WO2015081773A1 - 潜油井下控制器及控制方法 - Google Patents

潜油井下控制器及控制方法 Download PDF

Info

Publication number
WO2015081773A1
WO2015081773A1 PCT/CN2014/089551 CN2014089551W WO2015081773A1 WO 2015081773 A1 WO2015081773 A1 WO 2015081773A1 CN 2014089551 W CN2014089551 W CN 2014089551W WO 2015081773 A1 WO2015081773 A1 WO 2015081773A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
unit
main control
motor
signal
Prior art date
Application number
PCT/CN2014/089551
Other languages
English (en)
French (fr)
Inventor
刘杰
朱海军
蔡一
Original Assignee
浙江中科德润科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江中科德润科技有限公司 filed Critical 浙江中科德润科技有限公司
Publication of WO2015081773A1 publication Critical patent/WO2015081773A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/04Electric drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/128Adaptation of pump systems with down-hole electric drives
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes

Definitions

  • the invention belongs to the field of oil exploitation equipment control, and relates to a submersible underground controller and a control method.
  • the existing submersible system ground controller generally converts the 380V three-phase alternating current input from the grid on the ground into three-phase alternating current output to the motor, and then connects the three-phase electric current to the submersible submersible motor through the cable, and goes down the well.
  • the distance is generally from 1000 meters to more than 2,000 meters, so on the one hand, the cable cost is increased.
  • the middle loss is greatly increased and the stability is also poor, resulting in poor performance. Downhole motors and pumping pumps are inefficient and have a short life.
  • the existing submersible system ground controller does not have a long-distance data communication module with the underground, does not support more than 2,000 meters of long-distance data communication underground, and can not upload various parameters such as temperature, pressure, current, voltage, etc. downhole to the ground. Therefore, it is not possible to monitor the state of the well in real time.
  • the traditional submersible motor is mainly a two-pole three-phase asynchronous motor.
  • the existing oil recovery system has the following problems in the oil production process:
  • the motor speed is lower than the synchronous speed, the motor efficiency and the power factor are low.
  • the publication No. CN228745Y proposes a rare earth permanent magnet submersible motor, but it is only limited to the problem of synchronous speed by embedding a permanent magnet on the rotor on the basis of the original asynchronous submersible motor.
  • the problem of adjustable speed is not solved, and the application in low speed is still difficult and the efficiency is not very high.
  • the publication No. CN2627715Y also discloses a rare earth permanent magnet synchronous submersible motor, and the inadequacy is still lack of energy saving and speed adjustment. Although combined with the use of the inverter controller, there is still a problem of low energy saving rate.
  • the existing submersible motor Since the submersible motor is basically downhole hundreds of to several kilometers downhole, and the existing submersible motor usually uses an AC motor, the three-phase AC power used by the submersible motor will be transmitted from the ground to several hundred to several kilometers downhole. The place, therefore, the electrical energy is very lost in transmission.
  • the existing control system cannot solve this problem.
  • Oilfield control involves the control of many factors or parameters, such as pressure, temperature, and operating state of the submersible motor. The monitoring and control of these factors or parameters is also an important part of the oilfield control system.
  • the technical problem to be solved by the present invention is to provide a submersible underground well controller and a control method for the deficiencies of the prior art, so that the running state of the motor is monitored in real time in the underground, and the electric utilization rate and the pumping efficiency are maximized.
  • the invention provides a submersible downhole controller, comprising: a mechanical unit, a sensor unit, a sealing unit, a heat dissipating unit and a control unit, the mechanical unit comprises: a main housing, and a control unit and a sensor unit are arranged inside the main housing And a heat dissipating unit, the front end of the main casing is connected to the sealing unit through a coupling sleeve, and the rear end is connected to the bottom joint through a circular blocking cover.
  • control unit is fixedly disposed in the main casing by a sheet metal bracket, and a front end of the sheet metal bracket is connected to the coupling sleeve through an excessive coupling block.
  • the sheet metal support is provided with a heat dissipation unit, and the heat dissipation unit is a heat dissipation aluminum bracket.
  • control unit comprises: a power board, a sensor board, a driving board, a main control board, a capacitor board and a discharge board;
  • the power board converts the bus voltage outputted by the capacitor board to the main control board after voltage conversion, and simultaneously transmits the bus voltage signal to the main control board;
  • the sensor board detects the three-phase current output by the driving board and transmits the detection signal to the main control board;
  • the driving board drives a submersible motor outside the controller to operate
  • the capacitor board converts two-phase DC power outputted from the ground into two-phase bus voltages, respectively input into the power board, the discharge board and the driving board, and transmits the detected bus current signals to the main control board;
  • the main control board separately monitors the bus current, controls the bus voltage, and controls the pulse width modulation signal output to the driving board according to the bus current detection signal, the bus voltage detection signal, and the three-phase current detection signal; and controls the discharge.
  • the discharge board discharges electricity stored on the capacitor board according to a control signal of the main control board.
  • the main control board includes: a power input unit, a sensor detection input unit, a main control unit, a pulse width modulation output unit, an external interface unit, and a storage unit;
  • the power input unit supplies power to the external interface unit, the main control unit, and the surrounding signal circuit, and the surrounding signal circuit includes a decoding chip circuit, an optocoupler circuit, a filter circuit, an operational amplifier circuit, and the like;
  • the sensor detection input unit converts the collected plurality of downhole signals into analog voltage signals and sends them to the main control unit;
  • the main control unit receives the analog voltage signal output by the sensor detection input unit and converts it into a digital quantity
  • the main control unit outputs a three-phase pulse width modulation signal to the driving board through the pulse width modulation output unit;
  • the external interface unit is connected to external hardware other than the main control board;
  • the storage unit stores data information of the main control unit.
  • the external interface unit comprises: an input and output interface unit, a function control interface unit and a data communication interface unit;
  • the input/output interface unit includes an input signal reservation interface and an output signal reservation interface for function expansion of the submersible downhole controller
  • the function control interface unit comprises: a discharge control interface, a start-stop switch interface and a protection signal interface; wherein
  • the discharge control interface outputs a discharge control signal sent by the main control unit, and controls the discharge board to discharge the power on the capacitor plate;
  • the start-stop switch interface receives the start-stop command signal of the ground and inputs it to the main control unit, thereby controlling the start and stop of the submersible motor.
  • the protection signal interface receives a protection signal from an insulated gate bipolar transistor (IGBT) in the driving board and inputs the signal to the main control unit;
  • IGBT insulated gate bipolar transistor
  • the data communication interface unit includes: an SPI communication interface, a CAN communication interface, and a serial data communication interface;
  • the SPI communication interface collects angle information of the position sensor or the encoder
  • the serial data communication interface communicates with a host computer or a PC, and the serial data communication interface includes: RS485 communication or RS232 communication.
  • the driving board includes: an insulated gate bipolar transistor (IGBT) unit, and the insulated gate bipolar transistor unit is converted into a pulse width modulation signal according to a two-phase bus voltage output from the capacitor board and a main board output
  • IGBT insulated gate bipolar transistor
  • the three-phase alternating current drives the submersible motor to operate; and outputs the protection signal of the insulated gate bipolar transistor unit to the main control board.
  • the capacitor board includes: a bus current sensor that transmits the detected bus current signal to the main control board.
  • the discharge panel includes: a discharge resistor that discharges stored electricity through a discharge resistor.
  • the power board provides 12V and 5V power supplies for the main control board.
  • the main control board supplies a 5V power supply provided by the power board to the sensor board.
  • the invention also provides a control method for a submersible downhole controller as described above, comprising: system control, motor control and reliability control;
  • the main control board and the ground exchange information through the CAN communication interface, receive the instructions sent from the ground, and upload the current downhole status and data to the ground.
  • the main control board obtains the motor control command according to the received ground command, and the main control board samples the motor current through the sensor board to obtain current feedback, and receives the encoder signal through the main control board to obtain the motor angle feedback. Then, the main control unit on the main control board executes a control algorithm to obtain a motor drive signal output to the drive board, and finally the drive board drives the motor to operate.
  • the main control unit on the main control board executes a closed loop servo control algorithm; when the motor does not have an encoder, the main unit on the control unit When the control board cannot obtain the motor rotation angle, the main control unit on the main control board executes the sensorless control algorithm.
  • Reliability control including: abnormal protection control, over-limit protection control and failure processing control;
  • Abnormal protection control The main control board detects whether the hardware operation in the motor, encoder, sensor and control unit is normal. If not, the control motor stops running and saves the abnormal state to the storage unit on the main control board. The error signal is transmitted to the ground via the CAN communication interface.
  • Over-limit protection control The main control board monitors various data collected by the sensor unit. When any one of the data exceeds the specified range, the main control board controls the motor through the drive board, including reducing the running speed of the motor or stopping the motor operation. To restore the overrun data to the normal range.
  • Failure handling control When the main control board detects the failure of the hardware in the motor, encoder, sensor or control unit, the main control unit performs the standby alarm processing, sensor switching and communication fault processing control algorithm.
  • the submersible downhole controller is operated normally.
  • the various data includes: current data, voltage data, temperature data, and pressure data.
  • the submersible underground well controller adopts the method of directly driving the motor downhole, so that the running state of the motor is monitored in real time in the underground, and the electric utilization rate and the pumping efficiency are maximized;
  • the oil well drive system is modular in design, improving reliability, simple structure and flexible design as needed.
  • the submersible downhole controller of the present invention detects various temperature and pressure parameters in real time under the well and transmits it to the ground in real time through long-distance communication with the ground.
  • the submersible downhole controller of the present invention is suitable for all applications where oil is produced underground through a motor.
  • FIG. 1 is a schematic exploded view of a submerged oil downhole controller of the present invention
  • FIG. 2A is a schematic diagram showing the external structure of the submersible oil well controller of the present invention.
  • 2B is a second schematic diagram of the external structure of the submersible oil well controller of the present invention.
  • FIG. 3A is a schematic structural view of the sealing assembly of FIG. 1;
  • Figure 3B is a second structural schematic view of the sealing assembly of Figure 1;
  • Figure 3C is a cross-sectional view of the seal assembly of Figure 1;
  • FIG. 4A is a schematic structural view of the coupling sleeve of FIG. 1;
  • Figure 4B is a second structural schematic view of the coupling sleeve of Figure 1;
  • Figure 4C is a cross-sectional view of the coupling sleeve of Figure 1;
  • Figure 5 is a schematic structural view of the excessively coupled block of Figure 1;
  • FIG. 6A is a schematic structural view of the sheet metal bracket of FIG. 1;
  • 6B is a second structural schematic view of the sheet metal bracket of FIG. 1;
  • FIG. 7 is a schematic structural view of the heat dissipation aluminum bracket of FIG. 1;
  • Figure 8 is a schematic structural view of the circular plug cover of Figure 1;
  • FIG. 9A is a schematic structural view of the bottom joint of FIG. 1;
  • FIG. 9B is a second structural schematic view of the bottom joint of FIG. 1;
  • Figure 9C is a cross-sectional view of the bottom joint of Figure 1;
  • FIG. 10 is a schematic diagram of the hardware of the submersible controller control unit of the present invention.
  • Figure 11 is a schematic diagram of the hardware of the main control board of Figure 10.
  • Figure 12 is a block diagram of a system control method
  • Figure 13A is a block diagram of a motor control method
  • Figure 13B is a flow chart of the motor control
  • Figure 14 is a block diagram of an abnormal protection mode control method
  • Figure 15 is a block diagram of an overrun protection control method
  • Figure 16 is a block diagram of the failure handling control method.
  • FIG. 1 is a schematic diagram of an explosion structure of a submerged oil downhole controller of the present invention
  • FIG. 2A is one of the external structure diagrams of the submersible oil well controller of the present invention
  • FIG. 2B is a second schematic view of the external structure of the submersible oil well controller of the present invention.
  • the present invention provides a submersible downhole controller, comprising: a mechanical unit, a sensor unit, a sealing unit, a heat dissipating unit and a control unit, the mechanical unit comprising: a main housing 15.
  • a control unit, a sensor unit and a heat dissipating unit are disposed inside the main casing 15, and the front end of the main casing 15 is connected to the sealing unit through the coupling sleeve 3, and the rear end is connected to the bottom joint 14 through the circular blocking cover 13.
  • the control unit is fixedly disposed in the main casing 15 by a sheet metal bracket 5, and the front end of the sheet metal bracket 5 is connected to the coupling sleeve 3 through an excessive coupling block 4.
  • a heat dissipating unit is disposed on the sheet metal bracket 5, and the heat dissipating unit is a heat dissipating aluminum bracket 12.
  • the sealing unit comprises a sealing assembly 1 and a sealing collar 2, which is connected to the coupling sleeve 3 by a sealing collar 2.
  • the submersible downhole controller provided by the present invention has an elongated cylindrical structure on the overall shape structure, which is suitable for the underground environment of the oil well; the direct drive to the motor is realized under the well, thereby maximizing The limit improves the electricity utilization rate and pumping efficiency; the motor encoder signal is directly sampled downhole, real-time monitoring of the motor running state is realized, thereby improving the control performance of the motor; real-time detection of temperature and pressure is realized downhole, Thereby ensuring the adaptability to the underground environment; achieving long-distance communication with the ground (2000 meters) in the underground, so that the downhole status can be monitored in real time on the ground, and various operational commands are sent.
  • FIG. 3A is a structural schematic view of the sealing assembly of FIG. 1
  • FIG. 3B is a second structural view of the sealing assembly of FIG. 1
  • FIG. 3C is a cross-sectional view of the sealing assembly of FIG. 1, as shown in FIGS. 3A-3C
  • FIG. 3A and Figure 3B shows the two ends of the seal assembly 1, respectively.
  • FIG. 3A and Figure 3B shows the two ends of the seal assembly 1, respectively.
  • the sealing assembly 1 includes: a coupling cylindrical hole 11, an inner cylindrical hole 12, a conductor 13, a center hole 14 and a low end through hole 15; the coupling cylindrical hole 11 is for connecting with a submersible motor,
  • the inner cylindrical hole 12 is for enlarging the inner space of the sealing assembly,
  • the conductor 13 is for connecting U, V, W three-phase lines and other signal lines,
  • the central hole 14 is for mounting a sensor, and the low-end through hole 15 is used. On the signal line that passes through the sensor.
  • FIG. 4A is a structural schematic view of the coupling sleeve of FIG. 1
  • FIG. 4B is a second structural view of the coupling sleeve of FIG. 1
  • FIG. 4C is a cross-sectional view of the coupling sleeve of FIG. 1
  • FIG. 4A and FIG. 4B respectively show Both ends of the coupling sleeve. As shown in FIG.
  • the coupling sleeve 3 includes: a coupling cylindrical hole 31, a middle cylindrical hole 32, an inner cylindrical hole 33, an annular groove 34, an external thread 35, a cylindrical hole 36, and a side coupling hole 37; the coupling cylindrical hole 31 for connection to a sealing assembly 1 for enlarging the internal space of the coupling sleeve 3 for mounting a sealing collar 2, said external thread 35
  • the cylindrical bore 36 is used for oil circulation inside the downhole controller
  • the side coupling holes 37 are for connection with the over-coupling block 4.
  • the excessive coupling block 4 includes a front end side hole 41 and a rear end side hole 42 for connecting with the sheet metal bracket 5.
  • the rear end side hole 42 is for connection with the coupling sleeve 3.
  • FIG. 6A is a structural schematic view of the sheet metal bracket of FIG. 1
  • FIG. 6B is a second schematic structural view of the sheet metal bracket of FIG. 1
  • the sheet metal bracket 5 includes: a side connecting hole 51 , a side opening 52, an intermediate through hole 53, an upper end coupling hole 54 and a bottom plate coupling post 55; the side coupling holes 51 at both ends of the sheet metal bracket 5 are respectively connected to the heat dissipation aluminum bracket 12 and the excessive coupling block 4, the side opening 52 is used for oil circulation inside the downhole controller, the intermediate through holes 53 are respectively used to pass through U, V, W three-phase lines, and the upper end coupling holes 54 are used for mounting the capacitor plate 6 and the sensor board 7,
  • the bottom plate coupling post 55 is used to mount the power board 9 and the main control board 8.
  • the heat dissipating aluminum bracket 12 includes: a side coupling hole 121, a front end coupling hole 122, a heat sink 123, a bottom plate coupling hole 124, and a square hole 125;
  • the side coupling hole 121 is for connecting with the sheet metal bracket 5
  • the front end coupling hole 122 is for mounting a discharge resistor
  • the heat sink 123 is for increasing a heat dissipation area
  • the bottom plate coupling hole 124 is for mounting the driving board.
  • the square hole 125 is used for oil circulation inside the downhole controller.
  • the circular plug cover 13 includes: an external thread 131, a through hole combination 132, and a square hole 133; the external thread 131 is used for the main case The body 15 is connected, and the through hole combination 132 is used for connection with the heat dissipating aluminum bracket 12 for the oil circulation inside the downhole controller.
  • FIG. 9A is a structural schematic view of the bottom joint of FIG. 1
  • FIG. 9B is a second structural view of the bottom joint of FIG. 1
  • FIG. 9C is a cross-sectional view of the bottom joint of FIG. 1
  • FIGS. 9A and 9B respectively show the bottom joint Both ends.
  • the bottom joint 14 includes a cylindrical hole 141, an external thread 142, and an annular groove 143.
  • the external thread 142 is for connection with the main housing 15, and the annular groove 143 is for mounting a sealing ring.
  • the control unit includes: a power board 9, a sensor board 7, a driving board 11, a main control board 8, a capacitor board 6, and Discharge panel 10;
  • the power board 9 supplies the bus voltage outputted by the capacitor board 6 to the main control board 8 after voltage conversion, and transmits the bus voltage signal to the main control board 8; the power board 9 is the main control board 8 respectively.
  • a 12V and 5V power supply is provided; the main control board 8 supplies the 5V power supplied from the power supply board 9 to the sensor board 7.
  • the power board 9 supplies 12V and 5V power to the main control board 8 according to the bus voltage input from the capacitor board 6, and outputs the detected bus voltage signal to the main control board 8.
  • the sensor board 7 detects the three-phase current outputted by the driving board and transmits the detection signal to the main control board 8. In other words, the sensor board 7 detects the three-phase currents of U, V, and W outputted from the driving board through the current sensor, and outputs the detection signal to the main control board 8.
  • the driving board 11 drives a submersible motor running outside the controller; the driving board 11 includes: an insulated gate bipolar transistor (IGBT) unit, and the insulated gate bipolar transistor unit outputs a two-phase bus according to the capacitor board
  • the voltage and the pulse width modulation signal output from the main control board 8 are converted into three-phase alternating current to drive the submersible motor to operate; and the protection signal of the insulated gate bipolar transistor unit is output to the main control board 8.
  • the driving board 11 outputs U, V, W three-phase currents through the insulated gate bipolar transistor unit according to the P, N bus voltage input from the capacitor board 6 and the six PWM signals input from the main control board 8, Thereby driving the submersible motor to operate.
  • Insulated gate bipolar The protection signal of the transistor unit is output to the main control board 8.
  • the capacitor board 6 converts the two-phase direct current outputted from the ground into two-phase bus voltages, and inputs them into the power board 9, the discharge board 10, and the driving board 11, respectively, and transmits the detected bus current signals to the main control board.
  • the capacitor board 6 includes a bus current sensor that transmits the detected bus current signal to the main control board 8.
  • the capacitor board 6 takes the bus cables P and N from the ground as inputs, and after passing through the capacitor modules, outputs the bus voltages P and N to the driving board 11, the power board 9 and the discharge board 10, respectively, through the bus current sensor.
  • the detected bus current signal is output to the main control board 8.
  • the discharge panel 10 discharges electricity stored on the capacitor plate 6 according to a control signal of the main control board 8; the discharge panel 10 includes a discharge resistor, and the discharge panel 10 discharges stored electricity through a discharge resistor.
  • the discharge board 10 discharges the electricity stored on the capacitor board 6 through the discharge resistor according to the control signal given by the main control board 8, thereby ensuring the reliability of the capacitor board 6 and the safety of the system power supply.
  • the main control board 8 respectively monitors the bus current, controls the bus voltage, and controls the output according to the bus current detection signal, the bus voltage detection signal, and the three-phase current detection signal.
  • the pulse width modulation signal of the driving board 11; and the discharge board 10 is controlled to discharge.
  • the main control board 8 monitors the bus current according to the bus current detection signal provided by the capacitor board 6, and performs overvoltage and undervoltage protection according to the bus voltage detection signal provided by the power board 9, according to the U and V provided by the sensor board 7.
  • the W three-phase current feedback signal performs closed-loop control to output 6 PWM signals to the driving board 11.
  • the sensor board 7 is supplied with a 5V power supply, and the discharge board 10 is controlled by a control signal to release the electricity stored on the capacitor board 6.
  • the main control board 8 includes: a power input unit 81, a sensor detection input unit 82, a main control unit 83, a pulse width modulation output unit 84, an external interface unit, and a storage unit 85;
  • the power input unit 81 supplies power to the external interface unit, the main control unit 83, and the surrounding signal circuit, and the surrounding signal circuit includes a decoding chip circuit, an optocoupler circuit, a filter circuit, an operational amplifier circuit, and the like; in the power input unit 81,
  • the 12V and 5V power supplies from the power board 9 are used as the input power of the main control board 8.
  • the 12V power supply is used for the external interface signal supply after the optocoupler isolation;
  • the 5V power supply is converted into the 3.3V power supply through the DC/DC module to supply power to the main control unit 83 and its surrounding signal circuits.
  • the sensor detection input unit 82 converts the collected various downhole signals into analog voltage signals and transmits them to the main control unit 83.
  • the sensor detection input unit 82 is composed of a current detection input, a voltage detection input, a temperature detection input, and a pressure detection input.
  • the current detection input includes U, V, W three-phase current detection input and bus current detection input; the voltage detection input refers to the bus voltage detection input; the temperature detection input includes the well liquid temperature detection input, the motor temperature detection input, and the driving module temperature.
  • Detection input; pressure detection input includes well pressure detection input and cabin pressure detection input.
  • the characteristic of the sensor detection input unit 82 is that all detection signals are analog voltage signals, and are input to the AD sampling port of the main control unit 83, and converted into digital quantities.
  • the main control unit 83 receives the analog voltage signal output by the sensor detection input unit 82 and converts it into a digital quantity;
  • the main control unit 83 outputs a three-phase pulse width modulation signal to the driving board 11 through the pulse width modulation output unit 84, wherein the pulse width modulation output unit 8 refers to a total of 6 voltages of the U, V, W three-phase upper and lower arms. The output of the ratio.
  • the output signal is coupled to a drive module on the drive board 11 to control motor rotation.
  • the external interface unit is connected to external hardware other than the main control board 8; specifically, the main control unit 83 is the core of the entire main control board 8.
  • the main control unit 83 converts the analog voltage signal of the sensor detection input unit 82 into a digital quantity through an ADC module (not shown); the U, V, W three-phase six-way voltage duty ratio is passed through the pulse width modulation output unit 84.
  • the signal is output to the driver board 11; data and status writing or reading is performed by the IIC module (not shown) and the memory unit 85 (such as EEPROM); and the emulator 814 is connected through a JTAG module (not shown).
  • the storage unit 85 stores the data information of the main control unit 83.
  • the external interface unit includes: an input/output interface unit, a function control interface unit, and a data communication interface unit;
  • the input and output interface unit includes an input signal reservation interface 86 and an output signal reservation interface 87 for functional expansion of the submersible downhole controller.
  • the function control interface unit includes: a discharge control interface 88, a start-stop switch interface 89, and a protection signal interface 810;
  • the discharge control interface 88 outputs a discharge control signal from the main control unit 83, and controls the discharge board 10 to discharge the amount of electricity stored on the capacitor plate to ensure the reliability of the downhole controller power module; and receive the external activation through the start/stop switch interface 89.
  • the command signal is stopped and input to the main control unit 83, thereby controlling the start and stop of the motor; the signal generated by the abnormality of the overcurrent such as the drive module in the drive board 11 is received through the protection signal interface 810, and input to the main control unit.
  • the output of the drive signal is immediately turned off, the damage of the drive module is protected, and the reliability of the drive system is improved.
  • the start-stop switch interface 89 receives the start-stop command signal of the ground controller and inputs it to the main control unit 83, thereby controlling the start and stop of the submersible motor.
  • the protection signal interface 810 receives the protection signal from the insulated gate bipolar transistor in the driving board 11 and inputs it to the main control unit 83;
  • the data communication interface unit includes: an SPI communication interface 811, a CAN communication interface 812, and a serial data communication interface (SCI) 813.
  • SPI serial data communication interface
  • the SPI communication interface 811 collects the angle information of the position sensor or the encoder in real time
  • the CAN communication interface 812 communicates with the ground controller of the submersible system
  • the serial data communication interface 813 is in communication with a host computer or a PC, and the serial data communication interface 813 includes: RS485 communication or RS232 communication.
  • the present invention further provides a control method including the above-described submersible downhole controller, the method comprising: system control, motor control, and reliability control;
  • the main control board 8 interacts with the ground through the CAN communication interface 812 to receive the commands sent from the ground, and simultaneously uploads the current downhole status and data to the ground.
  • the commands sent from the ground include self-learning commands, start/stop commands, acceleration/deceleration commands, etc.
  • the status uploaded to the ground includes running status, stop status, alarm status, etc.
  • the data uploaded to the ground includes speed, current, voltage, pressure, Temperature, etc.
  • the control unit controls the functions of long-distance communication, data storage, system discharge, etc. downhole.
  • the system control portion is constituted by the command control 161 and the function control 162.
  • the command control 161 includes a self-learning mode control 1611, a start/stop control 1612, and an acceleration/deceleration control 1613;
  • the function control 162 includes a communication control 1621, a storage control 1622, and a discharge control 1623.
  • the self-learning mode control 1611 realizes the recognition of the D-axis of the motor and the storage of the D-axis data on the one hand, and the identification of the resistance, inductance, inertia and other parameters of the motor on the other hand, thereby providing an accurate D for the operation in the normal working mode. Axis data and motor parameters.
  • the start/stop control 1612 performs normal start or stop according to the start or stop command sent from the ground; on the other hand, it automatically stops according to various abnormal phenomena or over-limit conditions in the underground, and automatically starts running after returning to the normal state. In order to achieve intelligent control of the downhole controller.
  • the acceleration/deceleration control 1613 is that the main control board 8 adjusts the speed of the motor according to an acceleration command or a deceleration command sent from the ground.
  • the communication control 1621 performs information exchange with the ground by controlling the CAN communication interface 812 to realize long-distance communication (more than 2000 meters).
  • the main control board 8 receives various commands sent from the ground in real time, including start/stop commands, acceleration/deceleration commands, initialization commands, parameter query commands, parameter modification and save instructions, etc.; In terms, the main control board 8 sends various underground conditions to the ground in real time, including operating status, shutdown status, alarm status, motor status, downhole pressure, downhole temperature, and the like.
  • the storage control 1622 communicates with the storage unit 85 by using IIC communication or analog SPI communication, and stores various parameters and various states in real time, thereby realizing the intelligent memory function of the downhole controller.
  • the discharge control 1623 is based on the detected bus voltage, and the discharge board 10 is controlled to release the power on the capacitor board in time to ensure the reliability of the downhole controller power system.
  • 13A is a block diagram of a motor control method. As shown in FIG. 13A, the motor is controlled: first, the main control board 8 obtains a motor control command according to the received ground command, and the main control board 8 samples the motor current through the sensor board 7. The current feedback is further received by the main control board 8 to obtain the motor angle feedback, and then the main control unit 83 on the main control board 8 executes a control algorithm to obtain a motor driving signal output to the driving board 11, and finally the driving board 11 drives the motor to run. .
  • the main control unit 83 on the main control board 8 performs a closed loop servo control algorithm; when the motor does not have an encoder, the control unit When the upper main control board 8 cannot obtain the motor rotation angle, the main control unit 83 on the main control board 8 performs a sensorless control algorithm.
  • the motor control portion is mainly constituted by a vector control 171, a PID control 172, and an auxiliary control 173.
  • the vector control 171 includes a Clarke transform 1711, an iClarke transform 1712, a Park transform 1713, and an iPark transform 1714
  • the PID control 172 includes a speed loop control (SpdPI) 1721, a D-axis current control (DaxisPI) 1722, and a Q-axis current control (QaxisPI). 1723
  • the auxiliary control 173 includes dead zone compensation 1731, back potential compensation 1732, and filtering processing 1733.
  • the space vector pulse width modulation SVPWM control is used, and the current and voltage vectors are converted between the stationary three-phase abc coordinate system and the stationary two-phase ⁇ - ⁇ coordinate system by the Clarke transform 1711 and the iClarke transform 1712; The current and voltage vectors are converted between the stationary two-phase ⁇ - ⁇ coordinate system and the rotated two-phase dq coordinate system by Park transform 1713 and iPark transform 1714 to control the current and voltage vectors.
  • the speed loop adopts PI control, that is, proportional-integral control is performed on the error of the speed command and the speed feedback; the D-axis current and the Q-axis current in the current loop are also respectively controlled by PI, that is, respectively for the D-axis and the Q-axis.
  • PI control proportional-integral control is performed on the error of the speed command and the speed feedback
  • the D-axis current and the Q-axis current in the current loop are also respectively controlled by PI, that is, respectively for the D-axis and the Q-axis.
  • the error of the axis current command and the current feedback is proportionally integrated, so that the motor speed and the motor three-phase current can quickly track the speed command and the current command in real time, so as to achieve precise control of the motor.
  • the dead zone compensation 1731 mainly performs voltage compensation for the dead time set to protect the upper and lower bridge arm switches of the driving module, thereby improving the voltage utilization rate;
  • the back potential compensation 1732 is mainly the inverse of the motor rotation.
  • the potential is compensated as a feedforward amount after decoupling according to the control model, thereby improving the dynamic response characteristics of the motor control;
  • the filter processing 1733 mainly utilizes a low-pass filter or a moving average filtering algorithm for current feedback, speed feedback, and torque command. Equal parameters are filtered to improve the stability and robustness of the control performance.
  • FIG. 13B is a flow chart of the motor control.
  • the motor control portion first performs command processing to smooth and subdivide the command. Then, enter the speed loop control, count the current loop running cycle through the speed loop counter, and perform the speed loop calculation when the current loop running times equal to N. After the speed loop calculation is completed, the output torque command is filtered, and the current loop is calculated. After the current loop calculation is completed, the PWM signal is output to the drive board to control the rotation of the drive motor.
  • the cycle is N times, thereby achieving double-loop layered control; therefore, by adjusting the parameter N, the same cycle control of the current loop and the speed loop and the automatic switching of the double loop layered control can be realized, and the adaptability of the motor control is improved.
  • Reliability control including: abnormal protection control, over-limit protection control and failure processing control;
  • the main control board 8 detects the hardware operation in the motor, encoder, sensor and control unit. No, if not, the control motor is stopped and the abnormal state is saved to the storage unit 85 on the main control board 8, while the error signal is transmitted to the ground through the CAN communication interface 812. In addition, when the main control board 8 detects that the hardware failure in the motor, the encoder, the sensor or the control unit causes the function to fail, the main control unit 83 on the main control board 8 performs standby alarm processing, sensor switching, and communication failure processing control. The algorithm enables the submersible downhole controller to work normally.
  • FIG. 14 is a block diagram of the abnormality protection module control method.
  • the abnormality protection portion is composed of a motor abnormality protection 181, an encoder abnormality protection 182, and a sensor abnormality protection 183.
  • motor abnormalities include motor overcurrent, motor overload, motor stall and motor phase failure
  • encoder anomalies include decoder chip error, encoder communication error and decoder chip communication error
  • sensor abnormalities include current sampling abnormality, voltage sampling abnormality, temperature Sampling anomalies and pressure sampling anomalies.
  • the abnormal protection is to detect the abnormal state immediately when the component such as the motor, the encoder, the sensor or the like fails in the well, and send the abnormal state signal to the ground in time, and automatically convert it into the alternative mode to ensure the normal operation of the downhole controller.
  • the main control board 8 monitors various data collected by the sensor unit, and the various data includes: current data, voltage data, temperature data, and pressure data. When any one of the data exceeds a prescribed range, the main control board The control board 8 controls the motor through the driving board 11, including reducing the running speed of the motor or stopping the running of the motor, so that the overrun data is restored to the normal range.
  • FIG. 15 is a block diagram of the over-limit protection control method.
  • the over-limit protection part is driven by the drive module over-limit protection 191, the bus voltage over-limit protection 192, the detection pressure over-limit protection 193, and the detection temperature overrun. Protection 194 constitutes.
  • the drive module overrun includes the drive module current is too large and the drive module temperature is too high;
  • the bus voltage overrun includes the bus voltage is too high and the bus voltage is too low;
  • the detection pressure overrun includes the cabin pressure is too high and the well pressure is too low;
  • the detection temperature Overruns include high well fluid temperatures and excessive motor temperatures.
  • the drive module over-limit protection is to temporarily suspend the drive module according to the over-current protection signal and the temperature detection signal when the current of the drive module is too large or the temperature is too high, thereby preventing the drive module from being damaged and improving the reliability of the downhole controller.
  • Bus voltage over-limit protection is to ensure the stability of the downhole controller when the bus voltage is too high or too low. According to the bus voltage detection signal, stop the downhole controller operation, and when the bus voltage returns to the normal range, Automatically run the downhole controller to work.
  • the detection of over-limit protection is that, on the one hand, when the pressure in the cabin is too high, in order to ensure the reliability of the controller, motor, encoder and other components in the cabin, the downhole controller is stopped according to the pressure detection signal in the cabin; When the pressure in the well is too low, in order to prevent the downhole drive system from doing useless work, the loss will shorten the service life, and the downhole controller will be stopped according to the pressure detection signal in the well; when the pressure in the cabin and the pressure in the well return to the normal range, Automatically run the downhole controller to work.
  • the detection of temperature over-limit protection is, on the one hand, when the temperature of the well fluid is too high, in order to ensure the reliability of components such as the downhole controller, motor, encoder, etc., according to the well fluid temperature detection signal, the downhole controller is stopped; When the motor temperature is too high, in order to protect the motor performance, the motor operation is stopped according to the motor temperature detection signal; when the well fluid temperature and the motor temperature are restored to the normal range, the downhole controller is automatically operated.
  • Failure handling control When the main control board 8 detects that the hardware failure in the motor, the encoder, the sensor or the control unit causes the function to fail, the main control unit 83 on the main control board 8 performs an alternate alarm processing, sensor switching, and communication failure.
  • the control algorithm is processed to make the submersible downhole controller work normally.
  • FIG. 16 is a block diagram of the failure processing control method.
  • the failure processing portion is composed of an alarm processing 201, a sensor switching processing 202, and a communication failure processing 203.
  • the alarm processing 201 further includes an alarm mask processing 2011, an alarm record storage 2012, a recoverable alarm processing 2013, and a restartable alarm processing 2014.
  • the sensor switching process is guaranteed by the backup algorithm or principle when the sensor is damaged and the detection fails.
  • the functional validity of the detection module For example, when detecting the U, V, and W three-phase currents of the motor, three current sensors are usually used to detect the U, V, and W three-phase currents. When one of the current sensors is damaged and a phase current detection fails, based on the three-phase current vector principle, the currents detected by the remaining two sensors are used to calculate the U, V, and W three-phase current values, thereby ensuring three The effectiveness of phase current feedback.
  • the communication fault processing is to ensure the normal operation of the downhole controller by the processing on the control method when the communication failure occurs due to a failure of the communication module (such as CAN) with the ground or the IIC communication with the storage unit (such as EEPROM).
  • the communication module such as CAN
  • the IIC communication with the storage unit such as EEPROM
  • the control method processes the read standby parameter from the Flash to operate.
  • the alarm processing is 201, and the alarms of the unrecoverable and non-restartable state are shielded by the alarm mask processing, so that the downhole controller is still in the normal working state; the various alarms generated each time are recorded and stored by the alarm record storage to judge the underground The abnormal state of the controller; the alarm generated by the recoverable alarm processing for temperature or pressure, when the temperature or pressure returns to the normal range, the alarm is automatically cleared, so that the downhole controller returns to the normal working state;
  • the process performs multiple restarts on abnormal phenomena such as stalling, and if the restart is invalid, the shutdown process is performed, thereby avoiding frequent shutdowns in the case of restart.
  • the present invention overcomes the defects in the prior art by using the method that the downhole controller directly drives the motor downhole, so that the running state of the motor is monitored in real time under the well, and the electric utilization rate and the pumping efficiency are maximized.
  • the submersible downhole controller adopts a modular design to improve reliability, simple structure and flexible design according to needs.
  • the submersible downhole controller of the present invention detects various temperature and pressure parameters in real time under the well and transmits it to the ground in real time through long-distance communication with the ground.
  • the submersible downhole controller of the present invention is suitable for all applications where oil is produced underground through a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种潜油井下控制器,包括机械单元、传感器单元、密封单元、散热单元和控制单元,其中机械单元包括主壳体(15),在主壳体内部设有控制单元、传感器单元和散热单元,主壳体的前端通过联接套筒(3)与密封单元相连,后端通过圆形堵盖(13)与底部接头(14)相连。该控制器采用井下直接驱动电机的方式,使得在井下实时监控电机的运行状态,提高了可靠性。

Description

潜油井下控制器及控制方法 技术领域
本发明属于石油开采设备控制领域,涉及一种潜油井下控制器及控制方法。
背景技术
目前我国和世界其他产油国家,油田上都广泛使用潜油电机来驱动潜油电泵来汲取原油,传统的潜油电泵系统,是由地面控制器来驱动井下的潜油电机及潜油电泵,现有的潜油系统地面控制器存在如下问题:
一、现有的潜油系统地面控制器一般是将地面上电网输入的380V三相交流电转化为输出给电机的三相交流电之后,通过电缆把三相电接到井下的潜油电机,而下井距离一般为1000米~2000多米,因此一方面增加了电缆成本,另一方面当380V三相交流电直接输出到井下1000米至2000多米以下时,其中间损耗大大增加,稳定性也较差,导致井下的电机和抽油泵效率低,使用寿命短。
二、现有的潜油系统地面控制器不具有与井下远距离数据通信模块,不支持井下2000多米远距离数据通信,无法将井下的温度、压力、电流、电压等各种参量上传到地面。因此,不可实现实时监控井下的状态。
另外,传统的潜油电机主要是二极三相异步电动机,现有的采油系统在采油工艺配套中存在如下问题:
一是与离心潜油泵配套时因电机转速低于同步转速、电机效率和功率因数偏低。
二是与潜油螺杆泵配套上时,转速过高很难经过转速器将速度降低到与螺杆泵相适应的转速,即使采用减速器也大大的提高了采油成本和降低了系统的效率,若采用变频调速装置,使电机长期处于低频工作状态又容易引起电机的温升加快,引起电机故障。系统不能实现灵活控制,效率低。
三是传统的潜油电泵系统即使采用变频控制,其电机控制柜往往置于地面其交流电在传输至电机时由于是远距离传输,能量损耗严重,进一步降低了系统的效率。
随着新技术的发展,伺服技术的逐渐成熟,伺服潜油抽油系统成为潜油抽油系统的一种发展趋势。公开号为CN228745Y的文献提出了一种稀土永磁潜油电动机,但它总得来说只是在原有异步潜油电机的基础上通过在转子上嵌入永磁体来改善同步转速的问题,局限于电机本体,没有解决转速可调的问题,并且在低速场合的应用仍然很困难,效率也不是很高。公开号为CN2627715Y的文献也公开了一种稀土永磁同步潜油电机,不足之处依然是在其节能以及速度调上的缺乏。虽然结合变频控制器使用仍然存在节能率低的问题。
由于潜油电机基本是在井下几百到几千米的井下,而现有的潜油电机通常使用交流电机,潜油电机使用的三相交流电源将从地面传输到井下几百到几千米的地方,因此,电能在传输上损耗非常大。而现有的控制系统无法解决该问题。
纵观国内外数字油田的建设,不管从技术还是管理的层面上看,都还存在不少难题,尤其是业务流程革新、多元异构数据整合以及专业技术软件的开发将在相当长一段时间内困扰数字油田的发展。而油气工业的各种工作流程和不同领域活动所采用的技术与地下油藏、油井生产监控和地面控制系统的数据流整合在一起更是一个极大的挑战。
油田控制中涉及众多因素或参数的控制,例如压力、温度、潜油电机的运行状态等。对这些因素或参数的监测与控制也是油田控制系统中重要的一环。
发明内容
本发明所要解决的技术问题在于,针对现有技术的不足提供一种潜油井下控制器及控制方法,使得在井下实时监控电机的运行状态,最大限度提高了电利用率和抽油效率。
本发明所要解决的技术问题是通过如下技术方案实现的:
本发明提供一种潜油井下控制器,包括:机械单元、传感器单元、密封单元、散热单元和控制单元,所述机械单元包括:主壳体,在主壳体内部设有控制单元、传感器单元和散热单元,主壳体的前端通过联接套筒与密封单元相连,后端通过圆形堵盖与底部接头相连。
具体地,所述控制单元通过钣金支架固定设置在所述主壳体内,所述钣金支架的前端通过过度联接块与所述联接套筒相连。
具体地,所述钣金支架上设有散热单元,所述散热单元为散热铝支架。
更好地,所述控制单元包括:电源板、传感器板、驱动板、主控板、电容板和放电板;
所述电源板将所述电容板输出的母线电压,经过电压转换后为主控板供电,同时将母线电压信号传输给主控板;
所述传感器板检测驱动板输出的三相电流并将检测信号传输给主控板;
所述驱动板驱动控制器外部的潜油电机运行;
所述电容板将地面输出的两相直流电转换为两相母线电压,分别输入到所述电源板、放电板和驱动板中,并且将检测到的母线电流信号传输给主控板;
所述主控板根据母线电流检测信号、母线电压检测信号以及三相电流检测信号分别对母线电流监控、对母线电压进行控制保护以及控制输出给所述驱动板的脉宽调制信号;并且控制放电板放电;
所述放电板根据所述主控板的控制信号释放电容板上存储的电。
更好地,所述主控板包括:电源输入单元、传感器检测输入单元、主控单元、脉宽调制输出单元、外部接口单元和存储单元;
电源输入单元为所述外部接口单元、主控单元及周围信号电路供电,所述周围信号电路包括解码芯片电路、光耦电路、滤波电路、运放电路等;
传感器检测输入单元将采集的多种井下信号转换为模拟电压信号,并发送到主控单元中;
主控单元接收所述传感器检测输入单元输出的模拟电压信号,并转换成数字量;
主控单元通过脉宽调制输出单元输出三相脉宽调制信号到所述驱动板中;
外部接口单元与所述主控板以外的外部硬件连接;
存储单元存储所述主控单元的数据信息。
更好地,所述外部接口单元包括:输入输出接口单元、功能控制接口单元和数据通信接口单元;其中
输入输出接口单元包括输入信号预留接口和输出信号预留接口,用于所述潜油井下控制器的功能扩展;
功能控制接口单元包括:放电控制接口、启停开关接口和保护信号接口;其中
放电控制接口输出主控单元发出的放电控制信号,控制所述放电板释放电容板上的电量;
启停开关接口接收地面的启停指令信号并输入到主控单元,从而控制潜油电机启动和停止,
保护信号接口接收所述驱动板中绝缘栅双极型晶体管(IGBT)发出的保护信号并输入到主控单元;
所述数据通信接口单元包括:SPI通信接口、CAN通信接口和串行数据通信接口;其中
SPI通信接口采集位置传感器或编码器的角度信息;
CAN通信接口与潜油系统的地面通信;
串行数据通信接口与上位机或PC机通信,所述串行数据通信接口包括:RS485通信或RS232通信。
具体地,所述驱动板包括:绝缘栅双极型晶体管(IGBT)单元,所述绝缘栅双极型晶体管单元根据电容板输出的两相母线电压和主控板输出的脉宽调制信号转换为三相交流电,驱动潜油电机运行;并且将绝缘栅双极型晶体管单元的保护信号输出给主控板。
具体地,所述电容板包括:母线电流传感器,所述母线电流传感器将检测到的母线电流信号传输给主控板。
具体地,所述放电板包括:放电电阻,所述放电板通过放电电阻释放存储的电。
更好地,所述电源板为主控板分别提供12V和5V电源。
优选地,所述主控板将电源板提供的5V电源提供给传感器板。
本发明还提供一种如上述的潜油井下控制器的控制方法,包括:系统控制、电机控制和可靠性控制;
系统控制:所述主控板与地面通过CAN通信接口进行信息交互,接收地面发送过来的指令,同时将当前井下的状态和数据上传给地面。
电机控制:首先所述主控板根据接收到的地面指令得到电机控制指令,同时主控板通过传感器板对电机电流进行采样得到电流反馈,又通过主控板接收编码器信号得到电机角度反馈,然后在主控板上的主控单元执行控制算法得到电机驱动信号输出给驱动板,最终驱动板驱动电机运行。
其中,当电机带有编码器使得控制单元上的主控板能够获得电机旋转角度时,主控板上的主控单元执行闭环伺服控制算法;当电机不带有编码器使得控制单元上的主控板无法获得电机旋转角度时,主控板上的主控单元执行无传感器控制算法。
可靠性控制:包括:异常保护控制、超限保护控制和失效处理控制;其中
异常保护控制:所述主控板检测电机、编码器、传感器及控制单元中的硬件运行是否正常,若否,则控制电机停止运行并将异常状态保存到主控板上的存储单元中,同时通过CAN通信接口将错误信号传递到地面。
超限保护控制:所述主控板监测传感器单元采集的各种数据,当任何一项数据超过规定范围时,所述主控板通过驱动板对电机控制,包括降低电机运行转速或停止电机运行,使超限数据恢复到正常范围。
失效处理控制:主控板若检测到电机、编码器、传感器或控制单元中的硬件损坏导致功能失效时,主控板上的主控单元执行备用的报警处理、传感器切换和通信故障处理控制算法,使所述潜油井下控制器正常工作。
更好地,所述各种数据包括:电流数据、电压数据、温度数据和压力数据。
本发明的潜油井下控制器及控制方法,其潜油井下控制器采用井下直接驱动电机的方式,使得在井下实时监控电机的运行状态,最大限度提高了电利用率和抽油效率;并且潜油井下驱动系统采用模块化设计,提高了可靠性,结构简单且可以根据需要灵活设计。此外,本发明的潜油井下控制器在井下实时检测各项温度和压力参数,并通过与地面的远距离通信,实时上传到地面。本发明的潜油井下控制器适用于所有在井下通过电机进行采油的场合。
下面结合附图和具体实施例对本发明的技术方案进行详细地说明。
附图说明
图1为本发明的潜油井下控制器爆炸式结构示意图;
图2A为本发明的潜油井下控制器外部结构示意图之一;
图2B为本发明的潜油井下控制器外部结构示意图之二;
图3A为图1中密封组件的结构示意图之一;
图3B为图1中密封组件的结构示意图之二;
图3C为图1中密封组件的剖视图;
图4A为图1中联接套筒的结构示意图之一;
图4B为图1中联接套筒的结构示意图之二;
图4C为图1中联接套筒的剖视图;
图5为图1中过度联接块的结构示意图;
图6A为图1中钣金支架的结构示意图之一;
图6B为图1中钣金支架的结构示意图之二;
图7为图1中散热铝支架的结构示意图;
图8为图1中圆形堵盖的结构示意图;
图9A为图1中底部接头的结构示意图之一;
图9B为图1中底部接头的结构示意图之二;
图9C为图1中底部接头的剖视图;
图10为本发明的潜油井下控制器控制单元硬件原理图;
图11为图10中主控板硬件原理图;
图12为系统控制方法框图;
图13A为电机控制方法框图;
图13B为电机控制流程图;
图14为异常保护模控制方法框图;
图15为超限保护控制方法框图;
图16为失效处理控制方法框图。
具体实施方式
图1为本发明的潜油井下控制器爆炸式结构示意图,图2A为本发明的潜油井下控制器外部结构示意图之一,图2B为本发明的潜油井下控制器外部结构示意图之二,如图1并参考图2A和图2B所示,本发明提供一种潜油井下控制器,包括:机械单元、传感器单元、密封单元、散热单元和控制单元,所述机械单元包括:主壳体15,在主壳体15内部设有控制单元、传感器单元和散热单元,主壳体15的前端通过联接套筒3与密封单元相连,后端通过圆形堵盖13与底部接头14相连。所述控制单元通过钣金支架5固定设置在所述主壳体15内,所述钣金支架5的前端通过过度联接块4与所述联接套筒3相连。所述钣金支架5上设有散热单元,所述散热单元为散热铝支架12。所述密封单元包括:密封组件1和密封套圈2,所述密封组件1通过密封套圈2与联接套筒3连接。
请再次参考图2A和图2B所示,本发明提供的潜油井下控制器,整体外形结构上呈细长圆柱形结构,适用于油井井下环境;在井下实现了对电机的直接驱动,从而最大限度提高了电利用率和抽油效率;在井下直接采样电机编码器信号,实现了对电机运行状态的实时监控,从而提高了电机的控制性能;在井下实现了对温度和压力的实时检测,从而保证了对井下环境的适应能力;在井下实现了与地面的远距离通信(2000多米),使得在地面上可以实时监控井下状态,并发送各项操作指令。
图3A为图1中密封组件的结构示意图之一,图3B为图1中密封组件的结构示意图之二,图3C为图1中密封组件的剖视图,如图3A-3C所示,图3A和图3B分别示出了密封组件1的两端。如图3C所示,密封组件1包括:联接圆柱孔11、内侧圆柱孔12、导体13、中心孔14和低端通孔15;所述联接圆柱孔11用于与潜油电机连接,所述内侧圆柱孔12用于扩大密封组件内部空间,所述导体13用于连接U、V、W三相线和其他信号线,所述中心孔14用于安装传感器,所述低端通孔15用于穿过传感器的信号线。
图4A为图1中联接套筒的结构示意图之一,图4B为图1中联接套筒的结构示意图之二,图4C为图1中联接套筒的剖视图,图4A和图4B分别示出了联接套筒的两端。如图4C所示,联接套筒3包括:联接圆柱孔31、中间圆柱孔32、内侧圆柱孔33、环形凹槽34、外螺纹35、圆柱孔36和侧面联接孔37;所述联接圆柱孔31用于与密封组件1连接,所述中间圆柱孔32和内侧圆柱孔33用于扩大联接套筒3的内部空间,所述环形凹槽34用于安装密封套圈2,所述外螺纹35用于与井下控制器的主壳体15连接,所述圆柱孔36用于井下控制器内部的油液流通,所述侧面联接孔37用于与过度联接块4连接。
图5为图1中过度联接块的结构示意图,如图5所示,过度联接块4包括前端侧面孔41和后端侧面孔42,所述前端侧面孔41用于与钣金支架5连接,所述后端侧面孔42用于与联接套筒3连接。
图6A为图1中钣金支架的结构示意图之一,图6B为图1中钣金支架的结构示意图之二,如图6A和图6B所示,钣金支架5包括:侧面联接孔51、侧面开孔52、中间通孔53、上端联接孔54和底板联接柱55;钣金支架5两端的侧面联接孔51分别用于与散热铝支架12和过度联接块4连接,所述侧面开孔52用于井下控制器内部的油液流通,所述中间通孔53分别用于穿过U、V、W三相线,所述上端联接孔54用于安装电容板6和传感器板7,所述底板联接柱55用于安装电源板9和主控板8。
图7为图1中散热铝支架的结构示意图,如图7所示,散热铝支架12包括:侧面联接孔121、前端联接孔122、散热片123、底板联接孔124和方形孔125;所述侧面联接孔121用于与钣金支架5连接,所述前端联接孔122用于安装放电电阻,所述散热片123用于增大散热面积,所述底板联接孔124用于安装驱动板,所述方形孔125用于井下控制器内部的油液流通。
图8为图1中圆形堵盖的结构示意图,如图8所示,圆形堵盖13包括:外螺纹131、通孔组合132和方形孔133;所述外螺纹131用于与主壳体15连接,通孔组合132用于与散热铝支架12连接,所述方形孔133用于井下控制器内部的油液流通。
图9A为图1中底部接头的结构示意图之一,图9B为图1中底部接头的结构示意图之二,图9C为图1中底部接头的剖视图,图9A和图9B分别示出了底部接头的两端。如图9C所示,底部接头14包括:圆柱孔141、外螺纹142和环形凹槽143。其中,所述外螺纹142用于与主壳体15连接,所述环形凹槽143用于安装密封圈。
图10为本发明的潜油井下控制器控制单元硬件原理图,如图10所示,所述控制单元包括:电源板9、传感器板7、驱动板11、主控板8、电容板6和放电板10;
所述电源板9将所述电容板6输出的母线电压,经过电压转换后为主控板8供电,同时将母线电压信号传输给主控板8;所述电源板9为主控板8分别提供12V和5V电源;所述主控板8将电源板9提供的5V电源提供给传感器板7。换句话说,电源板9根据从电容板6输入的母线电压,经过电压转换,给主控板8分别提供12V和5V电源,同时将检测到的母线电压信号输出给主控板8。
所述传感器板7检测驱动板输出的三相电流并将检测信号传输给主控板8。换句话说,传感器板7将驱动板输出的U、V、W三相电流通过电流传感器检测,并把检测信号输出给主控板8。
所述驱动板11驱动控制器外部的潜油电机运行;所述驱动板11包括:绝缘栅双极型晶体管(IGBT)单元,所述绝缘栅双极型晶体管单元根据电容板输出的两相母线电压和主控板8输出的脉宽调制信号转换为三相交流电,驱动潜油电机运行;并且将绝缘栅双极型晶体管单元的保护信号输出给主控板8。换句话说,驱动板11根据从电容板6输入的P、N母线电压和从主控板8输入的6路PWM信号,经过绝缘栅双极型晶体管单元输出U、V、W三相电流,从而驱动潜油电机运行。同时将绝缘栅双极 型晶体管单元的保护信号输出给主控板8。
所述电容板6将地面输出的两相直流电转换为两相母线电压,分别输入到所述电源板9、放电板10和驱动板11中,并且将检测到的母线电流信号传输给主控板8;所述电容板6包括:母线电流传感器,所述母线电流传感器将检测到的母线电流信号传输给主控板8。换句话说,电容板6将来自地面的母线电缆P和N作为输入,经过电容模块之后,把母线电压P和N分别输出到驱动板11、电源板9和放电板10,同时通过母线电流传感器将检测到的母线电流信号输出给主控板8。
所述放电板10根据所述主控板8的控制信号释放电容板6上存储的电;所述放电板10包括:放电电阻,所述放电板10通过放电电阻释放存储的电。换句话说,放电板10根据主控板8给出的控制信号,将电容板6上储存的电通过放电电阻释放出,从而保证电容板6的可靠性和系统电源的安全性。
如图11并参考图10所示,所述主控板8根据母线电流检测信号、母线电压检测信号以及三相电流检测信号分别对母线电流监控、对母线电压进行控制保护以及控制输出给所述驱动板11的脉宽调制信号;并且控制放电板10放电。换句话说,主控板8根据电容板6提供的母线电流检测信号监控母线电流大小,根据电源板9提供的母线电压检测信号进行过压和欠压保护,根据传感器板7提供的U、V、W三相电流反馈信号进行闭环控制输出6路PWM信号给驱动板11。同时给传感器板7提供5V电源,通过控制信号对放电板10进行控制,将电容板6上存着的电释放。
再次如图11并参考图10所示,所述主控板8包括:电源输入单元81、传感器检测输入单元82、主控单元83、脉宽调制输出单元84、外部接口单元和存储单元85;
电源输入单元81为所述外部接口单元、主控单元83及周围信号电路供电,所述周围信号电路包括解码芯片电路、光耦电路、滤波电路、运放电路等;在电源输入单元81中,将来自电源板9的12V和5V供电作为主控板8的输入电源。其中,12V电源用于光耦隔离后的外部接口信号供电;5V电源经过DC/DC模块转化为3.3V电源给主控单元83及其周围信号电路供电。
传感器检测输入单元82将采集的多种井下信号转换为模拟电压信号,并发送到主控单元83中;传感器检测输入单元82由电流检测输入、电压检测输入、温度检测输入和压力检测输入组成。其中,电流检测输入包括U、V、W三相电流检测输入和母线电流检测输入;电压检测输入是指母线电压检测输入;温度检测输入包括井液温度检测输入、电机温度检测输入、驱动模块温度检测输入;压力检测输入包括油井压力检测输入和舱内压力检测输入。传感器检测输入单元82的特点是所有检测信号均为模拟电压信号,并输入到主控单元83的AD采样端口,转换为数字量。
主控单元83接收所述传感器检测输入单元82输出的模拟电压信号,并转换成数字量;
主控单元83通过脉宽调制输出单元84输出三相脉宽调制信号到所述驱动板11中,其中脉宽调制输出单元8是指U、V、W三相上下桥臂共6路电压占空比的输出。该输出信号连接到驱动板11上的驱动模块,从而控制电机旋转。另外,外部接口单元与所述主控板8以外的外部硬件连接;具体地说,主控单元83是整个主控板8的核心。主控单元83通过ADC模块(图中未示出)将传感器检测输入单元82的模拟电压信号转换成数字量;通过脉宽调制输出单元84将U、V、W三相6路电压占空比信号输出给驱动板11;通过IIC模块(图中未示出)与存储单元85(如EEPROM)进行数据和状态写入或读取;通过JTAG模块(图中未示出)与仿真器814联接,实现程序代码烧录;通过SPI通信接口81与编码器进行角度采样;通过CAN通信接口812与地面进行远距离(2000多米)信息交互;通过串行通信接口813转化成RS485或RS232通信,与上位机或PC机进行信息交互;通过GPIO模块(图中未示出)实现开关控制信号的 输入和输出,包括放电控制信号、启停开关信号、保护信号等。
存储单元85存储所述主控单元83的数据信息。
其中所述外部接口单元包括:输入输出接口单元、功能控制接口单元和数据通信接口单元;其中
输入输出接口单元包括输入信号预留接口86和输出信号预留接口87,用于所述潜油井下控制器的功能扩展。
功能控制接口单元包括:放电控制接口88、启停开关接口89和保护信号接口810;其中
放电控制接口88输出主控单元83发出的放电控制信号,控制所述放电板10释放电容版上存有的电量,保证井下控制器电源模块的可靠性;通过启停开关接口89接收外部的启停指令信号,并输入到主控单元83中,从而控制电机的启动和停止;通过保护信号接口810接收驱动板11中的驱动模块发生过电流等异常时产生的信号,并输入到主控单元83中,从而立刻关闭驱动信号的输出,保护驱动模块的损坏,提高驱动系统的可靠性。
启停开关接口89接收地面控制器的启停指令信号并输入到主控单元83,从而控制潜油电机启动和停止,
保护信号接口810接收所述驱动板11中绝缘栅双极型晶体管发出的保护信号并输入到主控单元83;
所述数据通信接口单元包括:SPI通信接口811、CAN通信接口812和串行数据通信接口(SCI)813,
SPI通信接口811实时采集位置传感器或编码器的角度信息;
CAN通信接口812与潜油系统的地面控制器通信;
串行数据通信接口813与上位机或PC机通信,所述串行数据通信接口813包括:RS485通信或RS232通信。
如图11并参考图10所示,本发明还提供一种包括上述的潜油井下控制器的控制方法,该方法包括:系统控制、电机控制和可靠性控制;其中
系统控制:所述主控板8与地面通过CAN通信接口812进行信息交互,接收地面发送过来的指令,同时将当前井下的状态和数据上传给地面。地面发送过来的指令包括自学习指令、启动/停止指令、加减速指令等,上传到地面的状态包括运行状态、停止状态、报警状态等,上传到地面的数据包括转速、电流、电压、压力、温度等。另外,控制单元在井下实现对远距离通信、数据存储、系统放电等功能的控制。
具体地说,如图12所示,系统控制部分由指令控制161和功能控制162构成。其中,指令控制161包括自学习模式控制1611、启动/停机控制1612和加减速控制1613;功能控制162包括通信控制1621、存储控制1622和放电控制1623。
自学习模式控制1611,一方面实现对电机D轴的识别和D轴数据的存储;另一方面实现对电机的电阻、电感、惯量等参数的辨识,从而为正常工作模式下运行提供精确的D轴数据和电机参数。
启动/停机控制1612,一方面根据地面发送过来的启动或停机指令进行正常启动或停机;另一方面根据井下各种异常现象或超限情况进行自动停机,等恢复到正常状态后又自动启动运行,从而实现井下控制器的智能化控制。
加减速控制1613,是主控板8根据地面发送过来的加速指令或减速指令对电机进行调速。
通信控制1621,是通过控制CAN通信接口812与地面进行信息交互,实现远距离通信(2000多米)。一方面,主控板8实时接收地面发送过来的各项指令,包括启动/停机指令、加减速指令、初始化指令、参数查询指令、参数修改及保存指令等;另一 方面,主控板8实时向地面发送井下各种状态,包括运行状态、停机状态、报警状态、电机状态、井下压力、井下温度等。
存储控制1622,是通过采用IIC通信或模拟SPI通信方式与存储单元85进行通信,将各项参数和各种状态进行实时存储,从而实现井下控制器的智能化记忆功能。
放电控制1623,是根据检测到的母线电压,通过控制放电板10及时释放电容板上的电量,从而保证井下控制器电源系统的可靠性。
图13A为电机控制方法框图,如图13A所示,电机控制:首先所述主控板8根据接收到的地面指令得到电机控制指令,同时主控板8通过传感器板7对电机电流进行采样得到电流反馈,又通过主控板8接收编码器信号得到电机角度反馈,然后在主控板8上的主控单元83执行控制算法得到电机驱动信号输出给驱动板11,最终驱动板11驱动电机运行。
其中,当电机带有编码器使得控制单元上的主控板8能够获得电机旋转角度时,主控板8上的主控单元83执行闭环伺服控制算法;当电机不带有编码器使得控制单元上的主控板8无法获得电机旋转角度时,主控板8上的主控单元83执行无传感器控制算法。
具体地说,电机控制部分主要由矢量控制171、PID控制172和辅助控制173构成。其中,矢量控制171包括Clarke变换1711、iClarke变换1712、Park变换1713和iPark变换1714;PID控制172包括速度环控制(SpdPI)1721、D轴电流控制(DaxisPI)1722和Q轴电流控制(QaxisPI)1723;辅助控制173包括死区补偿1731、反电势补偿1732和滤波处理1733。
矢量控制171中,采用空间矢量脉宽调制SVPWM控制,通过Clarke变换1711和iClarke变换1712将电流和电压矢量在静止的三相a-b-c坐标系和静止的两相α-β坐标系之间互相转换;通过Park变换1713和iPark变换1714将电流和电压矢量在静止的两相α-β坐标系和旋转的两相d-q坐标系之间互相转换,从而对电流和电压矢量进行控制。
PID控制172中,速度环采用PI控制,即对速度指令和速度反馈的误差进行比例-积分控制;电流环中对D轴电流和Q轴电流也分别采用PI控制,即分别对D轴和Q轴电流指令和电流反馈的误差进行比例积分控制,从而使电机转速和电机三相电流实时迅速跟踪速度指令和电流指令,实现对电机的精确控制。
辅助控制173中,死区补偿1731主要是为保护驱动模块的上下桥臂开关导通而设置的死区时间进行电压补偿,从而提高电压利用率;反电势补偿1732主要是对电机旋转产生的反电势,根据控制模型进行解耦之后作为前馈量进行补偿,从而提高电机控制的动态响应特性;滤波处理1733主要是利用低通滤波或者移动平均滤波算法,对电流反馈、速度反馈、转矩指令等参量进行滤波,提高控制性能的稳定性和鲁棒性。
图13B为电机控制流程图,如图13B所示,电机控制部分接收指令之后,首先进行指令处理,对指令进行平滑和细分。然后,进入速度环控制,通过速度环计数器对电流环运行周期进行计数,当电流环运行次数等于N时,执行速度环的计算。速度环计算结束后,对所输出的转矩指令进行滤波处理,进入电流环计算,电流环计算结束后,输出PWM信号给驱动板,从而控制驱动电机旋转。在上述电机控制过程中,当N=1时,速度环计算周期和电流环计算周期相同,从而实现电流环和速度环的同周期控制;当N>1时,电流环计算周期是速度环计算周期的N倍,从而实现双环分层控制;因此通过调节参数N,可实现电流环和速度环的同周期控制和双环分层控制的自动切换,提高了电机控制的自适应性。
可靠性控制:包括:异常保护控制、超限保护控制和失效处理控制;其中
异常保护控制:主控板8检测电机、编码器、传感器及控制单元中的硬件运行是 否正常,若否,则控制电机停止运行并将异常状态保存到主控板8上的存储单元85中,同时通过CAN通信接口812将错误信号传递到地面。另外,主控板8若检测到电机、编码器、传感器或控制单元中的硬件损坏导致功能失效时,主控板8上的主控单元83执行备用的报警处理、传感器切换和通信故障处理控制算法,使所述潜油井下控制器正常工作。
具体地说,图14为异常保护模块控制方法框图,如图14所示,异常保护部分由电机异常保护181、编码器异常保护182和传感器异常保护183构成。其中,电机异常包括电机过流、电机过载、电机堵转和电机断相;编码器异常包括解码芯片报错、编码器通信错误和解码芯片通信错误;传感器异常包括电流采样异常、电压采样异常、温度采样异常和压力采样异常。
异常保护是通过对电机、编码器、传感器等部件或器件在井下发生故障时,立刻检测异常状态,及时向地面发送异常状态信号,并自动转化为备选模式,保证井下控制器的正常工作。
超限保护控制:主控板8监测传感器单元采集的各种数据,所述各种数据包括:电流数据、电压数据、温度数据和压力数据,当任何一项数据超过规定范围时,所述主控板8通过驱动板11对电机控制,包括降低电机运行转速或停止电机运行,使超限数据恢复到正常范围。
具体地说,图15为超限保护控制方法框图,如图15所示,超限保护部分由驱动模块超限保护191、母线电压超限保护192、检测压力超限保护193和检测温度超限保护194构成。其中,驱动模块超限包括驱动模块电流过大和驱动模块温度过高;母线电压超限包括母线电压过高和母线电压过低;检测压力超限包括舱内压力过高和井内压力过低;检测温度超限包括井液温度过高和电机温度过高。
驱动模块超限保护是针对当驱动模块的电流过大或温度过高时,根据过流保护信号和温度检测信号,立刻暂停驱动模块工作,从而防止驱动模块损坏,提高井下控制器的可靠性。
母线电压超限保护是针对当母线电压过高或过低时,为保证井下控制器工作的稳定性,根据母线电压检测信号,停止井下控制器运行,等母线电压恢复到正常范围内时,再自动运行井下控制器工作。
检测压力超限保护是,一方面当舱内压力过高时,为保证舱内的控制器、电机、编码器等部件的可靠性,根据舱内压力检测信号,停止井下控制器工作;另一方面当井内压力过低时,为防止井下驱动系统做无用功,带来损耗缩短使用寿命,根据井内压力检测信号,停止井下控制器工作;等舱内压力和井内压力都恢复到正常范围内时,再自动运行井下控制器工作。
检测温度超限保护是,一方面当井液温度过高时,为保证井下控制器、电机、编码器等部件的可靠性,根据井液温度检测信号,停止井下控制器工作;另一方面当电机温度过高时,为保护电机性能,根据电机温度检测信号,停止电机运行;等井液温度和电机温度都恢复到正常范围内时,再自动运行井下控制器工作。
失效处理控制:主控板8若检测到电机、编码器、传感器或控制单元中的硬件损坏导致功能失效时,主控板8上的主控单元83执行备用的报警处理、传感器切换和通信故障处理控制算法,使所述潜油井下控制器正常工作。
具体地说,图16为失效处理控制方法框图,如图16所示,失效处理部分由报警处理201、传感器切换处理202和通信故障处理203构成。其中,报警处理201又包括报警屏蔽处理2011、报警记录存储2012、可恢复报警处理2013和可重启报警处理2014。
传感器切换处理是针对传感器损坏导致检测失效时,通过备用算法或原理,保证 该检测模块的功能有效性。例如,检测电机的U、V、W三相电流时,通常采用3个电流传感器分别对U、V、W三相电流进行检测。当其中1个电流传感器损坏导致某一相电流检测失效时,基于三相电流矢量原理,通过剩下的2个传感器检测到的电流,计算出U、V、W三相电流值,从而保证三相电流反馈的有效性。
通信故障处理是针对与地面的通信模块(如CAN)或者与存储单元(如EEPROM)的IIC通信等出现故障导致通信失效时,通过控制方法上的处理保证井下控制器的正常工作。例如,当与地面的CAN通信故障导致信息交互失效时,井下控制器通过备用的指令和参数进入自动运行状态,保证正常驱动电机工作。又例如,当与EEPROM存储单元的IIC通信故障导致数据存储和读取失效时,通过控制方法处理从Flash读取备用参数来运行。
报警处理是201,通过报警屏蔽处理将不可恢复和不可重启状态的报警屏蔽,从而使井下控制器仍处于正常工作状态;通过报警记录存储将每一次产生的各种报警进行记录存储,以便判断井下控制器的异常状态;通过可恢复报警处理对温度或压力等产生的报警,当温度或压力恢复到正常范围时自动清除该报警,从而使井下控制器重新回到正常工作状态;通过可重启报警处理对堵转等异常现象进行多次重启,如果重启无效再进行停机处理,从而避免可重启的情况下频繁停机。
由上述内容可知,本发明采用井下控制器在井下直接驱动电机的方式,克服了现有技术中的缺陷,使得在井下实时监控电机的运行状态,最大限度提高了电利用率和抽油效率。该潜油井下控制器采用模块化设计,提高了可靠性,结构简单且可以根据需要灵活设计。此外,本发明的潜油井下控制器在井下实时检测各项温度和压力参数,并通过与地面的远距离通信,实时上传到地面。本发明的潜油井下控制器适用于所有在井下通过电机进行采油的场合。

Claims (13)

  1. 一种潜油井下控制器,其特征在于,包括:机械单元、传感器单元、密封单元、散热单元和控制单元,所述机械单元包括:主壳体,在主壳体内部设有控制单元、传感器单元和散热单元,主壳体的前端通过联接套筒与密封单元相连,后端通过圆形堵盖与底部接头相连。
  2. 如权利要求1所述的潜油井下控制器,其特征在于,所述控制单元通过钣金支架固定设置在所述主壳体内,所述钣金支架的前端通过过度联接块与所述联接套筒相连。
  3. 如权利要求2所述的潜油井下控制器,其特征在于,所述钣金支架上设有散热单元,所述散热单元为散热铝支架。
  4. 如权利要求3所述的潜油井下控制器,其特征在于,所述控制单元包括:电源板、传感器板、驱动板、主控板、电容板和放电板;
    所述电源板将所述电容板输出的母线电压,经过电压转换后为主控板供电,同时将母线电压信号传输给主控板;
    所述传感器板检测驱动板输出的三相电流并将检测信号传输给主控板;
    所述驱动板驱动控制器外部的潜油电机运行;
    所述电容板将地面输出的两相直流电转换为两相母线电压,分别输入到所述电源板、放电板和驱动板中,并且将检测到的母线电流信号传输给主控板;
    所述主控板根据母线电流检测信号、母线电压检测信号以及三相电流检测信号分别对母线电流监控、对母线电压进行控制保护以及控制输出给所述驱动板的脉宽调制信号;并且控制放电板放电;
    所述放电板根据所述主控板的控制信号释放电容板上存储的电。
  5. 如权利要求4所述的潜油井下控制器,其特征在于,所述主控板包括:电源输入单元、传感器检测输入单元、主控单元、脉宽调制输出单元、外部接口单元和存储单元;
    电源输入单元为所述外部接口单元、主控单元及周围信号电路供电,所述周围信号电路包括解码芯片电路、光耦电路、滤波电路、运放电路;
    传感器检测输入单元将采集的多种井下信号转换为模拟电压信号,并发送到主控单元中;
    主控单元接收所述传感器检测输入单元输出的模拟电压信号,并转换成数字量;
    主控单元通过脉宽调制输出单元输出三相脉宽调制信号到所述驱动板中;
    外部接口单元与所述主控板以外的外部硬件连接;
    存储单元存储所述主控单元的数据信息。
  6. 如权利要求5所述的潜油井下控制器,其特征在于,所述外部接口单元包括:输入输出接口单元、功能控制接口单元和数据通信接口单元;其中
    输入输出接口单元包括输入信号预留接口和输出信号预留接口,用于所述潜油井下控制器的功能扩展;
    功能控制接口单元包括:放电控制接口、启停开关接口和保护信号接口;其中
    放电控制接口输出主控单元发出的放电控制信号,控制所述放电板释放电容板上的电量;
    启停开关接口接收地面的启停指令信号并输入到主控单元,从而控制潜油电机启动和停止,
    保护信号接口接收所述驱动板中绝缘栅双极型晶体管发出的保护信号并输入到主控单元;
    所述数据通信接口单元包括:SPI通信接口、CAN通信接口和串行数据通信接口; 其中
    SPI通信接口采集位置传感器或编码器的角度信息;
    CAN通信接口与潜油系统的地面通信;
    串行数据通信接口与上位机或PC机通信,所述串行数据通信接口包括:RS485通信或RS232通信。
  7. 如权利要求4所述的潜油井下控制器,其特征在于,所述驱动板包括:绝缘栅双极型晶体管单元,所述绝缘栅双极型晶体管单元根据电容板输出的两相母线电压和主控板输出的脉宽调制信号转换为三相交流电,驱动潜油电机运行;并且将绝缘栅双极型晶体管单元的保护信号输出给主控板。
  8. 如权利要求4所述的潜油井下控制器,其特征在于,所述电容板包括:母线电流传感器,所述母线电流传感器将检测到的母线电流信号传输给主控板。
  9. 如权利要求4所述的潜油井下控制器,其特征在于,所述放电板包括:放电电阻,所述放电板通过放电电阻释放存储的电。
  10. 如权利要求4所述的潜油井下控制器,其特征在于,所述电源板为主控板分别提供12V和5V电源。
  11. 如权利要求10所述的潜油井下控制器,其特征在于,所述主控板将电源板提供的5V电源提供给传感器板。
  12. 一种如权利要求1-11任一项所述的潜油井下控制器的控制方法,其特征在于,包括:系统控制、电机控制和可靠性控制;
    系统控制:所述主控板与地面通过CAN通信接口进行信息交互,接收地面发送过来的指令,同时将当前井下的状态和数据上传给地面。
    电机控制:首先所述主控板根据接收到的地面指令得到电机控制指令,同时主控板通过传感器板对电机电流进行采样得到电流反馈,又通过主控板接收编码器信号得到电机角度反馈,然后在主控板上的主控单元执行控制算法得到电机驱动信号输出给驱动板,最终驱动板驱动电机运行。
    其中,当电机带有编码器使得控制单元上的主控板能够获得电机旋转角度时,主控板上的主控单元执行闭环伺服控制算法;当电机不带有编码器使得控制单元上的主控板无法获得电机旋转角度时,主控板上的主控单元执行无传感器控制算法。
    可靠性控制:包括:异常保护控制、超限保护控制和失效处理控制;其中
    异常保护控制:所述主控板检测电机、编码器、传感器及控制单元中的硬件运行是否正常,若否,则控制电机停止运行并将异常状态保存到主控板上的存储单元中,同时通过CAN通信接口将错误信号传递到地面。
    超限保护控制:所述主控板监测传感器单元采集的各种数据,当任何一项数据超过规定范围时,所述主控板通过驱动板对电机控制,包括降低电机运行转速或停止电机运行,使超限数据恢复到正常范围。
    失效处理控制:主控板若检测到电机、编码器、传感器或控制单元中的硬件损坏导致功能失效时,主控板上的主控单元执行备用的报警处理、传感器切换和通信故障处理控制算法,使所述潜油井下控制器正常工作。
  13. 如权利要求12所述的控制方法,其特征在于,所述各种数据包括:电流数据、电压数据、温度数据和压力数据。
PCT/CN2014/089551 2013-12-04 2014-10-27 潜油井下控制器及控制方法 WO2015081773A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310646466.4A CN104702191A (zh) 2013-12-04 2013-12-04 潜油井下控制器及控制方法
CN201310646466.4 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015081773A1 true WO2015081773A1 (zh) 2015-06-11

Family

ID=53272857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089551 WO2015081773A1 (zh) 2013-12-04 2014-10-27 潜油井下控制器及控制方法

Country Status (2)

Country Link
CN (1) CN104702191A (zh)
WO (1) WO2015081773A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942768A (zh) * 2018-01-22 2018-04-20 安图实验仪器(郑州)有限公司 免疫模块机分布式控制系统
CN111221277A (zh) * 2018-11-23 2020-06-02 中国科学院沈阳自动化研究所 一种用于全海深自主遥控潜水器的推进控制系统和方法
CN113922686A (zh) * 2021-08-31 2022-01-11 北京精密机电控制设备研究所 一种浸油抗压型控制驱动器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768054A (zh) * 2016-12-29 2017-05-31 天津市百成油田采油设备制造有限公司 一种潜油电机井下动态参数检测记录保护装置
CN109873580A (zh) * 2017-12-01 2019-06-11 台达电子工业股份有限公司 换相马达驱动模块及其控制方法
CN109869137B (zh) * 2017-12-05 2021-06-15 中国科学院沈阳自动化研究所 一种基于流量计和示功图的抽油井定产模式控制方法
CN111734651B (zh) * 2020-07-08 2021-08-27 浙江都美电气技术股份有限公司 潜油/潜水系统的控制系统
CN113029673A (zh) * 2021-03-10 2021-06-25 河北建筑工程学院 一种水环境检测用的辅助装置
CN113464411B (zh) * 2021-08-16 2023-01-13 东营市鑫吉石油技术有限公司 井下电动柱塞泵系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045333A (en) * 1997-12-01 2000-04-04 Camco International, Inc. Method and apparatus for controlling a submergible pumping system
CN101877565A (zh) * 2009-04-30 2010-11-03 哈尔滨晟普科技有限公司 潜油伺服拖动系统
CN202143024U (zh) * 2011-08-16 2012-02-08 中国石油天然气股份有限公司 潜油电机伺服控制器
CN101877564B (zh) * 2009-04-30 2012-07-25 浙江中科德润科技有限公司 潜油伺服拖动系统
CN203660950U (zh) * 2013-12-04 2014-06-18 浙江中科德润科技有限公司 潜油井下控制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045333A (en) * 1997-12-01 2000-04-04 Camco International, Inc. Method and apparatus for controlling a submergible pumping system
CN101877565A (zh) * 2009-04-30 2010-11-03 哈尔滨晟普科技有限公司 潜油伺服拖动系统
CN101877564B (zh) * 2009-04-30 2012-07-25 浙江中科德润科技有限公司 潜油伺服拖动系统
CN202143024U (zh) * 2011-08-16 2012-02-08 中国石油天然气股份有限公司 潜油电机伺服控制器
CN203660950U (zh) * 2013-12-04 2014-06-18 浙江中科德润科技有限公司 潜油井下控制器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942768A (zh) * 2018-01-22 2018-04-20 安图实验仪器(郑州)有限公司 免疫模块机分布式控制系统
CN107942768B (zh) * 2018-01-22 2024-03-29 安图实验仪器(郑州)有限公司 免疫模块机分布式控制系统
CN111221277A (zh) * 2018-11-23 2020-06-02 中国科学院沈阳自动化研究所 一种用于全海深自主遥控潜水器的推进控制系统和方法
CN113922686A (zh) * 2021-08-31 2022-01-11 北京精密机电控制设备研究所 一种浸油抗压型控制驱动器

Also Published As

Publication number Publication date
CN104702191A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2015081773A1 (zh) 潜油井下控制器及控制方法
CN202906819U (zh) 井下无刷直流电机控制器
CN104155564B (zh) 无刷直流电机逆变器单管开路故障的诊断和定位方法
CN103414433B (zh) 一种霍尔位置传感器故障急救方法
CN202276306U (zh) 一种双通道冗余无刷直流电机驱动器
CN108442912A (zh) 一种压裂车的低压交流变频电驱动系统
CN107359841A (zh) 一种潜水泵用开关磁阻电机控制系统及其控制方法
CN103437954A (zh) 一种风电变桨控制系统与风电变桨系统
CN203660950U (zh) 潜油井下控制器
CN201348740Y (zh) 智能型变频电动执行器
CN102777391A (zh) 汽车电子水泵控制器
CN204349846U (zh) 一种无气喷涂用直流无刷电机控制装置
CA2671381A1 (en) Braking controller of a three-phase permanent magnetic brushless dc motor for directly driving a screw pump
CN201557071U (zh) 电机失压再启动装置
CN106088246A (zh) 一种智能泵控制系统
CN203099030U (zh) 一种智能型变频电动执行机构
CN206158920U (zh) 永磁风力发电机自供电变桨系统
CN211500997U (zh) 一种基于水泵的缺水保护控制装置
CN201113911Y (zh) 基于公共直流母线的船用多变频器系统
CN204046475U (zh) 一种井下无刷直流电机驱动控制器
CN106762773A (zh) 电动汽车无油涡旋空压机气刹泵的pmsm驱动控制器
CN203406600U (zh) 一种新型的振动筛用控制柜
CN207150479U (zh) 一种潜水泵用开关磁阻电机控制系统
CN204633655U (zh) 一种节能型自吸泵式加油机
CN106982015B (zh) 一种多处理器永磁无刷直流电机联合调速系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868001

Country of ref document: EP

Kind code of ref document: A1