is rotatably supported by the housing 1 of the rotary electric machine 104. Inside the rotary shaft 140, a first oil supply through hole 141 and a second oil supply through hole 144 are formed.
  • the first oil supply through hole 141 is eccentric to the rotation center of the rotary shaft 140 and extends in the same direction as the axial direction of the rotary shaft 140.
  • the center of the second oil supply through hole 144 coincides with the rotation center of the rotary shaft 140, and the second oil supply through hole 144 extends parallel to the first oil supply through hole 141.
  • a substantially cylindrical rotary joint 163 is attached between the second outer rotor bracket 25 and the first bearing 42 on the outer peripheral surface of the rotating shaft 140.
  • An oil supply pipe 62 is connected to the lower portion of the rotary joint 163.
  • the inner rotor 10 is provided on the outer peripheral surface 140 d of the rotating shaft 140 so as to be integrally rotatable.
  • an angle sensor (not shown) and a brake mechanism (not shown) are attached to the rotating shaft 140.
  • the first oil supply through hole 141 and the second oil supply through hole 144 constitute an oil supply passage.
  • first oil receiving holes 144e communicating with the first oil supply through hole 141 are radially formed in a portion corresponding to the line VII-VII in FIG. ing.
  • a circumferential groove 163a is formed at a position near the direction Y in the inner peripheral surface of the rotary joint 163 so as to cover the first oil receiving hole 144e. That is, the circumferential groove 163a communicates with the first oil supply through hole 141 via the first oil receiving hole 144e.
  • a first oil outflow hole 140 a communicating with the first oil supply through hole 141 is formed at a position corresponding to the needle bearing 45 in the rotary shaft 140.
  • a second oil outflow hole 140b for communicating the first oil supply through hole 141 with the oil flow path 46 is formed.
  • three second oil receiving holes 144a communicating with the second oil supply through hole 144 are formed in the portion corresponding to the line VIII-VIII in FIG. ing.
  • the second oil receiving holes 144 a are spaced apart from each other by about 120 degrees with respect to the second oil supply through hole 144.
  • a C-shaped groove 144c is formed on the outer peripheral side of the rotating shaft 140, and communicates with the second oil supply through hole 144 via the second oil receiving hole 144a.
  • the convex portion sandwiched by both ends of the C-shaped groove 144c constitutes an oil stopper portion 144f. Furthermore, as shown in FIG.
  • a plurality of third oil outflow holes 140c are formed in a circular ring on the rotary shaft 140 to supply the second oil It communicates with the through hole 144.
  • the hole 144a constitutes an oil supply passage.
  • the second oil supply through hole 144 and the third oil outflow hole 140c constitute an oil supply unit.
  • the oil stopper portion 144f constitutes an oil blocking structure.
  • the circumferential groove 163 a and the C-shaped groove 144 c communicate with the oil supply pipe 62.
  • the oil flowing through the first oil supply through hole 141 is supplied to the needle bearing 45 and the oil flow path 46 and the fourth bearing 43 via the first oil outflow hole 140a and the second oil outflow hole 140b. Then, the oil is subjected to a centrifugal force due to the rotation of the outer rotor 20, is blown radially outward from the oil outlet 46a, and is supplied to the first coil 12 of the inner rotor 10.
  • the remaining oil that does not flow into the first oil supply through hole 141 flows into the second oil supply through hole 144 via the C-shaped groove 144 c and the second oil receiving hole 144 a. Then, it flows out to the outside of the rotary shaft 140 through the third oil outflow hole 140c, is blown off by receiving centrifugal force by the rotation of the inner rotor 10 and the rotary shaft 40, and is supplied to the first coil 12 of the inner rotor 10. . That is, the oil flowing through the second oil supply through hole 144 and the third oil outflow hole 140 c is supplied to the inner rotor 10 without passing through the oil flow path 46.
  • the brake mechanism rotates to such an angle that the oil stopper 144 f comes to a position where the upper end of the oil supply pipe 62 is closed as shown in FIG. 8 based on the angle of the rotating shaft 140 detected by the angle sensor.
  • the shaft 140 is stopped.
  • the inflow of oil from the oil supply pipe 62 to the second oil supply through hole 144 that is, the supply of oil to the inner rotor 10 by the second oil supply through hole 144 and the third oil outflow hole 120c is stopped.
  • the oil that has flowed into the rotary joint 163 through the oil supply pipe 62 flows into the first oil supply through hole 141 through the circumferential groove 163a and the first oil receiving hole 144e.
  • the oil flowing through the first oil supply through hole 141 is supplied to the first coil 12 of the inner rotor 10 via the oil flow path 46, as in the RE mode traveling.
  • the rotating electrical machine 104 includes the first oil supply through hole 141 communicating with the first oil outflow hole 140a and the second oil outflow hole 140b, and the second oil communicating with the third oil outflow hole 140c. And an oil supply through hole 144. Further, the oil stopping portion 144f formed on the rotating shaft 140 together with the C-shaped groove 144c functions as an oil blocking structure, so that the inflow of oil to the second oil supply through hole 144 is stopped during the EV mode traveling. Ru.
  • the oil does not flow out of the third oil outflow hole 140c, but flows out only of the first oil outflow hole 140a and the second oil outflow hole 140b, and the inner The first coil 12 of the rotor 10 is reliably supplied. Therefore, when the rotation of the inner rotor 10 is stopped, the oil pumped up from the oil pump 61 can be used for cooling the inner rotor 10 without waste, which is efficient.
  • the inner rotor 10 is mechanically connected to the engine 6, and the outer rotor 20 is mechanically connected to the axle 7.
  • the inner rotor 10 is connected to the axle 7
  • the outer rotor 20 may be connected to the engine 6.
  • the fourth bearing 43 is disposed at the oil outlet 46a so that the end face on the direction X side is flush with the end portions of the protrusions 25c, 125c, 225c, but the invention is not limited thereto. Also, it may be arranged in the direction Y.
  • one first oil outflow hole 40a and one second oil outflow hole 40b are formed in the rotary shaft 40 one by one, but a plurality of them may be formed in an annular shape.
  • first oil outflow hole 140a and the second oil outflow hole 140b of the fourth embodiment are also formed one by one, the invention is not limited thereto, and a plurality may be formed in an annular shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Provided is a rotary electric machine that makes it possible to efficiently cool an inner rotor even when the inner rotor is not rotating. The rotary electric machine is provided with: a rotary shaft; an inner rotor that is provided so as to be capable of rotating together with the rotary shaft; an outer rotor that is arranged on the outside of the inner rotor; an outer rotor bracket that is rotatably supported by the rotary shaft; and a stator that is arranged on the outside of the outer rotor. An oil supply through hole is formed in the interior of the rotary shaft. An oil flow path is formed between the rotary shaft and a second outer rotor bracket. The oil outlet of the oil flow path is positioned on the radially inward side of the inner rotor.

Description

回転電機Electric rotating machine
 この発明は、回転電機に関し、特にエンジンを備えるハイブリッド自動車に搭載されるダブルロータ型の回転電機に関する。 The present invention relates to a rotating electrical machine, and more particularly to a double rotor type rotating electrical machine mounted on a hybrid vehicle equipped with an engine.
 一般に、ハイブリッド自動車に搭載される回転電機は、インナーロータと、インナーロータの周りに配置されるアウターロータと、アウターロータの周りに配置されるステータとを有する。インナーロータ及びステータのそれぞれのコイルには三相交流電流が供給され、これによって発生する回転磁界によりアウターロータが回転し、アウターロータが機械的に接続する車軸を介して車両の車輪が駆動される。一方、インナーロータ及びステータに電流を供給する蓄電池の充電率が下がった時は、インナーロータはエンジンによって回転駆動されるとともに発電を行う。
 なお、以下の説明において、回転電機が発電を行わずに車輪を駆動している状態の時の車両の走行をEVモード走行という。また、回転電機が発電を行うと同時に車輪を駆動している状態の時の車両の走行をRE(range extend)モード走行という。
Generally, a rotating electrical machine mounted on a hybrid vehicle has an inner rotor, an outer rotor disposed around the inner rotor, and a stator disposed around the outer rotor. Three-phase alternating current is supplied to the coils of the inner rotor and the stator, and the outer rotor is rotated by the rotating magnetic field generated thereby, and the wheels of the vehicle are driven through an axle mechanically connected to the outer rotor. . On the other hand, when the charging rate of the storage battery for supplying current to the inner rotor and the stator decreases, the inner rotor is rotationally driven by the engine and generates power.
In the following description, traveling of the vehicle when the rotating electrical machine is driving wheels without generating power is referred to as EV mode traveling. In addition, traveling of the vehicle when the rotating electrical machine is generating power and driving wheels at the same time is called RE (range extend) mode traveling.
 ここで、インナーロータのコイルは電流が流れている間は発熱しているため、温度が上がりすぎないよう冷却する必要がある。
 特許文献1には、回転電機内部にオイルを循環させ、回転電機の各部品を潤滑しつつ冷却するための構成が記載されている。引用文献1の回転電機において、オイルはインナーロータ10の回転軸202の内部に形成された長穴300を流通する。インナーロータ10の回転軸202には、回転軸202の外周面と長穴300とを連通する噴出口301が設けられている。長穴300内のオイルは噴出口301から回転軸202の外周面に流出する。そして、オイルは、インナーロータ10とアウターロータ20との間に配置された軸受201を通った後、インナーロータ10及びアウターロータ20の回転による遠心力に付勢され、アウターロータ20の表面を伝わって径方向外側へと広がって流れる(特許文献1の図3及び4参照)。
Here, since the coil of the inner rotor generates heat while current flows, it is necessary to cool so that the temperature does not rise excessively.
Patent Document 1 describes a configuration for circulating oil inside a rotating electrical machine to lubricate and cool components of the rotating electrical machine. In the rotating electrical machine of Patent Document 1, oil flows through an elongated hole 300 formed inside the rotation shaft 202 of the inner rotor 10. The rotary shaft 202 of the inner rotor 10 is provided with a jet port 301 communicating the outer peripheral surface of the rotary shaft 202 with the elongated hole 300. The oil in the long hole 300 flows out from the jet port 301 to the outer peripheral surface of the rotating shaft 202. Then, the oil passes through a bearing 201 disposed between the inner rotor 10 and the outer rotor 20 and is then urged by the centrifugal force due to the rotation of the inner rotor 10 and the outer rotor 20, and is transmitted along the surface of the outer rotor 20. Flow radially outward (see FIGS. 3 and 4 of Patent Document 1).
特開平11-041861号公報Japanese Patent Application Laid-Open No. 11-041861
 ここで、EVモード走行時など、インナーロータ10の回転が停止している時は、オイルにはインナーロータ10の回転による遠心力が働かない。一方、オイルはアウターロータ20の回転による遠心力を受けるものの、インナーロータ10のコイルまでは届き難い。また、特許文献1の回転電機では、インナーロータ10とアウターロータ20とは径方向に重なり合っていないので、アウターロータ20の表面上を径方向外側に向かって流通するオイルはインナーロータ10のコイルを直接冷却することができない(特許文献1の図3参照)。従って、特許文献1の回転電機では、温度が上昇するインナーロータ10のコイルを効率よく冷却することができない。 Here, when the rotation of the inner rotor 10 is stopped, such as when traveling in the EV mode, the centrifugal force by the rotation of the inner rotor 10 does not act on the oil. On the other hand, although oil receives a centrifugal force due to the rotation of the outer rotor 20, it does not easily reach the coil of the inner rotor 10. Further, in the rotating electrical machine of Patent Document 1, since the inner rotor 10 and the outer rotor 20 do not overlap in the radial direction, oil flowing radially outward on the surface of the outer rotor 20 is a coil of the inner rotor 10. Direct cooling can not be performed (see FIG. 3 of Patent Document 1). Therefore, in the rotating electrical machine of Patent Document 1, the coil of the inner rotor 10 whose temperature rises can not be cooled efficiently.
 この発明は、このような問題を解決するためになされ、インナーロータが回転していない場合であっても、効率よくインナーロータを冷却することができる回転電機を提供することを目的とする。 This invention is made in order to solve such a problem, and even if it is not the case where the inner rotor is rotating, it aims at providing the rotary electric machine which can cool an inner rotor efficiently.
 上記の課題を解決するために、この発明に係る回転電機は、回転シャフトと、回転シャフトの外周面に一体回転可能に設けられるとともに、内燃機関又は車軸に機械的に連結するインナーロータと、インナーロータの外側に配置されるとともに、内燃機関又は車軸に機械的に連結するアウターロータと、アウターロータを支持するとともに、回転シャフトに軸受を介して回転可能に支持されるアウターロータブラケットと、アウターロータの外側に配置されるステータとを備え、回転シャフトの内部には、オイルが流通するオイル供給通路が形成され、回転シャフトとアウターロータブラケットとの間には、オイル供給通路と連通するオイル流通経路が形成され、オイル流通経路は、インナーロータの径方向内側に位置するオイル出口を有する。 In order to solve the above-mentioned problems, a rotary electric machine according to the present invention comprises: a rotary shaft; an inner rotor which is integrally rotatably provided on an outer peripheral surface of the rotary shaft and which is mechanically connected to an internal combustion engine or an axle; An outer rotor disposed outside the rotor and mechanically coupled to the internal combustion engine or the axle, an outer rotor bracket supporting the outer rotor and rotatably supported on the rotary shaft via a bearing, the outer rotor An oil supply passage through which oil flows is formed inside the rotary shaft, and an oil circulation passage communicating with the oil supply passage between the rotary shaft and the outer rotor bracket. The oil flow path has an oil outlet located radially inward of the inner rotor. That.
 また、この発明に係る回転電機は、回転シャフトと、回転シャフトの外周面に一体回転可能に設けられるとともに、内燃機関又は車軸に機械的に連結するインナーロータと、インナーロータの外側に配置されるとともに、内燃機関又は車軸に機械的に連結するアウターロータと、アウターロータを支持するとともに、回転シャフトに軸受を介して回転可能に支持されるアウターロータブラケットと、アウターロータの外側に配置されるステータとを備え、回転シャフトの内部には、オイルが流通するオイル供給通路が形成され、回転シャフトとアウターロータブラケットとの間には、オイル供給通路と連通するオイル流通経路が形成され、アウターロータブラケットには、オイル供給通し穴と連通する連通孔が形成され、連通孔は、インナーロータの径方向内側に位置する連通孔出口を有してもよい。 Further, the rotary electric machine according to the present invention is provided on the rotary shaft and the inner rotor which is integrally rotatably provided on the outer peripheral surface of the rotary shaft and mechanically connected to the internal combustion engine or the axle, and is arranged outside the inner rotor. And an outer rotor that is mechanically coupled to the internal combustion engine or the axle, an outer rotor bracket that supports the outer rotor and is rotatably supported by the rotating shaft via a bearing, and a stator that is disposed outside the outer rotor. And an oil supply passage through which oil flows is formed inside the rotary shaft, and an oil circulation passage communicating with the oil supply passage is formed between the rotary shaft and the outer rotor bracket, and the outer rotor bracket A communication hole is formed in the oil supply through hole, and the communication hole is It may have a communication hole outlet located radially inward of the rotor.
 さらに、この発明に係る回転電機は、回転シャフトと、回転シャフトの外周面に一体回転可能に設けられるとともに、内燃機関又は車軸に機械的に連結するインナーロータと、インナーロータの外側に配置されるとともに、内燃機関又は車軸に機械的に連結するアウターロータと、アウターロータを支持するとともに、回転シャフトに軸受を介して回転可能に支持されるアウターロータブラケットと、アウターロータの外側に配置されるステータとを備え、回転シャフトの内部には、オイルが流通するオイル供給通路が形成され、回転シャフトとアウターロータブラケットとの間には、オイル供給通路と連通するオイル流通経路が形成され、アウターロータブラケットには、オイル流通経路と連通するとともに軸受に隣接して設けられる切欠溝が形成され、切欠溝は、インナーロータの径方向内側に位置する切欠溝出口を有してもよい。 Furthermore, the rotary electric machine according to the present invention includes a rotary shaft, an inner rotor which is integrally rotatably provided on an outer peripheral surface of the rotary shaft and which is mechanically coupled to an internal combustion engine or an axle, and is arranged outside the inner rotor. And an outer rotor that is mechanically coupled to the internal combustion engine or the axle, an outer rotor bracket that supports the outer rotor and is rotatably supported by the rotating shaft via a bearing, and a stator that is disposed outside the outer rotor. And an oil supply passage through which oil flows is formed inside the rotary shaft, and an oil circulation passage communicating with the oil supply passage is formed between the rotary shaft and the outer rotor bracket, and the outer rotor bracket And an oil flow path in communication with the oil flow path and provided adjacent to the bearing. Groove is formed, the notch groove may have a cutout groove outlet located radially inwardly of the inner rotor.
 さらに、この発明に係る回転電機の回転シャフトは、オイル流通経路を介さずにインナーロータにオイルを供給するオイル供給部と、インナーロータの回転が停止している時はオイル供給部によるオイルの供給を停止させるオイル堰き止め構造を備えてもよい。 Furthermore, the rotary shaft of the rotary electric machine according to the present invention includes an oil supply unit that supplies oil to the inner rotor without passing through the oil flow path, and oil supply by the oil supply unit when the rotation of the inner rotor is stopped. May be provided with an oil blocking mechanism to stop the
 この発明に係る回転電機によれば、インナーロータが回転していない場合であっても、効率よくインナーロータを冷却することができる。 According to the rotating electrical machine according to the present invention, the inner rotor can be efficiently cooled even when the inner rotor is not rotating.
この発明の実施の形態1に係る回転電機の概略を模式的に示した図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed typically the outline of the rotary electric machine which concerns on Embodiment 1 of this invention. 図1のII-II線に沿った断面図であり、回転シャフトの構造の一部を模式的に示した図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1 and schematically showing a part of the structure of a rotating shaft. 図1に示す回転電機において、オイル流通経路近傍の構造を拡大した図である。The rotary electric machine shown in FIG. 1 WHEREIN: It is the figure which expanded the structure of oil distribution route vicinity. この発明の実施の形態2に係る回転電機において、オイル流通経路及び連通孔近傍の構造を拡大した図である。The rotary electric machine which concerns on Embodiment 2 of this invention WHEREIN: It is the figure which expanded the structure of the oil distribution channel and the communication hole vicinity. この発明の実施の形態3に係る回転電機において、オイル流通経路及び切欠溝近傍の構造を拡大した図である。The rotary electric machine which concerns on Embodiment 3 of this invention WHEREIN: It is the figure which expanded the oil distribution channel and the structure of notch groove vicinity. この発明の実施の形態4に係る回転電機の方向Y側の部分の概略を模式的に示した図である。It is the figure which showed typically the outline of the part by the side of the direction Y of the rotary electric machine which concerns on Embodiment 4 of this invention. 図6のVII-VII線に沿った断面図であり、回転シャフトの構造の一部を模式的に示した図である。FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 6 and schematically showing a part of the structure of the rotating shaft. 図6のVIII-VIII線に沿った断面図であり、回転シャフトの構造の一部を模式的に示した図である。FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 6 and schematically showing a part of the structure of the rotary shaft.
 以下、この発明の実施の形態について添付図面に基づいて説明する。
 実施の形態1.
 この発明の実施の形態に係る回転電機101を、エンジン6を備えるハイブリッド自動車に搭載されるダブルロータ型の回転電機として説明する。
Hereinafter, an embodiment of the present invention will be described based on the attached drawings.
Embodiment 1
The rotary electric machine 101 according to the embodiment of the present invention will be described as a double rotor type rotary electric machine mounted on a hybrid vehicle including the engine 6.
 図1を参照すると、回転電機101は、筐体1の内部に収容されるインナーロータ10、アウターロータ20及びステータ30を有している。インナーロータ10、アウターロータ20及びステータ30は、それぞれ略円筒形状であり、同心円状に順次内側から外側に向かって配置されている。また、筐体1には、回転シャフト40が第一ベアリング42及び第二ベアリング48を介して回転可能に支持され、筐体1の外部に延在している。筐体1の外部において、回転シャフト40の一端にはスリップリング4が固定されており、他端には内燃機関すなわちエンジン6の出力軸がギヤ機構等を介して機械的に連結している。ここで、以下の説明において、回転シャフト40の軸方向において、スリップリング4が設けられる方の向きを方向Xとし、エンジン6が連結される方の向きを方向Yとする。また、筐体1の底部1aには、回転シャフト40の下方において、回転電機101の部品を潤滑又は冷却するためのオイルが貯留されている。回転電機101は底部1aを下方に位置させて自動車に搭載される。 Referring to FIG. 1, the rotary electric machine 101 includes an inner rotor 10, an outer rotor 20, and a stator 30 which are accommodated inside the housing 1. Each of the inner rotor 10, the outer rotor 20, and the stator 30 has a substantially cylindrical shape, and is arranged concentrically sequentially from the inside to the outside. Further, in the housing 1, a rotary shaft 40 is rotatably supported via a first bearing 42 and a second bearing 48 and extends outside the housing 1. The slip ring 4 is fixed to one end of the rotating shaft 40 outside the housing 1 and the output shaft of the internal combustion engine, that is, the engine 6 is mechanically connected to the other end via a gear mechanism or the like. Here, in the following description, in the axial direction of the rotating shaft 40, the direction in which the slip ring 4 is provided is taken as the direction X, and the direction in which the engine 6 is connected is taken as the direction Y. In the bottom portion 1 a of the housing 1, oil for lubricating or cooling components of the rotary electric machine 101 is stored below the rotary shaft 40. The rotary electric machine 101 is mounted on a car with the bottom portion 1a positioned downward.
 インナーロータ10は、回転シャフト40の外周面40dに一体回転可能に固定され、支持されている。また、インナーロータ10は、回転シャフト40に固定される第一コア11と、第一コア11の両端にその周方向に沿って設けられる第一コイル12とを有する。なお、インナーロータ10の第一コイル12とスリップリング4とは、回転シャフト40内部に設けられた導電体4aを介して電気的に接続している。また、インナーロータ10は、回転シャフト40を介してエンジン6に機械的に連結している。 The inner rotor 10 is integrally rotatably fixed to and supported by the outer circumferential surface 40 d of the rotary shaft 40. Further, the inner rotor 10 has a first core 11 fixed to the rotating shaft 40 and a first coil 12 provided at both ends of the first core 11 along the circumferential direction. The first coil 12 of the inner rotor 10 and the slip ring 4 are electrically connected to each other through the conductor 4 a provided inside the rotary shaft 40. Further, the inner rotor 10 is mechanically coupled to the engine 6 via the rotating shaft 40.
 アウターロータ20の方向X側の端部には略皿形状の第一アウターロータブラケット24が一体的に設けられている。第一アウターロータブラケット24は、第三ベアリング47を介して回転シャフト40に回転可能に支持される。また同様に、アウターロータ20の方向Y側の端部にも第二アウターロータブラケット25が一体的に設けられている。第二アウターロータブラケット25は、第一アウターロータブラケット24に対向する皿状部25aと、皿状部25aから方向Yに向かって突出して延びる円筒状部25bを有する。また、皿状部25aは方向X側に回転シャフト40を取り囲むように形成された円環状の突出部25cを有する。突出部25cの端部はインナーロータ10の第一コイル12の径方向内側に位置する。なお、第一コイル12の「径方向内側」とは、第一コイルの内径に当たる部分に位置するとともに、回転シャフト40の軸方向において第一コイル12と同位置に配置されることをいう。そして、第二アウターロータブラケット25の突出部25cと回転シャフト40との間には第四ベアリング43が、円筒状部25bと回転シャフト40との間にはニードルベアリング45がそれぞれ配置される。すなわち、第二アウターロータブラケット25は、第四ベアリング43及びニードルベアリング45を介して回転シャフト40に回転可能に支持される。よって、第一アウターロータブラケット24及び第二アウターロータブラケット25は、アウターロータ20を回転シャフト40に対して相対的に回転可能となるように支持している。なお、第二アウターロータブラケット25の突出部25cと回転シャフト40との間に形成される空間はオイル流通経路46を構成する。すなわち、オイル流通経路46は、アウターロータブラケットとしての第二アウターロータブラケット25の内周面と回転シャフト40の外周面40dとにより区画された空間である。オイル流通経路46は、突出部25cの端部に隣接するオイル出口46aを有する。オイル出口46aは、突出部25cの内側において突出部25cの端部の延長線上に位置する領域をいい、突出部25cの端部とオイル出口46aは面一になっている。そして、第四ベアリング43は、方向X側の端部がオイル出口46aにおいて突出部25cの端部と面一となるように配置されている。また、アウターロータ20の内部には、ステータ30に対向する第一永久磁石20aと、インナーロータ10に対向する第二永久磁石20bとが設けられている。さらにまた、第二アウターロータブラケット25の円筒状部25bの外周面にはピニオンギヤ5が取り付けられている。このピニオンギヤ5は、車両の車軸7及び車輪8と機械的に連結されるドリブンギヤ15と係合している。すなわち、アウターロータ20は車軸7とドリブンギヤ15等のギヤ機構を介して機械的に連結する。
 なお、ここで第四ベアリング43及びニードルベアリング45は軸受を構成する。
A substantially disc-shaped first outer rotor bracket 24 is integrally provided at an end of the outer rotor 20 in the direction X side. The first outer rotor bracket 24 is rotatably supported on the rotating shaft 40 via the third bearing 47. Similarly, the second outer rotor bracket 25 is integrally provided at an end of the outer rotor 20 in the direction Y as well. The second outer rotor bracket 25 has a plate-like portion 25 a facing the first outer rotor bracket 24 and a cylindrical portion 25 b projecting and extending from the plate-like portion 25 a in the direction Y. Further, the plate-like portion 25a has an annular projecting portion 25c formed on the direction X side so as to surround the rotary shaft 40. The end of the protrusion 25 c is located radially inward of the first coil 12 of the inner rotor 10. The “radially inner side” of the first coil 12 means being located at a portion corresponding to the inner diameter of the first coil and being disposed at the same position as the first coil 12 in the axial direction of the rotary shaft 40. A fourth bearing 43 is disposed between the projecting portion 25 c of the second outer rotor bracket 25 and the rotary shaft 40, and a needle bearing 45 is disposed between the cylindrical portion 25 b and the rotary shaft 40. That is, the second outer rotor bracket 25 is rotatably supported on the rotating shaft 40 via the fourth bearing 43 and the needle bearing 45. Thus, the first outer rotor bracket 24 and the second outer rotor bracket 25 support the outer rotor 20 so as to be rotatable relative to the rotating shaft 40. A space formed between the protrusion 25 c of the second outer rotor bracket 25 and the rotary shaft 40 constitutes an oil flow path 46. That is, the oil circulation path 46 is a space partitioned by the inner peripheral surface of the second outer rotor bracket 25 as the outer rotor bracket and the outer peripheral surface 40 d of the rotating shaft 40. The oil flow path 46 has an oil outlet 46a adjacent to the end of the protrusion 25c. The oil outlet 46a is a region located on the extension of the end of the protrusion 25c inside the protrusion 25c, and the end of the protrusion 25c and the oil outlet 46a are flush. The fourth bearing 43 is disposed such that the end on the direction X side is flush with the end of the protrusion 25c at the oil outlet 46a. Further, inside the outer rotor 20, a first permanent magnet 20a facing the stator 30 and a second permanent magnet 20b facing the inner rotor 10 are provided. Furthermore, the pinion gear 5 is attached to the outer peripheral surface of the cylindrical portion 25 b of the second outer rotor bracket 25. The pinion gear 5 is engaged with a driven gear 15 mechanically connected to an axle 7 and a wheel 8 of the vehicle. That is, the outer rotor 20 is mechanically connected to the axle 7 via a gear mechanism such as the driven gear 15 or the like.
Here, the fourth bearing 43 and the needle bearing 45 constitute a bearing.
 また、ステータ30は筐体1の内周面に固定されて設けられている。ステータ30は、筐体1に固定される第二コア31と、第二コア31の両端にその周方向に沿って設けられる第二コイル32とを有する。 The stator 30 is fixed to the inner circumferential surface of the housing 1. The stator 30 has a second core 31 fixed to the housing 1 and a second coil 32 provided at both ends of the second core 31 along the circumferential direction.
 回転シャフト40の内部には、回転シャフト40の軸方向に延びるオイル供給通し穴44が形成されている。オイル供給通し穴44は、第一ベアリング42に近傍する位置からインナーロータ10の第一コア11の中央部分に相当する位置まで延長する。回転シャフト40において、図1のII-II線に相当する部分には、図2に示すように、三個のオイル受入孔44aが形成され、オイル供給通し穴44と連通している。三個のオイル受入孔44aは、オイル供給通し穴44を中心に互いに約120度ずつ離間している。また、回転シャフト40において、ニードルベアリング45に対応する位置にはオイル供給通し穴44と連通する第一オイル流出孔40aが形成される。また、回転シャフト40には、オイル供給通し穴44とオイル流通経路46とを連通させる第二オイル流出孔40bが形成される。さらに、オイル供給通し穴44の方向X側の端部近傍には、回転シャフト40に複数の第三オイル流出孔40cが円環状に形成され、オイル供給通し穴44と連通している。
 ここで、第一オイル流出孔40a、第二オイル流出孔40b、第三オイル流出孔40c、オイル供給通し穴44及びオイル受入孔44aは、オイル供給通路を構成する。
An oil supply through hole 44 extending in the axial direction of the rotary shaft 40 is formed inside the rotary shaft 40. The oil supply through hole 44 extends from a position near the first bearing 42 to a position corresponding to the central portion of the first core 11 of the inner rotor 10. As shown in FIG. 2, three oil receiving holes 44 a are formed in the portion corresponding to the II-II line in FIG. 1 in the rotating shaft 40 and is in communication with the oil supply through hole 44. The three oil receiving holes 44 a are spaced apart from each other by about 120 degrees around the oil supply through hole 44. Further, in the rotary shaft 40, a first oil outflow hole 40a communicating with the oil supply through hole 44 is formed at a position corresponding to the needle bearing 45. Further, in the rotating shaft 40, a second oil outflow hole 40b for communicating the oil supply through hole 44 with the oil circulation path 46 is formed. Further, in the vicinity of the end portion on the direction X side of the oil supply through hole 44, a plurality of third oil outflow holes 40c are formed in a ring shape in the rotating shaft 40 and communicated with the oil supply through hole 44.
Here, the first oil outlet hole 40a, the second oil outlet hole 40b, the third oil outlet hole 40c, the oil supply through hole 44, and the oil receiving hole 44a constitute an oil supply passage.
 また、回転シャフト40には、オイル受入孔44aを覆うように略円筒形状のロータリジョイント63が取り付けられる。ロータリジョイント63の内周面にはオイル受入孔44aと連通するように円周溝63aが形成されている。ロータリジョイント63の下部には上下方向に延在するオイル供給管62が連結されている。オイル供給管62は円周溝63aに連通する。また、オイル供給管62の下端にはオイルポンプ61が接続され、オイルポンプ61は筐体1の底部1aに貯留されるオイル内に浸るように位置している。 Further, a substantially cylindrical rotary joint 63 is attached to the rotating shaft 40 so as to cover the oil receiving hole 44a. A circumferential groove 63a is formed on the inner peripheral surface of the rotary joint 63 so as to communicate with the oil receiving hole 44a. An oil supply pipe 62 extending in the vertical direction is connected to the lower portion of the rotary joint 63. The oil supply pipe 62 communicates with the circumferential groove 63a. In addition, an oil pump 61 is connected to the lower end of the oil supply pipe 62, and the oil pump 61 is positioned to be immersed in the oil stored in the bottom portion 1 a of the housing 1.
 次に、回転電機101の動作について説明する。
 まず、車両がEVモード走行を行う時は、蓄電池(図示せず)からステータ30の第二コイル32に三相交流電流が流れる。これによって、ステータ30の第二コイル32とアウターロータ20の第一永久磁石20aとの間に回転磁界が発生する。また同時に、蓄電池からスリップリング4及び導電体4aを介してインナーロータ10の第一コイル12にも三相交流電流が流れる。これによって、インナーロータ10の第一コイル12とアウターロータ20の第二永久磁石20bとの間にも回転磁界が発生する。そして、ステータ30とアウターロータ20との間、及びインナーロータ10とアウターロータ20との間に発生する回転磁界により、アウターロータ20は回転運動を開始し、ピニオンギヤ5、ドリブンギヤ15及び車軸7を介して車両の車輪8を駆動する。なお、この時、インナーロータ10が回転しないように、回転シャフト40はブレーキ機構(図示せず)によって拘束され、回転を停止している。
Next, the operation of the rotary electric machine 101 will be described.
First, when the vehicle travels in the EV mode, a three-phase alternating current flows from the storage battery (not shown) to the second coil 32 of the stator 30. As a result, a rotating magnetic field is generated between the second coil 32 of the stator 30 and the first permanent magnet 20 a of the outer rotor 20. At the same time, a three-phase alternating current also flows from the storage battery to the first coil 12 of the inner rotor 10 via the slip ring 4 and the conductor 4a. As a result, a rotating magnetic field is also generated between the first coil 12 of the inner rotor 10 and the second permanent magnet 20 b of the outer rotor 20. The outer rotor 20 starts its rotational motion by the rotating magnetic field generated between the stator 30 and the outer rotor 20 and between the inner rotor 10 and the outer rotor 20, and via the pinion gear 5, the driven gear 15 and the axle 7. Drive the wheels 8 of the vehicle. At this time, the rotating shaft 40 is restrained by the brake mechanism (not shown) so as to stop the rotation so that the inner rotor 10 does not rotate.
 また、車両がREモード走行を行う時は、蓄電池からステータ30の第二コイル32に三相交流電流が供給され、ステータ30の第二コイル32とアウターロータ20の第一永久磁石20aとの間で回転磁界が発生する。この回転磁界によって、EVモード走行時と同様にアウターロータ20は回転運動し、ピニオンギヤ5、ドリブンギヤ15及び車軸7を介して車両の車輪8を駆動する。一方、回転シャフト40はブレーキ機構による拘束を解除されて、エンジン6によって回転駆動されている。よって、インナーロータ10も、エンジン6によって回転シャフト40を介して回転駆動される。そのため、アウターロータ20の第二永久磁石20bと対向して回転するインナーロータ10の第一コイル12には誘導電流が発生する。そして、第一コイル12に発生した電力は、導電体4a及びスリップリング4を介して蓄電池に蓄えられる。 When the vehicle travels in the RE mode, a three-phase alternating current is supplied from the storage battery to the second coil 32 of the stator 30, and between the second coil 32 of the stator 30 and the first permanent magnet 20 a of the outer rotor 20. Generates a rotating magnetic field. The outer rotor 20 rotationally moves by the rotating magnetic field as in the EV mode traveling, and drives the wheels 8 of the vehicle through the pinion gear 5, the driven gear 15 and the axle 7. On the other hand, the rotating shaft 40 is released from restraint by the brake mechanism and is rotationally driven by the engine 6. Thus, the inner rotor 10 is also rotationally driven by the engine 6 via the rotary shaft 40. Therefore, an induced current is generated in the first coil 12 of the inner rotor 10 that rotates in opposition to the second permanent magnet 20 b of the outer rotor 20. Then, the power generated in the first coil 12 is stored in the storage battery via the conductor 4 a and the slip ring 4.
 次に、回転電機101におけるオイルの流れについて図3を参照して説明する。
 まず、車両がEVモード走行を行っている時、筐体1の底部1aに貯留するオイルは、オイルポンプ61によって吸い上げられ、オイル供給管62を流通してロータリジョイント63の円周溝63aに圧送される。そして、オイルは、オイル受入孔44aを介してロータリジョイント63の円周溝63aからオイル供給通し穴44に流入する。そして、オイル供給通し穴44に流通するオイルの一部は、第三オイル流出孔40cに流入する(矢印A4)。しかし、回転シャフト40及びインナーロータ10の回転が停止しているため、第三オイル流出孔40cに流通するオイルはインナーロータ10の回転による遠心力を受けず、インナーロータ10の第一コイル12まで飛ばされて供給されるに至らない。一方、オイル供給通し穴44を流通するオイルの他の一部は、第一オイル流出孔40aを介してニードルベアリング45を潤滑し、オイル流通経路46に流れこむ(矢印A1)。また、第二オイル流出孔40bにも、残りのオイルの一部が流入し、オイル流通経路46に流れ込む(矢印A2)。そして、第一オイル流出孔40aを流通したオイルと第二オイル流出孔40bを流通したオイルとは、オイル流通経路46で合流し、第四ベアリング43を潤滑する。そしてさらに、第四ベアリング43を潤滑した後のオイルは、アウターロータ20の回転による遠心力に付勢されて、第四ベアリング43を介してオイル出口46aから径方向外側に向かって飛ばされる(矢印A3)。そして、飛ばされた大部分のオイルはインナーロータ10の第一コイル12に直接供給され、第一コイル12を冷却する。
Next, the flow of oil in the rotary electric machine 101 will be described with reference to FIG.
First, when the vehicle is traveling in the EV mode, the oil stored in the bottom portion 1a of the housing 1 is sucked up by the oil pump 61, flows through the oil supply pipe 62, and is pumped to the circumferential groove 63a of the rotary joint 63. Be done. Then, the oil flows from the circumferential groove 63a of the rotary joint 63 into the oil supply through hole 44 via the oil receiving hole 44a. Then, part of the oil flowing through the oil supply through hole 44 flows into the third oil outflow hole 40c (arrow A4). However, since the rotation of the rotating shaft 40 and the inner rotor 10 is stopped, the oil flowing through the third oil outflow hole 40 c is not subjected to the centrifugal force due to the rotation of the inner rotor 10, and the first coil 12 of the inner rotor 10 is It will not be blown away and supplied. On the other hand, the other part of the oil flowing through the oil supply through hole 44 lubricates the needle bearing 45 via the first oil outflow hole 40a and flows into the oil circulation path 46 (arrow A1). Further, part of the remaining oil also flows into the second oil outflow hole 40b and flows into the oil flow path 46 (arrow A2). Then, the oil flowing through the first oil outflow hole 40 a and the oil flowing through the second oil outflow hole 40 b join in the oil flow path 46 and lubricate the fourth bearing 43. Further, the oil after lubricating the fourth bearing 43 is urged by the centrifugal force due to the rotation of the outer rotor 20, and is blown radially outward from the oil outlet 46a through the fourth bearing 43 (arrow A3). Then, most of the oil that has been blown is directly supplied to the first coil 12 of the inner rotor 10 to cool the first coil 12.
 また、車両がREモード走行を行っている時は、筐体1の底部1aに貯留するオイルの一部は、EVモード走行の場合と同様に、オイルポンプ61、オイル供給管62及びロータリジョイント63を介してオイル供給通し穴44に流入する。そして、オイル供給通し穴44を流通するオイルは、第一オイル流出孔40a又は第二オイル流出孔40bを通って、オイル流通経路46のオイル出口46aから第一コイル12へと飛ばされる(矢印A1,A2,A3)。また、第一オイル流出孔40a又は第二オイル流出孔40bに流入しない残りのオイルは、オイル供給通し穴44から第三オイル流出孔40cを介して回転シャフト40の外周面に流出する(矢印A4)。そして、オイルはインナーロータ10の回転の遠心力に付勢されて、回転シャフト40の外周面とインナーロータ10の第一コア11との間を流通し、インナーロータ10の第一コイル12へ飛ばされる(矢印A5)。 Further, when the vehicle is traveling in the RE mode, a part of the oil stored in the bottom portion 1a of the housing 1 is the oil pump 61, the oil supply pipe 62, and the rotary joint 63 as in the case of the EV mode traveling. Through the oil supply through hole 44. Then, the oil flowing through the oil supply through hole 44 is blown from the oil outlet 46a of the oil circulation path 46 to the first coil 12 through the first oil outlet hole 40a or the second oil outlet hole 40b (arrow A1 , A2, A3). Further, the remaining oil which does not flow into the first oil outflow hole 40a or the second oil outflow hole 40b flows out from the oil supply through hole 44 to the outer peripheral surface of the rotary shaft 40 through the third oil outflow hole 40c (arrow A4 ). Then, the oil is urged by the centrifugal force of the rotation of the inner rotor 10, flows between the outer peripheral surface of the rotating shaft 40 and the first core 11 of the inner rotor 10, and is blown to the first coil 12 of the inner rotor 10. (Arrow A5).
 以上より、この実施の形態1に係る回転電機101では、インナーロータ10に冷却用のオイルを供給する手段の一部としてアウターロータ20と回転シャフト40との間にオイル流通経路46が設けられている。これにより、EVモード走行時など、インナーロータ10の回転が停止している時であっても、オイル流通経路46内のオイルが、アウターロータ20の回転による遠心力に付勢され、オイル出口46aから径方向外側に飛ばされるようになっている。また、オイル流通経路46のオイル出口46aがインナーロータ10の径方向内側に位置することにより、オイル出口46aから飛ばされたオイルの大部分はインナーロータ10に供給される。これにより、通電によって温度が上昇するインナーロータ10をより効率よく冷却することができる。 As described above, in the rotating electrical machine 101 according to the first embodiment, the oil flow path 46 is provided between the outer rotor 20 and the rotating shaft 40 as a part of means for supplying the cooling oil to the inner rotor 10 There is. As a result, even when the rotation of the inner rotor 10 is stopped, such as during EV mode traveling, the oil in the oil circulation path 46 is urged by the centrifugal force by the rotation of the outer rotor 20, and the oil outlet 46a It is designed to be ejected radially outward from. Further, when the oil outlet 46 a of the oil flow path 46 is positioned on the inner side in the radial direction of the inner rotor 10, most of the oil blown off from the oil outlet 46 a is supplied to the inner rotor 10. As a result, the inner rotor 10 whose temperature is increased by energization can be cooled more efficiently.
 実施の形態2.
 この発明の実施の形態2に係る回転電機102の構成を図4に示す。なお、図1の参照符号と同一の符号は同一又は同様の構成要素であるので、その詳細な説明は省略する。
 回転電機102において、アウターロータ20の方向Y側の端部には第二アウターロータブラケット125が取りつけられている。第二アウターロータブラケット125は、第一アウターロータブラケット24に対向する皿状部125aと、皿状部125aから方向Yに向かって突出して延びる円筒状部125bを有する。また、皿状部125aは方向X側に回転シャフト40を取り囲むように形成された円環状の突出部125cを有する。突出部125cには、連通孔125dが形成されている。連通孔125dは、オイル流通経路46と第二アウターロータブラケット125の内側の空間とを連通させており、オイル流通経路46側に連通孔入口125eを、インナーロータ10側に連通孔出口125fを有している。連通孔入口125eは第四ベアリング43に隣接して設けられる。また、連通孔出口125fはインナーロータ10の第一コイル12の径方向内側に位置するように設けられる。連通孔出口125fは連通孔入口125eよりも方向X寄りに位置する。そのため、第二アウターロータブラケット125の突出部125cにおいて、連通孔125dは、オイルの流れの方向に沿うように斜め直線状に形成されている。
Second Embodiment
The configuration of a rotary electric machine 102 according to Embodiment 2 of the present invention is shown in FIG. The same reference numerals as those in FIG. 1 denote the same or similar constituent elements, and a detailed description thereof will be omitted.
In the rotary electric machine 102, a second outer rotor bracket 125 is attached to an end of the outer rotor 20 in the direction Y side. The second outer rotor bracket 125 has a plate-like portion 125 a facing the first outer rotor bracket 24 and a cylindrical portion 125 b projecting and extending from the plate-like portion 125 a in the direction Y. Further, the plate-like portion 125 a has an annular projecting portion 125 c formed on the direction X side so as to surround the rotary shaft 40. A communication hole 125d is formed in the protrusion 125c. The communication hole 125d communicates the oil flow path 46 with the space inside the second outer rotor bracket 125, and has the communication hole inlet 125e on the oil flow path 46 side and the communication hole outlet 125f on the inner rotor 10 side. doing. The communication hole inlet 125 e is provided adjacent to the fourth bearing 43. Further, the communication hole outlet 125 f is provided so as to be located radially inward of the first coil 12 of the inner rotor 10. The communication hole outlet 125f is located closer to the direction X than the communication hole inlet 125e. Therefore, in the projecting portion 125c of the second outer rotor bracket 125, the communication hole 125d is formed in a diagonally linear shape along the direction of the oil flow.
 回転電機102における、車両のEVモード走行時のオイルの流れについて説明する。
 オイル供給通し穴44を流通するオイルは、実施の形態1と同様に、第一オイル流出孔40a及び第二オイル流出孔40bを介してオイル流通経路46に流入する(矢印A1,A2)。そしてオイル流通経路46を流通するオイルの一部は、連通孔入口125eから連通孔125dに流入し、連通孔出口125fからインナーロータ10側に流出する(矢印A6)。そして、連通孔出口125fから流出したオイルは、アウターロータ20とともに回転する第二アウターロータブラケット125による遠心力を受けて飛ばされ、インナーロータ10の第一コイル12に供給される。また、連通孔125dに流通しない残りのオイルは、実施の形態1と同様に、矢印A3に示すように流通する。すなわち、第四ベアリング43を通過したオイルは、アウターロータ20の回転による遠心力に付勢されて、オイル出口46aから径方向外側に飛び散り、インナーロータ10の第一コイル12に供給される。さらに、実施の形態1と同様に、オイル供給通し穴44に流通するオイルの一部は、第三オイル流出孔40cにも流入するが(矢印A4)、インナーロータ10の第一コイル12まで供給されることはない。一方、車両がREモード走行を行う時は、第三オイル流出孔40cに流通するオイルは、インナーロータ10の回転による遠心力を受けてインナーロータ10の第一コイル12に当たる位置まで飛ばされ、第一コイル12に供給される(矢印A5)。
The flow of oil in the EV mode traveling of the vehicle in the rotary electric machine 102 will be described.
The oil flowing through the oil supply through hole 44 flows into the oil flow path 46 through the first oil outflow hole 40a and the second oil outflow hole 40b (arrows A1, A2) as in the first embodiment. Then, part of the oil flowing through the oil flow path 46 flows into the communication hole 125d from the communication hole inlet 125e, and flows out to the inner rotor 10 side from the communication hole outlet 125f (arrow A6). The oil flowing out of the communication hole outlet 125 f is blown away by the centrifugal force of the second outer rotor bracket 125 rotating with the outer rotor 20, and is supplied to the first coil 12 of the inner rotor 10. Further, the remaining oil that does not flow in the communication hole 125 d flows as shown by the arrow A3, as in the first embodiment. That is, the oil that has passed through the fourth bearing 43 is urged by the centrifugal force due to the rotation of the outer rotor 20, spatters radially outward from the oil outlet 46 a, and is supplied to the first coil 12 of the inner rotor 10. Furthermore, as in the first embodiment, a part of the oil flowing through the oil supply through hole 44 flows into the third oil outflow hole 40c (arrow A4), but is supplied to the first coil 12 of the inner rotor 10 It will not be done. On the other hand, when the vehicle travels in the RE mode, the oil flowing through the third oil outflow hole 40c is jumped to a position where it receives the centrifugal force due to the rotation of the inner rotor 10 and hits the first coil 12 of the inner rotor 10 One coil 12 is supplied (arrow A5).
 以上より、この実施の形態に係る回転電機102では、連通孔125dが形成されることにより、第四ベアリング43を通過するオイルの他に、連通孔125dを流通するオイルによってもインナーロータ10の第一コイル12を冷却することができる。そのため、より効率よくインナーロータ10の第一コイル12を冷却することができる。また、連通孔125dの連通孔出口125fがインナーロータ10の径方向内側に位置することにより、連通孔出口125fから飛び散ったオイルの大部分が直接インナーロータ10に供給される。従って、インナーロータ10が回転を停止しており、オイルがインナーロータ10の回転による遠心力を受けない場合であっても、アウターロータ20の回転による遠心力のみで充分にインナーロータ10を冷却することができる。 As described above, in the rotary electric machine 102 according to this embodiment, the communication hole 125d is formed, so that the oil flowing through the communication hole 125d can be used for the inner rotor 10 as well as the oil passing through the fourth bearing 43. One coil 12 can be cooled. Therefore, the first coil 12 of the inner rotor 10 can be cooled more efficiently. Further, when the communication hole outlet 125f of the communication hole 125d is positioned radially inward of the inner rotor 10, most of the oil scattered from the communication hole outlet 125f is directly supplied to the inner rotor 10. Therefore, even if the inner rotor 10 stops rotating and the oil does not receive the centrifugal force due to the rotation of the inner rotor 10, the inner rotor 10 is sufficiently cooled only by the centrifugal force due to the rotation of the outer rotor 20. be able to.
 実施の形態3.
 この発明の実施の形態3に係る回転電機103の構成を図5に示す。なお、図1の参照符号と同一の符号は同一又は同様の構成要素であるので、その詳細な説明は省略する。
 回転電機103において、アウターロータ20の方向Y側の端部には第二アウターロータブラケット225が取りつけられている。第二アウターロータブラケット225は、第一アウターロータブラケット24に対向する皿状部225aと、皿状部225aから方向Yに向かって突出して延びる円筒状部225bを有する。また、皿状部225aは方向X側に回転シャフト40を取り囲むように形成された円環状の突出部225cを有する。突出部225cの内周面の一部には、オイル出口46a付近において、第四ベアリング43に隣接して切欠溝225dが形成される。切欠溝225dは、オイル出口46aに隣接して設けられる切欠溝出口225eを有する。すなわち、切欠溝出口225eはインナーロータ10の第一コイル12の径方向内側に位置する。また、切欠溝225dの長さは、回転シャフト40の軸方向において、第四ベアリング43よりも長くなるように形成されている。
Third Embodiment
The structure of the rotary electric machine 103 which concerns on Embodiment 3 of this invention is shown in FIG. The same reference numerals as those in FIG. 1 denote the same or similar constituent elements, and a detailed description thereof will be omitted.
In the rotary electric machine 103, a second outer rotor bracket 225 is attached to an end of the outer rotor 20 on the direction Y side. The second outer rotor bracket 225 has a plate-like portion 225 a facing the first outer rotor bracket 24 and a cylindrical portion 225 b protruding and extending from the plate-like portion 225 a in the direction Y. Further, the plate-like portion 225a has an annular projecting portion 225c formed on the direction X side so as to surround the rotary shaft 40. A notch groove 225d is formed adjacent to the fourth bearing 43 in the vicinity of the oil outlet 46a on a part of the inner peripheral surface of the protrusion 225c. The notch groove 225d has a notch groove outlet 225e provided adjacent to the oil outlet 46a. That is, the notch groove outlet 225 e is located radially inward of the first coil 12 of the inner rotor 10. Further, the length of the notch groove 225 d is formed to be longer than the fourth bearing 43 in the axial direction of the rotary shaft 40.
 回転電機103におけるオイルの流れについて説明する。
 EVモード走行時において、第一オイル流出孔40a及び第二オイル流出孔40bを介してオイル流通経路46に流入したオイル(矢印A1,A2)は、第四ベアリング43を潤滑するとともに、第四ベアリング43に隣接する切欠溝225dを流通する(矢印A7)。そして、オイルは切欠溝出口225eから流出し、アウターロータ20とともに回転する第二アウターロータブラケット125による遠心力を受けて飛ばされ、インナーロータ10の第一コイル12に供給される。一方、車両がREモード走行を行う時は、実施の形態1及び2と同様に、オイル供給通し穴44を流通するオイルの一部は第三オイル流出孔40cを介してインナーロータ10の第一コイル12を冷却するように流れる(矢印A4,A5)。
The flow of oil in the rotary electric machine 103 will be described.
The oil (arrows A1 and A2) that has flowed into the oil flow path 46 through the first oil outflow hole 40a and the second oil outflow hole 40b lubricates the fourth bearing 43 during traveling in the EV mode, and the fourth bearing It circulates the notch groove 225d adjacent to 43 (arrow A7). Then, the oil flows out from the notch groove outlet 225 e, is splashed by the centrifugal force of the second outer rotor bracket 125 rotating with the outer rotor 20, and is supplied to the first coil 12 of the inner rotor 10. On the other hand, when the vehicle travels in the RE mode, as in the first and second embodiments, part of the oil flowing through the oil supply through hole 44 is the first oil of the inner rotor 10 through the third oil outflow hole 40c. It flows so as to cool the coil 12 (arrows A4, A5).
 以上より、この実施の形態に係る回転電機103では、切欠溝225dが形成されることにより、オイルは第四ベアリング43を潤滑するとともに、第四ベアリング43に隣接する切欠溝225dを流通してインナーロータ10の第一コイル12に流通される。そのため、オイルはよりスムーズにオイル流通経路46を流通し、より効率よくインナーロータ10の第一コイル12を冷却することができる。また、切欠溝225dの切欠溝出口225eがインナーロータ10の径方向内側に位置することにより、切欠溝出口225eから飛ばされたオイルは直接インナーロータ10に供給される。従って、インナーロータ10が回転を停止しており、オイルがインナーロータ10の回転による遠心力を受けない場合であっても、アウターロータ20の回転による遠心力のみで充分にインナーロータ10を冷却することができる。 As described above, in the rotary electric machine 103 according to this embodiment, the oil lubricates the fourth bearing 43 by forming the cutout groove 225d, and the oil flows through the cutout groove 225d adjacent to the fourth bearing 43 and the inner The first coil 12 of the rotor 10 is circulated. Therefore, the oil flows through the oil flow path 46 more smoothly, and the first coil 12 of the inner rotor 10 can be cooled more efficiently. Further, the oil discharged from the notch groove outlet 225 e is directly supplied to the inner rotor 10 by the notch groove outlet 225 e of the notch groove 225 d being positioned inward of the inner rotor 10 in the radial direction. Therefore, even if the inner rotor 10 stops rotating and the oil does not receive the centrifugal force due to the rotation of the inner rotor 10, the inner rotor 10 is sufficiently cooled only by the centrifugal force due to the rotation of the outer rotor 20. be able to.
 実施の形態4.
 この発明の実施の形態4に係る回転電機104の構成を図6~8に示す。なお、図1の参照符号と同一の符号は同一又は同様の構成要素であるので、その詳細な説明は省略する。
 回転電機104の筐体1には、回転シャフト140が回転可能に支持されている。回転シャフト140の内部には、第一オイル供給通し穴141と第二オイル供給通し穴144とが形成されている。第一オイル供給通し穴141は回転シャフト140の回転中心に対して偏心しつつ、回転シャフト140の軸方向と同じ方向に延長している。一方、第二オイル供給通し穴144の中心は、回転シャフト140の回転中心と一致し、第二オイル供給通し穴144は第一オイル供給通し穴141に対して平行に延長する。また、回転シャフト140の外周面において、第二アウターロータブラケット25と第一ベアリング42との間には略円筒形状のロータリジョイント163が取り付けられている。ロータリジョイント163の下部にはオイル供給管62が連結される。また、回転シャフト140の外周面140dには、インナーロータ10が一体回転可能に設けられる。さらに、回転シャフト140には、角度センサ(図示せず)及びブレーキ機構(図示せず)が取り付けられている。
 ここで、第一オイル供給通し穴141及び第二オイル供給通し穴144は、オイル供給通路を構成する。
Fourth Embodiment
The configuration of a rotary electric machine 104 according to a fourth embodiment of the present invention is shown in FIGS. The same reference numerals as those in FIG. 1 denote the same or similar constituent elements, and a detailed description thereof will be omitted.
A rotary shaft 140 is rotatably supported by the housing 1 of the rotary electric machine 104. Inside the rotary shaft 140, a first oil supply through hole 141 and a second oil supply through hole 144 are formed. The first oil supply through hole 141 is eccentric to the rotation center of the rotary shaft 140 and extends in the same direction as the axial direction of the rotary shaft 140. Meanwhile, the center of the second oil supply through hole 144 coincides with the rotation center of the rotary shaft 140, and the second oil supply through hole 144 extends parallel to the first oil supply through hole 141. In addition, a substantially cylindrical rotary joint 163 is attached between the second outer rotor bracket 25 and the first bearing 42 on the outer peripheral surface of the rotating shaft 140. An oil supply pipe 62 is connected to the lower portion of the rotary joint 163. Further, the inner rotor 10 is provided on the outer peripheral surface 140 d of the rotating shaft 140 so as to be integrally rotatable. Furthermore, an angle sensor (not shown) and a brake mechanism (not shown) are attached to the rotating shaft 140.
Here, the first oil supply through hole 141 and the second oil supply through hole 144 constitute an oil supply passage.
 図7に示すように、回転シャフト140において、図6のVII-VII線に対応する部分には、第一オイル供給通し穴141に連通する4個の第一オイル受入孔144eが放射状に形成されている。また、ロータリジョイント163の内周面における方向Y寄りの箇所には、第一オイル受入孔144eを覆うように円周溝163aが形成されている。すなわち、円周溝163aは第一オイル受入孔144eを介して第一オイル供給通し穴141に連通している。また、図6に示すように、回転シャフト140において、ニードルベアリング45に対応する位置には、第一オイル供給通し穴141と連通する第一オイル流出孔140aが形成されている。また、回転シャフト140には、第一オイル供給通し穴141とオイル流通経路46とを連通させる第二オイル流出孔140bが形成される。 As shown in FIG. 7, in the rotary shaft 140, four first oil receiving holes 144e communicating with the first oil supply through hole 141 are radially formed in a portion corresponding to the line VII-VII in FIG. ing. In addition, a circumferential groove 163a is formed at a position near the direction Y in the inner peripheral surface of the rotary joint 163 so as to cover the first oil receiving hole 144e. That is, the circumferential groove 163a communicates with the first oil supply through hole 141 via the first oil receiving hole 144e. Further, as shown in FIG. 6, a first oil outflow hole 140 a communicating with the first oil supply through hole 141 is formed at a position corresponding to the needle bearing 45 in the rotary shaft 140. Further, in the rotating shaft 140, a second oil outflow hole 140b for communicating the first oil supply through hole 141 with the oil flow path 46 is formed.
 また、図8に示すように、回転シャフト140において、図6のVIII-VIII線に対応する部分には、第二オイル供給通し穴144に連通する3個の第二オイル受入孔144aが形成されている。第二オイル受入孔144aは第二オイル供給通し穴144を中心に互いに約120度ずつ離間している。また、回転シャフト140の外周側にはC字形溝144cが形成されており、第二オイル受入孔144aを介して第二オイル供給通し穴144に連通する。また、C字形溝144cの両端部に挟まれる凸部は、オイル止め部144fを構成する。さらに、図6に示すように、第二オイル供給通し穴144の方向X側の端部近傍には、回転シャフト140に複数の第三オイル流出孔140cが円環状に形成され、第二オイル供給通し穴144と連通している。
 なお、第一オイル流出孔140a、第二オイル流出孔140b、第三オイル流出孔140c、第一オイル供給通し穴141、第二オイル供給通し穴144、第一オイル受入孔144e及び第二オイル受入孔144aは、オイル供給通路を構成する。
 また、第二オイル供給通し穴144及び第三オイル流出孔140cは、オイル供給部を構成する。また、オイル止め部144fはオイル堰き止め構造を構成する。
 また、円周溝163a及びC字形溝144cはオイル供給管62に連通している。
Further, as shown in FIG. 8, three second oil receiving holes 144a communicating with the second oil supply through hole 144 are formed in the portion corresponding to the line VIII-VIII in FIG. ing. The second oil receiving holes 144 a are spaced apart from each other by about 120 degrees with respect to the second oil supply through hole 144. Further, a C-shaped groove 144c is formed on the outer peripheral side of the rotating shaft 140, and communicates with the second oil supply through hole 144 via the second oil receiving hole 144a. Further, the convex portion sandwiched by both ends of the C-shaped groove 144c constitutes an oil stopper portion 144f. Furthermore, as shown in FIG. 6, in the vicinity of the end portion on the direction X side of the second oil supply through hole 144, a plurality of third oil outflow holes 140c are formed in a circular ring on the rotary shaft 140 to supply the second oil It communicates with the through hole 144.
The first oil outlet hole 140a, the second oil outlet hole 140b, the third oil outlet hole 140c, the first oil supply through hole 141, the second oil supply through hole 144, the first oil receiving hole 144e and the second oil reception The hole 144a constitutes an oil supply passage.
The second oil supply through hole 144 and the third oil outflow hole 140c constitute an oil supply unit. In addition, the oil stopper portion 144f constitutes an oil blocking structure.
The circumferential groove 163 a and the C-shaped groove 144 c communicate with the oil supply pipe 62.
 車両がREモード走行を行っている時、オイル供給管162を流通するオイルのうち、一部のオイルは円周溝163a及び第一オイル受入孔144eを介して第一オイル供給通し穴141に流入する。第一オイル供給通し穴141を流通するオイルは、第一オイル流出孔140a及び第二オイル流出孔140bを介して、ニードルベアリング45とオイル流通経路46及び第四ベアリング43とに供給される。そして、オイルはアウターロータ20の回転による遠心力を受け、オイル出口46aから径方向外側に向かって飛ばされ、インナーロータ10の第一コイル12に供給される。一方、第一オイル供給通し穴141に流入しない残りのオイルは、C字形溝144c及び第二オイル受入孔144aを介して第二オイル供給通し穴144に流入する。そして、第三オイル流出孔140cを介して回転シャフト140の外部に流出し、インナーロータ10及び回転シャフト40の回転による遠心力を受けて飛ばされ、インナーロータ10の第一コイル12に供給される。すなわち、第二オイル供給通し穴144及び第三オイル流出孔140cを流通するオイルは、オイル流通経路46を介さずにインナーロータ10に供給される。 While the vehicle is traveling in the RE mode, a part of the oil in the oil supply pipe 162 flows into the first oil supply through hole 141 through the circumferential groove 163a and the first oil receiving hole 144e. Do. The oil flowing through the first oil supply through hole 141 is supplied to the needle bearing 45 and the oil flow path 46 and the fourth bearing 43 via the first oil outflow hole 140a and the second oil outflow hole 140b. Then, the oil is subjected to a centrifugal force due to the rotation of the outer rotor 20, is blown radially outward from the oil outlet 46a, and is supplied to the first coil 12 of the inner rotor 10. On the other hand, the remaining oil that does not flow into the first oil supply through hole 141 flows into the second oil supply through hole 144 via the C-shaped groove 144 c and the second oil receiving hole 144 a. Then, it flows out to the outside of the rotary shaft 140 through the third oil outflow hole 140c, is blown off by receiving centrifugal force by the rotation of the inner rotor 10 and the rotary shaft 40, and is supplied to the first coil 12 of the inner rotor 10. . That is, the oil flowing through the second oil supply through hole 144 and the third oil outflow hole 140 c is supplied to the inner rotor 10 without passing through the oil flow path 46.
 EVモード走行時、ブレーキ機構は、角度センサによって検出される回転シャフト140の角度に基づき、図8に示すようにオイル止め部144fがオイル供給管62の上端を塞ぐ位置に来るような角度に回転シャフト140を停止させる。これにより、オイル供給管62から第二オイル供給通し穴144へのオイルの流入、すなわち第二オイル供給通し穴144及び第三オイル流出孔120cによるインナーロータ10へのオイルの供給は停止する。その一方で、オイル供給管62を介してロータリジョイント163に流入したオイルは、円周溝163a及び第一オイル受入孔144eを介して第一オイル供給通し穴141へ流入する。そして、第一オイル供給通し穴141を流通するオイルは、REモード走行時と同様に、オイル流通経路46を介して、インナーロータ10の第一コイル12に供給される。 During EV mode traveling, the brake mechanism rotates to such an angle that the oil stopper 144 f comes to a position where the upper end of the oil supply pipe 62 is closed as shown in FIG. 8 based on the angle of the rotating shaft 140 detected by the angle sensor. The shaft 140 is stopped. Thereby, the inflow of oil from the oil supply pipe 62 to the second oil supply through hole 144, that is, the supply of oil to the inner rotor 10 by the second oil supply through hole 144 and the third oil outflow hole 120c is stopped. On the other hand, the oil that has flowed into the rotary joint 163 through the oil supply pipe 62 flows into the first oil supply through hole 141 through the circumferential groove 163a and the first oil receiving hole 144e. Then, the oil flowing through the first oil supply through hole 141 is supplied to the first coil 12 of the inner rotor 10 via the oil flow path 46, as in the RE mode traveling.
 以上より、この実施の形態に係る回転電機104は、第一オイル流出孔140a及び第二オイル流出孔140bに連通する第一オイル供給通し穴141と、第三オイル流出孔140cに連通する第二オイル供給通し穴144とを有する。また、回転シャフト140にC字形溝144cとともに形成されるオイル止め部144fがオイル堰き止め構造として機能することにより、EVモード走行時は、第二オイル供給通し穴144へのオイルの流入が停止される。これにより、インナーロータ10の回転が停止している時は、オイルは第三オイル流出孔140cからは流出せずに、第一オイル流出孔140a及び第二オイル流出孔140bのみから流出し、インナーロータ10の第一コイル12に確実に供給される。従って、インナーロータ10が回転を停止している時、オイルポンプ61から汲み上げられたオイルを無駄なくインナーロータ10の冷却に使用することができ、効率が良い。 From the above, the rotating electrical machine 104 according to this embodiment includes the first oil supply through hole 141 communicating with the first oil outflow hole 140a and the second oil outflow hole 140b, and the second oil communicating with the third oil outflow hole 140c. And an oil supply through hole 144. Further, the oil stopping portion 144f formed on the rotating shaft 140 together with the C-shaped groove 144c functions as an oil blocking structure, so that the inflow of oil to the second oil supply through hole 144 is stopped during the EV mode traveling. Ru. Thereby, when the rotation of the inner rotor 10 is stopped, the oil does not flow out of the third oil outflow hole 140c, but flows out only of the first oil outflow hole 140a and the second oil outflow hole 140b, and the inner The first coil 12 of the rotor 10 is reliably supplied. Therefore, when the rotation of the inner rotor 10 is stopped, the oil pumped up from the oil pump 61 can be used for cooling the inner rotor 10 without waste, which is efficient.
 なお、実施の形態1~4において、インナーロータ10はエンジン6に機械的に連結しており、アウターロータ20は車軸7に機械的に連結しているが、インナーロータ10が車軸7に連結し、アウターロータ20がエンジン6に連結していても良い。
 また、第四ベアリング43は、方向X側の端面が突出部25c,125c,225cの端部と面一になるようにオイル出口46aに配置されているが、これに限らず、オイル出口46aよりも方向Y寄りに配置されてもよい。
 また、実施の形態1~3において、第一オイル流出孔40a及び第二オイル流出孔40bは回転シャフト40にそれぞれ1個ずつ形成されているが、円環状に複数形成されていてもよい。実施の形態4の第一オイル流出孔140a及び第二オイル流出孔140bも同様である。
 また、実施形態3における連通孔125d又は実施形態4における切欠溝225dについてもそれぞれ1個ずつ形成されているが、これに限定されず、円環状に複数形成されていてもよい。
In the first to fourth embodiments, the inner rotor 10 is mechanically connected to the engine 6, and the outer rotor 20 is mechanically connected to the axle 7. However, the inner rotor 10 is connected to the axle 7 The outer rotor 20 may be connected to the engine 6.
Further, the fourth bearing 43 is disposed at the oil outlet 46a so that the end face on the direction X side is flush with the end portions of the protrusions 25c, 125c, 225c, but the invention is not limited thereto. Also, it may be arranged in the direction Y.
Further, in the first to third embodiments, one first oil outflow hole 40a and one second oil outflow hole 40b are formed in the rotary shaft 40 one by one, but a plurality of them may be formed in an annular shape. The same applies to the first oil outflow hole 140a and the second oil outflow hole 140b of the fourth embodiment.
In addition, although one communication hole 125 d in the third embodiment and one cutout groove 225 d in the fourth embodiment are also formed one by one, the invention is not limited thereto, and a plurality may be formed in an annular shape.
 101,102,103,104 回転電機、6 エンジン(内燃機関)、7 車軸、10 インナーロータ、20 アウターロータ、25,125,225 第二アウターロータブラケット(アウターロータブラケット)、30 ステータ、40,140 回転シャフト、40a,140a 第一オイル流出孔(オイル供給通路)、40b,140b 第二オイル流出孔(オイル供給通路)、40c 第三オイル流出孔(オイル供給通路)、40d,140d 回転シャフトの外周面、44 オイル供給通し穴(オイル供給通路)、44a オイル受入孔(オイル供給通路)、46 オイル流通経路、46a オイル出口、125d 連通孔、125f 連通孔出口、140c 第三オイル流出孔(オイル供給通路、オイル供給部)、141 第一オイル供給通し穴(オイル供給通路)、144 第二オイル供給通し穴(オイル供給通路、オイル供給部)、144a 第二オイル受入孔(オイル供給通路)、144e 第一オイル受入孔(オイル供給通路)、144f オイル止め部(オイル堰き止め構造)、225d 切欠溝、225e 切欠溝出口。 101, 102, 103, 104 rotary electric machine, 6 engines (internal combustion engine), 7 axles, 10 inner rotors, 20 outer rotors, 25, 125, 225 second outer rotor brackets (outer rotor brackets), 30 stators, 40, 140 Rotating shaft, 40a, 140a first oil outlet (oil supply passage), 40b, 140b second oil outlet (oil supply passage), 40c third oil outlet (oil supply passage), 40d, 140d Outer periphery of rotating shaft Surface, 44 oil supply through hole (oil supply passage), 44a oil receiving hole (oil supply passage), 46 oil flow passage, 46a oil outlet, 125d communication hole, 125f communication hole outlet, 140c third oil outflow hole (oil supply Passage, oil supply), 1 1 first oil supply through hole (oil supply passage), 144 second oil supply through hole (oil supply passage, oil supply portion), 144a second oil reception hole (oil supply passage), 144e first oil reception hole (oil Supply passage), 144f oil stopper (oil stop structure), 225d notch groove, 225e notch groove outlet.

Claims (4)

  1.  回転シャフトと、
     前記回転シャフトの外周面に一体回転可能に設けられるとともに、内燃機関又は車軸に機械的に連結するインナーロータと、
     前記インナーロータの外側に配置されるとともに、前記内燃機関又は前記車軸に機械的に連結するアウターロータと、
     前記アウターロータを支持するとともに、前記回転シャフトに軸受を介して回転可能に支持されるアウターロータブラケットと、
     前記アウターロータの外側に配置されるステータとを備える回転電機であって、
     前記回転シャフトの内部には、オイルが流通するオイル供給通路が形成され、
     前記回転シャフトと前記アウターロータブラケットとの間には、前記オイル供給通路と連通するオイル流通経路が形成され、
     前記オイル流通経路は、前記インナーロータの径方向内側に位置するオイル出口を有する回転電機。
    With a rotating shaft,
    An inner rotor which is integrally rotatably provided on an outer peripheral surface of the rotating shaft and mechanically connected to an internal combustion engine or an axle.
    An outer rotor disposed outside the inner rotor and mechanically connected to the internal combustion engine or the axle;
    An outer rotor bracket that supports the outer rotor and is rotatably supported by the rotating shaft via a bearing;
    A rotating electrical machine comprising: a stator disposed outside the outer rotor;
    An oil supply passage through which oil flows is formed inside the rotary shaft,
    An oil flow path communicating with the oil supply passage is formed between the rotating shaft and the outer rotor bracket.
    The rotary electric machine, wherein the oil flow path has an oil outlet located radially inward of the inner rotor.
  2.  回転シャフトと、
     前記回転シャフトの外周面に一体回転可能に設けられるとともに、内燃機関又は車軸に機械的に連結するインナーロータと、
     前記インナーロータの外側に配置されるとともに、前記内燃機関又は前記車軸に機械的に連結するアウターロータと、
     前記アウターロータを支持するとともに、前記回転シャフトに軸受を介して回転可能に支持されるアウターロータブラケットと、
     前記アウターロータの外側に配置されるステータとを備える回転電機であって、
     前記回転シャフトの内部には、オイルが流通するオイル供給通路が形成され、
     前記回転シャフトと前記アウターロータブラケットとの間には、前記オイル供給通路と連通するオイル流通経路が形成され、
     前記アウターロータブラケットには、前記オイル流通経路と連通する連通孔が形成され、
     前記連通孔は、前記インナーロータの径方向内側に位置する連通孔出口を有する回転電機。
    With a rotating shaft,
    An inner rotor which is integrally rotatably provided on an outer peripheral surface of the rotating shaft and mechanically connected to an internal combustion engine or an axle.
    An outer rotor disposed outside the inner rotor and mechanically connected to the internal combustion engine or the axle;
    An outer rotor bracket that supports the outer rotor and is rotatably supported by the rotating shaft via a bearing;
    A rotating electrical machine comprising: a stator disposed outside the outer rotor;
    An oil supply passage through which oil flows is formed inside the rotary shaft,
    An oil flow path communicating with the oil supply passage is formed between the rotating shaft and the outer rotor bracket.
    A communication hole communicating with the oil circulation path is formed in the outer rotor bracket,
    The rotating electrical machine, wherein the communication hole has a communication hole outlet located radially inward of the inner rotor.
  3.  回転シャフトと、
     前記回転シャフトの外周面に一体回転可能に設けられるとともに、内燃機関又は車軸に機械的に連結するインナーロータと、
     前記インナーロータの外側に配置されるとともに、前記内燃機関又は前記車軸に機械的に連結するアウターロータと、
     前記アウターロータを支持するとともに、前記回転シャフトに軸受を介して回転可能に支持されるアウターロータブラケットと、
     前記アウターロータの外側に配置されるステータとを備える回転電機であって、
     前記回転シャフトの内部には、オイルが流通するオイル供給通路が形成され、
     前記回転シャフトと前記アウターロータブラケットとの間には、前記オイル供給通路と連通するオイル流通経路が形成され、
     前記アウターロータブラケットには、前記オイル流通経路と連通するとともに前記軸受に隣接して設けられる切欠溝が形成され、
     前記切欠溝は、前記インナーロータの径方向内側に位置する切欠溝出口を有する回転電機。
    With a rotating shaft,
    An inner rotor which is integrally rotatably provided on an outer peripheral surface of the rotating shaft and mechanically connected to an internal combustion engine or an axle.
    An outer rotor disposed outside the inner rotor and mechanically connected to the internal combustion engine or the axle;
    An outer rotor bracket that supports the outer rotor and is rotatably supported by the rotating shaft via a bearing;
    A rotating electrical machine comprising: a stator disposed outside the outer rotor;
    An oil supply passage through which oil flows is formed inside the rotary shaft,
    An oil flow path communicating with the oil supply passage is formed between the rotating shaft and the outer rotor bracket.
    The outer rotor bracket is formed with a notch groove in communication with the oil flow path and provided adjacent to the bearing.
    The rotary electric machine, wherein the notch groove is a notch groove outlet located radially inward of the inner rotor.
  4.  前記回転シャフトは、前記オイル流通経路を介さずに前記インナーロータにオイルを供給するオイル供給部と、前記インナーロータの回転が停止している時は前記オイル供給部によるオイルの供給を停止させるオイル堰き止め構造とを備える請求項1~3のいずれか一項に記載の回転電機。 The rotary shaft is an oil supply unit that supplies oil to the inner rotor without passing through the oil flow path, and oil that stops the supply of oil by the oil supply unit when the rotation of the inner rotor is stopped. The electric rotating machine according to any one of claims 1 to 3, comprising a damming structure.
PCT/JP2014/081553 2013-12-05 2014-11-28 Rotary electric machine WO2015083637A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013252122A JP2015109768A (en) 2013-12-05 2013-12-05 Rotary electric machine
JP2013-252122 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015083637A1 true WO2015083637A1 (en) 2015-06-11

Family

ID=53273400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081553 WO2015083637A1 (en) 2013-12-05 2014-11-28 Rotary electric machine

Country Status (2)

Country Link
JP (1) JP2015109768A (en)
WO (1) WO2015083637A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112311149A (en) * 2019-08-01 2021-02-02 采埃孚股份公司 Cooling fluid guide for cooling a rotor of an electric machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154156A (en) * 2018-03-02 2019-09-12 本田技研工業株式会社 Outer rotor type rotary electric machine
WO2019202692A1 (en) 2018-04-18 2019-10-24 三菱電機株式会社 Electric motor
WO2021261911A1 (en) * 2020-06-23 2021-12-30 엘지이노텍 주식회사 Motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062061A (en) * 2009-09-14 2011-03-24 Toyota Central R&D Labs Inc Rotary electric machine
JP2012039828A (en) * 2010-08-11 2012-02-23 Honda Motor Co Ltd Multiplex rotor motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062061A (en) * 2009-09-14 2011-03-24 Toyota Central R&D Labs Inc Rotary electric machine
JP2012039828A (en) * 2010-08-11 2012-02-23 Honda Motor Co Ltd Multiplex rotor motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112311149A (en) * 2019-08-01 2021-02-02 采埃孚股份公司 Cooling fluid guide for cooling a rotor of an electric machine

Also Published As

Publication number Publication date
JP2015109768A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
CN103620918B (en) The cooling structure of electric rotating machine
US9553493B2 (en) Rotating electric machine
WO2015083637A1 (en) Rotary electric machine
JP2016041938A (en) Electric coolant pump
JP2013115848A (en) Cooling structure of rotary electric machine
WO2015045903A1 (en) Wheel drive device
JP2012223075A (en) Cooling structure of rotary electric machine
WO2013136405A1 (en) Rotating electrical machine
WO2019208083A1 (en) Motor unit
WO2019208081A1 (en) Motor unit and vehicle drive device
JP2009195082A (en) Cooling structure of stator
JP2018038099A (en) Electric motor
JPWO2014102949A1 (en) Wheel oil supply device, wheel drive device
JP5312132B2 (en) In-wheel motor drive device
US10122243B2 (en) Rotating electric machine with a cooling structure
JP2013177030A (en) Cooling structure of rotating electrical machine
JP5129870B2 (en) Generator motor cooling structure and generator motor
WO2020032026A1 (en) Motor unit
JP6215613B2 (en) Motor drive device
WO2019208084A1 (en) Motor unit and method for controlling motor unit
JP2015080386A (en) Motor
JP2014064433A (en) Rotor shaft of rotary electric machine
JP2017093002A (en) Motor drive unit
JP6364948B2 (en) Cooling structure of rotating electric machine
JP2014092216A (en) Driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867204

Country of ref document: EP

Kind code of ref document: A1