WO2015081574A1 - 一种混频电路、业务设备及混频业务系统 - Google Patents

一种混频电路、业务设备及混频业务系统 Download PDF

Info

Publication number
WO2015081574A1
WO2015081574A1 PCT/CN2013/088816 CN2013088816W WO2015081574A1 WO 2015081574 A1 WO2015081574 A1 WO 2015081574A1 CN 2013088816 W CN2013088816 W CN 2013088816W WO 2015081574 A1 WO2015081574 A1 WO 2015081574A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
signal
downlink signal
input port
output
Prior art date
Application number
PCT/CN2013/088816
Other languages
English (en)
French (fr)
Inventor
王宣强
施世华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380002723.9A priority Critical patent/CN103782548B/zh
Priority to PCT/CN2013/088816 priority patent/WO2015081574A1/zh
Publication of WO2015081574A1 publication Critical patent/WO2015081574A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/22Adaptations for optical transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • H04N21/42676Internal components of the client ; Characteristics thereof for modulating an analogue carrier signal to encode digital information or demodulating it to decode digital information, e.g. ADSL or cable modem
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6118Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving cable transmission, e.g. using a cable modem

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a mixing circuit, a service device, and a mixing service system. Background technique
  • the centralized CMTS (cable modem termination system) service has been opened.
  • the uplink The data is from the end user's CM (Cable Modem) through the fiber node to the CMTS device located at the front end, and then through the upstream PHY (physical layer) and MAC (Media Access Control; media connection) of the internal user board of the CMTS device. After entering the control layer, it is further sent to the main control board of the CMTS device for aggregation. After the aggregated service passes through the transport network, it accesses the Internet portal or the core network.
  • the data from the Internet or the core network passes through the transport network and arrives at the main CMTS device.
  • the control board after being distributed by the main control board, enters the user board of the CMTS device, and further forms a QAM (Quadature Amplitude Modulation) modulated signal through the downlink MAC and PHY of the CMTS user board, in the front end and the digital television, Analog TV, local TV mixing and post-lighting transmitter, Transmitted through the optical fiber to the fiber node, it is converted into an electrical signal into the HFC network, through the distribution, after transmission of a CM user arrival.
  • QAM Quadature Amplitude Modulation
  • the upstream data of the on-demand service is returned by using OOB (Out of Band), and the secondary terminal to the end user is a two-way network, specifically, for example, the user passes the STB.
  • OOB Out of Band
  • the uplink data of the on-demand service reaches the fiber node through the tree network, and then the optical receiver arrives at the OOB server; then the OOB server reaches the EQ AM (boundary QAM modulation) of the downlink data via the Internet or the core network.
  • Equipment then the light emitter, enters the light node, converts it into an electrical signal, and then passes through the tree network and sends it to the STB.
  • the spectrum is wide, and it is currently applied to 1 GHz. Therefore, there will be some idle spectrum. If it is not used, resources will be wasted, so operators will introduce new ones in the current HFC network.
  • Service insert a new device, for example, as shown in Figure lb, a DCMTS (distributed cable modem termination system) device is connected in the original HFC network, using the idle spectrum to provide users with new services. Its location is at the downstream of the optical station, the optical station, and upstream of the end user. To introduce new services into the original network, it is necessary to ensure that the original network has little impact, such as insertion loss, reliability, and construction difficulty.
  • DCMTS distributed cable modem termination system
  • the downlink signal of the new service is input to the branch input port of the branch device through the power multiplier, and the original service is downlinked.
  • the signal passes through the RF IN (RF input port), it enters the main input port of the branch.
  • the upstream signal is coupled and separated by the duplexer.
  • This scheme is attenuated by RF IN to RF OUT (RF output port) within 3dB when configuring the 108 brancher, within 2dB of attenuation when configuring the 112 branch, and the path from RF IN to RF OUT is completely passive, so the new device is powered off. After that, it will not affect the original business.
  • the shortcoming of this scheme is: The uplink signal of the original service cannot be returned to the RF IN port after being separated from the duplexer, so the reliability is poor. Summary of the invention
  • the present application provides a mixing circuit, a service device, and a mixing service system, which are used to solve the problem that the uplink signal of the original service existing in the mixing scheme in the prior art is separated from the duplexer and cannot be transmitted back to the RF IN port. , technical problems that lead to poor reliability.
  • a first aspect of the present application provides a mixing circuit, where the mixing circuit includes:
  • a splitter the splitter has a main input port, a branch input port, and a main output port; a duplexer, the duplexer includes a transmitting end, a receiving end, and a common end, wherein the common end is connected to the branching device a branch input port; wherein the brancher is configured to mix a downlink signal of a first service input from the primary input port with a downlink signal of a second service from the branch input port, and then Outputting a port output, and for respectively distributing an uplink signal of the first service and an uplink signal of the second service input from the main output port to the main input port and the branch input port output; the duplexer is used to implement Two-way communication of the downlink signal of the second service and the uplink signal of the second service, where the downlink signal of the second service is coupled to the public by the transmitting end
  • the common terminal is coupled to the receiving end from the common end.
  • the method further includes: a power amplifier connected to the transmitting end of the duplexer, where the downlink signal in the second service enters the The downlink signal of the second service is amplified before the duplexer.
  • the splitter is specifically a 108 splitter or a 112 splitter.
  • the first service is specifically The television service or the broadcast service
  • the second service is specifically a broadband service or an internet protocol telephone VOIP service.
  • the second aspect of the present application further provides a distributed cable modem terminal system DCMTS service device, where the service device includes:
  • the radio frequency input port is configured to receive the downlink signal of the first service and the uplink signal of the first service.
  • the first aspect, the first possible implementation manner of the first aspect, and the third possible implementation manner of the first aspect The mixing circuit of any one of the above; a radio frequency output port; connected to the main output port, configured to output a downlink signal of the first service and a downlink signal of the second service, and input the An uplink signal of a service and an uplink signal of the second service.
  • the downlink signal of the first service is output by the optical station in the fiber-optic coaxial cable hybrid network HFC to the radio frequency input port, and
  • the RF output port is output to the user terminal.
  • the third aspect of the present application further provides a mixing service system, including:
  • the mixing service device includes: the first aspect, the first possible implementation manner of the first aspect to the first aspect a mixing circuit according to any one of the three possible implementations; a user terminal, configured to generate an uplink signal of the first service and an uplink signal of the second service, and use the first service a downlink signal and a downlink signal of the second service.
  • the mixing service device is specifically a distributed cable modem terminal system DCMTS device or a coaxial cable Ethernet EOC device.
  • the mixing circuit includes: a brancher having a main input port, a branch input port, and a main output port; a duplexer including a transmitting end, a receiving end, and a common end, wherein the common end is connected to the branching device a branch input port; wherein the brancher is configured to mix the downlink signal of the first service input from the main input port and the downlink signal of the second service from the branch input port, and output the signal from the main output port, and use the output from the main output port
  • the uplink signal of the first service input by the port and the uplink signal of the second service are respectively allocated to the output of the main input port and the branch input port;
  • the duplexer is configured to implement bidirectional communication of the downlink signal of the second service and the uplink signal of the second service, The downlink signal of the second service is coupled to the common end through the transmitting end; the uplink signal of the second service is coupled from the common end to the receiving end.
  • the downlink signal and the uplink signal of the first service are mutually unidirectionally connected, and after the second service is added, the uplink signal of the first service can still return to the main signal of the downlink signal of the first service.
  • the input port does not affect the first service, so the reliability is high.
  • the downlink signal and the uplink signal of the first service are purely passive design on the input to output path of the new service device, so the device of the second service is faulty or After the power is off, the first service will not be affected, so the reliability is high.
  • the downlink signal of the first service passes through only one branch, the attenuation is small, and the attenuation of the signal of the first service is small; finally, only one duplexer is needed. And a splitter, so the cost is low.
  • 1a is a structural diagram of a HFC network in the prior art
  • 2 is a schematic diagram of a mixing circuit in the prior art
  • FIG. 3 is a schematic diagram of a mixing circuit in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a mixing circuit in another embodiment of the present application.
  • FIG. 5 is a structural diagram of a service device in Embodiment 2 of the present application.
  • FIG. 6 is a system architecture diagram of a mixing service system in Embodiment 3 of the present application. detailed description
  • the embodiment of the present application provides a mixing circuit, a service device, and a mixing service system, which are used to solve the problem that the uplink signal of the original service existing in the mixing scheme in the prior art is separated from the duplexer and cannot be returned to the RF.
  • the IN port causes technical problems with poor reliability.
  • the mixing circuit includes: a branching device, the branching device has a main input port, a branch input port, and a main output port; And a branch input port connected to the brancher; wherein the branch is used for a downlink signal of the first service input from the main input port and a second service of the slave branch input port
  • the downlink signal is mixed and output from the main output port, and is used for respectively distributing the uplink signal of the first service and the uplink signal of the second service input from the main output port to the main input port and the branch input port output;
  • the downlink signal of the second service is coupled to the common end by the transmitting end; the uplink signal of the second service is coupled from the common end to the receiving end.
  • the downlink signal and the uplink signal of the first service are mutually unidirectionally connected, and after the second service is added, the uplink signal of the first service can still return to the main signal of the downlink signal of the first service.
  • the input port does not affect the first service, so the reliability is high.
  • the downlink signal and the uplink signal of the first service are purely passive design on the input to output path of the new service device, so the device of the second service is faulty or After the power is off, the first service will not be affected, so the reliability is high.
  • This embodiment provides a mixing circuit, which can be applied to other frequency division networks in addition to the HFC network.
  • the mixing circuit includes:
  • the splitter 10 has a main input port 101, a branch input port 102 and a main output port 103.
  • the duplexer 20 includes a transmitting end, a receiving end and a common end, and the common end is connected to the branch input port of the splitter 10.
  • the brancher 10 is configured to mix the downlink signal of the first service input from the main input port 101 and the downlink signal of the second service from the branch input port 102, and output the signal from the main output port 103, and The uplink signal of the first service and the uplink signal of the second service input from the main output port 103 are respectively allocated to the output of the main input port 101 and the branch input port 102;
  • the duplexer 20 is configured to implement the downlink signal of the second service and the second The two-way communication of the uplink signal of the service, the downlink signal of the second service is coupled to the common end by the transmitting end; the uplink signal of the second service is coupled from the common end to the receiving end.
  • the downlink signal of the first service enters the brancher 10 through the main input port 101, and then is output by the main output port 103.
  • the uplink signal of the first service enters the brancher 10 via the main output port 103, and then is input to the brancher 10 by the main input port 101.
  • Output; the downlink signal of the second service enters the brancher 10 from the branch input port 102 via the duplexer 20, and is then output by the main output port 103;
  • the number enters the splitter 10 via the main output port 103, is then output to the duplexer 20 via the branch input port 102, and is output by the duplexer 20.
  • the splitter 10 can use the 108 splitter or the 112 splitter, the 108 splitter main channel is attenuated by about 2 dB, and the branch is attenuated by 8 dB; the 112 splitter main path is attenuated by ldB, and the branch is attenuated by about ldB. Therefore, the attenuation is small by the mixer circuit in this embodiment.
  • the downlink signal of the second service and the downlink signal of the first service form a 6 dB drop
  • the 112 splitter forms an lldB drop.
  • the downlink signal of the second service is the modulated signal of QAM64
  • the downlink signal of the first service for example, the analog video signal is formed according to engineering experience
  • a 6-8 dB drop is formed; and for the QAM256 modulated signal, it is required to form 8 ⁇ 10dB drop, so the selection of the splitter 10 can be selected according to the type of downlink signal of the second service.
  • the duplexer 20 is configured to implement coupling and separation of the downlink signal and the uplink signal of the second service, and isolate the downlink signal from the uplink signal to ensure that both the uplink signal and the downlink signal can work normally at the same time. Generally, it is composed of two sets of different frequency band stop filters.
  • the downlink signal is coupled from the high-pass input terminal, that is, the transmitting end, through the high-pass filter indicated by "H" in the figure.
  • the upstream signal is coupled from the common end of the duplexer to the low-pass output, the receiver, via a low-pass filter represented by the "L" in the figure.
  • the mixing circuit further includes a power amplifier 30 connected to the transmitting end of the duplexer 20 for use in the second service.
  • the downlink signal is amplified by the downlink signal of the second service before entering the duplexer 20.
  • the power amplifier 30 is specifically, for example, a power multiplier.
  • the power amplifier 30 is separately added to the downlink signal of the second service. Since the downlink signal of the first service is not amplified, the total channel number of the signal is only the downlink of the second service: On the one hand, the input power of the amplifier is small. The average gain to each channel can be higher; on the other hand, the input and output paths of the downlink signal of the first service are purely passive networks, ensuring that the new service equipment will not affect the first service even if the power is off. .
  • the first service can be analog TV, digital TV, FM FM.
  • the downlink signal of the first service may be a downlink signal of an analog television, a downlink signal of a digital television, or a downlink signal of an FM radio broadcast.
  • the second service may be a DCMTS (distributed cable modem termination system) service, or may be an EOC (Ethernet over Coax) service, or may be other HFCs that may be generated.
  • DCMTS distributed cable modem termination system
  • EOC Ethernet over Coax
  • New services of the network such as broadband services or VOIP (voice over Internet Protocol) services.
  • the following describes the working process of a specific example of the mixing circuit in this embodiment by taking the second service as the broadband service as an example.
  • the downlink signal of the second service is sent to the MAC of the CMTS device through the GE (Gigabit Ethernet; Gigabit Ethernet) or PON (Passive Optical Network) network (Media Access Control; media connection)
  • the control layer is then sent to the PHY (physical layer) of the CMTS device, optionally through the power amplifier 30, then into the duplexer 20, and further into the branch input port 102 of the splitter 10, and then with the original service,
  • the downlink signal of the digital TV is mixed by the brancher 10 and then enters the main output port 103; after entering the tree cable network of the branch, the user enters the user's home, for example, connects to the set-top box to provide video service, and connects to the CM (Cable Modem; cable modem) ) Provide broadband services.
  • the path of the uplink signal is just the reverse: the set-top box of the user's home sends the uplink signal of the on-demand service, and the CM sends the uplink signal of the user's Internet access, and then converges to the main output port 103 after the tree network allocated by the branch, forming two branches: Branch, the signal from the output of the main input port 101 of the brancher 10 further enters the RF (radio frequency) port of the optical station, and is transmitted to the front-end equipment room through the reverse optical fiber, and then sent to the uplink demodulation unit of the on-demand server for demodulation; The two branches, the signal output from the branch input port 102 of the brancher 10 enters the duplexer 20, the uplink signal output from the low-pass port of the duplexer 20 enters the PHY of the CMTS, then enters the MAC of the CMTS, and finally enters the LSW (network switch) After being aggregated by PON or GE, it is sent to the upstream.
  • Branch the
  • EOC services is similar to that of broadband services, except that the PHY and MAC definitions of different technologies are different; the spectrum resources of cable lines are very impressive, and are currently applied to 1G, using frequency division. Reuse, uplink and downlink use different frequencies (specific split points are different for different countries and standards), providing two-way services in a tree-shaped network.
  • the mixing circuit in this embodiment has multiple advantages.
  • the downlink signal and the uplink signal of the first service are mutually unidirectionally connected. After the second service is added, the uplink signal of the first service can still be returned.
  • the primary input port of the downlink signal of the first service does not affect the first service, so the reliability is high.
  • the downlink signal and the uplink signal of the first service are purely passive design on the input to output path of the new service device. Therefore, after the device of the second service fails or is powered off, the first service is not affected, so the reliability is high.
  • the downlink signal of the first service passes through only one branch, the attenuation is small, and the attenuation of the signal of the first service is small; Finally, only one duplexer and one splitter are needed, so the cost is slim.
  • the service device includes: a radio frequency input port 40, configured to receive a downlink signal of the first service and output an uplink signal of the first service;
  • the circuit 50 is configured to transmit the signal of the first service and the signal of the second service, and the RF output port 60 is configured to output a downlink signal of the first service and a downlink signal of the second service, and input an uplink signal of the first service. And the uplink signal of the second service.
  • the mixer circuit 50 specifically includes: a brancher 10 having a main input port 101, a branch input port 102, and a main output port 103.
  • the duplexer 20 includes a transmitting end, a receiving end, and a common end, and a common end. Connected to the branch input port 102 of the splitter 10; wherein the splitter 10 is configured to mix the downlink signal of the first service input from the main input port 101 and the downlink signal of the second service from the branch input port 102.
  • the main output port 103 outputs, and is used for respectively distributing the uplink signal of the first service and the uplink signal of the second service input from the main output port 103 to the output of the main input port 101 and the branch input port 102; the duplexer 20 is used to implement The two-way communication of the downlink signal of the second service and the uplink signal of the second service, the downlink signal of the second service is coupled to the common end by the transmitting end; the uplink signal of the second service is coupled from the common end to the receiving end. Specifically, the downlink signal of the first service enters the brancher 10 through the main input port 101, and then is output by the main output port 103.
  • the uplink signal of the first service enters the brancher 10 through the main output port 103, and then is input to the brancher 10 by the main input port 101.
  • Output; the downlink signal of the second service enters the brancher 10 from the branch input port 102 via the duplexer 20, and is then output by the main output port 103; the uplink signal of the second service enters the brancher 10 via the main output port 103, and then passes through the branch
  • the input port 102 is output to the duplexer 20, and is output by the duplexer 20.
  • the mixing circuit 50 further includes: a power amplifier 30 connected to the common end of the duplexer 20, configured to perform the second service before the downlink signal of the second service enters the duplexer 20.
  • the downstream signal is amplified.
  • the splitter 10 is specifically a 108 splitter or a 112 splitter.
  • the mixing circuit 50 is similar to the mixing circuit described in the first embodiment, and therefore will not be described again.
  • the downlink signal of the second service may be generated by the upstream device of the service device.
  • the service device is a DCMTS device
  • the downlink signal of the second service is specifically generated by the MAC or PHY of the upstream related device; for example, Assuming that the service device is an EOC device, the downlink signal of the second service is specifically generated by the MAC or PHY of the upstream related device.
  • the uplink signal of the second service is usually transmitted back to the upstream device for processing. Therefore, in this case, the service device further includes: a receiver, configured to receive a downlink signal of the second service and an uplink signal of the second service.
  • the downlink signal of the second service may also be generated by the service device itself.
  • the uplink signal of the second service is also processed by the service device itself.
  • the service device further includes a processor. Generating a downlink signal of the second service and processing an uplink signal of the second service.
  • the service device may be specifically disposed downstream of the optical station, and upstream of the user terminal, that is, between the optical station and the user terminal, so that the downlink signal of the first service is output from the optical station to the radio frequency input port. And output to the user terminal by the RF output port.
  • the following describes the working process of a specific example of the service device in this embodiment by using the service device as the DCMTS device as an example.
  • the first service for example, the downlink signal of the digital television is input to the main input port 101 via the radio frequency input port 40 of the service device, and the downlink signal of the second service is used to access the user through the GE or PON (Passive Optical Network) network.
  • the downlink digital signal is sent to the MAC (Media Access Control) layer of the CMTS device, and then sent to the PHY of the CMTS device.
  • MAC Media Access Control
  • the power amplifier 30 optionally passed through the power amplifier 30, then enters the duplexer 20, and further enters the branch input port 102 of the splitter 10, and then mixes with the downlink signal of the first service through the splitter 10 to enter the main output port. 103; then output through the RF output port 60; then enter the user's home after branching the tree cable network, for example, connecting to the set-top box to provide video services, connecting to the CM
  • the path of the uplink signal is just the reverse: the set-top box of the user's home sends the uplink signal of the on-demand service, and the CM sends the uplink signal of the user's Internet access, and then converges to the RF output port 60 of the service device through the tree network allocated by the branch, and then enters the service device.
  • the internal main output port 103 then forms two branches: The first branch, the signal output from the main input port 101 of the splitter 10 further enters the RF (radio frequency) port of the optical station, and is transmitted to the front-end equipment room through the reverse optical fiber.
  • the uplink demodulation unit sent to the on-demand server performs demodulation; the second branch, the signal output from the branch input port 102 of the brancher 10 enters the duplexer 20 in the service device, and the uplink output from the low-pass port of the duplexer 20
  • the signal enters the PHY of the CMTS, and then enters the MAC of the CMTS. After entering the LSW, it is sent to the uplink through the PON or GE aggregation to implement the Internet access service.
  • the HFC network can still refer to FIG. 1b.
  • the uplink data of the backhaul-on-demand service can still be implemented by using the OOB method, for example, by using the STB (Set Top Box) on-demand service.
  • the uplink data of the on-demand service arrives at the DCMTS new service device through the tree network, then enters the brancher 10 through the RF output port 60, and then outputs from the main input port 101 of the brancher 10, and then outputs the optical fiber input port 40 of the new service device to the optical fiber.
  • the node arrives at the OOB server; then the OOB server reaches the front-end EQAM (boundary QAM modulation device) via the Internet or the core network, and then goes to the light emitter, enters the ray node, and then passes the RF input.
  • Port 40 enters the DCMTS new service device, and then enters the splitter 10 through the primary input port 101, and then from the primary output of the splitter 10
  • the port 103 is output to the RF output port 60, and then passed through the tree network and sent to the STB.
  • EOC devices The processing of EOC devices is similar to that of DCMTS devices, except that the PHY and MAC definitions are different for different technologies.
  • the embodiment further provides a mixing service system.
  • the system includes: a first service server 601; a downlink signal for generating a first service and an uplink signal for processing a first service;
  • the server 602 is configured to generate a downlink signal of the second service and an uplink signal for processing the second service, where the mixing service device 603 is configured to mix and output the downlink signal of the first service and the downlink signal of the second service, and
  • the uplink signal of the first service and the uplink signal of the second service are respectively output to the first service server 601 and the second service server 602.
  • the mixing service device 603 includes: a mixing circuit; and the user terminal 604 is configured to generate the first service.
  • the mixing service device 603 may specifically be a distributed cable modem terminal system DCMTS device or a coaxial cable Ethernet EOC device.
  • the mixing circuit in this embodiment is similar to the mixing circuit described in the first embodiment, and therefore will not be described herein.
  • the mixing service device is similar to the service device described in the foregoing Embodiment 2, and therefore will not be described herein.
  • the first service server 601 and the second service server 602 correspond to different services, that is, different servers, and further, the first service server 601 and the second service server 602 are respectively associated with the mixing service device 603.
  • Other network elements may also be included, such as a core network, a modulator, an optical transceiver, an optical station, a fiber node, and the like.
  • the mixing circuit includes: a brancher having a main input port, a branch input port, and a main output port; a duplexer including a transmitting end, a receiving end, and a common end, wherein the common end is connected to the branching device a branch input port; wherein the brancher is configured to mix the downlink signal of the first service input from the primary input port and the downlink signal of the second service from the branch input port
  • the main output port is output, and is used for respectively distributing the uplink signal of the first service and the uplink signal of the second service input from the main output port to the main input port and the branch input port output;
  • the duplexer is configured to implement the downlink signal of the second service
  • the two-way communication with the uplink signal of the second service, the downlink signal of the second service is coupled to the common end through the transmitting end; the uplink signal of the second service is coupled from the common end to the receiving end.
  • the downlink signal and the uplink signal of the first service are mutually unidirectionally connected, and after the second service is added, the uplink signal of the first service can still return to the main signal of the downlink signal of the first service.
  • the input port does not affect the first service, so the reliability is high.
  • the downlink signal and the uplink signal of the first service are purely passive design on the input to output path of the new service device, so the device of the second service is faulty or After the power is off, the first service will not be affected, so the reliability is high.
  • the downlink signal of the first service passes through only one branch, the attenuation is small, and the attenuation of the signal of the first service is small; finally, only one duplexer is needed. And a splitter, so the cost is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

 本申请提供一种混频电路、业务设备及混频业务系统,该混频电路包括:分支器,所述分支器具有一主输入端口、分支输入端口和主输出端口;双工器,所述双工器包括发射端、接收端和公共端,所述公共端连接于所述分支器的所述分支输入端口;其中,所述分支器用于将从所述主输入端口输入的第一业务的下行信号和从所述分支输入端口的第二业务的下行信号进行混频后从所述主输出端口输出,并用于将从所述主输出端口输入的第一业务的上行信号和第二业务的上行信号分别分配到所述主输入端口和分支输入端口输出;所述双工器用于实现所述第二业务的下行信号和所述第二业务的上行信号的双向通信,所述第二业务的下行信号通过所述发射端耦合到所述公共端;所述第二业务的上行信号从所述公共端耦合到所述接收端。

Description

一种混频电路、 业务设备及混频业务系统
技术领域
本申请涉及通信技术领域, 尤其涉及一种混频电路、 业务设备及混频业 务系统。 背景技术
在目前的 HFC ( hybrid fiber coaxial; 光纤同轴电缆混合网)网络中, 已经 开通了集中式 CMTS ( cable modem termination system; 线缆调制解调器终端 系统)业务,具体请参考图 la所示,首先,上行数据是从终端用户的 CM ( Cable Modem;线缆调制解调器)通过光纤节点进入位于分前端的 CMTS设备,然后, 经过 CMTS设备内部用户板的上行 PHY(物理层)、MAC( Media Access Control; 媒体接入控制层)后进一步送入 CMTS设备主控板汇聚, 汇聚后的业务经过传 送网后接入因特网入口或者核心网; 下行相反, 来自因特网或者核心网的数 据经过传送网后抵达 CMTS设备的主控板, 经过主控板分发后进入 CMTS设备 的用户板,进一步通过 CMTS用户板的下行 MAC、PHY后形成 QAM( Quadrature Amplitude Modulation; 正交幅度调制)调制的信号, 在分前端和数字电视、 模拟电视、 本地电视混频后上光发射机, 经过光纤传输至光纤节点, 转化成 电信号后送入 HFC网络, 经过分配、 传输后抵达用户的 CM。
另外, 在 CMTS业务中, 同步釆用 OOB ( Out of Band; 带外数据)的方式 回传点播业务的上行数据, 从分前端到终端用户是一个双向的网络, 具体来 说, 例如用户通过 STB (机顶盒)点播业务, 点播业务的上行数据通过树状网 络到达光纤节点, 然后上光接收器, 到达 OOB服务器; 然后 OOB服务器将下 行数据经因特网或者核心网抵达分前端的 EQ AM (边界 QAM调制设备 ), 然后 再上光发射器, 进入光线节点, 转化为电信号, 再经过树状网络后送入 STB。
在 HFC网络中, 频谱较宽, 目前应用到 1GHz, 所以会有一些空闲的频谱, 如果不加以利用, 就会浪费资源, 所以运营商会在当前的 HFC网络中引入新 业务,插入新设备,例如如图 lb所示,串接一个 DCMTS( distributed cable modem termination system; 分布式线缆调制解调器终端系统)设备在原有的 HFC网络 中, 利用空闲的频谱为用户提供新的业务, 其位置处于光站、 光站的下游, 终端用户的上游。 在原有的网络中引入新的业务, 就要保证对原有网络影响 小, 例如插损、 可靠性和建设难度等。
在现有技术中提供了引入新业务新设备后的混频电路方案, 请参考图 2所 示, 新业务的下行信号经过功率倍增器后输入到分支器的分支输入端口, 原 有业务的下行信号经 RF IN (射频输入端口)后进入分支器的主输入端口, 两 个下行信号经过分支器后, 和上行信号通过双工器耦合和分离。 此方案由 RF IN到 RF OUT (射频输出端口 )在配置 108分支器时衰减 3dB以内, 在配置 112 分支器时衰减 2dB以内, 且 RF IN到 RF OUT的路径全无源, 所以新设备下电后 不影响原有业务。 该方案的缺陷是: 原有业务的上行信号从双工器分离出来 后无法回传到 RF IN口, 所以可靠性差。 发明内容
本申请提供一种混频电路、 业务设备及混频业务系统, 用以解决现有技 术中的混频方案存在的原有业务的上行信号从双工器分离出来后无法回传到 RF IN口, 导致可靠性差的技术问题。
本申请第一方面提供了一种混频电路, 所述混频电路包括:
分支器, 所述分支器具有一主输入端口、 分支输入端口和主输出端口; 双工器, 所述双工器包括发射端、 接收端和公共端, 所述公共端连接于所述 分支器的所述分支输入端口; 其中, 所述分支器用于将从所述主输入端口输 入的第一业务的下行信号和从所述分支输入端口的第二业务的下行信号进行 混频后从所述主输出端口输出, 并用于将从所述主输出端口输入的第一业务 的上行信号和第二业务的上行信号分别分配到所述主输入端口和分支输入端 口输出; 所述双工器用于实现所述第二业务的下行信号和所述第二业务的上 行信号的双向通信, 所述第二业务的下行信号通过所述发射端耦合到所述公 共端; 所述第二业务的上行信号从所述公共端耦合到所述接收端。 结合第一方面, 在第一方面的第一种可能的实现方式中, 还包括: 功率 放大器, 连接于所述双工器的发射端, 用于在所述第二业务的下行信号进入 所述双工器前对所述第二业务的下行信号进行放大。
结合第一方面或第一方面的第一种可能的实现方式, 在第一方面的第二 种可能的实现方式中, 所述分支器具体为 108分支器或 112分支器。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种 可能的实现方式, 在第一方面的第三种可能的实现方式中, 所述第一业务具 体为电视业务或广播业务, 所述第二业务具体为宽带业务或因特网协议电话 VOIP业务。
本申请第二方面还提供一种分布式线缆调制解调器终端系统 DCMTS 业 务设备, 所述业务设备包括:
射频输入端口, 用于接收第一业务的下行信号和输出第一业务的上行信 号; 如第一方面、 第一方面的第一种可能的实现方式至第一方面的第三种可 能的实现方式中的任意一种所述的混频电路; 射频输出端口; 连接于所述主 输出端口, 用于输出所述第一业务的下行信号和所述第二业务的下行信号, 及输入所述第一业务的上行信号和所述第二业务的上行信号。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述第一业务 的下行信号由光纤同轴电缆混合网 HFC中的光站输出至所述射频输入端口, 并由所述射频输出端口输出至用户终端。
本申请第三方面还提供一种混频业务系统, 包括:
第一业务服务器; 用于生成第一业务的下行信号和处理第一业务的上行 信号; 第二业务服务器, 用于生成第二业务的下行信号和处理第二业务的上 行信号; 混频业务设备, 用于将所述第一业务的下行信号和所述第二业务的 下行信号混频后输出, 并将所述第一业务的上行信号和所述第二业务的上行 信号分别输出给所述第一业务服务器和所述第二业务服务器; 所述混频业务 设备包括: 如第一方面、 第一方面的第一种可能的实现方式至第一方面的第 三种可能的实现方式中的任意一种所述的混频电路; 用户终端, 用于生成所 述第一业务的上行信号和所述第二业务的上行信号, 以及使用所述第一业务 的下行信号和所述第二业务的下行信号。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述混频业务 设备具体为分布式线缆调制解调器终端系统 DCMTS设备或同轴电缆以太网 EOC设备。
本申请实施例中提供的一个或多个技术方案, 至少具有如下技术效果或 优点:
本申请实施例中, 混频电路包括: 分支器, 分支器具有一主输入端口、 分支输入端口和主输出端口; 双工器, 包括发射端、 接收端和公共端, 公共 端连接于分支器的分支输入端口; 其中, 分支器用于将从主输入端口输入的 第一业务的下行信号和从分支输入端口的第二业务的下行信号进行混频后从 主输出端口输出, 并用于将从主输出端口输入的第一业务的上行信号和第二 业务的上行信号分别分配到主输入端口和分支输入端口输出; 双工器用于实 现第二业务的下行信号和第二业务的上行信号的双向通信, 第二业务的下行 信号通过发射端耦合到公共端; 第二业务的上行信号从公共端耦合到接收端。 由此可以看出, 在本实施例中, 首先, 第一业务的下行信号和上行信号双向 互通, 加入第二业务后, 第一业务的上行信号依然可以回到第一业务的下行 信号的主输入端口, 不影响第一业务, 所以可靠性高; 其次, 第一业务的下 行信号和上行信号在新业务设备上的输入到输出路径上为纯无源设计, 所以 第二业务的设备故障或下电后不会影响第一业务, 所以可靠性高; 再次, 第 一业务的下行信号仅经过一个分支器, 衰减小, 对第一业务的信号的衰减小; 最后, 只需要一个双工器和一个分支器, 所以成本低。 附图说明
图 1 a为现有技术中 HFC网络的结构图; 图 2为现有技术中一种混频电路的原理图;
图 3为本申请一实施例中的混频电路的原理图;
图 4为本申请另一实施例中的混频电路的原理图;
图 5为本申请实施例二中的业务设备的结构图;
图 6为本申请实施例三中的混频业务系统的系统架构图。 具体实施方式
本申请实施例提供一种混频电路、 业务设备及混频业务系统, 用以解决 现有技术中的混频方案存在的原有业务的上行信号从双工器分离出来后无法 回传到 RF IN口, 导致可靠性差的技术问题。
本申请实施例中的技术方案为解决上述的技术问题, 总体思路如下: 本申请实施例中, 混频电路包括: 分支器, 分支器具有一主输入端口、 分支输入端口和主输出端口; 双工器, 包括发射端、 接收端和公共端, 公共 端连接于分支器的分支输入端口; 其中, 分支器用于将从主输入端口输入的 第一业务的下行信号和从分支输入端口的第二业务的下行信号进行混频后从 主输出端口输出, 并用于将从主输出端口输入的第一业务的上行信号和第二 业务的上行信号分别分配到主输入端口和分支输入端口输出; 双工器用于实 现第二业务的下行信号和第二业务的上行信号的双向通信, 第二业务的下行 信号通过发射端耦合到公共端; 第二业务的上行信号从公共端耦合到接收端。 由此可以看出, 在本实施例中, 首先, 第一业务的下行信号和上行信号双向 互通, 加入第二业务后, 第一业务的上行信号依然可以回到第一业务的下行 信号的主输入端口, 不影响第一业务, 所以可靠性高; 其次, 第一业务的下 行信号和上行信号在新业务设备上的输入到输出路径上为纯无源设计, 所以 第二业务的设备故障或下电后不会影响第一业务, 所以可靠性高; 再次, 第 一业务的下行信号仅经过一个分支器, 衰减小, 对第一业务的信号的衰减小; 最后, 只需要一个双工器和一个分支器, 所以成本低。 为使本申请实施例的目的、 技术方案和优点更加清楚, 下面将结合本申 请实施例中的附图, 对本申请实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本申请一部分实施例, 而不是全部的实施例。 基于 本申请中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本申请保护的范围。
本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存 在三种关系, 例如, A和 /或 B , 可以表示: 单独存在 A, 同时存在 A和 B , 单独存在 B 这三种情况。 另外, 本文中字符 "/" , 一般表示前后关联对象是 一种 "或" 的关系。
下面结合附图对本申请优选的实施方式进行详细说明。
实施例一
本实施例提供一种混频电路, 该混频电路除了可以应用在 HFC网络中, 还可以应用在其他频分网络中。 请参考图 3 所示, 为本实施例中的混频电路 的原理图, 该混频电路包括:
分支器 10, 分支器 10具有一主输入端口 101、 分支输入端口 102和主输 出端口 103; 双工器 20, 包括发射端、 接收端和公共端, 公共端连接于分支 器 10的分支输入端口 102; 其中, 分支器 10用于将从主输入端口 101输入的 第一业务的下行信号和从分支输入端口 102 的第二业务的下行信号进行混频 后从主输出端口 103输出, 并用于将从主输出端口 103输入的第一业务的上 行信号和第二业务的上行信号分别分配到主输入端口 101和分支输入端口 102 输出; 双工器 20用于实现第二业务的下行信号和第二业务的上行信号的双向 通信, 第二业务的下行信号通过发射端耦合到所述公共端; 第二业务的上行 信号从公共端耦合到接收端。
具体来说, 第一业务的下行信号经主输入端口 101进入分支器 10 , 然后 由主输出端口 103输出, 第一业务的上行信号经主输出端口 103进入分支器 10, 然后由主输入端口 101输出; 第二业务的下行信号经双工器 20从分支输 入端口 102进入分支器 10, 然后由主输出端口 103输出; 第二业务的上行信 号经由主输出端口 103进入分支器 10, 然后经由分支输入端口 102输出至双 工器 20, 再由双工器 20输出。
在具体实施过程中,分支器 10可以釆用 108分支器或者 112分支器, 108 分支器主路衰减 2dB左右, 支路衰减 8dB; 112分支器主路衰减 ldB, 支路衰 减 ldB左右。 因此, 通过本实施例中的混频电路, 衰减较小。
在分支器 10的主输入端口 101和分支输入端口 102电平一致的情况下, 经过 108分支器后, 第二业务的下行信号和第一业务的下行信号形成 6dB落 差, 112分支器形成 lldB落差; 如果第二业务的下行信号为 QAM64的调制 信号时, 和第一业务的下行信号, 例如模拟视频信号按照工程经验也是要形 成 6~8dB落差; 而对于 QAM256的调制信号而言, 需要形成 8~10dB落差, 因此分支器 10的选择可以根据第二业务的下行信号的种类进行选择。
而双工器 20用于实现第二业务的下行信号和上行信号的耦合与分离, 将 下行信号和上行信号相隔离, 保证上行信号和下行信号都能同时正常工作。 通常是由两组不同频率的阻带滤波器组成, 在本实施例中, 如图 3 所示, 下 行信号经过图中的 "H"表示的高通滤波器从高通输入端, 即发射端, 耦合到 双工器的公共端, 上行信号经过图中的 "L" 表示的低通滤波器从双工器的公 共端耦合到低通输出端, 即接收端。
在进一步的实施例中, 避免第二业务的下行信号的功率不够, 请参考图 4 所示, 混频电路还包括功率放大器 30, 连接于双工器 20的发射端, 用于在第 二业务的下行信号进入双工器 20前对第二业务的下行信号进行放大。 功率放 大器 30具体例如是功率倍增器。
在本实施例中, 给第二业务的下行信号单独增加功率放大器 30, 由于不 对第一业务的下行信号进行放大, 因此信号的总频道数只有第二业务的下行: 一方面放大器的输入功率小, 平均到每个信道的增益可以更高; 另一方面, 第一业务的下行信号的输入和输出路径上是纯无源的网络, 保证新业务设备 即使下电也不会影响到第一业务。
以 HFC网络为例来讲, 第一业务可以是模拟电视、 数字电视、 FM调频 广播等业务, 那么第一业务的下行信号可以是模拟电视的下行信号、 数字电 视的下行信号、 FM调频广播的下行信号。
第二业务可以是 DCMTS (distributed cable modem termination system; 分 布式线缆调制解调器终端系统)业务, 还可以是 EOC ( Ethernet over Coax; 同轴电缆以太网设备)业务, 或者还可以是其他可能产生的 HFC网络的新业 务, 例如宽带业务或 VOIP ( Voice over Internet Protocol; 因特网协议电话)业 务。
以下以第二业务为宽带业务为例说明本实施例中混频电路的一个具体实 例的工作过程。
第二业务的下行信号通过 GE ( Gigabit Ethernet; 千兆以太网)或者 PON ( Passive Optical Network; 无源光纤网络) 网络将用户上网的下行数字信号 送入 CMTS设备的 MAC ( Media Access Control; 媒体接入控制 )层, 然后送 入 CMTS设备的 PHY (物理层 ), 可选的经过功率放大器 30, 然后进入双工 器 20, 再进一步进入分支器 10的分支输入端口 102, 然后和原有业务, 例如 数字电视的下行信号经过分支器 10混合后进入主输出端口 103; 再经过分支 分配的树状电缆网络后进入用户家里, 例如连接到机顶盒提供视频业务、 连 接到 CM ( Cable Modem; 线缆调制解调器)提供宽带业务。 上行信号的路径 刚好反过来: 用户家里的机顶盒发出点播业务的上行信号、 CM发出用户上网 的上行信号, 然后经过分支分配的树状网络后汇聚到主输出端口 103 , 形成两 个分支: 第一分支, 从分支器 10的主输入端口 101的输出的信号进一步进入 光站的 RF (射频)端口, 经过反向光纤传输到分前端机房后送给点播服务器 的上行解调单元进行解调; 第二分支, 从分支器 10的分支输入端口 102输出 的信号进入双工器 20, 从双工器 20低通端口输出的上行信号进入 CMTS的 PHY, 然后进入 CMTS的 MAC, 最后进入 LSW (网络交换机)后通过 PON 或者 GE汇聚后送往上行。
关于 EOC业务的处理与宽带业务类似,只是不同技术其 PHY和 MAC定 义不同而已; 电缆线路的频谱资源是非常可观的, 目前应用到 1G, 釆用频分 复用, 上下行釆用不同的频率(具体的分割点不同国家和标准不一样), 在一 个树形的网络里提供双向的业务。
而对于其他频分网络而言, 在混频电路这一部分的工作过程也是类似的, 只是根据不同的网络, 具体的业务可能不同, 其原理都是相似的。
由以上描述可以看出, 本实施例中的混频电路具有多个优点, 例如, 第 一业务的下行信号和上行信号双向互通, 加入第二业务后, 第一业务的上行 信号依然可以回到第一业务的下行信号的主输入端口, 不影响第一业务, 所 以可靠性高; 其次, 第一业务的下行信号和上行信号在新业务设备上的输入 到输出路径上为纯无源设计, 所以第二业务的设备故障或下电后不会影响第 一业务, 所以可靠性高; 再次, 第一业务的下行信号仅经过一个分支器, 衰 减小, 对第一业务的信号的衰减小; 最后, 只需要一个双工器和一个分支器, 所以成本氐。
实施例二
本申请一实施例中还提供一种业务设备, 请参考图 5 所示, 该业务设备 包括: 射频输入端口 40, 用于接收第一业务的下行信号和输出第一业务的上 行信号; 混频电路 50, 用于将第一业务的信号和第二业务的信号进行传输, 射频输出端口 60, 用于输出第一业务的下行信号和第二业务的下行信号, 及 输入第一业务的上行信号和第二业务的上行信号。
其中, 混频电路 50具体包括: 分支器 10, 分支器 10具有一主输入端口 101、 分支输入端口 102和主输出端口 103; 双工器 20, 包括发射端、 接收端 和公共端, 公共端连接于分支器 10的分支输入端口 102; 其中, 分支器 10用 于将从主输入端口 101输入的第一业务的下行信号和从分支输入端口 102的 第二业务的下行信号进行混频后从主输出端口 103 输出, 并用于将从主输出 端口 103输入的第一业务的上行信号和第二业务的上行信号分别分配到主输 入端口 101和分支输入端口 102输出; 双工器 20用于实现第二业务的下行信 号和第二业务的上行信号的双向通信, 第二业务的下行信号通过发射端耦合 到所述公共端; 第二业务的上行信号从公共端耦合到接收端。 具体来讲, 第一业务的下行信号经主输入端口 101进入分支器 10, 然后 由主输出端口 103输出, 第一业务的上行信号经主输出端口 103进入分支器 10, 然后由主输入端口 101输出; 第二业务的下行信号经双工器 20从分支输 入端口 102进入分支器 10, 然后由主输出端口 103输出; 第二业务的上行信 号经由主输出端口 103进入分支器 10, 然后经由分支输入端口 102输出至双 工器 20, 再由双工器 20输出。
可选的, 如图 4所示, 混频电路 50还包括: 功率放大器 30, 连接于双工 器 20的公共端, 用于在第二业务的下行信号进入双工器 20前对第二业务的 下行信号进行放大。
分支器 10具体为 108分支器或 112分支器。
关于混频电路 50, 与前述实施例一中所介绍的混频电路类似, 所以在此 不再赘述。
关于第二业务的下行信号, 具体可以是由该业务设备的上游设备生成, 例如假设该业务设备为 DCMTS设备, 那么第二业务的下行信号具体为由上 游相关设备的 MAC或 PHY生成; 再例如假设该业务设备为 EOC设备, 那么 第二业务的下行信号具体为由上游相关设备的 MAC或 PHY生成。 那么对应 的, 第二业务的上行信号通常还要传输回上游设备进行处理。 因此, 在这种 情况下, 业务设备还包括: 接收器, 用于接收第二业务的下行信号和输出第 二业务的上行信号。
在另一实施例中, 第二业务的下行信号也可以是由业务设备自己生成, 对应的, 第二业务的上行信号也由业务设备自己处理, 那么此时, 业务设备 还包括处理器, 用于生成第二业务的下行信号和处理第二业务的上行信号。
以 HFC网络为例来讲, 业务设备具体可以设置在光站的下游, 用户终端 的上游, 即设置在光站和用户终端之间, 所以第一业务的下行信号由光站输 出至射频输入端口, 并由射频输出端口输出至用户终端。
以下以业务设备为 DCMTS设备为例说明本实施例中业务设备的一个具 体实例的工作过程。 第一业务, 例如数字电视的下行信号经由业务设备的射频输入端口 40输 入至主输入端口 101 ,第二业务的下行信号通过 GE或者 PON( Passive Optical Network; 无源光纤网络)网络将用户上网的下行数字信号送入 CMTS设备的 MAC ( Media Access Control;媒体接入控制)层,然后送入 CMTS设备的 PHY
(物理层), 可选的经过功率放大器 30, 然后进入双工器 20, 再进一步进入 分支器 10的分支输入端口 102,然后和第一业务的下行信号经过分支器 10混 合后进入主输出端口 103; 再经过射频输出端口 60输出; 再经过分支分配的 树状电缆网络后进入用户家里,例如连接到机顶盒提供视频业务、连接到 CM
( Cable Modem; 线缆调制解调器)提供宽带业务。 上行信号的路径刚好反过 来: 用户家里的机顶盒发出点播业务的上行信号、 CM发出用户上网的上行信 号, 然后经过分支分配的树状网络后汇聚到业务设备的射频输出端口 60, 然 后进入业务设备内部的主输出端口 103 , 然后形成两个分支: 第一分支, 从分 支器 10的主输入端口 101输出的信号进一步进入光站的 RF (射频)端口, 经过反向光纤传输到分前端机房后送给点播服务器的上行解调单元进行解 调; 第二分支, 从分支器 10的分支输入端口 102输出的信号进入业务设备内 的双工器 20, 从双工器 20低通端口输出的上行信号进入 CMTS的 PHY, 然 后进入 CMTS的 MAC,最后进入 LSW后通过 PON或者 GE汇聚后送往上行, 实现上网的业务。
在引入 DCMTS新业务设备后, HFC网络依然可以参考图 lb所示, 在该 种情况下, 依然可以通过 OOB的方式实现回传点播业务的上行数据, 例如通 过用户通过 STB (机顶盒)点播业务, 点播业务的上行数据通过树状网络到 达 DCMTS新业务设备, 然后通过射频输出端口 60进入分支器 10, 然后从分 支器 10的主输入端口 101输出, 再从新业务设备的射频输入端口 40输出至 光纤节点, 然后上光接收器, 到达 OOB服务器; 然后 OOB服务器将下行数 据经因特网或者核心网抵达分前端的 EQAM (边界 QAM调制设备), 然后再 上光发射器, 进入光线节点, 然后通过射频输入端口 40进入 DCMTS新业务 设备, 然后再通过主输入端口 101进入分支器 10, 再从分支器 10的主输出端 口 103输出至射频输出端口 60, 然后经过树状网络后送入 STB。
关于 EOC设备的处理与 DCMTS设备类似,只是不同技术其 PHY和 MAC 定义不同而已。
实施例三
本实施例还提供一种混频业务系统, 请参考图 6所示, 该系统包括: 第一业务服务器 601 ;用于生成第一业务的下行信号和处理第一业务的上 行信号; 第二业务服务器 602, 用于生成第二业务的下行信号和处理第二业务 的上行信号; 混频业务设备 603 , 用于将第一业务的下行信号和第二业务的下 行信号混频后输出, 并将第一业务的上行信号和第二业务的上行信号分别输 出给第一业务服务器 601和第二业务服务器 602; 混频业务设备 603包括: 混 频电路;用户终端 604 ,用于生成第一业务的上行信号和第二业务的上行信号, 以及使用第一业务的下行信号和第二业务的下行信号。
在具体运用中, 混频业务设备 603 具体可以为分布式线缆调制解调器终 端系统 DCMTS设备或同轴电缆以太网 EOC设备。
关于本实施例中的混频电路, 与前述实施例一中所介绍的混频电路类似, 所以在此不再赘述。 关于混频业务设备与前述实施例二中所介绍的业务设备 类似, 所以在此不再赘述。
关于第一业务服务器 601和第二业务服务器 602在实际运用中, 对应于 不同的业务, 就是不同的服务器, 进一步, 在第一业务服务器 601 和第二业 务服务器 602分别与混频业务设备 603之间还可以包括其他网元, 例如核心 网、 调制器、 光收发机、 光站、 光纤节点等。
本申请实施例中提供的一个或多个技术方案, 至少具有如下技术效果或 优点:
本申请实施例中, 混频电路包括: 分支器, 分支器具有一主输入端口、 分支输入端口和主输出端口; 双工器, 包括发射端、 接收端和公共端, 公共 端连接于分支器的分支输入端口; 其中, 分支器用于将从主输入端口输入的 第一业务的下行信号和从分支输入端口的第二业务的下行信号进行混频后从 主输出端口输出, 并用于将从主输出端口输入的第一业务的上行信号和第二 业务的上行信号分别分配到主输入端口和分支输入端口输出; 双工器用于实 现第二业务的下行信号和第二业务的上行信号的双向通信, 第二业务的下行 信号通过发射端耦合到公共端; 第二业务的上行信号从公共端耦合到接收端。 由此可以看出, 在本实施例中, 首先, 第一业务的下行信号和上行信号双向 互通, 加入第二业务后, 第一业务的上行信号依然可以回到第一业务的下行 信号的主输入端口, 不影响第一业务, 所以可靠性高; 其次, 第一业务的下 行信号和上行信号在新业务设备上的输入到输出路径上为纯无源设计, 所以 第二业务的设备故障或下电后不会影响第一业务, 所以可靠性高; 再次, 第 一业务的下行信号仅经过一个分支器, 衰减小, 对第一业务的信号的衰减小; 最后, 只需要一个双工器和一个分支器, 所以成本低。
显然, 本领域的技术人员可以对本申请进行各种改动和变型而不脱离本 申请的精神和范围。 这样, 倘若本申请的这些修改和变型属于本申请权利要 求及其等同技术的范围之内, 则本申请也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种混频电路, 其特征在于, 所述混频电路包括:
分支器, 所述分支器具有一主输入端口、 分支输入端口和主输出端口; 双工器, 所述双工器包括发射端、 接收端和公共端, 所述公共端连接于 所述分支器的所述分支输入端口;
其中, 所述分支器用于将从所述主输入端口输入的第一业务的下行信号 和从所述分支输入端口的第二业务的下行信号进行混频后从所述主输出端口 输出, 并用于将从所述主输出端口输入的第一业务的上行信号和第二业务的 上行信号分别分配到所述主输入端口和分支输入端口输出; 所述双工器用于 实现所述第二业务的下行信号和所述第二业务的上行信号的双向通信, 所述 第二业务的下行信号通过所述发射端耦合到所述公共端; 所述第二业务的上 行信号从所述公共端耦合到所述接收端。
2、 如权利要求 1所述的混频电路, 其特征在于, 还包括:
功率放大器, 连接于所述双工器的发射端, 用于在所述第二业务的下行 信号进入所述双工器前对所述第二业务的下行信号进行放大。
3、 如权利要求 1或 2所述的混频电路, 其特征在于, 所述分支器具体为 108分支器或 112分支器。
4、 如权利要求 1-3任一项所述的混频电路, 其特征在于, 所述第一业务 具体为电视业务或广播业务, 所述第二业务具体为宽带业务或因特网协议电 话 VOIP业务。
5、一种分布式线缆调制解调器终端系统 DCMTS业务设备,其特征在于, 所述业务设备包括:
射频输入端口, 用于接收第一业务的下行信号和输出第一业务的上行信 号;
如权利要求 1-4任一项所述的混频电路;
射频输出端口; 连接于所述主输出端口, 用于输出所述第一业务的下行 信号和所述第二业务的下行信号, 及输入所述第一业务的上行信号和所述第 二业务的上行信号。
6、 如权利要求 5所述的业务设备, 其特征在于, 所述第一业务的下行信 号由光纤同轴电缆混合网 HFC中的光站输出至所述射频输入端口, 并由所述 射频输出端口输出至用户终端。
7、 一种混频业务系统, 其特征在于, 包括:
第一业务服务器; 用于生成第一业务的下行信号和处理第一业务的上行 信号;
第二业务服务器, 用于生成第二业务的下行信号和处理第二业务的上行 信号;
混频业务设备, 用于将所述第一业务的下行信号和所述第二业务的下行 信号混频后输出, 并将所述第一业务的上行信号和所述第二业务的上行信号 分别输出给所述第一业务服务器和所述第二业务服务器; 所述混频业务设备 包括:
如权利要求 1-4任一项所述的混频电路;
用户终端, 用于生成所述第一业务的上行信号和所述第二业务的上行信 号, 以及使用所述第一业务的下行信号和所述第二业务的下行信号。
8、 如权利要求 7所述的业务设备, 其特征在于, 所述混频业务设备具体 为分布式线缆调制解调器终端系统 DCMTS设备或同轴电缆以太网 EOC设 备。
PCT/CN2013/088816 2013-12-06 2013-12-06 一种混频电路、业务设备及混频业务系统 WO2015081574A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380002723.9A CN103782548B (zh) 2013-12-06 2013-12-06 一种混频电路、业务设备及混频业务系统
PCT/CN2013/088816 WO2015081574A1 (zh) 2013-12-06 2013-12-06 一种混频电路、业务设备及混频业务系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088816 WO2015081574A1 (zh) 2013-12-06 2013-12-06 一种混频电路、业务设备及混频业务系统

Publications (1)

Publication Number Publication Date
WO2015081574A1 true WO2015081574A1 (zh) 2015-06-11

Family

ID=50573007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088816 WO2015081574A1 (zh) 2013-12-06 2013-12-06 一种混频电路、业务设备及混频业务系统

Country Status (2)

Country Link
CN (1) CN103782548B (zh)
WO (1) WO2015081574A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081574A1 (zh) * 2013-12-06 2015-06-11 华为技术有限公司 一种混频电路、业务设备及混频业务系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060256799A1 (en) * 2005-05-11 2006-11-16 Eng John W Broadband local area full-service backbone network
CN101110726A (zh) * 2007-08-22 2008-01-23 汕头高新区亚威科技有限公司 一种区域综合信息接入系统
CN101511043A (zh) * 2009-03-16 2009-08-19 重庆景宏高科技有限责任公司 基于hfc宽带网络的综合业务组网方法及综合业务光站设备
CN103782548A (zh) * 2013-12-06 2014-05-07 华为技术有限公司 一种混频电路、业务设备及混频业务系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020023273A1 (en) * 2000-08-14 2002-02-21 Hanmi Pharm. Co., Ltd. Apparatus for providing a multiple internet connection service using a hybrid fiber coaxial cable network
CN202121724U (zh) * 2011-07-14 2012-01-18 杨焕峥 一种数字电视实验系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060256799A1 (en) * 2005-05-11 2006-11-16 Eng John W Broadband local area full-service backbone network
CN101110726A (zh) * 2007-08-22 2008-01-23 汕头高新区亚威科技有限公司 一种区域综合信息接入系统
CN101511043A (zh) * 2009-03-16 2009-08-19 重庆景宏高科技有限责任公司 基于hfc宽带网络的综合业务组网方法及综合业务光站设备
CN103782548A (zh) * 2013-12-06 2014-05-07 华为技术有限公司 一种混频电路、业务设备及混频业务系统

Also Published As

Publication number Publication date
CN103782548B (zh) 2017-09-12
CN103782548A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
US7036140B2 (en) Capacity scaling and functional element redistribution within an in-building coax cable internet access system
US20210351900A1 (en) Transmitting Signals Using Directional Diversity Over a Network
US7428238B2 (en) Broadband network bridging various wiring channels
US20130081096A1 (en) Cable television entry adapter
US8792565B2 (en) 10 Gbps coaxial cable networking system
CA2609168A1 (en) Return data path in an hfc network
EP1099349B1 (en) Method and apparatus for data communication
CN201171209Y (zh) 电信业务综合传输设备
CN102437941B (zh) 融合EoC功能的EPON光网络单元
JP2004526354A (ja) 建物内デジタル通信システム用のマルチバンド同軸エクステンダ
US11601710B2 (en) Self interference cancellation for high performance transceivers
WO2006017466A2 (en) Computer networking techniques
WO2015081574A1 (zh) 一种混频电路、业务设备及混频业务系统
CN102694783A (zh) 三网融合多业务光电一体化网元
CN201928398U (zh) 一种广电网双向改造用的FEoC接入系统
WO2013189418A2 (zh) 一种混频系统、混频装置及混频方法
KR200286404Y1 (ko) 공시청망(matv)을 이용한 인터넷 서비스용 필터링 장치
CN205336463U (zh) 一种在RFoG网络中有效规避光差拍干扰的有线电视接入网结构
CN104104991A (zh) 综合业务在hfc中的数字化发送、接收、传输方法和系统
US20110018652A1 (en) Multimedia network splitter
CN202737898U (zh) 一种适用于同轴宽带多业务接入的局端设备
CN103117908A (zh) 一种适用于同轴宽带多业务接入的局端设备
CN104378268A (zh) 融合epon与eoc的一体化宽带接入系统
KR20220141968A (ko) Hfc망
KR20030074770A (ko) 공시청망(matv)을 이용한 근거리 통신 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898523

Country of ref document: EP

Kind code of ref document: A1