WO2015083208A1 - Secondary battery module and secondary battery system provided with same - Google Patents

Secondary battery module and secondary battery system provided with same Download PDF

Info

Publication number
WO2015083208A1
WO2015083208A1 PCT/JP2013/082312 JP2013082312W WO2015083208A1 WO 2015083208 A1 WO2015083208 A1 WO 2015083208A1 JP 2013082312 W JP2013082312 W JP 2013082312W WO 2015083208 A1 WO2015083208 A1 WO 2015083208A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
communication antenna
wireless communication
sensor node
surface temperature
Prior art date
Application number
PCT/JP2013/082312
Other languages
French (fr)
Japanese (ja)
Inventor
正 藤枝
裕 有田
秀明 鷹野
千咲紀 田窪
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/082312 priority Critical patent/WO2015083208A1/en
Publication of WO2015083208A1 publication Critical patent/WO2015083208A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery module and a secondary battery system including the same.
  • the inside of the battery system is forcibly cooled by a cooling fan or the like, but because the manner in which the cooling air strikes and the temperature of the cooling air differ for each battery cell, the temperature changes for each battery cell. It is necessary to measure and manage the temperature of the cell.
  • Patent Document 1 discloses a storage unit for storing a temperature measurement position of each battery cell in a power storage mechanism in which a plurality of rectangular battery cells are arranged vertically and horizontally; Disclosed is a temperature measuring device for a power storage mechanism for vehicle travel, which includes detection means for detecting the temperature of each battery cell at a temperature measurement position, and moving means for moving the temperature detection means to each temperature measurement position. .
  • the temperature of each battery cell is detected by moving the thermistor as detection means to the temperature measurement position of each battery cell stored using a two-dimensional servomechanism as movement means.
  • Patent Document 1 moves a thermistor in the X and Y directions of a battery pack composed of cells arranged in a plane, which complicates cell temperature measurement means and makes the entire secondary battery system complicated. There is a problem of becoming.
  • An object of the present invention is to simplify the structure of the secondary battery system.
  • the structure of the secondary battery system can be simplified.
  • FIG. 1 is a schematic configuration diagram of a secondary battery storage system rack according to the embodiment.
  • the secondary battery referred to here is a lithium ion secondary battery, a lead secondary battery, a nickel hydride secondary battery, or the like.
  • the secondary battery module 12 includes a plurality of secondary battery cells 11.
  • the secondary battery modules 12 are stacked in a multi-stage at a high density in the system rack 10, and a plurality of secondary battery modules 12 are also installed in a single rack.
  • the number and shape of the secondary battery cells 11 in the secondary battery module 12 may not be six and cylindrical as shown in FIG. The shape and number of stages of the system rack 10 and the number of secondary battery modules 12 in one stage of the rack can be adjusted as appropriate.
  • the battery cell is forcibly cooled by the cooling fan 13 in order to control the battery cell temperature within a certain range.
  • the cooling fan 13 may be installed other than the upper part of the system rack 10. Further, other cooling means may be used.
  • FIG. 2 is a block diagram of the secondary battery system according to the embodiment.
  • the secondary battery system 200 includes a plurality of secondary battery modules 29 (29-1 to 29-n), communication antennas 201 and 202, and a secondary battery system monitoring device (charge / discharge control device) 20.
  • the secondary battery module 29 includes a plurality of secondary battery cells 25 (25-1 to 25-m), a circuit board 23 (23-1 to 23-n), and a wireless communication antenna 24 (24- 1 to 24-n), 27 (27-1 to 27-n), 28 (28-1 to 28-n), and a sensor node 26 (26-1 to 26-m).
  • the circuit board 23 includes a power supply circuit 21 and a control circuit 22.
  • the power supply circuit 21 receives power from the secondary battery cell 10 and supplies power necessary for driving the control circuit 22 and the wireless communication antennas 24, 27, and 28.
  • Sensor node 26 provided with a wireless communication device (not shown) is installed on the surface of each secondary battery cell 25.
  • Cell temperature data measured by the sensor node 26 and data such as the voltage and current of the secondary battery cell are transmitted from the sensor node 26 to the wireless communication antenna (first wireless communication antenna) 24.
  • the control circuit 22 processes the data received by the wireless communication antenna 24 to detect or estimate the state of the secondary battery cell 25.
  • Information on the state of the secondary battery cell 25 is transmitted and received by the wireless communication antennas 27 and 28.
  • the position information of each battery cell is also transmitted from the sensor node 26 at the same time, which is useful for data analysis for elucidating the cause of which battery cell is abnormal when the battery cell is abnormally heated.
  • the communication antennas 201 and 202 are connected to the secondary battery system monitoring device 20, the communication antenna 201 communicates with the secondary battery module 29-1, and the communication antenna 202 communicates with the secondary battery module 29-n. I do.
  • FIG. 2 shows a configuration in which a signal transmitted from the communication antenna 201 is received by the communication antenna 202 via the secondary battery modules 29-1 to 29-n.
  • Information on the state of the built-in secondary battery cell is obtained from the secondary battery module 29-1 (wireless communication antenna (second wireless communication antenna) 28-1) to the secondary battery module 29-2 (wireless communication antenna 27-2).
  • the information is transmitted to the communication antenna (first communication antenna) 202 via the secondary battery modules one after another.
  • Information on the secondary battery cell may be transmitted to the communication antenna 202 for each secondary battery module, or transmitted to the communication antenna 202 while adding information on the secondary battery cells in the secondary battery module one after another. May be.
  • the secondary battery system monitoring device 20 determines the charge / discharge current of which secondary battery cell of which secondary battery module, It is determined how to control the voltage, and the control signal is transmitted from the communication antenna (second communication antenna) 201 to the secondary battery module 29-1 (wireless communication antenna (third wireless communication antenna) 27-1). Sent to. Information on charge / discharge control from the secondary battery system monitoring device 20 is transmitted to the secondary battery module 29 one after another, and the secondary battery cells in the corresponding secondary battery module are controlled.
  • Information on the secondary battery cells in the secondary battery module and control information based on the information are obtained during operation of the secondary battery system, the secondary battery module 29 (29-1 to 29-n), the communication antenna 201, 202, the secondary battery system monitoring device 20 is looped.
  • information on the secondary battery cells in the secondary battery module is transmitted / received wirelessly, and information exchange between the secondary battery module and the secondary battery system monitoring device is also transmitted / received wirelessly. Since the wiring in the secondary battery system can be omitted and the equipment can be reduced, the structure of the secondary battery system can be simplified.
  • FIG. 3 is another example of a block diagram of the secondary battery system according to the embodiment.
  • each of the secondary battery modules 29 (29-1 to 29-n) includes a communication antenna 201 (201-1 to 201-n), and the wireless communication antenna 28 (28-1 to 28-n). n) is not provided.
  • the secondary battery module 29 (for example, the secondary battery module 29-1) is mutually connected to the secondary battery system monitoring apparatus 20 without passing through the other secondary battery modules 29 (for example, the secondary battery modules 29-2 to 29-n).
  • Send and receive information since one communication antenna 201 corresponds to one secondary battery module 29 (wireless communication antenna (fourth wireless communication antenna) 27), the amount of information transmitted and received wirelessly can be reduced. Since the communication speed is increased, the temperature of the secondary battery cell can be quickly controlled, and the reliability of the secondary battery system is further improved.
  • FIG. 4 is a block diagram of the sensor node 30 installed on the surface of the secondary battery cell 25.
  • the sensor node 26 includes a sensor 32 that detects temperature, a wireless communication device 33 that transmits at least the temperature information, a microprocessor 31 that controls them, and a thermoelectric conversion module that supplies power necessary to drive them. 34 is provided.
  • the wireless communication device 33 may transmit battery cell position information in addition to the temperature.
  • the microprocessor 31, the sensor 32, and the wireless communication device 33 are supplied with power from the thermoelectric conversion module 34 in the sensor node 30. Since the thermoelectric conversion module 34 can generate power with a temperature difference between the battery cell surface and the outside air, no wiring is required as in the case of supplying power from the outside of the sensor node 30, so the structure of the sensor node 30 can be simplified. can do.
  • the secondary battery system has the largest number of parts in the secondary battery module, and the number of parts in the secondary battery module is the largest in the secondary battery cells, which eliminates the sensor node wiring and simplifies the structure. The structure of the secondary battery system as a whole can be simplified. Further, since the battery power is not required by using the thermoelectric conversion module 34 as the power source of the sensor node 30, it is possible to accurately detect the temperature of each battery cell without increasing the costs related to assembly manufacturing and maintenance. Become.
  • the sensor node 30 it is preferable to arrange the sensor node 30 at a position where the temperature difference between the battery cell surface and the outside air is maximized based on the temperature distribution in the system rack based on the thermofluid analysis because the power generation efficiency is increased.
  • One sensor node 30 is not necessarily arranged in one battery cell, and there may be a battery cell in which the sensor node 30 is not installed or a battery cell in which a plurality of sensor nodes 30 are arranged. The more sensor nodes that are installed in one battery cell, the higher the measurement accuracy of the temperature of the secondary battery cell, and thus the reliability of the secondary battery system is improved.
  • FIG. 5 is a block diagram of a sensor node using a primary battery as a backup power supply in addition to the main power supply thermoelectric conversion module 44 as a power supply for the sensor node.
  • the battery cell surface temperature is low, and a temperature difference between the battery cell surface and the outside air necessary for the thermoelectric conversion module to generate electric power cannot be obtained.
  • a primary battery is used as a backup power source for power supply in the initial stage of charging and discharging, the temperature of the battery cell is measured even in the initial stage of charging and discharging, and cell information is transmitted and received between the wireless communication device and the wireless communication antenna. Can do.
  • FIG. 6 is a block diagram of a sensor node that uses a power storage device 55 such as a small secondary battery or a capacitor as a backup power supply in addition to the thermoelectric conversion module 54 as a main power supply as a power supply for the sensor node.
  • a power storage device 55 such as a small secondary battery or a capacitor
  • surplus power generated by the thermoelectric conversion module 54 can be stored, and can be used as a backup power source when the battery cell temperature decreases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This secondary battery module is provided with a plurality of secondary battery cells, and a sensor node that detects surface temperatures of the secondary battery cells, said sensor node operating using, as a power supply, a thermoelectric conversion module that generates power due to a temperature difference between an ambient temperature and the surface temperatures of the secondary battery cells. This secondary battery system is provided with: a plurality of secondary battery modules, each of which is provided with a plurality of secondary battery cells, and a sensor node that detects the surface temperatures of the secondary battery cells; and a charge/discharge control apparatus that controls charging/discharging of the secondary battery cells. The sensor node operates using, as a power supply, a thermoelectric conversion module that generates power due to a temperature difference between an ambient temperature and the surface temperatures of the secondary battery cells.

Description

二次電池モジュール及びこれを備えた二次電池システムSecondary battery module and secondary battery system provided with the same
 本発明は、二次電池モジュール及びこれを備えた二次電池システムに関する。 The present invention relates to a secondary battery module and a secondary battery system including the same.
 二次電池の実用化にあたっては、出力及びエネルギー密度(装置敷設面積に対する出力の割合)の向上が必要であることから、電池セルを複数個収納した二次電池モジュールを多段に積んだ電池システム構造が考案されている。しかし、このように複数個の電池セルを近接させた状態で使用すると、電池の放電時に発生した熱により電池温度が上昇し、モジュール容器に収納された電池セルの温度分布が大きく偏る。二次電池は動作時の温度を一定範囲内に制御することにより、所定の出力が得られるため、前記のように大きな温度分布がある場合には、各電池セルの出力を均一にできず、電池全体の出力が低下する。また、電池温度が過度に上昇すると、電池セルが破損しやすい。このため、冷却ファン等により電池システム内を強制冷却しているが、各電池セル毎に冷却風の当たり方や冷却風の温度が異なるため、各電池セル毎に温度が変化するため、各電池セルの温度を計測、管理する必要がある。 In order to put the secondary battery into practical use, it is necessary to improve the output and energy density (ratio of the output relative to the installation area). Therefore, a battery system structure in which secondary battery modules containing multiple battery cells are stacked in multiple stages. Has been devised. However, when a plurality of battery cells are used in a state where they are close to each other as described above, the battery temperature rises due to heat generated during battery discharge, and the temperature distribution of the battery cells stored in the module container is greatly biased. Since the secondary battery can obtain a predetermined output by controlling the temperature during operation within a certain range, when there is a large temperature distribution as described above, the output of each battery cell cannot be made uniform, The output of the entire battery is reduced. Further, when the battery temperature rises excessively, the battery cell is easily damaged. For this reason, the inside of the battery system is forcibly cooled by a cooling fan or the like, but because the manner in which the cooling air strikes and the temperature of the cooling air differ for each battery cell, the temperature changes for each battery cell. It is necessary to measure and manage the temperature of the cell.
 しかし、各セルに温度センサを取り付けると、センサの電源配線が煩雑になり、組立て工程の製造コストの大幅アップに繋がり現実的ではない。一方、各温度センサ電源として、一次電池を適用することが考えられるが、定期的な電池交換が必要となり、メンテナンスコストの大幅アップに繋がる。 
 現状、熱解析シミュレーションにより電池モジュール内の温度分布を推定しているが、個々の電池セルの温度状態を正確に把握することができず、過熱による異常を早期に診断したり、異常発熱時の原因を特定することが困難である。 
 個々の電池セルの温度を監視する方法として、特許文献1には、複数の角型電池セルが縦横に並べられた蓄電機構において、各電池セルの温度測定位置を記憶するための記憶手段と、温度測定位置において、各電池セルの温度を検出する検出手段と、温度検出手段を各温度測定位置に移動するための移動手段から構成される車両走行用蓄電機構の温度測定装置が開示されている。
However, if a temperature sensor is attached to each cell, the power supply wiring of the sensor becomes complicated, leading to a significant increase in the manufacturing cost of the assembly process, which is not realistic. On the other hand, it is conceivable to apply a primary battery as each temperature sensor power supply, but periodic battery replacement is required, leading to a significant increase in maintenance costs.
Currently, the temperature distribution in the battery module is estimated by thermal analysis simulation, but the temperature state of each battery cell cannot be accurately grasped, and abnormalities due to overheating can be diagnosed at an early stage, It is difficult to identify the cause.
As a method for monitoring the temperature of each battery cell, Patent Document 1 discloses a storage unit for storing a temperature measurement position of each battery cell in a power storage mechanism in which a plurality of rectangular battery cells are arranged vertically and horizontally; Disclosed is a temperature measuring device for a power storage mechanism for vehicle travel, which includes detection means for detecting the temperature of each battery cell at a temperature measurement position, and moving means for moving the temperature detection means to each temperature measurement position. .
 具体的には、移動手段として2次元サーボ機構を用いて記憶された各電池セルの温度測定位置まで検出手段であるサーミスタを移動させることにより、各電池セルの温度を検出する。 Specifically, the temperature of each battery cell is detected by moving the thermistor as detection means to the temperature measurement position of each battery cell stored using a two-dimensional servomechanism as movement means.
特開2008-198515号公報JP 2008-198515 A
 しかしながら、特許文献1は、平面に並べたセルで構成されるバッテリパックのX方向とY方向にサーミスタを移動させるものであり、セル温度の測定手段が複雑になり、二次電池システム全体が複雑になるという課題がある。 However, Patent Document 1 moves a thermistor in the X and Y directions of a battery pack composed of cells arranged in a plane, which complicates cell temperature measurement means and makes the entire secondary battery system complicated. There is a problem of becoming.
 本発明の目的は、二次電池システムの構造を簡素化することである。 An object of the present invention is to simplify the structure of the secondary battery system.
 上記目的は、請求項に記載の発明により達成される。 The above object is achieved by the invention described in the claims.
 本発明によれば、二次電池システムの構造を簡素化することができる。  According to the present invention, the structure of the secondary battery system can be simplified.
実施形態の二次電池収納システムラックの構成概要図Configuration outline diagram of secondary battery storage system rack of embodiment 実施形態の二次電池システムのブロック図Block diagram of the secondary battery system of the embodiment 実施形態の二次電池システムのブロック図Block diagram of the secondary battery system of the embodiment 実施形態のセンサノードのブロック図Block diagram of sensor node of embodiment 実施形態のセンサノードのブロック図Block diagram of sensor node of embodiment 実施形態のセンサノードのブロック図Block diagram of sensor node of embodiment
 本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、様々な変形例が含まれる。 Embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In addition, this invention is not limited to the following embodiment, Various modifications are included.
 図1は、実施形態に係る二次電池収納システムラックの構成概要図である。ここで言う二次電池とは、リチウムイオン二次電池や鉛二次電池、ニッケル水素二次電池などである。二次電池モジュール12は二次電池セル11を複数個備える。二次電池モジュール12はシステムラック10内に高密度に多段に積層されており、一段のラック内にも複数個設置されている。二次電池モジュール12内の二次電池セル11の個数、形状は、図1のように6個、円柱形状でなくてもよい。システムラック10の形状や段数、ラック一段における二次電池モジュール12の個数も適宜調節可能である。 FIG. 1 is a schematic configuration diagram of a secondary battery storage system rack according to the embodiment. The secondary battery referred to here is a lithium ion secondary battery, a lead secondary battery, a nickel hydride secondary battery, or the like. The secondary battery module 12 includes a plurality of secondary battery cells 11. The secondary battery modules 12 are stacked in a multi-stage at a high density in the system rack 10, and a plurality of secondary battery modules 12 are also installed in a single rack. The number and shape of the secondary battery cells 11 in the secondary battery module 12 may not be six and cylindrical as shown in FIG. The shape and number of stages of the system rack 10 and the number of secondary battery modules 12 in one stage of the rack can be adjusted as appropriate.
 電池セル温度を一定範囲内に制御するために、冷却ファン13により電池セルを強制的に空冷している。冷却ファン13はシステムラック10の上部以外に設置されていてもよい。また、他の冷却手段を用いてもよい。 The battery cell is forcibly cooled by the cooling fan 13 in order to control the battery cell temperature within a certain range. The cooling fan 13 may be installed other than the upper part of the system rack 10. Further, other cooling means may be used.
 図2は、実施形態に係る二次電池システムのブロック図である。二次電池システム200は、複数の二次電池モジュール29(29-1~29-n)と、通信用アンテナ201、202、二次電池システム監視装置(充放電制御装置)20を備える。 FIG. 2 is a block diagram of the secondary battery system according to the embodiment. The secondary battery system 200 includes a plurality of secondary battery modules 29 (29-1 to 29-n), communication antennas 201 and 202, and a secondary battery system monitoring device (charge / discharge control device) 20.
 二次電池モジュール29は、複数の二次電池セル25(25-1~25-m)、回路基板23(23-1~23-n)、双方向に通信可能な無線通信アンテナ24(24-1~24-n)、27(27-1~27-n)、28(28-1~28-n)、センサノード26(26-1~26-m)を備える。 The secondary battery module 29 includes a plurality of secondary battery cells 25 (25-1 to 25-m), a circuit board 23 (23-1 to 23-n), and a wireless communication antenna 24 (24- 1 to 24-n), 27 (27-1 to 27-n), 28 (28-1 to 28-n), and a sensor node 26 (26-1 to 26-m).
 回路基板23は、電源回路21と制御回路22を備える。電源回路21は、二次電池セル10より電力の供給を受け、制御回路22、及び、無線通信アンテナ24、27、28の駆動に必要な電力を供給する。 The circuit board 23 includes a power supply circuit 21 and a control circuit 22. The power supply circuit 21 receives power from the secondary battery cell 10 and supplies power necessary for driving the control circuit 22 and the wireless communication antennas 24, 27, and 28.
 無線通信デバイス(図示なし)を備えたセンサノード26は、各二次電池セル25の表面に設置される。センサノード26で測定されたセル温度データや二次電池セルの電圧や電流などのデータがセンサノード26から無線通信アンテナ(第1無線通信アンテナ)24に送信される。制御回路22は、無線通信アンテナ24で受信したデータを処理し、二次電池セル25の状態を検知または推定する。二次電池セル25の状態の情報は、無線通信アンテナ27、28で送受信される。 Sensor node 26 provided with a wireless communication device (not shown) is installed on the surface of each secondary battery cell 25. Cell temperature data measured by the sensor node 26 and data such as the voltage and current of the secondary battery cell are transmitted from the sensor node 26 to the wireless communication antenna (first wireless communication antenna) 24. The control circuit 22 processes the data received by the wireless communication antenna 24 to detect or estimate the state of the secondary battery cell 25. Information on the state of the secondary battery cell 25 is transmitted and received by the wireless communication antennas 27 and 28.
 1つのセンサノード26(例えばセンサノード26-1)から信号が送信されている時間は、他のセンサノード26(例えばセンサノード26-2~26-m)から信号を送信しない。つまり、各センサノード26と無線通信アンテナ24間では1対1通信を行うことにより、通信信号の乱反射などによる電波干渉を防ぎ、通信不良を防止することが好ましい。 During the time when a signal is transmitted from one sensor node 26 (for example, sensor node 26-1), no signal is transmitted from other sensor nodes 26 (for example, sensor nodes 26-2 to 26-m). That is, it is preferable to perform radio communication between each sensor node 26 and the wireless communication antenna 24 to prevent radio wave interference due to irregular reflection of communication signals and to prevent communication failure.
 セル温度データの他に、各電池セルの位置情報も同時にセンサノード26から発信させることにより、電池セルの異常発熱時に、どの電池セルが異常か原因解明するためのデータ解析に役立つ。 In addition to the cell temperature data, the position information of each battery cell is also transmitted from the sensor node 26 at the same time, which is useful for data analysis for elucidating the cause of which battery cell is abnormal when the battery cell is abnormally heated.
 通信用アンテナ201、202は、二次電池システム監視装置20に接続されており、通信用アンテナ201は二次電池モジュール29-1と、通信用アンテナ202は二次電池モジュール29-nとそれぞれ通信を行う。図2では、通信用アンテナ201から送信した信号を二次電池モジュール29-1~29-nを介して、通信用アンテナ202で受信する構成を示している。 The communication antennas 201 and 202 are connected to the secondary battery system monitoring device 20, the communication antenna 201 communicates with the secondary battery module 29-1, and the communication antenna 202 communicates with the secondary battery module 29-n. I do. FIG. 2 shows a configuration in which a signal transmitted from the communication antenna 201 is received by the communication antenna 202 via the secondary battery modules 29-1 to 29-n.
 内蔵される二次電池セルの状態の情報は、二次電池モジュール29-1(無線通信アンテナ(第2無線通信アンテナ)28-1)から二次電池モジュール29-2(無線通信アンテナ27-2)に送信され、二次電池モジュールを次々と経由して通信用アンテナ(第1通信用アンテナ)202まで情報が伝送される。二次電池セルの情報は、二次電池モジュールごとに通信用アンテナ202まで送信してもよいし、二次電池モジュール内の二次電池セルの情報を次々と加算しながら通信用アンテナ202まで送信してもよい。 Information on the state of the built-in secondary battery cell is obtained from the secondary battery module 29-1 (wireless communication antenna (second wireless communication antenna) 28-1) to the secondary battery module 29-2 (wireless communication antenna 27-2). The information is transmitted to the communication antenna (first communication antenna) 202 via the secondary battery modules one after another. Information on the secondary battery cell may be transmitted to the communication antenna 202 for each secondary battery module, or transmitted to the communication antenna 202 while adding information on the secondary battery cells in the secondary battery module one after another. May be.
 通信用アンテナ202で受信された全ての二次電池モジュール内の二次電池セルの情報に基づき、二次電池システム監視装置20は、どの二次電池モジュールのどの二次電池セルの充放電電流や電圧をどのように制御するかを決定し、その制御信号を通信用アンテナ(第2通信用アンテナ)201から二次電池モジュール29-1(無線通信アンテナ(第3無線通信アンテナ)27-1)に送信される。二次電池システム監視装置20からの充放電制御の情報は、二次電池モジュール29に次々と送信され、該当する二次電池モジュール内の二次電池セルが制御される。 Based on the information on the secondary battery cells in all the secondary battery modules received by the communication antenna 202, the secondary battery system monitoring device 20 determines the charge / discharge current of which secondary battery cell of which secondary battery module, It is determined how to control the voltage, and the control signal is transmitted from the communication antenna (second communication antenna) 201 to the secondary battery module 29-1 (wireless communication antenna (third wireless communication antenna) 27-1). Sent to. Information on charge / discharge control from the secondary battery system monitoring device 20 is transmitted to the secondary battery module 29 one after another, and the secondary battery cells in the corresponding secondary battery module are controlled.
 二次電池モジュール内の二次電池セルの情報と、その情報に基づく制御情報は、二次電池システムの運転中、二次電池モジュール29(29-1~29-n)、通信用アンテナ201、202、二次電池システム監視装置20をループする。 Information on the secondary battery cells in the secondary battery module and control information based on the information are obtained during operation of the secondary battery system, the secondary battery module 29 (29-1 to 29-n), the communication antenna 201, 202, the secondary battery system monitoring device 20 is looped.
 以上の構成によれば、二次電池モジュール内の二次電池セルの情報が無線で送受信されると共に、二次電池モジュールと二次電池システム監視装置との情報のやり取りも無線で送受信されるので、二次電池システム内の配線を省略し、機器も縮小できるので、二次電池システムの構造を簡素化することができる。 According to the above configuration, information on the secondary battery cells in the secondary battery module is transmitted / received wirelessly, and information exchange between the secondary battery module and the secondary battery system monitoring device is also transmitted / received wirelessly. Since the wiring in the secondary battery system can be omitted and the equipment can be reduced, the structure of the secondary battery system can be simplified.
 また、複数の二次電池セル、二次電池モジュールの情報を同時に得ることができるので、時々刻々と変化する多数の二次電池セルの温度を素早く検知して温度制御することができ、二次電池システムの信頼性も向上する。 In addition, since information on a plurality of secondary battery cells and secondary battery modules can be obtained at the same time, it is possible to quickly detect and control the temperature of a large number of secondary battery cells that change from moment to moment. The reliability of the battery system is also improved.
 図3は、実施形態に係る二次電池システムのブロック図の他の例である。図2と異なる点は、二次電池モジュール29(29-1~29-n)ごとに通信用アンテナ201(201-1~201-n)を備え、無線通信アンテナ28(28-1~28-n)を備えないことである。二次電池モジュール29(例えば二次電池モジュール29-1)は他の二次電池モジュール29(例えば二次電池モジュール29-2~29-n)を介さずに二次電池システム監視装置20と互いに情報を送受信する。この構成によれば、1つの二次電池モジュール29(無線通信アンテナ(第4無線通信アンテナ)27)に1つの通信用アンテナ201が対応するので、無線で送受信される情報量を少なくすることができ、通信速度が速くなるので、二次電池セルを素早く温度制御することができ、二次電池システムの信頼性が更に向上する。 FIG. 3 is another example of a block diagram of the secondary battery system according to the embodiment. The difference from FIG. 2 is that each of the secondary battery modules 29 (29-1 to 29-n) includes a communication antenna 201 (201-1 to 201-n), and the wireless communication antenna 28 (28-1 to 28-n). n) is not provided. The secondary battery module 29 (for example, the secondary battery module 29-1) is mutually connected to the secondary battery system monitoring apparatus 20 without passing through the other secondary battery modules 29 (for example, the secondary battery modules 29-2 to 29-n). Send and receive information. According to this configuration, since one communication antenna 201 corresponds to one secondary battery module 29 (wireless communication antenna (fourth wireless communication antenna) 27), the amount of information transmitted and received wirelessly can be reduced. Since the communication speed is increased, the temperature of the secondary battery cell can be quickly controlled, and the reliability of the secondary battery system is further improved.
 図4は二次電池セル25表面に設置するセンサノード30のブロック図である。センサノード26は、温度を検知するセンサ32と、少なくともその温度情報を発信する無線通信デバイス33とこれらを制御するマイクロプロセッサ31、及び、これらを駆動するために必要な電力を供給する熱電変換モジュール34を備える。無線通信デバイス33は温度の他にも電池セルの位置情報を発信してもよい。 FIG. 4 is a block diagram of the sensor node 30 installed on the surface of the secondary battery cell 25. The sensor node 26 includes a sensor 32 that detects temperature, a wireless communication device 33 that transmits at least the temperature information, a microprocessor 31 that controls them, and a thermoelectric conversion module that supplies power necessary to drive them. 34 is provided. The wireless communication device 33 may transmit battery cell position information in addition to the temperature.
 マイクロプロセッサ31、センサ32、無線通信デバイス33は、センサノード30内の熱電変換モジュール34から電力が供給される。熱電変換モジュール34は電池セル表面と外気との温度差で発電することができるので、センサノード30外部から電力を供給する場合のような配線は不要であるため、センサノード30の構造を簡単にすることができる。二次電池システム内の部品点数は二次電池モジュールが最も多く、更に二次電池モジュール内の部品点数は二次電池セルが最も多いため、センサノードの配線を無くし、構造を簡単にすることで二次電池システム全体としても構造を簡単にすることができる。また、センサノード30の電源を熱電変換モジュール34とすることにより電池交換も不要となるため、組み立て製造やメンテナンスに関わるコストを増加させることなく、各電池セル温度を正確に検知することが可能となる。 The microprocessor 31, the sensor 32, and the wireless communication device 33 are supplied with power from the thermoelectric conversion module 34 in the sensor node 30. Since the thermoelectric conversion module 34 can generate power with a temperature difference between the battery cell surface and the outside air, no wiring is required as in the case of supplying power from the outside of the sensor node 30, so the structure of the sensor node 30 can be simplified. can do. The secondary battery system has the largest number of parts in the secondary battery module, and the number of parts in the secondary battery module is the largest in the secondary battery cells, which eliminates the sensor node wiring and simplifies the structure. The structure of the secondary battery system as a whole can be simplified. Further, since the battery power is not required by using the thermoelectric conversion module 34 as the power source of the sensor node 30, it is possible to accurately detect the temperature of each battery cell without increasing the costs related to assembly manufacturing and maintenance. Become.
 システムラック内の熱流体解析による温度分布に基づいて、電池セル表面と外気との温度差が最大となる位置にセンサノード30を配置すると発電効率が高くなるので好ましい。なお、一つの電池セルに一つのセンサノード30を必ず配置する必要はなく、センサノード30が設置されない電池セルや複数のセンサノード30が配置された電池セルがあっても良い。一つの電池セルにたいして設置されるセンサノードが多いほど、二次電池セルの温度の測定精度が高くなるので、二次電池システムの信頼性が向上する。 It is preferable to arrange the sensor node 30 at a position where the temperature difference between the battery cell surface and the outside air is maximized based on the temperature distribution in the system rack based on the thermofluid analysis because the power generation efficiency is increased. One sensor node 30 is not necessarily arranged in one battery cell, and there may be a battery cell in which the sensor node 30 is not installed or a battery cell in which a plurality of sensor nodes 30 are arranged. The more sensor nodes that are installed in one battery cell, the higher the measurement accuracy of the temperature of the secondary battery cell, and thus the reliability of the secondary battery system is improved.
 図5はセンサノードの電源として、主電源の熱電変換モジュール44の他に、バックアップ電源として一次電池を用いたセンサノードのブロック図である。二次電池セルの充放電開始時には、電池セル表面温度が低く、熱電変換モジュールが発電するのに必要な電池セル表面と外気との温度差が得られない。このため、充放電初期の電力供給のためのバックアップ電源として一次電池を併用すると、充放電初期でも電池セルの温度を測定し、無線通信デバイスと無線通信アンテナとの間でセル情報を送受信することができる。 FIG. 5 is a block diagram of a sensor node using a primary battery as a backup power supply in addition to the main power supply thermoelectric conversion module 44 as a power supply for the sensor node. At the start of charging / discharging of the secondary battery cell, the battery cell surface temperature is low, and a temperature difference between the battery cell surface and the outside air necessary for the thermoelectric conversion module to generate electric power cannot be obtained. For this reason, when a primary battery is used as a backup power source for power supply in the initial stage of charging and discharging, the temperature of the battery cell is measured even in the initial stage of charging and discharging, and cell information is transmitted and received between the wireless communication device and the wireless communication antenna. Can do.
 図6はセンサノードの電源として、主電源の熱電変換モジュール54の他に、バックアップ電源として小型の二次電池やキャパシタなどの蓄電デバイス55を用いたセンサノードのブロック図である。この場合、熱電変換モジュール54で発電された余剰電力を蓄電しておくことができ、電池セル温度が低下した場合のバックアップ電源として使用することができる。 FIG. 6 is a block diagram of a sensor node that uses a power storage device 55 such as a small secondary battery or a capacitor as a backup power supply in addition to the thermoelectric conversion module 54 as a main power supply as a power supply for the sensor node. In this case, surplus power generated by the thermoelectric conversion module 54 can be stored, and can be used as a backup power source when the battery cell temperature decreases.
 10 システムラック
 11 二次電池セル
 12 二次電池モジュール
 13 冷却ファン
 20 二次電池システム監視装置
 21 電源回路
 22 制御回路
 23 回路基板
 24, 27, 28 無線通信アンテナ
 25 二次電池セル
 26, 30, 40, 50 センサノード
 29 二次電池モジュール
 200 二次電池システム
 201, 202 通信用アンテナ
 31, 41, 51 マイクロプロセッサ
 32, 42, 52 センサ
 33, 43, 53 無線通信デバイス
 34, 44, 54 熱電変換モジュール
 45 一次電池
 55 蓄電デバイス
DESCRIPTION OF SYMBOLS 10 System rack 11 Secondary battery cell 12 Secondary battery module 13 Cooling fan 20 Secondary battery system monitoring apparatus 21 Power supply circuit 22 Control circuit 23 Circuit board 24, 27, 28 Wireless communication antenna 25 Secondary battery cell 26, 30, 40 , 50 Sensor node 29 Secondary battery module 200 Secondary battery system 201, 202 Communication antenna 31, 41, 51 Microprocessor 32, 42, 52 Sensor 33, 43, 53 Wireless communication device 34, 44, 54 Thermoelectric conversion module 45 Primary battery 55 Power storage device

Claims (13)

  1.  複数の二次電池セルと、前記二次電池セルの表面温度を検知するセンサノードとを備えた二次電池モジュールにおいて、前記センサノードは、前記二次電池セルの表面温度と外気との温度差で発電する熱電変換モジュールを電源に用いて動作することを特徴とする二次電池モジュール。 In the secondary battery module comprising a plurality of secondary battery cells and a sensor node for detecting the surface temperature of the secondary battery cell, the sensor node is a temperature difference between the surface temperature of the secondary battery cell and the outside air. A secondary battery module that operates using a thermoelectric conversion module that generates electricity at a power source.
  2.  請求項1において、前記センサノードは前記複数の二次電池セルの各々に備えられることを特徴とする二次電池モジュール。 2. The secondary battery module according to claim 1, wherein the sensor node is provided in each of the plurality of secondary battery cells.
  3.  請求項1又は2において、前記センサノードは、他の電源として一次電池又は蓄電デバイスを用いて動作することを特徴とする二次電池モジュール。 3. The secondary battery module according to claim 1, wherein the sensor node operates using a primary battery or a power storage device as another power source.
  4.  請求項1乃至3の何れかにおいて、前記センサノードは測定された前記二次電池セルの表面温度の情報を無線送信する無線通信デバイスを備え、前記二次電池モジュールは無線送信された前記二次電池セルの表面温度の情報を無線受信する第1無線通信アンテナを備えることを特徴とする二次電池モジュール。 4. The sensor node according to claim 1, wherein the sensor node includes a wireless communication device that wirelessly transmits information on the measured surface temperature of the secondary battery cell, and the secondary battery module is wirelessly transmitted to the secondary battery module. A secondary battery module comprising a first wireless communication antenna that wirelessly receives information on a surface temperature of a battery cell.
  5.  請求項4において、前記第1無線通信アンテナで無線受信された前記二次電池セルの表面温度の情報を、前記二次電池モジュールの外部に無線送信する第2無線通信アンテナを備えることを特徴とする二次電池モジュール。 5. The method according to claim 4, further comprising a second wireless communication antenna that wirelessly transmits information on a surface temperature of the secondary battery cell wirelessly received by the first wireless communication antenna to the outside of the secondary battery module. Secondary battery module.
  6.  複数の二次電池モジュールを備え、前記二次電池モジュールは、複数の二次電池セルと、前記二次電池セルの表面温度を検知するセンサノードとを備え、前記複数の二次電池セルの充放電を制御する充放電制御装置を備えた二次電池システムにおいて、前記センサノードは、前記二次電池セルの表面温度と外気との温度差で発電する熱電変換モジュールを電源に用いて動作することを特徴とする二次電池システム。 A plurality of secondary battery modules, the secondary battery module comprising a plurality of secondary battery cells, and a sensor node for detecting a surface temperature of the secondary battery cells, and charging the plurality of secondary battery cells. In a secondary battery system including a charge / discharge control device for controlling discharge, the sensor node operates using a thermoelectric conversion module that generates power based on a temperature difference between a surface temperature of the secondary battery cell and outside air as a power source. A secondary battery system.
  7.  請求項6において、前記センサノードは前記複数の二次電池セルの各々に備えられることを特徴とする二次電池システム。 7. The secondary battery system according to claim 6, wherein the sensor node is provided in each of the plurality of secondary battery cells.
  8.  請求項6又は7において、前記センサノードは、他の電源として一次電池又は蓄電デバイスを用いて動作することを特徴とする二次電池システム。 8. The secondary battery system according to claim 6, wherein the sensor node operates using a primary battery or a power storage device as another power source.
  9.  請求項6乃至8の何れかにおいて、前記センサノードは測定された前記二次電池セルの表面温度の情報を無線送信する無線通信デバイスを備え、前記二次電池モジュールは無線送信された前記二次電池セルの表面温度の情報を無線受信する第1無線通信アンテナを備えることを特徴とする二次電池システム。 9. The sensor node according to claim 6, wherein the sensor node includes a wireless communication device that wirelessly transmits the measured surface temperature information of the secondary battery cell, and the secondary battery module is wirelessly transmitted to the secondary battery module. A secondary battery system comprising a first wireless communication antenna that wirelessly receives information on a surface temperature of a battery cell.
  10.  請求項9において、前記第1無線通信アンテナで無線受信された前記二次電池セルの表面温度の情報を、他の前記二次電池モジュールに無線送信する第2無線通信アンテナを備えることを特徴とする二次電池システム。 The second wireless communication antenna according to claim 9, further comprising: a second wireless communication antenna that wirelessly transmits information on a surface temperature of the secondary battery cell wirelessly received by the first wireless communication antenna to the other secondary battery module. Secondary battery system.
  11.  請求項10において、他の前記二次電池モジュールは前記第2無線通信アンテナから無線送信された前記二次電池セルの表面温度の情報を無線受信する第3無線通信アンテナを備えることを特徴とする二次電池システム。 11. The other secondary battery module according to claim 10, further comprising a third wireless communication antenna that wirelessly receives surface temperature information of the secondary battery cell wirelessly transmitted from the second wireless communication antenna. Secondary battery system.
  12.  請求項11において、前記複数の二次電池モジュールのうち一の前記二次電池モジュールの前記第2無線通信アンテナから無線送信された前記二次電池セルの表面温度の情報を無線受信する第1通信用アンテナと、他の前記二次電池モジュールの前記第3無線通信アンテナに前記二次電池セルの表面温度の情報を用いて算出した制御信号を無線送信する第2通信用アンテナとを備え、前記第1通信用アンテナと前記第2通信用アンテナは前記充放電制御装置に接続されていることを特徴とする二次電池システム。 12. The first communication according to claim 11, wherein the first communication wirelessly receives information on the surface temperature of the secondary battery cell wirelessly transmitted from the second wireless communication antenna of the secondary battery module of one of the plurality of secondary battery modules. And a second communication antenna for wirelessly transmitting a control signal calculated using information on the surface temperature of the secondary battery cell to the third wireless communication antenna of the other secondary battery module, The secondary battery system, wherein the first communication antenna and the second communication antenna are connected to the charge / discharge control device.
  13.  請求項9において、前記充放電制御装置に接続された通信用アンテナを備え、前記第1無線通信アンテナで無線受信された前記二次電池セルの表面温度の情報を、前記通信用アンテナに無線送信する第4無線通信アンテナを備え、前記二次電池セルの表面温度の情報を用いて算出した制御信号を前記通信用アンテナから前記第4無線通信アンテナに無線送信することを特徴とする二次電池システム。 The information on the surface temperature of the secondary battery cell wirelessly received by the first wireless communication antenna is wirelessly transmitted to the communication antenna according to claim 9, comprising a communication antenna connected to the charge / discharge control device. A secondary battery, wherein the control signal calculated using information on the surface temperature of the secondary battery cell is wirelessly transmitted from the communication antenna to the fourth wireless communication antenna. system.
PCT/JP2013/082312 2013-12-02 2013-12-02 Secondary battery module and secondary battery system provided with same WO2015083208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082312 WO2015083208A1 (en) 2013-12-02 2013-12-02 Secondary battery module and secondary battery system provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082312 WO2015083208A1 (en) 2013-12-02 2013-12-02 Secondary battery module and secondary battery system provided with same

Publications (1)

Publication Number Publication Date
WO2015083208A1 true WO2015083208A1 (en) 2015-06-11

Family

ID=53273006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082312 WO2015083208A1 (en) 2013-12-02 2013-12-02 Secondary battery module and secondary battery system provided with same

Country Status (1)

Country Link
WO (1) WO2015083208A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084458A (en) * 2015-10-22 2017-05-18 三菱自動車工業株式会社 On-vehicle battery abnormality detection device
WO2020159300A1 (en) 2019-02-01 2020-08-06 주식회사 엘지화학 Battery system and slave battery management system
JP2021118136A (en) * 2020-01-28 2021-08-10 株式会社デンソー Battery pack
WO2021163500A1 (en) * 2020-02-14 2021-08-19 Sensata Technologies, Inc. Communication in a wireless battery management system for a battery pack structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109819A (en) * 2005-10-12 2007-04-26 Ricoh Co Ltd Portable electronic apparatus
WO2009063805A1 (en) * 2007-11-13 2009-05-22 Murata Manufacturing Co., Ltd. Thermoelectric generation device having condensing function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109819A (en) * 2005-10-12 2007-04-26 Ricoh Co Ltd Portable electronic apparatus
WO2009063805A1 (en) * 2007-11-13 2009-05-22 Murata Manufacturing Co., Ltd. Thermoelectric generation device having condensing function

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084458A (en) * 2015-10-22 2017-05-18 三菱自動車工業株式会社 On-vehicle battery abnormality detection device
WO2020159300A1 (en) 2019-02-01 2020-08-06 주식회사 엘지화학 Battery system and slave battery management system
JP2022512347A (en) * 2019-02-01 2022-02-03 エルジー エナジー ソリューション リミテッド Battery system and slave battery management system
JP7235229B2 (en) 2019-02-01 2023-03-08 エルジー エナジー ソリューション リミテッド Battery system and slave battery management system
US12009487B2 (en) 2019-02-01 2024-06-11 Lg Energy Solution, Ltd. Slave battery management system at a boundary of metal housing and battery system including the same
JP2021118136A (en) * 2020-01-28 2021-08-10 株式会社デンソー Battery pack
JP7375581B2 (en) 2020-01-28 2023-11-08 株式会社デンソー battery pack
WO2021163500A1 (en) * 2020-02-14 2021-08-19 Sensata Technologies, Inc. Communication in a wireless battery management system for a battery pack structure

Similar Documents

Publication Publication Date Title
CN110024208B (en) Battery management device and battery pack including the same
US8129950B2 (en) Battery module, pack of modules
KR101162515B1 (en) Unit battery for battery pack, battery control system, and battery control method
CN110110358B (en) Lithium ion battery thermal runaway spreading simulation method and device
US10193190B2 (en) Battery control system
US9496740B2 (en) Techniques for optimizing power supply output
JP2017123327A (en) Battery control device and battery control system
WO2015083208A1 (en) Secondary battery module and secondary battery system provided with same
WO2012169063A1 (en) Battery control device and battery system
CN103959551A (en) Control apparatus and control method for electricity storage device
US11677110B2 (en) Heater control system for battery packs having parallel connection structure, and method therefor
KR102391119B1 (en) Battery cooling system and method for controlling the same
CN102738535A (en) System and method for controlling heat transfer timing
MX2011002134A (en) Device and method for the generation, storage, and transmission of electric energy.
JP5739005B2 (en) Power storage device management system
JP2024026100A (en) Battery condition prediction device and battery condition prediction method
WO2016185343A2 (en) Thermal mapping method and apparatus
KR101945425B1 (en) Apparatus for monitoring the status of battery pack in parallel
KR20190095047A (en) Temperature measuring device, and battery module and battery pack having the same
KR20220159045A (en) Method and system for controlling temperature of battery pack
CN109120489B (en) Wireless multi-point array type power battery temperature field test system based on Modbus-ZigBee technology
Kleiner et al. Experimental study on the thermal interactions in novel intelligent lithium-ion modules for electric vehicles
JP6292056B2 (en) Voltage monitoring and voltage equalization device for series battery cells
JP2015195159A (en) Power storage system
US20220209308A1 (en) Module battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP