WO2015083528A1 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
WO2015083528A1
WO2015083528A1 PCT/JP2014/080345 JP2014080345W WO2015083528A1 WO 2015083528 A1 WO2015083528 A1 WO 2015083528A1 JP 2014080345 W JP2014080345 W JP 2014080345W WO 2015083528 A1 WO2015083528 A1 WO 2015083528A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
light source
source device
turned
Prior art date
Application number
PCT/JP2014/080345
Other languages
French (fr)
Japanese (ja)
Inventor
昭典 浅井
福満 憲志
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013253264A external-priority patent/JP6209071B2/en
Priority claimed from JP2014081350A external-priority patent/JP5947329B2/en
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US15/022,222 priority Critical patent/US9646816B2/en
Priority to DE112014005518.2T priority patent/DE112014005518T5/en
Publication of WO2015083528A1 publication Critical patent/WO2015083528A1/en
Priority to IL244786A priority patent/IL244786A0/en
Priority to US15/478,306 priority patent/US9824879B2/en
Priority to US15/712,284 priority patent/US10032622B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels

Definitions

  • the present invention relates to a light source device.
  • a light source device that uses a generated plasma by irradiating a laser beam in a housing of a light emitting envelope in which a light emitting gas is sealed (see, for example, Patent Documents 1 and 2).
  • plasma is generated by discharge between electrodes by supplying power between opposing electrodes arranged in a glass casing, and laser light is continuously irradiated to the plasma.
  • Laser support light which is plasma emission, is lit and maintained.
  • pulsed plasma emission is turned on by irradiating an electron-emitting metal disposed in a xenon lamp with pulsed laser light.
  • the plasma is continuously generated between the counter electrodes, the counter electrode is sputtered, and the life of the light emitting envelope may be shortened due to consumption of the counter electrode.
  • the sputtered material adheres to the inner wall of the housing, the incidence of laser light and the removal of the laser support light are hindered, so that the emission intensity of the laser support light gradually decreases, and as a light emitting envelope There was a risk of shortening the lifespan.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a light source device that suppresses sputtering in the housing and can achieve a sufficiently long life.
  • a light source device includes a laser unit that emits laser light, a light emitting envelope in which a luminescent gas is sealed in an internal space, and a light source having a lighting start area in the internal space, An optical system that guides laser light to the internal space and a control unit that controls the energy density of the laser light in the lighting start area, and the light source is turned on by irradiation of the laser light from the laser part in the internal space.
  • the laser support light which is plasma emission of the emission gas, is maintained by irradiating the laser light from the laser unit, and the control unit determines the energy density of the laser light in the lighting start area when the laser support light is maintained. Is set lower than the energy density of the laser beam in the lighting start region.
  • the control unit lowers the energy density of the laser light in the lighting start area when the laser supporting light is maintained relative to the energy density of the laser light in the lighting start area when the laser supporting light is turned on. Therefore, when maintaining the laser support light, the lighting start region is irradiated with the laser light at an energy density that does not cause sputtering. Therefore, in this light source device, since sputtering in the light emitting envelope can be suppressed, a sufficiently long life can be achieved.
  • the light source may further include an electron-emitting structure that includes an easy-electron emitting material that is disposed in the internal space and emits electrons when irradiated with laser light. In this case, sputtering of the electron emission structure can be suppressed.
  • the light source may further include counter electrodes facing each other so as to sandwich the lighting start area. In this case, generation of plasma between the counter electrodes can be suppressed to such an extent that sputtering does not occur.
  • the control unit includes a condensing position moving unit that moves the condensing position of the laser light when maintaining the laser supporting light in a direction away from the lighting start region with respect to the condensing position of the laser light when the laser supporting light is turned on. It is preferable. In this case, when the laser supporting light is maintained, the laser light condensing position is separated from the lighting start region, so that sputtering in the light emitting envelope can be reliably suppressed.
  • the condensing position moving unit moves the condensing position of the laser light in the optical axis direction of the laser light. In this case, when the laser support light is maintained, the condensing position of the laser light can be easily separated from the lighting start region.
  • the condensing position moving unit has an optical path length adjusting unit that adjusts an optical path length in the internal space of the laser light.
  • the optical path length adjustment unit can easily separate the laser beam condensing position from the lighting start area while maintaining the laser support light while maintaining the laser light condensing position at an appropriate position when the laser support light is turned on. it can.
  • the condensing position moving unit has an optical system moving unit that moves the position of the optical system when the laser supporting light is maintained with respect to the position of the optical system when the laser supporting light is turned on. In this case, by moving the optical system, the condensing position of the laser light can be easily separated from the lighting start region.
  • the condensing position moving unit has a light emitting envelope moving unit that moves the position of the light emitting envelope when the laser supporting light is maintained with respect to the position of the light emitting envelope when the laser supporting light is turned on. In this case, by moving the light emitting envelope, the condensing position of the laser light can be easily separated from the lighting start region.
  • the optical system collects the laser beam at a position separated from the lighting start region, both when the laser supporting light is turned on and when it is maintained. In this case, since the condensing position of the laser beam having the highest energy density is always at a position other than the lighting start region, sputtering in the light emitting envelope can be suppressed. Therefore, the life of the light source device can be sufficiently extended.
  • control unit lowers the emission energy of the laser beam from the laser unit when maintaining the laser support light with respect to the emission energy of the laser beam from the laser unit when the laser support light is turned on. In this case, since it is not necessary to mechanically move the condensing position of the laser light, the condensing position of the laser light can be maintained at an appropriate position.
  • the control unit separates the laser beam condensing position when the laser supporting light is maintained from the electron emitting structure with respect to the laser light condensing position when the laser supporting light is turned on. It is preferable to have a condensing position moving part that moves in the direction. In this case, when the laser supporting light is maintained, since the condensing position of the laser light is separated from the electron emission structure, it is possible to reliably suppress the electron emission structure from being sputtered.
  • the focusing position moving unit moves the position of the electron emission structure when the laser support light is maintained with respect to the position of the electron emission structure when the laser support light is turned on. It is preferable to have a structure moving part. In this case, the focusing position of the laser light can be easily separated from the electron emission structure by moving the electron emission structure.
  • the converging position moving unit determines the optical path length in the internal space of the laser light when the laser support light is maintained to the optical path length in the internal space of the laser light when the laser support light is turned on. It is preferable to have an optical path length adjustment unit that shortens the length. In this case, the optical path length adjustment unit keeps the laser beam condensing position at an appropriate position when the laser support light is lit, and easily separates the laser light condensing position from the electron emission structure when maintaining the laser support light. Can do.
  • the condensing position moving unit moves the condensing position of the laser light in a direction crossing the optical axis direction of the laser light.
  • the laser beam condensing position can be easily separated from the electron emission structure when maintaining the laser support light.
  • the condensing position moving unit has an optical system moving unit that moves the position of the optical system when the laser supporting light is maintained with respect to the position of the optical system when the laser supporting light is turned on. It is preferable. In this case, the focusing position of the laser beam can be easily separated from the electron emission structure by moving the optical system.
  • the light collecting position moving unit moves the light emitting envelope to move the position of the light emitting envelope when the laser supporting light is maintained with respect to the position of the light emitting envelope when the laser supporting light is turned on. It is preferable to have a part. In this case, the focusing position of the laser beam can be easily separated from the electron emission structure by moving the light emitting envelope.
  • the electron emission structure is formed with a surface on which the condensing position of the laser beam is located when the laser support light is turned on, inclined with respect to the optical axis of the laser beam. It is preferable. With this configuration, it is possible to position the condensing position of the laser light on the surface of the electron emission structure without strictly adjusting the optical system.
  • FIG. 1 It is a figure which shows the light source device which concerns on 1st Embodiment of this invention. It is a figure which shows an example of the optical member (optical path length adjustment part) with which the light source device shown in FIG. 1 is provided. It is a figure which shows the state before the laser support light lighting of the optical member (optical path length adjustment part) shown in FIG. It is a figure which shows the state at the time of laser support light lighting of the optical member (optical path length adjustment part) shown in FIG. It is a figure which shows the state after the laser support light lighting (at the time of maintenance) of the optical member (optical path length adjustment part) shown in FIG.
  • FIG. 1 is a schematic view showing a light source device according to the first embodiment of the present invention.
  • the light source device 1 includes a laser unit 2 that emits continuous laser light, an optical system 3 that guides the continuous laser light L from the laser unit 2, and irradiation with the continuous laser light L. It is configured to include a metal structure (electron emission structure) 13 containing a radiating electron-emitting substance and a light emitting envelope 11 (light source 7) containing a luminescent gas G.
  • a metal structure electron emission structure
  • light source 7 containing a luminescent gas G.
  • the metal structure 13 when the metal structure 13 is irradiated with the continuous laser light L, plasma due to the emission gas G is generated in the irradiation region of the continuous laser light L in the vicinity of the metal structure 13.
  • plasma is generated when electrons emitted from the metal structure 13 by irradiation of the continuous laser light L ionize the light emission gas G and the ionized light emission gas G is irradiated with the continuous laser light L. It is guessed. Then, by continuously irradiating the generated plasma with continuous laser light L (continuously supplying laser energy to the plasma), the continuous laser light L is collected in the light emitting envelope 11 as the light source 7. It is possible to turn on and maintain high-luminance laser support light that is plasma light emission having a predetermined light-emitting region (lighting start region RS) including the light position F.
  • the laser support light is used as a light source for semiconductor inspection or light for spectroscopic measurement, for example.
  • the laser unit 2 is, for example, a laser diode.
  • the laser unit 2 emits a continuous laser beam L having a wavelength matching the absorption spectrum of the luminescent gas G, for example, a wavelength of 980 nm. Note that a pulse laser beam may be emitted from the laser unit 2.
  • the output of the continuous laser beam L is, for example, about 60W.
  • the continuous laser light L emitted from the laser unit 2 is guided to the optical system 3 by the optical fiber 4.
  • the optical system 3 is an optical system that condenses the continuous laser light L from the laser unit 2 toward the light emitting envelope 11.
  • the optical system 3 is composed of, for example, two lenses 5 and 6.
  • the continuous laser light L emitted from the head 4 a of the optical fiber 4 is collimated by the lens 5 and then condensed toward the light emitting envelope 11 by the lens 6 with the optical axis LA.
  • the diameter of the condensed continuous laser beam L is, for example, about 120 ⁇ m in diameter.
  • the light emitting envelope 11 contains a bulb (housing) 12 in which a light emitting gas G is sealed in a high pressure in the internal space S, and an easy-electron emitting material that emits electrons when irradiated with continuous laser light L. And the metal structure 13 to be configured.
  • the bulb 12 is formed hollow, for example, by glass, and includes a spherical portion (main body portion) 12a having a spherical outer diameter and a spherical inner space S and a part of the spherical portion 12a. And a protruding portion (protruding portion) 12b protruding in a columnar shape.
  • xenon gas as a luminescent gas G is sealed at a high pressure.
  • the top portion 12c located on the opposite side of the protruding portion 12b in the spherical portion 12a is an incident portion (laser incident window portion LW) of the continuous laser light L.
  • the laser incident window portion LW only needs to face the incident portion of the continuous laser light L in the metal structure 13 to be described later, and may be located in a portion other than the top portion 12c of the spherical portion 12a.
  • the metal structure 13 is formed of a refractory metal such as tungsten, for example, and includes an electron emission portion 13a containing, for example, barium as an easily radiating substance, and a support portion 13b that supports the electron emission portion 13a.
  • the electron emitting portion 13a irradiated with the continuous laser light L is formed in, for example, a thin cylindrical shape, and the tip 13c serving as the incident portion of the continuous laser light L is the top portion 12c (laser) of the bulb 12. It is disposed inside the spherical portion 12a so as to face the incident window portion LW).
  • the incident part of continuous laser beam L is not restricted to the front-end
  • the support portion 13b has a rod-like member 15 formed in a columnar shape by a high melting point metal such as molybdenum.
  • the electron emission portion 13a (tip 13c) is supported on the distal end side of the support portion 13b so as to be disposed at a desired position in the internal space S in the spherical portion 12a, and the proximal end side of the support portion 13b is It arrange
  • the electron emitting portion 13a and the support portion 13b do not necessarily have to be made of different constituent materials, and the support portion 13b may be formed integrally with the material used for the electron emitting portion 13a.
  • the base may be integrally formed of the same metal, and the electron emissive substance may be contained only in the portion corresponding to the electron emitting portion 13a.
  • the electron emission part 13a and the whole metal structure 13 may be comprised with the easy electron emission substance itself.
  • the electron emission structure is not limited to a metal structure formed of a metal (conductive material) substrate such as tungsten or molybdenum, and may be formed of an insulating substrate such as ceramic.
  • the metal structure 13 containing the easily electron emissive substance is accommodated in the bulb 12 in which the light emitting gas G is enclosed.
  • plasma is generated by irradiating the metal structure 13 with the continuous laser light L, and the plasma is continuously irradiated with the continuous laser light L.
  • Luminance laser support light can be lit and maintained in the lighting start region RS.
  • the light source device 1 includes an optical path length adjusting unit 51 for adjusting the optical path length of the continuous laser light L as a condensing position moving unit. More specifically, the optical path length adjustment unit 51 adjusts the optical path length LL that is the length of the optical axis LA of the continuous laser light L from the laser incident window LW to the condensing position F in the internal space S of the bulb 12. To do.
  • the optical path length adjustment unit 51 for example, an optical member 8 as shown in FIG. 2 is used.
  • the optical member 8 includes a plate-shaped transparent medium 9 and a rod-shaped rotary actuator 10 that supports the transparent medium 9.
  • the transparent medium 9 can be rotated with respect to the axial direction of the rotary actuator 10 by the rotary actuator 10.
  • the optical member 8 is disposed so that the transparent medium 9 can be interposed between the optical system 3 and the light emitting envelope 11.
  • the transparent medium 9 is formed of a material having a refractive index higher than that of air (laser light irradiation atmosphere outside the light emitting envelope 11) such as synthetic quartz glass. Further, as shown in FIG. 2, the transparent medium 9 has a 3/4 circular planar shape, and the thickness of the continuous laser beam L in the direction of the optical axis LA for each 1/4 circle (the continuous laser beam L is transmitted). Different length). Specifically, the transparent medium 9 is adjacent to the first region R1 having a quarter circular planar shape having a thickness of, for example, about 2 mm and the first region R1, and has a thickness of, for example, about 4 mm.
  • the second region R2 having a quarter circular planar shape and the third region R3 having a quarter circular planar shape adjacent to the second region R2 and having a thickness of, for example, about 2 mm. It is configured.
  • a region where the transparent medium 9 is not sandwiched between the first region R1 and the third region R3 is referred to as a fourth region R4.
  • 3 to 5 are cut end views showing the operation of the optical member 8 (optical path length adjusting unit 51).
  • the first region R ⁇ b> 1 of the transparent medium 9 is interposed between the optical system 3 and the light emitting envelope 11 before the laser supporting light is turned on.
  • the continuous laser light L is refracted by the transparent medium 9, and the condensing position F of the continuous laser light L is located in a spatial region between the electron emitting portion 13a (metal structure 13) and the laser incident window LW side.
  • the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emission portion 13a (metal structure 13) is, for example, about 260 kW / cm 2 .
  • the transparent medium 9 is rotated between the optical system 3 and the light emitting envelope 11 by rotating the transparent medium 9 from the state of FIG.
  • the second region R2 is interposed.
  • the condensing position F of the continuous laser light L is the condensing position F of the continuous laser light L before the laser support light LS is turned on. On the other hand, it moves to the metal structure 13 side.
  • the continuous laser light L is condensed on the substantially surface of the electron emission portion 13a (metal structure 13), and the surface (lighting) of the electron emission portion 13a (metal structure 13).
  • the energy density of the continuous laser light L in the start region RS) is, for example, about 530 kW / cm 2 .
  • the transparent medium 9 is rotated by the rotary actuator 10 from the state of FIG.
  • a fourth region R4 is interposed between the sealing body 11 and the sealing body 11.
  • the condensing position F of the continuous laser light L is continuous before the laser support light LS is turned on (FIG. 3) and when the laser support light LS is turned on (FIG. 4).
  • the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emission portion 13a (metal structure 13) is, for example, 260 kW / cm 2 or less.
  • the optical path length LL of the continuous laser light L in the internal space S is adjusted by adjusting the thickness of the transparent medium 9 interposed between the optical system 3 and the light emitting envelope 11, and the continuous laser light L
  • the condensing position F is moved.
  • the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13) is changed to the laser support light LS before lighting, during lighting, and after lighting (maintenance). It becomes possible to make the energy density suitable for the state. More specifically, before the laser supporting light LS is turned on, the electron emitting portion 13a (metal structure 13) is irradiated with the continuous laser light L at an energy density that does not cause sputtering.
  • the metal structure 13) can be heated. Therefore, it is possible to easily emit electrons from the electron emitting portion 13a (metal structure 13) during the subsequent laser support light LS lighting, and it is easy to light the laser support light LS. Further, when the laser support light LS is turned on, the continuous laser light L can be applied to an appropriate position of the electron emitting portion 13a (metal structure 13) with an energy density sufficient for turning on the laser support light LS. The LS can be reliably turned on in the lighting start area RS. Then, after the laser support light LS is turned on (when the laser support light LS is maintained), the laser support light LS can be maintained and the energy density can be set such that sputtering does not occur in the metal structure 13.
  • the laser supporting light LS that is plasma emission is also emitted from the electron emitting portion 13a (since it is separated from the metal structure 13 (lighting start region RS), sputtering of the metal structure 13 by the laser support light LS can also be suppressed. Therefore, since the deterioration of the metal structure 13 and the contamination of the inner wall of the bulb 12 due to sputtering can be suppressed and the life of the light emitting envelope 11 (light source 7) can be increased, the life of the light source device can be sufficiently increased.
  • the second region R2 and the fourth region R4 are changed in the middle of changing the region interposed between the optical system 3 and the light emitting envelope 11 from the second region R2 to the fourth region R4.
  • a third region R3 having an intermediate thickness with respect to the region R4 is interposed.
  • the configuration of the optical member 8 can take other modes.
  • the optical member 8 may be composed of a light modulation element such as a spatial light modulation element.
  • the optical member 8 is a plate-shaped transparent medium 29 having a substantially uniform thickness in the direction of the optical axis LA of the continuous laser light L (length through which the continuous laser light L is transmitted).
  • an optical member 28 constituted by an actuator 30 that holds the transparent medium 29.
  • the transparent medium 29 held by the actuator 30 moves in a direction substantially orthogonal to the optical axis LA of the continuous laser light L according to the state when the laser support light LS is turned on and after being turned on (during maintenance).
  • the continuous laser light L is condensed on, for example, the substantially surface (lighting start region RS) of the electron emission portion 13a (metal structure 13). Yes.
  • the transparent medium 29 is moved by the actuator 30 so as not to be interposed between the optical system 3 and the light emitting envelope 11 as shown in FIG.
  • the condensing position F of the continuous laser light L is continuous with respect to the condensing position F of the continuous laser light L when the laser supporting light LS is turned on.
  • the laser beam L moves to a position away from the metal structure 13 (lighting start region RS) in the direction of the optical axis LA. Therefore, even in this case, the sputtering of the metal structure 13 can be suppressed as in the first embodiment.
  • a transparent medium 39 as shown in FIG. 8A can be used instead of the transparent medium 29, for example.
  • the transparent medium 39 has a plate shape in which one surface is inclined with respect to the other surface so that the thickness of the continuous laser light L in the direction of the optical axis LA (the length through which the continuous laser light L passes) continuously changes.
  • the transparent medium 29 it is used while being held by the actuator 30.
  • the transparent medium 39 when the laser support light LS is turned on, the optical system 3 emits light so that, for example, the continuous laser light L is condensed on the substantially surface (lighting start region RS) of the electron emission portion 13a (metal structure 13).
  • a transparent medium 39 is interposed between the sealing body 11 and the sealing body 11.
  • the transparent medium 39 is moved by the actuator 30 so as not to be interposed between the optical system 3 and the light emitting envelope 11.
  • the condensing position F of the continuous laser light L gradually moves with the movement of the transparent medium 39, and the metal structure 13 (lighting start region RS).
  • the emission region of the laser support light LS can also be gradually moved away from the metal structure 13 (lighting start region RS). Accordingly, since the plasma can be easily maintained by overlapping a part of the light emitting region before and after the converging position F of the continuous laser light L is moved, the laser supporting light LS can be easily maintained.
  • a transparent medium 49 as shown in FIG. 8B can be used instead of the transparent medium 29, for example.
  • the transparent medium 49 is formed by joining two members having different thicknesses in the direction of the optical axis LA of the continuous laser light L (length through which the continuous laser light L is transmitted).
  • the first member has a thickness of about 4 mm, for example.
  • the transparent medium 49a and the second transparent medium 49b having a thickness of, for example, about 2 mm are joined at the end surfaces.
  • the transparent medium 49 when the laser support light LS is turned on, for example, the continuous laser light L is emitted from the optical system 3 so as to be condensed on the substantially surface (lighting start region RS) of the electron emission portion 13a (metal structure 13). A first transparent medium 49 a is interposed between the sealing body 11 and the sealing body 11. Subsequently, after the laser supporting light LS is turned on (during maintenance), the transparent medium 49 is moved by the actuator 30 so as not to be interposed between the optical system 3 and the light emitting envelope 11. At this time, since the transparent medium 49 is composed of transparent media 49a and 49b having different thicknesses, the condensing position F of the continuous laser light L is gradually increased with the movement of the transparent medium 49.
  • the emission region of the laser support light LS can also be moved stepwise away from the metal structure 13 (lighting start region RS). Therefore, since it becomes easy for some of the light emitting regions to overlap each other before and after the converging position F of the continuous laser light L is moved, it is easy to maintain the plasma, and thus it is easy to maintain the laser support light LS.
  • FIGS. 9 and 10 are diagrams showing a light source device according to the second embodiment of the present invention.
  • the description which overlaps with 1st Embodiment is abbreviate
  • the optical system 3 and the head 4 a of the optical fiber 4 are accommodated in the housing 17.
  • the casing 17 is held by an actuator 18 (optical system moving unit 52) as a condensing position moving unit, and the actuator 18 (optical) according to the state when the laser support light LS is turned on and after being turned on (maintained).
  • the system moving unit 52) moves the continuous laser light L in the direction of the optical axis LA.
  • the housing 17 condenses, for example, the continuous laser light L on the substantially surface (lighting start region RS) of the electron emission portion 13a (metal structure 13). Is held in such a position.
  • the housing 17 has a condensing position F of the continuous laser light L with respect to a condensing position F when the laser supporting light LS is turned on.
  • the actuator 18 is moved along the optical axis LA of the continuous laser beam L so as to be separated from the metal structure 13 (lighting start region RS).
  • the metal structure 13 (lighting start) can be easily performed with the simple configuration in which the housing 17 including the optical system 3 is moved by the actuator 18 (optical system moving unit 52). Can be separated from the region RS).
  • the housing 17 is moved in the direction of the optical axis LA of the continuous laser light L by the actuator 18, but the condensing position F of the continuous laser light L after the laser support light LS is turned on (during maintenance). Is a position away from the metal structure 13 (lighting start region RS) with respect to the condensing position F of the continuous laser light L when the laser support light LS is turned on, the movement direction of the housing 17 is continuous laser light.
  • the direction may be different from the direction of the optical axis LA of L (for example, the direction intersecting the optical axis LA of the continuous laser light L).
  • FIGS. 11 and 12 are diagrams showing a light source device according to the third embodiment of the present invention.
  • the light source device according to the third embodiment will be described, but the description overlapping with the first and second embodiments will be omitted.
  • the light emitting envelope 11 is held by the actuator 18 (light emitting envelope moving unit 53), and when the laser supporting light LS is turned on and after being turned on (maintained). Depending on the state, it is moved in the direction of the optical axis LA of the continuous laser light L by the actuator 18 (light emitting envelope moving part 53) as a condensing position moving part.
  • the light emitting envelope 11 when the laser support light LS is turned on, the light emitting envelope 11 has the continuous laser light L condensed, for example, on the substantially surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13). Is held in such a position.
  • the light emitting envelope 11 after the laser supporting light LS is turned on (during maintenance), the light emitting envelope 11 has the condensing position F of the continuous laser light L at the condensing position F when the laser supporting light LS is turned on.
  • the actuator 18 is moved along, for example, the optical axis LA of the continuous laser beam L so as to be separated from the metal structure 13 (lighting start region RS).
  • the light emitting envelope 11 is moved by the actuator 18 (light emitting envelope moving unit 53), and the condensing position F of the continuous laser beam L can be easily moved to the metal structure 13 (lighting start region RS). Can be separated from
  • the light emitting envelope 11 is moved in the direction of the optical axis LA of the continuous laser light L by the actuator 18, but the condensing position of the continuous laser light L after the laser supporting light LS is turned on (during maintenance). If F is a position away from the metal structure 13 (lighting start region RS) with respect to the condensing position F of the continuous laser light L when the laser support light LS is lit, the moving direction of the light emitting envelope 11 is continuous.
  • the direction may be different from the direction of the optical axis LA of the laser light L (for example, the direction intersecting the optical axis LA of the continuous laser light L).
  • FIG. 13 and 14 are views showing a light emitting envelope constituting a light source device according to a fourth embodiment of the present invention.
  • the light emitting envelope constituting the light source device according to the fourth embodiment will be described, but the description overlapping with the first to third embodiments will be omitted.
  • the light emitting envelope 61 has a small-diameter portion 16 that holds the rod-shaped member 15 that is the support portion 13 b.
  • the small-diameter portion 16 is provided by using a part of the inner wall of the protruding portion 12b, and the protruding portion 12b has a smaller inner diameter than other portions so as to contact the rod-shaped member 15.
  • the small diameter portion 16 is only in contact with the peripheral surface of the rod-shaped member 15 and is not fused to the rod-shaped member 15.
  • the small diameter portion 16 may be provided closer to the base end (lower side of the drawing) than the position illustrated in FIGS. 13 and 14, or may be provided closer to the distal end side (upper side of the drawing). Further, a plurality of small diameter portions 16 may be provided.
  • the metal structure 13 (electron emission structure) is provided with a large-diameter portion 13d provided so as to be able to come into contact with the small-diameter portion 16 at an end portion of the rod-like member 15 passed through the small-diameter portion 16. ing. Further, a coil 14 (electron emission structure moving portion 54) is provided as a condensing position moving portion on the outer wall side of the protruding portion 12b so as to correspond to the position of the large diameter portion 13d.
  • the coil 14 (electron emission structure moving portion 54) applies a magnetic force to the rod-shaped member 15 so that the large-diameter portion 13d on the rod-shaped member 15 side abuts on the small-diameter portion 16 on the protruding portion 12b side.
  • the metal structure 13 is moved in the direction of the optical axis LA of the continuous laser beam L in accordance with the state of LS lighting and after lighting (during maintenance).
  • the metal structure 13 when the laser support light LS is turned on, the metal structure 13 is irradiated with, for example, a continuous laser beam L by the magnetic force applied from the coil 14 (electron emission structure moving unit 54).
  • the metal structure 13) is held at a position where light is condensed on the substantially surface (lighting start region RS).
  • the metal structure 13 after the laser support light LS is turned on (during maintenance), the metal structure 13 has the condensing position F of the continuous laser light L by stopping the application of the magnetic force from the coil 14.
  • the laser beam LS moves along the optical axis LA of the continuous laser beam L so as to be separated from the metal structure 13 (lighting start region RS) with respect to the condensing position F when the laser support beam LS is lit.
  • the metal structure 13 is moved by the coil 14 (electron emission structure moving portion 54), so that the condensing position F of the continuous laser light L can be easily changed. It can be separated from (lighting start area RS). Furthermore, in this case, since the movement of the condensing position F of the continuous laser light L does not require movement or adjustment of the optical system 3 and the valve 12, the optical conditions in the irradiation path of the continuous laser light L can be kept constant. And the condensing position of the continuous laser beam L can be maintained at an appropriate position.
  • the light emitting envelope 61 can take other forms.
  • the spacer member 19 fitted to the inner wall of the protruding portion 12b so that the rod-like member 15 is inserted, and the end of the rod-like member 15 passed through the spacer member 19 And a large-diameter portion 13 d provided so as to be able to contact the small-diameter portion 16.
  • the coil 14 is provided on the outer wall side of the protruding portion 12b so as to correspond to the position of the large diameter portion 13d, and the large diameter portion 13d on the rod-like member 15 side is the spacer. A magnetic force is applied to the rod-shaped member 15 so as to come into contact with the member 19.
  • the coil 14 (electron emission structure moving portion 54) applies a magnetic force to the rod-shaped member 15, so that the laser support light LS is turned on (FIG. 15 (a)) and The metal structure 13 is moved in the direction of the optical axis LA of the continuous laser beam L in accordance with the state after lighting (during maintenance) (FIG. 15B).
  • FIG. 16 is a diagram showing a light source device according to the fifth embodiment of the present invention.
  • the light source device 41 includes a control unit 55 that adjusts the emission energy of the continuous laser light L emitted from the laser unit 2.
  • the optical system 3 condenses the continuous laser light L at a position separated from the surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13). In other words, the surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13) is always irradiated with the continuous laser light L in the defocused state.
  • FIG. 17 is a diagram illustrating the operation of the control unit 55.
  • the control unit 55 determines the condensing position F of the continuous laser light L on the surface of the electron emission unit 13a (metal structure 13) (lighting start region RS).
  • the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emission portion 13a (metal structure 13) is set so that the laser supporting light LS can be turned on (for example, 530 kW / cm 2).
  • the emission energy of the continuous laser beam L emitted from the laser unit 2 is set so that Thereby, the continuous laser light L irradiated to the surface (lighting start area
  • the control unit 55 changes the condensing position F of the continuous laser light L to the position (FIG. 17 (a)), the emission energy of the continuous laser light L emitted from the laser unit 2 is set lower than the emission energy of the continuous laser light L when the laser support light LS is turned on.
  • the control unit 55 sets the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emission unit 13a (metal structure 13), for example, 530 kW / cm 2 when the laser support light LS is turned on. About 260 kW / cm 2 is set.
  • the laser support light LS is sent from the metal structure 13 (lighting start area
  • the continuous laser light L emitted from the laser unit 2 is condensed at a position separated from the surface of the metal structure 13 (lighting start region RS), and the emission energy of the continuous laser light L is increased. Adjustment is performed by the control unit 55. That is, in the light source device 41, the surface of the metal structure 13 (lighting start region RS) is always irradiated with the continuous laser light L in the defocused state, and further, the electron emitting portion 13a (metal structure) when the laser support light LS is maintained.
  • the surface of the metal structure 13 is locally sputtered. Can be suppressed. Therefore, the life of the metal structure 13 can be extended. Further, in the light source device 41, it is not necessary to mechanically move the condensing position F of the continuous laser light L, so that the condensing position of the continuous laser light L can be maintained at an appropriate position, and the optical system 3 or Since a device for moving the light emitting envelope 11 is not required, the light source device can be downsized.
  • the continuous laser light L may be irradiated from a direction in which the optical axis LA of the continuous laser light L and the axis in the extending direction of the metal structure 13 are coaxial with each other as described above. Irradiation may be performed from a direction in which the optical axis LA of L and the axis in the extending direction of the metal structure 13 intersect each other.
  • FIGSixth Embodiment 18 to 20 are views showing a light source device according to the sixth embodiment of the present invention.
  • the light source device according to the sixth embodiment will be described, but the description overlapping with the first to fifth embodiments will be omitted.
  • the continuous laser light L is in the extending direction of the optical axis LA of the continuous laser light L and the metal structure 13 with respect to the light emitting envelope 91 (light source 7). Irradiation is from a direction where the axes intersect each other.
  • the continuous laser beam L is irradiated from a direction in which the optical axis LA of the continuous laser beam L and the axis in the extending direction of the metal structure 13 are substantially orthogonal to each other, and the bulb 12 (particularly Of the spherical portion 12a), the side portion 12d positioned laterally with respect to the axis of the extending direction of the metal structure 13 is the incident portion (laser incident window portion LW) of the continuous laser beam L.
  • the optical system 3 includes the continuous laser beam so that the position of the condensing position F of the continuous laser beam L in the direction of the optical axis LA is substantially the surface (lighting start region RS) of the electron emission unit 13a.
  • a holding part 13f for holding the electron emission part 13a is provided on the distal end side of the rod-like member 15 (supporting part 13b) of the metal structure 13, and a holding part 13f and a stick-like member are provided on the base end side of the holding part 13f.
  • 15 (a supporting portion 13b) is formed with a reduced diameter portion 13e that is reduced in diameter so as to be narrower than the proximal end side (base end portion 13g).
  • the reduced diameter portion 13e is provided at a position corresponding to the end of the protruding portion 12b of the bulb 12 on the spherical portion 12a side.
  • the housing 17 in which the optical system 3 and the head 4a of the optical fiber 4 are accommodated is held by an actuator 18 (optical system moving unit 52) as a condensing position moving unit, and is supported by the laser.
  • the housing 17 is held at a position where the continuous laser light L is irradiated to the holding portion 13f of the rod-like member 15 (support portion 13b), for example. Has been.
  • the holding portion 13f has a larger diameter than the electron emitting portion 13a, the surface of the holding portion 13f is positioned closer to the laser incident window LW than the surface of the electron emitting portion 13a.
  • the continuous laser beam L is apparently condensed at a virtual condensing position F ′ inside the holding portion 13f and defocused to an energy density that does not cause sputtering on the substantially surface of the holding portion 13f. Irradiated with.
  • the housing 17 At the time of turning on the laser support light LS, as shown in FIG. 19, the housing 17 is moved to a position where the continuous laser light L is applied to the electron emitting portion 13a. At this time, the condensing position F of the continuous laser beam L is located on the substantially surface (lighting start region RS) of the electron emitting portion 13a. After the laser support light LS is turned on (during maintenance), as shown in FIG. 20, the housing 17 has electrons at which the condensing position F of the continuous laser light L is compared with the condensing position F when the laser support light LS is turned on.
  • the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13) when the laser supporting light LS is maintained is defined as the electron emitting portion 13a (metal) when the laser supporting light LS is turned on.
  • the energy density of the continuous laser beam L on the surface (lighting start region RS) of the structure 13) can be lowered.
  • the condensing position F of the continuous laser light L can be easily made into a metal structure with a simple configuration in which the casing 17 including the optical system 3 is moved by the actuator 18 (optical system moving unit 52). It can be separated from the body 13 (lighting start region RS) in a direction (direction along the axis of the extending direction of the metal structure 13) intersecting the optical axis LA direction of the continuous laser light L.
  • the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13) is changed to the laser support light LS before lighting, during lighting, and after lighting (maintenance). It becomes possible to make the energy density suitable for the state.
  • the continuous laser light L is irradiated to the holding portion 13f of the rod-shaped member 15 (support portion 13b) in a defocused state with an energy density that does not cause sputtering.
  • the holding portion 13f is heated without being sputtered, and accordingly, the temperature of the electron emitting portion 13a (metal structure 13) also rises.
  • the reduced diameter portion 13e is formed, the heat conduction path from the holding portion 13f to the base end portion 13g side is limited, so that the electron emitting portion 13a (metal structure body) by the continuous laser light L irradiation.
  • the heating of 13) can be performed more efficiently.
  • the rod-shaped member 15 (support portion 13b) is made of a high melting point metal such as molybdenum or tungsten that can withstand the heating.
  • the continuous laser light L can be applied to the surface of the electron emission portion 13a (lighting start region RS) with an energy density sufficient for turning on the laser support light LS. It can be lit reliably. Then, after the laser support light LS is turned on (during maintenance), the continuous laser light L is applied to the laser support light LS moved to the space region of the internal space S separated from the metal structure 13 (lighting start region RS). The laser support light LS is maintained by irradiation.
  • the life of the light source device can be sufficiently increased.
  • the reduced diameter portion 13e is provided at a position corresponding to the end of the protruding portion 12b of the bulb 12 on the spherical portion 12a side. However, the reduced diameter portion 13e enters the spherical portion 12a.
  • the reduced diameter portion 13e may be formed continuously to the base end side of the rod-shaped member 15 (support portion 13b).
  • the electron emission part 23a was formed in the cylindrical shape of a small diameter, as shown in FIG. 21, the electron emission part 23a is, for example, the rod-shaped member 15 (support part 13b).
  • You may have the thin cylindrical part 24 extended in the axial direction extended, and the inclination part 25 provided in the front end side of the cylindrical part 24.
  • the inclined portion 25 is formed with an inclined surface 25a inclined with respect to the axis in the extending direction of the cylindrical portion 24.
  • the inclined surface 25a is also inclined with respect to the optical axis LA of the continuous laser beam L. Yes.
  • FIG. 22 is an enlarged view of a main part showing the operation of the electron emitting portion 23a (metal structure 23).
  • the laser support light LS when the laser support light LS is turned on, it is preferable to focus the condensing position F of the continuous laser light L so that it is positioned on the substantially surface of the electron emitting portion 23a. May require precise adjustment. Even if the condensing position F of the continuous laser light L is not the substantially surface of the electron emission portion 23a, the laser support light LS is turned on if the energy density of the continuous laser light L on the approximate surface of the electron emission portion 23a is sufficiently high. Yes, but that requires a higher power laser.
  • the present embodiment it is possible to give a margin to the positional accuracy of the condensing position F of the continuous laser light L in the optical axis LA direction without changing the output of the laser.
  • a virtual collection point with a positional accuracy of a degree that the condensing position F of the continuous laser light L in the electron emission part 23a is surely contained in the cylindrical part 24 in the direction of the optical axis LA is obtained.
  • the virtual condensing position F ′ of the continuous laser beam L is moved from the rod-shaped member 15 (supporting portion 13b) side to the inclined portion 25 side in the direction along the axis of the extending direction of the cylindrical portion 24.
  • the housing 17 is moved by the actuator 18.
  • the condensing position F of the continuous laser beam L is reliably positioned at any position on the substantially surface of the inclined surface 25a in the inclined portion 25 of the electron emitting portion 23a. Therefore, the laser support light LS can be turned on.
  • the condensing position F of the continuous laser light L is placed at any position on the surface of the electron emitting portion 23a.
  • An inclined surface 25a for positioning is formed.
  • the condensing position F of the continuous laser light L is substantially the surface of the inclined surface 25 a. Since it can be surely positioned at any of the above positions, the laser support light LS can be turned on.
  • the continuous laser beam L on the surface of the cylindrical portion 24 when the continuous laser beam L is irradiated onto the cylindrical portion 24 (FIG.
  • the electron emitting portion 23a is heated by irradiating the cylindrical portion 24 with the continuous laser light L, and the laser support during the subsequent irradiation of the inclined surface 25a with the continuous laser light L is performed. There exists an effect which makes lighting of light LS easy.
  • the condensing position F of the continuous laser light L is moved by the actuator 18 (the optical system moving unit 52). However, the condensing position F of the continuous laser light L is moved by adjusting the optical system 3. You may let them. Further, by applying the light emitting envelope moving unit 53 described in the third embodiment, the condensing position F of the continuous laser light L may be moved, and the electron emission structure moving described in the fourth embodiment is performed. The condensing position F of the continuous laser light L may be moved by applying the unit 54.
  • the deterioration of the metal structure 13 due to sputtering and the contamination of the inner wall of the bulb 12 can be suppressed, and the life of the light emitting envelope 11 (light source 7) can be increased.
  • the lifetime can be extended sufficiently as an apparatus.
  • the laser support light LS is moved and maintained on the optical axis LA of the continuous laser light L or the movement direction axis of the continuous laser light L at the time of lighting. It may be moved to an arbitrary position in the space area. In this case, a position where the influence of the laser support light LS on the metal structure can be further reduced is selected, or a position suitable for taking out the laser support light LS from the light source 7 is selected in accordance with an external optical system or the like. can do. Further, even when the reduced diameter portion 13e is adopted in the embodiments other than the sixth embodiment, the heating efficiency of the electron emission portion 13a (metal structure 13) is improved, and the electron emission portion 13a (metal structure 13) is changed to an electron. Can be easily released.
  • FIG. 23 is a schematic view showing a light source device according to the seventh embodiment of the present invention.
  • the light source device 101 houses a laser unit 102 that emits laser light, an optical system 103 that guides laser light L from the laser unit 102, and counter electrodes 113 and 113 that face each other.
  • the light emitting envelope 111 (light source 107) is included.
  • a discharge is generated between the counter electrodes 113, 113, and the discharge region is irradiated with laser light, whereby the condensing position F of the laser light L in the light emitting envelope 111, which is the light source 107.
  • the laser support light is used as a light source for semiconductor inspection or light for spectroscopic measurement, for example.
  • the laser unit 102 is, for example, a laser diode.
  • the laser unit 102 either a continuous laser or a pulsed laser may be used, but in this embodiment, a continuous laser is used.
  • the laser unit 102 emits a laser beam L having a wavelength matched to the absorption spectrum of the luminescent gas G, for example, a wavelength of 980 nm.
  • the output of the laser beam L is, for example, about 30W.
  • Laser light L emitted from the laser unit 102 is guided to the optical system 103 by the optical fiber 104.
  • the optical system 103 is an optical system that guides the laser light L from the laser unit 102 between the counter electrodes 113 and 113.
  • the optical system 103 includes, for example, two lenses 105 and 106.
  • the laser light L emitted from the head 104 a of the optical fiber 104 is collimated by the lens 105 and then condensed toward the light emitting envelope 111 by the lens 106 with the optical axis LA.
  • the diameter of the condensed laser beam L is, for example, about 120 ⁇ m in diameter.
  • the light emitting envelope 111 includes a bulb (housing) 112 in which a light emitting gas G is sealed in a high pressure in the internal space S, and counter electrodes 113 and 113 facing each other in the internal space S. It is configured.
  • the bulb 112 is formed hollow by glass, for example. In the internal space S of the bulb 112, for example, xenon gas as a luminescent gas G is sealed at a high pressure.
  • the counter electrodes 113 and 113 are formed in a rod shape from a high melting point metal such as tungsten, for example, and are opposed to each other on the tip side.
  • the base end side of the counter electrode 113 passes through the wall portion of the bulb 112, is drawn out of the bulb 112, and is connected to a power supply member 114 connected to a power supply portion (not shown), thereby discharging between the electrodes. Is supplied to the counter electrodes 113, 113.
  • the counter electrodes 113 and 113 do not directly penetrate the wall portion of the valve 112, but a conductive member electrically connected to the counter electrodes 113 and 113 penetrates the wall portion of the valve 112 to the outside of the valve 112. It may be pulled out and connected to the power supply member 114.
  • a high voltage is applied between the counter electrodes 113 and 113 via the power supply member 114, whereby a discharge region is formed in the counter electrodes 113 and 113.
  • the luminescent gas G is ionized and converted into plasma.
  • the high-luminance laser support light is turned on in the lighting start region RS, and the laser support light is continuously irradiated to the laser support light, whereby the counter electrodes 113 and 113 are used. Even if the power supply to is stopped, the laser support light is maintained by receiving the energy supply by the laser light L.
  • the laser beam L may be condensed in the discharge region in advance, and then the discharge region may be formed between the counter electrodes 113 and 113. Further, after the laser supporting light is turned on, the power supply to the counter electrodes 113 and 113 may be stopped or the power supply may be continued.
  • the light source device 101 includes an optical path length adjusting unit 151 for adjusting the optical path length of the laser light L as a condensing position moving unit. More specifically, the optical path length adjustment unit 151 adjusts the optical path length LL that is the length of the optical axis LA of the laser light L from the inner wall of the bulb 112 to the condensing position F in the internal space S of the bulb 112.
  • the optical path length adjustment unit 151 for example, an optical member 108 as shown in FIG. 23 is used.
  • the optical member 108 includes a plate-shaped transparent medium 109 having a substantially uniform thickness in the optical axis LA direction of the laser light L (a length through which the laser light L is transmitted) and an actuator 110 that holds the transparent medium 109. ing.
  • the transparent medium 109 is made of a material having a higher refractive index than air (laser light irradiation atmosphere outside the light emitting envelope 111) such as synthetic quartz glass.
  • the transparent medium 109 held by the actuator 110 is in a direction substantially orthogonal to the optical axis LA of the laser light L in accordance with each of the laser support light LS lighting (FIG. 24) and after lighting (maintenance) (FIG. 25). Moving.
  • the transparent medium 109 is interposed between the optical system 103 and the light emitting envelope 111, and is arranged so that the entire region in the cross-sectional direction of the laser light L passes through the transparent medium 109.
  • the laser beam L is focused on a discharge path that is most likely to be discharged, for example, on a line X connecting the tip portions of the counter electrodes 113 and 113, that is, in a discharge region between the counter electrodes 113 and 113. is doing.
  • the energy density of the laser light L at the condensing position F (lighting start region RS) on the line X is, for example, about 260 kW / cm 2 .
  • the laser beam L is irradiated to the plasma generated in the discharge region (lighting start region RS) between the counter electrodes 113 and 113, and the laser support light LS is turned on.
  • the transparent medium 109 is moved by the actuator 110 so as not to be interposed between the optical system 103 and the light emitting envelope 111 as shown in FIG.
  • the condensing position F of the laser light L moves to the near side (upper side in FIG. 25) in the optical axis LA direction with respect to the condensing position F of the laser light L when the laser support light LS is turned on. Therefore, the energy density of the laser beam L on the line X (lighting start region RS) is the energy density of the laser beam L on the line X (lighting start region RS) when the laser support light LS is lit (maintained) (FIG. 24). Decreasing with respect to energy density.
  • the laser support light LS that is plasma emission is also the counter electrodes 113 and 113 (lighting start region RS). Therefore, sputtering of the counter electrodes 113 and 113 by the laser support light LS can be suppressed.
  • the energy density of the laser light L at the condensing position F is made smaller than the time when the laser support light LS is turned on to the extent that the laser support light LS can be maintained, or power supply to the counter electrodes 113 and 113 is stopped.
  • sputtering of the counter electrodes 113 and 113 can be further suppressed. Therefore, the light emitting envelope 111 and the light source device 101 can have a sufficiently long life.
  • the configuration of the optical member 108 can take other modes.
  • the optical member 108 may be composed of a light modulation element such as a spatial light modulation element.
  • a transparent medium 39 instead of the transparent medium 109, for example, a transparent medium 39 as shown in FIG.
  • the transparent medium 39 has a plate shape in which one surface is inclined with respect to the other surface, so that the thickness of the laser beam L in the direction of the optical axis LA (the length through which the laser beam L passes) changes continuously. In the same manner as the transparent medium 109, it is used while being held by the actuator 110.
  • the transparent medium 39 When the transparent medium 39 is used, first, the transparent medium 39 is interposed between the optical system 103 and the light emitting envelope 111 so that the entire area in the cross-sectional direction of the laser light L passes through the transparent medium 39.
  • the light is condensed on a line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113.
  • the laser support light LS is turned on in the discharge region (lighting start region RS) between the counter electrodes 113 and 113.
  • the transparent medium 39 is moved by the actuator 110 so as not to be interposed between the optical system 103 and the light emitting envelope 111.
  • the thickness of the transparent medium 39 in the region where the laser light L is incident gradually decreases as the transparent medium 39 moves. Therefore, the condensing position F of the laser light L gradually moves toward the front side (upper side in FIG. 24) in the direction of the optical axis LA as the transparent medium 39 moves.
  • a region having an energy density sufficient to maintain the laser support light LS gradually moves toward the front side in the direction of the optical axis LA.
  • the condensing position F of the laser light L is moved to the near side in the direction of the optical axis LA after the laser supporting light LS is turned on (during maintenance), the movement of the condensing position F of the laser light L is continuous. Since it moves, the laser support light LS is more reliably maintained.
  • a transparent medium 49 as shown in FIG. 8B can be used instead of the transparent medium 109.
  • the transparent medium 49 is a first transparent medium having, for example, a thickness of about 4 mm, in which two members having different thicknesses in the optical axis LA direction of the laser light L (length through which the laser light L passes) are joined.
  • 49a and the 2nd transparent medium 49b which has thickness of about 2 mm, for example, have the structure joined to mutual end surfaces.
  • the transparent medium 49 is interposed between the optical system 103 and the light emitting envelope 111 so that the entire cross-sectional area in the laser light L passes through the first transparent medium 49a.
  • the light L is condensed on the line X (lighting start region RS) connecting the tip portions of the counter electrodes 113 and 113.
  • the laser support light LS is turned on in the discharge region (lighting start region RS) between the counter electrodes 113 and 113.
  • the transparent medium 49 is moved by the actuator 110 so as not to be interposed between the optical system 103 and the light emitting envelope 111.
  • the transparent medium 49 is composed of transparent media 49a and 49b having different thicknesses, the thickness of the transparent medium 49 in the region where the laser light L is incident gradually decreases as the transparent medium 49 moves.
  • the condensing position F of the laser light L is gradually moved to the near side (upper side in FIG. 24) in the optical axis LA direction as the transparent medium 49 is moved.
  • a region having an energy density sufficient to maintain the laser support light LS is moved stepwise toward the optical axis LA direction.
  • the condensing position F of the laser light L is moved to the front side in the direction of the optical axis LA after the laser supporting light LS is turned on (during maintenance), the movement of the condensing position F of the laser light L is stepwise. Since the movement is small, the laser support light LS is more reliably maintained.
  • the condensing position F of the laser beam L after the laser support light LS lighting is from the line X (lighting start area
  • region RS which connects between the cusps of the counter electrodes 113 and 113.
  • the condensing position F of the laser light L after the laser supporting light LS is turned on is the tip of the counter electrodes 113, 113. It may be a position on the back side (lower side in FIG. 23) in the optical axis LA direction with respect to the line X (lighting start region RS) connecting the heads.
  • the laser beam L is condensed on the line X (lighting start region RS) connecting the tip portions of the counter electrodes 113 and 113.
  • the entire region of the laser light L in the cross-sectional direction passes between the transparent medium 109 and the optical system 103 and the light emitting envelope 111.
  • a transparent medium 109 is interposed.
  • the condensing position F of the laser light L is the back side in the optical axis LA direction (the lower side in FIG. 26) with respect to the condensing position F (lighting start region RS) of the laser light L when the laser support light LS is turned on. Will be moved to. Therefore, even in this case, similarly to the seventh embodiment, sputtering of the counter electrode 113 can be suppressed.
  • FIGS. 28 and 29 are views showing a light source device according to the eighth embodiment of the present invention.
  • the light source device according to the eighth embodiment will be described, but the description overlapping with the seventh embodiment will be omitted.
  • the optical system 103 and the head 104 a of the optical fiber 104 are accommodated in a housing 117.
  • the casing 117 is held by the actuator 118 (optical system moving unit 152), and the laser support light LS is turned on in the direction of the optical axis LA according to lighting (FIG. 28) and after lighting (maintenance) (FIG. 29).
  • the actuator 118 optical system moving unit 152
  • the housing 117 is at a position where the laser light L is condensed on a line X (lighting start region RS) connecting between the cusps of the counter electrodes 113 and 113, for example. Is retained. Thereby, the laser support light LS is turned on in the discharge region between the counter electrodes 113 and 113. Subsequently, after the laser supporting light LS is turned on (during maintenance), as shown in FIG. 29, the casing 117 moves to the near side (upper side in FIG. 28) in the optical axis LA direction. Thereby, the condensing position F of the laser light L moves to the near side (upper side in FIG.
  • the energy density of the laser light L on the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113 after the support light LS is turned on (during maintenance) is equal to the counter electrode 113 when the laser support light LS is turned on. It decreases with respect to the energy density of the laser beam L on the line X (lighting start region RS) connecting the cusp 113.
  • the condensing position F of the laser beam L is moved (between the counter electrodes 113, 113) by a simple configuration in which the casing 117 including the optical system 103 is moved by the actuator 118 (optical system moving unit 152).
  • the energy density of the laser light L on the line X (lighting start area RS) connecting the cusps of the counter electrodes 113 and 113 can be changed. Therefore, sputtering of the counter electrode 113 can be suppressed, and the life of the light source device 121 can be sufficiently extended.
  • the condensing position of the laser light L after the laser supporting light LS is turned on (during maintenance) is more optical than the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113.
  • the condensing position of the laser light L after the laser supporting light LS is turned on (during maintenance) connects the pointed heads of the counter electrodes 113 and 113. It may be a position on the far side (downward side in FIG. 28) in the optical axis LA direction from the line X (lighting start region RS).
  • the holding position of the casing 117 after the laser supporting light LS is turned on (during maintenance) is the back side in the optical axis LA direction (the lower side in FIG. 28) with respect to the holding position of the casing 117 when the laser supporting light LS is turned on. ).
  • FIGS. 30 and 31 are views showing a light source device according to the ninth embodiment of the present invention.
  • the light source device according to the ninth embodiment will be described below, but the description overlapping with the seventh and eighth embodiments will be omitted.
  • the light emitting envelope 111 is held by the actuator 118 (light emitting envelope moving unit 153), and when the laser supporting light LS is turned on (FIG. 30) and after lighting ( (At the time of maintenance) (FIG. 31) It moves to optical axis LA direction according to each.
  • the light emitting envelope 111 is, for example, a position where the laser light L is condensed on a line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113. Is held by. Thereby, the laser support light LS is turned on in the discharge region (lighting start region RS) between the counter electrodes 113 and 113. Subsequently, after the laser supporting light LS is turned on (during maintenance), as shown in FIG. 31, the light emitting envelope 111 moves to the back side (right side in FIG. 30) in the optical axis LA direction. Thereby, the condensing position F of the laser light L moves to the near side (left side in FIG.
  • the condensing position F of the laser light L is moved (between the counter electrodes 113 and 113 (lighting start region) with a simple configuration in which the light emitting envelope 111 is moved by the actuator 118 (light emitting envelope moving unit 153).
  • the energy density of the laser light L on the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113 can be changed. Therefore, sputtering of the counter electrode 113 can be suppressed, and the life of the light source device 131 can be sufficiently extended.
  • the condensing position F of the laser light L after the laser supporting light LS is turned on (during maintenance) is lighter than the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113.
  • the condensing position F of the laser light L after the laser supporting light LS is turned on (during maintenance) is the peak of the counter electrodes 113 and 113. It may be a position on the back side (right side in FIG. 30) in the optical axis LA direction with respect to the line X (lighting start region RS) connecting the parts.
  • the holding position of the light emitting envelope 111 after the laser supporting light LS is turned on (during maintenance) is the front side in the optical axis LA direction (in FIG. 30) with respect to the holding position of the light emitting envelope 111 when the laser supporting light LS is turned on. (Left side)
  • FIG. 32 is a diagram showing a light source device according to the tenth embodiment of the present invention.
  • the light source device 141 includes a control unit 154 that adjusts the emission energy of the laser light L emitted from the laser unit 102.
  • the optical system 103 is, for example, a position on the near side (upper side in FIG. 32) in the optical axis LA direction with respect to the line X connecting the laser light L between the cusps of the counter electrodes 113 and 113. It is condensed with
  • FIG. 33 is a diagram illustrating the operation of the control unit 154.
  • the control unit 154 first sets the condensing position F of the laser light L at a position separated from the counter electrodes 113, 113 (lighting start region RS),
  • the laser beam 102 is emitted from the laser unit 102 so that the energy density of the laser light L in the line X (lighting start region RS) connecting the cusp 113 is such that the laser support light LS can be lit (for example, about 260 kW / cm 2 ).
  • the emission energy of the laser beam L to be set is set.
  • the laser beam L in the line X (lighting start region RS) connecting between the cusps of the counter electrodes 113 and 113 can be turned on while the laser beam L is in a defocused state.
  • the control unit 154 sets the condensing position F of the laser light L to the position at the time of laser support light LS lighting (FIG. 33 ( While maintaining the position a), the emission energy of the laser beam L emitted from the laser unit 102 is set lower than the emission energy of the laser beam L when the laser support light LS is turned on.
  • the laser support light LS is sent from the counter electrodes 113 and 113 (lighting start area
  • the light source device 141 controls the emission energy of the laser beam L emitted from the laser unit 102 while always condensing the laser beam L at a position separated from the space between the counter electrodes 113 and 113 (lighting start region RS).
  • region RS) which connects between the cusps of the counter electrodes 113 and 113 can be changed. Therefore, since the condensing position F of the laser beam L with the highest energy density is not always located between the counter electrodes 113 and 113 (lighting start region RS), sputtering of the counter electrode 113 can be suppressed, and the light source device 141 A sufficiently long life is achieved.
  • the light source device 141 it is not necessary to mechanically move the condensing position F of the laser light L, so that the condensing position of the laser light L can be maintained at an appropriate position, and the optical system 103 and the light-emitting envelope can be maintained. Since a device for moving the body 111 is not required, the light source device can be reduced in size.
  • the optical system 103 has the laser beam L on the near side in the optical axis LA direction (upward in FIG. 32) above the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113.
  • the laser beam L is condensed in the optical axis LA direction (on the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113.
  • the light may be condensed on the lower side in FIG. Even in this case, the sputtering of the counter electrode 113 can be suppressed by adjusting the emission energy of the laser light L emitted from the laser unit 102 by the control unit 154 as in the tenth embodiment.
  • the condensing position F (laser support light LS) has moved in the direction of the optical axis LA of the laser light L, but the laser light L after the laser support light LS is turned on (during maintenance). If the condensing position F of the laser beam L is a position away from the counter electrode 113 (lighting start region RS) with respect to the condensing position F of the laser light L when the laser support light LS is lit, the optical axis LA of the laser light L You may move to the direction (for example, the direction which crosses the optical axis LA of the laser beam L) different from a direction.

Abstract

 In this light source device (1), a controller sets the energy density of laser light (L) in an illumination start region (RS) during laser support light maintenance so as to be lower than the energy density of laser light (L) in the illumination start region (RS) during laser support light illumination. Therefore, during laser support light maintenance, laser light (L) is beamed onto the illumination start region (RS) at an energy density at which sputtering does not occur. Therefore, in this light source device (1), sputtering in an emission sealed body (11) can be inhibited, making it possible to sufficiently extend the lifespan.

Description

光源装置Light source device
 本発明は、光源装置に関する。 The present invention relates to a light source device.
 従来、発光ガスを封入した発光封体の筐体内にレーザ光を照射し、発生したプラズマを利用する光源装置がある(例えば特許文献1,2を参照)。例えば特許文献1に記載の光源装置では、ガラス製の筐体内に配置した対向電極間に給電することで電極間の放電によるプラズマを発生させ、当該プラズマにレーザ光を継続して照射することでプラズマ発光であるレーザ支持光を点灯・維持している。また、例えば特許文献2に記載の光源装置では、キセノンランプ内に配置された電子放出金属にパルスレーザ光を照射することでパルス状のプラズマ発光を点灯させている。 Conventionally, there is a light source device that uses a generated plasma by irradiating a laser beam in a housing of a light emitting envelope in which a light emitting gas is sealed (see, for example, Patent Documents 1 and 2). For example, in the light source device described in Patent Document 1, plasma is generated by discharge between electrodes by supplying power between opposing electrodes arranged in a glass casing, and laser light is continuously irradiated to the plasma. Laser support light, which is plasma emission, is lit and maintained. In addition, for example, in the light source device described in Patent Document 2, pulsed plasma emission is turned on by irradiating an electron-emitting metal disposed in a xenon lamp with pulsed laser light.
特表2009-532829号公報Special table 2009-532829 特開平4-144053号公報JP-A-4-144053
 しかしながら、例えば特許文献1に記載の光源装置では、対向電極間でプラズマが発生し続けることによって対向電極がスパッタリングされ、対向電極の消耗によって発光封体の寿命が短くなるおそれがあった。また、スパッタリングされた物質が筐体の内壁に付着することでレーザ光の入射やレーザ支持光の取出しが阻害されるため、レーザ支持光の発光強度が徐々に低下していき、発光封体としての寿命が短くなるおそれがあった。 However, in the light source device described in Patent Document 1, for example, the plasma is continuously generated between the counter electrodes, the counter electrode is sputtered, and the life of the light emitting envelope may be shortened due to consumption of the counter electrode. In addition, since the sputtered material adheres to the inner wall of the housing, the incidence of laser light and the removal of the laser support light are hindered, so that the emission intensity of the laser support light gradually decreases, and as a light emitting envelope There was a risk of shortening the lifespan.
 また、例えば特許文献2に記載の光源装置に対して、パルス状のプラズマ発光を連続光とするためには、パルスレーザ光に代えて連続レーザ光を用いることが考えられる。しかしながら、連続レーザ光を電子放出金属に照射し続けた場合、電子放出金属が連続レーザ光によってスパッタリングされ、電子放出金属の消耗によって発光封体の寿命が短くなるおそれがあった。また、スパッタリングされた物質が筐体の内壁に付着することでレーザ光の入射やレーザ支持光の取出しが阻害されるため、レーザ支持光の発光強度が徐々に低下していき、発光封体の寿命が短くなるおそれがあった。 Further, for example, in order to use pulsed plasma emission as continuous light for the light source device described in Patent Document 2, it is conceivable to use continuous laser light instead of pulsed laser light. However, when the electron-emitting metal is continuously irradiated with the continuous laser beam, the electron-emitting metal is sputtered by the continuous laser beam, and the life of the light emitting envelope may be shortened due to the consumption of the electron-emitting metal. Also, since the sputtered material adheres to the inner wall of the housing, the incidence of laser light and the removal of the laser support light are hindered, so the emission intensity of the laser support light gradually decreases, and the light emitting envelope There was a risk of shortening the service life.
 本発明は、上記課題の解決のためになされたものであり、筐体内でのスパッタリングを抑制し、十分な長寿命化が図られる光源装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a light source device that suppresses sputtering in the housing and can achieve a sufficiently long life.
 上記課題の解決のため、本発明に係る光源装置は、レーザ光を出射するレーザ部と、内部空間に発光ガスが封入された発光封体、及び、内部空間に点灯開始領域を有する光源と、レーザ光を内部空間に導光する光学系と、点灯開始領域におけるレーザ光のエネルギー密度を制御する制御部と、を備え、光源は、内部空間において、レーザ部からのレーザ光の照射によって点灯する発光ガスのプラズマ発光であるレーザ支持光を、レーザ部からのレーザ光の照射によって維持し、制御部は、レーザ支持光維持時の点灯開始領域におけるレーザ光のエネルギー密度を、レーザ支持光点灯時の点灯開始領域におけるレーザ光のエネルギー密度に対して低くする。 In order to solve the above problems, a light source device according to the present invention includes a laser unit that emits laser light, a light emitting envelope in which a luminescent gas is sealed in an internal space, and a light source having a lighting start area in the internal space, An optical system that guides laser light to the internal space and a control unit that controls the energy density of the laser light in the lighting start area, and the light source is turned on by irradiation of the laser light from the laser part in the internal space. The laser support light, which is plasma emission of the emission gas, is maintained by irradiating the laser light from the laser unit, and the control unit determines the energy density of the laser light in the lighting start area when the laser support light is maintained. Is set lower than the energy density of the laser beam in the lighting start region.
 この光源装置では、制御部は、レーザ支持光維持時の点灯開始領域におけるレーザ光のエネルギー密度をレーザ支持光点灯時の点灯開始領域におけるレーザ光のエネルギー密度に対して低くしている。そのため、レーザ支持光維持時には、スパッタリングが生じない程度のエネルギー密度で点灯開始領域にレーザ光が照射される。したがって、この光源装置では、発光封体内でのスパッタリングを抑制できるため、十分な長寿命化が図られる。 In this light source device, the control unit lowers the energy density of the laser light in the lighting start area when the laser supporting light is maintained relative to the energy density of the laser light in the lighting start area when the laser supporting light is turned on. Therefore, when maintaining the laser support light, the lighting start region is irradiated with the laser light at an energy density that does not cause sputtering. Therefore, in this light source device, since sputtering in the light emitting envelope can be suppressed, a sufficiently long life can be achieved.
 光源は、内部空間に配置され、レーザ光の照射によって電子を放射する易電子放射物質を含有する電子放射構造体を更に有していてもよい。この場合、電子放射構造体のスパッタリングを抑制できる。 The light source may further include an electron-emitting structure that includes an easy-electron emitting material that is disposed in the internal space and emits electrons when irradiated with laser light. In this case, sputtering of the electron emission structure can be suppressed.
 光源は、点灯開始領域を挟むように互いに対向する対向電極を更に有していてもよい。この場合、対向電極間におけるプラズマの発生をスパッタリングが生じない程度に抑制できる。 The light source may further include counter electrodes facing each other so as to sandwich the lighting start area. In this case, generation of plasma between the counter electrodes can be suppressed to such an extent that sputtering does not occur.
 制御部は、レーザ支持光維持時のレーザ光の集光位置をレーザ支持光点灯時のレーザ光の集光位置に対して点灯開始領域から離間する方向に移動させる集光位置移動部を有していることが好ましい。この場合、レーザ支持光維持時には、レーザ光の集光位置が点灯開始領域から離間しているため、発光封体内でのスパッタリングを確実に抑制できる。 The control unit includes a condensing position moving unit that moves the condensing position of the laser light when maintaining the laser supporting light in a direction away from the lighting start region with respect to the condensing position of the laser light when the laser supporting light is turned on. It is preferable. In this case, when the laser supporting light is maintained, the laser light condensing position is separated from the lighting start region, so that sputtering in the light emitting envelope can be reliably suppressed.
 集光位置移動部は、レーザ光の集光位置をレーザ光の光軸方向に移動させることが好ましい。この場合、レーザ支持光維持時にレーザ光の集光位置を容易に点灯開始領域から離間させることができる。 It is preferable that the condensing position moving unit moves the condensing position of the laser light in the optical axis direction of the laser light. In this case, when the laser support light is maintained, the condensing position of the laser light can be easily separated from the lighting start region.
 集光位置移動部は、レーザ光の内部空間における光路長を調整する光路長調整部を有していることが好ましい。この場合、光路長調整部によって、レーザ支持光点灯時にはレーザ光の集光位置を適切な位置に保ちつつ、レーザ支持光維持時にはレーザ光の集光位置を容易に点灯開始領域から離間させることができる。 It is preferable that the condensing position moving unit has an optical path length adjusting unit that adjusts an optical path length in the internal space of the laser light. In this case, the optical path length adjustment unit can easily separate the laser beam condensing position from the lighting start area while maintaining the laser support light while maintaining the laser light condensing position at an appropriate position when the laser support light is turned on. it can.
 集光位置移動部は、レーザ支持光維持時の光学系の位置をレーザ支持光点灯時の光学系の位置に対して移動させる光学系移動部を有していることが好ましい。この場合、光学系を移動させることで、レーザ光の集光位置を容易に点灯開始領域から離間させることができる。 It is preferable that the condensing position moving unit has an optical system moving unit that moves the position of the optical system when the laser supporting light is maintained with respect to the position of the optical system when the laser supporting light is turned on. In this case, by moving the optical system, the condensing position of the laser light can be easily separated from the lighting start region.
 集光位置移動部は、レーザ支持光維持時の発光封体の位置をレーザ支持光点灯時の発光封体の位置に対して移動させる発光封体移動部を有していることが好ましい。この場合、発光封体を移動させることで、レーザ光の集光位置を容易に点灯開始領域から離間させることができる。 It is preferable that the condensing position moving unit has a light emitting envelope moving unit that moves the position of the light emitting envelope when the laser supporting light is maintained with respect to the position of the light emitting envelope when the laser supporting light is turned on. In this case, by moving the light emitting envelope, the condensing position of the laser light can be easily separated from the lighting start region.
 光学系は、レーザ支持光点灯時及び維持時のいずれにおいても、レーザ光を点灯開始領域から離間した位置に集光させることが好ましい。この場合、最もエネルギー密度の高いレーザ光の集光位置が常に点灯開始領域以外の位置にあるため、発光封体内でのスパッタリングを抑制できる。したがって、光源装置の十分な長寿命化が図られる。 It is preferable that the optical system collects the laser beam at a position separated from the lighting start region, both when the laser supporting light is turned on and when it is maintained. In this case, since the condensing position of the laser beam having the highest energy density is always at a position other than the lighting start region, sputtering in the light emitting envelope can be suppressed. Therefore, the life of the light source device can be sufficiently extended.
 制御部は、レーザ支持光維持時のレーザ部からのレーザ光の出射エネルギーをレーザ支持光点灯時のレーザ部からのレーザ光の出射エネルギーに対して低くすることが好ましい。この場合、レーザ光の集光位置を機械的に移動させる必要がないため、レーザ光の集光位置を適切な位置に保つことができる。 It is preferable that the control unit lowers the emission energy of the laser beam from the laser unit when maintaining the laser support light with respect to the emission energy of the laser beam from the laser unit when the laser support light is turned on. In this case, since it is not necessary to mechanically move the condensing position of the laser light, the condensing position of the laser light can be maintained at an appropriate position.
 光源が電子放射構造体を更に有する場合、制御部は、レーザ支持光維持時のレーザ光の集光位置をレーザ支持光点灯時のレーザ光の集光位置に対して電子放射構造体から離間する方向に移動させる集光位置移動部を有していることが好ましい。この場合、レーザ支持光維持時には、レーザ光の集光位置が電子放射構造体から離間しているため、電子放射構造体がスパッタリングされることを確実に抑制できる。 When the light source further includes an electron emission structure, the control unit separates the laser beam condensing position when the laser supporting light is maintained from the electron emitting structure with respect to the laser light condensing position when the laser supporting light is turned on. It is preferable to have a condensing position moving part that moves in the direction. In this case, when the laser supporting light is maintained, since the condensing position of the laser light is separated from the electron emission structure, it is possible to reliably suppress the electron emission structure from being sputtered.
 光源が電子放射構造体を更に有する場合、集光位置移動部は、レーザ支持光維持時の電子放射構造体の位置をレーザ支持光点灯時の電子放射構造体の位置に対して移動させる電子放射構造体移動部を有していることが好ましい。この場合、電子放射構造体を移動させることで、レーザ光の集光位置を容易に電子放射構造体から離間させることができる。 When the light source further includes an electron emission structure, the focusing position moving unit moves the position of the electron emission structure when the laser support light is maintained with respect to the position of the electron emission structure when the laser support light is turned on. It is preferable to have a structure moving part. In this case, the focusing position of the laser light can be easily separated from the electron emission structure by moving the electron emission structure.
 光源が電子放射構造体を更に有する場合、集光位置移動部は、レーザ支持光維持時のレーザ光の内部空間における光路長をレーザ支持光点灯時のレーザ光の内部空間における光路長に対して短くする光路長調整部を有していることが好ましい。この場合、光路長調整部によって、レーザ支持光点灯時にはレーザ光の集光位置を適切な位置に保ちつつ、レーザ支持光維持時にはレーザ光の集光位置を容易に電子放射構造体から離間させることができる。 When the light source further includes an electron emission structure, the converging position moving unit determines the optical path length in the internal space of the laser light when the laser support light is maintained to the optical path length in the internal space of the laser light when the laser support light is turned on. It is preferable to have an optical path length adjustment unit that shortens the length. In this case, the optical path length adjustment unit keeps the laser beam condensing position at an appropriate position when the laser support light is lit, and easily separates the laser light condensing position from the electron emission structure when maintaining the laser support light. Can do.
 光源が電子放射構造体を更に有する場合、集光位置移動部は、レーザ光の集光位置をレーザ光の光軸方向と交わる方向に移動させることが好ましい。この場合、レーザ支持光維持時にレーザ光の集光位置を容易に電子放射構造体から離間させることができる。 When the light source further has an electron emission structure, it is preferable that the condensing position moving unit moves the condensing position of the laser light in a direction crossing the optical axis direction of the laser light. In this case, the laser beam condensing position can be easily separated from the electron emission structure when maintaining the laser support light.
 光源が電子放射構造体を更に有する場合、集光位置移動部は、レーザ支持光維持時の光学系の位置をレーザ支持光点灯時の光学系の位置に対して移動させる光学系移動部を有していることが好ましい。この場合、光学系を移動させることで、レーザ光の集光位置を容易に電子放射構造体から離間させることができる。 When the light source further includes an electron emission structure, the condensing position moving unit has an optical system moving unit that moves the position of the optical system when the laser supporting light is maintained with respect to the position of the optical system when the laser supporting light is turned on. It is preferable. In this case, the focusing position of the laser beam can be easily separated from the electron emission structure by moving the optical system.
 光源が電子放射構造体を更に有する場合、集光位置移動部は、レーザ支持光維持時の発光封体の位置をレーザ支持光点灯時の発光封体の位置に対して移動させる発光封体移動部を有していることが好ましい。この場合、発光封体を移動させることで、レーザ光の集光位置を容易に電子放射構造体から離間させることができる。 When the light source further includes an electron emission structure, the light collecting position moving unit moves the light emitting envelope to move the position of the light emitting envelope when the laser supporting light is maintained with respect to the position of the light emitting envelope when the laser supporting light is turned on. It is preferable to have a part. In this case, the focusing position of the laser beam can be easily separated from the electron emission structure by moving the light emitting envelope.
 光源が電子放射構造体を更に有する場合、電子放射構造体には、レーザ支持光点灯時にレーザ光の集光位置が位置する面が、レーザ光の光軸に対して傾斜して形成されていることが好ましい。この構成により、光学系を厳密に調整しなくとも、レーザ光の集光位置を電子放射構造体の表面に位置させることができる。 When the light source further includes an electron emission structure, the electron emission structure is formed with a surface on which the condensing position of the laser beam is located when the laser support light is turned on, inclined with respect to the optical axis of the laser beam. It is preferable. With this configuration, it is possible to position the condensing position of the laser light on the surface of the electron emission structure without strictly adjusting the optical system.
 本発明によれば、筐体内でのスパッタリングを抑制し、十分な長寿命化が図られる。 According to the present invention, it is possible to suppress sputtering in the housing and to achieve a sufficiently long life.
本発明の第1実施形態に係る光源装置を示す図である。It is a figure which shows the light source device which concerns on 1st Embodiment of this invention. 図1に示した光源装置が備える光学部材(光路長調整部)の一例を示す図である。It is a figure which shows an example of the optical member (optical path length adjustment part) with which the light source device shown in FIG. 1 is provided. 図2に示した光学部材(光路長調整部)のレーザ支持光点灯前における状態を示す図である。It is a figure which shows the state before the laser support light lighting of the optical member (optical path length adjustment part) shown in FIG. 図2に示した光学部材(光路長調整部)のレーザ支持光点灯時における状態を示す図である。It is a figure which shows the state at the time of laser support light lighting of the optical member (optical path length adjustment part) shown in FIG. 図2に示した光学部材(光路長調整部)のレーザ支持光点灯後(維持時)における状態を示す図である。It is a figure which shows the state after the laser support light lighting (at the time of maintenance) of the optical member (optical path length adjustment part) shown in FIG. 第1実施形態の変形例に係る光学部材(光路長調整部)のレーザ支持光点灯時における状態を示す図である。It is a figure which shows the state at the time of laser support light lighting of the optical member (optical path length adjustment part) which concerns on the modification of 1st Embodiment. 図6に示した光学部材(光路長調整部)のレーザ支持光点灯後(維持時)における状態を示す図である。It is a figure which shows the state after laser support light lighting (at the time of maintenance) of the optical member (optical path length adjustment part) shown in FIG. 第1実施形態の他の変形例の係る光学部材(光路長調整部)を構成する透明媒体を示す図である。It is a figure which shows the transparent medium which comprises the optical member (optical path length adjustment part) which concerns on the other modification of 1st Embodiment. 本発明の第2実施形態に係る光源装置のレーザ支持光点灯時における状態を示す図である。It is a figure which shows the state at the time of laser support light lighting of the light source device which concerns on 2nd Embodiment of this invention. 図9に示した光源装置のレーザ支持光点灯後(維持時)における状態を示す図である。It is a figure which shows the state after the laser supporting light lighting of the light source device shown in FIG. 9 (at the time of maintenance). 本発明の第3実施形態に係る光源装置のレーザ支持光点灯時における状態を示す図である。It is a figure which shows the state at the time of laser support light lighting of the light source device which concerns on 3rd Embodiment of this invention. 図11に示した光源装置のレーザ支持光点灯後(維持時)における状態を示す図である。It is a figure which shows the state after the laser support light lighting of the light source device shown in FIG. 11 (at the time of maintenance). 本発明の第4実施形態に係る光源装置を構成する発光封体のレーザ支持光点灯時における状態を示す図である。It is a figure which shows the state at the time of laser support light lighting of the light emitting envelope which comprises the light source device which concerns on 4th Embodiment of this invention. 図13に示した発光封体のレーザ支持光点灯後(維持時)における状態を示す図である。It is a figure which shows the state after the laser supporting light lighting of the light emitting envelope shown in FIG. 13 (at the time of maintenance). 第4実施形態の変形例に係る光源装置を構成する発光封体を示す図であり、(a)はレーザ支持光点灯時、(b)はレーザ支持光点灯後(維持時)を示す。It is a figure which shows the light emitting envelope which comprises the light source device which concerns on the modification of 4th Embodiment, (a) is at the time of laser support light lighting, (b) shows after laser support light lighting (at the time of maintenance). 本発明の第5実施形態に係る光源装置を示す図である。It is a figure which shows the light source device which concerns on 5th Embodiment of this invention. 図16に示した光源装置の作用を示す図であり、(a)はレーザ支持光点灯時、(b)はレーザ支持光点灯後(維持時)を示す。It is a figure which shows the effect | action of the light source device shown in FIG. 16, (a) is at the time of laser support light lighting, (b) shows after laser support light lighting (at the time of maintenance). 本発明の第6実施形態に係る光源装置のレーザ支持光点灯前における状態を示す図である。It is a figure which shows the state before the laser support light lighting of the light source device which concerns on 6th Embodiment of this invention. 図18に示した光源装置のレーザ支持光点灯時における状態を示す図である。It is a figure which shows the state at the time of laser support light lighting of the light source device shown in FIG. 図18に示した光源装置のレーザ支持光点灯後(維持時)における状態を示す図である。It is a figure which shows the state after the laser support light lighting of the light source device shown in FIG. 18 (at the time of maintenance). 第6実施形態の変形例に係る光源装置を構成する金属構造体(電子放射構造体)を示す要部拡大図である。It is a principal part enlarged view which shows the metal structure (electron emission structure) which comprises the light source device which concerns on the modification of 6th Embodiment. 図21に示した金属構造体(電子放射構造体)の作用を示す要部拡大図である。It is a principal part enlarged view which shows the effect | action of the metal structure (electron emission structure) shown in FIG. 本発明の第7実施形態に係る光源装置を示す図である。It is a figure which shows the light source device which concerns on 7th Embodiment of this invention. 図23に示した光学部材(光路長調整部)のレーザ支持光点灯時における状態を示す図である。It is a figure which shows the state at the time of laser support light lighting of the optical member (optical path length adjustment part) shown in FIG. 図23に示した光学部材(光路長調整部)のレーザ支持光点灯後における状態を示す図である。It is a figure which shows the state after laser support light lighting of the optical member (optical path length adjustment part) shown in FIG. 図23に示した光学部材(光路長調整部)のレーザ支持光点灯時における他の態様を示す図である。It is a figure which shows the other aspect at the time of laser support light lighting of the optical member (optical path length adjustment part) shown in FIG. 図23に示した光学部材(光路長調整部)のレーザ支持光点灯後における他の態様を示す図である。It is a figure which shows the other aspect after the laser support light lighting of the optical member (optical path length adjustment part) shown in FIG. 本発明の第8実施形態に係る光源装置のレーザ支持光点灯時における状態を示す図である。It is a figure which shows the state at the time of laser support light lighting of the light source device which concerns on 8th Embodiment of this invention. 図28に示した光源装置のレーザ支持光点灯後における状態を示す図である。It is a figure which shows the state after the laser support light lighting of the light source device shown in FIG. 本発明の第9実施形態に係る光源装置のレーザ支持光点灯時における状態を示す図である。It is a figure which shows the state at the time of laser support light lighting of the light source device which concerns on 9th Embodiment of this invention. 図30に示した光源装置のレーザ支持光点灯後における状態を示す図である。It is a figure which shows the state after the laser support light lighting of the light source device shown in FIG. 本発明の第10実施形態に係る光源装置を示す図である。It is a figure which shows the light source device which concerns on 10th Embodiment of this invention. 図32に示した光源装置の作用を示す図であり、(a)はレーザ支持光点灯時、(b)はレーザ支持光点灯後を示す。It is a figure which shows the effect | action of the light source device shown in FIG. 32, (a) is at the time of laser support light lighting, (b) shows after laser support light lighting.
 以下、図面を参照しながら、本発明に係る光源装置の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the light source device according to the present invention will be described in detail with reference to the drawings.
[第1実施形態]
 図1は、本発明の第1実施形態に係る光源装置を示す概略図である。同図に示すように、光源装置1は、連続レーザ光を出射するレーザ部2と、レーザ部2からの連続レーザ光Lを導光する光学系3と、連続レーザ光Lの照射によって電子を放射する易電子放射物質を含有する金属構造体(電子放射構造体)13及び発光ガスGを収容する発光封体11(光源7)とを含んで構成されている。この光源装置1では、金属構造体13に連続レーザ光Lを照射すると、金属構造体13の近傍における連続レーザ光Lの照射領域に、発光ガスGによるプラズマが発生する。なお、プラズマは、連続レーザ光Lの照射によって金属構造体13から放射された電子が発光ガスGをイオン化し、イオン化された発光ガスGに連続レーザ光Lが照射されることで発生していると推測される。そして、発生したプラズマに連続レーザ光Lを継続的に照射する(プラズマに対して継続的にレーザエネルギーを供給する)ことで、光源7である発光封体11内において、連続レーザ光Lの集光位置Fを含む所定の発光領域(点灯開始領域RS)を有するプラズマ発光である高輝度のレーザ支持光を点灯・維持させることができる。レーザ支持光は、例えば半導体検査用の光源や分光計測用の光として使用される。
[First Embodiment]
FIG. 1 is a schematic view showing a light source device according to the first embodiment of the present invention. As shown in FIG. 1, the light source device 1 includes a laser unit 2 that emits continuous laser light, an optical system 3 that guides the continuous laser light L from the laser unit 2, and irradiation with the continuous laser light L. It is configured to include a metal structure (electron emission structure) 13 containing a radiating electron-emitting substance and a light emitting envelope 11 (light source 7) containing a luminescent gas G. In the light source device 1, when the metal structure 13 is irradiated with the continuous laser light L, plasma due to the emission gas G is generated in the irradiation region of the continuous laser light L in the vicinity of the metal structure 13. Note that plasma is generated when electrons emitted from the metal structure 13 by irradiation of the continuous laser light L ionize the light emission gas G and the ionized light emission gas G is irradiated with the continuous laser light L. It is guessed. Then, by continuously irradiating the generated plasma with continuous laser light L (continuously supplying laser energy to the plasma), the continuous laser light L is collected in the light emitting envelope 11 as the light source 7. It is possible to turn on and maintain high-luminance laser support light that is plasma light emission having a predetermined light-emitting region (lighting start region RS) including the light position F. The laser support light is used as a light source for semiconductor inspection or light for spectroscopic measurement, for example.
 レーザ部2は、例えばレーザダイオードである。レーザ部2からは、発光ガスGの吸収スペクトルに合わせた波長、例えば波長980nmの連続レーザ光Lが出射する。なお、レーザ部2からは、パルスレーザ光が出射していてもよい。連続レーザ光Lの出力は、例えば60W程度となっている。レーザ部2から出射した連続レーザ光Lは、光ファイバ4によって光学系3に導光される。光学系3は、レーザ部2からの連続レーザ光Lを発光封体11に向けて集光する光学系である。光学系3は、例えば2つのレンズ5,6によって構成されている。光ファイバ4のヘッド4aから出射した連続レーザ光Lは、レンズ5によって平行光化した後、レンズ6によって光軸LAをもって発光封体11に向けて集光する。集光された連続レーザ光Lの直径は、例えば直径120μm程度である。 The laser unit 2 is, for example, a laser diode. The laser unit 2 emits a continuous laser beam L having a wavelength matching the absorption spectrum of the luminescent gas G, for example, a wavelength of 980 nm. Note that a pulse laser beam may be emitted from the laser unit 2. The output of the continuous laser beam L is, for example, about 60W. The continuous laser light L emitted from the laser unit 2 is guided to the optical system 3 by the optical fiber 4. The optical system 3 is an optical system that condenses the continuous laser light L from the laser unit 2 toward the light emitting envelope 11. The optical system 3 is composed of, for example, two lenses 5 and 6. The continuous laser light L emitted from the head 4 a of the optical fiber 4 is collimated by the lens 5 and then condensed toward the light emitting envelope 11 by the lens 6 with the optical axis LA. The diameter of the condensed continuous laser beam L is, for example, about 120 μm in diameter.
 発光封体11は、より具体的には、内部空間Sに発光ガスGが高圧に封入されたバルブ(筐体)12と、連続レーザ光Lの照射によって電子を放射する易電子放射物質を含有する金属構造体13とによって構成されている。 More specifically, the light emitting envelope 11 contains a bulb (housing) 12 in which a light emitting gas G is sealed in a high pressure in the internal space S, and an easy-electron emitting material that emits electrons when irradiated with continuous laser light L. And the metal structure 13 to be configured.
 バルブ12は、例えばガラスによって中空に形成されており、金属構造体13が位置すると共に球状の外径及び球状の内部空間Sを有する球状部分(本体部)12aと、球状部分12aの一部から円柱状に突出する突出部分(突出部)12bとを有している。バルブ12の内部空間Sには、発光ガスGとして例えばキセノンガスが高圧で封入されている。本実施形態では、球状部分12aのうち、突出部分12bと反対側に位置する頂部12cが連続レーザ光Lの入射部分(レーザ入射窓部LW)となっている。なお、レーザ入射窓部LWは、後述する金属構造体13における連続レーザ光Lの入射部に臨んでいればよく、球状部分12aの頂部12c以外の部分に位置していてもよい。 The bulb 12 is formed hollow, for example, by glass, and includes a spherical portion (main body portion) 12a having a spherical outer diameter and a spherical inner space S and a part of the spherical portion 12a. And a protruding portion (protruding portion) 12b protruding in a columnar shape. In the internal space S of the bulb 12, for example, xenon gas as a luminescent gas G is sealed at a high pressure. In the present embodiment, the top portion 12c located on the opposite side of the protruding portion 12b in the spherical portion 12a is an incident portion (laser incident window portion LW) of the continuous laser light L. The laser incident window portion LW only needs to face the incident portion of the continuous laser light L in the metal structure 13 to be described later, and may be located in a portion other than the top portion 12c of the spherical portion 12a.
 金属構造体13は、例えばタングステンといった高融点金属によって形成され、易電子放射物質として例えばバリウムを含有する電子放射部13aと、電子放射部13aを支持する支持部13bとを有している。連続レーザ光Lが照射される電子放射部13aは、図1に示すように、例えば細径の円柱状に形成され、連続レーザ光Lの入射部となる先端13cがバルブ12の頂部12c(レーザ入射窓部LW)を向くようにして球状部分12aの内部に配置されている。なお、連続レーザ光Lの入射部は、先端13cに限られず、電子放射部13aの側面部であってもよい。 The metal structure 13 is formed of a refractory metal such as tungsten, for example, and includes an electron emission portion 13a containing, for example, barium as an easily radiating substance, and a support portion 13b that supports the electron emission portion 13a. As shown in FIG. 1, the electron emitting portion 13a irradiated with the continuous laser light L is formed in, for example, a thin cylindrical shape, and the tip 13c serving as the incident portion of the continuous laser light L is the top portion 12c (laser) of the bulb 12. It is disposed inside the spherical portion 12a so as to face the incident window portion LW). In addition, the incident part of continuous laser beam L is not restricted to the front-end | tip 13c, The side part of the electron emission part 13a may be sufficient.
 一方、支持部13bは、例えばモリブデンといった高融点金属によって円柱状に形成された棒状部材15を有している。支持部13bの先端側には、電子放射部13a(先端13c)が球状部分12a内の内部空間Sの所望の位置に配置されるように支持されており、支持部13bの基端側は、突出部分12b内の内部空間Sに配置されている。なお、電子放射部13aと支持部13bとは、必ずしも構成材料を変える必要はなく、電子放射部13aに用いる材料で支持部13bを一体に形成してもよい。また、同一の金属で基体を一体に形成し、電子放射部13aに相当する部分にのみ易電子放射物質を含有させてもよい。また、電子放射部13aや金属構造体13の全体が易電子放射物質自体で構成されていてもよい。さらに、電子放射構造体は、タングステンやモリブデンといった金属(導電物)の基体から構成された金属構造体に限られず、セラミック等の絶縁物の基体から構成されていてもよい。 On the other hand, the support portion 13b has a rod-like member 15 formed in a columnar shape by a high melting point metal such as molybdenum. The electron emission portion 13a (tip 13c) is supported on the distal end side of the support portion 13b so as to be disposed at a desired position in the internal space S in the spherical portion 12a, and the proximal end side of the support portion 13b is It arrange | positions in the internal space S in the protrusion part 12b. Note that the electron emitting portion 13a and the support portion 13b do not necessarily have to be made of different constituent materials, and the support portion 13b may be formed integrally with the material used for the electron emitting portion 13a. Further, the base may be integrally formed of the same metal, and the electron emissive substance may be contained only in the portion corresponding to the electron emitting portion 13a. Moreover, the electron emission part 13a and the whole metal structure 13 may be comprised with the easy electron emission substance itself. Furthermore, the electron emission structure is not limited to a metal structure formed of a metal (conductive material) substrate such as tungsten or molybdenum, and may be formed of an insulating substrate such as ceramic.
 以上のように、発光封体11では、発光ガスGが封入されたバルブ12内に易電子放射物質を含有する金属構造体13が収容されている。金属構造体13を用いることにより、この発光封体11では、金属構造体13への連続レーザ光Lの照射によってプラズマを発生させると共に、プラズマに連続レーザ光Lを継続して照射させることで高輝度のレーザ支持光を点灯開始領域RSに点灯・維持することができる。なお、発光封体11からプラズマ発光を取り出す際には、連続レーザ光Lの光軸LAと交差する方向から取り出すことが好ましく、直交する方向から取り出すことがより好ましい。 As described above, in the light emitting envelope 11, the metal structure 13 containing the easily electron emissive substance is accommodated in the bulb 12 in which the light emitting gas G is enclosed. By using the metal structure 13, in the light emitting envelope 11, plasma is generated by irradiating the metal structure 13 with the continuous laser light L, and the plasma is continuously irradiated with the continuous laser light L. Luminance laser support light can be lit and maintained in the lighting start region RS. In addition, when extracting plasma light emission from the light emitting envelope 11, it is preferable to extract from the direction which cross | intersects the optical axis LA of the continuous laser beam L, and it is more preferable to extract from the orthogonal direction.
 また、光源装置1は、集光位置移動部として、連続レーザ光Lの光路長を調整するための光路長調整部51を備えている。より詳細には、光路長調整部51は、バルブ12の内部空間Sにおける、レーザ入射窓部LWから集光位置Fまでの連続レーザ光Lの光軸LAの長さである光路長LLを調整する。光路長調整部51としては、例えば図2に示すような光学部材8を用いる。光学部材8は、板状の透明媒体9と、透明媒体9を支持する棒状の回転アクチュエータ10とによって構成されている。透明媒体9は、回転アクチュエータ10によって、回転アクチュエータ10の軸方向に対して回転可能となっている。光源装置1では、光学部材8は、透明媒体9が光学系3と発光封体11との間に介在可能なように配置されている。 Further, the light source device 1 includes an optical path length adjusting unit 51 for adjusting the optical path length of the continuous laser light L as a condensing position moving unit. More specifically, the optical path length adjustment unit 51 adjusts the optical path length LL that is the length of the optical axis LA of the continuous laser light L from the laser incident window LW to the condensing position F in the internal space S of the bulb 12. To do. As the optical path length adjustment unit 51, for example, an optical member 8 as shown in FIG. 2 is used. The optical member 8 includes a plate-shaped transparent medium 9 and a rod-shaped rotary actuator 10 that supports the transparent medium 9. The transparent medium 9 can be rotated with respect to the axial direction of the rotary actuator 10 by the rotary actuator 10. In the light source device 1, the optical member 8 is disposed so that the transparent medium 9 can be interposed between the optical system 3 and the light emitting envelope 11.
 透明媒体9は、例えば合成石英ガラスといった空気(発光封体11外部のレーザ光照射雰囲気)よりも高い屈折率を有する材料によって形成されている。また、透明媒体9は、図2に示すように3/4円形の平面形状をなしており、1/4円ごとに連続レーザ光Lの光軸LA方向の厚さ(連続レーザ光Lが透過する長さ)が異なる。具体的には、透明媒体9は、例えば2mm程度の厚さを有する1/4円形の平面形状をなす第1の領域R1と、第1の領域R1に隣接し、例えば4mm程度の厚さを有する1/4円形の平面形状をなす第2の領域R2と、第2の領域R2に隣接し、例えば2mm程度の厚さを有する1/4円形の平面形状をなす第3の領域R3とによって構成されている。なお、便宜的に、第1の領域R1と第3の領域R3とに挟まれた透明媒体9が存在しない領域を第4の領域R4とよぶ。 The transparent medium 9 is formed of a material having a refractive index higher than that of air (laser light irradiation atmosphere outside the light emitting envelope 11) such as synthetic quartz glass. Further, as shown in FIG. 2, the transparent medium 9 has a 3/4 circular planar shape, and the thickness of the continuous laser beam L in the direction of the optical axis LA for each 1/4 circle (the continuous laser beam L is transmitted). Different length). Specifically, the transparent medium 9 is adjacent to the first region R1 having a quarter circular planar shape having a thickness of, for example, about 2 mm and the first region R1, and has a thickness of, for example, about 4 mm. The second region R2 having a quarter circular planar shape and the third region R3 having a quarter circular planar shape adjacent to the second region R2 and having a thickness of, for example, about 2 mm. It is configured. For convenience, a region where the transparent medium 9 is not sandwiched between the first region R1 and the third region R3 is referred to as a fourth region R4.
 図3~5は、それぞれ光学部材8(光路長調整部51)の作用を示す切断端面図である。まず、図3に示すように、レーザ支持光点灯前には、光学系3と発光封体11との間に透明媒体9の第1の領域R1を介在させる。これにより、連続レーザ光Lは透明媒体9によって屈折し、連続レーザ光Lの集光位置Fは電子放射部13a(金属構造体13)とレーザ入射窓部LW側の間の空間領域に位置する。このときの電子放射部13a(金属構造体13)の表面(点灯開始領域RS)における連続レーザ光Lのエネルギー密度は、例えば260kW/cm程度となっている。 3 to 5 are cut end views showing the operation of the optical member 8 (optical path length adjusting unit 51). First, as shown in FIG. 3, the first region R <b> 1 of the transparent medium 9 is interposed between the optical system 3 and the light emitting envelope 11 before the laser supporting light is turned on. Thereby, the continuous laser light L is refracted by the transparent medium 9, and the condensing position F of the continuous laser light L is located in a spatial region between the electron emitting portion 13a (metal structure 13) and the laser incident window LW side. . At this time, the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emission portion 13a (metal structure 13) is, for example, about 260 kW / cm 2 .
 続いて、図4に示すように、レーザ支持光LS点灯時には、図3の状態から透明媒体9を回転アクチュエータ10によって回転させることで、光学系3と発光封体11との間に透明媒体9の第2の領域R2を介在させる。この場合、透明媒体9の第2の領域R2は第1の領域R1よりも厚いため、連続レーザ光Lの集光位置Fはレーザ支持光LS点灯前の連続レーザ光Lの集光位置Fに対して金属構造体13側に移動することとなる。これにより、レーザ支持光LS点灯時には、例えば連続レーザ光Lは電子放射部13a(金属構造体13)の略表面で集光しており、電子放射部13a(金属構造体13)の表面(点灯開始領域RS)における連続レーザ光Lのエネルギー密度は、例えば530kW/cm程度となっている。 Subsequently, as shown in FIG. 4, when the laser support light LS is lit, the transparent medium 9 is rotated between the optical system 3 and the light emitting envelope 11 by rotating the transparent medium 9 from the state of FIG. The second region R2 is interposed. In this case, since the second region R2 of the transparent medium 9 is thicker than the first region R1, the condensing position F of the continuous laser light L is the condensing position F of the continuous laser light L before the laser support light LS is turned on. On the other hand, it moves to the metal structure 13 side. Thereby, when the laser support light LS is turned on, for example, the continuous laser light L is condensed on the substantially surface of the electron emission portion 13a (metal structure 13), and the surface (lighting) of the electron emission portion 13a (metal structure 13). The energy density of the continuous laser light L in the start region RS) is, for example, about 530 kW / cm 2 .
 続いて、レーザ支持光LS点灯後(レーザ支持光LS維持時)には、図4の状態から透明媒体9を回転アクチュエータ10によって回転させることで、図5に示すように、光学系3と発光封体11との間に第4の領域R4を介在させる。この場合、第4の領域R4には透明媒体が存在しないため、連続レーザ光Lの集光位置Fはレーザ支持光LS点灯前(図3)及びレーザ支持光LS点灯時(図4)の連続レーザ光Lの集光位置Fに対して、連続レーザ光Lの光軸LA方向において金属構造体13(点灯開始領域RS)からより離間する位置(レーザ入射窓部LWにより近い位置)の空間領域に移動している。このときの電子放射部13a(金属構造体13)の表面(点灯開始領域RS)における連続レーザ光Lのエネルギー密度は、例えば260kW/cm以下となっている。 Subsequently, after the laser support light LS is turned on (when the laser support light LS is maintained), the transparent medium 9 is rotated by the rotary actuator 10 from the state of FIG. A fourth region R4 is interposed between the sealing body 11 and the sealing body 11. In this case, since there is no transparent medium in the fourth region R4, the condensing position F of the continuous laser light L is continuous before the laser support light LS is turned on (FIG. 3) and when the laser support light LS is turned on (FIG. 4). A spatial region at a position (position closer to the laser incident window LW) that is further away from the metal structure 13 (lighting start region RS) in the optical axis LA direction of the continuous laser light L with respect to the condensing position F of the laser light L. Has moved to. At this time, the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emission portion 13a (metal structure 13) is, for example, 260 kW / cm 2 or less.
 このように、光学系3と発光封体11との間に介在する透明媒体9の厚さを調整することによって内部空間Sにおける連続レーザ光Lの光路長LLを調整し、連続レーザ光Lの集光位置Fを移動させる。これにより、電子放射部13a(金属構造体13)の表面(点灯開始領域RS)における連続レーザ光Lのエネルギー密度を、レーザ支持光LS点灯前、点灯時、及び点灯後(維持時)の各状態に適したエネルギー密度とすることが可能となる。より具体的には、レーザ支持光LS点灯前には、スパッタリングが生じない程度のエネルギー密度で連続レーザ光Lを電子放射部13a(金属構造体13)に照射することで、電子放射部13a(金属構造体13)を加熱することが可能となる。そのため、後続のレーザ支持光LS点灯時において電子放射部13a(金属構造体13)から電子を放出させやすくすることができ、レーザ支持光LSを点灯させることが容易となる。また、レーザ支持光LS点灯時には、レーザ支持光LSの点灯に十分なエネルギー密度で連続レーザ光Lを電子放射部13a(金属構造体13)の適切な位置に対して照射できるため、レーザ支持光LSを点灯開始領域RSで確実に点灯させることができる。そして、レーザ支持光LS点灯後(レーザ支持光LS維持時)には、レーザ支持光LSを維持すると共に、金属構造体13においてスパッタリングが生じない程度のエネルギー密度とすることができる。また、連続レーザ光Lの集光位置Fが電子放射部13a(金属構造体13(点灯開始領域RS))から離間するのに伴って、プラズマ発光であるレーザ支持光LSも電子放射部13a(金属構造体13(点灯開始領域RS))から離間するため、レーザ支持光LSによる金属構造体13のスパッタリングも抑制できる。よって、スパッタリングによる金属構造体13の劣化及びバルブ12の内壁の汚れを抑制して発光封体11(光源7)の長寿命化を実現できるため、光源装置として十分な長寿命化が図られる。 In this way, the optical path length LL of the continuous laser light L in the internal space S is adjusted by adjusting the thickness of the transparent medium 9 interposed between the optical system 3 and the light emitting envelope 11, and the continuous laser light L The condensing position F is moved. As a result, the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13) is changed to the laser support light LS before lighting, during lighting, and after lighting (maintenance). It becomes possible to make the energy density suitable for the state. More specifically, before the laser supporting light LS is turned on, the electron emitting portion 13a (metal structure 13) is irradiated with the continuous laser light L at an energy density that does not cause sputtering. The metal structure 13) can be heated. Therefore, it is possible to easily emit electrons from the electron emitting portion 13a (metal structure 13) during the subsequent laser support light LS lighting, and it is easy to light the laser support light LS. Further, when the laser support light LS is turned on, the continuous laser light L can be applied to an appropriate position of the electron emitting portion 13a (metal structure 13) with an energy density sufficient for turning on the laser support light LS. The LS can be reliably turned on in the lighting start area RS. Then, after the laser support light LS is turned on (when the laser support light LS is maintained), the laser support light LS can be maintained and the energy density can be set such that sputtering does not occur in the metal structure 13. Further, as the condensing position F of the continuous laser light L is separated from the electron emitting portion 13a (metal structure 13 (lighting start region RS)), the laser supporting light LS that is plasma emission is also emitted from the electron emitting portion 13a ( Since it is separated from the metal structure 13 (lighting start region RS), sputtering of the metal structure 13 by the laser support light LS can also be suppressed. Therefore, since the deterioration of the metal structure 13 and the contamination of the inner wall of the bulb 12 due to sputtering can be suppressed and the life of the light emitting envelope 11 (light source 7) can be increased, the life of the light source device can be sufficiently increased.
 なお、レーザ支持光LS点灯後に、光学系3と発光封体11との間に介在させる領域を第2の領域R2から第4の領域R4に変える途中に、第2の領域R2と第4の領域R4との中間の厚さを有する第3の領域R3を介在させる。これにより、連続レーザ光Lの集光位置Fを段階的に金属構造体13から離間するように移動させることができるため、レーザ支持光LSの発光領域も段階的に金属構造体13(点灯開始領域RS)から離間するように移動させることができる。したがって、連続レーザ光Lの集光位置Fの移動前後における発光領域の一部同士が重なりやすくなることによりプラズマの維持が容易となるため、レーザ支持光LSを維持することが容易となる。一方、光学系3と発光封体11との間に介在させる領域を第2の領域R2から第4の領域R4に一挙に変える場合、連続レーザ光Lの集光位置Fも一挙に移動することとなり、プラズマが集光位置Fの移動に追従できない場合がある。そのため、プラズマの維持が困難となり、レーザ支持光LSが消灯してしまう可能性がある。 In addition, after the laser support light LS is turned on, the second region R2 and the fourth region R4 are changed in the middle of changing the region interposed between the optical system 3 and the light emitting envelope 11 from the second region R2 to the fourth region R4. A third region R3 having an intermediate thickness with respect to the region R4 is interposed. Thereby, the condensing position F of the continuous laser light L can be moved stepwise away from the metal structure 13, so that the emission region of the laser support light LS is also gradually increased in the metal structure 13 (lighting start). It can be moved away from the region RS). Therefore, since it becomes easy for some of the light emitting regions to overlap each other before and after the converging position F of the continuous laser light L is moved, it is easy to maintain the plasma, and thus it is easy to maintain the laser support light LS. On the other hand, when the region interposed between the optical system 3 and the light emitting envelope 11 is changed from the second region R2 to the fourth region R4 at a stroke, the condensing position F of the continuous laser beam L also moves at a stroke. Thus, there are cases where the plasma cannot follow the movement of the condensing position F. Therefore, it becomes difficult to maintain the plasma, and the laser support light LS may be extinguished.
 光学部材8(光路長調整部51)の構成は、他の態様をとり得る。光学部材8は、例えば空間光変調素子といった光変調素子によって構成されていてもよい。また、光学部材8は、例えば図6,7に示すように、連続レーザ光Lの光軸LA方向の厚さ(連続レーザ光Lが透過する長さ)が略均一な板状の透明媒体29と、透明媒体29を保持するアクチュエータ30とによって構成される光学部材28であってもよい。アクチュエータ30に保持された透明媒体29は、レーザ支持光LS点灯時及び点灯後(維持時)の状態に応じて連続レーザ光Lの光軸LAと略直交する方向に移動する。 The configuration of the optical member 8 (optical path length adjusting unit 51) can take other modes. The optical member 8 may be composed of a light modulation element such as a spatial light modulation element. Further, as shown in FIGS. 6 and 7, for example, the optical member 8 is a plate-shaped transparent medium 29 having a substantially uniform thickness in the direction of the optical axis LA of the continuous laser light L (length through which the continuous laser light L is transmitted). And an optical member 28 constituted by an actuator 30 that holds the transparent medium 29. The transparent medium 29 held by the actuator 30 moves in a direction substantially orthogonal to the optical axis LA of the continuous laser light L according to the state when the laser support light LS is turned on and after being turned on (during maintenance).
 すなわち、レーザ支持光LS点灯時には、図6に示すように、光学系3と発光封体11との間に透明媒体29を介在させる。このとき、上記第1実施形態のレーザ支持光LS点灯時と同様に、連続レーザ光Lは、例えば電子放射部13a(金属構造体13)の略表面(点灯開始領域RS)で集光している。一方、レーザ支持光LS点灯後(維持時)には、図7に示すように、透明媒体29はアクチュエータ30によって光学系3と発光封体11との間に介在しないように移動される。この場合、上記第1実施形態のレーザ支持光LS点灯後と同様に、連続レーザ光Lの集光位置Fは、レーザ支持光LS点灯時の連続レーザ光Lの集光位置Fに対して連続レーザ光Lの光軸LA方向の金属構造体13(点灯開始領域RS)から離間する位置に移動することとなる。したがって、この場合でも、上記第1実施形態と同様に、金属構造体13のスパッタリングを抑制できる。 That is, when the laser support light LS is lit, a transparent medium 29 is interposed between the optical system 3 and the light emitting envelope 11 as shown in FIG. At this time, as in the case of the laser support light LS lighting in the first embodiment, the continuous laser light L is condensed on, for example, the substantially surface (lighting start region RS) of the electron emission portion 13a (metal structure 13). Yes. On the other hand, after the laser support light LS is turned on (during maintenance), the transparent medium 29 is moved by the actuator 30 so as not to be interposed between the optical system 3 and the light emitting envelope 11 as shown in FIG. In this case, similarly to after the laser supporting light LS is turned on in the first embodiment, the condensing position F of the continuous laser light L is continuous with respect to the condensing position F of the continuous laser light L when the laser supporting light LS is turned on. The laser beam L moves to a position away from the metal structure 13 (lighting start region RS) in the direction of the optical axis LA. Therefore, even in this case, the sputtering of the metal structure 13 can be suppressed as in the first embodiment.
 また、透明媒体29に代えて、例えば図8(a)に示すような透明媒体39を用いることもできる。透明媒体39は、一面が他面に対して傾斜していることで、連続レーザ光Lの光軸LA方向の厚さ(連続レーザ光Lが透過する長さ)が連続的に変化する板状をなしており、透明媒体29と同様にアクチュエータ30に保持された状態で用いられる。 Further, instead of the transparent medium 29, for example, a transparent medium 39 as shown in FIG. 8A can be used. The transparent medium 39 has a plate shape in which one surface is inclined with respect to the other surface so that the thickness of the continuous laser light L in the direction of the optical axis LA (the length through which the continuous laser light L passes) continuously changes. As in the case of the transparent medium 29, it is used while being held by the actuator 30.
 透明媒体39を用いる場合、レーザ支持光LS点灯時には、例えば連続レーザ光Lが電子放射部13a(金属構造体13)の略表面(点灯開始領域RS)で集光するように光学系3と発光封体11との間に透明媒体39を介在させる。続いて、レーザ支持光LS点灯後(維持時)には、透明媒体39は、アクチュエータ30によって光学系3と発光封体11との間に介在しないように移動される。このとき、透明媒体39の一面が他面に対して傾斜しているため、透明媒体39の移動に伴って徐々に連続レーザ光Lの集光位置Fも金属構造体13(点灯開始領域RS)から離間するように連続的に移動していく。これにより、レーザ支持光LSの発光領域も徐々に金属構造体13(点灯開始領域RS)から離間するように移動させることができる。したがって、連続レーザ光Lの集光位置Fの移動前後における発光領域の一部同士が重なることによりプラズマの維持が容易となるため、レーザ支持光LSを維持することが容易となる。 When the transparent medium 39 is used, when the laser support light LS is turned on, the optical system 3 emits light so that, for example, the continuous laser light L is condensed on the substantially surface (lighting start region RS) of the electron emission portion 13a (metal structure 13). A transparent medium 39 is interposed between the sealing body 11 and the sealing body 11. Subsequently, after the laser supporting light LS is turned on (during maintenance), the transparent medium 39 is moved by the actuator 30 so as not to be interposed between the optical system 3 and the light emitting envelope 11. At this time, since one surface of the transparent medium 39 is inclined with respect to the other surface, the condensing position F of the continuous laser light L gradually moves with the movement of the transparent medium 39, and the metal structure 13 (lighting start region RS). It moves continuously so that it is separated from. Thereby, the emission region of the laser support light LS can also be gradually moved away from the metal structure 13 (lighting start region RS). Accordingly, since the plasma can be easily maintained by overlapping a part of the light emitting region before and after the converging position F of the continuous laser light L is moved, the laser supporting light LS can be easily maintained.
 また、透明媒体29に代えて、例えば図8(b)に示すような透明媒体49を用いることもできる。透明媒体49は、連続レーザ光Lの光軸LA方向の厚さ(連続レーザ光Lが透過する長さ)が異なる2つの部材が接合されており、例えば4mm程度の厚さを有する第1の透明媒体49aと、例えば2mm程度の厚さを有する第2の透明媒体49bとが互いの端面同士で接合した構成となっている。 Further, instead of the transparent medium 29, for example, a transparent medium 49 as shown in FIG. 8B can be used. The transparent medium 49 is formed by joining two members having different thicknesses in the direction of the optical axis LA of the continuous laser light L (length through which the continuous laser light L is transmitted). The first member has a thickness of about 4 mm, for example. The transparent medium 49a and the second transparent medium 49b having a thickness of, for example, about 2 mm are joined at the end surfaces.
 透明媒体49を用いる場合、レーザ支持光LS点灯時には、例えば連続レーザ光Lが電子放射部13a(金属構造体13)の略表面(点灯開始領域RS)で集光するように光学系3と発光封体11との間に第1の透明媒体49aを介在させる。続いて、レーザ支持光LS点灯後(維持時)には、透明媒体49は、アクチュエータ30によって光学系3と発光封体11との間に介在しないように移動される。このとき、透明媒体49が厚さの異なる透明媒体49a,49bから構成されているため、透明媒体49の移動に伴って段階的に連続レーザ光Lの集光位置Fも金属構造体13(点灯開始領域RS)から離間するように移動していく。これにより、レーザ支持光LSの発光領域も段階的に金属構造体13(点灯開始領域RS)から離間するように移動させることができる。したがって、連続レーザ光Lの集光位置Fの移動前後における発光領域の一部同士が重なりやすくなることによりプラズマの維持が容易となるため、レーザ支持光LSを維持することが容易となる。 When the transparent medium 49 is used, when the laser support light LS is turned on, for example, the continuous laser light L is emitted from the optical system 3 so as to be condensed on the substantially surface (lighting start region RS) of the electron emission portion 13a (metal structure 13). A first transparent medium 49 a is interposed between the sealing body 11 and the sealing body 11. Subsequently, after the laser supporting light LS is turned on (during maintenance), the transparent medium 49 is moved by the actuator 30 so as not to be interposed between the optical system 3 and the light emitting envelope 11. At this time, since the transparent medium 49 is composed of transparent media 49a and 49b having different thicknesses, the condensing position F of the continuous laser light L is gradually increased with the movement of the transparent medium 49. It moves away from the start area RS). Thereby, the emission region of the laser support light LS can also be moved stepwise away from the metal structure 13 (lighting start region RS). Therefore, since it becomes easy for some of the light emitting regions to overlap each other before and after the converging position F of the continuous laser light L is moved, it is easy to maintain the plasma, and thus it is easy to maintain the laser support light LS.
[第2実施形態]
 図9,10は、それぞれ本発明の第2実施形態に係る光源装置を示す図である。以下では、第2実施形態に係る光源装置について説明するが、第1実施形態と重複する説明は省略する。図9,10に示すように、光源装置21では、例えば光学系3と光ファイバ4のヘッド4aとが筐体17に収容されている。筐体17は、集光位置移動部としてのアクチュエータ18(光学系移動部52)に保持されており、レーザ支持光LS点灯時及び点灯後(維持時)の状態に応じて、アクチュエータ18(光学系移動部52)によって連続レーザ光Lの光軸LA方向に移動される。
[Second Embodiment]
9 and 10 are diagrams showing a light source device according to the second embodiment of the present invention. Below, although the light source device which concerns on 2nd Embodiment is demonstrated, the description which overlaps with 1st Embodiment is abbreviate | omitted. As shown in FIGS. 9 and 10, in the light source device 21, for example, the optical system 3 and the head 4 a of the optical fiber 4 are accommodated in the housing 17. The casing 17 is held by an actuator 18 (optical system moving unit 52) as a condensing position moving unit, and the actuator 18 (optical) according to the state when the laser support light LS is turned on and after being turned on (maintained). The system moving unit 52) moves the continuous laser light L in the direction of the optical axis LA.
 すなわち、図9に示すように、レーザ支持光LS点灯時には、筐体17は、例えば連続レーザ光Lが電子放射部13a(金属構造体13)の略表面(点灯開始領域RS)で集光するような位置で保持されている。一方、図10に示すように、レーザ支持光LS点灯後(維持時)には、筐体17は、連続レーザ光Lの集光位置Fがレーザ支持光LS点灯時の集光位置Fに対して金属構造体13(点灯開始領域RS)から離間するように、アクチュエータ18によって例えば連続レーザ光Lの光軸LAに沿って移動される。 That is, as illustrated in FIG. 9, when the laser support light LS is turned on, the housing 17 condenses, for example, the continuous laser light L on the substantially surface (lighting start region RS) of the electron emission portion 13a (metal structure 13). Is held in such a position. On the other hand, as shown in FIG. 10, after the laser supporting light LS is turned on (during maintenance), the housing 17 has a condensing position F of the continuous laser light L with respect to a condensing position F when the laser supporting light LS is turned on. For example, the actuator 18 is moved along the optical axis LA of the continuous laser beam L so as to be separated from the metal structure 13 (lighting start region RS).
 このように、光学系3を含む筐体17をアクチュエータ18(光学系移動部52)によって移動させるという簡易な構成で、連続レーザ光Lの集光位置Fを容易に金属構造体13(点灯開始領域RS)から離間させることができる。 In this way, the metal structure 13 (lighting start) can be easily performed with the simple configuration in which the housing 17 including the optical system 3 is moved by the actuator 18 (optical system moving unit 52). Can be separated from the region RS).
 上記第2実施形態では、筐体17はアクチュエータ18によって連続レーザ光Lの光軸LA方向に移動していたが、レーザ支持光LS点灯後(維持時)の連続レーザ光Lの集光位置Fがレーザ支持光LS点灯時の連続レーザ光Lの集光位置Fに対して金属構造体13(点灯開始領域RS)から離間する位置となるのであれば、筐体17の移動方向は連続レーザ光Lの光軸LA方向とは異なる方向(例えば連続レーザ光Lの光軸LAと交わる方向)であってもよい。 In the second embodiment, the housing 17 is moved in the direction of the optical axis LA of the continuous laser light L by the actuator 18, but the condensing position F of the continuous laser light L after the laser support light LS is turned on (during maintenance). Is a position away from the metal structure 13 (lighting start region RS) with respect to the condensing position F of the continuous laser light L when the laser support light LS is turned on, the movement direction of the housing 17 is continuous laser light. The direction may be different from the direction of the optical axis LA of L (for example, the direction intersecting the optical axis LA of the continuous laser light L).
[第3実施形態]
 図11,12は、それぞれ本発明の第3実施形態に係る光源装置を示す図である。以下では、第3実施形態に係る光源装置について説明するが、第1,2実施形態と重複する説明は省略する。図11,12に示すように、光源装置31では、発光封体11は、アクチュエータ18(発光封体移動部53)に保持されており、レーザ支持光LS点灯時及び点灯後(維持時)の状態に応じて、集光位置移動部としてのアクチュエータ18(発光封体移動部53)によって連続レーザ光Lの光軸LA方向に移動される。
[Third Embodiment]
11 and 12 are diagrams showing a light source device according to the third embodiment of the present invention. Hereinafter, the light source device according to the third embodiment will be described, but the description overlapping with the first and second embodiments will be omitted. As shown in FIGS. 11 and 12, in the light source device 31, the light emitting envelope 11 is held by the actuator 18 (light emitting envelope moving unit 53), and when the laser supporting light LS is turned on and after being turned on (maintained). Depending on the state, it is moved in the direction of the optical axis LA of the continuous laser light L by the actuator 18 (light emitting envelope moving part 53) as a condensing position moving part.
 すなわち、図11に示すように、レーザ支持光LS点灯時には、発光封体11は、例えば連続レーザ光Lが電子放射部13a(金属構造体13)の略表面(点灯開始領域RS)で集光するような位置で保持されている。一方、図12に示すように、レーザ支持光LS点灯後(維持時)には、発光封体11は、連続レーザ光Lの集光位置Fがレーザ支持光LS点灯時の集光位置Fに対して金属構造体13(点灯開始領域RS)から離間するように、アクチュエータ18によって例えば連続レーザ光Lの光軸LAに沿って移動される。 That is, as shown in FIG. 11, when the laser support light LS is turned on, the light emitting envelope 11 has the continuous laser light L condensed, for example, on the substantially surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13). Is held in such a position. On the other hand, as shown in FIG. 12, after the laser supporting light LS is turned on (during maintenance), the light emitting envelope 11 has the condensing position F of the continuous laser light L at the condensing position F when the laser supporting light LS is turned on. On the other hand, the actuator 18 is moved along, for example, the optical axis LA of the continuous laser beam L so as to be separated from the metal structure 13 (lighting start region RS).
 このように、発光封体11をアクチュエータ18(発光封体移動部53)によって移動させるという簡易な構成で、連続レーザ光Lの集光位置Fを容易に金属構造体13(点灯開始領域RS)から離間させることができる。 In this way, the light emitting envelope 11 is moved by the actuator 18 (light emitting envelope moving unit 53), and the condensing position F of the continuous laser beam L can be easily moved to the metal structure 13 (lighting start region RS). Can be separated from
 上記第3実施形態では、発光封体11はアクチュエータ18によって連続レーザ光Lの光軸LA方向に移動していたが、レーザ支持光LS点灯後(維持時)の連続レーザ光Lの集光位置Fがレーザ支持光LS点灯時の連続レーザ光Lの集光位置Fに対して金属構造体13(点灯開始領域RS)から離間する位置となるのであれば、発光封体11の移動方向は連続レーザ光Lの光軸LA方向とは異なる方向(例えば連続レーザ光Lの光軸LAと交わる方向)であってもよい。 In the third embodiment, the light emitting envelope 11 is moved in the direction of the optical axis LA of the continuous laser light L by the actuator 18, but the condensing position of the continuous laser light L after the laser supporting light LS is turned on (during maintenance). If F is a position away from the metal structure 13 (lighting start region RS) with respect to the condensing position F of the continuous laser light L when the laser support light LS is lit, the moving direction of the light emitting envelope 11 is continuous. The direction may be different from the direction of the optical axis LA of the laser light L (for example, the direction intersecting the optical axis LA of the continuous laser light L).
[第4実施形態]
 図13,14は、それぞれ本発明の第4実施形態に係る光源装置を構成する発光封体を示す図である。以下では、第4実施形態に係る光源装置を構成する発光封体について説明するが、第1~3実施形態と重複する説明は省略する。
[Fourth Embodiment]
13 and 14 are views showing a light emitting envelope constituting a light source device according to a fourth embodiment of the present invention. Hereinafter, the light emitting envelope constituting the light source device according to the fourth embodiment will be described, but the description overlapping with the first to third embodiments will be omitted.
 図13,14に示すように、発光封体61(光源7)は、支持部13bである棒状部材15を把持する小径部16を有している。小径部16は、突出部分12bの内壁の一部を用いて設けられ、棒状部材15に当接するように突出部分12bの内径が他の部分よりも縮径された状態となっている。なお、小径部16は、棒状部材15の周面に接触しているだけであり、棒状部材15への融着はなされていない。また、小径部16は、図13,14に例示した位置よりも基端寄り(図面下側)に設けてもよく、先端側(図面上側)寄りに設けてもよい。さらに、小径部16を複数設けてもよい。 As shown in FIGS. 13 and 14, the light emitting envelope 61 (light source 7) has a small-diameter portion 16 that holds the rod-shaped member 15 that is the support portion 13 b. The small-diameter portion 16 is provided by using a part of the inner wall of the protruding portion 12b, and the protruding portion 12b has a smaller inner diameter than other portions so as to contact the rod-shaped member 15. The small diameter portion 16 is only in contact with the peripheral surface of the rod-shaped member 15 and is not fused to the rod-shaped member 15. Further, the small diameter portion 16 may be provided closer to the base end (lower side of the drawing) than the position illustrated in FIGS. 13 and 14, or may be provided closer to the distal end side (upper side of the drawing). Further, a plurality of small diameter portions 16 may be provided.
 また、金属構造体13(電子放射構造体)には、小径部16に通された棒状部材15の端部において小径部16に当接可能となるように設けられた大径部13dが設けられている。さらに、大径部13dの位置に対応するように突出部分12bの外壁側に、集光位置移動部として、コイル14(電子放射構造体移動部54)が設けられている。コイル14(電子放射構造体移動部54)は、棒状部材15側の大径部13dが突出部分12b側の小径部16に当接するように棒状部材15に磁力を付与することによって、レーザ支持光LS点灯時及び点灯後(維持時)の状態に応じて金属構造体13を連続レーザ光Lの光軸LA方向に移動させる。 Further, the metal structure 13 (electron emission structure) is provided with a large-diameter portion 13d provided so as to be able to come into contact with the small-diameter portion 16 at an end portion of the rod-like member 15 passed through the small-diameter portion 16. ing. Further, a coil 14 (electron emission structure moving portion 54) is provided as a condensing position moving portion on the outer wall side of the protruding portion 12b so as to correspond to the position of the large diameter portion 13d. The coil 14 (electron emission structure moving portion 54) applies a magnetic force to the rod-shaped member 15 so that the large-diameter portion 13d on the rod-shaped member 15 side abuts on the small-diameter portion 16 on the protruding portion 12b side. The metal structure 13 is moved in the direction of the optical axis LA of the continuous laser beam L in accordance with the state of LS lighting and after lighting (during maintenance).
 すなわち、図13に示すように、レーザ支持光LS点灯時には、金属構造体13は、コイル14(電子放射構造体移動部54)から付与される磁力によって例えば連続レーザ光Lが電子放射部13a(金属構造体13)の略表面(点灯開始領域RS)で集光するような位置で保持されている。一方、図14に示すように、レーザ支持光LS点灯後(維持時)には、コイル14からの磁力付与を休止することで、金属構造体13は、連続レーザ光Lの集光位置Fがレーザ支持光LS点灯時の集光位置Fに対して金属構造体13(点灯開始領域RS)から離間するように、連続レーザ光Lの光軸LAに沿って移動することとなる。 That is, as shown in FIG. 13, when the laser support light LS is turned on, the metal structure 13 is irradiated with, for example, a continuous laser beam L by the magnetic force applied from the coil 14 (electron emission structure moving unit 54). The metal structure 13) is held at a position where light is condensed on the substantially surface (lighting start region RS). On the other hand, as shown in FIG. 14, after the laser support light LS is turned on (during maintenance), the metal structure 13 has the condensing position F of the continuous laser light L by stopping the application of the magnetic force from the coil 14. The laser beam LS moves along the optical axis LA of the continuous laser beam L so as to be separated from the metal structure 13 (lighting start region RS) with respect to the condensing position F when the laser support beam LS is lit.
 このように、発光封体61を用いると、金属構造体13をコイル14(電子放射構造体移動部54)によって移動させることで、連続レーザ光Lの集光位置Fを容易に金属構造体13(点灯開始領域RS)から離間させることができる。さらにこの場合、連続レーザ光Lの集光位置Fの移動は、光学系3及びバルブ12の移動や調整を要さないため、連続レーザ光Lの照射経路における光学的条件を一定に保つことができ、連続レーザ光Lの集光位置を適切な位置に保つことができる。 In this way, when the light emitting envelope 61 is used, the metal structure 13 is moved by the coil 14 (electron emission structure moving portion 54), so that the condensing position F of the continuous laser light L can be easily changed. It can be separated from (lighting start area RS). Furthermore, in this case, since the movement of the condensing position F of the continuous laser light L does not require movement or adjustment of the optical system 3 and the valve 12, the optical conditions in the irradiation path of the continuous laser light L can be kept constant. And the condensing position of the continuous laser beam L can be maintained at an appropriate position.
 発光封体61は、他の態様をとり得る。例えば図15に示す発光封体71(光源7)では、棒状部材15が挿通するように突出部分12bの内壁に嵌合するスペーサ部材19と、スペーサ部材19に通された棒状部材15の端部において小径部16に当接可能となるように設けられた大径部13dとが設けられている。この場合においても、コイル14(電子放射構造体移動部54)は、大径部13dの位置に対応するように突出部分12bの外壁側に設けられ、棒状部材15側の大径部13dがスペーサ部材19に当接するように棒状部材15に磁力を付与する。 The light emitting envelope 61 can take other forms. For example, in the light emitting envelope 71 (light source 7) shown in FIG. 15, the spacer member 19 fitted to the inner wall of the protruding portion 12b so that the rod-like member 15 is inserted, and the end of the rod-like member 15 passed through the spacer member 19 And a large-diameter portion 13 d provided so as to be able to contact the small-diameter portion 16. Also in this case, the coil 14 (electron emission structure moving portion 54) is provided on the outer wall side of the protruding portion 12b so as to correspond to the position of the large diameter portion 13d, and the large diameter portion 13d on the rod-like member 15 side is the spacer. A magnetic force is applied to the rod-shaped member 15 so as to come into contact with the member 19.
 この場合も上記第4実施形態と同様に、コイル14(電子放射構造体移動部54)が、棒状部材15に磁力を付与することによって、レーザ支持光LS点灯時(図15(a))及び点灯後(維持時)(図15(b))の状態に応じて金属構造体13を連続レーザ光Lの光軸LA方向に移動する。 Also in this case, as in the fourth embodiment, the coil 14 (electron emission structure moving portion 54) applies a magnetic force to the rod-shaped member 15, so that the laser support light LS is turned on (FIG. 15 (a)) and The metal structure 13 is moved in the direction of the optical axis LA of the continuous laser beam L in accordance with the state after lighting (during maintenance) (FIG. 15B).
[第5実施形態]
 図16は、本発明の第5実施形態に係る光源装置を示す図である。以下では、第5実施形態に係る光源装置について説明するが、第1~4実施形態と重複する説明は省略する。図16に示すように、光源装置41は、レーザ部2からの出射する連続レーザ光Lの出射エネルギーを調整する制御部55を備えている。また、光源装置41では、光学系3は、連続レーザ光Lを電子放射部13a(金属構造体13)の表面(点灯開始領域RS)から離間した位置で集光させている。つまり、電子放射部13a(金属構造体13)の表面(点灯開始領域RS)には、常にデフォーカス状態の連続レーザ光Lが照射される。
[Fifth Embodiment]
FIG. 16 is a diagram showing a light source device according to the fifth embodiment of the present invention. Hereinafter, the light source device according to the fifth embodiment will be described, but the description overlapping with the first to fourth embodiments will be omitted. As shown in FIG. 16, the light source device 41 includes a control unit 55 that adjusts the emission energy of the continuous laser light L emitted from the laser unit 2. Moreover, in the light source device 41, the optical system 3 condenses the continuous laser light L at a position separated from the surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13). In other words, the surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13) is always irradiated with the continuous laser light L in the defocused state.
 図17は、制御部55の作用を示す図である。図17(a)に示すように、レーザ支持光LS点灯時には、制御部55は、連続レーザ光Lの集光位置Fを電子放射部13a(金属構造体13)の表面(点灯開始領域RS)から離間した位置に設定しつつ、電子放射部13a(金属構造体13)の表面(点灯開始領域RS)における連続レーザ光Lのエネルギー密度がレーザ支持光LS点灯可能な程度(例えば530kW/cm程度)となるように、レーザ部2から出射する連続レーザ光Lの出射エネルギーを設定する。これにより、電子放射部13a(金属構造体13)の表面(点灯開始領域RS)に照射される連続レーザ光Lは、デフォーカス状態でありながら、レーザ支持光LSを点灯することができる。 FIG. 17 is a diagram illustrating the operation of the control unit 55. As shown in FIG. 17A, when the laser support light LS is turned on, the control unit 55 determines the condensing position F of the continuous laser light L on the surface of the electron emission unit 13a (metal structure 13) (lighting start region RS). The energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emission portion 13a (metal structure 13) is set so that the laser supporting light LS can be turned on (for example, 530 kW / cm 2). The emission energy of the continuous laser beam L emitted from the laser unit 2 is set so that Thereby, the continuous laser light L irradiated to the surface (lighting start area | region RS) of the electron emission part 13a (metal structure 13) can light the laser support light LS, being a defocused state.
 一方、図17(b)に示すように、レーザ支持光LS点灯後(維持時)には、制御部55は、連続レーザ光Lの集光位置Fをレーザ支持光LS点灯時の位置(図17(a)の位置)に保ったまま、レーザ部2から出射する連続レーザ光Lの出射エネルギーをレーザ支持光LS点灯時の連続レーザ光Lの出射エネルギーに対して低く設定する。具体的には、制御部55は、電子放射部13a(金属構造体13)の表面(点灯開始領域RS)における連続レーザ光Lのエネルギー密度を、例えばレーザ支持光LS点灯時の530kW/cm程度から260kW/cm程度とする。これにより、レーザ支持光LSを維持可能なエネルギーを持つ領域を連続レーザ光Lの集光位置F近傍のみとすることができるため、レーザ支持光LSを金属構造体13(点灯開始領域RS)から離間した位置で維持することが可能となる。 On the other hand, as shown in FIG. 17B, after the laser support light LS is turned on (during maintenance), the control unit 55 changes the condensing position F of the continuous laser light L to the position (FIG. 17 (a)), the emission energy of the continuous laser light L emitted from the laser unit 2 is set lower than the emission energy of the continuous laser light L when the laser support light LS is turned on. Specifically, the control unit 55 sets the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emission unit 13a (metal structure 13), for example, 530 kW / cm 2 when the laser support light LS is turned on. About 260 kW / cm 2 is set. Thereby, since the area | region which has the energy which can maintain the laser support light LS can be made only into the condensing position F vicinity of the continuous laser light L, the laser support light LS is sent from the metal structure 13 (lighting start area | region RS). It is possible to maintain at a separated position.
 このように、光源装置41では、レーザ部2から出射する連続レーザ光Lを金属構造体13の表面(点灯開始領域RS)から離間した位置に集光させつつ、連続レーザ光Lの出射エネルギーを制御部55によって調整する。つまり、光源装置41では、金属構造体13の表面(点灯開始領域RS)には常にデフォーカス状態の連続レーザ光Lを照射し、さらにはレーザ支持光LS維持時の電子放射部13a(金属構造体13)の表面における連続レーザ光Lのエネルギー密度をレーザ支持光LS点灯時の連続レーザ光Lのエネルギー密度に対して低くするため、金属構造体13の表面が局所的にスパッタリングされることを抑制できる。したがって、金属構造体13の長寿命化が図られる。また、光源装置41では、連続レーザ光Lの集光位置Fを機械的に移動させる必要がないため、連続レーザ光Lの集光位置を適切な位置に保つことができると共に、光学系3や発光封体11を移動させるための装置が不要となるため、光源装置の小型化が図られる。なお、連続レーザ光Lは、上述したように連続レーザ光Lの光軸LAと金属構造体13の延在方向の軸とが互いに同軸となるような方向から照射されてもよく、連続レーザ光Lの光軸LAと金属構造体13の延在方向の軸とが互いに交わるような方向から照射されてもよい。 As described above, in the light source device 41, the continuous laser light L emitted from the laser unit 2 is condensed at a position separated from the surface of the metal structure 13 (lighting start region RS), and the emission energy of the continuous laser light L is increased. Adjustment is performed by the control unit 55. That is, in the light source device 41, the surface of the metal structure 13 (lighting start region RS) is always irradiated with the continuous laser light L in the defocused state, and further, the electron emitting portion 13a (metal structure) when the laser support light LS is maintained. In order to reduce the energy density of the continuous laser light L on the surface of the body 13) relative to the energy density of the continuous laser light L when the laser support light LS is turned on, the surface of the metal structure 13 is locally sputtered. Can be suppressed. Therefore, the life of the metal structure 13 can be extended. Further, in the light source device 41, it is not necessary to mechanically move the condensing position F of the continuous laser light L, so that the condensing position of the continuous laser light L can be maintained at an appropriate position, and the optical system 3 or Since a device for moving the light emitting envelope 11 is not required, the light source device can be downsized. Note that the continuous laser light L may be irradiated from a direction in which the optical axis LA of the continuous laser light L and the axis in the extending direction of the metal structure 13 are coaxial with each other as described above. Irradiation may be performed from a direction in which the optical axis LA of L and the axis in the extending direction of the metal structure 13 intersect each other.
[第6実施形態]
 図18~20は、それぞれ本発明の第6実施形態に係る光源装置を示す図である。以下では、第6実施形態に係る光源装置について説明するが、第1~5実施形態と重複する説明は省略する。
[Sixth Embodiment]
18 to 20 are views showing a light source device according to the sixth embodiment of the present invention. Hereinafter, the light source device according to the sixth embodiment will be described, but the description overlapping with the first to fifth embodiments will be omitted.
 図18~20に示すように、光源装置81では、連続レーザ光Lは、発光封体91(光源7)に対して、連続レーザ光Lの光軸LAと金属構造体13の延在方向の軸とが互いに交わるような方向から照射されている。より具体的には、連続レーザ光Lは、連続レーザ光Lの光軸LAと金属構造体13の延在方向の軸とが互いに略直交するような方向から照射されており、バルブ12(特に球状部分12a)のうち、金属構造体13の延在方向の軸に対して側方に位置する側方部12dが連続レーザ光Lの入射部分(レーザ入射窓部LW)となっている。また、光源装置81では、光学系3は、連続レーザ光Lの集光位置Fの光軸LA方向における位置が電子放射部13aの略表面(点灯開始領域RS)となるように、連続レーザ光Lを集光させている。また、金属構造体13の棒状部材15(支持部13b)の先端側には、電子放射部13aを保持する保持部13fと、保持部13fよりも基端側に、保持部13f、及び棒状部材15(支持部13b)の基端側(基端部13g)に比してくびれるように縮径した縮径部13eとが形成されている。縮径部13eは、バルブ12の突出部分12bにおける球状部分12a側の端部に対応する位置に設けられている。 As shown in FIGS. 18 to 20, in the light source device 81, the continuous laser light L is in the extending direction of the optical axis LA of the continuous laser light L and the metal structure 13 with respect to the light emitting envelope 91 (light source 7). Irradiation is from a direction where the axes intersect each other. More specifically, the continuous laser beam L is irradiated from a direction in which the optical axis LA of the continuous laser beam L and the axis in the extending direction of the metal structure 13 are substantially orthogonal to each other, and the bulb 12 (particularly Of the spherical portion 12a), the side portion 12d positioned laterally with respect to the axis of the extending direction of the metal structure 13 is the incident portion (laser incident window portion LW) of the continuous laser beam L. Further, in the light source device 81, the optical system 3 includes the continuous laser beam so that the position of the condensing position F of the continuous laser beam L in the direction of the optical axis LA is substantially the surface (lighting start region RS) of the electron emission unit 13a. L is condensed. Further, a holding part 13f for holding the electron emission part 13a is provided on the distal end side of the rod-like member 15 (supporting part 13b) of the metal structure 13, and a holding part 13f and a stick-like member are provided on the base end side of the holding part 13f. 15 (a supporting portion 13b) is formed with a reduced diameter portion 13e that is reduced in diameter so as to be narrower than the proximal end side (base end portion 13g). The reduced diameter portion 13e is provided at a position corresponding to the end of the protruding portion 12b of the bulb 12 on the spherical portion 12a side.
 本実施形態では、例えば光学系3と光ファイバ4のヘッド4aとが収容された筐体17は、集光位置移動部としてのアクチュエータ18(光学系移動部52)に保持されており、レーザ支持光LS点灯前、点灯時及び点灯後(維持時)の状態に応じて、アクチュエータ18(光学系移動部52)によって連続レーザ光Lの光軸LA方向と略直交する方向(金属構造体13の延在方向の軸に沿った方向)に移動される。 In the present embodiment, for example, the housing 17 in which the optical system 3 and the head 4a of the optical fiber 4 are accommodated is held by an actuator 18 (optical system moving unit 52) as a condensing position moving unit, and is supported by the laser. A direction (of the metal structure 13) that is substantially orthogonal to the optical axis LA direction of the continuous laser light L by the actuator 18 (optical system moving unit 52) according to the state before the light LS is lit, when it is lit, and after being lit (maintained). In the direction along the axis of the extending direction).
 すなわち、レーザ支持光LS点灯前には、図18に示すように、筐体17は、例えば連続レーザ光Lが棒状部材15(支持部13b)の保持部13fに照射されるような位置で保持されている。このとき、保持部13fは電子放射部13aよりも大径であるので、保持部13fの表面が電子放射部13aの表面よりもレーザ入射窓部LW側に位置することから、保持部13fに照射される連続レーザ光Lは、見かけ上、保持部13fの内部の仮想の集光位置F’で集光され、保持部13fの略表面においてはスパッタリングが生じない程度のエネルギー密度にデフォーカスした状態で照射される。レーザ支持光LS点灯時には、図19に示すように、筐体17は、連続レーザ光Lが電子放射部13aに照射されるような位置に移動される。このとき、連続レーザ光Lの集光位置Fは、電子放射部13aの略表面(点灯開始領域RS)に位置している。レーザ支持光LS点灯後(維持時)には、図20に示すように、筐体17は、連続レーザ光Lの集光位置Fがレーザ支持光LS点灯時の集光位置Fに対して電子放射部13a(金属構造体13(点灯開始領域RS))から離間し、内部空間Sの空間領域に位置するように移動され、保持される。その結果、レーザ支持光LS点灯後(維持時)には、電子放射部13a(金属構造体13(点灯開始領域RS))とレーザ支持光LSとが互いに離間するとともに、連続レーザ光Lの電子放射部13a(金属構造体13(点灯開始領域RS))への照射を避けることができる。つまり、レーザ支持光LS維持時の電子放射部13a(金属構造体13)の表面(点灯開始領域RS)における連続レーザ光Lのエネルギー密度を、レーザ支持光LS点灯時の電子放射部13a(金属構造体13)の表面(点灯開始領域RS)における連続レーザ光Lのエネルギー密度に対して低くすることができる。 That is, before the laser support light LS is turned on, as shown in FIG. 18, the housing 17 is held at a position where the continuous laser light L is irradiated to the holding portion 13f of the rod-like member 15 (support portion 13b), for example. Has been. At this time, since the holding portion 13f has a larger diameter than the electron emitting portion 13a, the surface of the holding portion 13f is positioned closer to the laser incident window LW than the surface of the electron emitting portion 13a. The continuous laser beam L is apparently condensed at a virtual condensing position F ′ inside the holding portion 13f and defocused to an energy density that does not cause sputtering on the substantially surface of the holding portion 13f. Irradiated with. At the time of turning on the laser support light LS, as shown in FIG. 19, the housing 17 is moved to a position where the continuous laser light L is applied to the electron emitting portion 13a. At this time, the condensing position F of the continuous laser beam L is located on the substantially surface (lighting start region RS) of the electron emitting portion 13a. After the laser support light LS is turned on (during maintenance), as shown in FIG. 20, the housing 17 has electrons at which the condensing position F of the continuous laser light L is compared with the condensing position F when the laser support light LS is turned on. It is moved away from the radiating portion 13a (the metal structure 13 (lighting start region RS)), and is moved and held so as to be located in the space region of the internal space S. As a result, after the laser support light LS is turned on (during maintenance), the electron emitting portion 13a (metal structure 13 (lighting start region RS)) and the laser support light LS are separated from each other and the electrons of the continuous laser light L are separated. Irradiation to the radiation | emission part 13a (Metal structure 13 (lighting start area | region RS)) can be avoided. That is, the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13) when the laser supporting light LS is maintained is defined as the electron emitting portion 13a (metal) when the laser supporting light LS is turned on. The energy density of the continuous laser beam L on the surface (lighting start region RS) of the structure 13) can be lowered.
 このように、光源装置81では、光学系3を含む筐体17をアクチュエータ18(光学系移動部52)によって移動させるという簡易な構成で、連続レーザ光Lの集光位置Fを容易に金属構造体13(点灯開始領域RS)から連続レーザ光Lの光軸LA方向と交わる方向(金属構造体13の延在方向の軸に沿った方向)に離間させることができる。これにより、電子放射部13a(金属構造体13)の表面(点灯開始領域RS)における連続レーザ光Lのエネルギー密度を、レーザ支持光LS点灯前、点灯時、及び点灯後(維持時)の各状態に適したエネルギー密度とすることが可能となる。 Thus, in the light source device 81, the condensing position F of the continuous laser light L can be easily made into a metal structure with a simple configuration in which the casing 17 including the optical system 3 is moved by the actuator 18 (optical system moving unit 52). It can be separated from the body 13 (lighting start region RS) in a direction (direction along the axis of the extending direction of the metal structure 13) intersecting the optical axis LA direction of the continuous laser light L. As a result, the energy density of the continuous laser light L on the surface (lighting start region RS) of the electron emitting portion 13a (metal structure 13) is changed to the laser support light LS before lighting, during lighting, and after lighting (maintenance). It becomes possible to make the energy density suitable for the state.
 本実施形態では、レーザ支持光LS点灯前に、連続レーザ光Lをスパッタリングが生じない程度のエネルギー密度でデフォーカスした状態で棒状部材15(支持部13b)の保持部13fに照射していることで、保持部13fがスパッタリングされることなく加熱され、それに伴って電子放射部13a(金属構造体13)の温度も上昇する。さらに、縮径部13eが形成されていることによって、保持部13fから基端部13g側への熱伝導経路が制限されているので、連続レーザ光Lの照射による電子放射部13a(金属構造体13)の加熱をより効率良く行うことができる。また、棒状部材15(支持部13b)の一部を縮径することで、縮径部13eの表面がバルブ12の内壁面から離間するため、縮径部13eからバルブ12への熱の逃げも抑制できる。そのため、後続のレーザ支持光LS点灯時において電子放射部13a(金属構造体13)から電子を放出させやすくすることができ、レーザ支持光LSを点灯させることが容易となる。なお、本実施形態では、連続レーザ光Lの照射による加熱を行うために、棒状部材15(支持部13b)は、加熱に耐え得るモリブデンやタングステンといった高融点金属からなるのが特に好ましい。 In this embodiment, before the laser support light LS is turned on, the continuous laser light L is irradiated to the holding portion 13f of the rod-shaped member 15 (support portion 13b) in a defocused state with an energy density that does not cause sputtering. Thus, the holding portion 13f is heated without being sputtered, and accordingly, the temperature of the electron emitting portion 13a (metal structure 13) also rises. Further, since the reduced diameter portion 13e is formed, the heat conduction path from the holding portion 13f to the base end portion 13g side is limited, so that the electron emitting portion 13a (metal structure body) by the continuous laser light L irradiation. The heating of 13) can be performed more efficiently. Further, by reducing the diameter of a part of the rod-shaped member 15 (support portion 13b), the surface of the reduced diameter portion 13e is separated from the inner wall surface of the valve 12, and therefore heat escape from the reduced diameter portion 13e to the valve 12 is also achieved. Can be suppressed. Therefore, it is possible to easily emit electrons from the electron emitting portion 13a (metal structure 13) during the subsequent laser support light LS lighting, and it is easy to light the laser support light LS. In this embodiment, in order to perform heating by irradiation with the continuous laser beam L, it is particularly preferable that the rod-shaped member 15 (support portion 13b) is made of a high melting point metal such as molybdenum or tungsten that can withstand the heating.
 また、レーザ支持光LS点灯時には、レーザ支持光LSの点灯に十分なエネルギー密度で連続レーザ光Lを電子放射部13aの表面(点灯開始領域RS)に対して照射できるため、レーザ支持光LSを確実に点灯させることができる。そして、レーザ支持光LS点灯後(維持時)には、金属構造体13(点灯開始領域RS)から離間した内部空間Sの空間領域に移動させたレーザ支持光LSに対して連続レーザ光Lを照射することでレーザ支持光LSを維持する。そのため、レーザ支持光LSによる金属構造体13のスパッタリングを抑制できる一方で、金属構造体13に対しては連続レーザ光Lも照射されないため、連続レーザ光Lによる金属構造体13のスパッタリングをも抑制できる。よって、スパッタリングによる金属構造体13の劣化及びバルブ12の内壁の汚れを抑制して発光封体11(光源7)の長寿命化を実現できるため、光源装置として十分な長寿命化が図られる。 In addition, when the laser support light LS is turned on, the continuous laser light L can be applied to the surface of the electron emission portion 13a (lighting start region RS) with an energy density sufficient for turning on the laser support light LS. It can be lit reliably. Then, after the laser support light LS is turned on (during maintenance), the continuous laser light L is applied to the laser support light LS moved to the space region of the internal space S separated from the metal structure 13 (lighting start region RS). The laser support light LS is maintained by irradiation. Therefore, while the sputtering of the metal structure 13 by the laser support light LS can be suppressed, the continuous laser light L is not irradiated to the metal structure 13, so that the sputtering of the metal structure 13 by the continuous laser light L is also suppressed. it can. Therefore, since the deterioration of the metal structure 13 and the contamination of the inner wall of the bulb 12 due to sputtering can be suppressed and the life of the light emitting envelope 11 (light source 7) can be increased, the life of the light source device can be sufficiently increased.
 上記第6実施形態では、縮径部13eはバルブ12の突出部分12bにおける球状部分12a側の端部に対応する位置に設けられていたが、縮径部13eは、球状部分12aに入り込むように形成されていてもよく、また、縮径部13eは、棒状部材15(支持部13b)の基端側まで連続して延在していてもよい。また、上記第6実施形態では、電子放射部13aは例えば細径の円柱状に形成されていたが、図21に示すように、電子放射部23aは、例えば棒状部材15(支持部13b)の延在する軸方向に延びる細径の円柱部24と、円柱部24の先端側に設けられた傾斜部25とを有していてもよい。傾斜部25には、円柱部24の延在方向の軸に対して傾斜した傾斜面25aが形成されており、この傾斜面25aは、連続レーザ光Lの光軸LAに対しても傾斜している。 In the sixth embodiment, the reduced diameter portion 13e is provided at a position corresponding to the end of the protruding portion 12b of the bulb 12 on the spherical portion 12a side. However, the reduced diameter portion 13e enters the spherical portion 12a. The reduced diameter portion 13e may be formed continuously to the base end side of the rod-shaped member 15 (support portion 13b). Moreover, in the said 6th Embodiment, although the electron emission part 13a was formed in the cylindrical shape of a small diameter, as shown in FIG. 21, the electron emission part 23a is, for example, the rod-shaped member 15 (support part 13b). You may have the thin cylindrical part 24 extended in the axial direction extended, and the inclination part 25 provided in the front end side of the cylindrical part 24. FIG. The inclined portion 25 is formed with an inclined surface 25a inclined with respect to the axis in the extending direction of the cylindrical portion 24. The inclined surface 25a is also inclined with respect to the optical axis LA of the continuous laser beam L. Yes.
 図22は、電子放射部23a(金属構造体23)の作用を示す要部拡大図である。通常、レーザ支持光LSを点灯させる際には、連続レーザ光Lの集光位置Fを、電子放射部23aの略表面に位置するように集光させるのが好ましいが、そのためには光学系3の厳密な調整を要する場合がある。なお、連続レーザ光Lの集光位置Fが電子放射部23aの略表面でなくとも、電子放射部23aの略表面における連続レーザ光Lのエネルギー密度が十分に高ければレーザ支持光LSの点灯は可能だが、そのためにはより大出力のレーザが必要になる。これに対して、本実施形態においては、レーザの出力を変更することなく、連続レーザ光Lの集光位置Fの光軸LA方向における位置精度に余裕を持たせることが可能となる。まず、図22(a)に示すように、電子放射部23aにおける連続レーザ光Lの集光位置Fを、光軸LA方向における円柱部24の内部に確実に収まる程度の位置精度で仮想の集光位置F’として位置決めする。次いで、円柱部24の延在方向の軸に沿った方向に、連続レーザ光Lの仮想の集光位置F’が棒状部材15(支持部13b)側から傾斜部25側へ移動するように、アクチュエータ18によって筐体17を移動させる。その結果、図22(b)に示すように、連続レーザ光Lの集光位置Fを、電子放射部23aの傾斜部25における傾斜面25aの略表面上のいずれかの位置に確実に位置させることができるので、レーザ支持光LSを点灯することができる。 FIG. 22 is an enlarged view of a main part showing the operation of the electron emitting portion 23a (metal structure 23). Usually, when the laser support light LS is turned on, it is preferable to focus the condensing position F of the continuous laser light L so that it is positioned on the substantially surface of the electron emitting portion 23a. May require precise adjustment. Even if the condensing position F of the continuous laser light L is not the substantially surface of the electron emission portion 23a, the laser support light LS is turned on if the energy density of the continuous laser light L on the approximate surface of the electron emission portion 23a is sufficiently high. Yes, but that requires a higher power laser. On the other hand, in the present embodiment, it is possible to give a margin to the positional accuracy of the condensing position F of the continuous laser light L in the optical axis LA direction without changing the output of the laser. First, as shown in FIG. 22 (a), a virtual collection point with a positional accuracy of a degree that the condensing position F of the continuous laser light L in the electron emission part 23a is surely contained in the cylindrical part 24 in the direction of the optical axis LA is obtained. Positioning as the optical position F ′. Next, the virtual condensing position F ′ of the continuous laser beam L is moved from the rod-shaped member 15 (supporting portion 13b) side to the inclined portion 25 side in the direction along the axis of the extending direction of the cylindrical portion 24. The housing 17 is moved by the actuator 18. As a result, as shown in FIG. 22B, the condensing position F of the continuous laser beam L is reliably positioned at any position on the substantially surface of the inclined surface 25a in the inclined portion 25 of the electron emitting portion 23a. Therefore, the laser support light LS can be turned on.
 このように、電子放射部23aには、レーザ支持光LS点灯時に連続レーザ光Lを移動させることで、電子放射部23aの略表面のいずれかの位置に連続レーザ光Lの集光位置Fを位置させるための傾斜面25aが形成されている。このため、光学系3を厳密に調整しなくとも、仮想の集光位置F’が円柱部24の内部に位置する限りにおいては、連続レーザ光Lの集光位置Fを傾斜面25aの略表面上のいずれかの位置に確実に位置させることができるので、レーザ支持光LSを点灯できる。なお、本実施形態においては、連続レーザ光Lが円柱部24に照射されているとき(図22(a))の円柱部24の表面における連続レーザ光Lは、スパッタリングが生じない程度のエネルギー密度でデフォーカスされた状態であるため、連続レーザ光Lの円柱部24への照射によって、電子放射部23aを加熱することとなり、後続する連続レーザ光Lの傾斜面25aへの照射時におけるレーザ支持光LSの点灯を容易にする効果を奏する。 As described above, by moving the continuous laser light L to the electron emitting portion 23a when the laser support light LS is turned on, the condensing position F of the continuous laser light L is placed at any position on the surface of the electron emitting portion 23a. An inclined surface 25a for positioning is formed. For this reason, as long as the virtual condensing position F ′ is located inside the cylindrical portion 24 without strictly adjusting the optical system 3, the condensing position F of the continuous laser light L is substantially the surface of the inclined surface 25 a. Since it can be surely positioned at any of the above positions, the laser support light LS can be turned on. In the present embodiment, the continuous laser beam L on the surface of the cylindrical portion 24 when the continuous laser beam L is irradiated onto the cylindrical portion 24 (FIG. 22A) has an energy density that does not cause sputtering. Therefore, the electron emitting portion 23a is heated by irradiating the cylindrical portion 24 with the continuous laser light L, and the laser support during the subsequent irradiation of the inclined surface 25a with the continuous laser light L is performed. There exists an effect which makes lighting of light LS easy.
 上記第6実施形態では、アクチュエータ18(光学系移動部52)によって連続レーザ光Lの集光位置Fを移動させていたが、光学系3の調整によって連続レーザ光Lの集光位置Fを移動させてもよい。また、上記第3実施形態で説明した発光封体移動部53を適用することによって連続レーザ光Lの集光位置Fを移動させてもよく、上記第4実施形態で説明した電子放射構造体移動部54を適用することによって連続レーザ光Lの集光位置Fを移動させてもよい。これらの場合でも上記第6実施形態と同様に、スパッタリングによる金属構造体13の劣化及びバルブ12の内壁の汚れを抑制して発光封体11(光源7)の長寿命化を実現できるため、光源装置として十分な長寿命化が図られる。 In the sixth embodiment, the condensing position F of the continuous laser light L is moved by the actuator 18 (the optical system moving unit 52). However, the condensing position F of the continuous laser light L is moved by adjusting the optical system 3. You may let them. Further, by applying the light emitting envelope moving unit 53 described in the third embodiment, the condensing position F of the continuous laser light L may be moved, and the electron emission structure moving described in the fourth embodiment is performed. The condensing position F of the continuous laser light L may be moved by applying the unit 54. In these cases as well, as in the sixth embodiment, the deterioration of the metal structure 13 due to sputtering and the contamination of the inner wall of the bulb 12 can be suppressed, and the life of the light emitting envelope 11 (light source 7) can be increased. The lifetime can be extended sufficiently as an apparatus.
 上述した実施形態においては、いずれもレーザ支持光LSを、点灯時における連続レーザ光Lの光軸LA上又は連続レーザ光Lの移動方向軸上に移動させて維持していたが、内部空間Sの空間領域における任意の位置に移動させて維持してもよい。この場合、金属構造体に対するレーザ支持光LSの影響をさらに低減できるような位置を選択したり、外部の光学系等に合わせて、レーザ支持光LSを光源7から取り出すのに適した位置を選択することができる。また、縮径部13eを第6実施形態以外の実施形態に採用した場合でも、電子放射部13a(金属構造体13)の加熱効率を向上させ、電子放射部13a(金属構造体13)から電子を放出させやすくすることができる。 In the above-described embodiments, the laser support light LS is moved and maintained on the optical axis LA of the continuous laser light L or the movement direction axis of the continuous laser light L at the time of lighting. It may be moved to an arbitrary position in the space area. In this case, a position where the influence of the laser support light LS on the metal structure can be further reduced is selected, or a position suitable for taking out the laser support light LS from the light source 7 is selected in accordance with an external optical system or the like. can do. Further, even when the reduced diameter portion 13e is adopted in the embodiments other than the sixth embodiment, the heating efficiency of the electron emission portion 13a (metal structure 13) is improved, and the electron emission portion 13a (metal structure 13) is changed to an electron. Can be easily released.
[第7実施形態]
 図23は、本発明の第7実施形態に係る光源装置を示す概略図である。同図に示すように、光源装置101は、レーザ光を出射するレーザ部102と、レーザ部102からのレーザ光Lを導光する光学系103と、互いに対向する対向電極113,113を収容する発光封体111(光源107)とを含んで構成されている。この光源装置101では、対向電極113,113の間に放電を発生させ、その放電領域にレーザ光を照射することで、光源107である発光封体111内において、レーザ光Lの集光位置Fを含む所定の発光領域(点灯開始領域RS)を有するプラズマ発光である高輝度のレーザ支持光を発生させることができる。レーザ支持光は、例えば半導体検査用の光源や分光計測用の光として使用される。
[Seventh Embodiment]
FIG. 23 is a schematic view showing a light source device according to the seventh embodiment of the present invention. As shown in the figure, the light source device 101 houses a laser unit 102 that emits laser light, an optical system 103 that guides laser light L from the laser unit 102, and counter electrodes 113 and 113 that face each other. The light emitting envelope 111 (light source 107) is included. In this light source device 101, a discharge is generated between the counter electrodes 113, 113, and the discharge region is irradiated with laser light, whereby the condensing position F of the laser light L in the light emitting envelope 111, which is the light source 107. It is possible to generate high-luminance laser support light that is plasma light emission having a predetermined light-emitting region (lighting start region RS). The laser support light is used as a light source for semiconductor inspection or light for spectroscopic measurement, for example.
 レーザ部102は、例えばレーザダイオードである。また、レーザ部102としては、連続レーザ及びパルスレーザのいずれを用いてもよいが、本実施形態においては連続レーザを用いる。レーザ部102からは、発光ガスGの吸収スペクトルに合わせた波長、例えば波長980nmのレーザ光Lが出射する。レーザ光Lの出力は、例えば30W程度となっている。レーザ部102から出射したレーザ光Lは、光ファイバ104によって光学系103に導光される。光学系103は、レーザ部102からのレーザ光Lを対向電極113,113間に導光する光学系である。光学系103は、例えば2つのレンズ105,106によって構成されている。光ファイバ104のヘッド104aから出射したレーザ光Lは、レンズ105によって平行光化した後、レンズ106によって光軸LAをもって発光封体111に向けて集光する。集光されたレーザ光Lの直径は、例えば直径120μm程度である。 The laser unit 102 is, for example, a laser diode. As the laser unit 102, either a continuous laser or a pulsed laser may be used, but in this embodiment, a continuous laser is used. The laser unit 102 emits a laser beam L having a wavelength matched to the absorption spectrum of the luminescent gas G, for example, a wavelength of 980 nm. The output of the laser beam L is, for example, about 30W. Laser light L emitted from the laser unit 102 is guided to the optical system 103 by the optical fiber 104. The optical system 103 is an optical system that guides the laser light L from the laser unit 102 between the counter electrodes 113 and 113. The optical system 103 includes, for example, two lenses 105 and 106. The laser light L emitted from the head 104 a of the optical fiber 104 is collimated by the lens 105 and then condensed toward the light emitting envelope 111 by the lens 106 with the optical axis LA. The diameter of the condensed laser beam L is, for example, about 120 μm in diameter.
 発光封体111は、より具体的には、内部空間Sに発光ガスGが高圧に封入されたバルブ(筐体)112と、内部空間S内で互いに対向する対向電極113,113とを含んで構成されている。バルブ112は、例えばガラスによって中空に形成されている。バルブ112の内部空間Sには、発光ガスGとして例えばキセノンガスが高圧で封入されている。 More specifically, the light emitting envelope 111 includes a bulb (housing) 112 in which a light emitting gas G is sealed in a high pressure in the internal space S, and counter electrodes 113 and 113 facing each other in the internal space S. It is configured. The bulb 112 is formed hollow by glass, for example. In the internal space S of the bulb 112, for example, xenon gas as a luminescent gas G is sealed at a high pressure.
 対向電極113,113は、例えばタングステン等の高融点金属によって棒状に形成されており、その先端側で互いに対向している。対向電極113の基端側は、バルブ112の壁部を貫通してバルブ112の外部に引き出され、図示しない電源部に接続された給電部材114にそれぞれ接続されることで、電極間放電のための電力が対向電極113,113に供給されている。なお、対向電極113,113が直接バルブ112の壁部を貫通するのではなく、対向電極113,113と電気的に接続された導電部材がバルブ112の壁部を貫通してバルブ112の外部に引き出され、給電部材114にそれぞれ接続されていてもよい。 The counter electrodes 113 and 113 are formed in a rod shape from a high melting point metal such as tungsten, for example, and are opposed to each other on the tip side. The base end side of the counter electrode 113 passes through the wall portion of the bulb 112, is drawn out of the bulb 112, and is connected to a power supply member 114 connected to a power supply portion (not shown), thereby discharging between the electrodes. Is supplied to the counter electrodes 113, 113. Note that the counter electrodes 113 and 113 do not directly penetrate the wall portion of the valve 112, but a conductive member electrically connected to the counter electrodes 113 and 113 penetrates the wall portion of the valve 112 to the outside of the valve 112. It may be pulled out and connected to the power supply member 114.
 以上のような光源装置101では、給電部材114を介して対向電極113,113の間に高電圧を付加することにより、対向電極113,113に放電領域が形成され、放電によって内部空間S内の発光ガスGがイオン化及びプラズマ化される。この放電領域にレーザ光Lが照射されることで、高輝度のレーザ支持光が点灯開始領域RSで点灯し、レーザ支持光へのレーザ光Lの照射を継続させることで、対向電極113,113への電力供給が停止されても、レーザ光Lによるエネルギー供給を受けてレーザ支持光が維持される。なお、予めレーザ光Lを放電領域に集光させておき、その後、対向電極113,113間で放電領域を形成してもよい。さらに、レーザ支持光の点灯後は、対向電極113,113への給電を停止してもよく、給電を継続してもよい。 In the light source device 101 as described above, a high voltage is applied between the counter electrodes 113 and 113 via the power supply member 114, whereby a discharge region is formed in the counter electrodes 113 and 113. The luminescent gas G is ionized and converted into plasma. By irradiating the discharge region with the laser light L, the high-luminance laser support light is turned on in the lighting start region RS, and the laser support light is continuously irradiated to the laser support light, whereby the counter electrodes 113 and 113 are used. Even if the power supply to is stopped, the laser support light is maintained by receiving the energy supply by the laser light L. Note that the laser beam L may be condensed in the discharge region in advance, and then the discharge region may be formed between the counter electrodes 113 and 113. Further, after the laser supporting light is turned on, the power supply to the counter electrodes 113 and 113 may be stopped or the power supply may be continued.
 また、光源装置101は、集光位置移動部として、レーザ光Lの光路長を調整するための光路長調整部151を備えている。より詳細には、光路長調整部151は、バルブ112の内部空間Sにおける、バルブ112の内壁から集光位置Fまでのレーザ光Lの光軸LAの長さである光路長LLを調整する。光路長調整部151としては、例えば図23に示すような光学部材108を用いる。光学部材108は、レーザ光Lの光軸LA方向の厚さ(レーザ光Lが透過する長さ)が略均一な板状の透明媒体109と、透明媒体109を保持するアクチュエータ110とによって構成されている。透明媒体109は、例えば合成石英ガラスといった空気(発光封体111外部のレーザ光照射雰囲気)よりも高い屈折率を有する材料によって形成されている。アクチュエータ110に保持された透明媒体109は、レーザ支持光LS点灯時(図24)及び点灯後(維持時)(図25)のそれぞれに応じてレーザ光Lの光軸LAと略直交する方向に移動する。 Further, the light source device 101 includes an optical path length adjusting unit 151 for adjusting the optical path length of the laser light L as a condensing position moving unit. More specifically, the optical path length adjustment unit 151 adjusts the optical path length LL that is the length of the optical axis LA of the laser light L from the inner wall of the bulb 112 to the condensing position F in the internal space S of the bulb 112. As the optical path length adjustment unit 151, for example, an optical member 108 as shown in FIG. 23 is used. The optical member 108 includes a plate-shaped transparent medium 109 having a substantially uniform thickness in the optical axis LA direction of the laser light L (a length through which the laser light L is transmitted) and an actuator 110 that holds the transparent medium 109. ing. The transparent medium 109 is made of a material having a higher refractive index than air (laser light irradiation atmosphere outside the light emitting envelope 111) such as synthetic quartz glass. The transparent medium 109 held by the actuator 110 is in a direction substantially orthogonal to the optical axis LA of the laser light L in accordance with each of the laser support light LS lighting (FIG. 24) and after lighting (maintenance) (FIG. 25). Moving.
 すなわち、まず、図24に示すように、透明媒体109は、光学系103と発光封体111との間に介在し、レーザ光Lにおける断面方向の全領域が透明媒体109を通るように配置される。このとき、レーザ光Lは、例えば対向電極113,113の尖頭部間を結ぶラインX上、つまり対向電極113,113間の放電領域の中でも、最も放電する可能性が高い放電経路に集光している。このときのラインX上の集光位置F(点灯開始領域RS)におけるレーザ光Lのエネルギー密度は、例えば260kW/cm程度となっている。これにより、対向電極113,113間の放電領域(点灯開始領域RS)において発生したプラズマにレーザ光Lを照射して、レーザ支持光LSが点灯する。 That is, first, as shown in FIG. 24, the transparent medium 109 is interposed between the optical system 103 and the light emitting envelope 111, and is arranged so that the entire region in the cross-sectional direction of the laser light L passes through the transparent medium 109. The At this time, the laser beam L is focused on a discharge path that is most likely to be discharged, for example, on a line X connecting the tip portions of the counter electrodes 113 and 113, that is, in a discharge region between the counter electrodes 113 and 113. is doing. At this time, the energy density of the laser light L at the condensing position F (lighting start region RS) on the line X is, for example, about 260 kW / cm 2 . Thereby, the laser beam L is irradiated to the plasma generated in the discharge region (lighting start region RS) between the counter electrodes 113 and 113, and the laser support light LS is turned on.
 続いてレーザ支持光LS点灯後(維持時)には、図25に示すように、透明媒体109は、アクチュエータ110によって光学系103と発光封体111との間に介在しないように移動される。このとき、レーザ光Lの集光位置Fは、レーザ支持光LS点灯時のレーザ光Lの集光位置Fに対して光軸LA方向の手前側(図25の上方側)に移動することとなるため、ラインX上(点灯開始領域RS)におけるレーザ光Lのエネルギー密度は、レーザ支持光LS点灯時(維持時)(図24)のラインX上(点灯開始領域RS)におけるレーザ光Lのエネルギー密度に対して低下している。 Subsequently, after the laser support light LS is turned on (during maintenance), the transparent medium 109 is moved by the actuator 110 so as not to be interposed between the optical system 103 and the light emitting envelope 111 as shown in FIG. At this time, the condensing position F of the laser light L moves to the near side (upper side in FIG. 25) in the optical axis LA direction with respect to the condensing position F of the laser light L when the laser support light LS is turned on. Therefore, the energy density of the laser beam L on the line X (lighting start region RS) is the energy density of the laser beam L on the line X (lighting start region RS) when the laser support light LS is lit (maintained) (FIG. 24). Decreasing with respect to energy density.
 また、レーザ光Lの集光位置Fが対向電極113,113(点灯開始領域RS)から離間するのに伴って、プラズマ発光であるレーザ支持光LSも対向電極113,113(点灯開始領域RS)から離間するため、レーザ支持光LSによる対向電極113,113のスパッタリングを抑制できる。以上より、スパッタリングによる対向電極113,113の劣化や、それに伴ってスパッタリングされた物質がバルブ112の内壁に堆積していくことによるレーザ光Lの入射及びレーザ支持光LSの取出しの阻害を抑制できる。そのため、レーザ支持光LSの発光強度の低下を抑制でき、発光封体111及び光源装置101の十分な長寿命化が図られる。 Further, as the condensing position F of the laser beam L is separated from the counter electrodes 113 and 113 (lighting start region RS), the laser support light LS that is plasma emission is also the counter electrodes 113 and 113 (lighting start region RS). Therefore, sputtering of the counter electrodes 113 and 113 by the laser support light LS can be suppressed. As described above, it is possible to suppress the deterioration of the counter electrodes 113 and 113 due to sputtering and the inhibition of the incidence of the laser beam L and the extraction of the laser support beam LS due to the deposition of the sputtered substance on the inner wall of the bulb 112. . Therefore, a decrease in the emission intensity of the laser support light LS can be suppressed, and the lifetime of the light emitting envelope 111 and the light source device 101 can be sufficiently extended.
 さらに、集光位置Fにおけるレーザ光Lのエネルギー密度を、レーザ支持光LS点灯時よりもレーザ支持光LSを維持可能な程度に小さくしたり、対向電極113,113への電力供給を停止することで、対向電極113,113のスパッタリングを更に抑制できる。したがって、発光封体111および光源装置101の十分な長寿命化が図られる。 Further, the energy density of the laser light L at the condensing position F is made smaller than the time when the laser support light LS is turned on to the extent that the laser support light LS can be maintained, or power supply to the counter electrodes 113 and 113 is stopped. Thus, sputtering of the counter electrodes 113 and 113 can be further suppressed. Therefore, the light emitting envelope 111 and the light source device 101 can have a sufficiently long life.
 光学部材108(光路長調整部151)の構成は、他の態様をとり得る。光学部材108は、例えば空間光変調素子といった光変調素子によって構成されていてもよい。また、透明媒体109に代えて、例えば図8(a)に示すような透明媒体39を用いることもできる。透明媒体39は、一面が他面に対して傾斜していることで、レーザ光Lの光軸LA方向の厚さ(レーザ光Lが透過する長さ)が連続的に変化する板状をなしており、透明媒体109と同様にアクチュエータ110に保持された状態で用いられる。 The configuration of the optical member 108 (optical path length adjusting unit 151) can take other modes. The optical member 108 may be composed of a light modulation element such as a spatial light modulation element. Further, instead of the transparent medium 109, for example, a transparent medium 39 as shown in FIG. The transparent medium 39 has a plate shape in which one surface is inclined with respect to the other surface, so that the thickness of the laser beam L in the direction of the optical axis LA (the length through which the laser beam L passes) changes continuously. In the same manner as the transparent medium 109, it is used while being held by the actuator 110.
 透明媒体39を用いる場合、まず、透明媒体39をレーザ光Lにおける断面方向の全領域が透明媒体39を通るように光学系103と発光封体111との間に介在させ、例えばレーザ光Lを対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)で集光させる。これにより、対向電極113,113間の放電領域(点灯開始領域RS)においてレーザ支持光LSが点灯する。 When the transparent medium 39 is used, first, the transparent medium 39 is interposed between the optical system 103 and the light emitting envelope 111 so that the entire area in the cross-sectional direction of the laser light L passes through the transparent medium 39. The light is condensed on a line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113. Thereby, the laser support light LS is turned on in the discharge region (lighting start region RS) between the counter electrodes 113 and 113.
 続いて、レーザ支持光LS点灯後(維持時)には、透明媒体39は、アクチュエータ110によって光学系103と発光封体111との間に介在しないように移動される。このとき、透明媒体39の一面が他面に対して傾斜しているため、透明媒体39の移動に伴って透明媒体39のレーザ光Lが入射する領域における厚さも徐々に小さくなっていく。そのため、レーザ光Lの集光位置Fは、透明媒体39の移動に伴って徐々に光軸LA方向の手前側(図24の上方側)に移動していく。これにより、レーザ支持光LSの維持に十分なエネルギー密度を有する領域が徐々に光軸LA方向の手前側に移動することとなる。したがって、レーザ支持光LS点灯後(維持時)にレーザ光Lの集光位置Fを光軸LA方向の手前側に移動させたとしても、レーザ光Lの集光位置Fの移動は連続的な移動となるため、レーザ支持光LSの維持がより確実になされる。 Subsequently, after the laser supporting light LS is turned on (during maintenance), the transparent medium 39 is moved by the actuator 110 so as not to be interposed between the optical system 103 and the light emitting envelope 111. At this time, since one surface of the transparent medium 39 is inclined with respect to the other surface, the thickness of the transparent medium 39 in the region where the laser light L is incident gradually decreases as the transparent medium 39 moves. Therefore, the condensing position F of the laser light L gradually moves toward the front side (upper side in FIG. 24) in the direction of the optical axis LA as the transparent medium 39 moves. As a result, a region having an energy density sufficient to maintain the laser support light LS gradually moves toward the front side in the direction of the optical axis LA. Therefore, even if the condensing position F of the laser light L is moved to the near side in the direction of the optical axis LA after the laser supporting light LS is turned on (during maintenance), the movement of the condensing position F of the laser light L is continuous. Since it moves, the laser support light LS is more reliably maintained.
 また、透明媒体109に代えて、例えば図8(b)に示すような透明媒体49を用いることもできる。透明媒体49は、レーザ光Lの光軸LA方向の厚さ(レーザ光Lが透過する長さ)が異なる2つの部材が接合されており、例えば4mm程度の厚さを有する第1の透明媒体49aと、例えば2mm程度の厚さを有する第2の透明媒体49bとが互いの端面同士で接合した構成となっている。 Further, instead of the transparent medium 109, for example, a transparent medium 49 as shown in FIG. 8B can be used. The transparent medium 49 is a first transparent medium having, for example, a thickness of about 4 mm, in which two members having different thicknesses in the optical axis LA direction of the laser light L (length through which the laser light L passes) are joined. 49a and the 2nd transparent medium 49b which has thickness of about 2 mm, for example, have the structure joined to mutual end surfaces.
 透明媒体49を用いる場合、まず、透明媒体49をレーザ光Lにおける断面方向の全領域が第1の透明媒体49aを通るように光学系103と発光封体111との間に介在させ、例えばレーザ光Lを対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)で集光させる。これにより、対向電極113,113間の放電領域(点灯開始領域RS)においてレーザ支持光LSが点灯する。 In the case of using the transparent medium 49, first, the transparent medium 49 is interposed between the optical system 103 and the light emitting envelope 111 so that the entire cross-sectional area in the laser light L passes through the first transparent medium 49a. The light L is condensed on the line X (lighting start region RS) connecting the tip portions of the counter electrodes 113 and 113. Thereby, the laser support light LS is turned on in the discharge region (lighting start region RS) between the counter electrodes 113 and 113.
 続いて、レーザ支持光LS点灯後(維持時)には、透明媒体49は、アクチュエータ110によって光学系103と発光封体111との間に介在しないように移動される。このとき、透明媒体49が厚みの異なる透明媒体49a,49bから構成されているため、透明媒体49の移動に伴って透明媒体49のレーザ光Lが入射する領域における厚さが段階的に小さくなっていく。そのため、レーザ光Lの集光位置Fは、透明媒体49の移動に伴って段階的に光軸LA方向の手前側(図24の上方側)に移動していく。これにより、レーザ支持光LSの維持に十分なエネルギー密度を有する領域が段階的に光軸LA方向の手前側に移動することとなる。したがって、レーザ支持光LS点灯後(維持時)にレーザ光Lの集光位置Fを光軸LA方向の手前側に移動させたとしても、レーザ光Lの集光位置Fの移動は段階的な(小刻みな)移動となるため、レーザ支持光LSの維持がより確実になされる。 Subsequently, after the laser supporting light LS is turned on (during maintenance), the transparent medium 49 is moved by the actuator 110 so as not to be interposed between the optical system 103 and the light emitting envelope 111. At this time, since the transparent medium 49 is composed of transparent media 49a and 49b having different thicknesses, the thickness of the transparent medium 49 in the region where the laser light L is incident gradually decreases as the transparent medium 49 moves. To go. Therefore, the condensing position F of the laser light L is gradually moved to the near side (upper side in FIG. 24) in the optical axis LA direction as the transparent medium 49 is moved. As a result, a region having an energy density sufficient to maintain the laser support light LS is moved stepwise toward the optical axis LA direction. Therefore, even if the condensing position F of the laser light L is moved to the front side in the direction of the optical axis LA after the laser supporting light LS is turned on (during maintenance), the movement of the condensing position F of the laser light L is stepwise. Since the movement is small, the laser support light LS is more reliably maintained.
 また、上記第7実施形態では、レーザ支持光LS点灯後(維持時)のレーザ光Lの集光位置Fは対向電極113,113の尖頭部間を結ぶラインX(点灯開始領域RS)よりも光軸LA方向の手前側(図23における上方側)の位置であったが、レーザ支持光LS点灯後(維持時)のレーザ光Lの集光位置Fは、対向電極113,113の尖頭部を結ぶラインX(点灯開始領域RS)よりも光軸LA方向の奥側(図23における下方側)の位置であってもよい。 Moreover, in the said 7th Embodiment, the condensing position F of the laser beam L after the laser support light LS lighting (at the time of maintenance) is from the line X (lighting start area | region RS) which connects between the cusps of the counter electrodes 113 and 113. Is the position on the near side in the direction of the optical axis LA (upper side in FIG. 23), but the condensing position F of the laser light L after the laser supporting light LS is turned on (during maintenance) is the tip of the counter electrodes 113, 113. It may be a position on the back side (lower side in FIG. 23) in the optical axis LA direction with respect to the line X (lighting start region RS) connecting the heads.
 この場合、図26に示すように、レーザ光Lにおける断面方向の全領域が透明媒体109を通らないように光学系103と発光封体111との間から透明媒体109を退避させた状態で、例えばレーザ光Lを対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)で集光させる。一方、レーザ支持光LS点灯後(維持時)では、図27に示すように、レーザ光Lにおける断面方向の全領域が透明媒体109を通るように光学系103と発光封体111との間に透明媒体109を介在させる。このとき、レーザ光Lの集光位置Fはレーザ支持光LS点灯時のレーザ光Lの集光位置F(点灯開始領域RS)に対して光軸LA方向の奥側(図26における下方側)に移動することとなる。したがって、この場合でも上記第7実施形態と同様に、対向電極113のスパッタリングを抑制できる。 In this case, as shown in FIG. 26, in a state where the transparent medium 109 is retracted from between the optical system 103 and the light emitting envelope 111 so that the entire region in the cross-sectional direction of the laser light L does not pass through the transparent medium 109, For example, the laser beam L is condensed on the line X (lighting start region RS) connecting the tip portions of the counter electrodes 113 and 113. On the other hand, after the laser supporting light LS is turned on (during maintenance), as shown in FIG. 27, the entire region of the laser light L in the cross-sectional direction passes between the transparent medium 109 and the optical system 103 and the light emitting envelope 111. A transparent medium 109 is interposed. At this time, the condensing position F of the laser light L is the back side in the optical axis LA direction (the lower side in FIG. 26) with respect to the condensing position F (lighting start region RS) of the laser light L when the laser support light LS is turned on. Will be moved to. Therefore, even in this case, similarly to the seventh embodiment, sputtering of the counter electrode 113 can be suppressed.
[第8実施形態]
 図28,29は、それぞれ本発明の第8実施形態に係る光源装置を示す図である。以下では、第8実施形態に係る光源装置について説明するが、第7実施形態と重複する説明は省略する。図28,29に示すように、光源装置121では、例えば光学系103と光ファイバ104のヘッド104aとが筐体117に収容されている。筐体117は、アクチュエータ118(光学系移動部152)に保持されており、レーザ支持光LS点灯時(図28)及び点灯後(維持時)(図29)それぞれに応じて光軸LA方向に移動する。
[Eighth Embodiment]
28 and 29 are views showing a light source device according to the eighth embodiment of the present invention. Hereinafter, the light source device according to the eighth embodiment will be described, but the description overlapping with the seventh embodiment will be omitted. As shown in FIGS. 28 and 29, in the light source device 121, for example, the optical system 103 and the head 104 a of the optical fiber 104 are accommodated in a housing 117. The casing 117 is held by the actuator 118 (optical system moving unit 152), and the laser support light LS is turned on in the direction of the optical axis LA according to lighting (FIG. 28) and after lighting (maintenance) (FIG. 29). Moving.
 すなわち、まず、図28に示すように、筐体117は、例えばレーザ光Lが対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)で集光するような位置で保持されている。これにより、対向電極113,113間の放電領域においてレーザ支持光LSが点灯する。続いてレーザ支持光LS点灯後(維持時)には、図29に示すように、筐体117は光軸LA方向の手前側(図28における上方側)に移動する。これにより、レーザ光Lの集光位置Fはレーザ支持光LS点灯時のレーザ光Lの集光位置Fに対して光軸LA方向の手前側(図28における上方側)に移動するため、レーザ支持光LS点灯後(維持時)の対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)におけるレーザ光Lのエネルギー密度がレーザ支持光LS点灯時の対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)におけるレーザ光Lのエネルギー密度に対して低下する。 That is, first, as shown in FIG. 28, the housing 117 is at a position where the laser light L is condensed on a line X (lighting start region RS) connecting between the cusps of the counter electrodes 113 and 113, for example. Is retained. Thereby, the laser support light LS is turned on in the discharge region between the counter electrodes 113 and 113. Subsequently, after the laser supporting light LS is turned on (during maintenance), as shown in FIG. 29, the casing 117 moves to the near side (upper side in FIG. 28) in the optical axis LA direction. Thereby, the condensing position F of the laser light L moves to the near side (upper side in FIG. 28) in the optical axis LA direction with respect to the condensing position F of the laser light L when the laser support light LS is turned on. The energy density of the laser light L on the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113 after the support light LS is turned on (during maintenance) is equal to the counter electrode 113 when the laser support light LS is turned on. It decreases with respect to the energy density of the laser beam L on the line X (lighting start region RS) connecting the cusp 113.
 このように、光学系103を含む筐体117をアクチュエータ118(光学系移動部152)によって移動させるという簡易な構成で、レーザ光Lの集光位置Fを移動させる(対向電極113,113間(点灯開始領域RS)から離間させる)ことで対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)におけるレーザ光Lのエネルギー密度を変化させることができる。そのため、対向電極113のスパッタリングを抑制でき、光源装置121の十分な長寿命化が図られる。 In this way, the condensing position F of the laser beam L is moved (between the counter electrodes 113, 113) by a simple configuration in which the casing 117 including the optical system 103 is moved by the actuator 118 (optical system moving unit 152). By separating from the lighting start area RS), the energy density of the laser light L on the line X (lighting start area RS) connecting the cusps of the counter electrodes 113 and 113 can be changed. Therefore, sputtering of the counter electrode 113 can be suppressed, and the life of the light source device 121 can be sufficiently extended.
 上記第8実施形態では、レーザ支持光LS点灯後(維持時)のレーザ光Lの集光位置は対向電極113,113の尖頭部間を結ぶラインX(点灯開始領域RS)よりも光軸LA方向の手前側(図28における上方側)の位置であったが、レーザ支持光LS点灯後(維持時)のレーザ光Lの集光位置は、対向電極113,113の尖頭部を結ぶラインX(点灯開始領域RS)よりも光軸LA方向の奥側(図28における下方側)の位置であってもよい。すなわち、レーザ支持光LS点灯後(維持時)の筐体117の保持位置は、レーザ支持光LS点灯時の筐体117の保持位置に対して光軸LA方向の奥側(図28における下方側)であってもよい。 In the eighth embodiment, the condensing position of the laser light L after the laser supporting light LS is turned on (during maintenance) is more optical than the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113. Although it was the position on the near side in the LA direction (upper side in FIG. 28), the condensing position of the laser light L after the laser supporting light LS is turned on (during maintenance) connects the pointed heads of the counter electrodes 113 and 113. It may be a position on the far side (downward side in FIG. 28) in the optical axis LA direction from the line X (lighting start region RS). That is, the holding position of the casing 117 after the laser supporting light LS is turned on (during maintenance) is the back side in the optical axis LA direction (the lower side in FIG. 28) with respect to the holding position of the casing 117 when the laser supporting light LS is turned on. ).
[第9実施形態]
 図30,31は、それぞれ本発明の第9実施形態に係る光源装置を示す図である。以下では、第9実施形態に係る光源装置について説明するが、第7,8実施形態と重複する説明は省略する。図30,31に示すように、光源装置131では、発光封体111は、アクチュエータ118(発光封体移動部153)に保持されており、レーザ支持光LS点灯時(図30)及び点灯後(維持時)(図31)それぞれに応じて光軸LA方向に移動する。
[Ninth Embodiment]
30 and 31 are views showing a light source device according to the ninth embodiment of the present invention. The light source device according to the ninth embodiment will be described below, but the description overlapping with the seventh and eighth embodiments will be omitted. As shown in FIGS. 30 and 31, in the light source device 131, the light emitting envelope 111 is held by the actuator 118 (light emitting envelope moving unit 153), and when the laser supporting light LS is turned on (FIG. 30) and after lighting ( (At the time of maintenance) (FIG. 31) It moves to optical axis LA direction according to each.
 すなわち、まず、図30に示すように、発光封体111は、例えばレーザ光Lが対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)で集光するような位置で保持されている。これにより、対向電極113,113間の放電領域(点灯開始領域RS)においてレーザ支持光LSが点灯する。続いてレーザ支持光LS点灯後(維持時)には、図31に示すように、発光封体111は光軸LA方向の奥側(図30における右方側)に移動する。これにより、レーザ光Lの集光位置Fはレーザ支持光LS点灯時のレーザ光Lの集光位置Fに対して光軸LA方向の手前側(図30における左方側)に移動するため、レーザ支持光LS点灯後(維持時)の対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)におけるレーザ光Lのエネルギー密度がレーザ支持光LS点灯時の対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)におけるレーザ光Lのエネルギー密度に対して低下する。 That is, first, as shown in FIG. 30, the light emitting envelope 111 is, for example, a position where the laser light L is condensed on a line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113. Is held by. Thereby, the laser support light LS is turned on in the discharge region (lighting start region RS) between the counter electrodes 113 and 113. Subsequently, after the laser supporting light LS is turned on (during maintenance), as shown in FIG. 31, the light emitting envelope 111 moves to the back side (right side in FIG. 30) in the optical axis LA direction. Thereby, the condensing position F of the laser light L moves to the near side (left side in FIG. 30) in the optical axis LA direction with respect to the condensing position F of the laser light L when the laser support light LS is turned on. The energy density of the laser light L on the line X (lighting start region RS) connecting between the cusps of the counter electrodes 113 and 113 after the laser support light LS is turned on (during maintenance) is the counter electrode 113 when the laser support light LS is turned on. , 113 is reduced with respect to the energy density of the laser beam L on the line X (lighting start region RS) connecting the cusps.
 このように、発光封体111をアクチュエータ118(発光封体移動部153)によって移動させるという簡易な構成で、レーザ光Lの集光位置Fを移動させる(対向電極113,113間(点灯開始領域RS)から離間させる)ことで対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)におけるレーザ光Lのエネルギー密度を変化させることができる。そのため、対向電極113のスパッタリングを抑制でき、光源装置131の十分な長寿命化が図られる。 In this way, the condensing position F of the laser light L is moved (between the counter electrodes 113 and 113 (lighting start region) with a simple configuration in which the light emitting envelope 111 is moved by the actuator 118 (light emitting envelope moving unit 153). By separating from RS), the energy density of the laser light L on the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113 can be changed. Therefore, sputtering of the counter electrode 113 can be suppressed, and the life of the light source device 131 can be sufficiently extended.
 上記第9実施形態では、レーザ支持光LS点灯後(維持時)のレーザ光Lの集光位置Fは対向電極113,113の尖頭部間を結ぶラインX(点灯開始領域RS)よりも光軸LA方向の手前側(図30における左方側)の位置であったが、レーザ支持光LS点灯後(維持時)のレーザ光Lの集光位置Fは、対向電極113,113の尖頭部を結ぶラインX(点灯開始領域RS)よりも光軸LA方向の奥側(図30における右方側)の位置であってもよい。すなわち、レーザ支持光LS点灯後(維持時)の発光封体111の保持位置は、レーザ支持光LS点灯時の発光封体111の保持位置に対して光軸LA方向の手前側(図30における左方側)であってもよい。 In the ninth embodiment, the condensing position F of the laser light L after the laser supporting light LS is turned on (during maintenance) is lighter than the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113. Although the position was on the near side in the direction of the axis LA (left side in FIG. 30), the condensing position F of the laser light L after the laser supporting light LS is turned on (during maintenance) is the peak of the counter electrodes 113 and 113. It may be a position on the back side (right side in FIG. 30) in the optical axis LA direction with respect to the line X (lighting start region RS) connecting the parts. That is, the holding position of the light emitting envelope 111 after the laser supporting light LS is turned on (during maintenance) is the front side in the optical axis LA direction (in FIG. 30) with respect to the holding position of the light emitting envelope 111 when the laser supporting light LS is turned on. (Left side)
[第10実施形態]
 図32は、本発明の第10実施形態に係る光源装置を示す図である。以下では、第10実施形態に係る光源装置について説明するが、第7~9実施形態と重複する説明は省略する。図32に示すように、光源装置141は、レーザ部102から出射するレーザ光Lの出射エネルギーを調整する制御部154を備えている。また、光源装置141では、光学系103は、例えばレーザ光Lを対向電極113,113の尖頭部間を結ぶラインX上よりも光軸LA方向の手前側(図32における上方側)の位置で集光させている。
[Tenth embodiment]
FIG. 32 is a diagram showing a light source device according to the tenth embodiment of the present invention. Hereinafter, the light source device according to the tenth embodiment will be described, but the description overlapping with the seventh to ninth embodiments will be omitted. As illustrated in FIG. 32, the light source device 141 includes a control unit 154 that adjusts the emission energy of the laser light L emitted from the laser unit 102. In the light source device 141, the optical system 103 is, for example, a position on the near side (upper side in FIG. 32) in the optical axis LA direction with respect to the line X connecting the laser light L between the cusps of the counter electrodes 113 and 113. It is condensed with
 図33は、制御部154の作用を示す図である。図33(a)に示すように、制御部154は、まず、レーザ光Lの集光位置Fを対向電極113,113(点灯開始領域RS)から離間した位置に設定しつつ、対向電極113,113の尖頭部間を結ぶラインX(点灯開始領域RS)におけるレーザ光Lのエネルギー密度がレーザ支持光LS点灯可能な程度(例えば260kW/cm程度)となるように、レーザ部102から出射するレーザ光Lの出射エネルギーを設定する。これにより、対向電極113,113の尖頭部間を結ぶラインX(点灯開始領域RS)におけるレーザ光Lは、デフォーカス状態でありながら、レーザ支持光LSを点灯することができる。 FIG. 33 is a diagram illustrating the operation of the control unit 154. As shown in FIG. 33 (a), the control unit 154 first sets the condensing position F of the laser light L at a position separated from the counter electrodes 113, 113 (lighting start region RS), The laser beam 102 is emitted from the laser unit 102 so that the energy density of the laser light L in the line X (lighting start region RS) connecting the cusp 113 is such that the laser support light LS can be lit (for example, about 260 kW / cm 2 ). The emission energy of the laser beam L to be set is set. As a result, the laser beam L in the line X (lighting start region RS) connecting between the cusps of the counter electrodes 113 and 113 can be turned on while the laser beam L is in a defocused state.
 続いてレーザ支持光LS点灯後(維持時)では、図33(b)に示すように、制御部154は、レーザ光Lの集光位置Fをレーザ支持光LS点灯時の位置(図33(a)の位置)に保ったまま、レーザ部102から出射するレーザ光Lの出射エネルギーをレーザ支持光LS点灯時のレーザ光Lの出射エネルギーに対して低く設定する。これにより、レーザ支持光LSを維持可能なエネルギーを持つ領域をレーザ光Lの集光位置F近傍のみとすることができるため、レーザ支持光LSを対向電極113,113(点灯開始領域RS)から離間した位置で維持することが可能となる。 Subsequently, after the laser support light LS is turned on (during maintenance), as shown in FIG. 33B, the control unit 154 sets the condensing position F of the laser light L to the position at the time of laser support light LS lighting (FIG. 33 ( While maintaining the position a), the emission energy of the laser beam L emitted from the laser unit 102 is set lower than the emission energy of the laser beam L when the laser support light LS is turned on. Thereby, since the area | region which has the energy which can maintain the laser support light LS can be made only into the condensing position F vicinity of the laser light L, the laser support light LS is sent from the counter electrodes 113 and 113 (lighting start area | region RS). It is possible to maintain at a separated position.
 このように、光源装置141では、レーザ光Lを常に対向電極113,113間(点灯開始領域RS)から離間した位置に集光させつつ、レーザ部102から出射するレーザ光Lの出射エネルギーを制御部154によって調整することで、対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)におけるレーザ光Lのエネルギー密度を変化させることができる。したがって、最もエネルギー密度の高いレーザ光Lの集光位置Fが常に対向電極113,113間(点灯開始領域RS)に位置することはないため、対向電極113のスパッタリングを抑制でき、光源装置141の十分な長寿命化が図られる。また、光源装置141では、レーザ光Lの集光位置Fを機械的に移動させる必要がないため、レーザ光Lの集光位置を適切な位置に保つことができると共に、光学系103や発光封体111を移動させるための装置が不要となるため、光源装置の小型化が図られる。 As described above, the light source device 141 controls the emission energy of the laser beam L emitted from the laser unit 102 while always condensing the laser beam L at a position separated from the space between the counter electrodes 113 and 113 (lighting start region RS). By adjusting with the part 154, the energy density of the laser beam L on the line X (lighting start area | region RS) which connects between the cusps of the counter electrodes 113 and 113 can be changed. Therefore, since the condensing position F of the laser beam L with the highest energy density is not always located between the counter electrodes 113 and 113 (lighting start region RS), sputtering of the counter electrode 113 can be suppressed, and the light source device 141 A sufficiently long life is achieved. Further, in the light source device 141, it is not necessary to mechanically move the condensing position F of the laser light L, so that the condensing position of the laser light L can be maintained at an appropriate position, and the optical system 103 and the light-emitting envelope can be maintained. Since a device for moving the body 111 is not required, the light source device can be reduced in size.
 上記第10実施形態では、光学系103はレーザ光Lを対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)よりも光軸LA方向の手前側(図32における上方側)で集光させていたが、光学系103は、レーザ光Lを対向電極113,113の尖頭部間を結ぶラインX上(点灯開始領域RS)よりも光軸LA方向の奥側(図32における下方側)で集光させてもよい。この場合でも、上記第10実施形態と同様に、制御部154がレーザ部102から出射するレーザ光Lの出射エネルギーを調整することによって、対向電極113のスパッタリングを抑制できる。 In the tenth embodiment, the optical system 103 has the laser beam L on the near side in the optical axis LA direction (upward in FIG. 32) above the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113. In the optical system 103, the laser beam L is condensed in the optical axis LA direction (on the line X (lighting start region RS) connecting the cusps of the counter electrodes 113 and 113. The light may be condensed on the lower side in FIG. Even in this case, the sputtering of the counter electrode 113 can be suppressed by adjusting the emission energy of the laser light L emitted from the laser unit 102 by the control unit 154 as in the tenth embodiment.
 さらに、上記いずれの実施形態においても、集光位置F(レーザ支持光LS)はレーザ光Lの光軸LA方向に移動していたが、レーザ支持光LS点灯後(維持時)のレーザ光Lの集光位置Fがレーザ支持光LS点灯時のレーザ光Lの集光位置Fに対して対向電極113(点灯開始領域RS)から離間する位置となるのであれば、レーザ光Lの光軸LA方向とは異なる方向(例えばレーザ光Lの光軸LAと交わる方向)に移動してもよい。 Furthermore, in any of the above embodiments, the condensing position F (laser support light LS) has moved in the direction of the optical axis LA of the laser light L, but the laser light L after the laser support light LS is turned on (during maintenance). If the condensing position F of the laser beam L is a position away from the counter electrode 113 (lighting start region RS) with respect to the condensing position F of the laser light L when the laser support light LS is lit, the optical axis LA of the laser light L You may move to the direction (for example, the direction which crosses the optical axis LA of the laser beam L) different from a direction.
 1,21,31,41,81,101,121,131,141…光源装置、2,102…レーザ部、3,103…光学系、7,107…光源、8,28,108…光学部材、9,29,39,49,109…透明媒体、11,61,71,111…発光封体、13,23…金属構造体(電子放射構造体)、14…コイル、18,118…アクチュエータ、25a…傾斜面、51,151…光路長調整部、52,152…光学系移動部、53,153…発光封体移動部、54…電子放射構造体移動部、55…制御部、113…対向電極、F…集光位置、G…発光ガス、L…(連続)レーザ光、LA…光軸、LS…レーザ支持光、RS…点灯開始領域、S…内部空間。 1, 21, 31, 41, 81, 101, 121, 131, 141 ... light source device, 2, 102 ... laser unit, 3, 103 ... optical system, 7, 107 ... light source, 8, 28, 108 ... optical member, 9, 29, 39, 49, 109 ... transparent medium, 11, 61, 71, 111 ... luminous envelope, 13, 23 ... metal structure (electron emission structure), 14 ... coil, 18, 118 ... actuator, 25a ... Inclined surface, 51, 151 ... Optical path length adjusting part, 52, 152 ... Optical system moving part, 53, 153 ... Luminescent envelope moving part, 54 ... Electron emission structure moving part, 55 ... Control part, 113 ... Counter electrode , F ... condensing position, G ... luminescent gas, L ... (continuous) laser light, LA ... optical axis, LS ... laser support light, RS ... lighting start area, S ... internal space.

Claims (17)

  1.  レーザ光を出射するレーザ部と、
     内部空間に発光ガスが封入された発光封体、及び、前記内部空間に点灯開始領域を有する光源と、
     前記レーザ光を前記内部空間に導光する光学系と、
     前記点灯開始領域における前記レーザ光のエネルギー密度を制御する制御部と、を備え、
     前記光源は、前記内部空間において、前記レーザ部からの前記レーザ光の照射によって点灯する前記発光ガスのプラズマ発光であるレーザ支持光を、前記レーザ部からの前記レーザ光の照射によって維持し、
     前記制御部は、前記レーザ支持光維持時の前記点灯開始領域における前記レーザ光のエネルギー密度を、前記レーザ支持光点灯時の前記点灯開始領域における前記レーザ光のエネルギー密度に対して低くする光源装置。
    A laser unit that emits laser light;
    A light emitting envelope in which a luminescent gas is sealed in an internal space; and a light source having a lighting start area in the internal space;
    An optical system for guiding the laser light to the internal space;
    A control unit for controlling the energy density of the laser light in the lighting start region,
    In the internal space, the light source maintains laser support light that is plasma emission of the luminescent gas that is turned on by irradiation of the laser light from the laser unit, by irradiation of the laser light from the laser unit,
    The control unit lowers the energy density of the laser light in the lighting start area when the laser supporting light is maintained with respect to the energy density of the laser light in the lighting start area when the laser supporting light is turned on. .
  2.  前記光源は、前記内部空間に配置され、前記レーザ光の照射によって電子を放射する易電子放射物質を含有する電子放射構造体を更に有している請求項1に記載の光源装置。 The light source device according to claim 1, wherein the light source further includes an electron emission structure that is disposed in the internal space and contains an electron-emitting material that emits electrons when irradiated with the laser light.
  3.  前記光源は、前記点灯開始領域を挟むように互いに対向する対向電極を更に有している請求項1に記載の光源装置。 The light source device according to claim 1, wherein the light source further includes counter electrodes facing each other so as to sandwich the lighting start region.
  4.  前記制御部は、前記レーザ支持光維持時の前記レーザ光の集光位置を前記レーザ支持光点灯時の前記レーザ光の集光位置に対して前記点灯開始領域から離間する方向に移動させる集光位置移動部を有している請求項1~3のいずれか一項に記載の光源装置。 The control unit moves the condensing position of the laser light when maintaining the laser supporting light in a direction away from the lighting start area with respect to the condensing position of the laser light when the laser supporting light is turned on. The light source device according to any one of claims 1 to 3, further comprising a position moving unit.
  5.  前記集光位置移動部は、前記レーザ光の集光位置を前記レーザ光の光軸方向に移動させる請求項4に記載の光源装置。 The light source device according to claim 4, wherein the condensing position moving unit moves the condensing position of the laser light in an optical axis direction of the laser light.
  6.  前記集光位置移動部は、前記レーザ光の前記内部空間における光路長を調整する光路長調整部を有している請求項4又は5に記載の光源装置。 The light source device according to claim 4 or 5, wherein the converging position moving unit includes an optical path length adjusting unit that adjusts an optical path length of the laser light in the internal space.
  7.  前記集光位置移動部は、前記レーザ支持光維持時の前記光学系の位置を前記レーザ支持光点灯時の前記光学系の位置に対して移動させる光学系移動部を有している請求項4~6のいずれか一項に記載の光源装置。 The said condensing position moving part has an optical system moving part which moves the position of the said optical system at the time of the said laser support light maintenance with respect to the position of the said optical system at the time of the said laser support light lighting. 7. The light source device according to any one of items 1 to 6.
  8.  前記集光位置移動部は、前記レーザ支持光維持時の前記発光封体の位置を前記レーザ支持光点灯時の前記発光封体の位置に対して移動させる発光封体移動部を有している請求項4~7のいずれか一項に記載の光源装置。 The condensing position moving unit includes a light emitting envelope moving unit that moves the position of the light emitting envelope when the laser supporting light is maintained with respect to the position of the light emitting envelope when the laser supporting light is turned on. The light source device according to any one of claims 4 to 7.
  9.  前記光学系は、前記レーザ支持光点灯時及び維持時のいずれにおいても、前記レーザ光を前記点灯開始領域から離間した位置に集光させることを特徴とする請求項1~3のいずれか一項に記載の光源装置。 The optical system condenses the laser beam at a position separated from the lighting start area both when the laser supporting light is turned on and when it is maintained. The light source device according to 1.
  10.  前記制御部は、前記レーザ支持光維持時の前記レーザ部からの前記レーザ光の出射エネルギーを前記レーザ支持光点灯時の前記光源からの前記レーザ光の出射エネルギーに対して低くすることを特徴とする請求項9に記載の光源装置。 The control unit lowers the emission energy of the laser light from the laser unit when the laser support light is maintained with respect to the emission energy of the laser light from the light source when the laser support light is turned on. The light source device according to claim 9.
  11.  前記制御部は、前記レーザ支持光維持時の前記レーザ光の集光位置を前記レーザ支持光点灯時の前記レーザ光の集光位置に対して前記電子放射構造体から離間する方向に移動させる集光位置移動部を有している請求項2に記載の光源装置。 The control unit is configured to move the condensing position of the laser light when the laser supporting light is maintained in a direction away from the electron emitting structure with respect to the condensing position of the laser light when the laser supporting light is turned on. The light source device according to claim 2, further comprising an optical position moving unit.
  12.  前記集光位置移動部は、前記レーザ支持光維持時の前記電子放射構造体の位置を前記レーザ支持光点灯時の前記電子放射構造体の位置に対して移動させる電子放射構造体移動部を有している請求項11に記載の光源装置。 The condensing position moving unit includes an electron emitting structure moving unit that moves the position of the electron emitting structure when the laser supporting light is maintained with respect to the position of the electron emitting structure when the laser supporting light is turned on. The light source device according to claim 11.
  13.  前記集光位置移動部は、前記レーザ支持光維持時の前記レーザ光の前記内部空間における光路長を前記レーザ支持光点灯時の前記レーザ光の前記内部空間における光路長に対して短くする光路長調整部を有している請求項11又は12に記載の光源装置。 The converging position moving unit shortens the optical path length of the laser light in the internal space when the laser support light is maintained with respect to the optical path length of the laser light in the internal space when the laser support light is turned on. The light source device according to claim 11, further comprising an adjustment unit.
  14.  前記集光位置移動部は、前記レーザ光の集光位置を前記レーザ光の光軸方向と交わる方向に移動させる請求項11又は12に記載の光源装置。 The light source device according to claim 11 or 12, wherein the condensing position moving unit moves the condensing position of the laser light in a direction crossing an optical axis direction of the laser light.
  15.  前記集光位置移動部は、前記レーザ支持光維持時の前記光学系の位置を前記レーザ支持光点灯時の前記光学系の位置に対して移動させる光学系移動部を有している請求項11~14のいずれか一項に記載の光源装置。 The said condensing position moving part has an optical system moving part which moves the position of the said optical system at the time of the said laser support light maintenance with respect to the position of the said optical system at the time of the said laser support light lighting. 15. The light source device according to any one of to 14.
  16.  前記集光位置移動部は、前記レーザ支持光維持時の前記発光封体の位置を前記レーザ支持光点灯時の前記発光封体の位置に対して移動させる発光封体移動部を有している請求項11~15のいずれか一項に記載の光源装置。 The condensing position moving unit includes a light emitting envelope moving unit that moves the position of the light emitting envelope when the laser supporting light is maintained with respect to the position of the light emitting envelope when the laser supporting light is turned on. The light source device according to any one of claims 11 to 15.
  17.  前記電子放射構造体には、前記レーザ支持光点灯時に前記レーザ光の集光位置が位置する面が、前記レーザ光の光軸に対して傾斜して形成されている請求項11~16のいずれか一項に記載の光源装置。 The surface on which the condensing position of the laser beam is located when the laser support light is lit is formed on the electron emission structure so as to be inclined with respect to the optical axis of the laser beam. The light source device according to claim 1.
PCT/JP2014/080345 2013-12-06 2014-11-17 Light source device WO2015083528A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/022,222 US9646816B2 (en) 2013-12-06 2014-11-17 Light source device
DE112014005518.2T DE112014005518T5 (en) 2013-12-06 2014-11-17 Light source device
IL244786A IL244786A0 (en) 2013-12-06 2016-03-28 Light source device
US15/478,306 US9824879B2 (en) 2013-12-06 2017-04-04 Light source device
US15/712,284 US10032622B2 (en) 2013-12-06 2017-09-22 Light source device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-253262 2013-12-06
JP2013253262 2013-12-06
JP2013-253264 2013-12-06
JP2013253264A JP6209071B2 (en) 2013-12-06 2013-12-06 Light source device
JP2014-081350 2014-04-10
JP2014081350A JP5947329B2 (en) 2013-12-06 2014-04-10 Light source device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/022,222 A-371-Of-International US9646816B2 (en) 2013-12-06 2014-11-17 Light source device
US15/478,306 Continuation US9824879B2 (en) 2013-12-06 2017-04-04 Light source device

Publications (1)

Publication Number Publication Date
WO2015083528A1 true WO2015083528A1 (en) 2015-06-11

Family

ID=53273295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080345 WO2015083528A1 (en) 2013-12-06 2014-11-17 Light source device

Country Status (1)

Country Link
WO (1) WO2015083528A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532829A (en) * 2006-03-31 2009-09-10 エナジェティック・テクノロジー・インコーポレーテッド Laser-driven light source
JP2011035039A (en) * 2009-07-30 2011-02-17 Ushio Inc Light source device
JP2013045537A (en) * 2011-08-23 2013-03-04 Ushio Inc Light source device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532829A (en) * 2006-03-31 2009-09-10 エナジェティック・テクノロジー・インコーポレーテッド Laser-driven light source
JP2011035039A (en) * 2009-07-30 2011-02-17 Ushio Inc Light source device
JP2013045537A (en) * 2011-08-23 2013-03-04 Ushio Inc Light source device

Similar Documents

Publication Publication Date Title
US10032622B2 (en) Light source device
JP6412229B2 (en) Light source device
TWI382789B (en) Method and apparatus for producing extreme ultraviolet radiation or soft x-ray radiation
US7382862B2 (en) X-ray tube cathode with reduced unintended electrical field emission
JP6887388B2 (en) Electrodeless single CW laser driven xenon lamp
US6661876B2 (en) Mobile miniature X-ray source
JP5322217B2 (en) Light source device
JP2010186694A (en) X-ray source, x-ray generation method, and method for manufacturing x-ray source
US4611143A (en) Composite light source
JP6209071B2 (en) Light source device
JP5947329B2 (en) Light source device
WO2015083528A1 (en) Light source device
JP6211912B2 (en) Light source device
JP6224445B2 (en) Light source device
JP5622081B2 (en) Plasma light source
JP2010205651A (en) Plasma generation method, and extreme ultraviolet light source device using the same
JP2014170921A (en) Ultraviolet irradiation device
JP2005093165A (en) Short arc lamp
JP7095236B2 (en) Plasma light source system
JP2017157299A (en) Laser-driven light source
JP2005203221A (en) Flash discharge lamp lighting device and radiation energy irradiation device
JP2017195143A (en) Plasma light source and method for generating plasma light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866886

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15022222

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 244786

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 112014005518

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866886

Country of ref document: EP

Kind code of ref document: A1