WO2015081871A1 - 一种d2d信号检测方法及设备 - Google Patents

一种d2d信号检测方法及设备 Download PDF

Info

Publication number
WO2015081871A1
WO2015081871A1 PCT/CN2014/093030 CN2014093030W WO2015081871A1 WO 2015081871 A1 WO2015081871 A1 WO 2015081871A1 CN 2014093030 W CN2014093030 W CN 2014093030W WO 2015081871 A1 WO2015081871 A1 WO 2015081871A1
Authority
WO
WIPO (PCT)
Prior art keywords
discovery
resources
user equipment
discovery signal
physical resource
Prior art date
Application number
PCT/CN2014/093030
Other languages
English (en)
French (fr)
Inventor
陈文洪
高秋彬
彭莹
赵锐
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to KR1020167016056A priority Critical patent/KR101802836B1/ko
Priority to EP14867268.6A priority patent/EP3079395B1/en
Priority to JP2016536932A priority patent/JP6349397B2/ja
Priority to US15/102,475 priority patent/US10200845B2/en
Publication of WO2015081871A1 publication Critical patent/WO2015081871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a D2D signal detection method and device.
  • the device-to-device (D2D) technology is a user equipment direct-through technology, which means that neighboring user equipment can transmit data through a direct link in a short-range range without passing through a central node (ie, a base station). Forward.
  • LTE D2D Long Term Evolution D2D
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • the introduction of LTE D2D features will enable LTE technology to evolve from pure wireless mobile cellular communication technology to "Universal Connectivity Technology".
  • the LTE D2D technology includes two aspects of D2D discovery and D2D communication, where D2D discovery refers to a D2D user equipment to discover other D2D UEs in the vicinity.
  • D2D discovery refers to a D2D user equipment to discover other D2D UEs in the vicinity.
  • the discovery between the D2D user equipment is implemented by the discovery signal, and the discovery signal includes the discovery sequence and the discovery message, wherein the discovery message can carry certain identification information, such as device information, application information, service type, etc., and discover the user equipment (ie, receive The user equipment that discovers the signal) uses this information to identify the discovered user equipment (ie, the user equipment that sent the discovery signal).
  • the discovery message in the discovery signal is carried by the discovery resource.
  • a discovery resource can be used to send a complete discovery message, and generally includes a plurality of physical resources of a physical resource block (PRB).
  • PRB physical resource block
  • the D2D user equipment needs to know the receiving resource area for the reception of other D2D user equipment discovery signals, and also needs to know the transmission resource area for the transmission of its own discovery signal. Due to hardware limitations, the D2D user equipment cannot The transmission and reception of the discovery signal are simultaneously performed in one subframe.
  • the system discovery resource includes a subframe set or a PRB set, and a period in which the subframe set or the PRB set appears, and the period is a system discovery period, as shown in FIG. 1 .
  • a system discovery period may include several subframes, each of which contains a plurality of PRBs.
  • the subframes or PRBs are consecutive uplink or downlink cellular resources (such as consecutive uplink subframes) within the network coverage.
  • the discovery resources are generally configured by the base station. Outside the network coverage, the discovery resources are generally predefined or configured by the cluster head.
  • the D2D user equipment can perform detection of discovery signals of other D2D user equipments in a subframe that does not transmit a discovery signal.
  • D2D user equipment can use one discovery resource in each discovery cycle.
  • the source sends a discovery message, and multiple discovery resources can also be used to send multiple identical or different discovery messages.
  • the discovery sequence and the discovery message contained in one discovery signal may be sent on the same discovery resource or may be sent using different resources, but the discovery sequence is generally sent together with the discovery message in one discovery cycle. If it is found that the sequence can use multiple sequences, at the receiving end, multiple sequences are separately detected to determine the currently used discovery sequence.
  • the user equipment of the prior art cannot determine the number of discovery resources used by the sending end, and cannot detect the number of discovered resources based on the number of discovered resources, so performance loss may occur due to the number of undiscovered discovered resources; if the user equipment performs all possible discovered resources Blind detection will result in an increase in detection complexity.
  • Embodiments of the present invention provide a D2D signal detection method and device for improving performance loss.
  • the D2D signal detection method provided by the embodiment of the present invention includes:
  • the user equipment determines a physical resource area that detects the discovery signal
  • the number of discovery resources is the number of discovery resources used to transmit the same discovery signal within one discovery period or within the physical resource region;
  • the user equipment performs detection of the discovery signal according to the determined number of discovered resources.
  • the physical resource region refers to a subframe set or a subband set or a PRB set.
  • the discovery resource refers to a physical resource occupied by sending a discovery signal once.
  • the user equipment and the sending user equipment of the discovery signal pre-approve a physical resource mapping relationship between the plurality of discovery resources occupied by the discovery signal.
  • the user equipment determines the number of discovery resources used by the discovery signal according to the physical resource area of the detection discovery signal, and specifically includes: the physical resource area of the user equipment according to the detection of the discovery signal, and the number of discovered resources and the physical The correspondence between the resource regions determines the number of discovery resources of the discovery signal.
  • the corresponding relationship between the number of discovered resources and the physical resource area is notified by the network device to the D2D user equipment by using downlink signaling or a broadcast message; or the corresponding relationship between the number of discovered resources and the physical resource area, It is pre-agreed by the user equipment and the transmitting user equipment of the discovery signal.
  • the user equipment determines the number of discovery resources used by the discovery signal according to the discovery resource set of the discovery sequence included in the discovery signal in the physical resource area, including:
  • the user equipment detects the number of discovery resources in the discovery resource set of the discovery sequence included in the discovery signal, and determines the number of discovery resources used by the discovery signal; or
  • the user equipment detects that the number of discovery resources in the discovery resource set of the discovery sequence included in the discovery signal is N, and selects K values in a value range greater than or equal to 1 and less than or equal to N, K number The value is determined as a possible value of the number of discovery resources used by the discovery signal, the K being an integer greater than or equal to 1 and less than or equal to N, the N being greater than one.
  • the K values are selected in the value range of greater than or equal to 1 and less than or equal to N, and the K values are determined as possible values of the number of discovery resources used by the discovery signal, and specifically include:
  • the user equipment selects K values included in the set S according to a possible value set S of the predefined number of discovered resources, and determines the K values in the range of values greater than or equal to 1 and less than or equal to N.
  • the user equipment performs the detection of the discovery signal according to the determined number of discovery resources, including: if the number of discovery resources of the discovery signal determined by the user equipment is a single value, based on the single The number of the discovery resources of the value, the detection of the discovery message of the discovery signal is performed in the physical resource area; or, if the number of discovery resources of the discovery signal determined by the user equipment is a plurality of possible values, Then, based on each possible value, detection of the discovery message of the discovery signal is performed in the physical resource region.
  • the detecting, by the user equipment, the discovery message of the discovery signal in the physical resource area, based on the value of the number of discovered resources, includes:
  • the detection of the discovery message of the discovery signal is separately performed on each discovery resource in the physical resource region;
  • the M discovery resources in the physical resource area are combined to perform detection of the discovery message of the discovery signal.
  • a first determining module configured to determine a physical resource region for detecting the discovery signal
  • a second determining module configured to determine, according to the first determining module, a physical resource region that detects the discovery signal, or a discovery resource set that detects a discovery sequence included in the discovery signal according to the physical resource region Determining, by the number of discovery resources used by the discovery signal, the number of discovery resources being the number of discovery resources used in a discovery period or in the physical resource area to send the same discovery signal;
  • a detecting module configured to perform detection of the discovery signal according to the determined number of discovered resources.
  • the physical resource area refers to a subframe set or a subband set or a PRB set.
  • the discovery resource refers to: a physical resource occupied by sending a discovery signal once.
  • the method further includes: a storage module, configured to store, when the number of discovery resources of the discovery signal is greater than 1, a plurality of discovery resources occupied by the discovery signal pre-agreed with the sending user equipment of the discovery signal Physical resource mapping relationship between.
  • the second determining module is specifically configured to determine the number of discovery resources of the discovery signal according to the physical resource region that detects the discovery signal and the corresponding relationship between the number of discovered resources and the physical resource region.
  • the user equipment further includes: a storage module, configured to store a corresponding relationship between the number of discovered resources and a physical resource area And the corresponding relationship between the number of the discovered resources and the physical resource area is notified by the network device to the D2D user equipment by using a downlink signaling or a broadcast message; or the corresponding relationship between the number of the discovered resources and the physical resource area is Pre-agreed by the user equipment and the transmitting user equipment of the discovery signal.
  • a storage module configured to store a corresponding relationship between the number of discovered resources and a physical resource area And the corresponding relationship between the number of the discovered resources and the physical resource area is notified by the network device to the D2D user equipment by using a downlink signaling or a broadcast message; or the corresponding relationship between the number of the discovered resources and the physical resource area is Pre-agreed by the user equipment and the transmitting user equipment of the discovery signal.
  • the second determining module is specifically configured to determine, by detecting the number of discovery resources in the discovery resource set of the discovery sequence included in the discovery signal, the number of discovery resources used by the discovery signal; or
  • the K values are selected within a range of values greater than or equal to 1 and less than or equal to N, and the K values are determined.
  • the K is an integer greater than or equal to 1 and less than or equal to N, and the N is greater than 1.
  • the second determining module is specifically configured to select the K included in the set S in a range of values greater than or equal to 1 and less than or equal to N according to the set of possible values S of the predefined number of discovered resources. A value that determines the K values as a possible value of the number of discovery resources used by the discovery signal.
  • the detecting module is specifically configured to: if the number of discovery resources of the discovery signal determined by the second determining module is a single value, based on the number of discovery resources of the single value, Detecting a discovery message of the discovery signal within a physical resource region; or
  • the number of discovery resources of the discovery signal determined by the second determining module is a plurality of possible values, performing discovery of the discovery signal in the physical resource region respectively based on each possible value Detection of the message.
  • the detecting module is specifically configured to: if the value of the discovery resource is 1, to perform detection of the discovery message of the discovery signal separately on each discovery resource in the physical resource region;
  • the M discovery resources in the physical resource area are combined to perform detection of the discovery message of the discovery signal.
  • the user equipment may determine the number of discovery resources used for the discovery signal, perform detection of the discovery signal according to the number of discovered resources, and do not blindly check all possible discovery resources, which is improved compared with the prior art. Loss of performance. Further, the complexity of user equipment detection can also be reduced. Further, the performance of the discovery signal transmission can also be improved by the combination of the same discovery signals on multiple discovery resources.
  • 1 is a schematic diagram of discovery resources of a D2D user equipment in the prior art
  • FIG. 2 is a schematic diagram of a D2D signal detection process according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a D2D signal detection process according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a D2D user equipment according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another D2D user equipment according to an embodiment of the present invention.
  • the embodiment of the present invention provides a D2D signal detection scheme.
  • the D2D user equipment determines the number of discovery resources used for the discovery signal according to the physical resource of the detection discovery signal or the detection result of the discovery sequence. The number of resources is found to detect the discovery signal.
  • FIG. 2 is a schematic diagram of a process for detecting a D2D signal according to an embodiment of the present invention, where the process may include:
  • Step 201 The user equipment determines a physical resource area that detects the discovery signal.
  • the user equipment here refers to a user equipment that discovers a user equipment, that is, a user equipment that receives a discovery signal.
  • the discovery signals herein may include discovery sequences and/or discovery messages.
  • the physical resource region of the discovery signal refers to a subframe set or a subband set or a PRB set of discovery signals.
  • the physical resource region may be a subband set or a physical resource block PRB set in the frequency domain, and may be a subframe set in the time domain, that is, one physical resource region may actually be a certain frequency domain resource and A physical resource pool that receives time domain resources.
  • the user equipment learns the physical resource area by receiving the downlink control signaling that is sent by the base station to indicate the physical resource area, or uses the predefined physical resource area for sending or receiving the discovery signal as the physical resource area for detecting the discovery signal. .
  • Step 202 The user equipment determines the number of discovery resources used by the discovery signal according to the physical resource area that detects the discovery signal.
  • the discovery resource refers to a physical resource occupied by sending a discovery signal once.
  • the number of discovery resources used for the discovery signal refers to the number of discovery resources used to transmit the same discovery signal in a discovery period or in the physical resource region, and the number of discovery resources is an integer greater than or equal to 1.
  • the implementation of the step 202 may be: the user equipment determines the number of discovery resources of the discovery signal according to the physical resource area of the discovery signal and the correspondence between the number of discovered resources and the physical resource area.
  • the corresponding relationship between the number of the discovered resources and the physical resource area may be notified to the user equipment by the network device by using downlink signaling or a broadcast message; or the corresponding relationship between the number of discovered resources and the physical resource area is also
  • the user equipment can be pre-agreed with the transmitting user equipment of the discovery signal.
  • the network device may notify the number of discovery resources corresponding to each physical resource region that the D2D user equipment needs to detect through downlink signaling or broadcast signaling.
  • the number of different discovered resources corresponds to different physical resources.
  • Source area Preferably, the number of different discovery resources corresponds to different subframes.
  • the number of discovery resources corresponding to the first two discovery sub-frames in the discovery period is equal to 2
  • the number of discovery resources corresponding to the discovery sub-frames other than the first two discovery sub-frames is equal to 1, for example,
  • the number of discovery resources corresponding to the third discovery subframe and the third discovery subframe is equal to one.
  • Step 203 The user equipment performs detection of the discovery signal according to the determined number of discovered resources.
  • the user equipment may perform the detection of the discovery signal according to the determined number of discovery resources, and may be implemented according to one of the following manners according to different values of the number of discovered resources:
  • the discovery resource is detected separately on the third discovery subframe of each discovery period. Discover the signal.
  • Mode B If the value of the number of resources is found to be M, and M is greater than 1, the M discovery resources in the physical resource area are combined to perform detection of the discovery signal.
  • the user equipment and the sending user equipment of the discovery signal pre-approve a physical resource mapping relationship between the plurality of discovery resources occupied by the discovery signal.
  • the discovery signal is detected by using the foregoing mode B, if the value of the discovery resource of the discovery signal determined by the user equipment is M (M>1), the multiple discovery resources occupied by the discovery signal are The physical resource mapping relationship is combined with the M discovery resources of the discovery signal to detect the discovery message of the discovery signal.
  • soft bits of the discovery message detected on the M discovery resources may be combined to obtain a final detection result.
  • the two discovery resources occupy the PRBs of two adjacent subframes, and the PRBs occupied in the two subframes have specific frequency domain hopping patterns.
  • the physical resource mapping relationship of the two discovery resources of the discovery signal is configured in advance on the user equipment for the discovery signal x.
  • the soft bits of the discovery message detected on the PRBs of the two adjacent subframes may be combined according to the mapping relationship to obtain the detection result of the discovery signal x.
  • the corresponding relationship between the number of discovered resources and the physical resources is still taken as an example: the number of discovered resources corresponding to the first two discovered subframes in the discovery period is equal to 2, and the first two discoveries are found in the discovery period. If the number of discovery resources corresponding to the other discovery sub-frames other than the sub-frame is equal to 1, the user equipment determines the number of discovery resources equal to 2 for the first discovery sub-frame in one discovery period according to steps 201-202. The number of discovered resources is equal to 2, and the number of discovered resources is equal to 1 for other discovered subframes.
  • the user equipment may perform detection of the discovery signal based on the number of discovery resources equal to 2 on the first discovery subframe and the second discovery subframe of one discovery period, and based on the other discovery subframes.
  • the number of found resources is equal to 1 to detect the discovery signal.
  • the user equipment can know the number of discovered resources used by the target discovery user equipment, from The detection signal is detected based on the number of discovered resources.
  • the information combining gain can be obtained through multiple discovery resources, and the number of all possible discovery resources is not blindly detected, which reduces the complexity of detection.
  • FIG. 3 is a schematic diagram of a D2D signal detection process according to another embodiment of the present invention, where the process may include:
  • Step 301 The user equipment determines a physical resource area that detects the discovery signal.
  • the user equipment here refers to a user equipment that discovers a user equipment, that is, a user equipment that receives a discovery signal.
  • the discovery signal herein includes at least a discovery sequence, optionally including a discovery message.
  • the discovery sequence of a discovery signal may be a unique sequence or multiple candidate sequences. If the latter, the user equipment needs to separately detect each candidate sequence.
  • the physical resource region of the discovery signal refers to a subframe set or a subband set or a PRB set of discovery signals.
  • the discovery resource refers to a physical resource occupied by sending a discovery signal once.
  • the number of discovery resources used for the discovery signal refers to the number of discovery resources used to transmit the same discovery signal in a discovery period or in the physical resource region, and the number of discovery resources is an integer greater than or equal to 1.
  • the physical resource area determined by the user equipment includes several discovery resources in a discovery period, that is, the user equipment detects the discovery sequence of the discovery signal on several discovery resources in one discovery period.
  • the physical resource area may include all discovery resources in a discovery period, or discovery resources on several subframes in the discovery period, or discovery resources on several sub-bands in the discovery period.
  • the user equipment may traverse all possible discovery sequences of the discovery signal, correlate with signals received on each discovery resource, and perform detection of the discovery sequence. For example, the user equipment detects the discovery sequence of the discovery signal on several discovery subframes within one discovery period.
  • the mapping relationship between the physical resources of the plurality of discovery resources of the same discovery signal is pre-defined on the user equipment, so that, in the process of detecting the discovery sequence of the discovery signal, the user equipment detects the discovery sequence, according to The mapping relationship is detected on other discovery resources that may have the discovery sequence.
  • the user equipment may perform a correlation operation on the signal generated by the discovery sequence and the received signal on the discovery resource that may exist in the discovery sequence to determine whether the discovery sequence exists on the corresponding discovery resource.
  • the user equipment detects a discovery sequence 1 on the discovery resource 1, the discovery sequence is detected on other discovery resources where the discovery sequence may exist.
  • the other discovery resources that may exist in the discovery sequence have an agreed resource mapping relationship with the discovery resource 1, for example, they occupy the same PRB on other discovery subframes other than the discovery resource 1.
  • the UE may perform a correlation operation on the signal generated by the discovery sequence 1 and the signal received on the same PRB of the other discovery subframe, and determine whether the discovery sequence exists on the physical resource according to the correlation.
  • Step 302 The user equipment determines the number of discovery resources used by the discovery signal according to the discovery resource set of the discovery sequence included in the discovery signal detected in the physical resource region.
  • the number of discovered resources is the number of discovery resources used to send a single discovery signal within one discovery period.
  • the user equipment when determining the number of discovery resources used by the discovery signal, the user equipment may be implemented in one of the following manners:
  • Manner 1 The user equipment detects the number of discovery resources in the discovery resource set of the discovery sequence included in the discovery signal, and determines the number of discovery resources used by the discovery signal. For example, if the user equipment detects a discovery sequence of a certain discovery signal in 2 subframes within one discovery period, the number of discovery resources used for the discovery signal is determined to be 2. For another example, if the user equipment detects a discovery sequence of a certain discovery signal on four PRBs in one discovery period, the number of discovery resources used for the discovery signal is determined to be four.
  • Manner 2 The user equipment detects that the number of discovery resources in the discovery resource set of the discovery sequence included in the discovery signal is N, and then selects K values in a range of values greater than or equal to 1 and less than or equal to N.
  • the K values are determined as possible values of the number of discovery resources used by the discovery signal, and the K is an integer greater than or equal to 1 and less than or equal to N, and the N is greater than 1.
  • the user equipment detects a discovery sequence of a discovery signal in two subframes within one discovery period, then 1 and 2 are taken as the discovery signal in the value interval of [1, 2].
  • the possible value of the number of resources For another example, if the user equipment detects a certain discovery signal on the four PRBs of a discovery period, 1, 2, and 4 are taken as the discovery resources used by the discovery signal in the value range of [1, 4].
  • the possible values of the number is the number of discovery resources in the discovery resource set of the discovery sequence included in the discovery signal is N, and then selects K values in a range
  • the integer value in the range of values may be used as the number of discovery resources used by the discovery signal, or
  • K values included in the set S are selected within a range of values greater than or equal to 1 and less than or equal to N, and the K values are determined as A possible value for the number of discovered resources used to discover the signal.
  • the set S ⁇ 1, 2, 4 ⁇ , in this case, three values of 1, 2, and 4 can be taken as the number of discovery resources used for the discovery signal.
  • N is the number of discovered resources in the discovery resource set
  • Step 303 The user equipment performs detection of the discovery signal according to the determined number of discovered resources.
  • the user equipment when the user equipment performs the detection of the discovery signal according to the determined number of discovered resources, the user equipment may adopt one of the following manners:
  • Detection mode 1 if the number of discovery resources of the discovery signal determined by the user equipment is a single value, the discovery message of the discovery signal is performed in the physical resource area based on the number of discovery resources of the single value Detection.
  • the number of discovery resources determined by the user equipment is 2
  • detection of the discovery message of the discovery signal is performed in the physical resource region based on the number of discovered resources (ie, 2).
  • Detection mode 2 if the number of discovery resources of the discovery signal determined by the user equipment is multiple possible values, performing the discovery signal in the physical resource region respectively based on each possible value Detection of discovery messages.
  • the user equipment may first base.
  • the detecting of the discovery message of the discovery signal is performed in the physical resource area. If the discovery message of the discovery signal is detected, the detection of the discovery signal of the discovery signal ends in the current discovery period, if not Detecting the discovery message of the discovery signal, proceeding to perform detection of the discovery message of the discovery signal in the physical resource region based on 2; if the discovery message of the discovery signal is detected when detecting based on 2, Detecting the discovery message of the discovery signal at the end of the current discovery period, if the discovery message of the discovery signal is not detected, proceeding to detect the discovery message of the discovery signal in the physical resource region based on 4; If the discovery message of the discovery signal is detected based on the detection of 4, the detection of the discovery message of the discovery signal ends in the current discovery period, otherwise the detection of the discovery signal of the discovery signal fails during the current discovery period, that is, The discovery message of the discovery signal is not detected in the current discovery period.
  • the user equipment when the user equipment uses the foregoing detection mode 1 or the detection mode 2 to detect the discovery signal, the user equipment may perform detection according to the determined value of the number of discovered resources:
  • the discovery signal is detected on the third discovery subframe of each discovery period.
  • Mode B If the value of the number of resources is found to be M, and M is greater than 1, the M discovery resources in the physical resource area are combined to perform detection of the discovery message of the discovery signal.
  • the user equipment can know the number of discovery resources used by the target discovery user equipment, so as to detect the discovery signal according to the number of discovered resources.
  • the information combining gain can be obtained through multiple discovery resources, and the number of all possible discovery resources is not blindly detected, which reduces the complexity of detection.
  • an embodiment of the present invention further provides a user equipment.
  • FIG. 4 is a schematic diagram of a structure of a user equipment according to an embodiment of the present invention.
  • the user equipment may include: a first determining module 401, a second determining module 402, and a detecting module 403, and further including a storage module 404, where :
  • a first determining module 401 configured to determine a physical resource area for detecting a discovery signal
  • a second determining module 402 configured to detect, according to the physical resource region of the discovery signal that is determined by the first determining module 401, or the discovery resource set that is detected by the discovery signal included in the physical resource region Determining, by the number of discovery resources used by the discovery signal, the number of discovery resources being the number of discovery resources used in a discovery period or in the physical resource area to send the same discovery signal;
  • the detecting module 403 is configured to perform detection of the discovery signal according to the number of discovery resources determined by the second determining module 402.
  • the physical resource area refers to a subframe set or a subband set or a PRB set.
  • the discovery resource refers to: a physical resource occupied by sending a discovery signal once.
  • the storage module 404 is configured to: when the number of discovery resources of the discovery signal is greater than 1, store a physical resource mapping between multiple discovery resources occupied by the discovery signal that is pre-agreed by the sending user equipment of the discovery signal. relationship.
  • the second determining module 402 is configured to determine the number of discovery resources of the discovery signal according to the physical resource region that detects the discovery signal and the corresponding relationship between the number of discovered resources and the physical resource region.
  • the storage module 404 is configured to store a correspondence between the number of the discovered resources and the physical resource area; the corresponding relationship between the number of the discovered resources and the physical resource area is notified by the network device to the D2D user by using downlink signaling or a broadcast message.
  • the corresponding relationship between the number of discovered resources and the physical resource area is pre-agreed by the user equipment and the sending user equipment of the discovery signal.
  • the second determining module 402 is specifically configured to determine, by detecting the number of discovery resources in the discovery resource set of the discovery sequence included in the discovery signal, the number of discovery resources used by the discovery signal; or, detecting the location If the number of discovery resources in the discovery resource set of the discovery sequence included in the discovery signal is N, then K values are selected within a range of values greater than or equal to 1 and less than or equal to N, and the K values are determined as the A possible value of the number of discovery resources used to find the signal, the K being an integer greater than or equal to 1 and less than or equal to N, the N being greater than one.
  • the second determining module 402 may be specifically configured to select K items included in the set S in a range of values greater than or equal to 1 and less than or equal to N according to a possible set of possible values S of the number of discovered resources. A value that determines the K values as a possible value of the number of discovery resources used by the discovery signal.
  • the detecting module 403 is specifically configured to: if the number of discovery resources of the discovery signal determined by the second determining module is a single value, the number of discovery resources based on the single value, in the physical resource region Detecting the discovery message of the discovery signal; or if the number of discovery resources of the discovery signal determined by the second determining module is a plurality of possible values, respectively, based on each possible value The detection of the discovery message of the discovery signal is performed within the physical resource region.
  • the detecting module 403 may be specifically configured to: if the value of the discovery resource is 1, to perform detection of the discovery message of the discovery signal separately on each discovery resource in the physical resource region; If the value of the discovery resource is M, and M is greater than 1, the M discovery resources in the physical resource area are combined to detect the discovery message of the discovery signal.
  • FIG. 5 is a schematic diagram of another user equipment structure according to an embodiment of the present disclosure.
  • the user equipment may include:
  • the processor 600 the memory 620, the transceiver 610, the user interface 630, and the bus interface 640.
  • the processor 600 is configured to read a program in the memory 620 and perform the following process:
  • the discovery resource Determining, according to the physical resource region of the discovery signal, or the discovery resource set of the discovery sequence included in the discovery signal in the physical resource region, the number of discovery resources used by the discovery signal, the discovery resource The number is a discovery resource used to transmit the same discovery signal within one discovery period or within the physical resource region.
  • the detection of the discovery signal is performed according to the determined number of discovered resources.
  • the physical resource region refers to: a subframe set or a subband set or a physical resource block PRB set.
  • the discovery resource refers to a physical resource occupied by sending a discovery signal once.
  • the memory 620 is further configured to store, by the user equipment, the sending user equipment of the discovery signal, a plurality of discovery resources occupied by the discovery signal. Physical resource mapping relationship between.
  • the processor 600 determines the number of discovery resources used by the discovery signal according to the physical resource area of the detection discovery signal, which specifically includes:
  • the processor 600 determines the number of discovery resources of the discovery signal according to the physical resource region that detects the discovery signal and the corresponding relationship between the number of discovered resources and the physical resource region.
  • the correspondence between the number of the discovery resources and the physical resource area is notified by the network device to the transceiver 610 of the D2D user equipment by using downlink signaling or a broadcast message; or the number of discovered resources and physical resources
  • the correspondence between the areas is pre-agreed by the user equipment and the sending user equipment of the discovery signal and stored in the memory 620.
  • the processor 600 determines, according to the discovery resource set of the discovery sequence included in the discovery signal in the physical resource region, the number of discovery resources used by the discovery signal, including:
  • the processor 600 determines the number of discovery resources in the discovery resource set of the discovery sequence included in the discovery signal, and determines the number of discovery resources used by the discovery signal; or
  • the processor 600 detects that the number of discovery resources in the discovery resource set of the discovery sequence included in the discovery signal is N, and then selects K values in a range of values greater than or equal to 1 and less than or equal to N.
  • the K values are determined as possible values of the number of discovery resources used by the discovery signal, and the K is an integer greater than or equal to 1 and less than or equal to N, and the N is greater than 1.
  • the processor 600 selects K values in a range of values greater than or equal to 1 and less than or equal to N, and determines the K values as possible acquisitions of the number of discovery resources used by the discovery signal. Values, including:
  • the processor 600 selects K values included in the set S in a range of values greater than or equal to 1 and less than or equal to N according to the set of possible values S of the predefined number of discovered resources, and the K is The values are determined as possible values for the number of discovery resources used by the discovery signal.
  • the processor 600 performs the detection of the discovery signal according to the determined number of discovery resources, including:
  • the processor 600 determines whether the number of discovery resources of the discovery signal determined by the processor 600 is a single value. If the number of discovery resources of the discovery signal determined by the processor 600 is a single value, detecting the discovery message of the discovery signal in the physical resource region based on the number of discovery resources of the single value; or
  • the discovery message of the discovery signal is respectively performed in the physical resource region based on each possible value. Detection.
  • the processor 600 performs detection of the discovery message of the discovery signal in the physical resource area, based on the value of the number of discovered resources, including:
  • the processor 600 separately performs detection of the discovery message of the discovery signal on each discovery resource in the physical resource region;
  • the processor 600 performs detection of the discovery message of the discovery signal by combining the M discovery resources in the physical resource region.
  • bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 620.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • Bus interface 640 provides an interface.
  • Transceiver 610 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 in performing operations.
  • the user equipment can know the number of discovery resources used by the target discovery user equipment, and then perform detection of the discovery signal according to the number of discovered resources.
  • the information combining gain can be obtained through multiple discovery resources, and the number of all possible discovery resources is not blindly detected, which reduces the complexity of detection.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明公开了一种D2D信号检测方法及设备。本发明包括:用户设备确定检测发现信号的物理资源区域;所述用户设备根据检测所述发现信号的物理资源区域,或者根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数,所述发现资源数为一个发现周期内或者所述物理资源区域内发送同一发现信号所用的发现资源数量;所述用户设备根据确定的发现资源数,进行所述发现信号的检测。采用本发明可改善由于D2D信号检测所导致的性能损失,并可降低用户设备检测D2D信号的复杂度。

Description

一种D2D信号检测方法及设备
本申请要求在2013年12月6日提交中国专利局、申请号为201310658748.6、发明名称为“一种D2D信号检测方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种D2D信号检测方法及设备。
背景技术
D2D(Device-to-Device,设备到设备)即用户设备直通技术,是指邻近的用户设备可以在近距离范围内通过直连链路进行数据传输的方式,不需要通过中心节点(即基站)进行转发。
LTE D2D(长期演进D2D)技术是指工作在LTE(Long Term Evolution,长期演进)授权频段上的受LTE网络控制的D2D发现和通信过程。LTE D2D特性的引入将使LTE技术从单纯的无线移动蜂窝通信技术向着“通用连接技术(Universal Connectivity Technology)”的方向演进。
LTE D2D技术包括D2D发现和D2D通信两个方面,其中D2D发现是指一个D2D用户设备去发现附近的其他D2D UE。D2D用户设备间的发现靠发现信号来实现,发现信号包括发现序列和发现消息两部分,其中发现消息可以携带一定的识别信息,比如设备信息、应用信息、服务类型等,发现用户设备(即接收发现信号的用户设备)通过这些信息来识别被发现用户设备(即发送发现信号的用户设备)。发现信号中的发现消息通过发现资源来承载,一个发现资源可以用于发送一条完整的发现消息,一般包括若干个PRB(Physical Resource Block,物理资源块)的物理资源。
在D2D发现过程中,D2D用户设备需要知道接收资源区域,以用于其他D2D用户设备发现信号的接收,也需要知道发送资源区域用于自身发现信号的发送,由于硬件限制,D2D用户设备无法在一个子帧内同时进行发现信号的发送和接收。一般情况下,系统发现资源包括一个子帧集合或者PRB集合,以及该子帧集合或者PRB集合出现的周期,该周期即为系统发现周期,如图1所示。一个系统发现周期内可以包含若干子帧,每个子帧包含若干PRBs,一般情况下在网络覆盖内这些子帧或者PRB是连续的上行或者下行蜂窝资源(比如是连续的上行子帧)。在网络覆盖内,发现资源一般由基站进行配置,在网络覆盖外,发现资源一般预先定义好或者由簇头进行配置。
在每个发现周期内,D2D用户设备可以在不发送发现信号的子帧内都进行其他D2D用户设备的发现信号的检测。同时,在每个发现周期内,D2D用户设备可以用一个发现资 源来发送一条发现消息,也可以用多个发现资源来发送多条相同或者不同的发现消息。一个发现信号包含的发现序列和发现消息可以在相同的发现资源上发送,也可以使用不同的资源发送,但一般在一个发现周期内发现序列都与发现消息一起发送。如果发现序列可以使用多个序列,在接收端则要对多个序列分别进行检测,以确定当前所使用的发现序列。
现有技术用户设备无法确定发送端所使用的发现资源数,无法判断基于发现资源数进行检测,因此可能因为不匹配的发现资源数造成性能损失;如果用户设备对所有可能的发现资源数都进行盲检,则会造成检测复杂度的增加。
发明内容
本发明实施例提供了一种D2D信号检测方法及设备,用以改善性能损失。
本发明实施例提供的D2D信号检测方法,包括:
用户设备确定检测发现信号的物理资源区域;
所述用户设备根据检测所述发现信号的物理资源区域,或者根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数,所述发现资源数为一个发现周期内或者所述物理资源区域内发送同一发现信号所用的发现资源数量;
所述用户设备根据确定的发现资源数,进行所述发现信号的检测。
根据上述方法,所述物理资源区域是指子帧集合或子带集合或PRB集合。
根据上述方法,所述发现资源指:发送一次发现信号所占用的物理资源。
根据上述方法,若所述发现信号的发现资源数大于1,则所述用户设备与所述发现信号的发送用户设备预先约定所述发现信号占用的多个发现资源之间的物理资源映射关系。
根据上述方法,所述用户设备根据检测发现信号的物理资源区域,确定发现信号所用的发现资源数,具体包括:所述用户设备根据检测所述发现信号的物理资源区域,以及发现资源数与物理资源区域的对应关系,确定所述发现信号的发现资源数。
其中,所述发现资源数与物理资源区域的对应关系,是由网络设备通过下行信令或者广播消息通知给所述D2D用户设备的;或者,所述发现资源数与物理资源区域的对应关系,是由所述用户设备与所述发现信号的发送用户设备预先约定的。
根据上述方法,所述用户设备根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数,包括:
所述用户设备将检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量,确定为所述发现信号所用的发现资源数;或者
所述用户设备检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量为N,则在大于或等于1且小于或等于N的取值范围内选取K个数值,将所述K个数 值确定为所述发现信号所用的发现资源数的可能的取值,所述K为大于或等于1且小于或等于N的整数,所述N大于1。
其中,在大于或等于1且小于或等于N的取值范围内选取K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值,具体包括:所述用户设备按照预定义的发现资源数的可能取值集合S,在大于或等于1且小于或等于N的取值范围内选取出包含在集合S内的K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值。
根据上述方法,所述用户设备根据确定的发现资源数,进行所述发现信号的检测,包括:如果所述用户设备确定出的所述发现信号的发现资源数为单个数值,则基于所述单个数值的发现资源数,在所述物理资源区域内进行所述发现信号的发现消息的检测;或者,如果所述用户设备确定出的所述发现信号的发现资源数为多个可能的取值,则基于每个可能的取值,分别在所述物理资源区域内进行所述发现信号的发现消息的检测。
其中,用户设备基于发现资源数的取值,在所述物理资源区域内进行所述发现信号的发现消息的检测,包括:
如果所述发现资源数的取值为1,则在所述物理资源区域内的每个发现资源上单独进行所述发现信号的发现消息的检测;
如果所述发现资源数的取值为M,M大于1,则联合所述物理资源区域内的M个发现资源进行所述发现信号的发现消息的检测。
本发明实施例提供的用户设备,包括:
第一确定模块,用于确定检测发现信号的物理资源区域;
第二确定模块,用于根据所述第一确定模块确定出的检测所述发现信号的物理资源区域,或者根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数,所述发现资源数为一个发现周期内或者所述物理资源区域内发送同一发现信号所用的发现资源数量;
检测模块,用于根据确定的发现资源数,进行所述发现信号的检测。
根据上述用户设备,所述物理资源区域是指子帧集合或子带集合或PRB集合。
根据上述用户设备,所述发现资源指:发送一次发现信号所占用的物理资源。
根据上述用户设备,还包括:存储模块,用于在所述发现信号的发现资源数大于1时,存储与所述发现信号的发送用户设备预先约定的所述发现信号占用的多个发现资源之间的物理资源映射关系。
根据上述用户设备,所述第二确定模块,具体用于根据检测所述发现信号的物理资源区域,以及发现资源数与物理资源区域的对应关系,确定所述发现信号的发现资源数。
上述用户设备还包括:存储模块,用于存储所述发现资源数与物理资源区域的对应关 系;所述发现资源数与物理资源区域的对应关系是由网络设备通过下行信令或者广播消息通知给所述D2D用户设备的;或者,所述发现资源数与物理资源区域的对应关系,是由所述用户设备与所述发现信号的发送用户设备预先约定的。
根据上述用户设备,所述第二确定模块,具体用于将检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量,确定为所述发现信号所用的发现资源数;或者
检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量为N,则在大于或等于1且小于或等于N的取值范围内选取K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值,所述K为大于或等于1且小于或等于N的整数,所述N大于1。
其中,所述第二确定模块,具体用于按照预定义的发现资源数的可能取值集合S,在大于或等于1且小于或等于N的取值范围内选取出包含在集合S内的K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值。
根据上述用户设备,所述检测模块,具体用于,如果所述第二确定模块确定出的所述发现信号的发现资源数为单个数值,则基于所述单个数值的发现资源数,在所述物理资源区域内进行所述发现信号的发现消息的检测;或者
如果所述第二确定模块确定出的所述发现信号的发现资源数为多个可能的取值,则基于每个可能的取值,分别在所述物理资源区域内进行所述发现信号的发现消息的检测。
其中,所述检测模块,具体用于如果所述发现资源数的取值为1,则在所述物理资源区域内的每个发现资源上单独进行所述发现信号的发现消息的检测;
如果所述发现资源数的取值为M,M大于1,则联合所述物理资源区域内的M个发现资源进行所述发现信号的发现消息的检测。
本发明的上述实施例中,用户设备可确定出发现信号所用的发现资源数,根据该发现资源数进行发现信号的检测,不用盲检所有可能的发现资源数,与现有技术相比,改善了性能损失。进一步的,还可降低用户设备检测的复杂度。进一步的,通过多个发现资源上同一的发现信号的合并,还可以改善发现信号传输的性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中D2D用户设备的发现资源示意图;
图2为本发明的一个实施例提供的D2D信号检测流程示意图;
图3为本发明的另一实施例提供的D2D信号检测流程示意图;
图4为本发明实施例提供的一种D2D用户设备的结构示意图;
图5为本发明实施例提供的另一种D2D用户设备的结构示意图。
具体实施方式
本发明实施例给出了一种D2D信号检测方案,在本发明实施例中,D2D用户设备根据检测发现信号的物理资源,或者根据发现序列的检测结果,确定发现信号所用的发现资源数,基于发现资源数进行发现信号的检测。
下面结合附图对本发明实施例进行详细描述。
参见图2,为本发明实施例提供的一种D2D信号的检测流程示意图,该流程可包括:
步骤201:用户设备确定检测发现信号的物理资源区域。
这里的用户设备是指发现用户设备,即接收发现信号的用户设备。这里的发现信号可包括发现序列和/或发现消息。
发现信号的物理资源区域是指:发现信号的子帧集合或子带集合或PRB集合。
需要说明的是,物理资源区域在频域上可以是子带集合或者物理资源块PRB集合,在时域上可以是子帧集合,即一个物理资源区域实际上可以是一个包含一定频域资源和时域资源的接收物理资源池。
具体的,用户设备通过接收基站端发送的指示物理资源区域的下行控制信令来获知物理资源区域,或者将预定义的用于发送或者接收发现信号的物理资源区域作为检测发现信号的物理资源区域。
步骤202:所述用户设备根据检测所述发现信号的物理资源区域,确定所述发现信号所用的发现资源数。
所述发现资源是指:发送一次发现信号所占用的物理资源。发现信号所用的发现资源数是指:一个发现周期内或者所述物理资源区域内发送同一发现信号所用的发现资源数量,所述发现资源数为大于或等于1的整数。
优选的,步骤202的实现方式可以是:所述用户设备根据检测所述发现信号的物理资源区域,以及发现资源数与物理资源区域的对应关系,确定所述发现信号的发现资源数。
优选的,所述发现资源数与物理资源区域的对应关系,可以由网络设备通过下行信令或者广播消息通知给所述用户设备;或者,所述发现资源数与物理资源区域的对应关系,也可以由所述用户设备与所述发现信号的发送用户设备预先约定。
例如,网络设备可以通过下行信令或者广播信令通知D2D用户设备需要检测的每个物理资源区域所对应的发现资源数。
所述发现资源数与物理资源区域的对应关系中,不同的发现资源数对应不同的物理资 源区域。优选的,不同发现资源数对应不同的子帧。比如,可以进行如下预定:发现周期内的前两个发现子帧对应的发现资源数等于2,发现周期内除前两个发现子帧以外的其他发现子帧对应的发现资源数等于1,比如第三个发现子帧和第三个发现子帧对应的发现资源数等于1。
步骤203:所述用户设备根据确定出的发现资源数,进行所述发现信号的检测。
优选的,用户设备在根据确定的发现资源数进行所述发现信号的检测时,可根据发现资源数的取值不同,采用如下方式中的一种来实现:
方式A:如果发现资源数的取值为1,则在所述物理资源区域内的每个发现资源上单独进行所述发现信号的检测。
比如,如果对应于发现周期内的第三个发现子帧确定出的发现信号的发现资源数取值为1,则在每个发现周期的第三个发现子帧上的每个发现资源单独检测发现信号。
方式B:如果发现资源数的取值为M,M大于1,则联合所述物理资源区域内的M个发现资源进行所述发现信号的检测。
具体来说,如果所述发现信号的发现资源数大于1,则所述用户设备与所述发现信号的发送用户设备预先约定所述发现信号占用的多个发现资源之间的物理资源映射关系。这样,在采用上述方式B进行发现信号检测时,如果用户设备确定出的发现信号的发现资源数的取值为M(M>1),则根据该发现信号占用的多个发现资源之间的物理资源映射关系,联合该发现信号的M个发现资源对所述发现信号的发现消息进行检测。具体实现时,可以将M个发现资源上检测到的发现消息的软比特进行合并,得到最终的检测结果。
举例来说,如果对于发现信号x,其占用两个发现资源,该两个发现资源占用两个相邻子帧的PRB,且两个子帧内占用的PRB具体有固定的频域跳频图样,在用户设备上预先针对发现信号x配置了该发现信号的两个发现资源的物理资源映射关系。这样在针对发现信号x进行检测时,可根据该映射关系,将在这两个相邻子帧的PRB上检测到的发现消息的软比特进行合并,得到该发现信号x的检测结果。
在一种应用场景中,仍以上述预定的发现资源数与物理资源的对应关系为例:发现周期内的前两个发现子帧对应的发现资源数等于2,发现周期内除前两个发现子帧以外的其他发现子帧对应的发现资源数等于1,则根据步骤201~202,用户设备对于一个发现周期内的第一个发现子帧,确定出的发现资源数等于2,对于第二个发现子帧,确定出的发现资源数等于2,对于其他发现子帧,确定出的发现资源数等于1。这样在步骤203中,用户设备可以在一个发现周期的第一个发现子帧和第二个发现子帧上基于发现资源数取值等于2来进行发现信号的检测,在其他发现子帧上基于发现资源数等于1来进行发现信号的检测。
通过以上描述可以看出,用户设备可以获知目标发现用户设备使用的发现资源数,从 而根据发现资源数进行发现信号的检测。一方面可以通过多个发现资源获得信息合并增益,又不用盲检所有可能的发现资源数,降低了检测的复杂度。
参见图3,为本发明的另一实施例提供的D2D信号检测流程示意图,该流程可包括:
步骤301:用户设备确定检测发现信号的物理资源区域。
这里的用户设备是指发现用户设备,即接收发现信号的用户设备。这里的发现信号至少包括发现序列,可选地包括发现消息。一个发现信号的发现序列可以是唯一的序列,也可以是多个候选序列,如果是后者,则用户设备需要对每个候选序列分别进行检测。
发现信号的物理资源区域是指:发现信号的子帧集合或子带集合或PRB集合。
所述发现资源是指:发送一次发现信号所占用的物理资源。发现信号所用的发现资源数是指:一个发现周期内或者所述物理资源区域内发送同一发现信号所用的发现资源数量,所述发现资源数为大于或等于1的整数。
该步骤中,用户设备确定出的物理资源区域包括一个发现周期内的若干个发现资源,即该用户设备在一个发现周期内的若干个发现资源上对所述发现信号的发现序列进行检测。比如,物理资源区域可以包含一个发现周期内是所有发现资源,或者发现周期内的若干个子帧上的发现资源,或者发现周期内的若干子带上的发现资源。具体的,用户设备可遍历所述发现信号的所有可能的发现序列,与各个发现资源上接收到的信号进行相关,进行发现序列的检测。比如,用户设备在一个发现周期内的若干发现子帧上对所述发现信号的发现序列进行检测。
优选的,用户设备上预先约定同一发现信号的多个发现资源的物理资源之间的映射关系,这样,用户设备在对发现信号的发现序列进行检测的过程中,当检测到发现序列后,根据该映射关系在其他可能存在该发现序列的发现资源上对该发现序列进行检测。具体的,用户设备可以将该发现序列生成的信号与所述其他可能存在该发现序列的发现资源上的接收信号进行相关操作,以确定相应发现资源上是否存在该发现序列。
举例来说,假设用户设备在发现资源1上检测到某发现序列1,则在其他可能存在该发现序列的发现资源上检测该发现序列。其中其他可能存在该发现序列的发现资源与发现资源1具有约定的资源映射关系,比如他们占用发现资源1以外的其他发现子帧上的相同PRB。具体的,UE可以将发现序列1生成的信号与其他发现子帧的相同PRB上接收到的信号进行相关操作,根据相关接过以确定所述物理资源上是否存在该发现序列。
步骤302:所述用户设备根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数。
发现资源数为一个发现周期内发送单个发现信号所用的发现资源数量。
优选的,用户设备在确定所述发现信号所用的发现资源数时,可以采用如下方式中的一种来实现:
方式一:用户设备将检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量,确定为所述发现信号所用的发现资源数。举例来说,如果用户设备在一个发现周期内的2个子帧上检测到某个发现信号的发现序列,则将该发现信号所用的发现资源数确定为2。再举例来说,如果用户设备在一个发现周期内的4个PRB上检测到某个发现信号的发现序列,则将该发现信号所用的发现资源数确定为4。
方式二:用户设备检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量为N,则在大于或等于1且小于或等于N的取值范围内选取K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值,所述K为大于或等于1且小于或等于N的整数,所述N大于1。举例来说,如果用户设备在一个发现周期内的2个子帧上检测到某个发现信号的发现序列,则在[1,2]的取值区间内取1和2作为该发现信号所用的发现资源数的可能取值。再举例来说,如果用户设备在一个发现周期的4个PRB上检测到某个发现信号,则在[1,4]的取值区间内取1、2、4作为该发现信号所用的发现资源数的可能取值。
优选的,用户设备在从大于或等于1且小于或等于N的取值范围内选取K个数值时,可以将该取值范围内的整数值均作为该发现信号所用的发现资源数,也可以按照预定义的发现资源数的可能取值集合S,在大于或等于1且小于或等于N的取值范围内选取出包含在集合S内的K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值。比如,集合S={1,2,4},此种情况下,可取1、2、4三个值作为该发现信号所用的发现资源数。再比如,如果预先约定选取的发现资源数为1、2、4,N=2(N为发现资源集合内的发现资源数量),则在[1,2]的取值范围内,取1、2两个值作为该发现信号所用的发现资源数。
步骤303:所述用户设备根据确定出的发现资源数,进行所述发现信号的检测。
优选的,用户设备在根据确定的发现资源数进行所述发现信号的检测时,可采用如下方式中的一种来实现:
检测方式一:如果所述用户设备确定出的所述发现信号的发现资源数为单个数值,则基于所述单个数值的发现资源数,在所述物理资源区域内进行所述发现信号的发现消息的检测。
举例来说,如果用户设备确定出的发现资源数为2,则基于该发现资源数(即2),在所述物理资源区域内进行所述发现信号的发现消息的检测。
检测方式二:如果所述用户设备确定出的所述发现信号的发现资源数为多个可能的取值,则基于每个可能的取值,分别在所述物理资源区域内进行所述发现信号的发现消息的检测。
举例来说,如果用户设备确定出的发现资源数包括1、2、4,则该用户设备可首先基 于1,在所述物理资源区域内进行所述发现信号的发现消息的检测,如果检测到所述发现信号的发现消息,则在当前发现周期结束所述发现信号的发现消息的检测,如果未检测到所述发现信号的发现消息,则继续基于2,在所述物理资源区域内进行所述发现信号的发现消息的检测;如果基于2进行检测时检测到所述发现信号的发现消息,则在当前发现周期结束所述发现信号的发现消息的检测,如果未检测到所述发现信号的发现消息,则继续基于4,在所述物理资源区域内进行所述发现信号的发现消息的检测;如果基于4进行检测时检测到所述发现信号的发现消息,则在当前发现周期结束所述发现信号的发现消息的检测,否则在当前发现周期对所述发现信号的发现消息检测失败,即在当前发现周期未检测到所述发现信号的发现消息。
优选的,用户设备采用上述检测方式一或检测方式二进行发现信号的检测时,可根据确定出的发现资源数的取值,采用以下方式中的一种进行检测:
方式A:如果发现资源数的取值为1,则在所述物理资源区域内的每个发现资源上单独进行所述发现信号的检测。
比如,如果对应于发现周期内的第三个发现子帧确定出的发现信号的发现资源数取值为1,则在每个发现周期的第三个发现子帧上检测到该发现信号。
方式B:如果发现资源数的取值为M,M大于1,则联合所述物理资源区域内的M个发现资源进行所述发现信号的发现消息的检测。
通过以上描述可以看出,用户设备可以获知目标发现用户设备使用的发现资源数,从而根据发现资源数进行发现信号的检测。一方面可以通过多个发现资源获得信息合并增益,又不用盲检所有可能的发现资源数,降低了检测的复杂度。
基于相同的技术构思,本发明实施例还提供了一种用户设备。
参见图4,为本发明实施例提供的一种用户设备结构的示意图,该用户设备可包括:第一确定模块401、第二确定模块402、检测模块403,还可进一步包括存储模块404,其中:
第一确定模块401,用于确定检测发现信号的物理资源区域;
第二确定模块402,用于根据第一确定模块401确定出的检测所述发现信号的物理资源区域,或者根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数,所述发现资源数为一个发现周期内或者所述物理资源区域内发送同一发现信号所用的发现资源数量;
检测模块403,用于根据第二确定模块402确定的发现资源数,进行所述发现信号的检测。
具体的,所述物理资源区域是指子帧集合或子带集合或PRB集合。
具体的,所述发现资源指:发送一次发现信号所占用的物理资源。
具体的,存储模块404可用于在所述发现信号的发现资源数大于1时,存储与所述发现信号的发送用户设备预先约定的所述发现信号占用的多个发现资源之间的物理资源映射关系。
具体的,第二确定模块402可用于根据检测所述发现信号的物理资源区域,以及发现资源数与物理资源区域的对应关系,确定所述发现信号的发现资源数。
其中,存储模块404用于存储所述发现资源数与物理资源区域的对应关系;所述发现资源数与物理资源区域的对应关系是由网络设备通过下行信令或者广播消息通知给所述D2D用户设备的;或者,所述发现资源数与物理资源区域的对应关系,是由所述用户设备与所述发现信号的发送用户设备预先约定的。
具体的,第二确定模块402可具体用于将检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量,确定为所述发现信号所用的发现资源数;或者,检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量为N,则在大于或等于1且小于或等于N的取值范围内选取K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值,所述K为大于或等于1且小于或等于N的整数,所述N大于1。
其中,第二确定模块402可具体用于按照预定义的发现资源数的可能取值集合S,在大于或等于1且小于或等于N的取值范围内选取出包含在集合S内的K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值。
具体的,检测模块403可具体用于:如果所述第二确定模块确定出的所述发现信号的发现资源数为单个数值,则基于所述单个数值的发现资源数,在所述物理资源区域内进行所述发现信号的发现消息的检测;或者,如果所述第二确定模块确定出的所述发现信号的发现资源数为多个可能的取值,则基于每个可能的取值,分别在所述物理资源区域内进行所述发现信号的发现消息的检测。
其中,检测模块403可具体用于如果所述发现资源数的取值为1,则在所述物理资源区域内的每个发现资源上单独进行所述发现信号的发现消息的检测;如果所述发现资源数的取值为M,M大于1,则联合所述物理资源区域内的M个发现资源进行所述发现信号的发现消息的检测。
参见图5,为本发明实施例提供的另一种用户设备结构的示意图,该用户设备可包括:
处理器600、存储器620、收发机610、用户接口630、总线接口640。
处理器600,用于读取存储器620中的程序,执行下列过程:
确定检测发现信号的物理资源区域;
根据检测所述发现信号的物理资源区域,或者根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数,所述发现资源数为一个发现周期内或者所述物理资源区域内发送同一发现信号所用的发现资源 数量;
根据确定的发现资源数,进行所述发现信号的检测。
较佳地,所述物理资源区域是指:子帧集合或子带集合或物理资源块PRB集合。
较佳地,所述发现资源指:发送一次发现信号所占用的物理资源。
较佳地,若所述发现信号的发现资源数大于1,则所述存储器620还用于存储该用户设备与所述发现信号的发送用户设备预先约定所述发现信号占用的多个发现资源之间的物理资源映射关系。
较佳地,所述处理器600根据检测发现信号的物理资源区域,确定发现信号所用的发现资源数,具体包括:
所述处理器600根据检测所述发现信号的物理资源区域,以及发现资源数与物理资源区域的对应关系,确定所述发现信号的发现资源数。
较佳地,所述发现资源数与物理资源区域的对应关系,是由网络设备通过下行信令或者广播消息通知给所述D2D用户设备的收发机610;或者,所述发现资源数与物理资源区域的对应关系,是由所述用户设备与所述发现信号的发送用户设备预先约定并存储在所述存储器620中的。
较佳地,所述处理器600根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数,包括:
所述处理器600将检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量,确定为所述发现信号所用的发现资源数;或者
所述处理器600检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量为N,则在大于或等于1且小于或等于N的取值范围内选取K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值,所述K为大于或等于1且小于或等于N的整数,所述N大于1。
较佳地,所述处理器600在大于或等于1且小于或等于N的取值范围内选取K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值,具体包括:
所述处理器600按照预定义的发现资源数的可能取值集合S,在大于或等于1且小于或等于N的取值范围内选取出包含在集合S内的K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值。
较佳地,所述处理器600根据确定的发现资源数,进行所述发现信号的检测,包括:
如果所述处理器600确定出的所述发现信号的发现资源数为单个数值,则基于所述单个数值的发现资源数,在所述物理资源区域内进行所述发现信号的发现消息的检测;或者
如果所述处理器600确定出的所述发现信号的发现资源数为多个可能的取值,则基于每个可能的取值,分别在所述物理资源区域内进行所述发现信号的发现消息的检测。
较佳地,所述处理器600基于发现资源数的取值,在所述物理资源区域内进行所述发现信号的发现消息的检测,包括:
如果所述发现资源数的取值为1,则所述处理器600在所述物理资源区域内的每个发现资源上单独进行所述发现信号的发现消息的检测;
如果所述发现资源数的取值为M,M大于1,则所述处理器600联合所述物理资源区域内的M个发现资源进行所述发现信号的发现消息的检测。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口640提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
综上所述,通过本发明实施例,用户设备可以获知目标发现用户设备使用的发现资源数,从而根据发现资源数进行发现信号的检测。一方面可以通过多个发现资源获得信息合并增益,又不用盲检所有可能的发现资源数,降低了检测的复杂度。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种设备到设备D2D信号检测方法,其特征在于,包括:
    用户设备确定检测发现信号的物理资源区域;
    所述用户设备根据检测所述发现信号的物理资源区域,或者根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数,所述发现资源数为一个发现周期内或者所述物理资源区域内发送同一发现信号所用的发现资源数量;
    所述用户设备根据确定的发现资源数,进行所述发现信号的检测。
  2. 如权利要求1所述的方法,其特征在于,所述物理资源区域是指:子帧集合或子带集合或物理资源块PRB集合。
  3. 如权利要求1所述的方法,其特征在于,所述发现资源指:发送一次发现信号所占用的物理资源。
  4. 如权利要求1所述的方法,其特征在于,若所述发现信号的发现资源数大于1,则所述用户设备与所述发现信号的发送用户设备预先约定所述发现信号占用的多个发现资源之间的物理资源映射关系。
  5. 如权利要求1所述的方法,其特征在于,所述用户设备根据检测发现信号的物理资源区域,确定发现信号所用的发现资源数,具体包括:
    所述用户设备根据检测所述发现信号的物理资源区域,以及发现资源数与物理资源区域的对应关系,确定所述发现信号的发现资源数。
  6. 如权利要求5所述的方法,其特征在于,所述发现资源数与物理资源区域的对应关系,是由网络设备通过下行信令或者广播消息通知给所述D2D用户设备的;或者,所述发现资源数与物理资源区域的对应关系,是由所述用户设备与所述发现信号的发送用户设备预先约定的。
  7. 如权利要求1所述的方法,其特征在于,所述用户设备根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数,包括:
    所述用户设备将检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量,确定为所述发现信号所用的发现资源数;或者
    所述用户设备检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量为N,则在大于或等于1且小于或等于N的取值范围内选取K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值,所述K为大于或等于1且小于或等于N的整数,所述N大于1。
  8. 如权利要求7所述的方法,其特征在于,在大于或等于1且小于或等于N的取值范围内选取K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值,具体包括:
    所述用户设备按照预定义的发现资源数的可能取值集合S,在大于或等于1且小于或等于N的取值范围内选取出包含在集合S内的K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述用户设备根据确定的发现资源数,进行所述发现信号的检测,包括:
    如果所述用户设备确定出的所述发现信号的发现资源数为单个数值,则基于所述单个数值的发现资源数,在所述物理资源区域内进行所述发现信号的发现消息的检测;或者
    如果所述用户设备确定出的所述发现信号的发现资源数为多个可能的取值,则基于每个可能的取值,分别在所述物理资源区域内进行所述发现信号的发现消息的检测。
  10. 如权利要求9所述的方法,其特征在于,用户设备基于发现资源数的取值,在所述物理资源区域内进行所述发现信号的发现消息的检测,包括:
    如果所述发现资源数的取值为1,则在所述物理资源区域内的每个发现资源上单独进行所述发现信号的发现消息的检测;
    如果所述发现资源数的取值为M,M大于1,则联合所述物理资源区域内的M个发现资源进行所述发现信号的发现消息的检测。
  11. 一种用户设备,其特征在于,包括:
    第一确定模块,用于确定检测发现信号的物理资源区域;
    第二确定模块,用于根据所述第一确定模块确定出的检测所述发现信号的物理资源区域,或者根据在所述物理资源区域内检测到所述发现信号包含的发现序列的发现资源集合,确定所述发现信号所用的发现资源数,所述发现资源数为一个发现周期内或者所述物理资源区域内发送同一发现信号所用的发现资源数量;
    检测模块,用于根据确定的发现资源数,进行所述发现信号的检测。
  12. 如权利要求11所述的用户设备,其特征在于,所述物理资源区域是指:子帧集合或子带集合或物理资源块PRB集合。
  13. 如权利要求11所述的用户设备,其特征在于,所述发现资源指:发送一次发现信号所占用的物理资源。
  14. 如权利要求11所述的用户设备,其特征在于,还包括:
    存储模块,用于在所述发现信号的发现资源数大于1时,存储与所述发现信号的发送用户设备预先约定的所述发现信号占用的多个发现资源之间的物理资源映射关系。
  15. 如权利要求11所述的用户设备,其特征在于,所述第二确定模块,具体用于根据 检测所述发现信号的物理资源区域,以及发现资源数与物理资源区域的对应关系,确定所述发现信号的发现资源数。
  16. 如权利要求15所述的用户设备,其特征在于,还包括:
    存储模块,用于存储所述发现资源数与物理资源区域的对应关系;所述发现资源数与物理资源区域的对应关系是由网络设备通过下行信令或者广播消息通知给所述D2D用户设备的;或者,所述发现资源数与物理资源区域的对应关系,是由所述用户设备与所述发现信号的发送用户设备预先约定的。
  17. 如权利要求11所述的用户设备,其特征在于,所述第二确定模块,具体用于将检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量,确定为所述发现信号所用的发现资源数;或者
    检测到所述发现信号包含的发现序列的发现资源集合内的发现资源数量为N,则在大于或等于1且小于或等于N的取值范围内选取K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值,所述K为大于或等于1且小于或等于N的整数。
  18. 如权利要求17所述的用户设备,其特征在于,所述第二确定模块,具体用于按照预定义的发现资源数的可能取值集合S,在大于或等于1且小于或等于N的取值范围内选取出包含在集合S内的K个数值,将所述K个数值确定为所述发现信号所用的发现资源数的可能的取值,所述N大于1。
  19. 如权利要求11-18中任一项所述的用户设备,其特征在于,所述检测模块,具体用于,如果所述第二确定模块确定出的所述发现信号的发现资源数为单个数值,则基于所述单个数值的发现资源数,在所述物理资源区域内进行所述发现信号的发现消息的检测;或者
    如果所述第二确定模块确定出的所述发现信号的发现资源数为多个可能的取值,则基于每个可能的取值,分别在所述物理资源区域内进行所述发现信号的发现消息的检测。
  20. 如权利要求19所述的用户设备,其特征在于,所述检测模块,具体用于如果所述发现资源数的取值为1,则在所述物理资源区域内的每个发现资源上单独进行所述发现信号的发现消息的检测;
    如果所述发现资源数的取值为M,M大于1,则联合所述物理资源区域内的M个发现资源进行所述发现信号的发现消息的检测。
PCT/CN2014/093030 2013-12-06 2014-12-04 一种d2d信号检测方法及设备 WO2015081871A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167016056A KR101802836B1 (ko) 2013-12-06 2014-12-04 D2d 신호 검출 방법 및 장치
EP14867268.6A EP3079395B1 (en) 2013-12-06 2014-12-04 D2d signal detecting method and device
JP2016536932A JP6349397B2 (ja) 2013-12-06 2014-12-04 D2d信号の検出方法及び装置
US15/102,475 US10200845B2 (en) 2013-12-06 2014-12-04 D2D signal detecting method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310658748.6A CN104703200B (zh) 2013-12-06 2013-12-06 一种d2d信号检测方法及设备
CN201310658748.6 2013-12-06

Publications (1)

Publication Number Publication Date
WO2015081871A1 true WO2015081871A1 (zh) 2015-06-11

Family

ID=53272900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093030 WO2015081871A1 (zh) 2013-12-06 2014-12-04 一种d2d信号检测方法及设备

Country Status (6)

Country Link
US (1) US10200845B2 (zh)
EP (1) EP3079395B1 (zh)
JP (1) JP6349397B2 (zh)
KR (1) KR101802836B1 (zh)
CN (1) CN104703200B (zh)
WO (1) WO2015081871A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10536940B2 (en) * 2016-01-12 2020-01-14 Nokia Solutions And Networks Oy Discovery signal block mapping

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120269115A1 (en) * 2011-04-22 2012-10-25 Qualcomm Incorporated Methods and apparatus for adaptive resource multiplexing in a peer-to-peer network
CN102857901A (zh) * 2012-09-12 2013-01-02 中兴通讯股份有限公司 终端的发现、发现处理方法及装置
CN103118417A (zh) * 2013-01-21 2013-05-22 华为技术有限公司 信息传输方法和用户设备
CN103338497A (zh) * 2013-06-14 2013-10-02 北京交通大学 一种d2d通信系统中自主设备发现方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2173075B1 (en) * 2005-04-29 2013-06-05 Sony Deutschland GmbH Receiving device and communication method for an OFDM communication system with a new preamble structure
US8121097B2 (en) * 2008-11-04 2012-02-21 Qualcomm Incorporated Transmission with hopping for peer-peer communication
US20130010618A1 (en) * 2011-07-07 2013-01-10 Qualcomm Incorporated Methods and apparatus for providing flexibility in peer discovery range and frequency of updates
US20140254429A1 (en) * 2011-10-02 2014-09-11 Broadcom Corporation Signaling for device-to-device wireless communication
KR20130040749A (ko) 2011-10-14 2013-04-24 한국전자통신연구원 디바이스 간 직접 링크를 이용한 피어 디스커버리 방법
US10034317B2 (en) * 2011-10-24 2018-07-24 Lg Electronics Inc. Method for allowing base station to support device-to-device (D2D) communication in wireless communication system, and method for allowing D2D device to efficiently transmit D2D communication request signal
US9084073B2 (en) * 2012-05-08 2015-07-14 Qualcomm Incorporated Methods and apparatus for index based peer discovery
WO2013191609A1 (en) * 2012-06-19 2013-12-27 Telefonaktiebolaget Lm Ericsson Method and arrangement for d2d discovery
US20140153509A1 (en) * 2012-11-30 2014-06-05 Innovative Sonic Corporation Method and apparatus for establishing proximity service communication in a wireless communication system
CN103179669B (zh) * 2013-04-22 2015-08-19 西安电子科技大学 一种长期演进系统中d2d通信的资源分配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120269115A1 (en) * 2011-04-22 2012-10-25 Qualcomm Incorporated Methods and apparatus for adaptive resource multiplexing in a peer-to-peer network
CN102857901A (zh) * 2012-09-12 2013-01-02 中兴通讯股份有限公司 终端的发现、发现处理方法及装置
CN103118417A (zh) * 2013-01-21 2013-05-22 华为技术有限公司 信息传输方法和用户设备
CN103338497A (zh) * 2013-06-14 2013-10-02 北京交通大学 一种d2d通信系统中自主设备发现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3079395A4 *

Also Published As

Publication number Publication date
KR101802836B1 (ko) 2017-11-29
JP2016540442A (ja) 2016-12-22
EP3079395A4 (en) 2016-12-14
CN104703200B (zh) 2018-04-17
US20160316352A1 (en) 2016-10-27
EP3079395B1 (en) 2020-08-12
KR20160086928A (ko) 2016-07-20
EP3079395A1 (en) 2016-10-12
CN104703200A (zh) 2015-06-10
US10200845B2 (en) 2019-02-05
JP6349397B2 (ja) 2018-06-27

Similar Documents

Publication Publication Date Title
US9826494B2 (en) Method and apparatus for transmitting D2D signals
CN104796845B (zh) 一种设备到设备信号传输方法及设备
WO2015067196A1 (zh) 一种发送和接收数据的方法、系统及设备
WO2016184309A1 (zh) 一种资源协调的指示方法及装置
CN108810934B (zh) 发送、接收公共控制信息的方法、基站、终端及存储介质
TWI556678B (zh) D2d發現信號的發送方法和發送裝置
KR20160079048A (ko) D2d 탐색 신호의 송신 방법, 장치 및 통신 시스템
WO2015106654A1 (zh) 一种同步信息的发送、检测方法及用户设备
WO2015055142A1 (zh) 发现信号的发送和接收方法、以及发送和接收装置
JP2015515214A (ja) 参照信号の測定方法、基地局およびue
WO2018028675A1 (zh) 随机接入信号配置方法、装置、设备、系统和存储介质
WO2015196998A1 (zh) 一种信号发送和检测的方法及装置
WO2015139555A1 (zh) 一种信号发送、接收方法及装置
WO2015081871A1 (zh) 一种d2d信号检测方法及设备
CN110913420A (zh) 多个pdcch的检测、指示方法及装置、终端、基站
JP7213237B2 (ja) 無線通信方法及びデバイス
TW201815091A (zh) 傳輸信號的方法和裝置
WO2015169240A1 (zh) 一种信号传输的方法及终端
WO2016033789A1 (zh) 传输数据的方法、系统及设备
EP4046312A1 (en) Wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016536932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15102475

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167016056

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014867268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014867268

Country of ref document: EP