WO2015081553A1 - 传输数据的方法、装置和系统 - Google Patents

传输数据的方法、装置和系统 Download PDF

Info

Publication number
WO2015081553A1
WO2015081553A1 PCT/CN2013/088727 CN2013088727W WO2015081553A1 WO 2015081553 A1 WO2015081553 A1 WO 2015081553A1 CN 2013088727 W CN2013088727 W CN 2013088727W WO 2015081553 A1 WO2015081553 A1 WO 2015081553A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
network
user equipment
data
protocol stack
Prior art date
Application number
PCT/CN2013/088727
Other languages
English (en)
French (fr)
Inventor
张劲林
郭房富
郭宏伟
张屹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380002807.2A priority Critical patent/CN103814596B/zh
Priority to PCT/CN2013/088727 priority patent/WO2015081553A1/zh
Publication of WO2015081553A1 publication Critical patent/WO2015081553A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method, apparatus and system for transmitting data. Background technique
  • a small station in order to improve the coverage of the network, for example, a small station (or a remote station) may be deployed in the system, but this needs to be solved between the access device and the small station of the system. problem.
  • a technique is known in which a wired connection can be established between an access device and a small station through an optical fiber or a coaxial cable, etc., so that although the problem of transmission between the access device and the small station can be solved, this greatly increases System construction costs, because the cost of network cabling is high.
  • a relay device may be set in the system, and the relay device uses dedicated communication resources (including spectrum resources, transceiver processing resources) to implement transmission between the access device and the small station, but this requires dedicated The device consumes additional spectrum resources.
  • dedicated communication resources including spectrum resources, transceiver processing resources
  • Embodiments of the present invention provide a method, an apparatus, and a system for transmitting data, which can improve coverage of a network.
  • a method of transmitting data is provided, performed by a first node in a communication system, the communication system further comprising a third node and a second node, wherein the communication system is capable of using the first network and the second network Communicating, the first node is a site of the first network, the third node is an access control device of the first network, the second node is a site of the second network, and the first node has a first protocol a stack and a second protocol stack, the first protocol stack includes a protocol stack for communication between the user equipment of the first network and the access control device of the first network, the second protocol stack including the user equipment of the second network and the second a protocol stack for communication between sites of the network, the method comprising: the first node transmitting transmission request information to the second node, the transmission request information being used to indicate that the second node is at the third node and the first node Transmitting data of the target user equipment; the first node is transmitted between the third node and the target user equipment by the second
  • an adaptation layer is configured between the first protocol stack and the second protocol stack, where the adaptation layer is configured to perform data on the first a conversion process between the protocol stack and the second protocol stack, and the first node transmitting between the third node and the target user equipment by the second node via the first protocol stack and the second protocol stack
  • the data of the target user equipment includes: the first node uses the second protocol stack to receive downlink data sent by the second node and sent by the third node to the target user equipment, and the adaptation layer Transmitting, by the first protocol stack, the downlink data, or using the The stack receives the uplink data sent by the target user equipment to the third node, and converts, by using the adaptation layer, the data format of the data output by the first protocol stack to the second protocol stack. Data format, and transmits the uplink data stack to the second node using the second protocol.
  • the second node is communicatively coupled to the third node.
  • the second node and the third node can communicate with each other by using a fourth node, where the fourth node is the first node a site of a network, the second node is in communication with the fourth node, and the third node is in communication with the fourth node.
  • the second node is co-sited with the fourth node.
  • the method further includes: the first node determining scheduling information, where the scheduling information is used to indicate the quantity of the user equipment, the first At least one of a transmission rate corresponding to the node and a transmission delay corresponding to the first node, where the user equipment is a user equipment that currently transmits data through the first node and the second node, the first node The corresponding transmission rate is determined according to the transmission rate of each user equipment, and the transmission delay corresponding to the first node is determined according to the transmission delay of each user equipment;
  • the first node sends scheduling information to the second node, so that the second node performs resource scheduling according to the scheduling information, to transmit data of the target user equipment between the third node and the first node.
  • the transmission rate corresponding to the first node or the transmission delay corresponding to the first node is determined according to any one of the following parameters: a service type, a user priority, or a quality of service category identifier QCI.
  • the first network is a universal mobile communication system UMTS network
  • the first node is a base station NodeB
  • the third node is a wireless network control.
  • RNC the second network is a long term evolution LTE network
  • the second node is an evolved base station eNodeB.
  • a method of transmitting data is provided, performed by a second node in a communication system, the communication system further comprising a third node and a first node, wherein the communication system is capable of using the first network and the second network Communicating, the first node is a site of the first network, the third node is an access control device of the first network, the second node is a site of the second network, and the first node has a first protocol a stack and a second protocol stack, the first protocol stack includes a protocol stack for communication between the user equipment of the first network and the access control device of the first network, the second protocol stack including the user equipment of the second network and the second a protocol stack for communication between sites of the network, the method comprising: the second node receiving transmission request information sent by the first node, the transmission request data being used to indicate that the second node is at the third node and the first node Transmitting data of the target user equipment; the second node establishes a transmission bearer between the third node and the
  • the second node is in communication connection with the third node.
  • the second node and the third node can communicate with each other by using a fourth node, where the fourth node is the first node a site of a network, the second node is in communication with the fourth node, the third node is in communication with the fourth node, and the second node is in the third node and the first node according to the transmission request message
  • Establishing a transmission bearer includes: establishing, by the second node, a transmission bearer between the third node and the first node according to the transmission request message.
  • the second node is co-sited with the fourth node.
  • the second node transmits the data of the target user equipment between the third node and the first node, including: The second node receives the scheduling information sent by the first node, where the scheduling information is used to indicate the number of user equipments, the transmission rate corresponding to the first node, and the transmission corresponding to the first node. At least one parameter of the input delay, where the user equipment is a user equipment that currently transmits data through the first node and the second node, and the transmission rate corresponding to the first node is according to a transmission rate of each user equipment. Determining, the transmission delay corresponding to the first node is determined according to a transmission delay of each user equipment; the second node performs resource scheduling according to the scheduling information, to be in the third node and the first node. Transfer data of the target user device.
  • the transmission rate corresponding to the first node or the transmission delay corresponding to the first node is determined according to any one of the following parameters. :
  • the service type, user priority, or quality of service category identifies the QCI.
  • the first network is a universal mobile communication system UMTS network
  • the first node is a base station NodeB
  • the third node is a wireless network control.
  • RNC the second network
  • the second node is a long term evolution LTE network
  • the second node is an evolved base station eNodeB.
  • a third aspect is a node for transmitting data, where the node is a site of a first network in the communication system, the node includes: a protocol processing unit, configured to implement access control of the user equipment of the first network and the first network a first protocol stack process for communication between the devices, and a second protocol stack process for implementing communication between the user equipment of the second network and the site of the second network; the transceiver unit, configured to send a transmission request to the second node Information, the transmission request information is used to indicate that the second node transmits data of the target user equipment between the third node and the node, and data for the target user equipment to be processed by the protocol processing unit, by using the Two nodes are transmitted between the third node and the target user equipment; wherein the third node is an access control device of the first network in the communication system, and the second node is the second network in the communication system Site.
  • the protocol processing unit is further configured to perform a conversion process between the first protocol stack and the second protocol stack, and the transceiver unit is specifically configured And receiving, by the second protocol stack in the processing unit of the protocol, downlink data sent by the second node and sent by the third node to the target user equipment, where the processing unit outputs data from the second protocol stack
  • the data format is converted into a data format that can be identified by the first protocol stack, and the first protocol stack in the processing unit is used to send the downlink data to the target user equipment; or the transceiver unit is specifically configured to use the protocol processing unit.
  • the first protocol stack receives the uplink data sent by the target user equipment to the third node, and the data processing format of the data output from the first protocol stack is converted by the protocol processing unit into data that can be identified by the second protocol stack. Formatting, and transmitting the uplink data to the second node using a second protocol stack in the protocol processing unit.
  • the node further includes: a determining unit, configured to determine scheduling information, where the scheduling information is used to indicate the number of user equipments, and the node At least one of a corresponding transmission rate and a transmission delay corresponding to the node, where the user equipment is a user equipment that currently transmits data through the node and the second node, and the transmission rate corresponding to the node is according to each Determining, by the transmission rate of the user equipment, the transmission delay corresponding to the node is determined according to a transmission delay of each user equipment; the transceiver unit further uses the scheduling information determined by sending the determining unit to the second node. So that the second node performs resource scheduling according to the scheduling information, to transmit data of the target user equipment between the third node and the node.
  • the transmission rate corresponding to the node or the transmission delay corresponding to the node is determined according to any one of the following parameters:
  • the user priority or quality of service category identifies the QCI.
  • the first network is a universal mobile communication system UMTS network
  • the node is a base station NodeB
  • the third node is a radio network controller RNC.
  • the second network is a long term evolution LTE network
  • the second node is an evolved base station eNodeB.
  • a fourth aspect provides a node for transmitting data, where the node is a site of a second network in the communication system, the node includes: a transceiver unit, configured to receive transmission request information sent by the first node, where the transmission request data is used Instructing the node to transmit data of the target user equipment between the third node and the first node; a bearer establishing unit, configured to establish a transport bearer between the third node and the first node according to the transmission request message; The unit is further configured to transmit data of the target user equipment between the third node and the first node by using the transport bearer; wherein the first node is a site of a first network in the communication system, and the third node is An access control device of the first network in the communication system, the first node has a first protocol stack and a second protocol stack, where the first protocol stack includes user equipment of the first network and access control of the first network A protocol stack for communication between devices, the second protocol stack including a protocol stack for communication between a user equipment of the second
  • the node in conjunction with the fourth aspect, in a first implementation of the fourth aspect, is in communication connection with the third node.
  • the node and the third node can communicate with each other by using a fourth node, where the fourth node is the first network Site, the node is in communication with the fourth node, the third node and the fourth node
  • the communication connection, and the bearer establishing unit is specifically configured to establish a transport bearer between the third node and the first node according to the transmission request message according to the fourth node.
  • the node is co-sited with the fourth node.
  • the transceiver unit is further configured to receive scheduling information that is sent by the first node, where the scheduling information is used to indicate the number of user equipments. At least one of a transmission rate corresponding to the first node and a transmission delay corresponding to the first node, where the user equipment is a user equipment that currently transmits data through the first node and the device, where the The transmission rate corresponding to the node is determined according to the transmission rate of each user equipment, and the transmission delay corresponding to the first node is determined according to the transmission delay of each user equipment; Scheduling to transmit data of the target user equipment between the third node and the first node.
  • the transmission rate corresponding to the first node or the transmission delay corresponding to the first node is determined according to any one of the following parameters. :
  • the service type, user priority, or quality of service category identifies the QCI.
  • the first network is a universal mobile communication system UMTS network
  • the first node is a base station NodeB
  • the third node is a wireless network control.
  • RNC the second network is a long term evolution LTE network
  • the node is an evolved base station eNodeB.
  • a system for transmitting data comprising: a first node, as a site of the first network, specifically having a first protocol stack And a second protocol stack, the first protocol stack includes a protocol stack for communication between the user equipment of the first network and the access control device of the first network, where the second protocol stack includes the user equipment of the second network and the second network a protocol stack for communication between the sites, the first node is configured to send, to the second node, transmission request information, where the transmission request information is used to indicate that the second node transmits the target user equipment between the third node and the first node Data of the target user equipment is transmitted between the third node and the target user equipment by the second node via the first protocol stack and the second protocol stack; the second node, as the second network a station, configured to receive the transmission request, and transmit data of the target user equipment between the third node and the first node according to the transmission request; As the first access
  • the second node and the third node can communicate with each other by using a fourth node, where the fourth node is the first node a site of a network, the second node is in communication with the fourth node, and the third node is in communication with the fourth node.
  • the second node is co-sited with the fourth node.
  • the first node is further used to send scheduling information to the second node, where the scheduling information is used to indicate the user equipment At least one of a quantity, a transmission rate corresponding to the first node, and a transmission delay corresponding to the first node, where the user equipment is a user equipment that currently transmits data through the first node and the second node
  • the transmission rate corresponding to the first node is determined according to the transmission rate of each user equipment, and the transmission delay corresponding to the first node is determined according to the transmission delay of each user equipment;
  • performing resource scheduling according to the scheduling information to transmit data of the target user equipment between the third node and the first node.
  • the transmission rate corresponding to the first node or the transmission delay corresponding to the first node is determined according to any one of the following parameters. :
  • the service type, user priority, or quality of service category identifies the QCI.
  • the first network is a universal mobile communication system UMTS network
  • the first node is a base station NodeB
  • the third node is a wireless network control.
  • RNC the second network is a long term evolution LTE network
  • the second node is an evolved base station eNodeB.
  • a method, apparatus, and system for transmitting data by causing a system to communicate using two networks, and configuring a protocol stack for communicating over the second network at a site (first node) of the first network,
  • the site of the first network can communicate with the site of the second network, and the access control device of the first network and the site of the second network can communicate with each other to implement the access control device of the first network and the second network.
  • the station communicates, so that the access control device of the first network and the station can communicate via the site of the second network, thereby effectively increasing the coverage of the first network.
  • FIG. 1 is a schematic architectural diagram of a system for transmitting data according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a protocol stack configuration in a UMTS site according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for transmitting data according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for transmitting data according to another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of an apparatus for transmitting data according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for transmitting data according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a system for transmitting data according to an embodiment of the present invention. detailed description
  • the communication system includes a first node, a second node, a third node, and a user equipment, where the communication The system is capable of communicating using the first network and the second network, the first node is a site of the first network, the third node is an access control device of the first network, and the second node is the second network a first node having a first protocol stack and a second protocol stack, the first protocol stack including a protocol stack for communication between a user equipment of the first network and an access control device of the first network, the second protocol stack A protocol stack that includes communication between a user equipment of the second network and a site of the second network.
  • the communication system can provide communication services for the user equipment by using the first network and the second network, communication resources used by the first network and the second network, for example, frequency bands of carrier frequencies, etc.
  • the communication system used by the first network and the second network may be different, or the first network and the second network may also adopt, for example, full-duplex technology, thereby enabling Communicate using the same system and the same communication resources
  • the coverage ranges of the first network and the second network in the communication system may be the same or different, and the present invention is not particularly limited.
  • the base station that is, the second node in the embodiment of the present invention
  • the second node uses the communication resource provided by the second network, and according to the communication system of the second network, at the third node Transmitting data that can be processed by the second protocol stack with the first node.
  • an access control device or an access management device, that is, a third node, and a remote site for directly communicating with the user equipment may be configured, that is, in the embodiment of the present invention.
  • the first node may be configured, that is, in the embodiment of the present invention.
  • the third node obtains downlink data of the user equipment served by the first network from a device such as a core network, an internet network, or a network server, and needs to transmit the downlink data to the first node, where the first node passes the first
  • the communication resources provided by the network are processed according to the communication system of the first network, and the downlink data is processed by the first protocol stack, and the processed downlink data is transmitted to the user equipment.
  • the first node receives the communication data provided by the first network, and receives the uplink data sent by the user equipment served by the first network according to the communication system of the first network, and performs the uplink data by using the first protocol stack. After processing, the processed uplink data needs to be transmitted to the third node, so that the third node can transmit the uplink data of the user equipment to a device such as a core network, an internet network, or a network server.
  • data transmission between the first node and the third node is performed via the second node.
  • the data sent by the second node to the third node is data processed by the first protocol stack
  • the data sent by the third node to the second node is data that the first protocol stack can recognize.
  • the first node may communicate with the second node by using the second protocol stack.
  • the first node sends uplink data from the user equipment and needs to be sent to the third node, where the format of the uplink data is
  • the generated format that the third node can recognize is encapsulated into a format that can be recognized by the second node by using the processing of the second protocol stack, and is sent.
  • the second node can recover the uplink data
  • the data format is the format processed by the first protocol stack before being encapsulated by the second protocol stack, and Send to the third node.
  • the data format of the downlink data is a format that the first node can identify, and the downlink data is sent to the second node, and the second node encapsulates the data.
  • the data acquired by the third node from the network side needs to be sent to the user equipment via the first node. Therefore, when uplinking, the role of the first protocol stack is downlink data from the third node.
  • the format is converted into a data format recognizable by the user equipment; in the downlink, the role of the first protocol stack is to convert the format of the uplink data from the user equipment into a data format recognizable by the third node.
  • the first node can be regarded as a user equipment in the second network, and the first node needs to send data to the third node via the second node, the data is not processed by the second protocol stack, and the data format can be compared with the prior art.
  • the data format sent by the first node to the third node is the same.
  • the format of the data sent by the third node to the second node may be the same as the data format sent by the third node in the prior art to the first node.
  • data transmission can be performed between the third node and the second node.
  • the second node is in communication with the third node, where the fourth node is a site of the first network, and the second node is in communication with the fourth node, where The third node is in communication with the fourth node.
  • the fourth node is a station that is remotely connected in the second network and is in direct communication with the user equipment, and the distance between the fourth node and the third node may be compared. Short, for example, less than the distance between the first node and the third node, such that the fourth node can be communicatively coupled to the third node through a short fiber optic connection device.
  • data transmission can be performed between the fourth node and the second node.
  • the second node is co-sited with the fourth node.
  • the geographic locations of the second node and the fourth node may be the same, and the second node and the fourth node may also be integrated in the same device, so that between the second node and the fourth node Internal communication can be achieved.
  • the communication manner between the second node and the fourth node listed above is only an exemplary description, and the present invention is not limited thereto.
  • the second node and the fourth node may also be connected by using an optical fiber or the like. Communication connection.
  • the communication manner between the third node and the second node is not limited to being implemented by the fourth node, and the third node and the second node may be communicatively connected through a connecting device such as an optical fiber. That is, in the embodiment of the present invention, the second node is in communication connection with the third node.
  • connection device such as an optical fiber between the first node and the third node, or set a relay node, and configure a dedicated transmission resource for the relay node.
  • the first node and the third node can perform wireless communication through the second network
  • the transmission distance between the first node and the third node in the first network can be increased, thereby increasing the coverage of the first network.
  • the system construction cost can be greatly reduced.
  • the first network is a universal mobile communication system UMTS network
  • the second network is a long term evolution LTE network
  • the third node is a radio network controller RNC.
  • a wireless network controller (RNC, RNC, RadioNetworkController) and at least one site (hereinafter, referred to as a UMTS site for convenience of distinction)
  • the UMTS site may be, for example, a base station (NodeB) in a UMTS network, a micro base station (Micro) providing a micro cell, a pico base station (Pico), and a femto cell base station (femto).
  • the UMTS site communicates directly with the user equipment, and the RNC communicates with the core network, the Internet, or the server.
  • the UMTS site and the RNC need to communicate to implement data transmission between the user equipment and the core network, the Internet, or the server. Therefore, as the first network, the UMTS network can be enumerated such that the UMTS site is equivalent to the first node and the RNC is equivalent to the third node.
  • LTE Long Term Evolution
  • the base station (eNodeB) in the LTE network and the NodeB in the UMTS network are usually co-sited.
  • eNodeB a multimode base station supporting both LTE and UMTS. Therefore, in the embodiment of the present invention, as the second network, an LTE network may be cited, so that the eNodeB (hereinafter, referred to as an LTE station for convenience of distinction) corresponds to the second node.
  • the LTE station can transmit Iub interface data with the RNC via a UMTS site (notice, UMTS site #2) co-sited with it.
  • a UMTS site notice, UMTS site #2
  • the architecture of the above-mentioned communication system is merely exemplary, and the present invention is not limited thereto.
  • the first network and the second network may also be networks of the same standard, for example, an LTE network.
  • the radio resources used by the first network and the second network for example, the frequency bands of the carriers are different.
  • an access management device of the first network for example, a Mobility Management Entity (MME)
  • MME Mobility Management Entity
  • the station (remembered as eNB#1)
  • the second node may be a station in the first network (notation, eNB#2)
  • the MME may simultaneously manage eNB#2 and eNB#1, for example, eNB# 2 and the MME may be connected by using an optical fiber or a cable to implement communication, and the eNB#1 may send the data or signaling that needs to be sent to the MME to the second network, specifically, the radio resource used by the second network, to the MME.
  • eNB#2 whereby eNB#2 can transmit the received data or signaling from eNB#1 to the MME.
  • the UMTS network is used as the first network
  • the LTE network is used as the second network
  • the RNC is the third node
  • the UMTS site #1 in the at least one UMTS site that needs to perform data transmission with the RNC is used as the first
  • the node, the LTE station as the second node, and the UMTS site #2 as the fourth node continue to explain the method of transmitting data according to the embodiment of the present invention.
  • the UMTS site #1 needs to communicate with the LTE station through the LTE network. Therefore, it is necessary to set an LTE protocol stack conforming to the LTE network communication rule in the UMTS site #1, that is, an example of the second protocol stack, specifically, It is a communication protocol stack on the user equipment side in an LTE network.
  • a user plane protocol stack between the LTE user equipment and the LTE station may be used, which mainly includes: a Packet Data Convergence Protocol (PDCP) layer, and a radio link control. (RLC, Radio Link Control) layer, media access control (MAC, Media Access Control) layer and physical (PHY, Physical) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • PHY Physical
  • the PDCP layer is mainly used for compressing and decompressing/encrypting and decrypting information.
  • the RLC layer is mainly used to implement related functions of automatic repeat request (ARQ), segmenting and cascading information or segmentation.
  • ARQ automatic repeat request
  • the cascading information is mainly used for the selection of the transport format combination, and the related functions of scheduling and hybrid automatic repeat request (HARQ, Hybrid Automatic Repeat Request) are implemented; the PHY layer is mainly used for providing the MAC layer and the upper layer.
  • the information transmission service performs code modulation processing or demodulation decoding processing according to the selected transmission format combination.
  • the UMTS station #1 can receive the uplink data transmitted by the UMTS user equipment, and can pass the UMTS protocol stack, that is, the first protocol stack.
  • An example of the uplink data for example, The processing such as decoding and decoding is converted into a data format that needs to be transmitted to the RNC, or a data format that the RNC can recognize. This process is similar to the prior art, and the description thereof is omitted here to avoid redundancy.
  • the UMTS station #1 After obtaining the uplink data processed by the UMTS protocol stack, the UMTS station #1 needs to transmit the uplink data to the RNC through the LTE station. Therefore, the UMTS station #1 needs to encode, for example, the uplink data through the LTE protocol stack. Processing such as modulation, converting the uplink data into a data format conforming to LTE transmission, or a data format recognizable by the LTE station.
  • the LTE protocol stack can identify data output from the first protocol stack, such as the UMTS protocol stack, the UMTS site #1 can directly output the uplink data from the first protocol stack. Enter the second protocol stack.
  • the UMTS site #1 may need to format convert the uplink data output from the first protocol stack to convert to the second protocol stack.
  • the recognized data format may be used.
  • an adaptation layer is disposed between the first protocol stack and the second protocol stack, and the adaptation layer is configured to perform data on the first protocol stack and the second protocol stack. Conversion processing, and
  • the first node transmits the data of the target user equipment between the third node and the target user equipment by using the first node and the second protocol stack, including:
  • the first node uses the second protocol stack to receive downlink data sent by the second node and sent by the third node to the target user equipment, and the data format of the data output from the second protocol stack by using the adaptation layer Converting to a data format recognizable by the first protocol stack, and transmitting the downlink data to the target user equipment by using the first protocol stack, or
  • the first node uses the first protocol stack to receive uplink data sent by the target user equipment to the third node, and the data format of the data output from the first protocol stack is converted into the second protocol stack by using the adaptation layer. An identifiable data format, and using the second protocol stack to send the uplink data to the second node.
  • an adaptation layer for performing format conversion may be set as a format conversion process of the adaptation layer, and the processed The uplink data is input to the LTE protocol stack.
  • the UMTS station #1 can input the uplink data that can be identified by the LTE protocol stack processed by the UMTS protocol stack as the application layer data to the LTE protocol stack, and perform, for example, code modulation on the uplink data through the LTE protocol stack.
  • the processing is performed to generate a data format conforming to the LTE transmission and sent to the LTE station.
  • the UMTS station #1 performs, for example, demodulation and decoding processing on the downlink data from the LTE station through the LTE protocol stack, and inputs the downlink data processed by the LTE protocol stack to the UMTS protocol stack, to The downlink data is subjected to processing such as code modulation to generate a data format conforming to the UMTS network transmission, and the generated data is transmitted to the user equipment of the UMTS network.
  • the specific networks listed above as the first network and the second network are merely exemplary descriptions, and the present invention is not limited thereto, and two nodes are required to be transmitted during data transmission between the core network and the user equipment (
  • the network of the access network device and the remote device can be used as the second network.
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a user equipment which may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc.
  • UE User Equipment
  • the radio access network may be composed of an RNC (an example of a third node), an LTE station (an example of a second node), and a UMTS site (an example of a first node), where the user equipment may be a mobile terminal.
  • RNC an example of a third node
  • LTE station an example of a second node
  • UMTS site an example of a first node
  • the user equipment may be a mobile terminal.
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language with the wireless access network and / or data.
  • FIG. 3 shows a schematic flow chart of a method 100 for transmitting data according to an embodiment of the present invention.
  • the method 100 is performed by a UMTS station #1 (an example of a first node) in a communication system, the communication system further including an LTE station. (an example of a second node), an RNC (an example of a third node), and an UMTS UE #1 (an example of a target user equipment;), wherein the communication system can use a UMTS network (No.
  • An example of a network communicates with an LTE network (an example of a second network), and RNC can communicate with an LTE station.
  • the UMTS site #1 has a UMTS protocol stack (an example of a first protocol stack) and an LTE protocol stack ( An example of a second protocol stack, the UMTS protocol stack is configured to implement data processing in the UMTS communication between the RNC and the UMTS UE, where the LTE protocol stack is used to implement communication between the UMTS station #1 and the LTE station in the LTE network.
  • Data processing, the method 100 includes:
  • the first node sends transmission request information to the second node, where the transmission request information is used to indicate that the second node transmits data of the target user equipment between the third node and the first node.
  • the first node transmits data of the target user equipment between the third node and the target user equipment by using the second protocol stack and the second protocol stack.
  • the UMTS UE#1 can send an access request to the UMTS site #1 through the communication resource of the UMTS network when it needs to communicate with the core network via the access network. It should be noted that, in the embodiment of the present invention, It can be composed of RNC, LTE site and UMTS site #1.
  • the UMTS station #1 may send the transmission request information to the LTE station through the communication resource of the LTE network, to request the LTE station to transmit data between the RNC and the UMTS station #1, specifically, The LTE station determines, based on the transmission request information, that data from the UMTS site #1 needs to be transmitted to the RNC, and determines that data from the RNC needs to be sent to the UMTS site #1.
  • At least one bearer for transmitting data is disposed between the third node, the second node, and the first node.
  • the LTE station may initiate a bearer setup procedure to establish a bearer for transmitting data between the RNC, the LTE station, and the UMTS site #1, thereby, the UMTS site #1 and the RNC Data can be transmitted through the bearer, for example, data of traffic, air interface signaling, and the like.
  • the part between the UMTS station #1 and the LTE station of the bearer is implemented by using the wireless communication resource provided by the LTE network.
  • the part between the RNC and the LTE station that is carried can be implemented by using a connecting device such as an optical fiber.
  • the load may have multiple levels of division.
  • a 7-carrier can transmit only one service of one user equipment (ie, Case 1), or a carrier can transmit the same service of multiple user equipments that transmit data through a UMTS station (ie, the situation) 2), below, the above two cases are explained separately.
  • the first node transmits, by using the first protocol stack and the second protocol stack, the data of the target user equipment between the third node and the target user equipment by using the second node, including: Determining, by a node, a target bearer for transmitting data of the target user equipment, where the target bearer corresponds to a service to which the data of the target user equipment belongs and the target user equipment;
  • the first node transmits the data of the target user equipment between the third node and the target user equipment by using the second protocol stack and the second protocol stack.
  • one bearer can be used to transmit only one service of one UMTS UE.
  • the first node determines a target bearer for transmitting data of the target user equipment, including:
  • the first node receives the bearer indication information that is sent by the second node to indicate the target bearer, where the target bearer is determined by the third node from the at least one bearer and notified to the second node;
  • the first node determines the target bearer according to the bearer indication information.
  • the RNC may determine a bearer of each service allocated to each UMTS UE, and, for example, may generate a bearer mapping entry, that is, bearer indication information, in which a mapping relationship between each service of each UMTS UE and each bearer is recorded.
  • the bearer mapping entry is sent to the UMTS site #1 and the LTE.
  • each UMTS UE may be distinguished by using a user equipment identifier, where the user equipment identifier may uniquely indicate one in the system.
  • the UMTS UE may be a Media Access Control (MAC) address of an UMTS UE, an Internet Protocol (IP) address, a mobile user mobile number, an international mobile subscriber identity, (IMSI, International Mobile Subscriber) Identity) and international mobile device equipment, (IMEI, International Mobile Equipment Identity) and other information.
  • MAC Media Access Control
  • IP Internet Protocol
  • IMSI International Mobile Subscriber Identity
  • IMEI international mobile device equipment
  • each bearer listed above and each user equipment and service type is It is determined by the RNC, but the present invention is not limited thereto, and may be determined by the LTE station or the UMTS site #1.
  • the present invention is not particularly limited, and the determination methods are similar, and the description thereof is omitted here.
  • UMTS UE#1 may transmit uplink data, for example, data of the UU interface, to UMTS station #1, and UMTS station #1 may belong to the uplink data.
  • the service and the user equipment identifier of the UMTS UE#1 are searched for the bearer mapping entry generated as described above to determine the 7-load corresponding to the UMTS UE#1 and the service of the uplink data (Note, 7-load #1 ).
  • the UMTS station #1 can transmit the uplink data to the LTE station by using the 7#, and specifically, the UMTS station #1 can demodulate and decode the uplink data through the UMTS protocol stack to generate an identifier that can be recognized by the RNC.
  • Uplink data for example, uplink data sent by the UMTS station to the Iub interface of the RNC in the prior art.
  • the UMTS site #1 may input the uplink data outputted from the UMTS protocol stack or the adaptation layer to the LTE protocol stack, and encode and modulate the uplink data through the LTE protocol stack to generate uplink data that meets the LTE transmission requirement. . Thereafter, the UMTS station #1 can transmit the uplink data output from the LTE protocol stack to the LTE station through the bearer #1.
  • the LTE station may perform demodulation and decoding on the uplink data to restore uplink data that can be identified by the RNC, for example, uplink data sent by the UMTS station to the RNC in the prior art, and the uplink data is used.
  • the bearer #1 is transmitted to the RNC via a connection device such as an optical fiber via the UMTS site #2 co-located with the LTE station.
  • the RNC may determine, according to the bearer mapping entry determined as described above, the service to which the uplink data belongs, and send the uplink data to be sent by the UMTS UE#1. Therefore, the source address of the uplink data can be determined, and the uplink data is sent to the core network according to the source address.
  • the RNC may determine the service to which the downlink data belongs, and determine, according to the destination address of the downlink data, that the downlink data needs to be sent to the UMTS UE#1, thereby
  • the downlink data may be transmitted using the bearer #1 according to the bearer mapping entry determined as described above.
  • the downlink data may be processed to generate downlink data that can be identified by the UMTS station #1, for example, downlink data sent by the RNC to the UMTS site in the prior art, and through the 7#, via the LTE
  • the UMTS station #2 of the site co-site transmits the downlink data to the LTE station through a connection device such as an optical fiber.
  • the LTE station may perform code modulation on the downlink data to generate downlink data that meets the LTE transmission requirement. Thereafter, the LTE station can pass the bearer #1, The UMTS site #1 sends the uplink data.
  • the UMTS station #1 After receiving the downlink data, the UMTS station #1 can determine the service to which the downlink data belongs according to the bearer mapping entry determined as described above, and send the downlink data to be sent to the UMTS UE#. Therefore, the destination address of the downlink data can be determined, and the downlink data is sent to the UMTS UE#1 according to the destination address. Specifically, the UMTS site #1 can solve the downlink data through the LTE protocol stack. The decoding is adjusted to restore the downlink data sent by the RNC.
  • the UMTS station #1 may input the downlink data output from the LTE protocol stack or the adaptation layer to the UMTS protocol stack, and code and modulate the uplink data through the UMTS protocol stack to generate downlink data that meets the UMTS transmission requirement. .
  • the LTE station can determine the UMTS site to which the downlink data needs to be sent according to the UMTS UE that transmits the data.
  • a method for transmitting data by setting a bearer for transmission between an RNC, an LTE station, and a UMTS station #1, and by using a bearer corresponding to a user equipment that transmits data and a service corresponding to the data
  • the RNC, the LTE station, and the UMTS station can be configured to analyze the data to determine that the data is in the system.
  • the next hop node in the transmission path can reduce the burden on each site and improve transmission efficiency.
  • the first node transmits, by using the first protocol stack and the second protocol stack, the data of the target user equipment between the third node and the target user equipment by using the second node, including: Determining, by a node, a target bearer for transmitting data of the target user equipment, where the target bearer corresponds to a service to which the data of the target user equipment belongs and the first node; The first protocol stack and the second protocol stack transmit data of the target user equipment between the second node and the target user equipment.
  • the RNC and the UMTS site can determine the destination address and/or the source address of the data by parsing the data frame protocol (FP, frame protocol) layer.
  • FP data frame protocol
  • the process of performing FP layer parsing of data to determine the destination address and/or source address of the data may be the same as or similar to the prior art.
  • the description thereof is omitted.
  • the first node determines a target bearer for transmitting data of the target user equipment, including: The first node receives the bearer indication information that is sent by the second node to indicate the target bearer, where the target bearer is that the third node determines from the at least one bearer and notifies the second node;
  • the first node determines the target bearer according to the bearer indication information.
  • the RNC may determine a bearer of each service allocated to each UMTS UE, and, for example, may generate a bearer mapping entry, that is, bearer indication information, in which a mapping relationship between each service of each UMTS UE and each bearer is recorded.
  • the bearer mapping entry is sent to LTE.
  • each bearer listed above and the UMTS site and the service type is determined by the RNC, but the present invention is not limited thereto, and may also be determined by the LTE station or the UMTS site #1, and the present invention does not. It is specifically limited, and the determination method is similar, and the description thereof is omitted here.
  • the UMTS UE#1 transmits the uplink data to the UMTS station #1, and the UMTS station #1 can generate the foregoing according to the service to which the uplink data belongs and the user equipment identifier of the UMTS UE#1.
  • the bearer mapping entry is determined to determine the 7-load (remember, 7-load #2) corresponding to the UMTS site #1 and the service of the uplink data.
  • the UMTS station #1 can transmit the uplink data to the LTE station by using the 7
  • the UMTS station #1 can demodulate and decode the uplink data through the UMTS protocol stack to generate an RNC capable of identifying Uplink data, for example, uplink data sent by the UMTS station to the RNC in the prior art.
  • the UMTS station #1 may input the uplink data outputted from the UMTS protocol stack or the adaptation layer to the LTE protocol stack, and encode and modulate the uplink data through the LTE protocol stack to generate uplink data that meets the LTE transmission requirement. . Thereafter, the UMTS station #1 can transmit the uplink data output from the LTE protocol stack to the LTE station through the bearer #2.
  • the LTE station may perform demodulation and decoding on the uplink data to restore uplink data that can be identified by the RNC, for example, uplink data sent by the UMTS station to the RNC in the prior art, and the uplink data is used.
  • the bearer #2 is transmitted to the RNC via a connection device such as an optical fiber via the UMTS site #2 co-located with the LTE station.
  • the RNC may determine, according to the bearer mapping entry determined as described above, the service to which the uplink data belongs, and may determine by performing FP layer analysis on the data.
  • the source address of the uplink data and sending the uplink data to the core network according to the source address.
  • the RNC can determine the service to which the downlink data belongs, and determine the downlink data according to the destination address of the downlink data.
  • the RNC can determine to use the bearer #2 to transmit the downlink data according to the bearer mapping entry determined as described above. .
  • the downlink data may be processed to generate downlink data that can be identified by the UMTS site #1, for example, downlink data sent by the RNC to the UMTS site in the prior art, and passed through the 7##
  • the UMTS station #2 of the LTE site co-site transmits the downlink data to the LTE station through a connection device such as an optical fiber.
  • the LTE station may perform code modulation on the downlink data to generate downlink data that meets the LTE transmission requirement. Thereafter, the LTE station can send the uplink data to the UMTS station #1 through the bearer #2.
  • the UMTS station #1 After receiving the downlink data, the UMTS station #1 can determine the service to which the downlink data belongs according to the bearer mapping entry determined as described above, and can perform, for example, by performing FP layer on the data. Parsing, determining the destination address of the downlink data, and transmitting the downlink data to the UMTS UE#1 according to the destination address. Specifically, the UMTS station #1 can demodulate and decode the downlink data through the LTE protocol stack, The downlink data sent by the RNC is restored. Moreover, the UMTS station #1 may input the downlink data output from the LTE protocol stack or the adaptation layer to the UMTS protocol stack, and code and modulate the uplink data through the UMTS protocol stack to generate downlink data that meets the UMTS transmission requirement. .
  • a method of transmitting data by setting a bearer for transmission between an RNC, an LTE station, and a UMTS station #1, and passing a bearer corresponding to the UMTS site #1 and a service corresponding to the data
  • the LTE station can be used without
  • the data is parsed to determine the next hop node of the data in the transmission path, which can reduce the burden on the LTE station and improve the transmission efficiency.
  • system resources can be saved and the transmission efficiency can be improved.
  • the bearer may not be set, and the LTE station may assign a device identifier (uniquely indicating the UMTS site #1) to the UMTS site #1, and notify the RNC and the UMTS site #1 of the device identifier, for example, the RNC is
  • the device identifier may be sent to the LTE station together, and the LTE station may determine, according to the device identifier, that the data needs to be sent.
  • the UMTS station #1 can acquire the L3/4 layer information of the data, thereby determining the purpose of the data.
  • the RNC may also store an entry that records the correspondence between each LTE station and each user equipment, so that when data needs to be sent to a user equipment, the data may be sent to the LTE site.
  • each UMTS station that communicates with the LTE station can report the served user equipments to the LTE station, so that the LTE station can record the correspondence between each UMTS station and each user equipment.
  • the destination address of the data, or the user equipment to be transmitted may be determined by, for example, parsing the FP layer of the data, and recording according to the foregoing.
  • the data is transmitted by the correspondence between each UMTS site and each user equipment.
  • the method further includes:
  • the first node determines scheduling information, where the scheduling information is used to indicate at least one of a quantity of the user equipment, a transmission rate corresponding to the first node, and a transmission delay corresponding to the first node, where the user
  • the device is a user equipment that currently transmits data through the first node and the second node, and the transmission rate corresponding to the first node is determined according to a transmission rate of each user equipment, and the transmission delay corresponding to the first node is
  • the first node sends the scheduling information to the second node, so that the second node performs resource scheduling according to the scheduling information, so that the third node and the first node
  • the data of the target user equipment is transmitted between the nodes.
  • the UMTS station #1 shares the communication resources of the LTE network with the UE (notably the LTE UE) of the LTE network, it is necessary to ensure fairness between the two terminals.
  • the UMTS station #1 may transmit the current communication status of the plurality of UMTS UEs that transmit data through the UMTS station #1 and the LTE station, or the current communication status of the UMTS station #1, that is, the scheduling
  • An example of the information is sent to the LTE station, so that the LTE station can perform resource scheduling according to the current communication state of the UMTS station #1 to meet the communication requirements of the UMTS UE.
  • the scheduling information it may be enumerated through the UMTS site #1 and
  • the UMTS station #1 may determine the number of UMTS UEs that currently need to transmit data via the UMTS station #1 and the LTE station, and Reported to the LTE site.
  • the LTE station can perform resource scheduling according to the number of UMTS UEs that need to transmit data through the UMTS station #1 and the LTE station, for example, can be evenly distributed according to the number of the UMTS UEs and the number of LTE UEs transmitting data through the LTE station.
  • the current available communication resources may also set weights for each UE (including UMTS UE and LTE UE), and allocate the current available communication resources according to the weight.
  • the number of UMTS UEs that need to transmit data via the UMTS station #1 and the LTE station is reported to the LTE station through the UMTS station #1, and the LTE station can accurately know that the LTE network needs to be shared currently.
  • the number of UEs enables a fair communication to each UE.
  • the UMTS station #1 can determine the transmission rate of each UMTS UE that currently needs to transmit data via the UMTS station #1 and the LTE station, and, for example, can set the highest transmission rate as the transmission rate of the UMTS station #1, ie, the first The transmission rate corresponding to the node is reported to the LTE station.
  • the transmission rate of the UMTS UE may be the uplink transmission rate of the UMTS UE, that is, the rate at which the UMTS UE transmits data, or may be
  • the downlink transmission rate of the UMTS UE that is, the rate at which the UMTS UE receives the data, is not specifically limited in the present invention
  • the transmission rate of the UMTS UE may be the current actual transmission rate of the UMTS UE, or may be the UMTS UE.
  • the reporting or network side for example, the transmission rate that needs to be ensured by the RNC, is not specifically limited in the present invention.
  • the LTE station can perform resource scheduling according to the current transmission rate of the UMTS station #1. For example, if the current transmission rate of the UMTS station #1 is lower than the transmission rate of the LTE UE, the LTE station can allocate the UMTS station #1. Higher quality communication resources to improve this The rate of UMTS site #1.
  • each UMTS UE that transmits data via the UMTS station #1 and the LTE station may also be used.
  • the average rate or the lowest rate is the transmission rate corresponding to the first node.
  • the method for transmitting data reports the current transmission rate of the UMTS station #1 to the LTE station through the UMTS station #1, and can be the rate of the LTE station that knows the UE currently sharing the LTE network, thereby enabling the UE to be implemented. Fair communication.
  • the UMTS station #1 can determine the transmission delay of each UMTS UE that currently needs to transmit data via the UMTS station #1 and the LTE station, and, for example, can maximize the transmission delay as the current transmission delay of the UMTS station #1, That is, the transmission delay corresponding to the first node is sent to the LTE station.
  • the transmission delay of the UMTS UE may be the uplink transmission delay of the UMTS UE, that is, the delay when the UMTS UE transmits data, or may be the downlink transmission delay of the UMTS UE, that is, The delay of the UMTS UE when receiving the data is not specifically limited, and the transmission delay of the UMTS UE may be the current actual transmission delay of the UMTS UE, or may be the UMTS UE reporting or the network side, for example.
  • the transmission delay that needs to be ensured by the RNC is not particularly limited in the present invention.
  • the LTE station can perform resource scheduling according to the current transmission delay of the UMTS station #1. For example, if the current transmission delay of the UMTS station #1 is larger than the transmission delay of the LTE UE, the LTE station can be a UMTS station. 1 Allocating higher quality communication resources to reduce the delay of the UMTS site #1.
  • each UMTS that transmits data via the UMTS station #1 and the LTE station may also be used.
  • the average delay or minimum delay of the UE is used as the transmission delay corresponding to the first node.
  • the method for transmitting data reports the current transmission delay of the UMTS station #1 to the LTE station through the UMTS station #1, and can be the delay of the LTE station to learn the UE currently sharing the LTE network, thereby enabling Fair communication for each UE.
  • the transmission rate corresponding to the first node or the transmission delay corresponding to the first node is determined according to any one of the following parameters: a service type, a user priority, or a quality of service category identifier. QCI.
  • the UMTS site #1 can report the foregoing transmission rate and transmission delay according to the service type, so that the LTE station can perform resource scheduling according to the service type. For example, for real-time services, if the current rate of the UMTS site #1 is lower than Pre-set thresholds that ensure real-time traffic is reliably performed, and UMTS Site #1 can be assigned higher quality resources to increase the rate of UMTS Site #1.
  • the UMTS station #1 can report the above transmission rate and transmission delay according to the user priority, so that the LTE station can perform resource scheduling according to the user priority, for example, for the gold medal user, if the current rate of the UMTS station #1 is low.
  • UMTS Site #1 can be assigned a higher quality resource to increase the rate of UMTS Site #1.
  • UMTS station #1 can report the above transmission rate and transmission delay according to the quality of service class identification QCI, so that the LTE station can perform resource scheduling according to QCI, for example, for higher QCI, if the current rate of UMTS station #1 Below the preset threshold that can ensure that the user corresponding to the QCI reliably performs data transmission, the UMTS site #1 can be allocated a higher quality resource to increase the rate of the UMTS site #1.
  • the method for performing resource scheduling according to the above scheduling information by the LTE station listed above is only an exemplary description, and the present invention is not limited thereto, and other methods for performing resource scheduling using the resource scheduling information fall within the protection scope of the present invention. Further, the parameters indicated by the scheduling information listed above may be used singly or in combination, and the present invention is not particularly limited.
  • the rate and delay of each service type of the UMTS station #1 are reported to the LTE station by the UMTS station #1, and the LTE station can learn the service type of the UE currently sharing the LTE network, thereby Fair communication to each UE can be further reliably achieved.
  • the method before the first node transmits the data of the user equipment between the second node and the user equipment by using the first protocol stack and the second protocol stack, the method further includes:
  • the first node determines user information for the data of the target user equipment, where the user information includes a service quality category identifier QCI corresponding to the data of the target user equipment and/or a service type corresponding to the data of the target user equipment;
  • the first node sends the user information to the second node, so that the second node performs resource scheduling according to the scheduling information, to transmit the target user setting between the third node and the first node.
  • Prepared data may control the priority of resource scheduling for each data by using a Quality of Service Class Identifier (QCI) and a service type, for example, may include real-time services and non-real-time services. Therefore, UMTS Site #1 can report the QCI of the data it transmits to the LTE site.
  • QCI Quality of Service Class Identifier
  • the QCI entry may be stored in the UMTS site in advance, and the mapping relationship between the service type, the traffic class (Traffic class) and the QCI may be recorded in the QCI entry, and the following Table 1 shows the present An example of a QCI entry in the embodiment of the invention.
  • Non-real-time service 5 Internet Protocol Multimedia Subsystem Signaling (IMS, IP
  • Video Buffered Streaming Video Buffered Streaming
  • Transmission Control Protocol (TCP) service eg, web browsing, email, etc.
  • TCP Transmission Control Protocol
  • the determination manners of the gold, silver, and bronze users in Table 1 can be determined based on the UMTS UE's ARP, Allocation/Retention Priority information.
  • Table 2 below shows the ARP and priority. An example of a mapping relationship between.
  • Table 1 listed above is merely an exemplary description, and the present invention is not limited thereto.
  • UMTS signaling between the UMTS site and the RNC for example, air interface signaling
  • a higher QCI such as 130, may be set for the UMTS signaling.
  • the UMTS station #1 can determine the ARP of the UMTS station #1 and the traffic class of the data, so that the QCI of the data can be determined according to the above Table 1. And according to the QCI information of the QCI and/or the service type information indicating the service type (real-time service, non-implementation service or UMTS signaling) of the data, the scheduling information for the data is determined and sent to the LTE station.
  • the QCI information of the QCI and/or the service type information indicating the service type (real-time service, non-implementation service or UMTS signaling) of the data the scheduling information for the data is determined and sent to the LTE station.
  • the UMTS site #1 can report the sum of the guaranteed bit rate (GBR) of the user equipment with the number of transmission requirements according to the QCI.
  • GBR guaranteed bit rate
  • the UMTS station #1 can report the current transmission rate of the user equipment according to the QCI. If there are multiple data with the same QCI, the highest current transmission rate is reported.
  • the LTE station can perform resource scheduling for the data of the UMTS station #1 according to the scheduling information sent by the UMTS station #1.
  • a scheduling rule you can list:
  • the UMTS signaling service has the highest priority.
  • the GBR rate of the user is guaranteed based on the reported GBR information.
  • the manner in which the LTE station listed above obtains the QCI of the data transmitted by the UMTS station is only an exemplary description, and the present invention is not limited thereto.
  • the foregoing Table 1 may also be stored in the RNC, and the RNC may be used to the LTE station.
  • the QCI of the data to be transmitted is delivered.
  • a method for transmitting data by causing an LTE station to acquire scheduling information, And performing resource scheduling on the data transmitted between the UMTS site and the RNC according to the resource scheduling information, and ensuring fairness between the UMTS UE served by the LTE UE and the UMTS site.
  • a flow control mechanism may be introduced to prevent the downlink data from being blocked at the LTE station or the uplink data at the UMTS site #1.
  • the first node by using the first protocol stack and the second protocol stack, to transmit data of the user equipment between the second node and the user equipment, including:
  • Second data Second data.
  • the UMTS station #1 can obtain the current uplink rate obtained from the UMTS UE, and control the queue of the queue in which the non-real-time service is located according to the uplink rate. Length, then control the amount of data sent by each UMTS UE to the queue according to the queue buffer status, and finally control each user equipment in the next period (the transmission period of the second data) according to the buffer size of each UE on the UMTS station #1 side. Transmission rate.
  • UMTS station #1 may obtain the current downlink rate from the UMTS UE, and use the downlink rate to subtract the result after the UMTS signaling and the real-time traffic rate.
  • the result of the capacity allocation of the non-real-time service is compressed, and then the result is sent to the RNC, so that the RNC adjusts the transmission rate of the next period (the transmission period of the second data) according to the capacity allocation result.
  • the method for transmitting data by introducing a flow control process, enables the uplink and downlink capacity of the UMTS network to adapt the resources obtained by the UMTS station #1 in the LTE network, and prevents the downlink data from being discarded at the LTE station, and Avoiding upstream data being discarded at UMTS Site #1 can improve the user experience.
  • a method of transmitting data by enabling a system to communicate using two networks, and configuring a protocol stack for communicating over the second network at a site (first node) of the first network, enabling the first The site of the network communicates with the site of the second network, and the access control device of the first network communicates with the site of the second network by enabling the access control device of the first network to communicate with the site of the second network, Thereby, the access control device of the first network can be enabled Communicating with the site via the site of the second network, thereby effectively increasing the communication distance between the first node and the third node, thereby improving the coverage of the first network, and shortening the second node by The distance from the third node can realize the communication between the second node and the third node through a lower cost. Since the first node communicates with the second node through the second network existing in the system, no additional relay is needed. Nodes and communication connectivity devices further reduce system construction costs.
  • FIG. 4 shows a schematic flow chart of a method 200 of transmitting data according to another embodiment of the present invention, the method 200 being performed by an LTE station (an example of a second node) in a communication system, the communication system further including a UMTS site# 1 (an example of a first node), an RNC (an example of a third node), and an UMTS UE #1 (an example of a target user equipment), wherein the communication system can use a UMTS network (an example of a first network) and an LTE network ( An example of the second network is to perform communication, and the RNC can communicate with the LTE station.
  • LTE station an example of a second node
  • the communication system further including a UMTS site# 1 (an example of a first node), an RNC (an example of a third node), and an UMTS UE #1 (an example of a target user equipment), wherein the communication system can use a UMTS network (an example of a first network) and an LTE network
  • the UMTS station #1 has a UMTS protocol stack (an example of a first protocol stack) and an LTE protocol stack (an example of a second protocol stack), the UMTS
  • the protocol stack is used to implement data processing for communication between the RNC and the UMTS UE in the UMTS.
  • the LTE protocol stack is used to implement data processing for communication between the UMTS station #1 and the LTE station in the LTE network.
  • the method 200 includes:
  • the second node receives the transmission request information sent by the first node, where the transmission request data is used to indicate that the second node transmits data of the target user equipment between the third node and the first node;
  • the second node establishes a transport bearer between the third node and the first node according to the transmission request message.
  • the second node transmits data of the target user equipment by using the transport bearer.
  • the UMTS station #1 can transmit an access request to the UMTS station #1 through the communication resources of the UMTS network.
  • the UMTS station #1 may send the transmission request information to the LTE station through the communication resource of the LTE network, to request the LTE station to transmit data between the RNC and the UMTS station #1, specifically, The LTE station determines, based on the transmission request information, that data from the UMTS site #1 needs to be transmitted to the RNC, and determines that data from the RNC needs to be sent to the UMTS site #1.
  • At least one bearer for transmitting data is disposed between the third node, the second node, and the first node.
  • the LTE station can initiate the bearer establishment process after receiving the transmission request information.
  • a bearer for transmitting data is established between the RNC, the LTE station, and the UMTS station #1, so that data transmission can be performed between the UMTS station #1 and the RNC through the bearer.
  • the part between the UMTS station #1 and the LTE station of the bearer is implemented by using the wireless communication resource provided by the LTE network.
  • the part between the bearer RNC and the LTE station can be implemented using a connection device such as an optical fiber.
  • the load may have multiple levels of division.
  • a 7-carrier can transmit only one service of one user equipment (ie, Case 3), or a bearer can transmit the same service (ie, Case 4) of multiple user equipments that transmit data through one UMTS station, The following two cases will be described separately.
  • the second node transmits data of the target user equipment between the third node and the first node, including:
  • a target bearer for transmitting data of the target user equipment, where the target bearer corresponds to a service to which the data of the target user equipment belongs and the target user equipment;
  • the second node transmits the data of the target user equipment between the third node and the first node by using the target bearer.
  • one bearer can be used to transmit only one service of one UMTS UE.
  • the second node determines a target bearer for transmitting data of the target user equipment, including:
  • the second node receives the bearer indication information that is sent by the third node to indicate the target bearer, where the target bearer is determined by the third node from the at least one bearer;
  • the stack transmits data of the target user equipment between the second node and the target user equipment.
  • the RNC may determine a bearer of each service allocated to each UMTS UE, and, for example, may generate a user equipment identifier recorded with each UMTS UE, and each UMTS UE. And bearer mapping entries of the mapping relationship between the bearers and the bearers, and sending the bearer mapping entries to each UMTS UE.
  • the user equipment identifier may uniquely indicate a UMTS UE in the system, for example, may be a MAC address, an IP address, a mobile user mobile number, an IMSI, and an IMEI of the UMTS UE. , and other information. It should be understood that the user identifier of the embodiment of the present invention is not limited to the above information, and other cells capable of uniquely embodying the user identifier are all within the scope of the embodiments of the present invention.
  • each bearer listed above and each user equipment and service type is determined by the RNC, but the present invention is not limited thereto, and may also be determined by an LTE station or UMTS site #1, and the present invention is It is not particularly limited, and the determination method is similar, and the description thereof is omitted here.
  • UMTS UE#1 transmits uplink data to UMTS site #1,
  • the UMTS site #1 may search for the bearer mapping entry generated as described above according to the service to which the uplink data belongs and the user equipment identifier of the UMTS UE#1, to determine the service with the UMTS UE#1 and the uplink data. Corresponding bearer (remember, bear #1). Moreover, the UMTS station #1 can transmit the uplink data to the LTE station by using the 7#, and specifically, the UMTS station #1 can demodulate and decode the uplink data through the UMTS protocol stack to generate an identifier that can be recognized by the RNC. Upstream data.
  • the UMTS station #1 can input the uplink data outputted from the UMTS protocol stack to the LTE protocol stack, and code and modulate the uplink data through the LTE protocol stack to generate uplink data that meets the LTE transmission requirements. Thereafter, the UMTS station #1 can transmit the uplink data output from the LTE protocol stack to the LTE station through the bearer #1.
  • the LTE station may demodulate and decode the uplink data to restore the uplink data that the RNC can identify, and send the uplink data to the RNC through the bearer #1.
  • the RNC may determine, according to the bearer mapping entry determined as described above, the service to which the uplink data belongs, and send the uplink data to be sent by the UMTS UE#1. Therefore, the source address of the uplink data can be determined, and the uplink data is sent to the core network according to the source address.
  • the RNC may determine the service to which the downlink data belongs, and determine, according to the destination address of the downlink data, that the downlink data needs to be sent to the UMTS UE#1, thereby
  • the downlink data may be transmitted using the bearer #1 according to the bearer mapping entry determined as described above.
  • the downlink data may be processed to generate downlink data that can be identified by the UMTS station #1, and the downlink data is sent to the LTE station by using the bearer #1.
  • the LTE station may perform code modulation on the downlink data to generate downlink data that meets the LTE transmission requirement. Thereafter, the LTE station can transmit the uplink data to the UMTS station #1 through the bearer #1.
  • the UMTS station #1 After receiving the downlink data, the UMTS station #1 can determine the service to which the downlink data belongs according to the bearer mapping entry determined as described above, and send the downlink data to be sent to the UMTS UE#. Therefore, the destination address of the downlink data can be determined, and the downlink data is sent to the UMTS UE#1 according to the destination address. Specifically, the UMTS site #1 can solve the downlink data through the LTE protocol stack. The decoding is adjusted to restore the downlink data sent by the RNC. Moreover, the UMTS station #1 can input the downlink data output from the LTE protocol stack to the UMTS protocol stack, and code and modulate the uplink data through the UMTS protocol stack to generate downlink data that meets the UMTS transmission requirements.
  • the LTE station can determine the UMTS site to which the downlink data needs to be sent according to the UMTS UE that transmits the data.
  • a method of transmitting data according to an embodiment of the present invention through an RNC, an LTE site, and
  • the bearer for transmission is set between the UMTS stations #1, and the data of the user equipment is transmitted by the bearer corresponding to the user equipment that transmits the data and the service corresponding to the data, for example, multiple LTEs are set in the system.
  • the station, multiple UMTS sites, or multiple UMTS UEs, the RNC, the LTE station, and the UMTS site can be configured to determine the next hop node in the transmission path without determining the data, thereby reducing the burden on each site and improving the transmission. effectiveness.
  • the second node transmits data of the target user equipment between the third node and the first node, including:
  • the second node Determining, by the second node, a target bearer for transmitting data of the target user equipment, where the target bearer corresponds to a service to which the data of the target user equipment belongs and the first node; and the second node passes the target bearer Transmitting data of the target user equipment between the third node and the first node.
  • the RNC and the UMTS site can determine the destination address and/or the source address of the data by parsing the data frame protocol (FP, frame protocol) layer.
  • FP data frame protocol
  • the process of performing FP layer parsing of data to determine the destination address and/or source address of the data may be the same as or similar to the prior art.
  • the second node determines a target bearer for transmitting data of the target user equipment, including:
  • the second node receives the bearer indication information that is sent by the third node to indicate the target bearer, where the target bearer is determined by the third node from the at least one bearer;
  • the stack transmits data of the target user equipment between the second node and the target user equipment.
  • the RNC may determine the bearer of each service allocated to each UMTS UE, and, for example, may generate a bearer that records the user equipment identifier of each UMTS UE, and the mapping relationship between each service of each UMTS UE and each bearer.
  • the mapping entry is sent, and the bearer mapping entry is sent to the LTE.
  • each bearer listed above and the UMTS site and the service type is determined by the RNC, but the present invention is not limited thereto, and may also be determined by the LTE station or the UMTS site #1, and the present invention does not. It is specifically limited, and the determination method is similar, and the description thereof is omitted here.
  • the UMTS UE#1 transmits the uplink data to the UMTS station #1, and the UMTS station #1 can generate the foregoing according to the service to which the uplink data belongs and the user equipment identifier of the UMTS UE#1.
  • the bearer mapping entry is determined to determine the 7-load (remember, 7-load #2) corresponding to the UMTS site #1 and the service of the uplink data.
  • the UMTS station #1 can transmit the uplink data to the LTE station by using the 7#2.
  • the UMTS station #1 can demodulate and decode the uplink data through the UMTS protocol stack to generate an identifier that can be recognized by the RNC.
  • the UMTS site #1 may input the uplink data outputted from the UMTS protocol stack or the adaptation layer to the LTE protocol stack, and encode and modulate the uplink data through the LTE protocol stack to generate uplink data that meets the LTE transmission requirement. . Thereafter, the UMTS station #1 can transmit the uplink data output from the LTE protocol stack to the LTE station through the bearer #2.
  • the LTE station may demodulate and decode the uplink data to restore the uplink data that the RNC can identify, and send the uplink data to the RNC through the bearer #2.
  • the RNC may determine, according to the bearer mapping entry determined as described above, the service to which the uplink data belongs, and may pass the Perform FP layer analysis on the data, determine a source address of the uplink data, and send the uplink data to the core network according to the source address.
  • the RNC may determine the service to which the downlink data belongs, and determine, according to the destination address of the downlink data, that the downlink data needs to be sent to the UMTS UE#1, and Since the UMTS UE#1 performs data transmission only through the UMTS station #1, the RNC can determine to use the bearer #2 to transmit the downlink data according to the bearer mapping entry determined as described above. Thereafter, the downlink data may be processed to generate downlink data that can be identified by the UMTS site #1, and the downlink data is sent to the LTE station by using the bearer #2.
  • the LTE station may perform code modulation on the downlink data to generate downlink data that meets the LTE transmission requirement. Thereafter, the LTE station can send the uplink data to the UMTS station #1 through the bearer #2.
  • the UMTS station #1 After receiving the downlink data, the UMTS station #1 can determine the service to which the downlink data belongs according to the bearer mapping entry determined as described above, and can perform, for example, by performing FP layer on the data. Parsing, determining the destination address of the downlink data, and transmitting the downlink data to the UMTS UE#1 according to the destination address. Specifically, the UMTS station #1 can demodulate and decode the downlink data through the LTE protocol stack, The downlink data sent by the RNC is restored. Moreover, the UMTS station #1 may input the downlink data output from the LTE protocol stack or the adaptation layer to the UMTS protocol stack, and code and modulate the uplink data through the UMTS protocol stack to generate downlink data that meets the UMTS transmission requirement. .
  • a method of transmitting data by setting a bearer for transmission between an RNC, an LTE station, and a UMTS station #1, and passing a bearer corresponding to the UMTS site #1 and a service corresponding to the data
  • the LTE station can analyze the data to determine the next data in the transmission path. Jumping nodes can reduce the burden on LTE sites and improve transmission efficiency.
  • system resources can be saved and the transmission efficiency can be improved.
  • the bearer may not be set, and the LTE station may assign a setting to the UMTS site #1.
  • the identifier is used to uniquely indicate the UMTS site #1, and the device identifier is notified to the RNC and the UMTS site #1.
  • the device identifier may be sent to the LTE station together.
  • the LTE station may determine that the data needs to be sent to the UMTS station #1 according to the device identifier, and transmit the data from the RNC to the UMTS station #1 through the LTE network, and the UMTS station #1 may acquire the data after receiving the data.
  • the L3/4 layer information thereby determining the destination address of the data, to send the data to the user equipment corresponding to the destination address.
  • the RNC may also store an entry that records the correspondence between each LTE station and each user equipment, so that when data needs to be sent to a user equipment, the data may be sent to the LTE site.
  • each UMTS station that communicates with the LTE station can report the served user equipments to the LTE station, so that the LTE station can record the correspondence between each UMTS station and each user equipment.
  • the destination address of the data may be determined by, for example, parsing the FP layer of the data, and according to the UMTS site and each user equipment recorded as described above. Correspondence to send the data.
  • the second node transmits data of the target user equipment between the third node and the first node, including:
  • the second node transmits data of the target user equipment between the third node and the first node, including:
  • the second node receives the scheduling information sent by the first node, where the scheduling information is used to indicate at least the number of the user equipment, the transmission rate corresponding to the first node, and the transmission delay corresponding to the first node.
  • a parameter where the user equipment is a user equipment that currently transmits data through the first node and the second node, and a transmission rate corresponding to the first node is determined according to a transmission rate of each user equipment, where the first The transmission delay corresponding to the node is determined according to the transmission delay of each user equipment;
  • the second node performs resource scheduling according to the scheduling information to transmit data of the target user equipment between the third node and the first node.
  • the UMTS site #1 (or the UMTS UE transmitting data through the UMTS site #1) shares the communication resources of the LTE network with the UE (notably the LTE UE) of the LTE network, , need to ensure the fairness between the two terminals.
  • UMTS site #1 may pass the UMTS site #1 and LTE.
  • the current communication status of the multiple UMTS UEs that transmit data of the station is sent to the LTE station, so that the LTE station can perform resource scheduling according to the current communication status of the UMTS station #1 to meet the communication requirements of the UMTS UE.
  • the scheduling information the number of multiple UMTS UEs that transmit data through the UMTS station #1 and the LTE station (ie, case D), the transmission rate corresponding to the first node (ie, Case E), the transmission delay corresponding to the first node (ie, case F)
  • the method of resource scheduling in the above three cases will be described separately.
  • the UMTS station #1 may determine the number of UMTS UEs that currently need to transmit data via the UMTS station #1 and the LTE station, and Reported to the LTE site.
  • the LTE station can perform resource scheduling according to the number of UMTS UEs that need to transmit data through the UMTS station #1 and the LTE station, for example, can be evenly distributed according to the number of the UMTS UEs and the number of LTE UEs transmitting data through the LTE station.
  • the current available communication resources may also set weights for each UE (including UMTS UE and LTE UE), and allocate the current available communication resources according to the weight.
  • the number of UMTS UEs that need to transmit data via the UMTS station #1 and the LTE station is reported to the LTE station through the UMTS station #1, and the LTE station can accurately know that the LTE network needs to be shared currently.
  • the number of UEs enables a fair communication to each UE.
  • the UMTS station #1 can determine the transmission rate of each UMTS UE that currently needs to transmit data via the UMTS station #1 and the LTE station, and, for example, can use the highest transmission rate as the transmission rate of the UMTS station #1 and report it to the LTE.
  • the station here, it should be noted that the transmission rate of the UMTS UE may be the uplink transmission rate of the UMTS UE or the downlink transmission rate of the UMTS UE, which is not specifically limited in the present invention, and the transmission rate of the UMTS UE may be It is the current actual transmission rate of the UMTS UE, and may be the transmission rate that the UMTS UE reports or the network side needs to ensure.
  • the present invention is not particularly limited.
  • the LTE station can perform resource scheduling according to the current transmission rate of the UMTS station #1. For example, if the current transmission rate of the UMTS station #1 is lower than the transmission rate of the LTE UE, the LTE station can allocate the UMTS station #1. Higher quality communication resources to increase the rate of the UMTS site #1.
  • each UMTS UE that transmits data via the UMTS station #1 and the LTE station may also be used.
  • the average rate or the lowest rate is the transmission rate corresponding to the first node.
  • the method for transmitting data reports the current transmission rate of the UMTS station #1 to the LTE station through the UMTS station #1, and can be the rate of the LTE station that knows the UE currently sharing the LTE network, thereby enabling the UE to be implemented. Fair communication.
  • the UMTS station #1 can determine the transmission delay of each UMTS UE that currently needs to transmit data via the UMTS station #1 and the LTE station, and, for example, can maximize the transmission delay as the current transmission delay of the UMTS station #1, And reported to the LTE site.
  • the transmission delay of the UMTS UE may be the uplink transmission delay of the UMTS UE, or may be the downlink transmission delay of the UMTS UE, which is not specifically limited in the present invention, and is transmitted by the UMTS UE.
  • the delay may be the current actual transmission delay of the UMTS UE, or may be the transmission delay that needs to be ensured by the UMTS UE or the network side.
  • the present invention is not particularly limited.
  • the LTE station can perform resource scheduling according to the current transmission delay of the UMTS station #1. For example, if the current transmission delay of the UMTS station #1 is larger than the transmission delay of the LTE UE, the LTE station can be a UMTS station. 1 Allocating higher quality communication resources to reduce the delay of the UMTS site #1.
  • each UMTS that transmits data via the UMTS station #1 and the LTE station may also be used.
  • the average delay or minimum delay of the UE is used as the transmission delay corresponding to the first node.
  • the method for transmitting data reports the current transmission delay of the UMTS station #1 to the LTE station through the UMTS station #1, and can be the delay of the LTE station to learn the UE currently sharing the LTE network, thereby enabling Fair communication for each UE.
  • the transmission rate corresponding to the first node or the transmission corresponding to the first node is differentiated according to any of the following parameters:
  • the service type, user priority, or quality of service category identifies the QCI.
  • the UMTS site #1 can report the foregoing transmission rate and transmission delay according to the service type, so that the LTE station can perform resource scheduling according to the service type. For example, for real-time services, if the current rate of the UMTS site #1 is lower than Pre-set thresholds that ensure real-time traffic is reliably performed, and UMTS Site #1 can be assigned higher quality resources to increase the rate of UMTS Site #1.
  • the UMTS station #1 can report the above transmission rate and transmission delay according to the user priority, so that the LTE station can perform resource scheduling according to the user priority, for example, for the gold medal user, if the current rate of the UMTS station #1 is low.
  • UMTS Site #1 can be assigned a higher quality resource to increase the rate of UMTS Site #1.
  • UMTS station #1 can report the above transmission rate and transmission delay according to the quality of service class identification QCI, so that the LTE station can perform resource scheduling according to QCI, for example, for higher QCI, if the current rate of UMTS station #1 Below the preset threshold that can ensure that the user corresponding to the QCI reliably performs data transmission, the UMTS site #1 can be allocated a higher quality resource to increase the rate of the UMTS site #1.
  • the second node transmits data of the target user equipment between the third node and the first node, where: the second node receives the user that is sent by the first node for data of the target user equipment.
  • the user information is determined by the first node, and includes a service quality category identifier QCI corresponding to the data of the target user equipment and/or a service type corresponding to the data of the target user equipment, where the service type includes real-time Business and non-real time business;
  • the second node performs resource scheduling according to the user information to transmit data of the target user equipment between the third node and the first node.
  • the LTE station may control the priority of resource scheduling for each data by using a QCI (Quality of Service Class Identifier) and a service type (for example, may include real-time services and non-real-time services). Therefore, UMTS Site #1 can report the QCI of the data it transmits to the LTE site.
  • QCI Quality of Service Class Identifier
  • service type for example, may include real-time services and non-real-time services
  • the QCI entry may be stored in the UMTS site in advance, and the mapping relationship between the service type, the traffic class (Traffic class), and the QCI may be recorded in the QCI entry.
  • Traffic class Traffic class
  • the manner of determining the gold card user, the silver card user, and the bronze card user (or priority) in Table 1 may be determined based on the UMTS UE's ARP, Allocation/Retention Priority information, as shown in Table 2 above. An example of the mapping relationship between ARP and priority is given.
  • Table 1 listed above is merely an exemplary description, and the present invention is not limited thereto.
  • the present invention is implemented.
  • a higher QCI, such as 130, can be set for the UMTS signaling.
  • the UMTS station #1 can determine the ARP of the UMTS station #1 and the traffic class of the data, so that the QCI of the data can be determined according to the above Table 1. And determining scheduling information for the data according to the QCI information of the QCI and/or the service type information indicating the service type of the data, and sending the scheduling information to the LTE station, where the service type may include a real-time service, a non-implemented service, or a UMTS letter. make.
  • the service type may include a real-time service, a non-implemented service, or a UMTS letter.
  • the UMTS site #1 can report the sum of the guaranteed bit rate (GBR) of the user equipment with the number of transmission requirements according to the QCI.
  • GBR guaranteed bit rate
  • the UMTS station #1 can report the current transmission rate of the user equipment according to the QCI. If there are multiple data with the same QCI, the highest current transmission rate is reported.
  • the LTE station can perform resource scheduling for the data of the UMTS station #1 according to the scheduling information sent by the UMTS station #1.
  • a scheduling rule you can list:
  • the UMTS signaling service has the highest priority.
  • the GBR rate of the user is guaranteed based on the reported GBR information.
  • the manner in which the LTE station listed above obtains the QCI of the data transmitted by the UMTS station is only an exemplary description, and the present invention is not limited thereto.
  • the foregoing Table 1 may also be stored in the RNC, and the RNC may be used to the LTE station.
  • the QCI of the data to be transmitted is delivered.
  • the method for transmitting data by enabling the LTE station to acquire scheduling information and performing resource scheduling on data transmitted between the UMTS site and the RNC according to the resource scheduling information, the LTE UE and the UMTS site can be guaranteed to be served. Fairness between UMTS UEs.
  • a flow control mechanism may be introduced to prevent the downlink data from being blocked at the LTE station or the uplink data at the UMTS site #1.
  • UMTS station #1 may control the current uplink rate obtained from the UMTS UE in a period of time, and control the queue length of the queue in which the non-real-time service is located according to the uplink rate, and then control each UMTS UE according to the queue buffer status. The amount of data sent to the queue, and finally the transmission rate of each user equipment in the next period according to the buffer size of each UE on the UMTS station #1 side.
  • UMTS station #1 can obtain the current downlink rate from the UMTS UE, and use the downlink rate minus the result after the UMTS signaling and the real-time traffic rate to compare the capacity of the non-real-time service.
  • the result is assigned, and then the result is sent to the RNC, so that the RNC adjusts the transmission rate in the next period according to the capacity allocation result.
  • the method for transmitting data by introducing a flow control process, enables the uplink and downlink capacity of the UMTS network to adapt the resources obtained by the UMTS station #1 in the LTE network, and prevents the downlink data from being discarded at the LTE station, and Avoiding upstream data being discarded at UMTS Site #1 can improve the user experience.
  • a method of transmitting data by enabling a system to communicate using two networks, and configuring a protocol stack for communicating over the second network at a site (first node) of the first network, enabling the first
  • the site of the network communicates with the site of the second network
  • the access control device of the first network communicates with the site of the second network by enabling the access control device of the first network to communicate with the site of the second network, Therefore, the access control device of the first network and the station can communicate with each other via the site of the second network, thereby effectively increasing the communication distance between the first node and the third node, thereby improving the first Coverage of the network, and by shortening the distance between the second node and the third node, communication between the second node and the third node can be achieved at a lower cost, since the system passes between the first node and the second node
  • the existing second network communicates without the need to add relay nodes and communication connection equipment, which further reduces the system construction cost.
  • FIG. 5 shows a schematic block diagram of a node 300 for transmitting information in accordance with an embodiment of the present invention.
  • the node 300 is a site of the first network in the communication system.
  • the node 300 includes: a protocol processing unit 310, configured to implement between the user equipment of the first network and the access control device of the first network. a first protocol stack process of communication, and a second protocol stack process for implementing communication between the user equipment of the second network and the site of the second network;
  • the transceiver unit 320 is configured to send, to the second node, transmission request information, where the transmission request information is used to indicate that the second node transmits data of the target user equipment between the third node and the node, and is used for processing by using the protocol.
  • the data of the target user equipment processed by the unit 310 is transmitted between the third node and the target user equipment by the second node;
  • the third node is an access control device of the first network in the communication system, and the second node is a site of the second network in the communication system.
  • the protocol processing unit 310 is further configured to perform conversion processing on the data between the first protocol stack and the second protocol stack, and
  • the transceiver unit 320 is configured to receive, by using the second protocol stack in the protocol processing unit 310, downlink data sent by the second node and sent by the third node to the target user equipment, where the processing unit 310
  • the data format of the data output by the second protocol stack is converted into a data format that can be identified by the first protocol stack, and the first protocol stack in the processing unit 310 is used to send the downlink data to the target user equipment; or
  • the transceiver unit 320 is configured to receive, by using the first protocol stack in the protocol processing unit 310, uplink data that is sent by the target user equipment to the third node, and the data that is output from the first protocol stack by the protocol processing unit 310.
  • the data format is converted into a data format recognizable by the second protocol stack, and the second protocol stack in the processing unit 310 is used to send the uplink data to the second node.
  • the node 300 further includes: a determining unit 320, configured to determine scheduling information, where the scheduling information is used to indicate at least a quantity of the user equipment, a transmission rate corresponding to the node, and a transmission delay corresponding to the node.
  • a parameter where the user equipment is a user equipment that currently transmits data through the node and the second node, and a transmission rate corresponding to the node is determined according to a transmission rate of each user equipment, and the transmission time corresponding to the node is The delay is determined according to the transmission delay of each user equipment;
  • the transceiver unit 320 further uses the scheduling information determined by the determining unit to be sent to the second node, so that the second node performs resource scheduling according to the scheduling information, at the third node and the The data of the target user equipment is transmitted between the nodes.
  • the transmission rate corresponding to the node or the transmission delay corresponding to the node is determined according to any one of the following parameters: a service type, a user priority, or a quality of service category identifier QCI.
  • the first network is a universal mobile communication system UMTS network
  • the node is a base station NodeB
  • the third node is a radio network controller RNC
  • the second network is a long term evolution LTE network
  • the second node is an evolved base station. eNodeB. Node
  • the node 300 for transmitting data according to an embodiment of the present invention may correspond to a first node (a site of a first network, for example, UMTS site #1) in the method of the embodiment of the present invention, and each unit in the node 300 is
  • a first node a site of a first network, for example, UMTS site #1
  • each unit in the node 300 is
  • the modules and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes of the method 100 in FIG. 3, and are not described herein again.
  • a node for transmitting data can implement the first by causing the system to communicate using two networks, and configuring a protocol stack for communication through the second network at a site (first node) of the first network
  • the site of the network communicates with the site of the second network
  • the access control device of the first network communicates with the site of the second network by enabling the access control device of the first network to communicate with the site of the second network, Therefore, the access control device of the first network and the station can communicate with each other via the site of the second network, thereby effectively increasing the communication distance between the first node and the third node, thereby improving the first Coverage of the network, and by shortening the distance between the second node and the third node, communication between the second node and the third node can be achieved at a lower cost, since the system passes between the first node and the second node
  • the existing second network communicates without the need to add relay nodes and communication connection equipment, further reducing system construction. This.
  • FIG. 6 shows a schematic block diagram of a node node 400 that transmits information in accordance with another embodiment of the present invention.
  • the node 400 is a site of a second network in the communication system. As shown in FIG. 6, the node 400 includes:
  • the transceiver unit 410 is configured to receive transmission request information sent by the first node, where the transmission request data is used to indicate that the node transmits data of the target user equipment between the third node and the first node, and the bearer establishing unit 420 is configured to: Establishing a transmission bearer between the third node and the first node according to the transmission request message;
  • the transceiver unit 410 is further configured to transmit data of the target user equipment between the third node and the first node by using the transmission bearer;
  • the first node is a site of a first network in the communication system
  • the third node is an access control device of the first network in the communication system
  • the first node has a first protocol stack and a second protocol.
  • a protocol stack the first protocol stack includes a protocol stack for communication between a user equipment of the first network and an access control device of the first network
  • the second protocol stack includes a user equipment of the second network and a site of the second network Protocol stack for communication.
  • the node is in communication connection with the third node.
  • the node and the third node are capable of communicating via the fourth node, where the fourth node is a site of the first network, and the node is in communication connection with the fourth node, where the third node is The fourth node communication connection, and
  • the bearer establishing unit 420 is specifically configured to establish a transport bearer between the third node and the first node according to the transmission request message.
  • the node is co-sited with the fourth node.
  • the transceiver unit 410 is further configured to receive scheduling information that is sent by the first node, where the scheduling information is used to indicate the number of user equipments, the transmission rate corresponding to the first node, and the first node.
  • At least one parameter of the transmission delay where the user equipment is a user equipment that currently transmits data through the first node and the node, and the transmission rate corresponding to the first node is determined according to a transmission rate of each user equipment.
  • the transmission delay corresponding to the first node is determined according to a transmission delay of each user equipment;
  • the transmission rate corresponding to the first node or the transmission delay corresponding to the first node is determined according to any one of the following parameters: a service type, a user priority, or a quality of service category identifier QCI.
  • the first network is a universal mobile communication system UMTS network
  • the first node is a base station NodeB
  • the third node is a radio network controller RNC
  • the second network is a long term evolution LTE network
  • the node is an evolved base station. eNodeB.
  • the node 400 for transmitting data according to an embodiment of the present invention may correspond to a second node (a site of a second network, for example, an LTE site) in the method of the embodiment of the present invention, and each unit in the node 400 is a module and
  • each unit in the node 400 is a module and
  • the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes of the method 200 in FIG. 4, and are not described herein again.
  • a node for transmitting data can implement the first by causing the system to communicate using two networks, and configuring a protocol stack for communication through the second network at a site (first node) of the first network
  • the site of the network communicates with the site of the second network, by making the first network
  • the access control device of the network and the site communication connection of the second network enable the access control device of the first network to communicate with the site of the second network, thereby enabling the access control device of the first network and the site to be connected Communicating via the site of the second network, thereby effectively increasing the communication distance between the first node and the third node, thereby improving the coverage of the first network, and shortening the second node and the third node
  • the distance between the second node and the third node can be realized at a lower cost.
  • FIG. 7 shows a schematic block diagram of an apparatus 500 for transmitting data in accordance with an embodiment of the present invention.
  • the device 500 is a site of the first network
  • the third node is an access control device of the first network
  • the second node is a site of the second network
  • the second node is capable of communicating with the third node
  • the device 500 has a first protocol stack and a second protocol stack, where the first protocol stack is used to implement data processing between the third node and the user equipment for communication in the first network, where the second protocol stack is used to implement the data processing.
  • the device 500 includes:
  • processor 520 connected to the bus 510;
  • a memory 530 connected to the bus 510;
  • Transceiver 540 coupled to bus 510
  • the processor 520 by using the bus 510, invokes a program stored in the memory 530, for controlling the transceiver 540 to send transmission request information to the second node, where the transmission request information is used to indicate the first
  • the two nodes transmit data of the target user equipment between the third node and the first node;
  • the transceiver 540 is configured to transmit data of the target user equipment between the third node and the target user equipment by using the second protocol stack and the second protocol stack.
  • At least one bearer for transmitting data is disposed between the third node, the second node, and the device 500, and
  • the processor 520 is further configured to determine a target bearer for transmitting data of the target user equipment, where the target bearer corresponds to a service to which the data of the target user equipment belongs and the target user equipment, or the target bearer The business to which the data of the target user device belongs and the device Standby 500;
  • the processor 520 is further configured to control, by the transceiver 540, the bearer indication information that is sent by the second node to indicate the target bearer, where the target bearer is the third node from the at least one bearer. Determining and notifying the second node;
  • an adaptation layer is configured between the first protocol stack and the second protocol stack, where the adaptation layer is configured to perform conversion processing on the data between the first protocol stack and the second protocol stack.
  • the processor 520 is further configured to receive, by using the second protocol stack, downlink data that is sent by the second node and sent by the third node to the target user equipment, and the data that is output from the second protocol stack by using the adaptation layer.
  • the data format is converted into a data format recognizable by the first protocol stack, and the downlink data is sent to the target user equipment by using the first protocol stack, or
  • the processor 520 is further configured to receive, by the first node, the uplink data sent by the target user equipment to the third node by using the first protocol stack, and the data format of the data output from the first protocol stack by using the adaptation layer. Converting to a data format recognizable by the second protocol stack, and transmitting the uplink data to the second node by using the second protocol stack.
  • the second node is in communication connection with the third node.
  • the second node is in communication with the third node, where the fourth node is a site of the first network, and the second node is in communication with the fourth node, where The third node is in communication with the fourth node.
  • the second node is co-sited with the fourth node.
  • the processor 520 is further configured to determine scheduling information, where the scheduling information is used to indicate at least one of a quantity of the user equipment, a transmission rate corresponding to the device 500, and a transmission delay corresponding to the device 500.
  • the user equipment is a user equipment that currently transmits data through the device 500 and the second node, and the transmission rate corresponding to the device 500 is determined according to a transmission rate of each first user equipment, where the device 500 corresponds.
  • the transmission delay is determined according to the transmission delay of each of the first user equipments;
  • the transceiver 540 Controlling the transceiver 540 to send the scheduling information to the second node, so that the second node performs resource scheduling according to the scheduling information, to transmit data of the target user equipment between the third node and the device 500.
  • the transmission rate corresponding to the device 500 or the transmission delay corresponding to the first node is determined according to any one of the following parameters: a service type, a user priority, or a quality of service category identifier QCI.
  • the first network is a universal mobile communication system UMTS network
  • the device 500 is a base station NodeB
  • the third node is a radio network controller RNC
  • the second network is a long term evolution LTE network
  • the second node is an evolved Base station eNodeB.
  • device 500 may be embedded or may itself be a wireless communication device such as a base station, and may also include a carrier that houses the transmitting circuitry and the receiving circuitry to allow for data transmission and reception between device 500 and a remote location.
  • transceiver 540 includes a transmit circuit, a receive circuit, a power controller, a decode processor, and an antenna. The transmit and receive circuits can be coupled to the antenna.
  • the decoder may be integrated with the processor 520 in a specific different product. Block diagram.
  • the general purpose processor 520 can be a microprocessor or the processor can be any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 530.
  • the processor 520 reads the information in the memory 530 and combines the hardware to complete the steps of the above method.
  • the processor 520 may be a central processing unit (a central processing unit), and the processor 520 may also be another general-purpose processor, a digital signal processor (DSP). ), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs off-the-shelf programmable gate arrays
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 530 can include read only memory and random access memory and provides instructions and data to the processor 520.
  • a portion of memory 530 may also include non-volatile random access memory.
  • the memory 530 can also store information of the device type.
  • the bus 510 can include, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus 510 in the figure.
  • each step of the above method may be integrated by hardware in the processor 520.
  • the logic circuit or the instruction in the form of software is completed.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 530, and the processor 520 reads the information in the memory 530 and completes the steps of the above method in combination with hardware. To avoid repetition, it will not be described in detail here.
  • the first node (the site of the first network, for example, UMTS site #1), and the modules in the device 500, ie, the modules and the other operations and/or functions described above, respectively, in order to implement the corresponding method 100 in FIG.
  • the process for the sake of cleanliness, will not be repeated here.
  • the apparatus for transmitting data can implement the first by causing the system to communicate using two networks, and configuring a protocol stack for communication through the second network at a site (first node) of the first network
  • the site of the network communicates with the site of the second network
  • the access control device of the first network communicates with the site of the second network by enabling the access control device of the first network to communicate with the site of the second network, Therefore, the access control device of the first network and the station can communicate with each other via the site of the second network, thereby effectively increasing the communication distance between the first node and the third node, thereby improving the first Coverage of the network, and by shortening the distance between the second node and the third node, communication between the second node and the third node can be achieved at a lower cost, since the system passes between the first node and the second node
  • the existing second network communicates without the need to add relay nodes and communication connection equipment, further reducing system construction. This.
  • FIG. 8 shows a schematic block diagram of an apparatus 600 for transmitting data in accordance with an embodiment of the present invention.
  • the device 600 is a site of a second network in a communication system, the communication system further includes a third node and a first node, wherein the communication system is capable of communicating using the first network and the second network, the first node is the first node a network site, the third node is an access control device of the first network, the second node is a site of the second network, the first node has a first protocol stack and a second protocol stack, the first The protocol stack includes a protocol stack for communication between the user equipment of the first network and the access control device of the first network, and the second protocol stack includes a protocol stack for communication between the user equipment of the second network and the site of the second network, As shown in FIG. 8, the device 600 includes:
  • processor 620 connected to the bus 610;
  • Transceiver 640 coupled to bus 610
  • the processor 620 by using the bus 610, invokes a program stored in the memory 630, and is configured to control the transceiver 640 to receive transmission request information sent by the first node, where the transmission request data is used to indicate the
  • the device 600 transmits data of the target user equipment between the third node and the first node;
  • the transceiver 640 is configured to transmit data of the target user equipment through the transmission bearer.
  • at least one bearer for transmitting data is disposed between the third node, the device 600, and the first node, and
  • the processor 620 is specifically configured to determine a target bearer for transmitting data of the target user equipment, where the target bearer corresponds to a service to which the data of the target user equipment belongs and the target user equipment, or the target bearer Corresponding to the service to which the data of the target user equipment belongs and the first node;
  • the processor 620 is further configured to control, by the transceiver 640, the bearer indication information that is sent by the third node to indicate the target bearer, where the target bearer is the third node from the at least one bearer. definite;
  • the transceiver 640 is configured to send the bearer indication information to the first node, so that the first node determines the target bearer according to the bearer indication information, and passes the target bearer, and the first protocol stack and the The second protocol stack transmits data of the target user equipment between the device 600 and the target user equipment.
  • the device 600 is in communication connection with the third node.
  • the device 600 and the third node are capable of communicating via the fourth node, where the fourth node is a site of the first network, and the device 600 is in communication connection with the fourth node, the third a node is in communication with the fourth node, and
  • the processor 620 is specifically configured to establish a transport bearer between the third node and the first node according to the transmission request message.
  • the device 600 is co-sited with the fourth node.
  • the processor 620 is further configured to control the transceiver 640 to receive the scheduling information sent by the first node, where the scheduling information is used to indicate the number of user equipment, the transmission rate corresponding to the first node, and the At least one parameter of the transmission delay corresponding to the first node, where the user equipment is a user equipment that currently transmits data through the first node and the device 600, and the transmission rate corresponding to the first node is according to each Determining, by the transmission rate of the user equipment, the transmission delay corresponding to the first node is determined according to the transmission delay of each user equipment;
  • the transmission rate corresponding to the first node or the transmission delay corresponding to the first node is determined according to any one of the following parameters: a service type, a user priority, or a quality of service category identifier QCI.
  • the first network is a universal mobile communication system UMTS network
  • the first node is a base station NodeB
  • the third node is a radio network controller RNC
  • the second network is a long term evolution LTE network
  • the device 600 is an evolved Base station eNodeB.
  • device 600 may be embedded or may itself be a wireless communication device such as a base station, and may also include a carrier that houses the transmitting circuitry and the receiving circuitry to allow for data transmission and reception between device 600 and a remote location.
  • transceiver 640 includes a transmit circuit, a receive circuit, a power controller, a decode processor, and an antenna. The transmit and receive circuits can be coupled to the antenna. Additionally, the decoder in a particular different product may be integrated with the processor 620.
  • the general purpose processor 620 can be a microprocessor or the processor can be any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 630, and the processor 620 reads the information in the memory 630 and combines the hardware to complete the steps of the above method.
  • the processor 620 may be a central processing unit (a central processing unit, referred to as a "CPU"), and the processor 620 may also be other general-purpose processors, digital signal processors (DSP). ), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 630 can include read only memory and random access memory and provides instructions and data to the processor 620.
  • a portion of memory 630 may also include non-volatile random access memory.
  • the memory 630 can also store information of the device type.
  • the bus 610 can include, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus 610 in the figure.
  • the steps of the above method may be completed by an integrated logic circuit of hardware in the processor 620 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in random memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc., which are well established in the art.
  • the storage medium is located in the memory 630.
  • the processor 620 reads the information in the memory 630 and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the second node (the site of the second network, for example, the LTE site), and the modules in the device 600, and the other operations and/or functions described above, respectively, in order to implement the corresponding processes of the method 200 in FIG. For the sake of cleanliness, we will not repeat them here.
  • the apparatus for transmitting data can implement the first by causing the system to communicate using two networks, and configuring a protocol stack for communication through the second network at a site (first node) of the first network
  • the site of the network communicates with the site of the second network
  • the access control device of the first network communicates with the site of the second network by enabling the access control device of the first network to communicate with the site of the second network, Therefore, the access control device of the first network and the station can communicate with each other via the site of the second network, thereby effectively increasing the communication distance between the first node and the third node, thereby improving the first Coverage of the network, and by shortening the distance between the second node and the third node, communication between the second node and the third node can be achieved at a lower cost, since the system passes between the first node and the second node
  • the existing second network communicates without the need to add relay nodes and communication connection equipment, further reducing system construction. This.
  • FIG. 9 is a schematic block diagram of a system 700 for transmitting data in accordance with an embodiment of the present invention.
  • the communication system The system 700 can communicate using the first network and the second network. As shown in FIG. 9, the system 700 includes:
  • the first node 710 as the site of the first network, specifically has a first protocol stack and a second protocol stack, where the first protocol stack includes communication between the user equipment of the first network and the access control device of the first network.
  • the second protocol stack includes a protocol stack for communication between a user equipment of the second network and a site of the second network, where the first node 710 is configured to send transmission request information to the second node 720, where the transmission request information is used by Instructing the second node 720 to transmit data of the target user equipment between the third node 730 and the first node 710, and passing the second node 720 to the third node via the first protocol stack and the second protocol stack Transferring data of the target user equipment between the 730 and the target user equipment;
  • the second node 720 as a site of the second network, is configured to receive the transmission request, and transmit data of the target user equipment between the third node 730 and the first node 710 according to the transmission request;
  • the third node 730 as an access control device of the first network, is configured to transmit data of the target user equipment to the target user equipment via the first node 710 and the second node 720.
  • the second node 720 is communicatively coupled to the third node 730.
  • the second node 720 and the third node 730 can communicate with each other via a fourth node, where the fourth node is a site of the first network, and the second node 720 is in communication with the fourth node. Connected, the third node 730 is in communication with the fourth node.
  • the second node 720 is co-sited with the fourth node.
  • the first node 710 is further configured to send scheduling information to the second node 720, where the scheduling information is used to indicate the number of user equipments, the transmission rate corresponding to the first node 710, and the first At least one parameter of the transmission delay corresponding to the node 710, where the user equipment is a user equipment that currently transmits data through the first node 710 and the second node 720, and the transmission rate corresponding to the first node 710 is Determining, according to the transmission rate of each user equipment, the transmission delay corresponding to the first node 710 is determined according to the transmission delay of each user equipment;
  • the second node 720 is further configured to perform resource scheduling according to the scheduling information, to transmit data of the target user equipment between the third node 730 and the first node 710.
  • the transmission rate corresponding to the first node 710 or the transmission delay corresponding to the first node 710 is determined according to any one of the following parameters: a service type, a user priority, or a quality of service category identifier QCI.
  • the first network is a universal mobile communication system UMTS network
  • the first node 710 is a base station NodeB
  • the third node 730 is a radio network controller RNC
  • the second network is a long term evolution LTE network
  • the second Node 720 is an evolved base station eNodeB.
  • the first node 710 may correspond to a first node in the method of the embodiment of the present invention (a site of the first network, for example, UMTS site #1), and the The modules in a node 710, that is, the modules and the other operations and/or functions described above, are respectively omitted in order to implement the corresponding processes of the method 100 in FIG.
  • the second node 720 may correspond to a second node (a site of the second network, eg, an LTE site) in the method of the embodiment of the present invention, and each unit in the second node 720 is a module and the foregoing other operations and/or For the purpose of implementing the corresponding process of the method 200 in FIG. 4, the functions are not described here.
  • the third node 730 may correspond to a third node (an access control device of the first network, e.g., an RNC) in the method of the embodiment of the present invention.
  • a system for transmitting data can realize the first by causing a system to communicate using two networks and configuring a protocol stack for communication through the second network at a site (first node) of the first network
  • the site of the network communicates with the site of the second network
  • the access control device of the first network communicates with the site of the second network by enabling the access control device of the first network to communicate with the site of the second network, Therefore, the access control device of the first network and the station can communicate with each other via the site of the second network, thereby effectively increasing the communication distance between the first node and the third node, thereby improving the first Coverage of the network, and by shortening the distance between the second node and the third node, communication between the second node and the third node can be achieved at a lower cost, since the system passes between the first node and the second node
  • the existing second network communicates without the need to add relay nodes and communication connection equipment, further reducing system construction. This.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Abstract

 本发明实施例提供了一种传输数据的方法,由通信系统中的第一节点执行,通信系统还包括第三节点和第二节点,通信系统能够使用第一网络和第二网络进行通信,第一节点是第一网络的站点,第三节点是第一网络的接入控制设备,第二节点是第二网络的站点,第一节点具有第一协议栈和第二协议栈,第一协议栈包括第一网络的用户设备与第一网络的接入控制设备之间通信的协议栈,第二协议栈包括第二网络的用户设备与第二网络的站点之间通信的协议栈,该方法包括:第一节点向第二节点发送传输请求信息;第一节点经由第一协议栈和第二协议栈,通过第二节点在第三节点和目标用户设备之间传输目标用户设备的数据。

Description

传输数据的方法、 装置和系统 技术领域
本发明涉及通信领域, 并且更具体地, 涉及传输数据的方法、 装置和系 统。 背景技术
目前, 在某些通信系统中, 为了提高网络的覆盖范围, 可以在系统中部 署例如, 小站 (或者说, 拉远站点), 但这样需要解决系统的接入设备与小 站之间传输的问题。
已知一种技术, 可以在接入设备与小站之间通过光纤或同轴电缆等建立 有线连接, 这样, 虽然能够解决接入设备与小站之间传输的问题, 但是, 这 样大大增加了系统建设成本, 因为网络布线的成本艮高。
或者, 可以在系统中设置中继设备, 并使中继设备使用专用的通信资源 (包括频谱资源, 收发信机处理资源), 从而实现接入设备与小站之间传输, 但是, 这样需要专用的设备并消耗额外的频谱资源。
因此, 希望提供一种技术, 能够低成本地提高网络的覆盖范围。 发明内容
本发明实施例提供一种传输数据的方法、 装置和系统, 能够提高网络的 覆盖范围。
第一方面,提供了一种传输数据的方法,由通信系统中的第一节点执行, 该通信系统还包括第三节点和第二节点, 其中, 该通信系统能够使用第一网 络和第二网络进行通信, 该第一节点是该第一网络的站点, 该第三节点是该 第一网络的接入控制设备, 该第二节点是该第二网络的站点, 该第一节点具 有第一协议栈和第二协议栈, 该第一协议栈包括第一网络的用户设备与第一 网络的接入控制设备之间通信的协议栈, 该第二协议栈包括第二网络的用户 设备与第二网络的站点之间通信的协议栈, 该方法包括: 该第一节点向该第 二节点发送传输请求信息, 该传输请求信息用于指示该第二节点在该第三节 点和该第一节点之间传输目标用户设备的数据; 该第一节点经由该第一协议 栈和该第二协议栈,通过该第二节点在该第三节点和该目标用户设备之间传 输该目标用户设备的数据。
结合第一方面, 在第一方面的第一种实现方式中, 在该第一协议栈和该 第二协议栈之间设置有适配层, 该适配层用于对数据进行在该第一协议栈和 该第二协议栈之间的转换处理, 以及该第一节点经由该第一协议栈和该第二 协议栈,通过该第二节点在该第三节点和该目标用户设备之间传输该目标用 户设备的数据, 包括: 该第一节点使用该第二协议栈接收该第二节点发送的 由该第三节点发送给该目标用户设备的下行数据,通过该适配层将从该第二 协议栈输出的数据的数据格式转换为该第一协议栈能够识别的数据格式, 并 将使用该第一协议栈向该目标用户设备发送该下行数据, 或该第一节点使用 该第一协议栈接收该目标用户设备向该第三节点发送的上行数据,通过该适 配层将从该第一协议栈输出的数据的数据格式转换为该第二协议栈能够识 别的数据格式, 并使用该第二协议栈向该第二节点发送该上行数据。
结合第一方面及其上述实现方式, 在第一方面的第二种实现方式中, 该 第二节点与该第三节点通信连接。
结合第一方面及其上述实现方式, 在第一方面的第三种实现方式中, 该 第二节点与该第三节点之间能够经由第四节点进行通信, 其中, 该第四节点 是该第一网络的站点, 该第二节点与该第四节点通信连接, 该第三节点与该 第四节点通信连接。
结合第一方面及其上述实现方式, 在第一方面的第四种实现方式中, 该 第二节点与该第四节点共站址。
结合第一方面及其上述实现方式, 在第一方面的第五种实现方式中, 该 方法还包括: 该第一节点确定调度信息, 该调度信息用于指示该用户设备的 数量、该第一节点所对应的传输速率和该第一节点所对应的传输时延中的至 少一个参数, 其中, 该用户设备是当前通过该第一节点和该第二节点传输数 据的用户设备,该第一节点所对应的传输速率是根据各该用户设备的传输速 率确定的, 该第一节点所对应的传输时延是根据各该用户设备的传输时延确 定的;
该第一节点向该第二节点发送调度信息, 以便于该第二节点根据该调度 信息进行资源调度, 以在该第三节点和该第一节点之间传输该目标用户设备 的数据。
结合第一方面及其上述实现方式, 在第一方面的第六种实现方式中, 该 第一节点所对应的传输速率或该第一节点所对应的传输时延是按照以下任 一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
结合第一方面及其上述实现方式, 在第一方面的第七种实现方式中, 该 第一网络为通用移动通讯系统 UMTS网络, 该第一节点为基站 NodeB, 该 第三节点为无线网络控制器 RNC, 该第二网络为长期演进 LTE网络, 该第 二节点为演进基站 eNodeB。
第二方面,提供了一种传输数据的方法,由通信系统中的第二节点执行, 该通信系统还包括第三节点和第一节点, 其中, 该通信系统能够使用第一网 络和第二网络进行通信, 该第一节点是该第一网络的站点, 该第三节点是该 第一网络的接入控制设备, 该第二节点是该第二网络的站点, 该第一节点具 有第一协议栈和第二协议栈, 该第一协议栈包括第一网络的用户设备与第一 网络的接入控制设备之间通信的协议栈, 该第二协议栈包括第二网络的用户 设备与第二网络的站点之间通信的协议栈, 该方法包括: 该第二节点接收该 第一节点发送的传输请求信息, 该传输请求数据用于指示该第二节点在该第 三节点和该第一节点之间传输目标用户设备的数据; 该第二节点根据该传输 请求消息在该第三节点和该第一节点之间建立传输承载; 该第二节点通过该 传输承载传输该目标用户设备的数据。
结合第二方面及其上述实现方式, 在第二方面的第一种实现方式中, 该 第二节点与该第三节点之间进行通信连接。
结合第二方面及其上述实现方式, 在第二方面的第二种实现方式中, 该 第二节点与该第三节点之间能够经由第四节点进行通信, 其中, 该第四节点 是该第一网络的站点, 该第二节点与该第四节点通信连接, 该第三节点与该 第四节点通信连接, 以及该第二节点根据该传输请求消息在该第三节点和该 第一节点之间建立传输承载, 包括: 该第二节点根据该传输请求消息经由该 第四节点, 在该第三节点和该第一节点之间建立传输承载。
结合第二方面及其上述实现方式, 在第二方面的第三种实现方式中, 该 第二节点与该第四节点共站址。
结合第二方面及其上述实现方式, 在第二方面的第四种实现方式中, 该 第二节点在该第三节点和该第一节点之间传输该目标用户设备的数据, 包 括: 该第二节点接收该第一节点发送的调度信息, 其中, 该调度信息用于指 示用户设备的数量、该第一节点所对应的传输速率和该第一节点所对应的传 输时延中的至少一个参数, 其中, 该用户设备是当前通过该第一节点和该第 二节点传输数据的用户设备, 该第一节点所对应的传输速率是根据各该用户 设备的传输速率确定的, 该第一节点所对应的传输时延是根据各该用户设备 的传输时延确定的; 该第二节点根据该调度信息进行资源调度, 以在该第三 节点和该第一节点之间传输该目标用户设备的数据。
结合第二方面及其上述实现方式, 在第二方面的第五种实现方式中, 该 第一节点所对应的传输速率或该第一节点所对应的传输时延是按照以下任 一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
结合第二方面及其上述实现方式, 在第二方面的第六种实现方式中, 该 第一网络为通用移动通讯系统 UMTS网络, 该第一节点为基站 NodeB, 该 第三节点为无线网络控制器 RNC, 该第二网络为长期演进 LTE网络, 该第 二节点为演进基站 eNodeB。
第三方面,一种传输数据的节点,该节点是通信系统中第一网络的站点, 该节点包括: 协议处理单元, 用于实现该第一网络的用户设备与该第一网络 的接入控制设备之间通信的第一协议栈处理, 以及用于实现第二网络的用户 设备与该第二网络的站点之间通信的第二协议栈处理; 收发单元, 用于向第 二节点发送传输请求信息, 该传输请求信息用于指示该第二节点在第三节点 和该节点之间传输目标用户设备的数据, 以及用于将经由该协议处理单元处 理的该目标用户设备的数据,通过该第二节点在该第三节点和该目标用户设 备之间传输;其中,该第三节点是该通信系统中该第一网络的接入控制设备, 该第二节点是该通信系统中该第二网络的站点。
结合第三方面, 在第三方面的第一种实现方式中, 该协议处理单元还用 于对数据进行在该第一协议栈和该第二协议栈之间的转换处理, 以及该收发 单元具体用于使用该协议处理单元中的第二协议栈接收该第二节点发送的 由该第三节点发送给该目标用户设备的下行数据,通过该协议处理单元将从 该第二协议栈输出的数据的数据格式转换为该第一协议栈能够识别的数据 格式, 并使用该协议处理单元中的第一协议栈向该目标用户设备发送该下行 数据; 或该收发单元具体用于使用该协议处理单元中的第一协议栈接收该目 标用户设备向该第三节点发送的上行数据,通过该协议处理单元将从该第一 协议栈输出的数据的数据格式转换为该第二协议栈能够识别的数据格式, 并 使用该协议处理单元中的第二协议栈向该第二节点发送该上行数据。 结合第三方面及其上述实现方式, 在第三方面的第二种实现方式中, 该 节点还包括: 确定单元, 用于确定调度信息, 该调度信息用于指示用户设备 的数量、该节点所对应的传输速率和该节点所对应的传输时延中的至少一个 参数, 其中, 该用户设备是当前通过该节点和该第二节点传输数据的用户设 备, 该节点所对应的传输速率是根据各该用户设备的传输速率确定的, 该节 点所对应的传输时延是根据各该用户设备的传输时延确定的; 该收发单元还 用与向该第二节点发送该确定单元确定的该调度信息, 以便于该第二节点根 据该调度信息进行资源调度, 以在该第三节点和该节点之间传输该目标用户 设备的数据。
结合第三方面及其上述实现方式, 在第三方面的第三种实现方式中, 该 节点所对应的传输速率或该节点所对应的传输时延是按照以下任一参数确 定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
结合第三方面及其上述实现方式, 在第三方面的第四种实现方式中, 该 第一网络为通用移动通讯系统 UMTS网络, 该节点为基站 NodeB, 该第三 节点为无线网络控制器 RNC, 该第二网络为长期演进 LTE网络, 该第二节 点为演进基站 eNodeB。
第四方面, 提供了一种传输数据的节点, 该节点是通信系统中第二网络 的站点, 该节点包括: 收发单元, 用于接收第一节点发送的传输请求信息, 该传输请求数据用于指示该节点在第三节点和该第一节点之间传输目标用 户设备的数据; 承载建立单元, 用于根据该传输请求消息在该第三节点与该 第一节点之间建立传输承载; 该收发单元还用于通过该传输承载, 在该第三 节点和该第一节点之间传输该目标用户设备的数据; 其中, 该第一节点是该 通信系统中第一网络的站点, 该第三节点是该通信系统中该第一网络的接入 控制设备, 该第一节点具有第一协议栈和第二协议栈, 该第一协议栈包括第 一网络的用户设备与第一网络的接入控制设备之间通信的协议栈, 该第二协 议栈包括第二网络的用户设备与第二网络的站点之间通信的协议栈。
结合第四方面, 在第四方面的第一种实现方式中, 该节点与该第三节点 之间通信连接。
结合第四方面及其上述实现方式, 在第四方面的第二种实现方式中, 该 节点与该第三节点之间能够经由第四节点进行通信, 其中, 该第四节点是该 第一网络的站点, 该节点与该第四节点通信连接, 该第三节点与该第四节点 通信连接, 以及该承载建立单元具体用于根据该传输请求消息经由该第四节 点, 在该第三节点与该第一节点之间建立传输承载。
结合第四方面及其上述实现方式, 在第四方面的第三种实现方式中, 该 节点与该第四节点共站址。
结合第四方面及其上述实现方式, 在第四方面的第四种实现方式中, 该 收发单元还用于接收该第一节点发送的调度信息, 其中, 该调度信息用于指 示用户设备的数量、该第一节点所对应的传输速率和该第一节点所对应的传 输时延中的至少一个参数, 其中, 该用户设备是当前通过该第一节点和该装 置传输数据的用户设备, 该第一节点所对应的传输速率是根据各该用户设备 的传输速率确定的, 该第一节点所对应的传输时延是根据各该用户设备的传 输时延确定的; 用于根据该调度信息进行资源调度, 以在该第三节点和该第 一节点之间传输该目标用户设备的数据。
结合第四方面及其上述实现方式, 在第四方面的第五种实现方式中, 该 第一节点所对应的传输速率或该第一节点所对应的传输时延是按照以下任 一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
结合第四方面及其上述实现方式, 在第四方面的第六种实现方式中, 该 第一网络为通用移动通讯系统 UMTS网络, 该第一节点为基站 NodeB, 该 第三节点为无线网络控制器 RNC, 该第二网络为长期演进 LTE网络, 该节 点为演进基站 eNodeB。
第五方面, 提供了一种传输数据的系统, 该通信系统能够使用第一网络 和第二网络进行通信, 该系统包括: 第一节点, 作为该第一网络的站点, 具 体有第一协议栈和第二协议栈, 该第一协议栈包括第一网络的用户设备与第 一网络的接入控制设备之间通信的协议栈, 该第二协议栈包括第二网络的用 户设备与第二网络的站点之间通信的协议栈, 该第一节点用于向第二节点发 送传输请求信息, 该传输请求信息用于指示该第二节点在第三节点和该第一 节点之间传输目标用户设备的数据, 并经由第一协议栈和第二协议栈, 通过 该第二节点在该第三节点和该目标用户设备之间传输该目标用户设备的数 据; 第二节点, 作为该第二网络的站点, 用于接收该传输请求, 并根据该传 输请求在该第三节点和该第一节点之间传输该目标用户设备的数据; 第三节 点, 作为该第一网络的接入控制设备, 用于经由该第一节点和该第二节点, 与该目标用户设备之间传输该目标用户设备的数据。 在第五方面的第一种实现方式中, 该该第二节点与该第三节点通信连 接。
结合第五方面及其上述实现方式, 在第五方面的第二种实现方式中, 该 第二节点与该第三节点之间能够经由第四节点进行通信, 其中, 该第四节点 是该第一网络的站点, 该第二节点与该第四节点通信连接, 该第三节点与该 第四节点通信连接。
结合第五方面及其上述实现方式, 在第五方面的第三种实现方式中, 该 第二节点与该第四节点共站址。
结合第五方面及其上述实现方式, 在第五方面的第四种实现方式中, 该 第一节点还用于向该第二节点发送的调度信息, 其中, 该调度信息用于指示 用户设备的数量、该第一节点所对应的传输速率和该第一节点所对应的传输 时延中的至少一个参数, 其中, 该用户设备是当前通过该第一节点和该第二 节点传输数据的用户设备, 该第一节点所对应的传输速率是根据各该用户设 备的传输速率确定的,该第一节点所对应的传输时延是根据各该用户设备的 传输时延确定的; 该第二节点还用于根据该调度信息进行资源调度, 以在该 第三节点和该第一节点之间传输该目标用户设备的数据。
结合第五方面及其上述实现方式, 在第五方面的第五种实现方式中, 该 第一节点所对应的传输速率或该第一节点所对应的传输时延是按照以下任 一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
结合第五方面及其上述实现方式, 在第五方面的第六种实现方式中, 该 第一网络为通用移动通讯系统 UMTS网络, 该第一节点为基站 NodeB, 该 第三节点为无线网络控制器 RNC, 该第二网络为长期演进 LTE网络, 该第 二节点为演进基站 eNodeB。
根据本发明实施例的传输数据的方法、 装置和系统, 通过使系统使用两 种网络进行通信, 并在第一网络的站点(第一节点)配置用于通过第二网络 进行通信的协议栈, 能够实现第一网络的站点与第二网络的站点进行通信, 通过使第一网络的接入控制设备和第二网络的站点通信连接, 能够实现第一 网络的接入控制设备和第二网络的站点进行通信, 从而, 能够使第一网络的 接入控制设备和站点之间经由第二网络的站点进行通信, 由此, 能够有效增 大第一网络的覆盖范围。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一实施例的传输数据的系统的示意性架构图。
图 2是本发明一实施例的 UMTS站点中的协议栈配置的示意图。
图 3是本发明一实施例的传输数据的方法的示意性流程图。
图 4是本发明另一实施例的传输数据的方法的示意性流程图。
图 5是本发明一实施例的传输数据的装置的示意性框图。
图 6是本发明另一实施例的传输数据的装置的示意性框图。
图 7是本发明一实施例的传输数据的设备的示意性结构图。
图 8是本发明另一实施例的传输数据的设备的示意性结构图。
图 9是本发明一实施例的传输数据的系统的示意性框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1示出了本发明一实施例的传输数据的系统的示意性架构图, 如图 1 所示, 该通信系统包括第一节点、 第二节点、 第三节点和用户设备, 其中, 该通信系统能够使用第一网络和第二网络进行通信, 该第一节点是该第一网 络的站点, 该第三节点是该第一网络的接入控制设备, 该第二节点是该第二 网络的站点, 该第一节点具有第一协议栈和第二协议栈, 该第一协议栈包括 第一网络的用户设备与第一网络的接入控制设备之间通信的协议栈, 该第二 协议栈包括第二网络的用户设备与第二网络的站点之间通信的协议栈。
具体地说, 在本发明实施例中, 该通信系统能够使用第一网络和第二网 络为用户设备提供通信服务, 第一网络和第二网络使用的通信资源, 例如, 载频的频段等, 可以相异, 或者, 第一网络和第二网络使用的通信制式可以 相异, 或者, 第一网络和第二网络也可以采用例如, 全双工技术, 从而能够 使用相同的制式以及相同的通信资源进行通信
另外, 在本发明实施例中, 第一网络和第二网络在通信系统中的覆盖范 围可以相同也可以相异, 本发明并未特别限定。
并且,在第二网络中,可以配置基站,也即本发明实施例中的第二节点, 该第二节点使用第二网络提供的通信资源, 并根据第二网络的通信制式, 在 第三节点与该第一节点之间传输第二协议栈能够处理的数据。
另外, 在第一网络中, 可以配置有接入控制设备, 或者说, 接入管理设 备, 即第三节点, 和拉远的用于与用户设备直接通信的站点, 也即本发明实 施例中的第一节点。
在下行时, 第三节点从核心网、 互联网络或网络服务器等设备获得由该 第一网络服务的用户设备的下行数据, 并需要将该下行数据传输至第一节 点, 第一节点通过第一网络提供的通信资源, 并根据第一网络的通信制式, 经由第一协议栈对该下行数据进行处理, 并将处理后的下行数据传输给该用 户设备。
在上行时, 第一节点通过第一网络提供的通信资源, 并根据第一网络的 通信制式, 接收由该第一网络服务的用户设备发送的上行数据, 经由第一协 议栈对该上行数据进行处理, 并需要将处理后的上行数据传输至第三节点, 从而, 第三节点可以将该用户设备的上行数据传输给核心网、 互联网络或网 络服务器等设备。
需要说明的是, 在本发明实施例中, 第一节点与第三节点之间的数据传 输是经由第二节点完成的。
可选地, 该第二节点发送给该第三节点的数据是经该第一协议栈处理后 的数据;
该第三节点发送给该第二节点的数据是该第一协议栈能够识别的数据。 具体地说, 第一节点可以通过第二协议栈与第二节点进行通信, 例如, 在上行时, 第一节点将来自用户设备并需要发送给第三节点的上行数据, 该 上行数据的格式是该第一节点通过第一协议栈对来自用户设备的数据进行 格式转化后, 生成的第三节点能够识别的格式, 通过第二协议栈的处理, 封 装为第二节点能够识别的格式, 并发送给第二节点, 从而, 第二节点在接收 到该数据后,可以恢复出该上行数据,其数据格式是经第二协议栈封装前的, 经第一协议栈处理后的格式, 并将其发送给第三节点。 在下行时, 第三节点在从网络侧获得下行数据后, 该下行数据的数据格 式为第一节点能够识别的格式, 将该下行数据发送给第二节点, 第二节点对 该数据进行封装后, 发送给第一节点, 第一节点可以通过第二协议栈, 对来 自第二节点的数据进行处理, 以恢复出该下行数据, 并通过第一协议栈, 对 该下行数据进行封装, 转换为用户设备能够识别的数据格式。
即, 在本发明实施例中, 第三节点从网络侧获取的数据, 需要经由第一 节点, 发送给用户设备, 因此, 在上行时, 第一协议栈的作用是来自第三节 点的下行数据的格式转化为用户设备能够识别的数据格式; 在下行时, 第一 协议栈的作用是将来自用户设备的上行数据的格式转化为第三节点能够识 别的数据格式。
从而, 第一节点可以视为第二网络中的用户设备, 第一节点需要经由第 二节点而发送给第三节点的数据, 该数据未经第二协议栈处理, 数据格式可 以与现有技术中第一节点发送给第三节点的数据格式相同。 第三节点发送给 第二节点的数据的格式可以与现有技术中第三节点发送给第一节点的数据 格式相同。
并且, 第三节点与第二节点之间能够进行数据传输。
可选地, 该第二节点与该第三节点之间能够经由第四节点进行通信, 其 中, 该第四节点是该第一网络的站点, 该第二节点与该第四节点通信连接, 该第三节点与该第四节点通信连接。
具体地说, 在本发明实施例中, 该第四节点是在第二网络中拉远的用于 与用户设备直接通信的站点, 并且, 该第四节点与第三节点之间的距离可以 较短, 例如, 小于第一节点与第三节点之间的距离, 从而该第四节点可以与 第三节点通过较短的光纤等连接设备通信连接。 此外, 第四节点与第二节点 之间能够进行数据传输。
可选地, 该第二节点与该第四节点共站址。
具体地说, 在本发明实施例中, 第二节点与第四节点的地理位置可以相 同, 第二节点和第四节点也可以集成在同一设备中, 从而, 第二节点与第四 节点之间可以实现内部通信。
应理解, 以上列举的第二节点与第四节点之间的通信方式仅为示例性说 明, 本发明并不限定于此, 例如, 第二节点与第四节点之间也可以通过光纤 等连接设备通信连接。 同样,第三节点与第二节点之间的通信方式也并不限于通过第四节点实 现, 也可以使第三节点与第二节点之间通过光纤等连接设备通信连接。 即, 在本发明实施例中, 该第二节点与该第三节点通信连接。
在现有技术中, 为了增大第一网络的覆盖范围, 需要在第一节点与第三 节点之间设置光纤等连接设备, 或者设置中继节点, 并为该中继节点配置专 用传输资源, 以实现第一网络中第一节点与第三节点之间通信。
与此相对, 根据本发明实施例的传输数据的系统的配置, 通过使用系统 中既有的第二网络的第二节点, 第一节点和第三节点之间能够通过第二网络 进行无线通信, 在第三节点与第二节点能够进行通信的情况下, 能够增加第 一网络中第一节点与第三节点之间的传输距离, 进而增大第一网络的覆盖范 围。 并且, 通过使第二节点与第一网络中的第四节点共站, 并使第四节点与 第一节点之间具有较短的传输距离, 能够大大降低系统建设成本。
可选地, 在本发明实施例中, 该第一网络为通用移动通信系统 UMTS 网络,该第二网络为长期演进 LTE网络,该第三节点为无线网络控制器 RNC。
具体地说, 在通用移动通信系统 ( UMTS , Universal Mobile
Telecommunications System ) 网络中, 设置有无线网络控制器( RNC , RNC , RadioNetworkController )和至少一个站点(以下,为了便于区分,称为 UMTS 站点)。 并且, 该 UMTS站点可以是, 例如, UMTS网络中的基站(NodeB )、 提供微小区的微基站( Micro )、微微基站( Pico )、 毫微微蜂窝基站( femto )。 该 UMTS站点与用户设备直接通信, RNC与核心网、 互联网或服务器等通 信, UMTS站点与 RNC之间需要进行通信, 以实现用户设备与核心网、 互 联网或服务器等之间的数据传输。 因此, 作为第一网络, 可以列举该 UMTS 网络, 从而该 UMTS站点相当于第一节点, RNC相当于第三节点。
在长期演进 ( LTE, Long Term Evolution ) 网络的布网初期, 可能存在 负载交低、空闲资源较多的情况,并且 LTE网络中的基站( eNodeB )与 UMTS 网络中的 NodeB通常是共站址的, 例如, 同时支持 LTE和 UMTS的多模基 站。 因此, 在本发明实施例中, 作为第二网络, 可以列举 LTE网络, 从而该 eNodeB (以下, 为了便于区分称为 LTE站点)相当于第二节点。
并且, LTE站点能够经由与其共站址的一个 UMTS站点(记做, UMTS 站点 #2 )与 RNC传输 Iub接口数据。
应理解, 以上列举的通信系统的架构仅为示例性说明, 本发明并不限定 于此, 例如, 第一网络和第二网络也可以是相同制式的网络, 例如, LTE网 络, 此情况下, 第一网络和第二网络使用的无线资源, 例如, 载波的频段, 相异, 此情况下, 在第一网络中, 作为第三节点, 可以列举第一网络的接入 管理设备, 例如, 移动性管理实体(MME, Mobility Management Entity ), 第一节点可以是第一网络中的站点 (记做, eNB#l ), 第二节点可以是第一 网络中的站点 (记做, eNB#2 ), 并且, MME可以同时对 eNB#2和 eNB#l 进行管理, 例如, eNB#2和 MME可以通过光纤或电缆等连接, 从而实现通 信, eNB#l可以将需要发送给 MME的数据或信令, 通过第二网络, 具体地 说, 是第二网络使用的无线资源, 发送给 eNB#2, 从而 eNB#2可以将接收 到的来自 eNB#l的数据或信令发送给 MME。
以下, 为了便于理解和说明, 以 UMTS网络作为第一网络, LTE网络作 为第二网络, RNC作为第三节点, 需要与该 RNC进行数据传输的至少一个 UMTS站点中的 UMTS站点 #1作为第一节点, LTE站点作为第二节点, UMTS 站点 #2作为第四节点对本发明实施例的传输数据的方法继续说明。
此情况下, UMTS站点 #1需要通过 LTE网络与 LTE站点进行通信, 因 此, 需要在 UMTS站点 #1中设置符合 LTE网络通信规则的 LTE协议栈, 即 第二协议栈的一例, 具体地说, 是 LTE网络中用户设备侧的通信协议栈。
图 2是本发明一实施例的 UMTS站点中的协议栈配置的示意图。在本发 明实施例中, 作为第二协议栈, 可以使用 LTE用户设备与 LTE站点之间的 用户面协议栈, 主要包括: 分组数据汇聚协议 ( PDCP , Packet Data Convergence Protocol )层、 无线链路控制 (RLC, Radio Link Control )层、 媒体接入控制 (MAC, Media Access Control )层和物理(PHY, Physical ) 层。 PDCP层主要用于对信息进行压缩和解压缩 /加密和解密; RLC层主要用 于实现自动重传请求(ARQ, Automatic Repeat Request ) 的相关功能, 对信 息进行分段和级联或对分段和级联的信息进行重组; MAC层主要用于对传 输格式组合的选择,实现调度和混合自动重传请求( HARQ, Hybrid Automatic Repeat Request )的相关功能; PHY层主要用于为 MAC层和高层提供信息传 输的服务, 根据选择的传输格式组合进行编码调制处理或解调解码处理。
此情况下, 例如, 在上行, 即 UMTS网络的用户设备需要向核心网传输 数据时, UMTS站点 #1可以接收 UMTS用户设备传输的上行数据, 并且, 可以通过 UMTS协议栈, 即第一协议栈的一例, 对该上行数据进行例如, 解 调解码等处理, 以转换为需要发送给 RNC的数据格式, 或者说, RNC能够 识别的数据格式, 该过程与现有技术相似, 这里, 为了避免赘述, 省略其说 明。
UMTS站点 #1在获得上述经由 UMTS协议栈处理后的上行数据后, 需 要将该上行数据通过 LTE站点而传输至 RNC, 因此, UMTS站点 #1需要通 过 LTE协议栈对该上行数据进行例如,编码调制等处理,将该上行数据转换 为符合 LTE传输的数据格式, 或者说, LTE站点能够识别的数据格式。
需要说明的是, 如果第二协议栈, 例如, LTE协议栈能够识别从第一协 议栈, 例如 UMTS协议栈输出的数据, 则 UMTS站点 #1可以直接将从该第 一协议栈输出的上行数据输入第二协议栈。
另外, 如果第二协议栈不能识别从第一协议栈(输出的数据, 则 UMTS 站点 #1可以需要对从该第一协议栈输出的上行数据进行格式转换,以转换为 该第二协议栈能够识别的数据格式。
此情况下,可选地,在该第一协议栈和该第二协议栈之间设置有适配层, 该适配层用于对数据进行在该第一协议栈和该第二协议栈之间的转换处理, 以及
该第一节点经由该第一协议栈和该第二协议栈,通过该第二节点在该第 三节点和该目标用户设备之间传输该目标用户设备的数据, 包括:
该第一节点使用该第二协议栈接收该第二节点发送的由该第三节点发 送给该目标用户设备的下行数据,通过该适配层将从该第二协议栈输出的数 据的数据格式转换为该第一协议栈能够识别的数据格式, 并将使用该第一协 议栈向该目标用户设备发送该下行数据, 或
该第一节点使用该第一协议栈接收该目标用户设备向该第三节点发送 的上行数据,通过该适配层将从该第一协议栈输出的数据的数据格式转换为 该第二协议栈能够识别的数据格式, 并使用该第二协议栈向该第二节点发送 该上行数据。
具体地说, 如图 2所示, 在第一协议栈与第二协议栈之间, 可以设置用 于进行格式转换的适配层, 作为该适配层的格式转换处理, 并将处理后的上 行数据输入至 LTE协议栈。
这样, 通过设置适配层, 能够确保数据在第一协议栈与第二协议栈之间 的转换, 能够使第二协议栈在第一节点中的配置更加灵活。 其后, UMTS站点 #1可以将经由 UMTS协议栈处理后的 LTE协议栈能 够识别的上行数据, 作为应用层数据而输入至 LTE协议栈, 并通过 LTE协 议栈对该上行数据进行例如,编码调制等处理, 以生成符合 LTE传输的数据 格式, 并发送给 LTE站点。
类似的, 下行时, UMTS站点 #1通过 LTE协议栈对来自 LTE站点的下 行数据进行例如,解调解码等处理,并将经该 LTE协议栈处理后的下行数据 输入至 UMTS协议栈, 以对该下行数据进行例如, 编码调制等处理, 以生成 符合 UMTS网络传输的数据格式, 并将生的数据发送给 UMTS网络的用户 设备。
应理解, 以上列举的作为第一网络和第二网络的具体网络仅为示例性说 明, 本发明并不限定于此, 在核心网与用户设备之间的数据传输过程中需要 经由两个节点(例如, 接入网设备和拉远设备)的网络, 均可以作为第二网 络, 例如, 可以列举全球移动通讯系统(GSM , Global System of Mobile communication ), 码分多址 ( CDMA, Code Division Multiple Access ) 系统 , 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ), 通用分组无线业务( GPRS, General Packet Radio Service ), 长期演进( LTE, Long Term Evolution )等。
用户设备 ( UE , User Equipment ) , 也可称之为移动终端 ( Mobile Terminal )、 移动用户设备等, 可以经无线接入网 ( RAN , Radio Access Network ) 与一个或多个核心网进行通信, 在本发明实施例中, 该无线接入 网可以由 RNC (第三节点的一例)、 LTE站点 (第二节点的一例)和 UMTS 站点(第一节点的一例)共同组成, 用户设备可以是移动终端, 如移动电话 (或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携式、 袖 珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入网交换 语言和 /或数据。
以上,对本发明的传输数据的系统的架构以及第一节点的协议栈配置进 行了说明, 下面, 对传输数据的方法的流程进行详细说明。
图 3示出了本发明一实施例的传输数据的方法 100的示意性流程图,该 方法 100由通信系统中的 UMTS站点 #1 (第一节点的一例)执行, 该通信系 统还包括 LTE站点 (第二节点的一例)、 RNC (第三节点的一例)和 UMTS UE#1 (目标用户设备的一例;), 其中, 该通信系统能够使用 UMTS网络(第 一网络的一例)和 LTE网络(第二网络的一例)进行通信, RNC与 LTE站 点之间能够进行通信, UMTS站点 #1具有 UMTS协议栈(第一协议栈的一 例)和 LTE协议栈(第二协议栈的一例), 该 UMTS协议栈用于实现 RNC 与 UMTS UE之间在该 UMTS中通信的数据处理, 该 LTE协议栈用于实现 UMTS站点 #1与 LTE站点之间在 LTE网络中通信的数据处理, 该方法 100 包括:
S110, 该第一节点向该第二节点发送传输请求信息, 该传输请求信息用 于指示该第二节点在该第三节点和该第一节点之间传输目标用户设备的数 据;
S120, 该第一节点经由该第一协议栈和该第二协议栈, 通过该第二节点 在该第三节点和该目标用户设备之间传输该目标用户设备的数据。
具体地说, UMTS UE#1在需要经由接入网而与核心网通信时, 可以通 过 UMTS网络的通信资源向 UMTS站点 #1发送接入请求, 需要说明的是, 在本发明实施例中, 可以由 RNC、 LTE站点和 UMTS站点 #1构成。
UMTS站点 #1接收到该接入请求后, 可以通过 LTE网络的通信资源, 向 LTE站点发送传输请求信息, 以请求该 LTE站点在 RNC与该 UMTS站 点 #1之间传输数据, 具体地说, 该 LTE站点根据传输请求信息, 确定需要 将来自该 UMTS站点 #1 的数据发送给 RNC, 并且, 确定需要将来自 RNC 的数据发送给该 UMTS站点 #1。
可选地, 在该第三节点、 该第二节点和该第一节点之间设置有用于传输 数据的至少一个承载。
具体地说, LTE站点在接收到该传输请求信息,可以发起承载建立流程, 以在 RNC、 LTE站点和 UMTS站点 #1之间建立用于传输数据的承载,从而, UMTS站点 #1与 RNC之间可以通过该承载进行数据传输, 例如, 业务的数 据、 空口信令等的传输。 需要说明的是, 在本发明实施例汇总, 该承载的 UMTS站点 #1与 LTE站点之间的部分, 使用 LTE网络提供的无线通信资源 实现。 该承载的 RNC与 LTE站点之间的部分, 可以使用光纤等连接设备实 现。
在本发明实施例中, 该 载可以具有多种级别划分方式。 例如, 一个 7 载可以仅传输一个用户设备的一种业务(即, 情况 1 ), 或者, 一个承载可以 传输通过一个 UMTS站点传输数据的多个用户设备的同一种业务(即,情况 2 ), 下面, 分别对以上两种情况进行说明。
情况 1
可选地, 该第一节点经由该第一协议栈和该第二协议栈, 通过该第二节 点在该第三节点和该目标用户设备之间传输该目标用户设备的数据, 包括: 该第一节点确定用于传输该目标用户设备的数据的目标承载, 其中, 该 目标承载与该目标用户设备的数据所属于的业务以及该目标用户设备相对 应;
该第一节点通过该目标承载, 经由该第一协议栈和该第二协议栈, 通过 该第二节点在该第三节点和该目标用户设备之间传输该目标用户设备的数 据。
具体地说, 在本发明实施例中, 在系统中具有多个 UMTS UE, 并且, 一个 UMTS UE需要传输多种业务的情况下, 可以使一个承载仅用于传输一 个 UMTS UE的一种业务。
可选地, 该第一节点确定用于传输该目标用户设备的数据的目标承载, 包括:
该第一节点接收该第二节点发送的用于指示该目标承载的承载指示信 息, 其中, 该目标承载是该第三节点从该至少一个承载中确定并通知该第二 节点的;
该第一节点根据该承载指示信息, 确定该目标承载。
具体地说, RNC可以确定分配给各 UMTS UE的各业务的承载, 并且, 例如, 可以生成记录有各 UMTS UE的各业务与各承载之间的映射关系的承 载映射表项,即承载指示信息的一例,并将该承载映射表项发送给 UMTS 站 点 #1 和 LTE, 例如在本发明实施例中, 可以通过用户设备标识来区分各 UMTS UE,该用户设备标识可以在系统中唯一地指示一个 UMTS UE,例如, 可以是 UMTS UE的媒体接入控制 (MAC, Medium Access Control )地址、 网际协议( IP, Internet Protocol )地址、 移动用户手机号、 国际移动用户标 口、 (IMSI, International Mobile Subscriber Identity )和国际移动台设备标口、 ( IMEI, International Mobile Equipment Identity )等信息。 应理解, 本发明 实施例的用户标识并不限于以上信息, 其他能够唯一体现用户标识的信元均 落入本发明实施例的范围内。
应理解, 以上列举的各承载与各用户设备及业务类型之间的对应关系是 由 RNC确定的, 但本发明并不限定于此, 也可以由 LTE站点或 UMTS站点 #1确定, 本发明并未特别限定, 并且, 确定方法相似, 这里, 省略其说明。
例如, 在上行传输时, UMTS UE#1 , 即目标用户设备的一例, 可以将 上行数据, 例如, UU接口的数据, 传输给 UMTS站点 #1 , UMTS站点 #1 可以根据该上行数据所属于的业务和该 UMTS UE#1的用户设备标识, 查找 如上所述生成的承载映射表项, 以确定与该 UMTS UE#1以及该上行数据的 业务相对应的 7 载(记做, 7 载 #1 )。 并且, UMTS站点 #1可以通过该 7 载 #1 ,向 LTE站点传输该上行数据,具体地说, UMTS站点 #1可以通过 UMTS 协议栈对该上行数据进行解调解码, 以生成 RNC能够识别的上行数据, 例 如,现有技术中 UMTS站点发送给 RNC的 Iub接口的上行数据。并且, UMTS 站点 #1可以将从该 UMTS协议栈或上述适配层输出的上行数据,输入至 LTE 协议栈, 通过 LTE协议栈对该上行数据进行编码调制, 以生成符合 LTE传 输要求的上行数据。 其后, UMTS站点 #1可以通过该承载 #1 , 向 LTE站点 发送从 LTE协议栈输出的上行数据。
LTE站点在接收到该上行数据后, 可以对该上行数据进行解调解码, 以 还原出 RNC能够识别的上行数据,例如,现有技术中 UMTS站点发送给 RNC 的上行数据, 并将该上行数据通过承载 #1 , 经由与该 LTE 站点共站址的 UMTS站点 #2, 通过例如, 光纤等连接设备, 发送给 RNC。
从而, RNC通过该承载 #1在接收到该上行数据后, 可以根据如上所述 确定的承载映射表项, 确定该上行数据所属于的业务, 以及发送该上行数据 是 UMTS UE#1发送的, 从而, 可以确定该上行数据的源地址, 并根据该源 地址, 将该上行数据发送至核心网。
再例如, 在下行时, RNC 在从核心网接收到下行数据后, 可以确定该 下行数据所属于的业务, 并根据该下行数据的目的地址, 确定该下行数据需 要发送给 UMTS UE#1 , 从而, 可以根据如上所述确定的承载映射表项确定 使用承载 #1来传输该下行数据。 其后, 可以对该下行数据进行处理, 以生成 UMTS站点 #1能够识别的下行数据, 例如, 现有技术中 RNC发送给 UMTS 站点的下行数据, 并通过该 7 载 #1 , 经由与该 LTE站点共站址的 UMTS站 点 #2, 通过例如, 光纤等连接设备, 将该下行数据发送给 LTE站点。
LTE站点在接收到该下行数据后, 可以对该下行数据进行编码调制, 以 生成符合 LTE传输要求的下行数据。 其后, LTE站点可以通过该承载 #1 , 向 UMTS站点 #1发送该上行数据。
UMTS站点 #1通过该承载 #1在接收到该下行数据后, 可以根据如上所 述确定的承载映射表项, 确定该下行数据所属于的业务, 以及发送该下行数 据是需要发送给 UMTS UE#1的, 从而, 可以确定该下行数据的目的地址, 并根据该目的地址, 将该下行数据发送给 UMTS UE#1 , 具体地说, UMTS 站点 #1可以通过 LTE协议栈对该下行数据进行解调解码, 以还原出 RNC发 送的下行数据。 并且, UMTS站点 #1可以将从该 LTE协议栈或上述适配层 输出的下行数据, 输入至 UMTS协议栈, 通过 UMTS协议栈对该上行数据 进行编码调制, 以生成符合 UMTS传输要求的下行数据。
需要说明的是, 由于一个 UMTS UE仅通过一个 UMTS站点传输数据, 因此, LTE站点可以根据传输数据的 UMTS UE, 确定下行数据需要发送至 的 UMTS站点。
根据本发明实施例的传输数据的方法, 通过在 RNC、 LTE 站点以及 UMTS站点 #1之间设置用于传输的承载,并通过与传输数据的用户设备以及 该数据所对应的业务相对应的承载来传输该用户设备的数据, 例如, 在系统 中设置有多个 LTE站点、多个 UMTS站点或多个 UMTS UE时,能够使 RNC、 LTE站点和 UMTS站点无需对数据进行解析以确定该数据在传输路径中的 下一跳节点, 能够减少各站点的负担, 提高传输效率。
情况 2
可选地, 该第一节点经由该第一协议栈和该第二协议栈, 通过该第二节 点在该第三节点和该目标用户设备之间传输该目标用户设备的数据, 包括: 该第一节点确定用于传输该目标用户设备的数据的目标承载, 其中, 该 目标承载与该目标用户设备的数据所属于的业务以及该第一节点相对应; 该第一节点通过该目标承载, 经由该第一协议栈和该第二协议栈, 在该 第二节点和该目标用户设备之间传输该目标用户设备的数据。
具体地说, 在本发明实施例中, RNC和 UMTS站点能够通过对数据帧 协议(FP, frame protocol )层解析确定该数据的目的地址和 /或源地址, 在 本发明实施例中, 通过对数据进行 FP层解析来确定数据的目的地址和 /或源 地址的过程可以与现有技术相同或相似,这里, 为了避免赘述,省略其说明。
可选地, 该第一节点确定用于传输该目标用户设备的数据的目标承载, 包括: 该第一节点接收该第二节点发送的用于指示该目标承载的承载指示信 息, 其中, 该目标承载是该第三节点从该至少一个承载中确定并通知该第二 节点的;
该第一节点根据该承载指示信息, 确定该目标承载。
具体地说, RNC可以确定分配给各 UMTS UE的各业务的承载, 并且, 例如, 可以生成记录有各 UMTS UE的各业务与各承载之间的映射关系的承 载映射表项, 即承载指示信息的一例, 并将该承载映射表项发送给 LTE。
应理解,以上列举的各承载与 UMTS站点及业务类型之间的对应关系是 由 RNC确定的, 但本发明并不限定于此, 也可以由 LTE站点或 UMTS站点 #1确定, 本发明并未特别限定, 并且, 确定方法相似, 这里, 省略其说明。
例如, 在上行传输时, UMTS UE#1将上行数据传输给 UMTS站点 #1 , UMTS站点 #1可以根据该上行数据所属于的业务和该 UMTS UE#1的用户设 备标识, 查找如上所述生成的承载映射表项, 以确定与该 UMTS 站点 #1以 及该上行数据的业务相对应的 7 载(记做, 7 载 #2 )。 并且, UMTS 站点 #1 可以通过该 7|载 #2, 向 LTE站点传输该上行数据, 具体地说, UMTS站点 #1 可以通过 UMTS协议栈对该上行数据进行解调解码, 以生成 RNC能够识别 的上行数据, 例如, 现有技术中 UMTS站点发送给 RNC的上行数据。 并且, UMTS站点 #1可以将从该 UMTS协议栈或上述适配层输出的上行数据, 输 入至 LTE协议栈, 通过 LTE协议栈对该上行数据进行编码调制, 以生成符 合 LTE传输要求的上行数据。 其后, UMTS站点 #1可以通过该承载 #2, 向 LTE站点发送从 LTE协议栈输出的上行数据。
LTE站点在接收到该上行数据后, 可以对该上行数据进行解调解码, 以 还原出 RNC能够识别的上行数据,例如,现有技术中 UMTS站点发送给 RNC 的上行数据, 并将该上行数据通过承载 #2 , 经由与该 LTE 站点共站址的 UMTS站点 #2, 通过例如, 光纤等连接设备, 发送给 RNC。
从而, RNC通过该承载 #2在接收到该上行数据后, 可以根据如上所述 确定的承载映射表项, 确定该上行数据所属于的业务, 并且, 可以通过通过 对数据进行 FP层解析, 确定该上行数据的源地址, 并根据该源地址, 将该 上行数据发送至核心网。
再例如, 在下行时, RNC 在从核心网接收到下行数据后, 可以确定该 下行数据所属于的业务, 并根据该下行数据的目的地址, 确定该下行数据需 要发送给 UMTS UE#1 , 并且, 由于该 UMTS UE#1仅通过 UMTS 站点 #1 进行数据传输, 因此, RNC 可以根据如上所述确定的承载映射表项确定使 用承载 #2 来传输该下行数据。 其后, 可以对该下行数据进行处理, 以生成 UMTS站点 #1能够识别的下行数据, 例如, 现有技术中 RNC发送给 UMTS 站点的下行数据, 并通过该 7?载 #2 , 经由与该 LTE站点共站址的 UMTS站 点 #2, 通过例如, 光纤等连接设备, 将该下行数据发送给 LTE站点。
LTE站点在接收到该下行数据后, 可以对该下行数据进行编码调制, 以 生成符合 LTE传输要求的下行数据。 其后, LTE站点可以通过该承载 #2, 向 UMTS站点 #1发送该上行数据。
UMTS站点 #1通过该承载 #2在接收到该下行数据后, 可以根据如上所 述确定的承载映射表项, 确定该下行数据所属于的业务, 并且, 可以通过例 如, 通过对数据进行 FP层解析, 确定该下行数据的目的地址, 并根据该目 的地址, 将该下行数据发送给 UMTS UE#1 , 具体地说, UMTS站点 #1可以 通过 LTE协议栈对该下行数据进行解调解码, 以还原出 RNC发送的下行数 据。 并且, UMTS站点 #1可以将从该 LTE协议栈或上述适配层输出的下行 数据, 输入至 UMTS协议栈, 通过 UMTS协议栈对该上行数据进行编码调 制, 以生成符合 UMTS传输要求的下行数据。
根据本发明实施例的传输数据的方法, 通过在 RNC、 LTE 站点以及 UMTS站点 #1之间设置用于传输的 载, 并通过与该 UMTS站点 #1以及该 数据所对应的业务相对应的承载来传输该用户设备的数据, 例如, 在系统中 设置有多个 LTE站点 (第二节点)、 多个 UMTS站点 (第一节点)或多个 UMTS UE (用户设备) 时, 能够 LTE站点无需对数据进行解析以确定该数 据在传输路径中的下一跳节点, 能够减少 LTE站点的负担, 提高传输效率。 并且, 由于通过 UMTS站点 #1传输数据的各用户设备的同一种业务的数据 公用一个承载, 能够节约系统资源, 提高传输效率。
应理解, 以上列举的通过设置在 RNC、 LTE站点以及 UMTS站点 #1设 置承载来传输数据的方式仅为示例性说明, 本发明并不限定于此。
例如, 也可以不设置承载, LTE站点可以给 UMTS站点 #1分配一个设 备标识(唯一地指示该 UMTS站点 #1 ),并将该设备标识通知 RNC以及 UMTS 站点 #1 , 从而, 例如, RNC在向 LTE站点传输数据时, 可以将该设备标识 一同发送给 LTE站点, LTE站点可以根据该设备标识,确定该数据需要发送 给 UMTS站点 #1 , 并通过 LTE网络向该 UMTS站点 #1传输来自 RNC的数 据, UMTS站点 #1在接收到该数据后, 可以获取该数据的 L3/4层信息, 进 而确定该数据的目的地址, 以将该数据发送给与该目的地址相对应的用户设 备。
再例如, 在 RNC也可以存储有记录各 LTE站点与各用户设备之间的对 应关系的表项,从而,在需要向一个用户设备发送数据时,可以根据该表项, 确定该数据需要发送至的 LTE站点。 同样, 与 LTE站点通信的各 UMTS站 点可以向 LTE站点上报所服务的各用户设备, 从而 LTE 站点可以记录各 UMTS站点与各用户设备之间的对应关系。 例如, 当 LTE站点接收到来自 RNC的数据时, 可以通过例如, 通过对数据进行 FP层进行解析, 确定该数 据的目的地址, 或者说, 需要传输至的用户设备, 并根据如上所述记录的各 UMTS站点与各用户设备之间的对应关系来发送该数据。
可选地, 该方法还包括:
该第一节点确定调度信息, 该调度信息用于指示该用户设备的数量、 该 第一节点所对应的传输速率和该第一节点所对应的传输时延中的至少一个 参数, 其中, 该用户设备是当前通过该第一节点和该第二节点传输数据的用 户设备,该第一节点所对应的传输速率是根据各该用户设备的传输速率确定 的, 该第一节点所对应的传输时延是根据各该用户设备的传输时延确定的; 该第一节点向该第二节点发送调度信息, 以便于该第二节点根据该调度 信息进行资源调度, 以在该第三节点和该第一节点之间传输该目标用户设备 的数据。
具体地说, 在本发明实施中, 由于 UMTS站点 #1与 LTE网络的 UE (记 做, LTE UE )共享 LTE网络的通信资源, 因此, 需要保证两种终端之间的 公平性。
在本发明实施例中, UMTS站点 #1可以将通过该 UMTS站点 #1和 LTE 站点传输数据的多个 UMTS UE的当前的通信状态, 或者说, UMTS站点 #1 当前的通信状态, 即, 调度信息的一例, 发送给 LTE站点, 从而 LTE站点 可以根据该 UMTS站点 #1当前的通信状态,进行资源调度,以满足 UMTS UE 的通信需要。
在本发明实施例中, 作为调度信息, 可以列举通过该 UMTS站点 #1和
LTE站点传输数据的多个 UMTS UE的数量(即, 情况 A ), 该第一节点所 对应的传输速率(即, 情况 B ), 该第一节点所对应的传输时延(即, 情况 C ) 下面, 分别对以上三种情况下的资源调度的方法进行说明。
情况 A
在本发明实施例中, 可能存在多个 UMTS UE需要经由 UMTS站点 #1 和 LTE站点传输数据的情况, 即, 在 LTE站点看来, 如果将该 UMTS站点 #1视为一个 LTE UE来分配资源, 则可能导致分配给 UMTS站点 #1的资源 无法满足该多个 UMTS UE的通信需要, 因此, UMTS站点 #1可以确定当前 需要经由 UMTS站点 #1和 LTE站点传输数据的 UMTS UE的数量, 并上报 给 LTE站点。
从而 LTE站点可以根据当前需要经由 UMTS站点 #1和 LTE站点传输数 据的 UMTS UE的数量, 进行资源调度, 例如, 可以按照该 UMTS UE的数 量和通过 LTE站点传输数据的 LTE UE的数量,平均分配当前的可用通信资 源, 也可以为各 UE (包括 UMTS UE和 LTE UE )设置权重, 并根据该权重 来分配当前的可用通信资源。
根据本发明实施例的传输数据的方法, 通过 UMTS站点 #1向 LTE站点 上报当前需要经由 UMTS站点 #1和 LTE站点传输数据的 UMTS UE的数量, 能够是 LTE站点准确的获知当前需要共享 LTE网络的 UE的数量, 从而能 够实现对各 UE的公平的通信。
情况 B
UMTS站点 #1可以确定当前需要经由 UMTS站点 #1和 LTE站点传输数 据的各 UMTS UE的传输速率, 并且, 例如, 可以将最高的传输速率, 作为 UMTS站点 #1的传输速率, 即, 第一节点所对应的传输速率, 并上报给 LTE 站点, 这里, 需要说明的是, UMTS UE的传输速率可以是该 UMTS UE的 上行传输速率, 即,该 UMTS UE发送数据时的速率,也可以是该 UMTS UE 的下行传输速率, 即, 该 UMTS UE接收数据时的速率, 本发明并未特别限 定, 并且, UMTS UE的传输速率可以是该 UMTS UE的当前实际的传输速 率, 也可以是该 UMTS UE上报或者网络侧, 例如, RNC下发的需要确保的 传输速率, 本发明并未特别限定。
从而 LTE站点可以根据 UMTS站点 #1当前的传输速率,进行资源调度, 例如, 如果该 UMTS站点 #1当前的传输速率相对于 LTE UE的传输速率较 低, 则 LTE站点可以为 UMTS站点 #1分配质量较高的通信资源, 以提高该 UMTS站点 #1的速率。
应理解, 以上列举的第一节点所对应的传输速率的确定方法仅为示例性 说明, 本发明并不限定于此, 例如, 也可以将经由 UMTS站点 #1和 LTE站 点传输数据的各 UMTS UE的平均速率或最低速率作为第一节点所对应的传 输速率。
根据本发明实施例的传输数据的方法, 通过 UMTS站点 #1向 LTE站点 上报 UMTS站点 #1当前的传输速率, 能够是 LTE站点的获知当前共享 LTE 网络的 UE的速率, 从而能够实现对各 UE的公平的通信。
情况 C
UMTS站点 #1可以确定当前需要经由 UMTS站点 #1和 LTE站点传输数 据的各 UMTS UE的传输时延, 并且, 例如, 可以将最大的传输时延, 作为 UMTS站点 #1当前的传输时延, 即, 第一节点所对应的传输时延, 并上 4艮给 LTE站点。 这里, 需要说明的是, UMTS UE的传输时延可以是该 UMTS UE 的上行传输时延, 即, 该 UMTS UE发送数据时的时延, 也可以是该 UMTS UE的下行传输时延, 即, 该 UMTS UE接收数据时的时延, 本发明并未特 别限定, 并且, UMTS UE的传输时延可以是该 UMTS UE的当前实际的传 输时延, 也可以是该 UMTS UE上报或者网络侧, 例如, RNC下发的需要确 保的传输时延, 本发明并未特别限定。
从而 LTE站点可以根据 UMTS站点 #1当前的传输时延,进行资源调度, 例如, 如果该 UMTS站点 #1当前的传输时延相对于 LTE UE的传输时延大, 则 LTE站点可以为 UMTS站点 #1分配质量较高的通信资源,以减小该 UMTS 站点 #1的时延。
应理解, 以上列举的第一节点所对应的传输时延的确定方法仅为示例性 说明, 本发明并不限定于此, 例如, 也可以将经由 UMTS站点 #1和 LTE站 点传输数据的各 UMTS UE的平均时延或最小时延作为第一节点所对应的传 输时延。
根据本发明实施例的传输数据的方法, 通过 UMTS站点 #1向 LTE站点 上报 UMTS站点 #1当前的传输时延, 能够是 LTE站点的获知当前共享 LTE 网络的 UE的时延, 从而能够实现对各 UE的公平的通信。
可选地,该第一节点所对应的传输速率或该第一节点所对应的传输时延 是按照以下任一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
具体地说, UMTS站点 #1可以按照业务类型来上报上述传输速率和传输 时延,从而 LTE站点可以根据业务类型进行资源调度,例如,对于实时业务, 如果 UMTS站点 #1的当前的速率低于预设的能够保证实时业务可靠地进行 的阈值, 则可以为 UMTS站点 #1分配质量较高的资源, 以提高 UMTS站点 #1的速率。
同理, UMTS站点 #1可以按照用户优先级来上报上述传输速率和传输时 延,从而 LTE站点可以根据用户优先级进行资源调度,例如,对于金牌用户, 如果 UMTS站点 #1的当前的速率低于预设的能够保证金牌用户可靠地进行 数据传输的阈值, 则可以为 UMTS 站点 #1 分配质量较高的资源, 以提高 UMTS站点 #1的速率。
同理, UMTS站点 #1可以按照服务质量类别标识 QCI来上报上述传输 速率和传输时延, 从而 LTE站点可以根据 QCI进行资源调度, 例如, 对于 较高 QCI, 如果 UMTS站点 #1的当前的速率低于预设的能够保证与该 QCI 相对应的用户可靠地进行数据传输的阈值, 则可以为 UMTS站点 #1分配质 量较高的资源, 以提高 UMTS站点 #1的速率。
应理解,以上列举的 LTE站点根据上述调度信息进行资源调度的方法仅 为示例性说明, 本发明并未限定于此, 其他的使用该资源调度信息进行资源 调度的方法均落入本发明保护范围内, 并且, 以上列举的调度信息指示的各 参数可以单独使用, 也可以结合使用, 本发明并未特别限定。
根据本发明实施例的传输数据的方法, 通过 UMTS站点 #1向 LTE站点 上报 UMTS站点 #1各业务类型的速率和时延, 能够是 LTE站点的获知当前 共享 LTE网络的 UE的业务类型, 从而能够进一步可靠地实现对各 UE的公 平的通信。
可选地, 在该第一节点经由该第一协议栈和该第二协议栈, 在该第二节 点和该用户设备之间传输该用户设备的数据之前, 该方法还包括:
该第一节点确定针对该目标用户设备的数据的用户信息, 该用户信息包 括该目标用户设备的数据所对应的服务质量类别标识 QCI和 /或该目标用户 设备的数据所对应的业务类型;
该第一节点向该第二节点发送该用户信息, 以便于该第二节点根据该调 度信息进行资源调度, 以在该第三节点和该第一节点之间传输该目标用户设 备的数据。 在本发明实施例中, LTE站点可以通过数据的 (QCI, Quality of Service Class Identifier )和业务类型, 例如, 可以包括实时业务和非实时业 务, 来控制针对各数据的资源调度的优先级。 因此, UMTS 站点 #1 可以向 LTE站点上报其传输的数据的 QCI。
在本发明实施例中, 可以预先在 UMTS站点中存储 QCI表项, 在 QCI 表项中可以记录有例如, 业务类型、 业务种类(Traffic class )与 QCI的映射 关系, 以下表 1示出了本发明实施例的 QCI表项的一例。 表 1
业务类型 QCI 业务种类 Traffic class
实时业务 1 语音会话 ( Conversational Voice )
2 视频会话 ( Conversational Video )
3 实时游戏 ( Real Time Gaming )
4 流(Streaming ) 业务(例如, 非语音会话, 非 视频会话)
非实时业务 5 网际协议多媒体子系统信令 ( IMS , IP
Multimedia Sub- system Signalling )
6 视频緩存流 ( Video Buffered Streaming );
传输控制十办议 ( TCP , Transmission Control Protocol )业务(例如, 网页浏览、 电子邮件等)
7 语音 ( Voice )、 视频 ( Video )、 实时流( Live
Streaming )、 交互类游戏 ( interactive Gaming ) 管理员定义 130 金牌用户的网际协议多媒体子系统和语音相关 信令 ( IMS & voice-related signalling )
131 金牌用户的游戏(Gaming )和其他低时延业务
( other low delay )
150 银牌用户的网际协议多媒体子系统和语音相关 信令 ( IMS & voice-related signalling )
151 银牌用户的游戏和其他低时延业务
170 铜牌用户的网际协议多媒体子系统和语音相关 信令 ( IMS & voice-related signalling )
171 铜牌用户的游戏和其他低时延业务 并且, 作为表 1中金牌用户、 银牌用户和铜牌用户的确定方式, 可以基 于 UMTS UE的分配 /预留优先 ( ARP, Allocation/Retention Priority )信息确 定, 以下表 2示出了 ARP与优先级之间的映射关系的一例。
表 2
Figure imgf000028_0001
需要说明的是,以上列举的表 1仅为示例性说明,本发明并不限定于此, 例如, 由于 UMTS站点与 RNC之间的 UMTS信令, 例如, 空口信令, 也要 通过 LTE站点传输, 因此, 在本发明实施例中, 可以为该 UMTS信令设置 较高的 QCI, 例如 130。
从而, UMTS站点 #1在接收到 UMTS UE#1发送的数据后, 可以确定该 UMTS站点 #1的 ARP以及该数据的 Traffic class, 从而可以根据上述表 1 , 确定该数据的 QCI。 并根据该 QCI的 QCI信息和 /或指示该数据的业务类型 (实时业务、 非实施业务或 UMTS信令)的业务类型信息, 确定针对该数据 的调度信息, 并发送至 LTE站点。 例如:
对于实时业务, UMTS站点 #1可以按 QCI上报有数传需求的用户设备 的保证比特速率(GBR, guaranteed bit rate )之和。
对于非实时业务, UMTS站点 #1可以按 QCI上报用户设备的当前传输 速率, 如果存在多个 QCI相同的数据, 则上报最高的当前传输速率。
从而, LTE站点可以根据 UMTS站点 #1发送的调度信息, 进行针对该 UMTS站点 #1的数据的资源调度。 作为调度规则, 可以列举:
①. UMTS信令业务具有最高优先级。
② . 对实时业务, 根据上报的 GBR信息保证用户的 GBR速率。
③ . 对非实时业务, 选择优先级队列上 QCI最高的用户的 QCI和传输 速率进行优先级排序。
应理解, 以上列举的 LTE站点获取 UMTS站点传输的数据的 QCI的方 式仅为示例性说明, 本发明并未限定于此, 例如, 也可以在 RNC中存储上 述表 1 , 并由 RNC向 LTE站点下发所要传输的数据的 QCI。
根据本发明实施例的传输数据的方法, 通过使 LTE站点获取调度信息, 并根据该资源调度信息对在 UMTS站点与 RNC之间传输的数据进行资源调 度, 能够保证 LTE UE和 UMTS站点所服务的 UMTS UE之间的公平性。
在本发明实施例中, 由于 LTE 网络提供的带宽可能不能够满足 UMTS 站点 #1的需求, 因此, 可以引入流控机制, 避免下行数据在 LTE站点或上 行数据在 UMTS站点 #1被阻塞。
可选地, 在本发明实施例中, 该第一节点经由该第一协议栈和该第二协 议栈, 在该第二节点和该用户设备之间传输该用户设备的数据, 包括:
该第一节点根据已传输的该用户设备的第一数据的传输速率,确定未传 输的所述用户设备的第二数据的目标传输速率;
向该用户设备和该第三节点发送用于指示所述目标传输速率的速率指 示信息, 以便于该用户设备根据该目标传输速率传输上行第二数据, 该第三 节点根据该目标传输速率传输下行第二数据。
具体地说,对于上行流控,在一个时段内(第一数据的传输时段), UMTS 站点 #1可以从 UMTS UE获得的当前的上行速率,并根据该上行速率控制非 实时业务所在队列的队列长度, 然后根据队列緩存状态控制每个 UMTS UE 往队列中发送的数据量, 最后根据每个 UE在 UMTS站点 #1侧的緩存大小 控制各用户设备在下一时段(第二数据的传输时段) 的传输速率。
对于下行流控, 在一个时段内 (第一数据的传输时段), UMTS 站点 #1 可以从 UMTS UE获得的当前的下行速率,并用该下行速率减掉 UMTS信令 和实时业务速率之后的结果来等比压缩非实时业务的容量分配结果, 然后将 该结果发送给 RNC, 使 RNC根据该容量分配结果调整在下一时段(第二数 据的传输时段) 的传输速率。
根据本发明实施例的传输数据的方法, 通过引入流控处理, 使得 UMTS 网络的上下行容量能适配 UMTS站点 #1在 LTE网络中获得的资源, 避免下 行数据在 LTE站点被丟弃, 并避免上行数据在 UMTS站点 #1被丟弃, 从而 能够提高用户体验。
根据本发明实施例的传输数据的方法,通过使系统使用两种网络进行通 信, 并在第一网络的站点(第一节点)配置用于通过第二网络进行通信的协 议栈, 能够实现第一网络的站点与第二网络的站点进行通信, 通过使第一网 络的接入控制设备和第二网络的站点通信连接, 能够实现第一网络的接入控 制设备和第二网络的站点进行通信, 从而, 能够使第一网络的接入控制设备 和站点之间经由第二网络的站点进行通信, 由此, 能够有效增大第一节点与 第三节点之间的通信距离, 进而能够提高第一网络的覆盖范围, 并且, 通过 缩短第二节点与第三节点之间的距离, 能够通过较低地成本实现第二节点与 第三节点的通信, 由于第一节点与第二节点之间通过系统既存的第二网络进 行通信, 无需增设中继节点和通信连接设备, 进一步降低了系统建设成本。
图 4示出了本发明另一实施例的传输数据的方法 200的示意性流程图, 该方法 200由通信系统中的 LTE站点(第二节点的一例)执行, 该通信系统 还包括 UMTS 站点 #1 (第一节点的一例)、 RNC(第三节点的一例)和 UMTS UE#1 (目标用户设备的一例 ), 其中, 该通信系统能够使用 UMTS网络(第 一网络的一例)和 LTE网络(第二网络的一例)进行通信, RNC与 LTE站 点之间能够进行通信, UMTS站点 #1具有 UMTS协议栈(第一协议栈的一 例)和 LTE协议栈(第二协议栈的一例), 该 UMTS协议栈用于实现 RNC 与 UMTS UE之间在该 UMTS中通信的数据处理, 该 LTE协议栈用于实现 UMTS站点 #1与 LTE站点之间在 LTE网络中通信的数据处理, 该方法 200 包括:
S210, 该第二节点接收该第一节点发送的传输请求信息, 该传输请求数 据用于指示该第二节点在该第三节点和该第一节点之间传输目标用户设备 的数据;
S220,该第二节点根据该传输请求消息在该第三节点和该第一节点之间 建立传输承载;
S230, 该第二节点通过该传输承载传输该目标用户设备的数据。
具体地说, UMTS UE#1在需要经由接入网而与核心网通信时, 可以通 过 UMTS网络的通信资源向 UMTS站点 #1发送接入请求。
UMTS站点 #1接收到该接入请求后, 可以通过 LTE网络的通信资源, 向 LTE站点发送传输请求信息, 以请求该 LTE站点在 RNC与该 UMTS站 点 #1之间传输数据, 具体地说, 该 LTE站点根据传输请求信息, 确定需要 将来自该 UMTS站点 #1 的数据发送给 RNC, 并且, 确定需要将来自 RNC 的数据发送给该 UMTS站点 #1。
可选地, 在该第三节点、 该第二节点和该第一节点之间设置有用于传输 数据的至少一个承载。
具体地说, LTE站点在接收到该传输请求信息,可以发起承载建立流程, 以在 RNC、 LTE站点和 UMTS站点 #1之间建立用于传输数据的承载,从而, UMTS站点 #1与 RNC之间可以通过该承载进行数据传输。 需要说明的是, 在本发明实施例汇总, 该承载的 UMTS站点 #1与 LTE站点之间的部分, 使 用 LTE网络提供的无线通信资源实现。该承载的 RNC与 LTE站点之间的部 分, 可以使用光纤等连接设备实现。
在本发明实施例中, 该 载可以具有多种级别划分方式。 例如, 一个 7 载可以仅传输一个用户设备的一种业务(即, 情况 3 ), 或者, 一个承载可以 传输通过一个 UMTS站点传输数据的多个用户设备的同一种业务(即,情况 4 ), 下面, 分别对以上两种情况进行说明。
情况 3
可选地, 该第二节点在该第三节点和该第一节点之间传输该目标用户设 备的数据, 包括:
该第二节点确定用于传输该目标用户设备的数据的目标承载, 其中, 该 目标承载与该目标用户设备的数据所属于的业务以及该目标用户设备相对 应;
该第二节点通过该目标承载,在该第三节点和该第一节点之间传输该目 标用户设备的数据。
具体地说, 在本发明实施例中, 在系统中具有多个 UMTS UE, 并且, 一个 UMTS UE需要传输多种业务的情况下, 可以使一个承载仅用于传输一 个 UMTS UE的一种业务。
可选地, 该第二节点确定用于传输该目标用户设备的数据的目标承载, 包括:
该第二节点接收该第三节点发送的用于指示该目标承载的承载指示信 息, 其中, 该目标承载是该第三节点从该至少一个承载中确定的;
该第二节点根据该承载指示信息, 确定该目标承载;
该第二节点向该第一节点发送该承载指示信息, 以便于该第一节点, 根 据该承载指示信息, 确定该目标承载, 并通过该目标承载, 经由该第一协议 栈和该第二协议栈,在该第二节点和该目标用户设备之间传输该目标用户设 备的数据。
具体地说, RNC可以确定分配给各 UMTS UE的各业务的承载, 并且, 例如, 可以生成记录有各 UMTS UE的用户设备标识、 各 UMTS UE的各业 务与各承载之间的映射关系的承载映射表项, 并将该承载映射表项发送给
UMTS 站点 #1和 LTE, 在本发明实施例中, 该用户设备标识可以在系统中 唯一地指示一个 UMTS UE, 例如, 可以是 UMTS UE的 MAC地址、 IP地 址、 移动用户手机号、 IMSI和 IMEI, 等信息。 应理解, 本发明实施例的用 户标识并不限于以上信息, 其他能够唯一体现用户标识的信元均落入本发明 实施例的范围内。
应理解, 以上列举的各承载与各用户设备及业务类型之间的对应关系是 由 RNC确定的, 但本发明并不限定于此, 也可以由 LTE站点或 UMTS站点 #1确定, 本发明并未特别限定, 并且, 确定方法相似, 这里, 省略其说明。
例如, 在上行传输时, UMTS UE#1将上行数据传输给 UMTS站点 #1 ,
UMTS站点 #1可以根据该上行数据所属于的业务和该 UMTS UE#1的用户设 备标识, 查找如上所述生成的承载映射表项, 以确定与该 UMTS UE#1以及 该上行数据的业务相对应的承载(记做, 承载 #1 )。 并且, UMTS站点 #1可 以通过该 7 载 #1 , 向 LTE站点传输该上行数据, 具体地说, UMTS站点 #1 可以通过 UMTS协议栈对该上行数据进行解调解码, 以生成 RNC能够识别 的上行数据。 并且, UMTS站点 #1可以将从该 UMTS协议栈输出的上行数 据, 输入至 LTE协议栈, 通过 LTE协议栈对该上行数据进行编码调制, 以 生成符合 LTE传输要求的上行数据。 其后, UMTS站点 #1可以通过该承载 #1 , 向 LTE站点发送从 LTE协议栈输出的上行数据。
LTE站点在接收到该上行数据后, 可以对该上行数据进行解调解码, 以 还原出 RNC能够识别的上行数据,并将该上行数据通过承载 #1发送给 RNC。
从而, RNC通过该承载 #1在接收到该上行数据后, 可以根据如上所述 确定的承载映射表项, 确定该上行数据所属于的业务, 以及发送该上行数据 是 UMTS UE#1发送的, 从而, 可以确定该上行数据的源地址, 并根据该源 地址, 将该上行数据发送至核心网。
再例如, 在下行时, RNC 在从核心网接收到下行数据后, 可以确定该 下行数据所属于的业务, 并根据该下行数据的目的地址, 确定该下行数据需 要发送给 UMTS UE#1 , 从而, 可以根据如上所述确定的承载映射表项确定 使用承载 #1来传输该下行数据。 其后, 可以对该下行数据进行处理, 以生成 UMTS站点 #1能够识别的下行数据, 并通过该承载 #1将该下行数据发送给 LTE站点。 LTE站点在接收到该下行数据后, 可以对该下行数据进行编码调制, 以 生成符合 LTE传输要求的下行数据。 其后, LTE站点可以通过该承载 #1 , 向 UMTS站点 #1发送该上行数据。
UMTS站点 #1通过该承载 #1在接收到该下行数据后, 可以根据如上所 述确定的承载映射表项, 确定该下行数据所属于的业务, 以及发送该下行数 据是需要发送给 UMTS UE#1的, 从而, 可以确定该下行数据的目的地址, 并根据该目的地址, 将该下行数据发送给 UMTS UE#1 , 具体地说, UMTS 站点 #1可以通过 LTE协议栈对该下行数据进行解调解码, 以还原出 RNC发 送的下行数据。 并且, UMTS站点 #1可以将从该 LTE协议栈输出的下行数 据, 输入至 UMTS协议栈, 通过 UMTS协议栈对该上行数据进行编码调制, 以生成符合 UMTS传输要求的下行数据。
需要说明的是, 由于一个 UMTS UE仅通过一个 UMTS站点传输数据, 因此, LTE站点可以根据传输数据的 UMTS UE, 确定下行数据需要发送至 的 UMTS站点。
根据本发明实施例的传输数据的方法, 通过在 RNC、 LTE 站点以及
UMTS站点 #1之间设置用于传输的承载,并通过与传输数据的用户设备以及 该数据所对应的业务相对应的承载来传输该用户设备的数据, 例如, 在系统 中设置有多个 LTE站点、多个 UMTS站点或多个 UMTS UE时,能够使 RNC、 LTE站点和 UMTS站点无需对数据进行解析以确定该数据在传输路径中的 下一跳节点, 能够减少各站点的负担, 提高传输效率。
情况 4
可选地, 该第二节点在该第三节点和该第一节点之间传输该目标用户设 备的数据, 包括:
该第二节点确定用于传输该目标用户设备的数据的目标承载, 其中, 该 目标承载与该目标用户设备的数据所属于的业务以及该第一节点相对应; 该第二节点通过该目标承载,在该第三节点和该第一节点之间传输该目 标用户设备的数据。
具体地说, 在本发明实施例中, RNC和 UMTS站点能够通过对数据帧 协议(FP, frame protocol )层解析确定该数据的目的地址和 /或源地址, 在 本发明实施例中, 通过对数据进行 FP层解析来确定数据的目的地址和 /或源 地址的过程可以与现有技术相同或相似,这里, 为了避免赘述,省略其说明。 可选地, 该第二节点确定用于传输该目标用户设备的数据的目标承载, 包括:
该第二节点接收该第三节点发送的用于指示该目标承载的承载指示信 息, 其中, 该目标承载是该第三节点从该至少一个承载中确定的;
该第二节点根据该承载指示信息, 确定该目标承载;
该第二节点向该第一节点发送该承载指示信息, 以便于该第一节点, 根 据该承载指示信息, 确定该目标承载, 并通过该目标承载, 经由该第一协议 栈和该第二协议栈,在该第二节点和该目标用户设备之间传输该目标用户设 备的数据。
具体地说, RNC可以确定分配给各 UMTS UE的各业务的承载, 并且, 例如, 可以生成记录有各 UMTS UE的用户设备标识、 各 UMTS UE的各业 务与各承载之间的映射关系的承载映射表项, 并将该承载映射表项发送给 LTE。
应理解,以上列举的各承载与 UMTS站点及业务类型之间的对应关系是 由 RNC确定的, 但本发明并不限定于此, 也可以由 LTE站点或 UMTS站点 #1确定, 本发明并未特别限定, 并且, 确定方法相似, 这里, 省略其说明。
例如, 在上行传输时, UMTS UE#1将上行数据传输给 UMTS站点 #1 , UMTS站点 #1可以根据该上行数据所属于的业务和该 UMTS UE#1的用户设 备标识, 查找如上所述生成的承载映射表项, 以确定与该 UMTS 站点 #1以 及该上行数据的业务相对应的 7 载(记做, 7 载 #2 )。 并且, UMTS 站点 #1 可以通过该 7 载 #2, 向 LTE站点传输该上行数据, 具体地说, UMTS站点 #1 可以通过 UMTS协议栈对该上行数据进行解调解码, 以生成 RNC能够识别 的(或者说,现有技术中 UMTS站点发送给 RNC的)上行数据。并且, UMTS 站点 #1可以将从该 UMTS协议栈或上述适配层输出的上行数据,输入至 LTE 协议栈, 通过 LTE协议栈对该上行数据进行编码调制, 以生成符合 LTE传 输要求的上行数据。 其后, UMTS站点 #1可以通过该承载 #2, 向 LTE站点 发送从 LTE协议栈输出的上行数据。
LTE站点在接收到该上行数据后, 可以对该上行数据进行解调解码, 以 还原出 RNC能够识别的上行数据,并将该上行数据通过承载 #2发送给 RNC。
从而, RNC通过该承载 #2在接收到该上行数据后, 可以根据如上所述 确定的承载映射表项, 确定该上行数据所属于的业务, 并且, 可以通过通过 对数据进行 FP层解析, 确定该上行数据的源地址, 并根据该源地址, 将该 上行数据发送至核心网。
再例如, 在下行时, RNC 在从核心网接收到下行数据后, 可以确定该 下行数据所属于的业务, 并根据该下行数据的目的地址, 确定该下行数据需 要发送给 UMTS UE#1 , 并且, 由于该 UMTS UE#1仅通过 UMTS 站点 #1 进行数据传输, 因此, RNC 可以根据如上所述确定的承载映射表项确定使 用承载 #2 来传输该下行数据。 其后, 可以对该下行数据进行处理, 以生成 UMTS站点 #1能够识别的下行数据, 并通过该承载 #2将该下行数据发送给 LTE站点。
LTE站点在接收到该下行数据后, 可以对该下行数据进行编码调制, 以 生成符合 LTE传输要求的下行数据。 其后, LTE站点可以通过该承载 #2, 向 UMTS站点 #1发送该上行数据。
UMTS站点 #1通过该承载 #2在接收到该下行数据后, 可以根据如上所 述确定的承载映射表项, 确定该下行数据所属于的业务, 并且, 可以通过例 如, 通过对数据进行 FP层解析, 确定该下行数据的目的地址, 并根据该目 的地址, 将该下行数据发送给 UMTS UE#1 , 具体地说, UMTS站点 #1可以 通过 LTE协议栈对该下行数据进行解调解码, 以还原出 RNC发送的下行数 据。 并且, UMTS站点 #1可以将从该 LTE协议栈或上述适配层输出的下行 数据, 输入至 UMTS协议栈, 通过 UMTS协议栈对该上行数据进行编码调 制, 以生成符合 UMTS传输要求的下行数据。
根据本发明实施例的传输数据的方法, 通过在 RNC、 LTE 站点以及 UMTS站点 #1之间设置用于传输的 载, 并通过与该 UMTS站点 #1以及该 数据所对应的业务相对应的承载来传输该用户设备的数据, 例如, 在系统中 设置有多个 LTE站点、 多个 UMTS站点或多个 UMTS UE时, 能够 LTE站 点无需对数据进行解析以确定该数据在传输路径中的下一跳节点, 能够减少 LTE站点的负担, 提高传输效率。 并且, 由于通过 UMTS站点 #1传输数据 的各用户设备的同一种业务的数据公用一个承载, 能够节约系统资源, 提高 传输效率。
应理解, 以上列举的通过设置在 RNC、 LTE站点以及 UMTS站点 #1设 置承载来传输数据的方式仅为示例性说明, 本发明并不限定于此。
例如, 也可以不设置承载, LTE站点可以给 UMTS站点 #1分配一个设 备标识, 以唯一地指示该 UMTS 站点 #1 , 并将该设备标识通知 RNC 以及 UMTS站点 #1 , 从而, 例如, RNC在向 LTE站点传输数据时, 可以将该设 备标识一同发送给 LTE站点, LTE站点可以根据该设备标识,确定该数据需 要发送给 UMTS站点 #1 ,并通过 LTE网络向该 UMTS站点 #1传输来自 RNC 的数据, UMTS站点 #1在接收到该数据后, 可以获取该数据的 L3/4层信息, 进而确定该数据的目的地址, 以将该数据发送给与该目的地址相对应的用户 设备。
再例如, 在 RNC也可以存储有记录各 LTE站点与各用户设备之间的对 应关系的表项,从而,在需要向一个用户设备发送数据时,可以根据该表项, 确定该数据需要发送至的 LTE站点。 同样, 与 LTE站点通信的各 UMTS站 点可以向 LTE站点上报所服务的各用户设备, 从而 LTE 站点可以记录各 UMTS站点与各用户设备之间的对应关系。 例如, 当 LTE站点接收到来自 RNC的数据时, 可以通过例如, 通过对数据进行 FP层进行解析, 确定该数 据的目的地址,并根据如上所述记录的各 UMTS站点与各用户设备之间的对 应关系来发送该数据。
可选地, 该第二节点在该第三节点和该第一节点之间传输该目标用户设 备的数据, 包括:
该第二节点在该第三节点和该第一节点之间传输该目标用户设备的数 据, 包括:
该第二节点接收该第一节点发送的调度信息, 其中, 该调度信息用于指 示用户设备的数量、该第一节点所对应的传输速率和该第一节点所对应的传 输时延中的至少一个参数, 其中, 该用户设备是当前通过该第一节点和该第 二节点传输数据的用户设备, 该第一节点所对应的传输速率是根据各该用户 设备的传输速率确定的,该第一节点所对应的传输时延是根据各该用户设备 的传输时延确定的;
该第二节点根据该调度信息进行资源调度, 以在该第三节点和该第一节 点之间传输该目标用户设备的数据。
具体地说, 在本发明实施中, 由于 UMTS站点 #1 (或者说, 通过 UMTS 站点 #1传输数据的 UMTS UE )与 LTE网络的 UE (记做, LTE UE )共享 LTE 网络的通信资源, 因此, 需要保证两种终端之间的公平性。
在本发明实施例中, UMTS站点 #1可以将通过该 UMTS站点 #1和 LTE 站点传输数据的多个 UMTS UE的当前的通信状态, 发送给 LTE站点,从而 LTE站点可以根据该 UMTS站点 #1 当前的通信状态, 进行资源调度, 以满 足 UMTS UE的通信需要。
在本发明实施例中, 作为调度信息, 可以列举通过该 UMTS站点 #1和 LTE站点传输数据的多个 UMTS UE的数量(即, 情况 D ), 该第一节点所 对应的传输速率(即, 情况 E ), 该第一节点所对应的传输时延(即, 情况 F ) 下面, 分别对以上三种情况下的资源调度的方法进行说明。
情况 D
在本发明实施例中, 可能存在多个 UMTS UE需要经由 UMTS站点 #1 和 LTE站点传输数据的情况, 即, 在 LTE站点看来, 如果将该 UMTS站点 #1视为一个 LTE UE来分配资源, 则可能导致分配给 UMTS站点 #1的资源 无法满足该多个 UMTS UE的通信需要, 因此, UMTS站点 #1可以确定当前 需要经由 UMTS站点 #1和 LTE站点传输数据的 UMTS UE的数量, 并上报 给 LTE站点。
从而 LTE站点可以根据当前需要经由 UMTS站点 #1和 LTE站点传输数 据的 UMTS UE的数量, 进行资源调度, 例如, 可以按照该 UMTS UE的数 量和通过 LTE站点传输数据的 LTE UE的数量,平均分配当前的可用通信资 源, 也可以为各 UE (包括 UMTS UE和 LTE UE )设置权重, 并根据该权重 来分配当前的可用通信资源。
根据本发明实施例的传输数据的方法, 通过 UMTS站点 #1向 LTE站点 上报当前需要经由 UMTS站点 #1和 LTE站点传输数据的 UMTS UE的数量, 能够是 LTE站点准确的获知当前需要共享 LTE网络的 UE的数量, 从而能 够实现对各 UE的公平的通信。
情况 E
UMTS站点 #1可以确定当前需要经由 UMTS站点 #1和 LTE站点传输数 据的各 UMTS UE的传输速率, 并且, 例如, 可以将最高的传输速率, 作为 UMTS站点 #1的传输速率,并上报给 LTE站点,这里,需要说明的是, UMTS UE的传输速率可以是该 UMTS UE的上行传输速率,也可以是该 UMTS UE 的下行传输速率, 本发明并未特别限定, 并且, UMTS UE的传输速率可以 是该 UMTS UE的当前实际的传输速率, 也可以是该 UMTS UE上报或者网 络侧下发的需要确保的传输速率, 本发明并未特别限定。 从而 LTE站点可以根据 UMTS站点 #1当前的传输速率,进行资源调度, 例如, 如果该 UMTS站点 #1当前的传输速率相对于 LTE UE的传输速率较 低, 则 LTE站点可以为 UMTS站点 #1分配质量较高的通信资源, 以提高该 UMTS站点 #1的速率。
应理解, 以上列举的第一节点所对应的传输速率的确定方法仅为示例性 说明, 本发明并不限定于此, 例如, 也可以将经由 UMTS站点 #1和 LTE站 点传输数据的各 UMTS UE的平均速率或最低速率作为第一节点所对应的传 输速率。
根据本发明实施例的传输数据的方法, 通过 UMTS站点 #1向 LTE站点 上报 UMTS站点 #1当前的传输速率, 能够是 LTE站点的获知当前共享 LTE 网络的 UE的速率, 从而能够实现对各 UE的公平的通信。
情况 F
UMTS站点 #1可以确定当前需要经由 UMTS站点 #1和 LTE站点传输数 据的各 UMTS UE的传输时延, 并且, 例如, 可以将最大的传输时延, 作为 UMTS站点 #1当前的传输时延, 并上报给 LTE站点。 这里, 需要说明的是, UMTS UE 的传输时延可以是该 UMTS UE 的上行传输时延, 也可以是该 UMTS UE的下行传输时延, 本发明并未特别限定, 并且, UMTS UE的传输 时延可以是该 UMTS UE的当前实际的传输时延, 也可以是该 UMTS UE上 报或者网络侧下发的需要确保的传输时延, 本发明并未特别限定。
从而 LTE站点可以根据 UMTS站点 #1当前的传输时延,进行资源调度, 例如, 如果该 UMTS站点 #1当前的传输时延相对于 LTE UE的传输时延大, 则 LTE站点可以为 UMTS站点 #1分配质量较高的通信资源,以减小该 UMTS 站点 #1的时延。
应理解, 以上列举的第一节点所对应的传输时延的确定方法仅为示例性 说明, 本发明并不限定于此, 例如, 也可以将经由 UMTS站点 #1和 LTE站 点传输数据的各 UMTS UE的平均时延或最小时延作为第一节点所对应的传 输时延。
根据本发明实施例的传输数据的方法, 通过 UMTS站点 #1向 LTE站点 上报 UMTS站点 #1当前的传输时延, 能够是 LTE站点的获知当前共享 LTE 网络的 UE的时延, 从而能够实现对各 UE的公平的通信。
可选地,所述第一节点所对应的传输速率或所述第一节点所对应的传输 时延是按照以下任一参数区分的: 业务类型、 用户优先级或服务质量类别标 识 QCI。
具体地说, UMTS站点 #1可以按照业务类型来上报上述传输速率和传输 时延,从而 LTE站点可以根据业务类型进行资源调度,例如,对于实时业务, 如果 UMTS站点 #1的当前的速率低于预设的能够保证实时业务可靠地进行 的阈值, 则可以为 UMTS站点 #1分配质量较高的资源, 以提高 UMTS站点 #1的速率。
同理, UMTS站点 #1可以按照用户优先级来上报上述传输速率和传输时 延,从而 LTE站点可以根据用户优先级进行资源调度,例如,对于金牌用户, 如果 UMTS站点 #1的当前的速率低于预设的能够保证金牌用户可靠地进行 数据传输的阈值, 则可以为 UMTS 站点 #1 分配质量较高的资源, 以提高 UMTS站点 #1的速率。
同理, UMTS站点 #1可以按照服务质量类别标识 QCI来上报上述传输 速率和传输时延, 从而 LTE站点可以根据 QCI进行资源调度, 例如, 对于 较高 QCI, 如果 UMTS站点 #1的当前的速率低于预设的能够保证与该 QCI 相对应的用户可靠地进行数据传输的阈值, 则可以为 UMTS站点 #1分配质 量较高的资源, 以提高 UMTS站点 #1的速率。
应理解,以上列举的 LTE站点根据上述调度信息进行资源调度的方法仅 为示例性说明, 本发明并未限定于此, 其他的使用该资源调度信息进行资源 调度的方法均落入本发明保护范围内, 并且, 以上列举的调度信息指示的各 参数可以单独使用, 也可以结合使用, 本发明并未特别限定。 可选地, 该第 二节点在该第三节点和该第一节点之间传输该目标用户设备的数据, 包括: 该第二节点接收该第一节点发送的针对该目标用户设备的数据的用户 信息, 其中, 该用户信息是该第一节点确定的, 包括该目标用户设备的数据 所对应的服务质量类别标识 QCI和 /或该目标用户设备的数据所对应的业务 类型, 该业务类型包括实时业务和非实时业务;
该第二节点根据该用户信息进行资源调度, 以在该第三节点和该第一节 点之间传输该目标用户设备的数据。
具体地说, 在本发明实施中, 由于 UMTS站点 #1 (或者说, 通过 UMTS 站点 #1传输数据的 UMTS UE )与 LTE网络的 UE (记做, LTE UE )共享 LTE 网络的通信资源, 因此, 需要保证两种终端之间的公平性。 在本发明实施例中, LTE站点可以通过数据的( QCI, Quality of Service Class Identifier )和业务类型(例如, 可以包括实时业务和非实时业务)来控 制针对各数据的资源调度的优先级。 因此, UMTS站点 #1可以向 LTE站点 上报其传输的数据的 QCI。
在本发明实施例中, 可以预先在 UMTS站点中存储 QCI表项, 在 QCI 表项中可以记录有例如, 业务类型、 业务种类(Traffic class )与 QCI的映射 关系, 上述表 1示出了本发明实施例的 QCI表项的一例。
并且, 作为表 1中金牌用户、 银牌用户和铜牌用户 (或者说, 优先级) 的确定方式,可以基于 UMTS UE的分配 /预留优先( ARP, Allocation/Retention Priority )信息确定, 上述表 2示出了 ARP与优先级之间的映射关系的一例。
需要说明的是,以上列举的表 1仅为示例性说明,本发明并不限定于此, 例如, 由于 UMTS站点与 RNC之间的 UMTS信令也要通过 LTE站点传输, 因此,在本发明实施例中,可以为该 UMTS信令设置较高的 QCI,例如 130。
从而, UMTS站点 #1在接收到 UMTS UE#1发送的数据后, 可以确定该 UMTS站点 #1的 ARP以及该数据的 Traffic class, 从而可以根据上述表 1 , 确定该数据的 QCI。 并根据该 QCI的 QCI信息和 /或指示该数据的业务类型 的业务类型信息, 确定针对该数据的调度信息, 并发送至 LTE站点, 这里, 业务类型可以包括实时业务、 非实施业务或 UMTS信令。 例如:
对于实时业务, UMTS站点 #1可以按 QCI上报有数传需求的用户设备 的保证比特速率(GBR, guaranteed bit rate )之和。
对于非实时业务, UMTS站点 #1可以按 QCI上报用户设备的当前传输 速率, 如果存在多个 QCI相同的数据, 则上报最高的当前传输速率。
从而, LTE站点可以根据 UMTS站点 #1发送的调度信息, 进行针对该 UMTS站点 #1的数据的资源调度。 作为调度规则, 可以列举:
①. UMTS信令业务具有最高优先级。
② . 对实时业务, 根据上报的 GBR信息保证用户的 GBR速率。
③ . 对非实时业务, 选择优先级队列上 QCI最高的用户的 QCI和传输 速率进行优先级排序。
应理解, 以上列举的 LTE站点获取 UMTS站点传输的数据的 QCI的方 式仅为示例性说明, 本发明并未限定于此, 例如, 也可以在 RNC中存储上 述表 1 , 并由 RNC向 LTE站点下发所要传输的数据的 QCI。 根据本发明实施例的传输数据的方法, 通过使 LTE站点获取调度信息, 并根据该资源调度信息对在 UMTS站点与 RNC之间传输的数据进行资源调 度, 能够保证 LTE UE和 UMTS站点所服务的 UMTS UE之间的公平性。
在本发明实施例中, 由于 LTE 网络提供的带宽可能不能够满足 UMTS 站点 #1的需求, 因此, 可以引入流控机制, 避免下行数据在 LTE站点或上 行数据在 UMTS站点 #1被阻塞。
对于上行流控, 在一个时段内, UMTS站点 #1可以从 UMTS UE获得的 当前的上行速率, 并根据该上行速率控制非实时业务所在队列的队列长度, 然后根据队列緩存状态控制每个 UMTS UE往队列中发送的数据量, 最后根 据每个 UE在 UMTS站点 #1侧的緩存大小控制各用户设备在下一时段的传 输速率。
对于下行流控, 在一个时段内, UMTS站点 #1可以从 UMTS UE获得的 当前的下行速率,并用该下行速率减掉 UMTS信令和实时业务速率之后的结 果来等比压缩非实时业务的容量分配结果, 然后将该结果发送给 RNC, 使 RNC根据该容量分配结果调整在下一时段的传输速率。
根据本发明实施例的传输数据的方法, 通过引入流控处理, 使得 UMTS 网络的上下行容量能适配 UMTS站点 #1在 LTE网络中获得的资源, 避免下 行数据在 LTE站点被丟弃, 并避免上行数据在 UMTS站点 #1被丟弃, 从而 能够提高用户体验。
根据本发明实施例的传输数据的方法,通过使系统使用两种网络进行通 信, 并在第一网络的站点(第一节点)配置用于通过第二网络进行通信的协 议栈, 能够实现第一网络的站点与第二网络的站点进行通信, 通过使第一网 络的接入控制设备和第二网络的站点通信连接, 能够实现第一网络的接入控 制设备和第二网络的站点进行通信, 从而, 能够使第一网络的接入控制设备 和站点之间经由第二网络的站点进行通信, 由此, 能够有效增大第一节点与 第三节点之间的通信距离, 进而能够提高第一网络的覆盖范围, 并且, 通过 缩短第二节点与第三节点之间的距离, 能够通过较低地成本实现第二节点与 第三节点的通信, 由于第一节点与第二节点之间通过系统既存的第二网络进 行通信, 无需增设中继节点和通信连接设备, 进一步降低了系统建设成本。 下面, 结合图 5和图 6详细说明根据本发明实施例的传输数据的节点。 图 5示出了根据本发明一实施例的传输信息的节点 300的示意性框图。 该节点 300是通信系统中第一网络的站点, 如图 5所示该节点 300包括: 协议处理单元 310, 用于实现该第一网络的用户设备与该第一网络的接 入控制设备之间通信的第一协议栈处理, 以及用于实现第二网络的用户设备 与该第二网络的站点之间通信的第二协议栈处理;
收发单元 320, 用于向第二节点发送传输请求信息, 该传输请求信息用 于指示该第二节点在第三节点和该节点之间传输目标用户设备的数据, 以及 用于将经由该协议处理单元 310处理的该目标用户设备的数据,通过该第二 节点在该第三节点和该目标用户设备之间传输;
其中, 该第三节点是该通信系统中该第一网络的接入控制设备, 该第二 节点是该通信系统中该第二网络的站点。
可选地, 该协议处理单元 310还用于对数据进行在该第一协议栈和该第 二协议栈之间的转换处理, 以及
该收发单元 320具体用于使用该协议处理单元 310中的第二协议栈接收 该第二节点发送的由该第三节点发送给该目标用户设备的下行数据,通过该 协议处理单元 310将从该第二协议栈输出的数据的数据格式转换为该第一协 议栈能够识别的数据格式, 并使用该协议处理单元 310中的第一协议栈向该 目标用户设备发送该下行数据; 或,
该收发单元 320具体用于使用该协议处理单元 310中的第一协议栈接收 该目标用户设备向该第三节点发送的上行数据,通过该协议处理单元 310将 从该第一协议栈输出的数据的数据格式转换为该第二协议栈能够识别的数 据格式, 并使用该协议处理单元 310中的第二协议栈向该第二节点发送该上 行数据。
可选地, 该节点 300还包括: 确定单元 320, 用于确定调度信息, 该调 度信息用于指示用户设备的数量、该节点所对应的传输速率和该节点所对应 的传输时延中的至少一个参数, 其中, 该用户设备是当前通过该节点和该第 二节点传输数据的用户设备, 该节点所对应的传输速率是根据各该用户设备 的传输速率确定的, 该节点所对应的传输时延是根据各该用户设备的传输时 延确定的;
该收发单元 320还用与向该第二节点发送该确定单元确定的该调度信 息, 以便于该第二节点根据该调度信息进行资源调度, 以在该第三节点和该 节点之间传输该目标用户设备的数据。
可选地, 该节点所对应的传输速率或该节点所对应的传输时延是按照以 下任一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
可选地, 该第一网络为通用移动通讯系统 UMTS 网络, 该节点为基站 NodeB, 该第三节点为无线网络控制器 RNC, 该第二网络为长期演进 LTE 网络, 该第二节点为演进基站 eNodeB。 节点
根据本发明实施例的传输数据的节点 300可对应于本发明实施例的方法 中的第一节点(第一网络的站点, 例如, UMTS站点 #1 ), 并且, 该节点 300 中的各单元即模块和上述其他操作和 /或功能分别为了实现图 3中的方法 100 的相应流程, 为了筒洁, 在此不再赘述。
根据本发明实施例的传输数据的节点,通过使系统使用两种网络进行通 信, 并在第一网络的站点(第一节点)配置用于通过第二网络进行通信的协 议栈, 能够实现第一网络的站点与第二网络的站点进行通信, 通过使第一网 络的接入控制设备和第二网络的站点通信连接, 能够实现第一网络的接入控 制设备和第二网络的站点进行通信, 从而, 能够使第一网络的接入控制设备 和站点之间经由第二网络的站点进行通信, 由此, 能够有效增大第一节点与 第三节点之间的通信距离, 进而能够提高第一网络的覆盖范围, 并且, 通过 缩短第二节点与第三节点之间的距离, 能够通过较低地成本实现第二节点与 第三节点的通信, 由于第一节点与第二节点之间通过系统既存的第二网络进 行通信, 无需增设中继节点和通信连接设备, 进一步降低了系统建设成本。
图 6示出了根据本发明另一实施例的传输信息的节点节点 400的示意性 框图。 该节点 400是通信系统中第二网络的站点, 如图 6所示, 该节点 400 包括:
收发单元 410, 用于接收第一节点发送的传输请求信息, 该传输请求数 据用于指示该节点在第三节点和该第一节点之间传输目标用户设备的数据; 承载建立单元 420, 用于根据该传输请求消息在该第三节点与该第一节 点之间建立传输承载;
该收发单元 410还用于通过该传输承载,在该第三节点和该第一节点之 间传输该目标用户设备的数据;
其中, 该第一节点是该通信系统中第一网络的站点, 该第三节点是该通 信系统中该第一网络的接入控制设备, 该第一节点具有第一协议栈和第二协 议栈, 该第一协议栈包括第一网络的用户设备与第一网络的接入控制设备之 间通信的协议栈, 该第二协议栈包括第二网络的用户设备与第二网络的站点 之间通信的协议栈。
可选地, 该节点与该第三节点之间通信连接。
可选地, 该节点与该第三节点之间能够经由第四节点进行通信, 其中, 该第四节点是该第一网络的站点, 该节点与该第四节点通信连接, 该第三节 点与该第四节点通信连接, 以及
该承载建立单元 420具体用于根据该传输请求消息经由该第四节点,在 该第三节点与该第一节点之间建立传输承载。
可选地, 该节点与该第四节点共站址。
可选地,该收发单元 410还用于接收该第一节点发送的调度信息,其中, 该调度信息用于指示用户设备的数量、该第一节点所对应的传输速率和该第 一节点所对应的传输时延中的至少一个参数, 其中, 该用户设备是当前通过 该第一节点和该节点传输数据的用户设备, 该第一节点所对应的传输速率是 根据各该用户设备的传输速率确定的, 该第一节点所对应的传输时延是根据 各该用户设备的传输时延确定的;
用于根据该调度信息进行资源调度, 以在该第三节点和该第一节点之间 传输该目标用户设备的数据。
可选地, 该第一节点所对应的传输速率或该第一节点所对应的传输时延 是按照以下任一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
可选地,该第一网络为通用移动通讯系统 UMTS网络,该第一节点为基 站 NodeB,该第三节点为无线网络控制器 RNC,该第二网络为长期演进 LTE 网络, 该节点为演进基站 eNodeB。
根据本发明实施例的传输数据的节点 400可对应于本发明实施例的方法 中的第二节点 (第二网络的站点, 例如, LTE站点), 并且, 该节点 400中 的各单元即模块和上述其他操作和 /或功能分别为了实现图 4 中的方法 200 的相应流程, 为了筒洁, 在此不再赘述。
根据本发明实施例的传输数据的节点,通过使系统使用两种网络进行通 信, 并在第一网络的站点(第一节点)配置用于通过第二网络进行通信的协 议栈, 能够实现第一网络的站点与第二网络的站点进行通信, 通过使第一网 络的接入控制设备和第二网络的站点通信连接, 能够实现第一网络的接入控 制设备和第二网络的站点进行通信, 从而, 能够使第一网络的接入控制设备 和站点之间经由第二网络的站点进行通信, 由此, 能够有效增大第一节点与 第三节点之间的通信距离, 进而能够提高第一网络的覆盖范围, 并且, 通过 缩短第二节点与第三节点之间的距离, 能够通过较低地成本实现第二节点与 第三节点的通信, 由于第一节点与第二节点之间通过系统既存的第二网络进 行通信, 无需增设中继节点和通信连接设备, 进一步降低了系统建设成本。 下面, 结合图 7至图 8详细说明根据本发明实施例的传输数据的设备。
图 7示出了根据本发明实施例的传输数据的设备 500的示意性框图。该 设备 500是第一网络的站点, 第三节点是该第一网络的接入控制设备, 第二 节点是第二网络的站点, 该第二节点与该第三节点之间能够进行通信, 该设 备 500具有第一协议栈和第二协议栈, 该第一协议栈用于实现该第三节点与 用户设备之间在该第一网络中通信的数据处理, 该第二协议栈用于实现该设 备 500与该第二节点之间在该第二网络中通信的数据处理, 如图 7所示, 该 设备 500包括:
总线 510;
与所述总线 510相连的处理器 520;
与所述总线 510相连的存储器 530;
与所述总线 510相连的收发器 540
其中, 所述处理器 520通过所述总线 510, 调用所述存储器 530中存储 的程序, 以用于控制该收发器 540向该第二节点发送传输请求信息, 该传输 请求信息用于指示该第二节点在该第三节点和该第一节点之间传输目标用 户设备的数据;
用于控制该收发器 540, 经由该第一协议栈和该第二协议栈, 通过该第 二节点在该第三节点和该目标用户设备之间传输该目标用户设备的数据。
可选地, 在该第三节点、 该第二节点和该设备 500之间设置有用于传输 数据的至少一个承载, 以及
该处理器 520还用于确定用于传输该目标用户设备的数据的目标承载, 其中, 该目标承载与该目标用户设备的数据所属于的业务以及该目标用户设 备相对应, 或, 该目标承载与该目标用户设备的数据所属于的业务以及该设 备 500相对应;
用于控制该收发器 540通过该目标承载, 经由该第一协议栈和该第二协 议栈, 在该第二节点和该目标用户设备之间传输该目标用户设备的数据。
可选地,该处理器 520还用于控制该收发器 540接收该第二节点发送的 用于指示该目标承载的承载指示信息, 其中, 该目标承载是该第三节点从该 至少一个承载中确定并通知该第二节点的;
用于根据该承载指示信息, 确定该目标承载。
可选地, 在该第一协议栈和该第二协议栈之间设置有适配层, 该适配层 用于对数据进行在该第一协议栈和该第二协议栈之间的转换处理, 以及
该处理器 520还用于使用该第二协议栈接收该第二节点发送的由该第三 节点发送给该目标用户设备的下行数据,通过该适配层将从该第二协议栈输 出的数据的数据格式转换为该第一协议栈能够识别的数据格式, 并将使用该 第一协议栈向该目标用户设备发送该下行数据, 或
该处理器 520还用于该第一节点使用该第一协议栈接收该目标用户设备 向该第三节点发送的上行数据,通过该适配层将从该第一协议栈输出的数据 的数据格式转换为该第二协议栈能够识别的数据格式, 并使用该第二协议栈 向该第二节点发送该上行数据。
可选地, 该第二节点与该第三节点通信连接。
可选地, 该第二节点与该第三节点之间能够经由第四节点进行通信, 其 中, 该第四节点是该第一网络的站点, 该第二节点与该第四节点通信连接, 该第三节点与该第四节点通信连接。
可选地, 该第二节点与该第四节点共站址。
可选地, 该处理器 520还用于确定调度信息, 该调度信息用于指示用户 设备的数量、该设备 500所对应的传输速率和该设备 500所对应的传输时延 中的至少一个参数, 其中, 该用户设备是当前通过该设备 500和该第二节点 传输数据的用户设备,该设备 500所对应的传输速率是根据各该第一用户设 备的传输速率确定的,该设备 500所对应的传输时延是根据各该第一用户设 备的传输时延确定的;
用于控制该收发器 540向该第二节点发送该调度信息, 以便于该第二节 点根据该调度信息进行资源调度, 以在该第三节点和该设备 500之间传输该 目标用户设备的数据。 可选地, 该设备 500所对应的传输速率或该第一节点所对应的传输时延 是按照以下任一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
可选地,该第一网络为通用移动通讯系统 UMTS网络,该设备 500为基 站 NodeB ,该第三节点为无线网络控制器 RNC,该第二网络为长期演进 LTE 网络, 该第二节点为演进基站 eNodeB。
具体的应用中,设备 500可以嵌入或者本身可以就是例如基站之类的无 线通信设备, 还可以包括容纳发射电路和接收电路的载体, 以允许设备 500 和远程位置之间进行数据发射和接收。 在该实施例中, 收发器 540包括发射 电路、 接收电路、 功率控制器、 解码处理器及天线。 发射电路和接收电路可 以耦合到天线。 另外, 具体的不同产品中解码器可能与处理器 520集成为一 体。 辑框图。通用处理器 520可以是微处理器或者该处理器也可以是任何常规的 处理器, 解码器等。 结合本发明实施例所公开的方法的步骤可以直接体现为 硬件处理器执行完成, 或者用解码处理器中的硬件及软件模块组合执行完 成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器 或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介 质位于存储器 530, 处理器 520读取存储器 530中的信息, 结合其硬件完成 上述方法的步骤。
应理解,在本发明实施例中,该处理器 520可以是中央处理单元( Central Processing Unit, 筒称为 "CPU" ), 该处理器 520还可以是其他通用处理器、 数字信号处理器(DSP )、专用集成电路(ASIC )、现成可编程门阵列(FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 530可以包括只读存储器和随机存取存储器, 并向处理器 520 提供指令和数据。存储器 530的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 530还可以存储设备类型的信息。
该总线 510除包括数据总线之外, 还可以包括电源总线、 控制总线和状 态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线 510。
在实现过程中,上述方法的各步骤可以通过处理器 520中的硬件的集成 逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 530, 处理器 520读取存储器 530中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。 中的第一节点(第一网络的站点, 例如, UMTS站点 #1 ), 并且, 该设备 500 中的各单元即模块和上述其他操作和 /或功能分别为了实现图 3中的方法 100 的相应流程, 为了筒洁, 在此不再赘述。
根据本发明实施例的传输数据的设备,通过使系统使用两种网络进行通 信, 并在第一网络的站点(第一节点)配置用于通过第二网络进行通信的协 议栈, 能够实现第一网络的站点与第二网络的站点进行通信, 通过使第一网 络的接入控制设备和第二网络的站点通信连接, 能够实现第一网络的接入控 制设备和第二网络的站点进行通信, 从而, 能够使第一网络的接入控制设备 和站点之间经由第二网络的站点进行通信, 由此, 能够有效增大第一节点与 第三节点之间的通信距离, 进而能够提高第一网络的覆盖范围, 并且, 通过 缩短第二节点与第三节点之间的距离, 能够通过较低地成本实现第二节点与 第三节点的通信, 由于第一节点与第二节点之间通过系统既存的第二网络进 行通信, 无需增设中继节点和通信连接设备, 进一步降低了系统建设成本。
图 8示出了根据本发明实施例的传输数据的设备 600的示意性框图。该 设备 600是通信系统中第二网络的站点, 该通信系统还包括第三节点和第一 节点, 其中, 该通信系统能够使用第一网络和第二网络进行通信, 该第一节 点是该第一网络的站点, 该第三节点是该第一网络的接入控制设备, 该第二 节点是该第二网络的站点, 该第一节点具有第一协议栈和第二协议栈, 该第 一协议栈包括第一网络的用户设备与第一网络的接入控制设备之间通信的 协议栈,该第二协议栈包括第二网络的用户设备与第二网络的站点之间通信 的协议栈,, 如图 8所示, 该设备 600包括:
总线 610;
与所述总线 610相连的处理器 620;
与所述总线 610相连的存储器 630; 与所述总线 610相连的收发器 640
其中, 所述处理器 620通过所述总线 610, 调用所述存储器 630中存储 的程序, 以用于控制该收发器 640接收该第一节点发送的传输请求信息, 该 传输请求数据用于指示该设备 600在该第三节点和该第一节点之间传输目标 用户设备的数据;
用于根据该传输请求消息在该第三节点和该第一节点之间建立传输承 载;
用于控制该收发器 640通过该传输承载传输该目标用户设备的数据。 可选地, 在该第三节点、 该设备 600和该第一节点之间设置有用于传输 数据的至少一个承载, 以及
该处理器 620 具体用于确定用于传输该目标用户设备的数据的目标承 载, 其中, 该目标承载与该目标用户设备的数据所属于的业务以及该目标用 户设备相对应, 或, 该目标承载与该目标用户设备的数据所属于的业务以及 该第一节点相对应;
用于控制该收发器 640通过该目标承载,在该第三节点和该第一节点之 间传输该目标用户设备的数据。
可选地,该处理器 620还用于控制该收发器 640接收该第三节点发送的 用于指示该目标承载的承载指示信息, 其中, 该目标承载是该第三节点从该 至少一个承载中确定的;
用于根据该承载指示信息, 确定该目标承载;
用于控制该收发器 640向该第一节点发送该承载指示信息, 以便于该第 一节点, 根据该承载指示信息, 确定该目标承载, 并通过该目标承载, 经由 该第一协议栈和该第二协议栈,在该设备 600和该目标用户设备之间传输该 目标用户设备的数据。
可选地, 该设备 600与该第三节点之间进行通信连接。
可选地, 该设备 600与该第三节点之间能够经由第四节点进行通信, 其 中, 该第四节点是该第一网络的站点, 该设备 600与该第四节点通信连接, 该第三节点与该第四节点通信连接, 以及
该处理器 620具体用于根据该传输请求消息经由该第四节点,在该第三 节点和该第一节点之间建立传输承载。
可选地, 该设备 600与该第四节点共站址。 可选地,该处理器 620还用于控制该收发器 640接收该第一节点发送的 调度信息, 其中, 该调度信息用于指示用户设备的数量、 该第一节点所对应 的传输速率和该第一节点所对应的传输时延中的至少一个参数, 其中, 该用 户设备是当前通过该第一节点和该设备 600传输数据的用户设备, 该第一节 点所对应的传输速率是根据各该用户设备的传输速率确定的, 该第一节点所 对应的传输时延是根据各该用户设备的传输时延确定的;
用于根据该调度信息进行资源调度, 以在该第三节点和该第一节点之间 传输该目标用户设备的数据。
可选地, 该第一节点所对应的传输速率或该第一节点所对应的传输时延 是按照以下任一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
可选地,该第一网络为通用移动通讯系统 UMTS网络,该第一节点为基 站 NodeB,该第三节点为无线网络控制器 RNC,该第二网络为长期演进 LTE 网络, 该设备 600为演进基站 eNodeB。
具体的应用中,设备 600可以嵌入或者本身可以就是例如基站之类的无 线通信设备, 还可以包括容纳发射电路和接收电路的载体, 以允许设备 600 和远程位置之间进行数据发射和接收。 在该实施例中, 收发器 640包括发射 电路、 接收电路、 功率控制器、 解码处理器及天线。 发射电路和接收电路可 以耦合到天线。 另外, 具体的不同产品中解码器可能与处理器 620集成为一 体。 辑框图。通用处理器 620可以是微处理器或者该处理器也可以是任何常规的 处理器, 解码器等。 结合本发明实施例所公开的方法的步骤可以直接体现为 硬件处理器执行完成, 或者用解码处理器中的硬件及软件模块组合执行完 成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器 或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介 质位于存储器 630, 处理器 620读取存储器 630中的信息, 结合其硬件完成 上述方法的步骤。
应理解,在本发明实施例中,该处理器 620可以是中央处理单元( Central Processing Unit, 筒称为 "CPU" ), 该处理器 620还可以是其他通用处理器、 数字信号处理器(DSP )、专用集成电路(ASIC )、现成可编程门阵列(FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 630可以包括只读存储器和随机存取存储器, 并向处理器 620 提供指令和数据。存储器 630的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 630还可以存储设备类型的信息。
该总线 610除包括数据总线之外, 还可以包括电源总线、 控制总线和状 态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线 610。
在实现过程中,上述方法的各步骤可以通过处理器 620中的硬件的集成 逻辑电路或者软件形式的指令完成。 结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 630, 处理器 620读取存储器 630中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。 中的第二节点 (第二网络的站点, 例如, LTE站点), 并且, 该设备 600中 的各单元即模块和上述其他操作和 /或功能分别为了实现图 4 中的方法 200 的相应流程, 为了筒洁, 在此不再赘述。
根据本发明实施例的传输数据的设备,通过使系统使用两种网络进行通 信, 并在第一网络的站点(第一节点)配置用于通过第二网络进行通信的协 议栈, 能够实现第一网络的站点与第二网络的站点进行通信, 通过使第一网 络的接入控制设备和第二网络的站点通信连接, 能够实现第一网络的接入控 制设备和第二网络的站点进行通信, 从而, 能够使第一网络的接入控制设备 和站点之间经由第二网络的站点进行通信, 由此, 能够有效增大第一节点与 第三节点之间的通信距离, 进而能够提高第一网络的覆盖范围, 并且, 通过 缩短第二节点与第三节点之间的距离, 能够通过较低地成本实现第二节点与 第三节点的通信, 由于第一节点与第二节点之间通过系统既存的第二网络进 行通信, 无需增设中继节点和通信连接设备, 进一步降低了系统建设成本。 下面, 结合图 9详细说明根据本发明实施例的传输数据的系统。
图 9是本发明一实施例的传输数据的系统 700的示意性框图。该通信系 统 700能够使用第一网络和第二网络进行通信, 如图 9所示, 该系统 700包 括:
第一节点 710, 作为该第一网络的站点, 具体有第一协议栈和第二协议 栈, 该第一协议栈包括第一网络的用户设备与第一网络的接入控制设备之间 通信的协议栈,该第二协议栈包括第二网络的用户设备与第二网络的站点之 间通信的协议栈, 该第一节点 710用于向第二节点 720发送传输请求信息, 该传输请求信息用于指示该第二节点 720在第三节点 730和该第一节点 710 之间传输目标用户设备的数据, 并经由第一协议栈和第二协议栈, 通过该第 二节点 720在该第三节点 730和该目标用户设备之间传输该目标用户设备的 数据;
第二节点 720, 作为该第二网络的站点, 用于接收该传输请求, 并根据 该传输请求在该第三节点 730和该第一节点 710之间传输该目标用户设备的 数据;
第三节点 730, 作为该第一网络的接入控制设备, 用于经由该第一节点 710和该第二节点 720, 与该目标用户设备之间传输该目标用户设备的数据。
可选地, 该第二节点 720与该第三节点 730通信连接。
可选地, 该第二节点 720与该第三节点 730之间能够经由第四节点进行 通信, 其中, 该第四节点是该第一网络的站点, 该第二节点 720与该第四节 点通信连接, 该第三节点 730与该第四节点通信连接。
可选地, 该第二节点 720与该第四节点共站址。
可选地, 该第一节点 710还用于向该第二节点 720发送的调度信息, 其 中, 该调度信息用于指示用户设备的数量、 该第一节点 710所对应的传输速 率和该第一节点 710所对应的传输时延中的至少一个参数, 其中, 该用户设 备是当前通过该第一节点 710和该第二节点 720传输数据的用户设备,该第 一节点 710所对应的传输速率是根据各该用户设备的传输速率确定的,该第 一节点 710所对应的传输时延是根据各该用户设备的传输时延确定的;
该第二节点 720还用于根据该调度信息进行资源调度, 以在该第三节点 730和该第一节点 710之间传输该目标用户设备的数据。
可选地, 该第一节点 710所对应的传输速率或该第一节点 710所对应的 传输时延是按照以下任一参数确定的: 业务类型、 用户优先级或服务质量类 别标识 QCI。 可选地, 该第一网络为通用移动通讯系统 UMTS网络, 该第一节点 710 为基站 NodeB, 该第三节点 730为无线网络控制器 RNC, 该第二网络为长 期演进 LTE网络, 该第二节点 720为演进基站 eNodeB。
根据本发明实施例的传输数据的系统 700中, 第一节点 710可对应于本 发明实施例的方法中的第一节点(第一网络的站点, 例如, UMTS站点 #1 ), 并且,该第一节点 710中的各单元即模块和上述其他操作和 /或功能分别为了 实现图 3中的方法 100的相应流程,为了筒洁,在此不再赘述。第二节点 720 可对应于本发明实施例的方法中的第二节点 (第二网络的站点, 例如, LTE 站点), 并且, 该第二节点 720中的各单元即模块和上述其他操作和 /或功能 分别为了实现图 4中的方法 200的相应流程, 为了筒洁, 在此不再赘述。 第 三节点 730可对应于本发明实施例的方法中的第三节点(第一网络的接入控 制设备, 例如, RNC )。
根据本发明实施例的传输数据的系统,通过使系统使用两种网络进行通 信, 并在第一网络的站点(第一节点)配置用于通过第二网络进行通信的协 议栈, 能够实现第一网络的站点与第二网络的站点进行通信, 通过使第一网 络的接入控制设备和第二网络的站点通信连接, 能够实现第一网络的接入控 制设备和第二网络的站点进行通信, 从而, 能够使第一网络的接入控制设备 和站点之间经由第二网络的站点进行通信, 由此, 能够有效增大第一节点与 第三节点之间的通信距离, 进而能够提高第一网络的覆盖范围, 并且, 通过 缩短第二节点与第三节点之间的距离, 能够通过较低地成本实现第二节点与 第三节点的通信, 由于第一节点与第二节点之间通过系统既存的第二网络进 行通信, 无需增设中继节点和通信连接设备, 进一步降低了系统建设成本。
应理解, 本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存 在 A和 B, 单独存在 B这三种情况。 另外, 本文中字符 "/" , 一般表示前后 关联对象是一种 "或" 的关系。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM , Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1、 一种传输数据的方法, 其特征在于, 由通信系统中的第一节点执行, 所述通信系统还包括第三节点和第二节点, 其中, 所述通信系统能够使用第 一网络和第二网络进行通信, 所述第一节点是所述第一网络的站点, 所述第 三节点是所述第一网络的接入控制设备, 所述第二节点是所述第二网络的站 点, 所述第一节点具有第一协议栈和第二协议栈, 所述第一协议栈包括第一 网络的用户设备与第一网络的接入控制设备之间通信的协议栈,所述第二协 议栈包括第二网络的用户设备与第二网络的站点之间通信的协议栈, 所述方 法包括:
所述第一节点向所述第二节点发送传输请求信息, 所述传输请求信息用 于指示所述第二节点在所述第三节点和所述第一节点之间传输目标用户设 备的数据;
所述第一节点经由所述第一协议栈和所述第二协议栈,通过所述第二节 点在所述第三节点和所述目标用户设备之间传输所述目标用户设备的数据。
2、 根据权利要求 1所述的方法, 其特征在于, 在所述第一协议栈和所 述第二协议栈之间设置有适配层, 所述适配层用于对数据进行在所述第一协 议栈和所述第二协议栈之间的转换处理, 以及
所述第一节点经由所述第一协议栈和所述第二协议栈,通过所述第二节 点在所述第三节点和所述目标用户设备之间传输所述目标用户设备的数据, 包括:
所述第一节点使用所述第二协议栈接收所述第二节点发送的由所述第 三节点发送给所述目标用户设备的下行数据,通过所述适配层将从所述第二 协议栈输出的数据的数据格式转换为所述第一协议栈能够识别的数据格式, 并将使用所述第一协议栈向所述目标用户设备发送所述下行数据, 或
所述第一节点使用所述第一协议栈接收所述目标用户设备向所述第三 节点发送的上行数据,通过所述适配层将从所述第一协议栈输出的数据的数 据格式转换为所述第二协议栈能够识别的数据格式, 并使用所述第二协议栈 向所述第二节点发送所述上行数据。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述第二节点与所 述第三节点通信连接。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 所述第二节点与所 述第三节点之间能够经由第四节点进行通信, 其中, 所述第四节点是所述第 一网络的站点, 所述第二节点与所述第四节点通信连接, 所述第三节点与所 述第四节点通信连接。
5、 根据权利要求 4所述的方法, 其特征在于, 所述第二节点与所述第 四节点共站址。
6、 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述方法 还包括:
所述第一节点确定调度信息, 所述调度信息用于指示所述用户设备的数 量、所述第一节点所对应的传输速率和所述第一节点所对应的传输时延中的 至少一个参数, 其中, 所述用户设备是当前通过所述第一节点和所述第二节 点传输数据的用户设备,所述第一节点所对应的传输速率是根据各所述用户 设备的传输速率确定的,所述第一节点所对应的传输时延是根据各所述用户 设备的传输时延确定的;
所述第一节点向所述第二节点发送调度信息, 以便于所述第二节点根据 所述调度信息进行资源调度, 以在所述第三节点和所述第一节点之间传输所 述目标用户设备的数据。
7、 根据权利要求 6所述的方法, 其特征在于, 所述第一节点所对应的 传输速率或所述第一节点所对应的传输时延是按照以下任一参数确定的: 业 务类型、 用户优先级或服务质量类别标识 QCI。
8、 根据权利要求 1至 7中任一项所述的方法, 其特征在于, 所述第一 网络为通用移动通讯系统 UMTS网络, 所述第一节点为基站 NodeB, 所述 第三节点为无线网络控制器 RNC, 所述第二网络为长期演进 LTE网络, 所 述第二节点为演进基站 eNodeB。
9、 一种传输数据的方法, 其特征在于, 由通信系统中的第二节点执行, 所述通信系统还包括第三节点和第一节点, 其中, 所述通信系统能够使用第 一网络和第二网络进行通信, 所述第一节点是所述第一网络的站点, 所述第 三节点是所述第一网络的接入控制设备, 所述第二节点是所述第二网络的站 点, 所述第一节点具有第一协议栈和第二协议栈, 所述第一协议栈包括第一 网络的用户设备与第一网络的接入控制设备之间通信的协议栈,所述第二协 议栈包括第二网络的用户设备与第二网络的站点之间通信的协议栈, 所述方 法包括: 所述第二节点接收所述第一节点发送的传输请求信息, 所述传输请求数 据用于指示所述第二节点在所述第三节点和所述第一节点之间传输目标用 户设备的数据;
所述第二节点根据所述传输请求消息在所述第三节点和所述第一节点 之间建立传输 载;
所述第二节点通过所述传输承载传输所述目标用户设备的数据。
10、 根据权利要求 9所述的方法, 其特征在于, 所述第二节点与所述第 三节点之间进行通信连接。
11、 根据权利要求 9所述的方法, 其特征在于, 所述第二节点与所述第 三节点之间能够经由第四节点进行通信, 其中, 所述第四节点是所述第一网 络的站点, 所述第二节点与所述第四节点通信连接, 所述第三节点与所述第 四节点通信连接, 以及
所述第二节点根据所述传输请求消息在所述第三节点和所述第一节点 之间建立传输承载, 包括:
所述第二节点根据所述传输请求消息经由所述第四节点,在所述第三节 点和所述第一节点之间建立传输承载。
12、 根据权利要求 11所述的方法, 其特征在于, 所述第二节点与所述 第四节点共站址。
13、 根据权利要求 9至 12中任一项所述的方法, 其特征在于, 所述第 二节点在所述第三节点和所述第一节点之间传输所述目标用户设备的数据, 包括:
所述第二节点接收所述第一节点发送的调度信息, 其中, 所述调度信息 用于指示用户设备的数量、所述第一节点所对应的传输速率和所述第一节点 所对应的传输时延中的至少一个参数, 其中, 所述用户设备是当前通过所述 第一节点和所述第二节点传输数据的用户设备, 所述第一节点所对应的传输 速率是根据各所述用户设备的传输速率确定的, 所述第一节点所对应的传输 时延是根据各所述用户设备的传输时延确定的;
所述第二节点根据所述调度信息进行资源调度, 以在所述第三节点和所 述第一节点之间传输所述目标用户设备的数据。
14、 根据权利要求 13所述的方法, 其特征在于, 所述第一节点所对应 的传输速率或所述第一节点所对应的传输时延是按照以下任一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
15、 根据权利要求 9至 14中任一项所述的方法, 其特征在于, 所述第 一网络为通用移动通讯系统 UMTS网络, 所述第一节点为基站 NodeB, 所 述第三节点为无线网络控制器 RNC, 所述第二网络为长期演进 LTE网络, 所述第二节点为演进基站 eNodeB。
16、 一种传输数据的节点, 其特征在于, 所述节点是通信系统中第一网 络的站点, 所述节点包括:
协议处理单元, 用于实现所述第一网络的用户设备与所述第一网络的接 入控制设备之间通信的第一协议栈处理, 以及用于实现第二网络的用户设备 与所述第二网络的站点之间通信的第二协议栈处理;
收发单元, 用于向第二节点发送传输请求信息, 所述传输请求信息用于 指示所述第二节点在第三节点和所述节点之间传输目标用户设备的数据, 以 及用于将经由所述协议处理单元处理的所述目标用户设备的数据,通过所述 第二节点在所述第三节点和所述目标用户设备之间传输;
其中, 所述第三节点是所述通信系统中所述第一网络的接入控制设备, 所述第二节点是所述通信系统中所述第二网络的站点。
17、 根据权利要求 16所述的节点, 其特征在于, 所述协议处理单元还 用于对数据进行在所述第一协议栈和所述第二协议栈之间的转换处理, 以及 所述收发单元具体用于使用所述协议处理单元中的第二协议栈接收所 述第二节点发送的由所述第三节点发送给所述目标用户设备的下行数据,通 过所述协议处理单元将从所述第二协议栈输出的数据的数据格式转换为所 述第一协议栈能够识别的数据格式, 并使用所述协议处理单元中的第一协议 栈向所述目标用户设备发送所述下行数据; 或,
所述收发单元具体用于使用所述协议处理单元中的第一协议栈接收所 述目标用户设备向所述第三节点发送的上行数据,通过所述协议处理单元将 从所述第一协议栈输出的数据的数据格式转换为所述第二协议栈能够识别 的数据格式, 并使用所述协议处理单元中的第二协议栈向所述第二节点发送 所述上行数据。
18、根据权利要求 16或 17所述的节点,其特征在于,所述节点还包括: 确定单元, 用于确定调度信息, 所述调度信息用于指示用户设备的数量、 所 述节点所对应的传输速率和所述节点所对应的传输时延中的至少一个参数, 其中, 所述用户设备是当前通过所述节点和所述第二节点传输数据的用户设 备, 所述节点所对应的传输速率是根据各所述用户设备的传输速率确定的, 所述节点所对应的传输时延是根据各所述用户设备的传输时延确定的; 所述收发单元还用与向所述第二节点发送所述确定单元确定的所述调 度信息, 以便于所述第二节点根据所述调度信息进行资源调度, 以在所述第 三节点和所述节点之间传输所述目标用户设备的数据。
19、 根据权利要求 18所述的节点, 其特征在于, 所述节点所对应的传 输速率或所述节点所对应的传输时延是按照以下任一参数确定的: 业务类 型、 用户优先级或服务质量类别标识 QCI。
20、 根据权利要求 16至 19任一项所述的节点, 其特征在于, 所述第一 网络为通用移动通讯系统 UMTS网络, 所述节点为基站 NodeB , 所述第三 节点为无线网络控制器 RNC, 所述第二网络为长期演进 LTE网络, 所述第 二节点为演进基站 eNodeB。
21、 一种传输数据的节点, 其特征在于, 所述节点是通信系统中第二网 络的站点, 所述节点包括:
收发单元, 用于接收第一节点发送的传输请求信息, 所述传输请求数据 用于指示所述节点在第三节点和所述第一节点之间传输目标用户设备的数 据;
^^载建立单元, 用于根据所述传输请求消息在所述第三节点与所述第一 节点之间建立传输承载;
所述收发单元还用于通过所述传输承载,在所述第三节点和所述第一节 点之间传输所述目标用户设备的数据;
其中, 所述第一节点是所述通信系统中第一网络的站点, 所述第三节点 是所述通信系统中所述第一网络的接入控制设备,所述第一节点具有第一协 议栈和第二协议栈, 所述第一协议栈包括第一网络的用户设备与第一网络的 接入控制设备之间通信的协议栈, 所述第二协议栈包括第二网络的用户设备 与第二网络的站点之间通信的协议栈。
22、 根据权利要求 21所述的节点, 其特征在于, 所述节点与所述第三 节点之间通信连接。
23、 根据权利要求 21所述的节点, 其特征在于, 所述节点与所述第三 节点之间能够经由第四节点进行通信, 其中, 所述第四节点是所述第一网络 的站点, 所述节点与所述第四节点通信连接, 所述第三节点与所述第四节点 通信连接, 以及
所述承载建立单元具体用于根据所述传输请求消息经由所述第四节点, 在所述第三节点与所述第一节点之间建立传输承载。
24、 根据权利要求 23所述的节点, 其特征在于, 所述节点与所述第四 节点共站址。
25、 根据权利要求 21至 24中任一项所述的节点, 其特征在于, 所述收 发单元还用于接收所述第一节点发送的调度信息, 其中, 所述调度信息用于 指示用户设备的数量、所述第一节点所对应的传输速率和所述第一节点所对 应的传输时延中的至少一个参数, 其中, 所述用户设备是当前通过所述第一 节点和所述装置传输数据的用户设备, 所述第一节点所对应的传输速率是根 据各所述用户设备的传输速率确定的, 所述第一节点所对应的传输时延是根 据各所述用户设备的传输时延确定的;
用于根据所述调度信息进行资源调度, 以在所述第三节点和所述第一节 点之间传输所述目标用户设备的数据。
26、 根据权利要求 25所述的节点, 其特征在于, 所述第一节点所对应 的传输速率或所述第一节点所对应的传输时延是按照以下任一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
27、 根据权利要求 21至 26任一项所述的节点, 其特征在于, 所述第一 网络为通用移动通讯系统 UMTS网络, 所述第一节点为基站 NodeB, 所述 第三节点为无线网络控制器 RNC, 所述第二网络为长期演进 LTE网络, 所 述节点为演进基站 eNodeB。
28、 一种传输数据的系统, 其特征在于, 所述通信系统能够使用第一网 络和第二网络进行通信, 所述系统包括:
第一节点,作为所述第一网络的站点,具体有第一协议栈和第二协议栈, 所述第一协议栈包括第一网络的用户设备与第一网络的接入控制设备之间 通信的协议栈,所述第二协议栈包括第二网络的用户设备与第二网络的站点 之间通信的协议栈, 所述第一节点用于向第二节点发送传输请求信息, 所述 传输请求信息用于指示所述第二节点在第三节点和所述第一节点之间传输 目标用户设备的数据, 并经由第一协议栈和第二协议栈, 通过所述第二节点 在所述第三节点和所述目标用户设备之间传输所述目标用户设备的数据; 第二节点, 作为所述第二网络的站点, 用于接收所述传输请求, 并根据 所述传输请求在所述第三节点和所述第一节点之间传输所述目标用户设备 的数据;
第三节点, 作为所述第一网络的接入控制设备, 用于经由所述第一节点 和所述第二节点, 与所述目标用户设备之间传输所述目标用户设备的数据。
29、 根据权利要求 28所述的系统, 其特征在于, 所述第二节点与所述 第三节点通信连接。
30、 根据权利要求 28所述的系统, 其特征在于, 所述第二节点与所述 第三节点之间能够经由第四节点进行通信, 其中, 所述第四节点是所述第一 网络的站点, 所述第二节点与所述第四节点通信连接, 所述第三节点与所述 第四节点通信连接。
31、 根据权利要求 30所述的系统, 其特征在于, 所述第二节点与所述 第四节点共站址。
32、 根据权利要求 28至 31中任一项所述的系统, 其特征在于, 所述第 一节点还用于向所述第二节点发送的调度信息, 其中, 所述调度信息用于指 示用户设备的数量、所述第一节点所对应的传输速率和所述第一节点所对应 的传输时延中的至少一个参数, 其中, 所述用户设备是当前通过所述第一节 点和所述第二节点传输数据的用户设备, 所述第一节点所对应的传输速率是 根据各所述用户设备的传输速率确定的, 所述第一节点所对应的传输时延是 根据各所述用户设备的传输时延确定的;
所述第二节点还用于根据所述调度信息进行资源调度, 以在所述第三节 点和所述第一节点之间传输所述目标用户设备的数据。
33、 根据权利要求 32所述的系统, 其特征在于, 所述第一节点所对应 的传输速率或所述第一节点所对应的传输时延是按照以下任一参数确定的: 业务类型、 用户优先级或服务质量类别标识 QCI。
34、 根据权利要求 28至 33任一项所述的系统, 其特征在于, 所述第一 网络为通用移动通讯系统 UMTS网络, 所述第一节点为基站 NodeB, 所述 第三节点为无线网络控制器 RNC, 所述第二网络为长期演进 LTE网络, 所 述第二节点为演进基站 eNodeB。
PCT/CN2013/088727 2013-12-06 2013-12-06 传输数据的方法、装置和系统 WO2015081553A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380002807.2A CN103814596B (zh) 2013-12-06 2013-12-06 传输数据的方法、装置和系统
PCT/CN2013/088727 WO2015081553A1 (zh) 2013-12-06 2013-12-06 传输数据的方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088727 WO2015081553A1 (zh) 2013-12-06 2013-12-06 传输数据的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2015081553A1 true WO2015081553A1 (zh) 2015-06-11

Family

ID=50709730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088727 WO2015081553A1 (zh) 2013-12-06 2013-12-06 传输数据的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN103814596B (zh)
WO (1) WO2015081553A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10904882B2 (en) * 2019-03-25 2021-01-26 Cisco Technology, Inc. Systems and methods for scaling short range local area networks using dual interfaced first hub nodes and transmission schedule mapping

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578605A (zh) * 2014-10-13 2016-05-11 中兴通讯股份有限公司 服务质量分类标识qci业务的调度方法及装置
CN105704098B (zh) * 2014-11-26 2019-03-01 杭州华为数字技术有限公司 一种虚拟化网络的数据传输方法,节点控制器及系统
CN107431919A (zh) * 2015-04-07 2017-12-01 华为技术有限公司 用于多流汇聚的方法和装置
JP6714707B2 (ja) 2016-03-30 2020-06-24 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 中継伝送方法
US10841789B2 (en) 2016-06-03 2020-11-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for relay transmission
CN109561128B (zh) * 2017-09-27 2022-05-20 北京国双科技有限公司 数据传输方法和装置
CN111328149B (zh) * 2018-12-14 2024-04-16 北京三星通信技术研究有限公司 调度方法、相应节点、ue以及计算机可读介质
CN111935083B (zh) * 2020-06-29 2022-08-09 飞诺门阵(北京)科技有限公司 一种业务处理方法、装置、电子设备及存储介质
CN115150338A (zh) * 2021-03-29 2022-10-04 华为技术有限公司 报文流量控制的方法、装置、设备及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309808A2 (en) * 2009-10-12 2011-04-13 Electronics and Telecommunications Research Institute Providing service using relay node in 3rd generation partnership project (3gpp) long term evolution (lte)-advanced system
CN102077649A (zh) * 2008-06-30 2011-05-25 阿尔卡特朗讯公司 一种用于在不同技术类型的网络间传递信息的方法
CN102405610A (zh) * 2009-04-21 2012-04-04 Lg电子株式会社 在无线通信系统中使用中继节点的方法
US20130023301A1 (en) * 2011-07-21 2013-01-24 Alcatel-Lucent Telecom Ltd. Method of sharing information between base stations associated with different network technologies and the base stations

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064901B (zh) * 2006-04-29 2010-09-15 上海贝尔阿尔卡特股份有限公司 无线多跳中继接入网的接入方法、中继站、基站和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102077649A (zh) * 2008-06-30 2011-05-25 阿尔卡特朗讯公司 一种用于在不同技术类型的网络间传递信息的方法
CN102405610A (zh) * 2009-04-21 2012-04-04 Lg电子株式会社 在无线通信系统中使用中继节点的方法
EP2309808A2 (en) * 2009-10-12 2011-04-13 Electronics and Telecommunications Research Institute Providing service using relay node in 3rd generation partnership project (3gpp) long term evolution (lte)-advanced system
US20130023301A1 (en) * 2011-07-21 2013-01-24 Alcatel-Lucent Telecom Ltd. Method of sharing information between base stations associated with different network technologies and the base stations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10904882B2 (en) * 2019-03-25 2021-01-26 Cisco Technology, Inc. Systems and methods for scaling short range local area networks using dual interfaced first hub nodes and transmission schedule mapping

Also Published As

Publication number Publication date
CN103814596A (zh) 2014-05-21
CN103814596B (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
US10412650B2 (en) Data transmission method, apparatus and system
WO2015081553A1 (zh) 传输数据的方法、装置和系统
JP6772281B2 (ja) 無線リソース制御接続を確立するための方法及び装置
WO2017166138A1 (zh) 中继传输的方法和装置
CN110636575B (zh) 一种切换方法及装置
JP5996798B2 (ja) 無線通信システムにおけるデータ転送の中継ノード集約
JP2019520727A (ja) 中継伝送方法及び装置
EP3737183B1 (en) Communication methods, apparatuses and computer-readable storage medium
CN110505714B (zh) 多链接通信方法、设备和终端
JP6731488B2 (ja) 中継伝送方法及び装置
US11510083B2 (en) Method and apparatus for sending data volume report
US11974162B2 (en) Communication method and device
WO2020114237A1 (zh) 数据传输方法与通信装置
WO2015062063A1 (zh) 传输数据的方法、装置和系统
CN113873582B (zh) 一种移动边缘计算处理方法以及相关设备
EP3457758B1 (en) Data transmission methods and devices
CN109906646B (zh) 信息传输方法、基站和终端设备
US20230217426A1 (en) Resource allocation method and apparatus and system
WO2014000611A1 (zh) 传输数据的方法和装置
US20240031870A1 (en) Media data transmission method and communication apparatus
WO2024082361A1 (en) Method and apparatus of data transmission
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
WO2022152330A1 (zh) 传输数据的方法及相关产品
US20230345323A1 (en) Data transmission method and apparatus
WO2024032211A1 (zh) 一种拥塞控制方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898573

Country of ref document: EP

Kind code of ref document: A1