WO2015083327A1 - Method for growing silicon single crystal - Google Patents

Method for growing silicon single crystal Download PDF

Info

Publication number
WO2015083327A1
WO2015083327A1 PCT/JP2014/005723 JP2014005723W WO2015083327A1 WO 2015083327 A1 WO2015083327 A1 WO 2015083327A1 JP 2014005723 W JP2014005723 W JP 2014005723W WO 2015083327 A1 WO2015083327 A1 WO 2015083327A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
mean
growing
real
temperature gradient
Prior art date
Application number
PCT/JP2014/005723
Other languages
French (fr)
Japanese (ja)
Inventor
良太 末若
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to DE112014005529.8T priority Critical patent/DE112014005529B4/en
Priority to CN201480066357.8A priority patent/CN105765114B/en
Priority to KR1020167017750A priority patent/KR101777678B1/en
Publication of WO2015083327A1 publication Critical patent/WO2015083327A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for growing a silicon single crystal by the Czochralski method (hereinafter referred to as “CZ method”).
  • CZ method a method for growing defect-free crystals that do not generate point defects such as infrared scatterer defects and dislocation clusters such as LD (Interstitial-type Large Dislocation).
  • a seed crystal is immersed in a silicon raw material melt stored in a quartz crucible in a chamber maintained in an inert gas atmosphere under reduced pressure, and the immersed seed crystal is gradually added. Pull up. Thereby, a silicon single crystal is grown continuously with the lower end of the seed crystal.
  • FIG. 1 is a schematic diagram for explaining a situation where various defects occur based on the Boronkov theory.
  • the pulling speed is V (mm / min)
  • the temperature gradient in the pulling axis direction near the solid-liquid interface between the raw material melt in the crucible and the ingot (silicon single crystal) is G. (° C./mm)
  • the ratio V / G is taken on the horizontal axis
  • the concentration of vacancy-type point defects and the density of interstitial silicon type point defects are taken on the same vertical axis.
  • the relationship with the defect concentration is schematically represented. It is explained that there is a boundary between a region where a vacancy type point defect occurs and a region where an interstitial silicon type point defect occurs, and that boundary is determined by V / G.
  • the vacancy-type point defect originates from vacancies lacking silicon atoms constituting the crystal lattice, and a representative example of the aggregate of the vacancy-type point defects is COP.
  • Interstitial silicon type point defects originate from interstitial silicon in which silicon atoms enter between crystal lattices, and LD is a representative example of an aggregate of interstitial silicon type point defects.
  • V / G When V / G is in the range of (V / G) 1 to (V / G) 2 , a defect-free region in which neither a vacancy-type point defect nor an interstitial silicon-type point defect exists as an aggregate in a single crystal [ P] appears and neither COP nor LD defect including OSF occurs.
  • region [V] (V / G is in the range of (V / G) 2 to (V / G) 3 ) adjacent to the defect-free region [P] there is an OSF region that forms an OSF nucleus.
  • the defect-free region [P] is divided into a region [P V ] adjacent to the OSF region and a region [P I] adjacent to the region [ I ]. That is, in the defect-free region [P], when V / G is in the range of the critical point to (V / G) 2 , a region [P V ] in which vacant point defects that do not become aggregates predominately appear. In the range of V / G from (V / G) 1 to the critical point, a region [P I ] in which interstitial silicon point defects that do not become aggregates predominately appear.
  • FIG. 2 is a schematic diagram showing the relationship between the pulling rate and the defect distribution during single crystal growth.
  • a silicon single crystal is grown while gradually lowering the pulling speed V, and the grown single crystal is cut along the central axis (pulling axis) to form a plate-shaped specimen.
  • the result of having observed the plate-shaped test piece by the X-ray topograph method after making Cu adhere and heat-treating is shown.
  • V / G is generated in the hot zone, and aggregates of interstitial silicon type point defects are generated over the entire surface.
  • the first critical point (V / G) is not higher than 1 and the second critical point (V / G) 2 is not higher than the second critical point (V / G) where no agglomeration of vacancy-type point defects is generated.
  • the temperature gradient G in the pulling axis direction in the vicinity of the solid-liquid interface depends on the size of the hot zone in the vicinity of the solid-liquid interface, so that the hot zone is appropriately designed in advance prior to single crystal growth.
  • the hot zone is composed of a water-cooled body arranged so as to surround the growing single crystal and a heat shield arranged so as to surround the outer peripheral surface and the lower end surface of the water-cooled body.
  • the management indicators in designing the hot zone, and the temperature gradient G c of the pulling axis direction of the center portion of the single crystal, the temperature gradient G e in the pulling axis direction of the outer peripheral portion of the single crystal is used.
  • the difference ⁇ G ( G e ⁇ ) between the temperature gradient G c at the center of the single crystal and the temperature gradient G e at the outer periphery of the single crystal.
  • G c is set to be within 0.5 ° C./mm.
  • Patent Document 2 the diameter is the subject of development over the single crystal 300 mm, taking into account the effect of the stress in the single crystal, the single crystal center portion of the pulling axis direction of the temperature gradient G c and the single A technique is disclosed in which a ratio G c / G e with the temperature gradient G e in the pulling axis direction of the crystal outer peripheral portion (hereinafter also referred to as “temperature gradient ratio”) is larger than 1.8.
  • the technique disclosed in Patent Document 2 does not always provide a perfect defect-free crystal even though the effect of stress in the single crystal is taken into consideration. This is considered to be due to the influence of the stress distribution in the plane perpendicular to the pulling axis direction in the single crystal.
  • JP 11-79889 A Japanese Patent No. 4819833
  • the present invention has been made in view of the above problems, and in consideration of the in-plane distribution of stress acting on a single crystal during single crystal growth, grows defect-free crystals including large diameters with high accuracy.
  • An object of the present invention is to provide a method for growing a silicon single crystal.
  • the present inventors paid attention to the stress acting on the single crystal at the time of growing the single crystal, and conducted intensive studies by conducting a numerical analysis taking this stress into consideration. As a result, the following knowledge was obtained.
  • FIG. 3 is a diagram showing the relationship between the stress ⁇ mean acting on the single crystal and the critical V / G.
  • the stress distribution in the plane perpendicular to the pulling axis direction of the single crystal has regularity. If the stress in the center of the single crystal is determined, the stress distribution in the plane is the distance R in the radial direction from the center of the single crystal. Can be expressed as a function of Furthermore, by determining the stress at the center of the single crystal and determining the size of the gap between the lower end of the heat shield surrounding the single crystal and the liquid surface of the raw material melt in the quartz crucible, From the stress distribution, it is possible to grasp the optimum temperature gradient distribution G ideal (R) for growing defect-free crystals.
  • the optimum temperature gradient distribution G ideal (R) as a management index, it becomes possible to perform an appropriate dimension design of the hot zone, and the optimum temperature gradient distribution G ideal (R) is used as a reference.
  • the management range of the actual temperature gradient distribution Greal (R) it becomes possible to grow a defect-free crystal with high accuracy.
  • the method for growing a silicon single crystal of the present invention includes: A method of pulling up and growing a silicon single crystal from a raw material melt in a crucible placed in a chamber by a CZ method, Using a single crystal growth apparatus in which a water-cooled body surrounding the single crystal being grown is arranged, and a heat shield surrounding the outer peripheral surface and the lower end surface of the water-cooled body is arranged,
  • a single crystal having a radius of R max (mm) is grown
  • G real (R ) an actual temperature gradient in the pulling axis direction at the position of the radius R (mm) from the center of the single crystal
  • G ideal (R) is the optimum temperature gradient in the pulling axis direction at the radius R from the center of the single crystal
  • the following equation (A) is satisfied within the range of 0 ⁇ R ⁇ R max ⁇ 35 (mm):
  • the single crystal is pulled
  • G ideal (R) is represented by the following formula (a).
  • G ideal (R) [(0.1789 + 0.0012 ⁇ ⁇ mean (0)) / (0.1789 + 0.0012 ⁇ ⁇ mean (x))] ⁇ G real (0) (a)
  • x R / R max
  • ⁇ mean (0) and ⁇ mean (x) are represented by the following formula (b) and formula (c), respectively.
  • ⁇ mean (0) ⁇ b 1 ⁇ G real (0) + b 2 (b)
  • ⁇ mean (x) [n (x) ⁇ ( ⁇ mean (0) ⁇ mean (0.75)) ⁇ (N ⁇ ⁇ mean (0) ⁇ mean (0.75))] / (1 ⁇ N) ... (c)
  • N 0.30827
  • ⁇ mean (0.75) and n (x) are represented by the following formula (d) and formula (e), respectively.
  • GAP is the distance (mm) between the lower end of the heat shield and the liquid surface of the raw material melt.
  • the defect-free crystal is accurately measured. It becomes possible to train well.
  • FIG. 1 is a schematic diagram for explaining a situation in which various defects occur based on the Boronkov theory.
  • FIG. 2 is a schematic diagram showing the relationship between the pulling rate and the defect distribution during single crystal growth.
  • FIG. 3 is a diagram showing the relationship between the average stress ⁇ mean acting in the single crystal and the critical V / G.
  • FIG. 4 is a diagram showing the relationship between the in-plane average stress ⁇ mean (0) at the center of the single crystal and the temperature gradient G (0) at the center of the single crystal.
  • FIG. 4 (a) shows a single crystal having a diameter of 300 mm.
  • FIG. 5B shows the case of a single crystal having a diameter of 450 mm.
  • FIG. 5 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the in-plane average stress ⁇ mean (r) in the case of growing a single crystal having a diameter of 300 mm.
  • FIG. 7B shows the case where the size of the liquid surface gap is 70 mm
  • FIG. 7C shows the case where the size of the liquid surface gap is 90 mm.
  • FIG. 6 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the in-plane average stress ⁇ mean (r) in the case of growing a single crystal having a diameter of 450 mm.
  • FIG. 60 mm shows the size of the surface gap 60 mm
  • FIG. 5B shows the case where the size of the liquid surface gap is 90 mm
  • FIG. 5C shows the case where the size of the liquid surface gap is 120 mm
  • FIG. 7 is a diagram showing the relationship between the size of the liquid level Gap and the average stress ⁇ mean (0.75).
  • FIG. 7A shows the case of a single crystal having a diameter of 300 mm
  • FIG. The case of a single crystal of 450 mm is shown.
  • FIG. 8 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the standardized average stress n (r).
  • FIG. 9 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the optimum temperature gradient G ideal , where FIG.
  • FIG. 10 is a diagram schematically showing a configuration of a single crystal growing apparatus to which the silicon single crystal growing method of the present invention can be applied.
  • V is the pulling speed when growing a single crystal (unit: mm / min)
  • G is the temperature gradient in the pulling axis direction near the solid-liquid interface of the single crystal (unit: ° C). / Mm)
  • critical V / G the ratio of V to G (hereinafter also referred to as “critical V / G”) from which defect-free crystals are obtained is ⁇ .
  • the critical V / G can be defined by the following equation (1) if the effect of stress acting on the single crystal during single crystal growth is introduced.
  • the vicinity of the solid-liquid interface of the single crystal means that the temperature of the single crystal is in the range from the melting point to 1350 ° C.
  • ⁇ ⁇ mean ⁇ 0 + ⁇ ⁇ ⁇ mean ...
  • the stress in the crystal represents the critical V / G when the sigma mean.
  • ⁇ 0 is a constant indicating the critical V / G when the stress in the crystal is zero.
  • is a stress coefficient
  • ⁇ mean is an average stress (unit: MPa) in the single crystal.
  • MPa average stress
  • the single crystal having a diameter of 300 mm herein refers to a product (silicon wafer) having a diameter of 300 mm, specifically, a single crystal having a diameter of 300.5 to 330 mm when grown.
  • a single crystal having a diameter of 450 mm means a product (silicon wafer) having a diameter of 450 mm, specifically, a single crystal having a diameter of 450.5 to 480 mm when grown.
  • the average stress ⁇ mean is equivalent to the stress that causes the volume change of the single crystal during growth, and can be grasped by numerical analysis.
  • the circumferential direction The vertical components ⁇ rr , ⁇ ⁇ , and ⁇ zz of the stress acting on each of the three planes, the plane along and the plane orthogonal to the pulling-up axis direction, are extracted, and these are totaled and divided by three.
  • the positive mean stress ⁇ mean means tensile stress
  • the negative means compressive stress.
  • Equation (1) represents the relationship between the critical V / G in one dimension and the average stress ⁇ mean , but in order to grow a defect-free crystal, the in-plane perpendicular to the pulling axis direction of the single crystal It is necessary to think in.
  • V / G (r) The ratio of V to G (r) from which defect-free crystals can be obtained (hereinafter also referred to as “critical V / G (r)”, expressed numerically as “(V / G (r)) cri ”) is a stress effect.
  • V / G (r)) cri ⁇ 0 + ⁇ ⁇ ⁇ mean (r) (2)
  • ⁇ mean (r) is an average stress (unit: MPa) at the position of the relative radius r from the center of the single crystal, and the distribution of the average stress in a plane orthogonal to the pulling axis direction of the single crystal. Indicates.
  • the temperature gradient G (r) indicates the distribution of the temperature gradient in a plane orthogonal to the pulling axis direction of the single crystal
  • the distribution of the optimal temperature gradient G (r) for growing a defect-free crystal I want to ask.
  • the regularity of the distribution of the average stress ⁇ mean (r) in the plane is unknown.
  • the control condition cannot be determined. Become.
  • the size of the gap (hereinafter also referred to as “liquid level gap”) between the lower end of the heat shield surrounding the single crystal and the liquid level of the raw material melt in the quartz crucible is set. changed.
  • the height in the pulling axis direction from the liquid surface of the raw material melt to the center of the solid-liquid interface (hereinafter also referred to as “interface height”) was changed.
  • the average stress was calculated.
  • FIG. 4 is a diagram showing the relationship between the in-plane average stress ⁇ mean (0) at the center of the single crystal and the temperature gradient G (0) at the center of the single crystal.
  • FIG. 4 (a) shows a single crystal having a diameter of 300 mm.
  • FIG. 5B shows the case of a single crystal having a diameter of 450 mm. This figure is obtained from the above analysis results. From the figure, the average stress ⁇ mean (0) at the center of the single crystal is proportional to the temperature gradient G (0) at the center of the single crystal regardless of the interface height, and the following equation (3) It was found that there was a correlation expressed.
  • ⁇ mean (0) ⁇ b 1 ⁇ G (0) + b 2 (3)
  • b 1 and b 2 are constants obtained by linear approximation from the calculated value of the in-plane average stress ⁇ mean (0) and the calculated value of the temperature gradient G (0) at the center of the single crystal, respectively.
  • the liquid surface gap size is set to three values of 60 mm, 90 mm, and 120 mm, and in each case, the height of the interface is 8 types at intervals of 5 mm at 0 to 35 mm.
  • the in-plane average stress ⁇ mean (r) at the position of the relative radius r from the center of the single crystal was calculated.
  • FIG. 5 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the in-plane average stress ⁇ mean (r) in the case of growing a single crystal having a diameter of 300 mm.
  • FIG. 7B shows the case where the size of the liquid surface gap is 70 mm
  • FIG. 7C shows the case where the size of the liquid surface gap is 90 mm.
  • FIG. 6 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the in-plane average stress ⁇ mean (r) in the case of growing a single crystal having a diameter of 450 mm.
  • FIG. 5B shows the case where the size of the liquid surface gap is 90 mm
  • FIG. 5C shows the case where the size of the liquid surface gap is 120 mm.
  • FIG. 7 is a diagram showing the relationship between the size of the liquid level Gap and the average stress ⁇ mean (0.75).
  • FIG. 7A shows the case of a single crystal having a diameter of 300 mm, and FIG. The case of a single crystal of 450 mm is shown. From the figure, it was found that the relationship between the size of the liquid level gap (GAP, unit: mm) and the average stress ⁇ mean (0.75) (unit: MPa) is expressed by the following equation (4). . That is, it was found that ⁇ mean (0.75) is determined if the size of the liquid level Gap is determined.
  • ⁇ mean (0.75) d 1 ⁇ GAP ⁇ d 2 (4)
  • ⁇ mean (r) The in-plane average stress ⁇ mean (r) described above was standardized as n (r) in the following equation (5).
  • ⁇ mean (0) is the in-plane average stress at the center of the single crystal
  • ⁇ mean (1) is the in-plane average stress at the outer periphery of the single crystal.
  • n (r) [ ⁇ mean (r) ⁇ mean (1)] / [ ⁇ mean (0) ⁇ mean (1)] (5)
  • FIG. 8 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the standardized average stress n (r).
  • the diameter of the single crystal is 300 mm and 450 mm
  • the size of the liquid surface gap and the interface height are variously changed and calculated from the in-plane average stress ⁇ mean (r) under each change condition. Normalized mean stress n (r) was plotted. From the figure, it was found that the standardized average stress n (r) does not depend on the diameter of the single crystal, the size of the liquid surface gap, and the interface height.
  • the in-plane average stress ⁇ mean (r) has regularity, and the in-plane average stress ⁇ mean (0) at the center of the single crystal and the in-plane average stress ⁇ mean (1) at the outer periphery of the single crystal are known.
  • the distribution of the in-plane average stress ⁇ mean (r) can be grasped from the above equation (5).
  • N 0.30827
  • r 0.75 into the equation (5)
  • the following equation (7) is obtained as an equation representing P (1).
  • ⁇ mean (1) [ ⁇ mean (0.75) ⁇ N ⁇ ⁇ mean (0)] / [1-N] (7)
  • ⁇ mean (r) can be obtained as ⁇ mean (1) in the above equation (3) and ⁇ mean (0.75) in the above equation (4).
  • n (r) in the above formula (6) and the constant N can be expressed by the following formula (8).
  • V / G (r) ⁇ 0 + ⁇ ⁇ ⁇ mean (r) (2)
  • G ideal (r) [( ⁇ 0 + ⁇ ⁇ ⁇ mean (0)) / ( ⁇ 0 + ⁇ ⁇ ⁇ mean (r))] ⁇ G (0) (9)
  • G ideal (R) [(0.1789 + 0.0012 ⁇ ⁇ mean (0)) / (0.1789 + 0.0012 ⁇ ⁇ mean (x))] ⁇ G real (0) (a)
  • x R / R max
  • G real (0) is an actual temperature gradient in the pulling axis direction at the center of the single crystal.
  • ⁇ mean (0) and ⁇ mean (x) are expressed by the following formulas (b) and (c).
  • the expressions (b) and (c) are the same as the expressions (3) and (8), respectively.
  • ⁇ mean (0) is an average stress at the center of the single crystal, and may be a value obtained by equation (b) or may be a value obtained by another method.
  • N 0.30827
  • ⁇ mean (0.75) and n (x) are represented by the following formulas (d) and (e).
  • FIG. 9 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the optimum temperature gradient G ideal , where FIG. 9A shows the case of a single crystal having a diameter of 300 mm, and FIG. The cases of single crystals are shown respectively.
  • the horizontal axis is r (R / R max ).
  • the temperature gradient Greal (0) at the center of the single crystal is 1.5 ° C / mm, 2.0 ° C / mm, 2.5 ° C / mm, 3.0 ° C / mm and 3.5 ° C. / Mm and the size of the liquid level gap is 60 mm, 80 mm and 100 mm.
  • the optimum temperature gradient can be grasped by determining the size of the temperature gradient G real (0) and the liquid level Gap.
  • the distribution of the average stress ⁇ mean (r) in the plane perpendicular to the pulling axis direction of the single crystal is regular, and the distribution of the in-plane average stress ⁇ mean (r) is in the center of the single crystal.
  • the temperature gradient G real (0) of the single crystal central portion or the stress ⁇ mean (0) of the single crystal central portion and the liquid level gap are determined in consideration of the effect of stress that affects the occurrence of point defects. This makes it possible to grasp the distribution of the temperature gradient G ideal (R) that is optimal for growing defect-free crystals.
  • FIG. 8 is a diagram schematically showing a configuration of a single crystal growth apparatus to which the silicon single crystal growth method of the present invention can be applied.
  • the single crystal growing apparatus is configured with a chamber 1 as an outer shell, and a crucible 2 is disposed at the center thereof.
  • the crucible 2 has a double structure composed of an inner quartz crucible 2a and an outer graphite crucible 2b, and is fixed to the upper end of a support shaft 3 that can be rotated and lifted.
  • a resistance heating type heater 4 surrounding the crucible 2 is disposed outside the crucible 2, and a heat insulating material 5 is disposed outside the crucible 2 along the inner surface of the chamber 1.
  • a pulling shaft 6 such as a wire that is coaxial with the support shaft 3 and rotates in a reverse direction or the same direction at a predetermined speed is disposed.
  • a seed crystal 7 is attached to the lower end of the pulling shaft 6.
  • a cylindrical water-cooled body 11 surrounding the silicon single crystal 8 being grown is disposed above the raw material melt 9 in the crucible 2.
  • the water-cooled body 11 is made of, for example, a metal having good thermal conductivity such as copper, and is forcibly cooled by cooling water that is circulated inside. This water-cooled body 11 plays a role of accelerating the cooling of the growing single crystal 8 and controlling the temperature gradient in the pulling axis direction of the single crystal central portion and the single crystal outer peripheral portion.
  • a cylindrical heat shield 10 is arranged so as to surround the outer peripheral surface and the lower end surface of the water-cooled body 11.
  • the heat shield 10 shields high temperature radiant heat from the raw material melt 9 in the crucible 2, the heater 4, and the side wall of the crucible 2 from the growing single crystal 8, and a solid-liquid interface that is a crystal growth interface. In the vicinity of, the diffusion of heat to the low-temperature water-cooled body 11 is suppressed, and the temperature gradient in the pulling axis direction of the single crystal central part and the single crystal outer peripheral part is controlled with the water-cooled body 11.
  • a gas inlet 12 for introducing an inert gas such as Ar gas into the chamber 1 is provided in the upper part of the chamber 1.
  • An exhaust port 13 for sucking and discharging the gas in the chamber 1 by driving a vacuum pump (not shown) is provided below the chamber 1.
  • the inert gas introduced into the chamber 1 from the gas inlet 12 descends between the growing single crystal 8 and the water-cooled body 11, and the lower end of the heat shield 10 and the liquid level of the raw material melt 9 are reduced. After passing through the gap (liquid level gap), it flows toward the outside of the heat shield 10 and further to the outside of the crucible 2, and then descends outside the crucible 2 and is discharged from the exhaust port 13.
  • solid material such as polycrystalline silicon filled in the crucible 2 is used for the heater 4 while the chamber 1 is maintained in an inert gas atmosphere under reduced pressure.
  • the raw material melt 9 is formed by melting by heating.
  • the pulling shaft 6 is lowered, the seed crystal 7 is immersed in the raw material melt 9, and the crucible 2 and the pulling shaft 6 are rotated in a predetermined direction while the pulling shaft 6 is gradually pulled up to grow a single crystal 8 connected to the seed crystal 7.
  • the method for growing a silicon single crystal of the present invention is extremely useful for growing a large-diameter defect-free crystal in which various point defects such as OSF, COP, and LD do not occur.

Abstract

A method for growing a silicon single crystal using a single crystal growing device which is provided with a water-cooled body that encloses a growing single crystal and which is provided with a thermal shield that surrounds an outer peripheral face and lower end face of the water-cooled body, the method comprising, when growing a single crystal with a radius of Rmax(mm), pulling the single crystal under a condition which satisfies formula (A) in a range of 0<R<Rmax-35(mm) given that a temperature gradient of the direction of an actual pulling axis at a position radius R (mm) from the center of the single crystal is Greal(R) and an optimum temperature gradient is Gideal(R) in the vicinity of a solid-liquid interface of the single crystal. |Greal(R)−Gideal(R)|/Greal(R)<0.08 …(A) In the formula (A), Gideal(R)=[(0.1789+0.0012×σmean(0))/(0.1789+0.0012×σmean(x))]×Greal(0), and in this formula, x=R/Rmax, and σmean(x) is average stress at a position radius R from the center of the single crystal. According to this growing method, a large diameter crystal with no defects can be accurately grown.

Description

シリコン単結晶の育成方法Method for growing silicon single crystal
 本発明は、チョクラルスキー法(以下、「CZ法」という)によるシリコン単結晶の育成方法に関し、特に、OSF(Oxidation Induced Stacking Fault:酸化誘起積層欠陥)や、COP(Crystal Originated Particle)などの赤外線散乱体欠陥や、LD(Interstitial-type Large Dislocation)などの転位クラスタといった点欠陥が発生しない無欠陥結晶を育成する方法に関する。 The present invention relates to a method for growing a silicon single crystal by the Czochralski method (hereinafter referred to as “CZ method”). The present invention relates to a method for growing defect-free crystals that do not generate point defects such as infrared scatterer defects and dislocation clusters such as LD (Interstitial-type Large Dislocation).
 単結晶育成装置を用いたCZ法では、減圧下の不活性ガス雰囲気に維持されたチャンバ内において、石英ルツボに貯溜されたシリコンの原料融液に種結晶を浸漬し、浸漬した種結晶を徐々に引き上げる。これにより、種結晶の下端に連なってシリコン単結晶が育成される。 In the CZ method using a single crystal growth apparatus, a seed crystal is immersed in a silicon raw material melt stored in a quartz crucible in a chamber maintained in an inert gas atmosphere under reduced pressure, and the immersed seed crystal is gradually added. Pull up. Thereby, a silicon single crystal is grown continuously with the lower end of the seed crystal.
 図1は、ボロンコフ理論に基づいて各種の欠陥が発生する状況を説明する模式図である。同図に示すように、ボロンコフ理論では、引き上げ速度をV(mm/min)とし、ルツボ内の原料融液とインゴット(シリコン単結晶)との固液界面近傍における引き上げ軸方向の温度勾配をG(℃/mm)としたとき、それらの比であるV/Gを横軸にとり、空孔型点欠陥の濃度と格子間シリコン型点欠陥の濃度を同一の縦軸にとって、V/Gと点欠陥濃度との関係を模式的に表現している。そして、空孔型点欠陥の発生する領域と格子間シリコン型点欠陥の発生する領域の境界が存在し、その境界がV/Gによって決定されることを説明している。 FIG. 1 is a schematic diagram for explaining a situation where various defects occur based on the Boronkov theory. As shown in the figure, in the Boronkov theory, the pulling speed is V (mm / min), and the temperature gradient in the pulling axis direction near the solid-liquid interface between the raw material melt in the crucible and the ingot (silicon single crystal) is G. (° C./mm), the ratio V / G is taken on the horizontal axis, and the concentration of vacancy-type point defects and the density of interstitial silicon type point defects are taken on the same vertical axis. The relationship with the defect concentration is schematically represented. It is explained that there is a boundary between a region where a vacancy type point defect occurs and a region where an interstitial silicon type point defect occurs, and that boundary is determined by V / G.
 空孔型点欠陥は、結晶格子を構成すべきシリコン原子が欠けた空孔を根源とするものであり、この空孔型点欠陥の凝集体の代表格がCOPである。格子間シリコン型点欠陥は、結晶格子間にシリコン原子が入り込んだ格子間シリコンを根源とするものであり、この格子間シリコン型点欠陥の凝集体の代表格がLDである。 The vacancy-type point defect originates from vacancies lacking silicon atoms constituting the crystal lattice, and a representative example of the aggregate of the vacancy-type point defects is COP. Interstitial silicon type point defects originate from interstitial silicon in which silicon atoms enter between crystal lattices, and LD is a representative example of an aggregate of interstitial silicon type point defects.
 図1に示すように、V/Gが臨界点を上回ると、空孔型点欠陥濃度が優勢な単結晶が育成される。その反面、V/Gが臨界点を下回ると、格子間シリコン型点欠陥濃度が優勢な単結晶が育成される。このため、V/Gが臨界点より小さい(V/G)を下回る範囲では、単結晶内で格子間シリコン型点欠陥が支配的であって、格子間シリコン点欠陥の凝集体が存在する領域[I]が出現し、LDが発生する。V/Gが臨界点より大きい(V/G)を上回る範囲では、単結晶内で空孔型点欠陥が支配的であって、空孔型点欠陥の凝集体が存在する領域[V]が出現し、COPが発生する。 As shown in FIG. 1, when V / G exceeds the critical point, a single crystal having a dominant vacancy point defect concentration is grown. On the other hand, when V / G falls below the critical point, a single crystal having a dominant interstitial silicon type point defect concentration is grown. For this reason, in the range where V / G is smaller than the critical point (V / G) 1 or less, interstitial silicon type point defects are dominant in the single crystal, and aggregates of interstitial silicon point defects exist. Region [I] appears and LD occurs. In the range where V / G is larger than the critical point (V / G) 2 , the vacancy-type point defects are dominant in the single crystal, and the region where the aggregates of the vacancy-type point defects exist [V] Appears and COP occurs.
 V/Gが(V/G)~(V/G)の範囲では、単結晶内で空孔型点欠陥および格子間シリコン型点欠陥のいずれも凝集体としては存在しない無欠陥領域[P]が出現し、OSFを含めCOPおよびLDのいずれの欠陥も発生しない。無欠陥領域[P]に隣接する領域[V](V/Gが(V/G)~(V/G)の範囲)には、OSF核を形成するOSF領域が存在する。 When V / G is in the range of (V / G) 1 to (V / G) 2 , a defect-free region in which neither a vacancy-type point defect nor an interstitial silicon-type point defect exists as an aggregate in a single crystal [ P] appears and neither COP nor LD defect including OSF occurs. In the region [V] (V / G is in the range of (V / G) 2 to (V / G) 3 ) adjacent to the defect-free region [P], there is an OSF region that forms an OSF nucleus.
 また、無欠陥領域[P]は、OSF領域に隣接する領域[P]と、領域[I]に隣接する領域[P]とに区分される。すなわち、無欠陥領域[P]のうち、V/Gが臨界点~(V/G)の範囲では、凝集体にならない空孔型点欠陥が優勢に存在する領域[P]が出現し、V/Gが(V/G)~臨界点の範囲では、凝集体にならない格子間シリコン点欠陥が優勢に存在する領域[P]が出現する。 The defect-free region [P] is divided into a region [P V ] adjacent to the OSF region and a region [P I] adjacent to the region [ I ]. That is, in the defect-free region [P], when V / G is in the range of the critical point to (V / G) 2 , a region [P V ] in which vacant point defects that do not become aggregates predominately appear. In the range of V / G from (V / G) 1 to the critical point, a region [P I ] in which interstitial silicon point defects that do not become aggregates predominately appear.
 図2は、単結晶育成時の引き上げ速度と欠陥分布との関係を示す模式図である。同図に示す欠陥分布は、引き上げ速度Vを徐々に低下させながらシリコン単結晶を育成し、育成した単結晶を中心軸(引き上げ軸)に沿って切断して板状試片とし、その表面にCuを付着させ、熱処理を施した後、その板状試片をX線トポグラフ法により観察した結果を示している。 FIG. 2 is a schematic diagram showing the relationship between the pulling rate and the defect distribution during single crystal growth. In the defect distribution shown in the figure, a silicon single crystal is grown while gradually lowering the pulling speed V, and the grown single crystal is cut along the central axis (pulling axis) to form a plate-shaped specimen. The result of having observed the plate-shaped test piece by the X-ray topograph method after making Cu adhere and heat-treating is shown.
 図2に示すように、引き上げ速度を高速にして育成を行った場合、単結晶の引き上げ軸方向と直交する面内全域にわたり、空孔型点欠陥の凝集体(COP)が存在する領域[V]が発生する。引き上げ速度を低下させていくと、単結晶の外周部からOSF領域がリング状に出現する。このOSF領域は、引き上げ速度の低下に伴ってその径が次第に縮小し、引き上げ速度がVになると消滅する。これに伴い、OSF領域に代わって無欠陥領域[P](領域[P])が出現し、単結晶の面内全域が無欠陥領域[P]で占められる。そして、引き上げ速度がVまでに低下すると、格子間シリコン型点欠陥の凝集体(LD)が存在する領域[I]が出現し、ついには無欠陥領域[P](領域[P])に代わって単結晶の面内全域が領域[I]で占められる。 As shown in FIG. 2, when growth is performed at a high pulling speed, a region where agglomerates of vacancy-type point defects (COP) exist over the entire in-plane region perpendicular to the pulling axis direction of the single crystal [V ] Occurs. When the pulling speed is decreased, the OSF region appears in a ring shape from the outer peripheral portion of the single crystal. The OSF region is a diameter with decreasing pulling rate gradually reduced, pulling rate disappears and becomes V 1. Accordingly, a defect-free region [P] (region [P V ]) appears instead of the OSF region, and the entire in-plane area of the single crystal is occupied by the defect-free region [P]. Then, when the pulling rate is reduced to V 2 , a region [I] where interstitial silicon type point defect aggregates (LD) exist appears, and finally a defect-free region [P] (region [P I ]). Instead, the entire in-plane area of the single crystal is occupied by the region [I].
 昨今、半導体デバイスの微細化の発展により、シリコンウェーハに要求される品質がますます高まっている。また、歩留り向上のため、シリコンウェーハの大径化に対する要求もますます高まっている。このため、シリコンウェーハの素材であるシリコン単結晶の製造においては、OSFやCOPやLDなどの各種の点欠陥を排除し、面内全域にわたって無欠陥領域[P]が分布する、大径無欠陥結晶を育成する技術が強く望まれている。 Recently, due to the development of miniaturization of semiconductor devices, the quality required for silicon wafers is increasing. In addition, in order to improve the yield, there is an increasing demand for increasing the diameter of silicon wafers. For this reason, in the manufacture of silicon single crystal, which is a material for silicon wafers, various point defects such as OSF, COP, and LD are eliminated, and a defect-free region [P] is distributed over the entire surface. A technique for growing crystals is strongly desired.
 この要求に応えるには、シリコン単結晶を引き上げる際、前記図1および図2に示すように、ホットゾーン内でV/Gが、面内全域にわたり、格子間シリコン型点欠陥の凝集体が発生しない第1臨界点(V/G)以上であって、空孔型点欠陥の凝集体が発生しない第2臨界点(V/G)以下に確保されるように管理を行う必要がある。実操業では、引き上げ速度の狙いをVとVの間(例えば両者の中央値)に設定し、仮に育成中に引き上げ速度を変更したとしてもV~Vの範囲に収まるように管理する。 In order to meet this demand, when pulling up the silicon single crystal, as shown in FIGS. 1 and 2, V / G is generated in the hot zone, and aggregates of interstitial silicon type point defects are generated over the entire surface. The first critical point (V / G) is not higher than 1 and the second critical point (V / G) 2 is not higher than the second critical point (V / G) where no agglomeration of vacancy-type point defects is generated. . In actual operation, manages the aim of the pulling speed as set between V 1 and V 2 (e.g., the median of the two), within the range of V 1 ~ V 2 even tentatively changed pulling speed during growth To do.
 また、固液界面近傍における引き上げ軸方向の温度勾配Gは、固液界面近傍のホットゾーンの寸法に依存することから、単結晶育成に先立ち、予めそのホットゾーンを適正に設計しておく。一般に、ホットゾーンは、育成中の単結晶を囲繞するように配置された水冷体と、この水冷体の外周面および下端面を包囲するように配置された熱遮蔽体とから構成される。ここで、ホットゾーンを設計するにあたっての管理指標としては、単結晶の中心部の引き上げ軸方向の温度勾配Gと、単結晶の外周部の引き上げ軸方向の温度勾配Gが用いられる。そして、無欠陥結晶を育成するために、例えば特許文献1に開示された技術では、単結晶中心部の温度勾配Gと単結晶外周部の温度勾配Gとの差ΔG(=G-G)が0.5℃/mm以内となるようにしている。 Further, the temperature gradient G in the pulling axis direction in the vicinity of the solid-liquid interface depends on the size of the hot zone in the vicinity of the solid-liquid interface, so that the hot zone is appropriately designed in advance prior to single crystal growth. Generally, the hot zone is composed of a water-cooled body arranged so as to surround the growing single crystal and a heat shield arranged so as to surround the outer peripheral surface and the lower end surface of the water-cooled body. Here, the management indicators in designing the hot zone, and the temperature gradient G c of the pulling axis direction of the center portion of the single crystal, the temperature gradient G e in the pulling axis direction of the outer peripheral portion of the single crystal is used. In order to grow defect-free crystals, for example, in the technique disclosed in Patent Document 1, the difference ΔG (= G e −) between the temperature gradient G c at the center of the single crystal and the temperature gradient G e at the outer periphery of the single crystal. G c ) is set to be within 0.5 ° C./mm.
 ところで、近年、無欠陥結晶の育成で狙うべきV/Gが、単結晶育成時に単結晶中に作用する応力によって変動することが分かってきている。このため、前記特許文献1に開示された技術では、その応力の効果をまったく考慮していないことから、完全な無欠陥結晶が得られない状況が少なからず起こる。 By the way, in recent years, it has been found that the V / G that should be aimed at growing defect-free crystals varies depending on the stress acting on the single crystal during single crystal growth. For this reason, since the technique disclosed in Patent Document 1 does not consider the effect of the stress at all, there are many situations in which a complete defect-free crystal cannot be obtained.
 この点、例えば特許文献2には、直径が300mm以上の単結晶を育成の対象とし、単結晶中の応力の効果を考慮して、単結晶中心部の引き上げ軸方向の温度勾配Gと単結晶外周部の引き上げ軸方向の温度勾配Gとの比(以下、「温度勾配比」ともいう)G/Gを1.8よりも大きくする技術が開示されている。しかし、特許文献2に開示される技術では、単結晶中の応力の効果を考慮しているといえども、必ずしも完全な無欠陥結晶が得られるとは限らない。これは、単結晶中の引き上げ軸方向と直交する面内の応力分布が影響していると考えられる。 In this regard, for example, Patent Document 2, the diameter is the subject of development over the single crystal 300 mm, taking into account the effect of the stress in the single crystal, the single crystal center portion of the pulling axis direction of the temperature gradient G c and the single A technique is disclosed in which a ratio G c / G e with the temperature gradient G e in the pulling axis direction of the crystal outer peripheral portion (hereinafter also referred to as “temperature gradient ratio”) is larger than 1.8. However, the technique disclosed in Patent Document 2 does not always provide a perfect defect-free crystal even though the effect of stress in the single crystal is taken into consideration. This is considered to be due to the influence of the stress distribution in the plane perpendicular to the pulling axis direction in the single crystal.
特開平11-79889号公報JP 11-79889 A 特許第4819833号公報Japanese Patent No. 4819833
 本発明は、上記の問題に鑑みてなされたものであり、単結晶育成時に単結晶中に作用する応力の面内分布を考慮し、大径のものも含め、無欠陥結晶を精度良く育成することができるシリコン単結晶の育成方法を提供することを目的とする。 The present invention has been made in view of the above problems, and in consideration of the in-plane distribution of stress acting on a single crystal during single crystal growth, grows defect-free crystals including large diameters with high accuracy. An object of the present invention is to provide a method for growing a silicon single crystal.
 本発明者らは、上記目的を達成するため、単結晶育成時に単結晶中に作用する応力に着目し、この応力を加味した数値解析を行って鋭意検討を重ねた。その結果、下記の知見を得た。 In order to achieve the above-mentioned object, the present inventors paid attention to the stress acting on the single crystal at the time of growing the single crystal, and conducted intensive studies by conducting a numerical analysis taking this stress into consideration. As a result, the following knowledge was obtained.
 図3は、単結晶中に作用する応力σmeanと臨界V/Gの関係を示す図である。ホットゾーンの条件を種々変更した総合伝熱解析により、臨界V/Gと平均応力σmeanとの関係を調査した結果、図3に示すように、(臨界V/G)=0.1789+0.0012×σmeanであることが見出された。 FIG. 3 is a diagram showing the relationship between the stress σ mean acting on the single crystal and the critical V / G. As a result of investigating the relationship between the critical V / G and the average stress σ mean by comprehensive heat transfer analysis with variously changed hot zone conditions, as shown in FIG. 3, (critical V / G) = 0.17989 + 0.0012 Xσ mean was found.
 単結晶の引き上げ軸方向と直交する面内の応力分布には規則性があり、単結晶中心部の応力を定めれば、その面内の応力分布は、単結晶の中心から半径方向の距離Rの関数として表すことができる。さらに、単結晶中心部の応力を定めるとともに、単結晶を包囲する熱遮蔽体の下端と石英ルツボ内の原料融液の液面との隙間の大きさを定めれば、単結晶中の面内の応力分布から、無欠陥結晶を育成するのに最適な温度勾配の分布Gideal(R)を把握することが可能となる。そして、その最適温度勾配の分布Gideal(R)を管理指標として用いることにより、ホットゾーンの適正な寸法設計が行えるようになり、しかも、その最適温度勾配の分布Gideal(R)を基準とした、実際の温度勾配の分布Greal(R)の管理範囲を設定することにより、無欠陥結晶を精度良く育成することが可能になる。 The stress distribution in the plane perpendicular to the pulling axis direction of the single crystal has regularity. If the stress in the center of the single crystal is determined, the stress distribution in the plane is the distance R in the radial direction from the center of the single crystal. Can be expressed as a function of Furthermore, by determining the stress at the center of the single crystal and determining the size of the gap between the lower end of the heat shield surrounding the single crystal and the liquid surface of the raw material melt in the quartz crucible, From the stress distribution, it is possible to grasp the optimum temperature gradient distribution G ideal (R) for growing defect-free crystals. Then, by using the optimum temperature gradient distribution G ideal (R) as a management index, it becomes possible to perform an appropriate dimension design of the hot zone, and the optimum temperature gradient distribution G ideal (R) is used as a reference. By setting the management range of the actual temperature gradient distribution Greal (R), it becomes possible to grow a defect-free crystal with high accuracy.
 本発明は、上記の知見に基づいて完成させたものであり、その要旨は下記のシリコン単結晶の育成方法にある。すなわち、本発明のシリコン単結晶の育成方法は、
 CZ法によりチャンバ内に配置したルツボ内の原料融液からシリコン単結晶を引き上げて育成する方法であって、
 育成中の単結晶を囲繞する水冷体を配置するとともに、この水冷体の外周面および下端面を包囲する熱遮蔽体を配置した単結晶育成装置を用い、
 半径がRmax(mm)の単結晶の育成時に、単結晶の固液界面近傍にて、単結晶の中心から半径R(mm)の位置における実際の引き上げ軸方向の温度勾配をGreal(R)、単結晶の中心から半径Rの位置における引き上げ軸方向の最適温度勾配をGideal(R)とした場合、0<R<Rmax-35(mm)の範囲で、下記(A)式を満足する条件で単結晶の引き上げを行うことを特徴とする。
 |Greal(R)-Gideal(R)|/Greal(R)<0.08 …(A)
 上記(A)式中、Gideal(R)は下記(a)式で表される。
 Gideal(R)=[(0.1789+0.0012×σmean(0))/(0.1789+0.0012×σmean(x))]×Greal(0) …(a)
 上記(a)式中、x=R/Rmaxであり、σmean(0)およびσmean(x)は、それぞれ下記(b)式および(c)式で表される。
 σmean(0)=-b×Greal(0)+b …(b)
 σmean(x)=[n(x)×(σmean(0)-σmean(0.75))-(N×σmean(0)-σmean(0.75))]/(1-N) …(c)
 上記(c)式中、N=0.30827であり、σmean(0.75)およびn(x)は、それぞれ下記(d)式および(e)式で表される。
 σmean(0.75)=d×GAP-d …(d)
 n(x)=0.959x-2.0014x+0.0393x+1 …(e)
 上記(d)式中、GAPは前記熱遮蔽体の下端と前記原料融液の液面との間隔(mm)である。
The present invention has been completed based on the above findings, and the gist thereof is the following method for growing a silicon single crystal. That is, the method for growing a silicon single crystal of the present invention includes:
A method of pulling up and growing a silicon single crystal from a raw material melt in a crucible placed in a chamber by a CZ method,
Using a single crystal growth apparatus in which a water-cooled body surrounding the single crystal being grown is arranged, and a heat shield surrounding the outer peripheral surface and the lower end surface of the water-cooled body is arranged,
When a single crystal having a radius of R max (mm) is grown, an actual temperature gradient in the pulling axis direction at the position of the radius R (mm) from the center of the single crystal is expressed as G real (R ), Where G ideal (R) is the optimum temperature gradient in the pulling axis direction at the radius R from the center of the single crystal, the following equation (A) is satisfied within the range of 0 <R <R max −35 (mm): The single crystal is pulled under satisfying conditions.
| G real (R) −G ideal (R) | / G real (R) <0.08 (A)
In the above formula (A), G ideal (R) is represented by the following formula (a).
G ideal (R) = [(0.1789 + 0.0012 × σ mean (0)) / (0.1789 + 0.0012 × σ mean (x))] × G real (0) (a)
In the above formula (a), x = R / R max , and σ mean (0) and σ mean (x) are represented by the following formula (b) and formula (c), respectively.
σ mean (0) = − b 1 × G real (0) + b 2 (b)
σ mean (x) = [n (x) × (σ mean (0) −σ mean (0.75)) − (N × σ mean (0) −σ mean (0.75))] / (1− N) ... (c)
In the above formula (c), N = 0.30827, and σ mean (0.75) and n (x) are represented by the following formula (d) and formula (e), respectively.
σ mean (0.75) = d 1 × GAP−d 2 (d)
n (x) = 0.959x 3 -2.0014x 2 + 0.0393x + 1 (e)
In the above formula (d), GAP is the distance (mm) between the lower end of the heat shield and the liquid surface of the raw material melt.
 上記の育成方法では、下記(B)式を満足する条件で単結晶の引き上げを行うことが好ましい。
 |Greal(R)-Gideal(R)|/Greal(R)<0.05 …(B)
In the growth method described above, it is preferable to pull up the single crystal under the condition that satisfies the following formula (B).
| G real (R) −G ideal (R) | / G real (R) <0.05 (B)
 上記の育成方法では、直径が300mmの単結晶を育成する場合、上記(b)式中、b=17.2、b=40.8とし、上記(d)式中、d=0.108、d=11.3とする。 In the above growth method, when a single crystal having a diameter of 300 mm is grown, b 1 = 17.2 and b 2 = 40.8 in the above formula (b), and d 1 = 0 in the above formula (d). 108, d 2 = 11.3.
 上記の育成方法では、直径が450mmの単結晶を育成する場合、上記(b)式中、b=27.5、b=44.7とし、上記(d)式中、d=0.081、d=11.2とする。 In the above growth method, when growing a single crystal having a diameter of 450 mm, b 1 = 27.5 and b 2 = 44.7 in the above formula (b), and d 1 = 0 in the above formula (d). .081, d 2 = 11.2.
 本発明のシリコン単結晶の育成方法によれば、単結晶中の応力の効果を考慮し、温度勾配の分布Greal(R)の管理範囲を適正に設定しているので、無欠陥結晶を精度良く育成することが可能になる。 According to the method for growing a silicon single crystal of the present invention, since the management range of the temperature gradient distribution G real (R) is appropriately set in consideration of the effect of stress in the single crystal, the defect-free crystal is accurately measured. It becomes possible to train well.
図1は、ボロンコフ理論に基づいて各種の欠陥が発生する状況を説明する模式図である。FIG. 1 is a schematic diagram for explaining a situation in which various defects occur based on the Boronkov theory. 図2は、単結晶育成時の引き上げ速度と欠陥分布との関係を示す模式図である。FIG. 2 is a schematic diagram showing the relationship between the pulling rate and the defect distribution during single crystal growth. 図3は、単結晶中に作用する平均応力σmeanと臨界V/Gの関係を示す図である。FIG. 3 is a diagram showing the relationship between the average stress σ mean acting in the single crystal and the critical V / G. 図4は、単結晶中心部の面内平均応力σmean(0)と単結晶中心部の温度勾配G(0)との関係を示す図であり、同図(a)は直径300mmの単結晶、同図(b)は直径450mmの単結晶の場合を示す。FIG. 4 is a diagram showing the relationship between the in-plane average stress σ mean (0) at the center of the single crystal and the temperature gradient G (0) at the center of the single crystal. FIG. 4 (a) shows a single crystal having a diameter of 300 mm. FIG. 5B shows the case of a single crystal having a diameter of 450 mm. 図5は、直径300mmの単結晶を育成する場合において、単結晶の中心からの相対半径rと面内平均応力σmean(r)との関係を示す図であり、同図(a)は液面Gapの大きさが40mmの場合を、同図(b)は液面Gapの大きさが70mmの場合を、同図(c)は液面Gapの大きさが90mmの場合をそれぞれ示す。FIG. 5 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the in-plane average stress σ mean (r) in the case of growing a single crystal having a diameter of 300 mm. When the size of the surface gap is 40 mm, FIG. 7B shows the case where the size of the liquid surface gap is 70 mm, and FIG. 7C shows the case where the size of the liquid surface gap is 90 mm. 図6は、直径450mmの単結晶を育成する場合において、単結晶の中心からの相対半径rと面内平均応力σmean(r)との関係を示す図であり、同図(a)は液面Gapの大きさが60mmの場合を、同図(b)は液面Gapの大きさが90mmの場合を、同図(c)は液面Gapの大きさが120mmの場合をそれぞれ示す。FIG. 6 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the in-plane average stress σ mean (r) in the case of growing a single crystal having a diameter of 450 mm. When the size of the surface gap is 60 mm, FIG. 5B shows the case where the size of the liquid surface gap is 90 mm, and FIG. 5C shows the case where the size of the liquid surface gap is 120 mm. 図7は、液面Gapの大きさと平均応力σmean(0.75)との関係を示す図であり、同図(a)は直径300mmの単結晶の場合を、同図(b)は直径450mmの単結晶の場合をそれぞれ示す。FIG. 7 is a diagram showing the relationship between the size of the liquid level Gap and the average stress σ mean (0.75). FIG. 7A shows the case of a single crystal having a diameter of 300 mm, and FIG. The case of a single crystal of 450 mm is shown. 図8は、単結晶の中心からの相対半径rと標準化平均応力n(r)の関係を示す図である。FIG. 8 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the standardized average stress n (r). 図9は、単結晶の中心からの相対半径rと最適温度勾配Gidealの関係を示す図であり、同図(a)は直径300mmの単結晶の場合を、同図(b)は直径450mmの単結晶の場合をそれぞれ示す。FIG. 9 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the optimum temperature gradient G ideal , where FIG. 9A shows the case of a single crystal having a diameter of 300 mm, and FIG. The cases of single crystals are shown respectively. 図10は、本発明のシリコン単結晶の育成方法を適用できる単結晶育成装置の構成を模式的に示す図である。FIG. 10 is a diagram schematically showing a configuration of a single crystal growing apparatus to which the silicon single crystal growing method of the present invention can be applied.
 以下に、本発明のシリコン単結晶の育成方法について、その実施形態を詳述する。 Hereinafter, embodiments of the silicon single crystal growth method of the present invention will be described in detail.
 1.応力効果を導入した臨界V/Gの式
 単結晶を育成するときの引き上げ速度をV(単位:mm/min)、単結晶の固液界面近傍における引き上げ軸方向の温度勾配をG(単位:℃/mm)とし、無欠陥結晶が得られるVとGの比(以下、「臨界V/G」ともいう。)をξとする。臨界V/Gは、単結晶育成時に単結晶中に作用する応力の効果を導入すれば、下記の(1)式で定義することができる。ここでいう単結晶の固液界面近傍とは、単結晶の温度が融点から1350℃までの範囲のことをいう。
 ξσmean=ξ+α×σmean …(1)
1. Expression of critical V / G in which stress effect is introduced V is the pulling speed when growing a single crystal (unit: mm / min), and G is the temperature gradient in the pulling axis direction near the solid-liquid interface of the single crystal (unit: ° C). / Mm), and the ratio of V to G (hereinafter also referred to as “critical V / G”) from which defect-free crystals are obtained is ξ. The critical V / G can be defined by the following equation (1) if the effect of stress acting on the single crystal during single crystal growth is introduced. Here, the vicinity of the solid-liquid interface of the single crystal means that the temperature of the single crystal is in the range from the melting point to 1350 ° C.
ξ σmean = ξ 0 + α × σ mean ... (1)
 同式中、ξσmeanは、結晶中の応力がσmeanのときの臨界V/Gを表す。ξは、結晶中の応力がゼロであるときの臨界V/Gを示す定数である。αは応力係数であり、σmeanは単結晶中の平均応力(単位:MPa)である。例えば、ξは0.1789であり、αは0.0012である。これらの値は、直径が300mmの単結晶を育成対象とする場合でも、450mmの単結晶を育成対象とする場合でも変わらない。これらの値は、育成対象とする単結晶の直径に依存しないからである。ここでいう直径が300mmの単結晶とは、製品(シリコンウェーハ)の直径として300mmとなるものをいい、具体的には育成時の直径が300.5~330mmの単結晶である。同様に、直径が450mmの単結晶とは、製品(シリコンウェーハ)の直径として450mmとなるものをいい、具体的には育成時の直径が450.5~480mmの単結晶である。 In the equation, xi] Shigumamean the stress in the crystal represents the critical V / G when the sigma mean. ξ 0 is a constant indicating the critical V / G when the stress in the crystal is zero. α is a stress coefficient, and σ mean is an average stress (unit: MPa) in the single crystal. For example, ξ 0 is 0.1789 and α is 0.0012. These values are the same regardless of whether a single crystal having a diameter of 300 mm is a growth target or a single crystal having a diameter of 450 mm. This is because these values do not depend on the diameter of the single crystal to be grown. The single crystal having a diameter of 300 mm herein refers to a product (silicon wafer) having a diameter of 300 mm, specifically, a single crystal having a diameter of 300.5 to 330 mm when grown. Similarly, a single crystal having a diameter of 450 mm means a product (silicon wafer) having a diameter of 450 mm, specifically, a single crystal having a diameter of 450.5 to 480 mm when grown.
 ここで、平均応力σmeanは、育成時に単結晶の体積変化を及ぼす応力に相当し、数値解析により把握できるものであり、単結晶中の微小部分における径方向に沿った面、円周方向に沿った面、および引き上げ軸方向と直交する面の3面それぞれに作用する応力の垂直成分σrr、σθθ、およびσzzを抽出し、これらを合計して3で割ったものである。また、平均応力σmeanの正は引張応力を、負は圧縮応力を意味する。 Here, the average stress σ mean is equivalent to the stress that causes the volume change of the single crystal during growth, and can be grasped by numerical analysis. In the surface along the radial direction in the minute part in the single crystal, the circumferential direction The vertical components σ rr , σ θθ , and σ zz of the stress acting on each of the three planes, the plane along and the plane orthogonal to the pulling-up axis direction, are extracted, and these are totaled and divided by three. Further, the positive mean stress σ mean means tensile stress, and the negative means compressive stress.
 上記(1)式は、一次元での臨界V/Gと平均応力σmeanとの関係を表しているが、無欠陥結晶を育成するためには、単結晶の引き上げ軸方向と直交する面内で考える必要がある。 The above equation (1) represents the relationship between the critical V / G in one dimension and the average stress σ mean , but in order to grow a defect-free crystal, the in-plane perpendicular to the pulling axis direction of the single crystal It is necessary to think in.
 2.応力効果を導入した臨界V/Gの式の単結晶面内分布への拡張
 単結晶を育成するときの引き上げ速度をV(単位:mm/min)とする。また、育成する単結晶の半径をRmax(単位:mm)とし、単結晶の中心から半径R(単位:mm)の位置での固液界面近傍における引き上げ軸方向の温度勾配をG(r)(単位:℃/mm)とする。ここで、r=R/Rmaxであり、rを相対半径と呼ぶ。r=0は単結晶の中心を意味し、r=1はR=Rmaxであるため単結晶の外周を意味する。
2. Extension of the critical V / G formula introducing the stress effect to the in-plane distribution of the single crystal The pulling speed when growing the single crystal is V (unit: mm / min). Also, the radius of the single crystal to be grown is R max (unit: mm), and the temperature gradient in the pulling axis direction near the solid-liquid interface at the radius R (unit: mm) from the center of the single crystal is G (r). (Unit: ° C./mm). Here, r = R / R max , and r is called a relative radius. r = 0 means the center of the single crystal, and r = 1 means the outer periphery of the single crystal because R = R max .
 無欠陥結晶が得られるVとG(r)の比(以下、「臨界V/G(r)」ともいい、数式上「(V/G(r))cri」で表す。)は、応力効果を導入すれば、上記(1)式に準じて、下記の(2)式で定義することができる。この場合も、ξは0.1789であり、αは0.0012である。これらの値は、直径が300mmの単結晶を育成対象とする場合でも、450mmの単結晶を育成対象とする場合でも変わらない。これらの値は、育成対象とする単結晶の直径に依存しないからである。
 (V/G(r))cri=ξ+α×σmean(r) …(2)
The ratio of V to G (r) from which defect-free crystals can be obtained (hereinafter also referred to as “critical V / G (r)”, expressed numerically as “(V / G (r)) cri ”) is a stress effect. Can be defined by the following formula (2) according to the above formula (1). Again, ξ 0 is 0.1789 and α is 0.0012. These values are the same regardless of whether a single crystal having a diameter of 300 mm is a growth target or a single crystal having a diameter of 450 mm. This is because these values do not depend on the diameter of the single crystal to be grown.
(V / G (r)) cri = ξ 0 + α × σ mean (r) (2)
 同式中、σmean(r)は、単結晶の中心から相対半径rの位置での平均応力(単位:MPa)であり、単結晶の引き上げ軸方向と直交する面内での平均応力の分布を示す。 In the formula, σ mean (r) is an average stress (unit: MPa) at the position of the relative radius r from the center of the single crystal, and the distribution of the average stress in a plane orthogonal to the pulling axis direction of the single crystal. Indicates.
 ここで、温度勾配G(r)は、単結晶の引き上げ軸方向と直交する面内での温度勾配の分布を示すので、無欠陥結晶を育成するために最適な温度勾配G(r)の分布を求めたい。しかし、面内での平均応力σmean(r)の分布の規則性が不明であることが問題となる。また、無欠陥結晶を育成する条件において、面内平均応力σmean(r)の分布と、温度勾配G(r)との間に何ら相関がない場合は、制御条件が定まらないことが問題となる。 Here, since the temperature gradient G (r) indicates the distribution of the temperature gradient in a plane orthogonal to the pulling axis direction of the single crystal, the distribution of the optimal temperature gradient G (r) for growing a defect-free crystal. I want to ask. However, there is a problem that the regularity of the distribution of the average stress σ mean (r) in the plane is unknown. In addition, when there is no correlation between the distribution of the in-plane average stress σ mean (r) and the temperature gradient G (r) under the condition for growing defect-free crystals, the control condition cannot be determined. Become.
 そこで、面内平均応力σmean(r)と温度勾配G(r)との相関の有無、および面内平均応力σmean(r)の規則性について検討した。 Therefore, the presence or absence of correlation between the in-plane average stress σ mean (r) and the temperature gradient G (r) and the regularity of the in-plane average stress σ mean (r) were examined.
 2-1.単結晶中心部の温度勾配と平均応力の関係
 単結晶中心部の温度勾配G(0)と単結晶中心部の面内平均応力σmean(0)の関係を検討した。この検討は、以下のように行った。直径が300mmの単結晶、または450mmの単結晶を育成する場合を前提にし、まずホットゾーンの条件を種々変更した総合伝熱解析により、各ホットゾーン条件での単結晶表面の輻射熱を算出し、次いで算出された各ホットゾーン条件での輻射熱と、種々変更した固液界面形状を境界条件として、各境界条件での単結晶内の温度を再計算した。ここで、ホットゾーンの条件変更としては、単結晶を包囲する熱遮蔽体の下端と石英ルツボ内の原料融液の液面との隙間(以下、「液面Gap」ともいう)の大きさを変更した。また、固液界面形状の条件変更としては、原料融液の液面から固液界面の中心部までの引き上げ軸方向の高さ(以下、「界面高さ」ともいう)を変更した。そして、各条件について、再計算によって得られた単結晶内温度の分布に基づき、平均応力の計算を実施した。
2-1. Relationship between Temperature Gradient and Average Stress in Single Crystal Center The relationship between the temperature gradient G (0) in the center of the single crystal and the in-plane average stress σ mean (0) in the center of the single crystal was examined. This examination was performed as follows. Based on the assumption that a single crystal with a diameter of 300 mm or a single crystal with a diameter of 450 mm is grown, first, the radiant heat of the surface of the single crystal under each hot zone condition is calculated by comprehensive heat transfer analysis with various changes in the hot zone conditions. Next, the temperature in the single crystal under each boundary condition was recalculated using the calculated radiant heat under each hot zone condition and variously changed solid-liquid interface shapes as boundary conditions. Here, as the hot zone condition change, the size of the gap (hereinafter also referred to as “liquid level gap”) between the lower end of the heat shield surrounding the single crystal and the liquid level of the raw material melt in the quartz crucible is set. changed. In addition, as a change in the condition of the solid-liquid interface shape, the height in the pulling axis direction from the liquid surface of the raw material melt to the center of the solid-liquid interface (hereinafter also referred to as “interface height”) was changed. And about each condition, based on the distribution of the temperature in a single crystal obtained by recalculation, the average stress was calculated.
 図4は、単結晶中心部の面内平均応力σmean(0)と単結晶中心部の温度勾配G(0)との関係を示す図であり、同図(a)は直径300mmの単結晶、同図(b)は直径450mmの単結晶の場合を示す。同図は、上記解析結果から得られたものである。同図から、単結晶中心部の平均応力σmean(0)は、界面高さによらず、単結晶中心部の温度勾配G(0)に比例し、両者の間に下記(3)式で表される相関があることが分かった。
 σmean(0)=-b×G(0)+b …(3)
 ここで、bおよびbはそれぞれ面内平均応力σmean(0)の計算値および単結晶中心部の温度勾配G(0)の計算値から一次近似で得られる定数である。直径300mmの単結晶では、b=17.2、b=40.8であり、厳密には、b=17.211、b=40.826である。直径450mmの単結晶では、b=27.5、b=44.7であり、厳密には、b=27.548、b=44.713である。
FIG. 4 is a diagram showing the relationship between the in-plane average stress σ mean (0) at the center of the single crystal and the temperature gradient G (0) at the center of the single crystal. FIG. 4 (a) shows a single crystal having a diameter of 300 mm. FIG. 5B shows the case of a single crystal having a diameter of 450 mm. This figure is obtained from the above analysis results. From the figure, the average stress σ mean (0) at the center of the single crystal is proportional to the temperature gradient G (0) at the center of the single crystal regardless of the interface height, and the following equation (3) It was found that there was a correlation expressed.
σ mean (0) = − b 1 × G (0) + b 2 (3)
Here, b 1 and b 2 are constants obtained by linear approximation from the calculated value of the in-plane average stress σ mean (0) and the calculated value of the temperature gradient G (0) at the center of the single crystal, respectively. In a single crystal having a diameter of 300 mm, b 1 = 17.2 and b 2 = 40.8, and strictly speaking, b 1 = 17.211 and b 2 = 40.826. In a single crystal having a diameter of 450 mm, b 1 = 27.5 and b 2 = 44.7, and strictly speaking, b 1 = 27.548 and b 2 = 44.713.
 2-2.面内平均応力σmean(r)の規則性(その1)
 引き続き、上記の数値解析により、面内平均応力σmean(r)の規則性について検討した。直径300mmの単結晶については、液面Gapの大きさを、40mm、70mmおよび90mmの3種類の値に設定し、それぞれの場合について界面高さを0~25mmにおいて5mm間隔で6種類の高さに設定し、単結晶の中心から相対半径rの位置での面内平均応力σmean(r)を算出した。直径450mmの単結晶については、液面Gapの大きさを、60mm、90mmおよび120mmの3種類の値に設定し、それぞれの場合について界面高さを0~35mmにおいて5mm間隔で8種類の高さに設定し、単結晶の中心から相対半径rの位置での面内平均応力σmean(r)を算出した。
2-2. Regularity of in-plane average stress σ mean (r) (Part 1)
Subsequently, the regularity of the in-plane average stress σ mean (r) was examined by the above numerical analysis. For a single crystal with a diameter of 300 mm, the size of the liquid level gap is set to three values of 40 mm, 70 mm, and 90 mm, and in each case, the height of the interface is 6 types at 5 mm intervals at 0 to 25 mm. The in-plane average stress σ mean (r) at the position of the relative radius r from the center of the single crystal was calculated. For a single crystal having a diameter of 450 mm, the liquid surface gap size is set to three values of 60 mm, 90 mm, and 120 mm, and in each case, the height of the interface is 8 types at intervals of 5 mm at 0 to 35 mm. The in-plane average stress σ mean (r) at the position of the relative radius r from the center of the single crystal was calculated.
 図5は、直径300mmの単結晶を育成する場合において、単結晶の中心からの相対半径rと面内平均応力σmean(r)との関係を示す図であり、同図(a)は液面Gapの大きさが40mmの場合を、同図(b)は液面Gapの大きさが70mmの場合を、同図(c)は液面Gapの大きさが90mmの場合をそれぞれ示す。 FIG. 5 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the in-plane average stress σ mean (r) in the case of growing a single crystal having a diameter of 300 mm. When the size of the surface gap is 40 mm, FIG. 7B shows the case where the size of the liquid surface gap is 70 mm, and FIG. 7C shows the case where the size of the liquid surface gap is 90 mm.
 図6は、直径450mmの単結晶を育成する場合において、単結晶の中心からの相対半径rと面内平均応力σmean(r)との関係を示す図であり、同図(a)は液面Gapの大きさが60mmの場合を、同図(b)は液面Gapの大きさが90mmの場合を、同図(c)は液面Gapの大きさが120mmの場合をそれぞれ示す。 FIG. 6 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the in-plane average stress σ mean (r) in the case of growing a single crystal having a diameter of 450 mm. When the size of the surface gap is 60 mm, FIG. 5B shows the case where the size of the liquid surface gap is 90 mm, and FIG. 5C shows the case where the size of the liquid surface gap is 120 mm.
 図5および図6から、液面Gapの大きさが一定であれば、界面高さによらず単結晶の中心からの相対半径r=0.75の位置における平均応力σmean(0.75)が一定の値となることがわかった。この知見に基づき、液面Gapの大きさと平均応力σmean(0.75)との関係について検討したところ、図7が得られた。 5 and 6, if the size of the liquid level Gap is constant, the average stress σ mean (0.75) at the position of the relative radius r = 0.75 from the center of the single crystal regardless of the interface height. Was a constant value. Based on this finding, the relationship between the size of the liquid surface gap and the average stress σ mean (0.75) was examined, and FIG. 7 was obtained.
 図7は、液面Gapの大きさと平均応力σmean(0.75)との関係を示す図であり、同図(a)は直径300mmの単結晶の場合を、同図(b)は直径450mmの単結晶の場合をそれぞれ示す。同図から、液面Gapの大きさ(GAP、単位:mm)と平均応力σmean(0.75)(単位:MPa)との関係は、下記(4)式で表されることがわかった。すなわち、液面Gapの大きさが決まればσmean(0.75)が決まることがわかった。
 σmean(0.75)=d×GAP-d …(4)
 ここで、dおよびdはそれぞれ、各々の液面Gapの大きさと単結晶の中心からの相対半径r=0.75の位置における平均応力σmean(0.75)の計算値から一次近似で得られる定数である。直径300mmの単結晶では、d=0.108、d=11.3であり、厳密には、d=0.1084、d=11.333である。直径450mmの単結晶では、d=0.081、d=11.2であり、厳密には、d=0.0808、d=11.233である。
FIG. 7 is a diagram showing the relationship between the size of the liquid level Gap and the average stress σ mean (0.75). FIG. 7A shows the case of a single crystal having a diameter of 300 mm, and FIG. The case of a single crystal of 450 mm is shown. From the figure, it was found that the relationship between the size of the liquid level gap (GAP, unit: mm) and the average stress σ mean (0.75) (unit: MPa) is expressed by the following equation (4). . That is, it was found that σ mean (0.75) is determined if the size of the liquid level Gap is determined.
σ mean (0.75) = d 1 × GAP−d 2 (4)
Here, d 1 and d 2 are first-order approximations from the calculated values of the average stress σ mean (0.75) at the position of the relative radius r = 0.75 from the size of each liquid level Gap and the center of the single crystal, respectively. Is a constant obtained by In a single crystal having a diameter of 300 mm, d 1 = 0.108 and d 2 = 11.3, and strictly speaking, d 1 = 0.1008 and d 2 = 11.333. In a single crystal having a diameter of 450 mm, d 1 = 0.081 and d 2 = 11.2, and strictly speaking, d 1 = 0.0808 and d 2 = 11233.
 2-3.面内平均応力σmean(r)の規則性(その2)
 さらに、面内平均応力σmean(r)の規則性について検討した。ここでは、面内平均応力σmean(r)の形状が、液面Gapの大きさまたは界面高さに依存するか否かについて検討した。
2-3. Regularity of in-plane average stress σ mean (r) (2)
Furthermore, the regularity of the in-plane average stress σ mean (r) was examined. Here, it was examined whether or not the shape of the in-plane average stress σ mean (r) depends on the size of the liquid level Gap or the interface height.
 上述した面内平均応力σmean(r)を、下記(5)式でn(r)として標準化した。(5)式中、σmean(0)は単結晶の中心における面内平均応力、σmean(1)は単結晶の外周における面内平均応力である。
 n(r)=[σmean(r)-σmean(1)]/[σmean(0)-σmean(1)] …(5)
The in-plane average stress σ mean (r) described above was standardized as n (r) in the following equation (5). In formula (5), σ mean (0) is the in-plane average stress at the center of the single crystal, and σ mean (1) is the in-plane average stress at the outer periphery of the single crystal.
n (r) = [σ mean (r) −σ mean (1)] / [σ mean (0) −σ mean (1)] (5)
 図8は、単結晶の中心からの相対半径rと標準化平均応力n(r)の関係を示す図である。同図には、単結晶の直径が300mmの場合と450mmの場合について、液面Gapの大きさと界面高さを種々変更し、各変更条件での面内平均応力σmean(r)から算出した標準化平均応力n(r)をプロットした。同図から、標準化平均応力n(r)は、単結晶の直径、液面Gapの大きさおよび界面高さに依存しないことがわかった。n(r)は、同図に示す結果から下記(6)式で表すことができる。
 n(r)=0.959r-2.0014r+0.0393r+1 …(6)
FIG. 8 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the standardized average stress n (r). In the figure, when the diameter of the single crystal is 300 mm and 450 mm, the size of the liquid surface gap and the interface height are variously changed and calculated from the in-plane average stress σ mean (r) under each change condition. Normalized mean stress n (r) was plotted. From the figure, it was found that the standardized average stress n (r) does not depend on the diameter of the single crystal, the size of the liquid surface gap, and the interface height. n (r) can be expressed by the following equation (6) from the results shown in FIG.
n (r) = 0.959r 3 -2.0014r 2 + 0.0393r + 1 (6)
 すなわち、面内平均応力σmean(r)には規則性があり、単結晶の中心における面内平均応力σmean(0)および単結晶の外周における面内平均応力σmean(1)が分かれば、上記(5)式から面内平均応力σmean(r)の分布を把握できる。 That is, if the in-plane average stress σ mean (r) has regularity, and the in-plane average stress σ mean (0) at the center of the single crystal and the in-plane average stress σ mean (1) at the outer periphery of the single crystal are known. The distribution of the in-plane average stress σ mean (r) can be grasped from the above equation (5).
 3.最適温度勾配Gideal(r)の分布の導出
 以上の検討により、再掲する下記(3)式、(4)式および(6)式が得られた。また、検討の際に、下記(5)式を用いた。
 σmean(0)=-b×G(0)+b …(3)
 σmean(0.75)=d×GAP-d …(4)
 n(r)=0.959r-2.0014r+0.0393r+1 …(6)
 n(r)=[σmean(r)-σmean(1)]/[σmean(0)-σmean(1)] …(5)
 ここで、直径が300mmの単結晶を育成する場合、上記(3)式中、b=17.2、b=40.8であり、上記(4)式中、d=0.108、d=11.3である。また、直径が450mmの単結晶を育成する場合、上記(3)式中、b=27.5、b=44.7であり、上記(4)式中、d=0.081、d=11.2である。
3. Derivation of distribution of optimum temperature gradient G ideal (r) The following expressions (3), (4), and (6) are obtained by the above examination. In the study, the following formula (5) was used.
σ mean (0) = − b 1 × G (0) + b 2 (3)
σ mean (0.75) = d 1 × GAP−d 2 (4)
n (r) = 0.959r 3 -2.0014r 2 + 0.0393r + 1 (6)
n (r) = [σ mean (r) −σ mean (1)] / [σ mean (0) −σ mean (1)] (5)
Here, when growing a single crystal having a diameter of 300 mm, b 1 = 17.2 and b 2 = 40.8 in the above formula (3), and d 1 = 0.108 in the above formula (4). , D 2 = 11.3. When a single crystal having a diameter of 450 mm is grown, in the above formula (3), b 1 = 27.5 and b 2 = 44.7, and in the above formula (4), d 1 = 0.081, d 2 = 11.2.
 (6)式から、n(0.75)は定数N(=0.30827)として算出することができる。この定数Nを用い、(5)式にr=0.75を代入することにより、P(1)を表す数式として、下記(7)式が得られる。
 σmean(1)=[σmean(0.75)-N×σmean(0)]/[1-N] …(7)
From equation (6), n (0.75) can be calculated as a constant N (= 0.30827). By using this constant N and substituting r = 0.75 into the equation (5), the following equation (7) is obtained as an equation representing P (1).
σ mean (1) = [σ mean (0.75) −N × σ mean (0)] / [1-N] (7)
 さらに、上記(5)式を変形することにより、σmean(r)は、既に得られている上記(3)式のσmean(1)、上記(4)式のσmean(0.75)および上記(6)式のn(r)、ならびに定数Nを用いて、下記(8)式で表すことができる。
 σmean(r)=n(r)[σmean(0)-σmean(1)]+σmean(1)
       =[n(r)×(σmean(0)-σmean(0.75))-(N×σmean(0)-σmean(0.75))]/(1-N) …(8)
Furthermore, by modifying the above equation (5), σ mean (r) can be obtained as σ mean (1) in the above equation (3) and σ mean (0.75) in the above equation (4). And n (r) in the above formula (6) and the constant N can be expressed by the following formula (8).
σ mean (r) = n (r) [σ mean (0) −σ mean (1)] + σ mean (1)
= [N (r) × (σ mean (0) −σ mean (0.75)) − (N × σ mean (0) −σ mean (0.75))] / (1-N) (8) )
 したがって、上記(3)式中のG(0)と上記(4)式中のGAPを定めれば、上記(8)式から面内平均応力分布σmean(r)を求めることができる。 Therefore, if G (0) in the above equation (3) and GAP in the above equation (4) are determined, the in-plane average stress distribution σ mean (r) can be obtained from the above equation (8).
 ところで、上述のように、臨界V/G(r)は、下記(2)式で表される。
 (V/G(r))cri=ξ+α×σmean(r) …(2)
Incidentally, as described above, the critical V / G (r) is expressed by the following equation (2).
(V / G (r)) cri = ξ 0 + α × σ mean (r) (2)
 また、Vは定数と見なせる。したがって、無欠陥結晶を育成するのに最適な温度勾配Gideal(r)は、(2)式においてr=0としたG(0)を用いて、下記(9)式で表すことができる。
 Gideal(r)=[(ξ+α×σmean(0))/(ξ+α×σmean(r))]×G(0) …(9)
V can be regarded as a constant. Therefore, the optimum temperature gradient G ideal (r) for growing defect-free crystals can be expressed by the following equation (9) using G (0) where r = 0 in the equation (2).
G ideal (r) = [(ξ 0 + α × σ mean (0)) / (ξ 0 + α × σ mean (r))] × G (0) (9)
 4.単結晶育成中の温度勾配の条件
 直径が300mmまたは450mmの単結晶を育成対象とする場合、ξは0.1789であり、αは0.0012であることから、これらの値を上記式(9)に代入して、単結晶の中心から半径R(単位:mm)の位置における引き上げ軸方向の最適温度勾配Gideal(R)(単位:MPa)は下記(a)式で表される。
 Gideal(R)=[(0.1789+0.0012×σmean(0))/(0.1789+0.0012×σmean(x))]×Greal(0) …(a)
 (a)式中、x=R/Rmaxであり、Greal(0)は、単結晶の中心における実際の引き上げ軸方向の温度勾配である。σmean(0)、σmean(x)は、下記(b)式および(c)式で表される。(b)式および(c)式は、それぞれ上記(3)式および(8)式と同じ式である。σmean(0)は、単結晶の中心における平均応力であり、(b)式で求めた値としてもよいし、他の方法で求めた値としてもよい。
 σmean(0)=-b×Greal(0)+b …(b)
 σmean(x)=[n(x)×(σmean(0)-σmean(0.75))-(N×σmean(0)-σmean(0.75))]/(1-N) …(c)
 直径が300mmの単結晶を育成する場合、上記(b)式中、b=17.2、b=40.8である。また、直径が450mmの単結晶を育成する場合、上記(b)式中、b=27.5、b=44.7である。(c)式中、N=0.30827であり、σmean(0.75)およびn(x)は下記(d)式および(e)式で表される。(d)式および(e)式は、それぞれ上記(4)式および(6)式と同じ式である。
 σmean(0.75)=d×GAP-d …(d)
 n(x)=0.959x-2.0014x+0.0393x+1 …(e)
 上記(d)式中、GAPは液面Gapの大きさ(単位:mm)である。直径が300mmの単結晶を育成する場合、d=0.108、d=11.3である。また、直径が450mmの単結晶を育成する場合、d=0.081、d=11.2である。
4). Condition of temperature gradient during single crystal growth When a single crystal having a diameter of 300 mm or 450 mm is to be grown, ξ 0 is 0.1789 and α is 0.0012. Substituting into 9), the optimum temperature gradient G ideal (R) (unit: MPa) in the pulling axis direction at a radius R (unit: mm) from the center of the single crystal is expressed by the following equation (a).
G ideal (R) = [(0.1789 + 0.0012 × σ mean (0)) / (0.1789 + 0.0012 × σ mean (x))] × G real (0) (a)
In the formula (a), x = R / R max , and G real (0) is an actual temperature gradient in the pulling axis direction at the center of the single crystal. σ mean (0) and σ mean (x) are expressed by the following formulas (b) and (c). The expressions (b) and (c) are the same as the expressions (3) and (8), respectively. σ mean (0) is an average stress at the center of the single crystal, and may be a value obtained by equation (b) or may be a value obtained by another method.
σ mean (0) = − b 1 × G real (0) + b 2 (b)
σ mean (x) = [n (x) × (σ mean (0) −σ mean (0.75)) − (N × σ mean (0) −σ mean (0.75))] / (1− N) ... (c)
When growing a single crystal having a diameter of 300 mm, b 1 = 17.2 and b 2 = 40.8 in the formula (b). When a single crystal having a diameter of 450 mm is grown, b 1 = 27.5 and b 2 = 44.7 in the above formula (b). In the formula (c), N = 0.30827, and σ mean (0.75) and n (x) are represented by the following formulas (d) and (e). The expressions (d) and (e) are the same as the expressions (4) and (6), respectively.
σ mean (0.75) = d 1 × GAP−d 2 (d)
n (x) = 0.959x 3 -2.0014x 2 + 0.0393x + 1 (e)
In the formula (d), GAP is the size (unit: mm) of the liquid level Gap. When growing a single crystal having a diameter of 300 mm, d 1 = 0.108 and d 2 = 11.3. When growing a single crystal having a diameter of 450 mm, d 1 = 0.081 and d 2 = 11.2.
 図9は、単結晶の中心からの相対半径rと最適温度勾配Gidealの関係を示す図であり、同図(a)は直径300mmの単結晶の場合を、同図(b)は直径450mmの単結晶の場合をそれぞれ示す。同図では、横軸をr(R/Rmax)とした。同図には、単結晶の中心における温度勾配Greal(0)を1.5℃/mm、2.0℃/mm、2.5℃/mm、3.0℃/mmおよび3.5℃/mmとし、液面Gapの大きさを60mm、80mmおよび100mmとした場合について示した。同図に示すように、温度勾配Greal(0)と液面Gapの大きさを定めることにより、最適温度勾配を把握できる。 FIG. 9 is a diagram showing the relationship between the relative radius r from the center of the single crystal and the optimum temperature gradient G ideal , where FIG. 9A shows the case of a single crystal having a diameter of 300 mm, and FIG. The cases of single crystals are shown respectively. In the figure, the horizontal axis is r (R / R max ). In the figure, the temperature gradient Greal (0) at the center of the single crystal is 1.5 ° C / mm, 2.0 ° C / mm, 2.5 ° C / mm, 3.0 ° C / mm and 3.5 ° C. / Mm and the size of the liquid level gap is 60 mm, 80 mm and 100 mm. As shown in the figure, the optimum temperature gradient can be grasped by determining the size of the temperature gradient G real (0) and the liquid level Gap.
 半径Rmax(mm)の単結晶を育成する際には、外周から35mm以上内側の範囲、すなわち0<R<Rmax-35(mm)の範囲で、下記(A)式を満足する条件で単結晶の引き上げを行う。これにより、無欠陥単結晶を精度良く育成することが可能となる。
 |Greal(R)-Gideal(R)|/Greal(R)<0.08 …(A)
 ここで、Greal(R)は、単結晶の中心から半径R(mm)の位置における実際の引き上げ軸方向の温度勾配である。
When growing a single crystal having a radius R max (mm), the following equation (A) is satisfied within the range of 35 mm or more from the outer periphery, that is, in the range of 0 <R <R max −35 (mm). The single crystal is pulled up. Thereby, it becomes possible to grow a defect-free single crystal with high accuracy.
| G real (R) −G ideal (R) | / G real (R) <0.08 (A)
Here, G real (R) is a temperature gradient in the actual pulling axis direction at a position of radius R (mm) from the center of the single crystal.
 また、無欠陥単結晶をより精度良く単結晶を育成するには、下記(B)式を満足する条件で単結晶の引き上げを行うことが好ましい。
 |Greal(R)-Gideal(R)|/Greal(R)<0.05 …(B)
Moreover, in order to grow a single crystal without defect single crystals with higher accuracy, it is preferable to pull up the single crystal under conditions that satisfy the following formula (B).
| G real (R) −G ideal (R) | / G real (R) <0.05 (B)
 このように、単結晶の引き上げ軸方向と直交する面内の平均応力σmean(r)の分布には規則性があり、その面内平均応力σmean(r)の分布は、単結晶中心部に限定した応力σmean(0)または温度勾配Greal(0)により把握することができる。その結果、点欠陥の発生に影響を及ぼす応力の効果を加味して、単結晶中心部の温度勾配Greal(0)または単結晶中心部の応力σmean(0)、ならびに液面Gapを定めることにより、無欠陥結晶を育成するのに最適な温度勾配Gideal(R)の分布を把握することが可能となる。そして、その最適温度勾配Gideal(R)の分布を管理指標として用いることにより、ホットゾーンの適正な寸法設計が行えるようになり、しかも、その最適温度勾配Gideal(R)の分布を基準とした管理範囲を設定することにより、無欠陥結晶を精度良く育成することが可能になる。 Thus, the distribution of the average stress σ mean (r) in the plane perpendicular to the pulling axis direction of the single crystal is regular, and the distribution of the in-plane average stress σ mean (r) is in the center of the single crystal. Can be grasped by the stress σ mean (0) or the temperature gradient G real (0) limited to. As a result, the temperature gradient G real (0) of the single crystal central portion or the stress σ mean (0) of the single crystal central portion and the liquid level gap are determined in consideration of the effect of stress that affects the occurrence of point defects. This makes it possible to grasp the distribution of the temperature gradient G ideal (R) that is optimal for growing defect-free crystals. Then, by using the distribution of the optimum temperature gradient G ideal (R) as a management index, it becomes possible to perform an appropriate dimension design of the hot zone, and the distribution of the optimum temperature gradient G ideal (R) is used as a reference. By setting the management range, it is possible to grow a defect-free crystal with high accuracy.
 5.シリコン単結晶の育成
 図8は、本発明のシリコン単結晶の育成方法を適用できる単結晶育成装置の構成を模式的に示す図である。同図に示すように、単結晶育成装置は、その外郭をチャンバ1で構成され、その中心部にルツボ2が配置されている。ルツボ2は、内側の石英ルツボ2aと、外側の黒鉛ルツボ2bとから構成される二重構造であり、回転および昇降が可能な支持軸3の上端部に固定されている。
5. Silicon Single Crystal Growth FIG. 8 is a diagram schematically showing a configuration of a single crystal growth apparatus to which the silicon single crystal growth method of the present invention can be applied. As shown in the figure, the single crystal growing apparatus is configured with a chamber 1 as an outer shell, and a crucible 2 is disposed at the center thereof. The crucible 2 has a double structure composed of an inner quartz crucible 2a and an outer graphite crucible 2b, and is fixed to the upper end of a support shaft 3 that can be rotated and lifted.
 ルツボ2の外側には、ルツボ2を囲繞する抵抗加熱式のヒータ4が配設され、その外側には、チャンバ1の内面に沿って断熱材5が配設されている。ルツボ2の上方には、支持軸3と同軸上で逆方向または同一方向に所定の速度で回転するワイヤなどの引き上げ軸6が配されている。この引き上げ軸6の下端には種結晶7が取り付けられている。 A resistance heating type heater 4 surrounding the crucible 2 is disposed outside the crucible 2, and a heat insulating material 5 is disposed outside the crucible 2 along the inner surface of the chamber 1. Above the crucible 2, a pulling shaft 6 such as a wire that is coaxial with the support shaft 3 and rotates in a reverse direction or the same direction at a predetermined speed is disposed. A seed crystal 7 is attached to the lower end of the pulling shaft 6.
 チャンバ1内には、ルツボ2内の原料融液9の上方で育成中のシリコン単結晶8を囲繞する円筒状の水冷体11が配置されている。水冷体11は、例えば、銅などの熱伝導性の良好な金属からなり、内部に流通される冷却水により強制的に冷却される。この水冷体11は、育成中の単結晶8の冷却を促進し、単結晶中心部および単結晶外周部の引き上げ軸方向の温度勾配を制御する役割を担う。 In the chamber 1, a cylindrical water-cooled body 11 surrounding the silicon single crystal 8 being grown is disposed above the raw material melt 9 in the crucible 2. The water-cooled body 11 is made of, for example, a metal having good thermal conductivity such as copper, and is forcibly cooled by cooling water that is circulated inside. This water-cooled body 11 plays a role of accelerating the cooling of the growing single crystal 8 and controlling the temperature gradient in the pulling axis direction of the single crystal central portion and the single crystal outer peripheral portion.
 さらに、水冷体11の外周面および下端面を包囲するように、筒状の熱遮蔽体10が配置されている。熱遮蔽体10は、育成中の単結晶8に対して、ルツボ2内の原料融液9やヒータ4やルツボ2の側壁からの高温の輻射熱を遮断するとともに、結晶成長界面である固液界面の近傍に対しては、低温の水冷体11への熱の拡散を抑制し、単結晶中心部および単結晶外周部の引き上げ軸方向の温度勾配を水冷体11とともに制御する役割を担う。 Furthermore, a cylindrical heat shield 10 is arranged so as to surround the outer peripheral surface and the lower end surface of the water-cooled body 11. The heat shield 10 shields high temperature radiant heat from the raw material melt 9 in the crucible 2, the heater 4, and the side wall of the crucible 2 from the growing single crystal 8, and a solid-liquid interface that is a crystal growth interface. In the vicinity of, the diffusion of heat to the low-temperature water-cooled body 11 is suppressed, and the temperature gradient in the pulling axis direction of the single crystal central part and the single crystal outer peripheral part is controlled with the water-cooled body 11.
 チャンバ1の上部には、Arガスなどの不活性ガスをチャンバ1内に導入するガス導入口12が設けられている。チャンバ1の下部には、図示しない真空ポンプの駆動によりチャンバ1内の気体を吸引して排出する排気口13が設けられている。ガス導入口12からチャンバ1内に導入された不活性ガスは、育成中の単結晶8と水冷体11との間を下降し、熱遮蔽体10の下端と原料融液9の液面との隙間(液面Gap)を経た後、熱遮蔽体10の外側、さらにルツボ2の外側に向けて流れ、その後にルツボ2の外側を下降し、排気口13から排出される。 In the upper part of the chamber 1, a gas inlet 12 for introducing an inert gas such as Ar gas into the chamber 1 is provided. An exhaust port 13 for sucking and discharging the gas in the chamber 1 by driving a vacuum pump (not shown) is provided below the chamber 1. The inert gas introduced into the chamber 1 from the gas inlet 12 descends between the growing single crystal 8 and the water-cooled body 11, and the lower end of the heat shield 10 and the liquid level of the raw material melt 9 are reduced. After passing through the gap (liquid level gap), it flows toward the outside of the heat shield 10 and further to the outside of the crucible 2, and then descends outside the crucible 2 and is discharged from the exhaust port 13.
 このような育成装置を用いたシリコン単結晶8の育成の際、チャンバ1内を減圧下の不活性ガス雰囲気に維持した状態で、ルツボ2に充填した多結晶シリコンなどの固形原料をヒータ4の加熱により溶融させ、原料融液9を形成する。ルツボ2内に原料融液9が形成されると、引き上げ軸6を下降させて種結晶7を原料融液9に浸漬し、ルツボ2および引き上げ軸6を所定の方向に回転させながら、引き上げ軸6を徐々に引き上げ、これにより種結晶7に連なった単結晶8を育成する。 When growing the silicon single crystal 8 using such a growth apparatus, solid material such as polycrystalline silicon filled in the crucible 2 is used for the heater 4 while the chamber 1 is maintained in an inert gas atmosphere under reduced pressure. The raw material melt 9 is formed by melting by heating. When the raw material melt 9 is formed in the crucible 2, the pulling shaft 6 is lowered, the seed crystal 7 is immersed in the raw material melt 9, and the crucible 2 and the pulling shaft 6 are rotated in a predetermined direction while the pulling shaft 6 is gradually pulled up to grow a single crystal 8 connected to the seed crystal 7.
 直径450mmの単結晶の育成に際しては、無欠陥結晶を育成するために、単結晶の固液界面近傍にて、単結晶の中心から外周方向への距離R(mm)の位置における実際の引き上げ軸方向の温度勾配をGreal(R)とした場合、0<R<190mmの範囲で、上記(A)式を満足するように、単結晶の引き上げ速度を調整し、単結晶の引き上げを行う。また、単結晶の育成に先立ち、上記(A)式を満足するように、ホットゾーン(熱遮蔽体および水冷体)の寸法形状を設計し、このホットゾーンを用いる。これにより、直径450mmの大径無欠陥結晶を精度良く育成することができる。 When growing a single crystal having a diameter of 450 mm, in order to grow a defect-free crystal, an actual pulling axis at a distance R (mm) from the center of the single crystal to the outer periphery in the vicinity of the solid-liquid interface of the single crystal. When the temperature gradient in the direction is G real (R), the single crystal is pulled up by adjusting the pulling rate of the single crystal so that the above formula (A) is satisfied within the range of 0 <R <190 mm. Prior to the growth of the single crystal, the dimensional shape of the hot zone (thermal shield and water-cooled body) is designed so as to satisfy the above formula (A), and this hot zone is used. Thereby, a large-diameter defect-free crystal having a diameter of 450 mm can be grown with high accuracy.
 本発明のシリコン単結晶の育成方法は、OSFやCOPやLDなどの各種の点欠陥が発生しない大径無欠陥結晶を育成するのに極めて有用である。 The method for growing a silicon single crystal of the present invention is extremely useful for growing a large-diameter defect-free crystal in which various point defects such as OSF, COP, and LD do not occur.
1:チャンバ、  2:ルツボ、  2a:石英ルツボ、  
2b:黒鉛ルツボ、  3:支持軸、  4:ヒータ、  5:断熱材、
6:引き上げ軸、  7:種結晶、  8:シリコン単結晶、  
9:原料融液、  10:熱遮蔽体、  11:水冷体、  
12:ガス導入口、  13:排気口
1: chamber, 2: crucible, 2a: quartz crucible,
2b: graphite crucible, 3: support shaft, 4: heater, 5: heat insulating material,
6: Lifting shaft, 7: Seed crystal, 8: Silicon single crystal,
9: Raw material melt, 10: Thermal shield, 11: Water-cooled body,
12: Gas introduction port, 13: Exhaust port

Claims (4)

  1.  チョクラルスキー法によりチャンバ内に配置したルツボ内の原料融液からシリコン単結晶を引き上げて育成する方法であって、
     育成中の単結晶を囲繞する水冷体を配置するとともに、この水冷体の外周面および下端面を包囲する熱遮蔽体を配置した単結晶育成装置を用い、
     半径がRmax(mm)の単結晶の育成時に、単結晶の固液界面近傍にて、単結晶の中心から半径R(mm)の位置における実際の引き上げ軸方向の温度勾配をGreal(R)、単結晶の中心から半径Rの位置における引き上げ軸方向の最適温度勾配をGideal(R)とした場合、0<R<Rmax-35(mm)の範囲で、下記(A)式を満足する条件で単結晶の引き上げを行う、シリコン単結晶の育成方法。
     |Greal(R)-Gideal(R)|/Greal(R)<0.08 …(A)
     上記(A)式中、Gideal(R)は下記(a)式で表される。
     Gideal(R)=[(0.1789+0.0012×σmean(0))/(0.1789+0.0012×σmean(x))]×Greal(0) …(a)
     上記(a)式中、x=R/Rmaxであり、σmean(0)およびσmean(x)は、それぞれ下記(b)式および(c)式で表される。
     σmean(0)=-b×Greal(0)+b …(b)
     σmean(x)=[n(x)×(σmean(0)-σmean(0.75))-(N×σmean(0)-σmean(0.75))]/(1-N) …(c)
     上記(c)式中、N=0.30827であり、σmean(0.75)およびn(x)は、それぞれ下記(d)式および(e)式で表される。
     σmean(0.75)=d×GAP-d …(d)
     n(x)=0.959x-2.0014x+0.0393x+1 …(e)
     上記(d)式中、GAPは前記熱遮蔽体の下端と前記原料融液の液面との間隔(mm)である。
    A method for growing a silicon single crystal from a raw material melt in a crucible placed in a chamber by the Czochralski method,
    Using a single crystal growth apparatus in which a water-cooled body surrounding the single crystal being grown is arranged, and a heat shield surrounding the outer peripheral surface and the lower end surface of the water-cooled body is arranged,
    When a single crystal having a radius of R max (mm) is grown, an actual temperature gradient in the pulling axis direction at the position of the radius R (mm) from the center of the single crystal is expressed as G real (R ), Where G ideal (R) is the optimum temperature gradient in the pulling axis direction at the radius R from the center of the single crystal, the following equation (A) is satisfied within the range of 0 <R <R max −35 (mm): A method for growing a silicon single crystal, which pulls up the single crystal under satisfying conditions.
    | G real (R) −G ideal (R) | / G real (R) <0.08 (A)
    In the above formula (A), G ideal (R) is represented by the following formula (a).
    G ideal (R) = [(0.1789 + 0.0012 × σ mean (0)) / (0.1789 + 0.0012 × σ mean (x))] × G real (0) (a)
    In the above formula (a), x = R / R max , and σ mean (0) and σ mean (x) are represented by the following formula (b) and formula (c), respectively.
    σ mean (0) = − b 1 × G real (0) + b 2 (b)
    σ mean (x) = [n (x) × (σ mean (0) −σ mean (0.75)) − (N × σ mean (0) −σ mean (0.75))] / (1− N) ... (c)
    In the above formula (c), N = 0.30827, and σ mean (0.75) and n (x) are represented by the following formula (d) and formula (e), respectively.
    σ mean (0.75) = d 1 × GAP−d 2 (d)
    n (x) = 0.959x 3 -2.0014x 2 + 0.0393x + 1 (e)
    In the above formula (d), GAP is the distance (mm) between the lower end of the heat shield and the liquid surface of the raw material melt.
  2.  下記(B)式を満足する条件で単結晶の引き上げを行う、請求項1に記載のシリコン単結晶の育成方法。
     |Greal(R)-Gideal(R)|/Greal(R)<0.05 …(B)
    The method for growing a silicon single crystal according to claim 1, wherein the single crystal is pulled under conditions satisfying the following formula (B).
    | G real (R) −G ideal (R) | / G real (R) <0.05 (B)
  3.  直径が300mmの単結晶を育成する場合、上記(b)式中、b=17.2、b=40.8、上記(d)式中、d=0.108、d=11.3である、請求項1または2に記載のシリコン単結晶の育成方法。 When growing a single crystal having a diameter of 300 mm, in the above formula (b), b 1 = 17.2, b 2 = 40.8, in the above formula (d), d 1 = 0.108, d 2 = 11 3. The method for growing a silicon single crystal according to claim 1, which is .3.
  4.  直径が450mmの単結晶を育成する場合、上記(b)式中、b=27.5、b=44.7、上記(d)式中、d=0.081、d=11.2である、請求項1または2に記載のシリコン単結晶の育成方法。 When growing a single crystal having a diameter of 450 mm, in the above formula (b), b 1 = 27.5, b 2 = 44.7, in the above formula (d), d 1 = 0.081, d 2 = 11 The method for growing a silicon single crystal according to claim 1 or 2, wherein.
PCT/JP2014/005723 2013-12-05 2014-11-14 Method for growing silicon single crystal WO2015083327A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014005529.8T DE112014005529B4 (en) 2013-12-05 2014-11-14 Method for growing a silicon single crystal
CN201480066357.8A CN105765114B (en) 2013-12-05 2014-11-14 The growing method of monocrystalline silicon
KR1020167017750A KR101777678B1 (en) 2013-12-05 2014-11-14 Method for growing silicon single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-252339 2013-12-05
JP2013252339A JP6044530B2 (en) 2013-12-05 2013-12-05 Method for growing silicon single crystal

Publications (1)

Publication Number Publication Date
WO2015083327A1 true WO2015083327A1 (en) 2015-06-11

Family

ID=53273114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005723 WO2015083327A1 (en) 2013-12-05 2014-11-14 Method for growing silicon single crystal

Country Status (6)

Country Link
JP (1) JP6044530B2 (en)
KR (1) KR101777678B1 (en)
CN (1) CN105765114B (en)
DE (1) DE112014005529B4 (en)
TW (1) TWI568897B (en)
WO (1) WO2015083327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084843A1 (en) * 2019-10-29 2021-05-06 株式会社Sumco Point defect simulator, point defect simulation program, point defect simulation method, method for manufacturing silicon single crystal, and single crystal pulling device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6604338B2 (en) * 2017-01-05 2019-11-13 株式会社Sumco Silicon single crystal pulling condition calculation program, silicon single crystal hot zone improvement method, and silicon single crystal growth method
JP6950581B2 (en) * 2018-02-28 2021-10-13 株式会社Sumco Silicon single crystal manufacturing method and silicon single crystal pulling device
JP6927150B2 (en) * 2018-05-29 2021-08-25 信越半導体株式会社 Method for manufacturing silicon single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265151A (en) * 2009-05-18 2010-11-25 Sumco Corp Method for growing silicon single crystal
JP2010275170A (en) * 2009-06-01 2010-12-09 Sumco Corp Method of manufacturing silicon single crystal, and method of predicting temperature of silicon single crystal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179889A (en) 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
JP4821179B2 (en) * 2005-06-20 2011-11-24 株式会社Sumco Method for growing silicon single crystal
DE102007005346B4 (en) 2007-02-02 2015-09-17 Siltronic Ag Semiconductor wafers of silicon and process for their preparation
CN101445954A (en) * 2007-11-26 2009-06-03 北京有色金属研究总院 Method for controlling temperature gradient and thermal history of a crystal-melt interface in growth process of czochralski silicon monocrystal
JP5880353B2 (en) * 2012-08-28 2016-03-09 信越半導体株式会社 Method for growing silicon single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265151A (en) * 2009-05-18 2010-11-25 Sumco Corp Method for growing silicon single crystal
JP2010275170A (en) * 2009-06-01 2010-12-09 Sumco Corp Method of manufacturing silicon single crystal, and method of predicting temperature of silicon single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084843A1 (en) * 2019-10-29 2021-05-06 株式会社Sumco Point defect simulator, point defect simulation program, point defect simulation method, method for manufacturing silicon single crystal, and single crystal pulling device
JP2021070593A (en) * 2019-10-29 2021-05-06 株式会社Sumco Point defect simulator, point defect simulation program, point defect simulation method, and method and apparatus for manufacturing silicon single crystal
JP7218708B2 (en) 2019-10-29 2023-02-07 株式会社Sumco Point defect simulator, point defect simulation program, point defect simulation method, silicon single crystal manufacturing method, and single crystal pulling apparatus

Also Published As

Publication number Publication date
DE112014005529B4 (en) 2020-10-22
DE112014005529T5 (en) 2016-08-18
TWI568897B (en) 2017-02-01
KR101777678B1 (en) 2017-09-12
KR20160095040A (en) 2016-08-10
JP6044530B2 (en) 2016-12-14
JP2015107898A (en) 2015-06-11
CN105765114B (en) 2018-04-10
CN105765114A (en) 2016-07-13
TW201536967A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP4814207B2 (en) Method and apparatus for manufacturing a silicon semiconductor wafer
KR101929506B1 (en) Method for producing silicon single crystal wafer
JP2001220289A (en) Production unit of high quality silicon single crystal
WO2020039553A1 (en) Method for growing silicon single crystal
JP5163459B2 (en) Silicon single crystal growth method and silicon wafer inspection method
WO2015083327A1 (en) Method for growing silicon single crystal
TWI664326B (en) Heat shielding member, single crystal pulling apparatus and method for manufacturing a single crystal silicon ingot
US20100127354A1 (en) Silicon single crystal and method for growing thereof, and silicon wafer and method for manufacturing thereof
JP6263999B2 (en) Method for growing silicon single crystal
JP4193610B2 (en) Single crystal manufacturing method
EP1930484B1 (en) Process for producing silicon single crystal
JP5636168B2 (en) Method for growing silicon single crystal
US7819972B2 (en) Method for growing silicon single crystal and method for manufacturing silicon wafer
JP5136518B2 (en) Method for growing silicon single crystal
JP5428608B2 (en) Method for growing silicon single crystal
JP4842861B2 (en) Method for producing silicon single crystal
JP4048660B2 (en) CZ silicon single crystal manufacturing method
JP4147606B2 (en) Silicon wafer and crystal growth method
JP2018177628A (en) Heat-shielding member, single crystal pulling apparatus and method for manufacturing single crystal silicon ingot
JP2018095528A (en) Heat shield member, single-crystal pulling-up device, and method of manufacturing single crystal silicon ingot
JP2008088056A (en) Method for growing crystal
JP2010042936A (en) Method for growing silicon single crystal, method for producing silicon wafer, and silicon wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014005529

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167017750

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14867614

Country of ref document: EP

Kind code of ref document: A1