WO2015080545A1 - Formulacion con hongos entomopatogenos para el control de plagas - Google Patents

Formulacion con hongos entomopatogenos para el control de plagas Download PDF

Info

Publication number
WO2015080545A1
WO2015080545A1 PCT/MX2014/000170 MX2014000170W WO2015080545A1 WO 2015080545 A1 WO2015080545 A1 WO 2015080545A1 MX 2014000170 W MX2014000170 W MX 2014000170W WO 2015080545 A1 WO2015080545 A1 WO 2015080545A1
Authority
WO
WIPO (PCT)
Prior art keywords
fungi
formulation
fungus
entomopathogenic
boophilus
Prior art date
Application number
PCT/MX2014/000170
Other languages
English (en)
French (fr)
Inventor
Antonio Andrés PASCUAL GARCIA
Original Assignee
Centro Universitario De Estudios E Investigacion De Proyetos, S.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro Universitario De Estudios E Investigacion De Proyetos, S.C. filed Critical Centro Universitario De Estudios E Investigacion De Proyetos, S.C.
Publication of WO2015080545A1 publication Critical patent/WO2015080545A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom

Definitions

  • the present invention is part of the Agroindustrial-livestock Sector and the prevailing need to exterminate the various pests, particularly the Bóophilus tick and which have become serious triggers that invalidate efforts in livestock production.
  • entomopathogenic fungi can eliminate or maintain pests at levels that do not cause economic damage to livestock. These fungi are found in crop stubble, manure, in the soil, plants; achieving a good development in cool, humid places and with little sun. They are also the most important group in the biological control of insect pests. Virtually all insects are susceptible to some of the fungal diseases.
  • Entomopathogenic fungi have been known for two millennia, when the Chinese identified species of Cordyceps and Isaria from specimens of the silkworm and a species of cicada (Chicharra or cicada). Agostino Bassi in 1836 recounts a treatise on the disease of the silkworm, muscardine, whose causative agent was Beauveria bassiana.
  • entomopathogenic fungi Approximately 100 genera and 700 species of entomopathogenic fungi are known. Among the most important genera are: Metarhizium, Beauveria, Aschersonia, Entomophthora, Zoophthora, Erynia, Eryniopsis, Akanthomyces, Fusarium, Hirsutella, Hymenostilbe, Paecelomyces and Verticillium.
  • To use entomopathogenic fungi as insecticides massive amounts of the fungus must be produced, which must maintain its infective capacity for a considerable period of time. Fungi have been reproduced for use as biological agents of pests for 1ÜU years, for which different methods of reproduction have been used. Among them, the use of substrates such as rice, wheat and liquid media through more sophisticated techniques.
  • fungi for pest control involves extensive research involving disciplines such as pathology, ecology, genetics, physiology, mass production, formulation and application strategies.
  • Entomopathogenic fungi have been known for two millennia, when the Chinese identified species of Córdyceps and Isaria from specimens of the silkworm and a species of cicada (Chicharra or cicada).
  • Agostino Bassi in 1836 recounts a treatise on the disease of the silkworm, muscardine, whose causative agent was Beauveria bassiana. This is why the object of the present invention is focused on combating this irtfestacióri and secondary pests since from about 20 to 30 ticks per animal the damage begins to have economic effects (loss of weight gain or milk production , possible negative effect on fertility, weakening that favors other diseases). It has been estimated that an infestation of 50 or more females full of Boophilus ticks in addition to secondary pests causes an annual reduction in weight gain of about 500 grams per tick. In dairy cattle the reduction of the annual milk production of an animal can be 200 liters or more.
  • B. bassiana an element used in the Formulation with Entomopathogenic Fungi for pest control was registered in 1999 as "Mycotrol” by the Enviromental Protection Agency in the United States, which is used in the field to control grasshoppers, whiteflies, thrips , aphids and many other insect pests. This product is stable for more than 12 months stored at 25 0 C based on what was described by Wraight, Jackson, Kóck, (2001). There are two other formulated from B. bassiana marketed as “BotanicGard” that is recommended for use in farmhouses and “Mycotrol O” that contains ingredients in the formulation that allows use by farmers in the United States as established by Shah and Pell, 2003.
  • Some very simple granulated formulations are those of the fungus in rice or ground rice obtained through the mass production process of the fungus. Others such as hydrogenated oil granules are used for conidia of B. bassiana referenced by Carballó, 1998.
  • Alginate granule formulations have been evaluated using augmentation agents such as ground dried orange peel. There are also procedures for the preparation of mycelium or conidia formulations in alginate granules, Carballo, 1998.
  • Temperature and humidity are the main limitations for the effectiveness of fungi.
  • Several adjuvants improve spore germination, as is the case with Unrefined corn oil, which improves the activity of Colletotrichum truncatum, (Schwein, Andrus and Orre) and reduces the moisture requirements necessary for germination.
  • Organophosphorus anionic surfactant such as Tween 20 allows plants to reduce surface tension and improve spore disposition in drops.
  • the possible stimulatory inhibitory action of organophosphorus anionic surfactant in spore germination, infection and development must be taken into account, Fernández and Juncosa, 2002.
  • Lecanicillium lecanii (Verticillium lecanii) is available in two products produced by the Koopert Biological System in England which contain different isolates of the active ingredient: "Vertalec” is used against aphids and “Mycotal” against whitefly and thrips. "Vertalec” introduced in 1981, is formulated with a source of nutrients in the form of wettable powder and proven effective against different species of aphids, Milner, 1997; Burges, 2000; Yeo, Pell, Alderson, Clarck, Pye, 2003; Shah and Pell, 2003.
  • the antibodies gradually destroy the digestive cells of the tick and end up causing their death. Some ticks die on the host and others once already on the ground, the oviposition started. The viability of deposited eggs is variable. If all the herd occupied by a pasture is regularly vaccinated, the population of ticks in that pasture will be decimated gradually until descending, after several years, the threshold of economic damage was lowered.
  • Vaccines against B. microplus are indicated for the control of tick populations, but not for the short-term or medium-term protection of individual cattle against infestations, nor to immediately knock down the ticks that already infest cattle at a given time.
  • Vaccines have advantages: they are effective against chemical-resistant ticks, and leave no residue in the meat or milk, which makes them particularly attractive for dairy farms.
  • the major drawback of these vaccines is that the antigen is not introduced into the host during the bite, which requires periodic booster injections every 6 to 10 weeks.
  • Another drawback is that the vaccine does not prevent the cattle from becoming infected with the ticks present in the pastures after vaccination, which requires that the vaccinated cattle continue to be treated with classic acaricides until the grasses are gradually cleaned of ticks, something which can last several years: the number of acaricide treatments needed will slowly decrease.
  • Boophiluy ticks Chemicals for the control of Boophiluy ticks are based on contact ticks, systemic endectocides or inhibitors of tick development. Most products against ticks contain contact ticks (also called acaricides or ixodicides) belonging to organophosphates, pyrethroids or amidines. Fipronil also has contact activity. Most of these products are available as concentrates for immersion or spray baths, or as ready for use (do not dilute). They are effective against larvae, nymphs and adults. Many of them also control other parasites of cattle such as flies, lice, mites, etc. Fluazuron, currently the only inhibitor of commercialized tick development, acts systemically and is available as pour-on. It is highly specified of ticks. It does not kill any stage directly, but it interrupts the vital cycle by inhibiting the ' shedding from one stage to another or the hatching of the eggs of affected full females.
  • tick products contain systemic endectocides that act through the host's blood when the tick sucks blood. They also affect immature stages and the eggs of full females that survive. They are available as injectables and ready for use (do not dilute). They are also effective against other internal and external parasites: borer worms, hypoderms, treat it, lice, etc. The injectables laughed usually seek sufficient control of ticks except some of long duration. There are recent reports of good efficacy of Spinosad against ticks
  • each active substance of chemical origin once applied to the animal is different and depends on its molecular structure and other factors such as formulation, method of application, etc.
  • the active substance evaporates progressively, decomposes in sunlight, or reacts with skin fats, etc.
  • Systemic products are metabolized, excreted or stored in fatty tissue, etc. The result is that the products maintain their full tick effectiveness for more or less days. It is what is called the residual power or effect that varies depending on the variables mentioned above. '
  • Boophilus ticks using their natural enemies still remains a matter of investigation and has not yet resulted in practical solutions.
  • Some birds eg herons
  • small rodents e.g. a swines
  • insects eg ants, hymenoptera
  • DDT dichlorodiphenyltrichloroethane
  • entomopathogenic fungi Approximately 100 genera and 700 species of entomopathogenic fungi are known. Among the most important are: Metarhizium, Beauveria, Aschersonia, Entomophthora, Zoophthora, Érinia, Eryniopsis, Akanthomyces, Fusarium, Hirsutella, Hymenostilbe, Paecilomyces and Verticillium.
  • entomopathogenic fungi are Beauveria bassiana and Metarhizium anisopliae, due to their efficiency and ease of multiplication, by which they can serve as entomopathogenic agents, against disease-causing pathogens, or organisms that serve as vectors of other microorganisms that cause damage to plantations, animals and the human being.
  • the phases that fungi develop on their nospeaanres are: germination, formation of appressoriums, formation of structures of penetration, colonization and reproduction.
  • the inoculum or ineffective unit is constituted by the structures of sexual and asexual reproduction, that is, the spores or conidia.
  • the process begins when the spore or conidia adheres to the cuticle of the Boophilus tick; then a germinative tube and an appressorium were produced, with this it is fixed in the cuticle and with the germination or haustorium tube (penetration hyphae) penetration occurs inside the body of the boophilus tick, in which a physical mechanism participates and one chemical, the first is the pressure exerted by the hypha, which breaks the sclerosed and membranous areas of the cuticle.
  • the chemical mechanism consists of the enzymatic action, mainly proteases, lipases and chitinases, which cause tissue breakdown of the penetration zone. After penetration, the hypha widens and branches into the tissue of the Boophilus tick, colonizing completely and from which small colonies and fungus structures are formed, which corresponds to the final phase of the plagiarizing disease.
  • Some of the advantages of formulation with entomopathogenic fungi for pest control, particularly for killing Boophilus ticks in cattle are: the specificity, which varies considerably, some fungi infect a wide range of hosts and others are restricted to a few or only one kind of pests.
  • Beauveria Bassiana and Metharhizium anisopliae infect about 100 different species of insects 1 , larbas and pests in several orders, (Coleoptera, Lepidoptera, Herhyptera, Hipoptera) but the isolates of these two fungi have a high degree of effectiveness.
  • Entomopathogenic fungi are more effective in this formulation and composition proposed to be a patent subject.
  • the formulation with entomopathogenic fungi for pest control particularly to kill boophilus ticks in cattle will be effective against pests, will not contaminate the environment by its natural composition, will not destroy beneficial insects, will not be toxic to humans anymore that it is demonstrated that there are other proposals of chemical origin that alter the hormonal levels of men, affecting their strength and generating scenarios of physical and sexual weakness.
  • the formulation with entomopathogenic fungi for pest control particularly to kill boophilus ticks in cattle does not develop resistance, and leaves no residue on the skin or the organism of the bovine.
  • Figure 1. Shows a front view of the Entomopathogenic Fungi Cultivation inside an incubator.
  • Figure 2. It shows a top view of a Petri dish with the culture of Beauveria bassiana where its morphological characteristics are appreciated.
  • Figure 4 Bioassays carried out in larvae between 7 and 10 days with the 2 formulations of Beauveria bassiana carrying out the method for the multiplication of entomopathogenic fungi with natural substrate (rice).
  • Figure 5 Bioassays performed in larvae between 7 and 10 days with Beauveria bassiana formulations with inert materials, such as vehicles, solvents, emulsifiers and other additives carrying out the preferred method of obtaining the formulation with entomopathogenic fungi for pest control.
  • Beauveria bassiana formulations with inert materials, such as vehicles, solvents, emulsifiers and other additives carrying out the preferred method of obtaining the formulation with entomopathogenic fungi for pest control.
  • Figure 6. Bioassay adding the organophosphorus " anionic surfactant or surfactant " to the preferred method of obtaining * formulation with entomopathogenic fungi for pest control.
  • FIG. 7 Shows the procedure where Beauveria bassiana is incorporated into the preferred method of obtaining the formulation with entomopathogenic fungi for pest control.
  • the perspective of the fungus strain called Beauveria bassiana is presented as an essential part of the formulation which is dissolved in 5 liters of water.
  • Figure 8. It shows the procedure where metarhizium is incorporated into the preferred method of obtaining the formulation with entomopathogenic fungi for pest control.
  • the perspective of the fungus strain called Metharhizium anisopliae is presented as an essential part of the formulation which dissolves in 5 liters of water.
  • Figure 10 Bioassay of the Procedure where the manual combination of the preferred method of obtaining the formulation with entomopathogenic fungi for pest control is shown.
  • Figure 11. Bioassay of the pouring of the organophosphorus anionic surfactant or surfactant within the preferred method of obtaining the formulation with entomopathogenic fungi for pest control.
  • Figure 12. Shows the formulation of entomopathogenic fungi preferably recombined in equal parts and diluted in ozonated water: one liter of water per lgr. (gram) of entomopathogenic fungi.
  • Figure 14.- Shows a general diagram showing the elements for the isolation of entomopathogenic fungi of the formulation object of the present invention in culture media.
  • Figure 15.- Shows the preferred application of the formulation object of the present invention.
  • Figure 16. Illustrates a diagram with the process of infection and invasion of the host in cattle when the formulation of entomopathogenic fungi has been applied to the body of the animal, where the stages of: adhesion of the spore to the insect cuticle are outlined. , the germination and formation of the appressorium, cuticle penetration, lateral growth and penetration into the epidermis, aggregation of the hemocytes at the site of fungal penetration, phagocytosis of hyphal bodies by phagocyte cells of the insect, transformation to lavaduriform bodies, evasion of the system immune, hemocelele spread, hyphal body transformation, sporulation and germination through the cuticle of the insect and spread of spores.
  • Figure 17. Toxicological process of the host in cattle when the entomopathogenic fungi formulation has been applied to the animal's body.
  • Figure 18. General flow diagram of the entomopathogenic fungus production process.
  • Figure 19. Shows a graph where the percentage of Efficacy against pests and fleas can be seen.
  • Figure 20 Shows a graph of effectiveness that illustrates the percentage of Efficacy against ticks
  • Figure 21 Process flow diagram of the entomopathogenic fungus formulation.
  • Figure 22. Shows the corpse of garrapa boophilus invaded by the effect of the application of the entomopathogenic fungus formulation object of the present invention.
  • the MIP Comprehensive Pest Management
  • the MIP is an alternative to reduce dependence on the use of synthetic chemical insecticides. It is based on cultural practices aimed at controlling pests, the ability of livestock to tolerate or resist their damage and the action of their natural mortality factors, such as parasitic, predators and insect pathogens. pests These last three are the most commonly used control alternative to replace the inappropriate use of insecticides
  • the culture medium is a substance or solution that allows the development of microorganisms, while the culture is the product of the growth of an organism.
  • the media used in mycology should contain enough nutrients to ensure the development and reproduction of fungi (carbon, nitrogen, vitamins, trace elements, etc.) and a slightly acidic pH (6 - 6.3) to facilitate their growth and inhibit at the same time the development of other microorganisms.
  • Antibacterial antibiotics can be added to inhibit the growth of saprophytic bacteria that usually contaminate the samples.
  • the media can be solid or liquid.
  • a solidifying substance such as agar (vegetable jelly) or agar agar (polysaccharides from algae) must be added, which has no nutritional value but serves simply to keep moisture for a more or less prolonged time. ( Figure 1).
  • Humidity is essential for the development of fungi, because when it begins to decrease, the formation of mycelium also decreases and the fungus has to ensure its perpetuity by forming propagative structures (spores, conidia) and conservation (clamidospores).
  • the agar begins to melt from 80 ° C and withstands high temperatures without decomposing, solidifying between 35 and 50 oC.
  • Culture media are poured into Petri dishes or inclined tubes. The former offer the advantage of having a greater surface area for the development of the fungus and are used for routine insulation work, crop appearance, growth rate, etc. however, they are easier to contaminate.
  • the tubes despite having a much smaller surface area, offer handling safety and good resistance to dehydration and contamination. They are used to conserve crops for more or less prolonged time.
  • the media are selected based on the type of sample we want to reproduce. ( Figure 20)
  • the recommended pH for fungal culture in the laboratory is around 7, a neutral or slightly acidic pH (6.8).
  • a neutral or slightly acidic pH (6.8).
  • the culture media should be handled in laminar flow hoods.
  • EXAMPLE 2 EVALUATION GIVE THE MOST IMPORTANT MORPHOLOGICAL CHARACTERISTICS GIVE THE MUSHROOMS ENTOMOPATHOGENS Beauveria bassiana (Balsam) Vuillemi ⁇ Colonia: The colony in PDA at 14 days is cottony to dusty, white. As time goes by the colony becomes yellowish, creamy. The reverse is reddish in the center and yellowish around. ( Figure 2) EXAMPLE 3: EVALUATIONS OF MORPHOLOGICAL CHARACTERISTICS
  • EXAMPLE 4 OF A METHOD FOR THE MULTIPLICATION OF ENTHOMOPATHOGEN FUNGI WITH NATURAL SUBSTRATE (RICE).
  • the substrate can be moistened after sterilization or prior inoculation depending on the type of raw material or combination of these and adjustments made.
  • An excess of humidity (approximately 70-80%) would cause low availability of oxygen and therefore poor development of the microorganism. It would also compact the substrate preventing a total colonization of its surface.
  • low humidity could inhibit the development of the microorganism by not putting enough nutrients in solution to be used by it in addition to the low resistance to drying that fungi have in the active period of mycelial growth.
  • the light-dark regime should be regulated.
  • the optimum conidial biomass is obtained over all the surface of the substrate is passed to the drying process so that the conidia remain viable in storage for a longer time.
  • This process is optimized with dehumidifiers or air conditioners or accelerating ventilation with fans which depends on local conditions.
  • the substrate with the fungus from the growth room is placed in the drying room, at a temperature not higher than 28 ° C, with low relative humidity ( ⁇ 70%) and no sunlight input.
  • a room with an air conditioner provides adequate conditions for drying this material. The material is spread on newspaper and black plastic, staying for 12 days, until the moisture content drops to 12 or 14%.
  • the material is wrapped in 1 Kg containers and will be ready to be used directly in field applications or stored in refrigeration (4 to 8 ° C). In the latter case, the fungus can remain viable for up to 6 months.
  • the harvest is carried out. It is at this time that the formulation stage begins where a combination of ingredients is prepared so that the active substance (spores) remains stable, effective and easy to apply.
  • the regulation of the ambient temperature is essential, which must be as close as possible to the optimum temperature (maximum 22.1 degrees Celsius and minimum 12.6 degrees Celsius) for the development of the microorganism.
  • the substrates used vary according to the region and the purpose of the multiplication. Peeled rice was used in this procedure ( Figure 20). The procedure is the next:
  • EXAMPLE 5 PREFERRED METHOD OF OBTAINING FORMULATION WITH FUNGUS ETHOMOPATHOGENS FOR PEST CONTROL.
  • the formulation of the fungus is the process by which the active ingredient, that is to say the conidia of the fungus, is mixed with inert materials, such as vehicles, solvents, enlulsifiers and other additives. These inert materials help the fungus work better. All this is done in order to achieve a good homogeneity and distribution of the fungus particles, in order to be properly handled and applied.
  • the viability of the fungus should not be less than 95% and the moisture content should be between 4 and 6%.
  • the perspective of the fungal strain Beauveria bassiana called essential part of the formulation is the cuáT3 ⁇ 4é dissolved in 5 liters of water with 1 gram sample 'with a dispersant, whereby the mother solution would. From this one milliliter is taken and dissolved in 9 ml of distilled water having the 10-1 dilution and so on until a 10-4 dilution is obtained, from which a sample of 0.01 ml is taken and the hemocytometer is filled.
  • EXAMPLE 8 OF METARHIZIUM IN THE PREFERRED METHOD OF OBTAINING FORMULATION WITH FUNGES ENTOMOPATHOGEN FOR PEST CONTROL.
  • the present invention has sufficient means to support the viability of the use of FORMULATION WITH FUNGES ENTOMOPATHOGENS FOR THE CONTROL OF PESTS, particularly to KILL BOOPHILUS TICKETS IN BOVINE, which is why the figures in question show the panorama of the strain of Mushroom Metarhizium anisopliae in its different stages of production until the stage in which it is ready for incorporation into the composition of the formula, in a proposed proportion of 0-18%.
  • EXAMPLE 10 MANUAL MIXING OF THE PREFERRED METHOD OF OBTAINING THE FORMULATION WITH FUNGUS ENTHOMOPATHOGENS FOR PEST CONTROL. According to the panorama where the industrial manual combination of 9000 rpm of the concentrated formulation of entomopathogenic fungi is presented, when such recombination is carried out, the proteins will be potentiated and will penetrate with greater force in the cuticle of the tick's skin and thus it will be generated in its organism intoxication which will trigger its extermination. ( Figure 10)
  • EXAMPLE 11 VERTIMIENT OF THE AGENT ACTIVE OR SURFACTANT ORGANIC PHOSPHORATED SURFACTANT INSIDE THE METHOD PREFERRED TO OBTAIN THE FORMULATION WITH FUNGUS ENTOMOPATHOGENS FOR PEST CONTROL.
  • the perspective view of the pouring of the organophosphorus anionic surfactant or surfactant is presented. It was observed in our laboratories' death bug occurs more quickly when it is affected by our product (fungus in aqueous medium anionic surfactant organophosphate) which produces considerable amounts of toxins, as toxemia to tissue destruction is added and nutritional deficiencies.
  • EXAMPLE 12 RECOMBINATION OF FUNGI WITHIN THE PREFERRED METHOD OF OBTAINING THE FORMULATION WITH FUNGUS ENTHOMOPATHOGENS FOR PEST CONTROL.
  • the two strains of fungi Beauveria bassiana and Metarhizium anisopliae recombined for a period of 20 days mix their proteins with each other leaving an entomopathogenic fungus with pathologies of high effectiveness to act on various pests, particularly boophilus ticks and exterminate them.
  • Our microorganism, entomopathogenic fungi It has very special characteristics that allow them to survive in parasitic form on insects and in saprophytic form on decomposing plant material.
  • the formulation finally consists of entomopathogenic fungi preferably recombined in equal parts and diluted in ozonated water: one liter of water per 1 gr. (gram) of entomopathogenic fungi. ( Figure 12)
  • EXAMPLE 13 FINAL PHASE OF THE PREFERRED METHOD OF OBTAINING THE FORMULATION WITH FUNGUS ENTHOMOPATHOGENS FOR PEST CONTROL. Where the combination of this entomopathogenic fungal strains is shown in its final phase being a direct suppression measure, its effect depends on the following application: ( Figure 13)
  • Fungus formulation is the process by which the active ingredient, that is to say conidia of the fungus, is mixed with inert materials, such as vehicles, solvents, emulsifiers and other additives. These inert materials help the fungus work better. All this is done in order to achieve a good homogeneity and distribution of the fungus particles, in order to be properly handled and applied.
  • the viability of the fungus must not be less than 95% and the moisture content must be between 4 and 6%.
  • the conidia maintain their viability for me. time when the fungus has been formulated than when the powder is stored without formulating.
  • EXAMPLE 14 EVALUATION OF THE EFFECTIVENESS OF FORMULATION WITH FUNGUS ENTHOMOPATHOGENS FOR PEST CONTROL.
  • the conversion efficiency index (IEC) of each group of treated ticks was compared with the IEC of the groups, control to obtain the efficiency of the fungus.
  • EH (IEC control group - IEC treated group) / (IEC control group) x 100, Raymond et al. 2004.
  • Statistical analysis The variables final weight, oviposition weight, pre-oviposition period, oviposition period, and egg hatching percentage were studied by means of bifactor variance analysis, taking into account as factors the initial weight of the tick and the concentration of the fungus.
  • the analyzes were performed with the statistical package STATISTICA 7.0, Statsoft, Inc. Tulsa, Ok, USA
  • EXAMPLE 15 EVALUATION GIVE THE EFFECTIVENESS OF FORMULATION WITH FUNGUS ENTHOMOPATHOGENS FOR PEST CONTROL.
  • an ovicidal action occurred during and after application, eliminated 100% of the parasite larvae and was also effective against 40% of treated adult parasites. This is why our proposal for FORMULATION WITH FUNGES OF PATHOPHONE CONTROL FOR PEST CONTROL, particularly for KILLING BOOPHILUS TICKETS IN BOVINE, proves that the union of entomopathogenic elements helps us control the parasite in all its life states. (Figure 21).
  • EXAMPLE 16 PROTOCOL PROPOSED FOR THE INSULATION OF FUNGES ENTOMOPATOGENOS OF THE FORMULATION OBJECT OF THE PRESENT INVENTION IN CULTURE MEDIA.
  • EXAMPLE 17 GENERALITIES OF THE PREFERRED APPLICATION OF THE FORMULATION OBJECTED BY THE PRESENT INVENTION It is suggested to use five liters of the entomopathogenic fungus formulation for every 10 kg of animal weight, after ten days we repeat the application and make subsequent applications according to the behavior presented by the parasite.
  • the recommendations and monitoring of the biological control that we must follow for the proper use of this invention are:
  • EXAMPLE 18 INFECTION AND INVASION PROCESS OF THE LIVESTOCK IN LIVESTOCK WHEN THE FORMULATION OF FUNGES IN OMOPATOGENS HAS BEEN APPLIED TO THE BODY OF ANIMAL
  • mycosis The disease caused by fungi is called mycosis and occurs as follows:
  • the success of germination and penetration does not necessarily depend on the percentage of germination but on the duration of the germination, germination mode, aggressiveness of the fungus, type of spore and susceptibility of the host.
  • fungi can infect insects through body openings such as oral cavity, spiracles and other external openings. Spores can germinate rapidly in these environments because they are wet. When they do it in digestive fluids, they can destroy the germinative hypha. In this case, the insect does not die of mycosis but because of toxins.
  • the fungus must overcome the host's immune system before entering the hemolymph and developing inside the insect. 3. Development of the fungus that results in the death of the insect: After it reaches the hemocele, the fungus can prevent the immune defense of the insect by producing yeast-like cells, called blastospores, that multiply and disperse rapidly, developing protoplasts, discrete elements ameboids, without a cell wall that are not recognized by the host's hemocytes and producing mycotoxins. The dispersion of these in the hemocele depends on the species of the fungus.
  • the death of the insect occurs more quickly when it is affected by an entomopathogenic fungus that produces considerable amounts of toxins, since toxemia is added to tissue destruction and nutritional deficiencies.
  • physiological symptoms of the affected insect occur such as seizures, lack of coordination and altered behaviors (stops feeding, reduces movement), enters a lethargic state and eventually dies, which can occur relatively quickly or in a few days.
  • Fungi can produce antibacterial substances that alter the color of the body.
  • the parasitic development of the fungus ends and the saprophytic phase begins: the fungus grows in the hemocele forming mycelial masses that go out mainly through the intersegmental regions -sporulating on the corpse and producing inoculum to infect other insects- and through natural openings (spiracles, mouth and anus).
  • the high dependence on humidity is the major limiting factor that fungi have, since for germination and sporulation outside the host, relative humidity values greater than 6% are required.
  • the germination tubes are due to biochemical changes or adaptive processes and cell differentiation.
  • the fungus crosses the epicuticle, forms plates that invade and destroy the different strata. Once inside the hemocele the colonization of the host is carried out by means of blastospores (a state of development type levaduriform) and of the mycelium.
  • the fungus invades hemolymph, in which married death is the result of a combination of mechanical damage caused by the growth of the fungus, malnutrition (the fungus uses sugars and proteins' present in the hemolymph) and by the action of secondary metabolites or toxins .
  • Cuticle degrading enzymes once absorbed into the cuticle progressively degrade the polymers into usable precursor monomers.
  • Candidate catabolic enzymes are those that affect proteins, chitin, wax and lipids, and other exoskeleton layers of insect, hemocele and hemolymph tissues. ( Figure 16)
  • the toxins cause alterations in several organs, paralyze the cells or cause a malfunction of the middle intestine, malpigio tubes, muscle tissue and hemocytes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Biotechnology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Los hongos entofriópatógenos al infectar a los insectos, garrapatas y/o plagas producen metabolitos, co.mo las enzimas hidrolíticas y los depsipéptidos cíclicos, estas enzimas degradan la cutícula del insecto, garrapata y/o plaga, además, estos hongos al encontrarse en nichos ecológicos con alta biodiversidad y competencia sintetizan la actividad de control biológicos de plagas. Todos los compuestos bioactivos señalados pueden ser utilizados como bioinsecticidas o fungicidas, y ser producidos por procesos fermentativos, esto abre nuevas áreas de desarrollo agrobiotecnológico, acorde con las nuevas tendencias de la investigación agrícola a nivel mundial. La formulación con hongos entomopatógenos para el control de plagas se origina de un proceso Orgánico esto representa una alternativa viable. Los hongos entomopatógenos suprimen la acción de control químico el cual representa efectos para otros organismos, el propio ser humano y la contaminación del medio ambiente. La aplicación de los bio-controles juntó a otros métodos alternativos permitirá lograr buenos rendimientos en el sector ganadero sin perjudicar al ecosistema. Los entomopatógenos son competitivos con otras prácticas de control, considerando su efectividad, costo de producción y seguridad al ambiente.

Description

FORMULACION CON HONGOS ENTOMOPATOGENOS
PARA EL CONTROL DE PLAGAS
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
La presente invención se encuadra en el Sector Agroindustrial-ganadero y en la necesidad imperante de exterminar a las diversas plagas particularmente la garrapata Bóophilus y que se han convertido en graves detonantes que invalidan los esfuerzos en la producción ganadera.
Las plágas en la ganadería han sido controladas durante años mediante el empleo de plaguicidas químicos de fuerte impacto negativo sobre los organismos benéficos presentes en el ambiente. Con el objetivo de promover y acelerar el uso de hongos en el control de plagas en ganadería es necesario el desarrollo de formulaciones eficaces y estables que permitan su manejo y aplicación.
El desarrollo y aplicación de agentes de control biológico de plagas como la presente invención debe adquirir una importancia relevante como una alternativa en el desarrollo de una ganadería sostenible que preserve los recursos naturales y el medio ambiente para las futuras generaciones. La aplicación controlada en agroecosistemas de organismos vivos o süs metabolitos para el control de plagas y enfermedades, implica la aceptación de propuestas como la que se presenta para su análisis.
ANTECEDENTES
En la naturaleza, los hongos entomopatógenos pueden eliminar o mantener las plagas en niveles que no ocasionan daños económicos a la ganadería. Estos hongos se encuentran en rastrojos de cultivos, estiércol, en el suelo, las plantas; logrando un buen desarrollo en lugares frescos, húmedos y con poco sol. Constituyen, además, el grupo de mayor importancia en el control biológico de insectos plagas. Prácticamente, todos lós insectos son susceptibles a algunas de las enfermedades causadas por hongos.
Los Hongos entomopatógenos se conocen desde hace dos milenios, cuando los Chinos identificaron especies de Cordyceps e Isaria de especímenes del gusano de seda y una especie de cicada (Chicharra ó cigarra). Agostino Bassi en 1836 relata un tratado sobre la enfermedad del gusano de seda, la muscardina, cuyo agente causal era Beauveria bassiana.
Se conocen aproximadamente 100 géneros y 700 especies de hongos entomopatógenos. Entre los géneros más importantes están: Metarhizium, Beauveria, Aschersonia, Entomophthora, Zoophthora, Erynia, Eryniopsis, Akanthomyces, Fusarium, Hirsutella, Hymenostilbe, Paecelomyces y Verticillium. Para utilizar hongos entomopatógenos como insecticidas deben producirse cantidades masivas del hongo, el cual debe mantener su capacidad infectiva por un período de tiempo considerable. Los hongos se han reproducido para su uso como agentes biológicos de plagas desde hace 1ÜU años, para lo cual se ha utilizado diferentes métodos de reproducción. Entre ellos, el uso de sustratos como arroz, trigo y medios líquidos mediante técnicas más sofisticadas.
La explotación de los hongos para el control de plagas (invertebrados, malezas y enfermedades) implica una amplia investigación donde se involucran disciplinas como la patología, ecología, genética, fisiología, producción masiva, formulación y estrategias de aplicación.
Particularmente se requiere exterminar plagas y en prioridad á las garrapatas Bóóphikts que son el enemigo más dañino para el ganado bovino; cada garrapata que chupa sangre causa estrés y debilitación del animal afectado.
Los Hongos entomopatógenos se conocen desde hace dos milenios, cuando los Chinos identificaron especies de Córdyceps e Isaria de especímenes del gusano de seda y una especie de cicada (Chicharra ó cigarra). Agostino Bassi en 1836 relata un tratado sobre la enfermedad del gusano de seda, la muscardina, cuyo agente causal era Beauveria bassiana. És pór esto que el objetó de la presente invención está centrado en combatir ésta irtfestacióri y plagas secundarias ya que a partir de unas 20 a 30 garrapatas por animal el dañó empieza a tener efectos económicos (merma del aumento de peso o de la producción de leche, posible efecto negativo sobre la fertilidad, debilitamiento que favorece otras enfermedades). Se ha calculado que una infestación de 50 o más hembras repletas de garrapatas Boophilus adiciónales a las plagas secundaria causan una reducción anual del aumento de peso de cerca de 500 gramos por garrapata. En ganado lechero la reducción de la producción láctea anual de un animal puede ser de 200 litros o más.
La B. bassiana, elemento utilizado en la Formulación con Hongos Entomópatógenos para el control de plagas fue registrada en 1999 cómo "Mycotrol" por la Enviromental Protection Agency en Estados Unidos, que es utilizado en campo para el control de saltamontes, mosca blanca, thrips, áfidos y muchos otros plagas de insectos. Este producto es estable por más de 12 meses almacenado a 25 0 C en base a lo descrito por Wraight, Jackson, Kóck, (2001). Existen otros dos formulados a partir de B. bassiana comercializados como "BotanicGard" que es recomendado para el uso en casas de cultivos y "Mycotrol O" que contiene ingredientes en la formulación que permite su uso por agricultores en Estados Unidos según lo establecido por Shah y Pell, 2003.
Actualmente, el micoinsecticidad basado en conidios secos de Metarhizium anisopliáe se mezcla con aceite del diesel o querosén antes de atomizar como lo establece Baterhan, Neethling y Ósthuizen, 1998. La infección y muerte de 70-90% de langosta o saltamontes ocurren dentro de 14-20 días después de la aplicación, sin efecto perjudicial en organismos no diana según Lomer, Bateman, Johnson, Langewald y Thomas, 2001. El producto patentado, "Green Muscle", fue comercialmente disponible después de 12 años de investigación involucrando a 40 científicos y costando $17 millones (Shah y Pell, 2003). El "Gfeéri Muscle" se recomienda para cigarras, langostas o saltamontes por la Organización de las Naciones Unidas por la Alimentación y la Agricultura en base a las investigaciones de Lomer, Bateman, Jóhnsoñ, Langewald y Thomas, 2001.
Conidios de Beauveria brongniartii crecidos en granos de la cebada se vende comercialmente bajó los nombres de "Engerlingspilz" y "Beauveria Schweizer." El uso de conidios en granos de la cebada se prefiere, desde que los productos pueden guardarse durante un año a 2 0 C mientras las blastosporas formuladas en suspensión acuosa con leche descremada y un protector ultravioleta son más inestables y necesitan ser usadas dentro de 4 semanas de producción establecido por Keller, 1992. En un reciente proyecto europeo, Biocontrol of important soil dwelling pests by improving the efficacy of insect pathogenic fungi (BIPESCO) (Control biológico de plagas importantes que habitan en el suelo mediante la mejora de la eficacia de los hongos patógenos en insectos) , se completará los estudios de producción, formulación y aplicación con Beauveria brongniartii según los estudios realizados por Jung, Gónschorrek, Ruther, Zimmerman, 2002.
La producción y el uso de los entomopatógenos se ha expandido rápidamente y Cuba ha desarrollado capacidades únicas en esta área. Se han elaborado muchas técnicas mejoradas de producción, cosecha, formulación, aplicación y control de calidad para numerosas bacterias y hóngós.
En el mundo', numerosos grupos de investigadores y empresas productoras se concentran en el desarrollo de productos comerciales a partir de hongos en forma de granulos o polvo humectable entre los que se citan Biofox C (F. oxysporium y F. móniliforme SIAPA, Italia), Mycotal (V. lecanii, Koppert, Holanda), Mycotrol GH (B. bassiana, Mycotech, USA), Green Muscle (M. flavoviride, CABI Bioscience, UK), DiTera (M. verrucaria, Valent (Sumitomo), USA, Japón) en referencia a lo propuesto por Burges, 1998 ;Butt y Copping, 2000.
Algunas formulaciones granuladas muy sencillas son las del hongo en arroz o arroz molido obtenidas mediante el proceso de producción masiva del hongo. Otras como las de granulos de aceite hidrogenado es utilizada para conidios de B. bassiana referenciado por Carballó, 1998.
Se han evaluado formulaciones en granulos de alginato usando agentes aumentadores como cáscara de naranja seca molida. Existen, además, procedimientos para la preparación de formulaciones de micelio o conidios en granulos de alginato, Carballo, 1998.
La temperatura y la humedad son las principales limitaciones para la eficacia de los hongos. Varios adyuvantes mejoran la germinación de las esporas, como es el caso del aceite de maíz sin refinar, que mejora la actividad de Colletotrichum truncatum, (Schwein, Andrus y orre) y reduce los requerimientos de humedad necesarios para su germinación. Surfactante anionico organofosforados como Tween 20 permiten a las plantas reducir la tensión superficial y mejoran la dispérsión de las esporas en las gotas. Hay que tener en cuenta la posible acción inhibitoria estimuladora del surfactante aniónico organofosforado en la germinación de las esporas, infección y desarrollo, Fernández y Juncosa, 2002.
Lecanicillium lecanii (Verticillium lecanii) esta disponible en dos productos producidos por la Koopert Biological System en Inglaterra los cuales contienen diferentes aislamientos del ingrediente activo: "Vertalec" se utiliza contra áfidos y "Mycotal" contra mosca blanca y thrips. "Vertalec" introducido en 1981, es formulado con una fuente de nutrientes en forma de polvo humedecible y demostrado su eficacia contra diferentes especies de áfidos, Milner, 1997; Burges, 2000; Yeo, Pell, Alderson, Clarck, Pye, 2003; Shah y Pell, 2003.
Estos productos son utilizados exclusivamente en invernaderos donde el ambiente de humedad puede ser modificado. Recientes avances de la empresa Koopert en tecnología de formulaciones, han logrado obtener un adyuvante basado en un aceite vegetal emulsificable llamado "Addit" con el cual se le puede cambiar la actividad de Mycotal a bajas humedades pero no es compatible con "Vertalec". El poco mercado de estos productos es debido a los requerimientos de humedad que limita su usó en campo abierto, Milner, 1997; Shah y Pell, 2003. Se puede establecer que a lo largo del tiempo se han reportado distintos mecanismos para Controlar plagas y matar garrapatas. Hay comercialmente disponibles vacunas contra B. microplus en algunos países. Se basan sobre todo en el antígeno recombinante Bm86, un polipéptido del intestino de las garrapatas. Estas ingieren el anticuerpo correspondiente al chupar sangre de un hospedador vacunado.
Los anticuerpos destruyen poco a poco las células digestivas de la garrapata y acaban causando su muerte. Algunas garrapatas mueren sobre el hospedador y otras una vez ya en el suelo, comenzada la ovoposición. La viabilidad de los huevos depositados es variable. Si se vacuna regularmente todo el hato que ocupa un potrero, la población de garrapatas en dicho potrero será decimada poco a poco hasta descender, tras varios años, bajó el umbral de daño económico.
Las vacunas contra B. microplus están indicadas para el control de poblaciones de garrapatas, pero no para la protección a corto O medio plazo de las reses individuales contra las infestaciones, ni para derribar inmediatamente las garrapatas que ya infestan el ganado en un momento determinado. Las vacunas tienen ventajas: son eficaces contra garrapatas resistentes a los productos químicos, y no dejan residuos en la carne o en la leche, lo que las hace particularmente atractivas para explotaciones lecheras. El mayor inconveniente de estas vacunas es que el antígeno no se introduce en el hospedador durante la picadura, lo que exige inyecciones periódicas de refuerzo cada 6 a 10 semanas. Otro inconveniente es que la vacuna no evita que el ganado se infeste con las garrapatas presentes en los pastos tras la vacunación, lo que exige que el ganado vacunado siga siendo tratado con acaricidas clásicos hasta que los pastos se limpien poco a poco de garrapatas, algo que puede durar varios años: el número de tratamientos acaricidas necesarios disminuirá sóló lentamente.
Otra desventaja de las vacunas es que la respuesta inmunológica individual de cada res puede variar considerablemente, y se ve reducida si la res sufre de estrés, está enferma o debilitada. Por lo tanto, dentro de un mismo hato la eficacia de la vacuna puede variar considerablemente, frenando el proceso de limpieza de los pastos y dando la impresión de que no trabaja porque algunos animales siguen llevando bastante garrapata.
Los productos químicos para el control de garrapatas Boophiluy se basan en garrapaticidas de contacto, en endectocidas sistémicos o en inhibidores del desarrollo de las garrapatas. La mayoría de los productos contra las garrapatas contienen garrapaticidas de contactó (también llamados acaricidas o ixodicidas) pertenecientes a los organofosforados, piretroides o amidinás. El fipronil también tiene actividad de contacto. La mayoría de estos productos están disponibles como concentrados para baños de inmersión o aspersión, o como listo para el uso (no hay que diluirlo). Són eficaces contra las larvas, las ninfas y los adultos. Muchos de ellos también controlan Otros parásitos de los bovinos como moscas, piojos, ácaros, etc. El fluazurón, actualmente es el único inhibidor del desarrollo de las garrapatas comercializado, actúa de modo sistémico y está disponible corno pour-on. Es altamente especificó de las garrapatas. No mata ningún estadio directamente, sino que interrumpe el cicló vital al inhibir la 'muda de un estadio a otro o la eclosión de los huevos de hembras repletas afectadas.
Cada vez más productos garrapaticidas contienen endectocidas sistémicos que actúan a través de la sángre del hospedador cuando la garrapata chupa sángre. También afectan a los estadios inmaduros y a los huevos de hembras repletas que sobreviven. Están disponibles cómo inyectables y listo para el uso (no hay que diluirlo). Son también eficaces contra otros parásitos' internos y externos: gusanos barrenadores, hipodermas, tórsalo, piojos, etc. Los inyectables rió suelen procurar de ordinario un control suficiente de garrapatas salvo algunos de larga duración. Hay reportes recientes de buena eficacia del Spinosad contra las garrapatas
Boophilus, pero hasta la fecha no se han introducido productos comerciales garrapaticidas con este compuesto.
Actualmente el proceso que sigue cadá sustancia activa de origen químico una vez aplicada sobre el animal es diferente y depende de su estructura molecular y de otros factores como la formulación, el método de aplicación, etc. Aplicada sobre la piel de una res, la sustancia activa se evapora progresivamente, se descompone a la luz solar, o reacciona con las grasas de la piel, etc. Los productos sistémicos se metabolizan, excretan o almacenan en el tejido graso, etc. El resultado es que los productos mantienen su eficacia garrapaticida completa durante más ó menos días. Es lo que se llama el poder o efecto residual que varia dependiendo las variables mencionadas con anterioridad.'
El control biológico de las garrapatas Boophilus usando sus enemigos naturales permanece todavía como materia de investigación y no ha desembocado aún en soluciones prácticas. Algunas aves (p.ej. las garzas), pequeños roedores .y varios insectos (p.ej. hormigas, himenópteros) se alimentan de garrapatas, pero su impacto en las poblaciones de los pastos infestados es muy pequeño.
No hay por ahora alternativas que consistan en tratar el entorno (los pastos, el bosque, la maleza, etc.) con productos que maten allí las garrapatas y otras plagas. Teóricamente sería posible, pero el costo sería prohibitivo y el daño ecológico enorme, pues los garrapaticidas matarían también a la mayoría de los insectos benéficos y podrían contaminar el agua.
Se han detectadó también concentraciones de DDT (diclorodifeniltricloroetano) que es un insecticida organoclorado sintético de amplió espectro, acción prolongada y estable, aplicado en el control de plagas para todo tipo de cultivos desde la década del cuarenta, que inclusive quedaron prohibidos y Cancelados totalmente del mercado de comercialización, ya que el consumo humano de alimentos de origen animal contaminados con DDT provoca su acumulación y posterior intoxicación. Los casos agudos presentan alteraciones gastrointestinales, trastornos neurológicos y parálisis muscular; si la dosis es elevada puede sobrevenir la muerte por paro respiratorio; lamentablemente en México se siguen vendiendo productos con éste componente, es por esto importante y totalmente viable ésta propuesta de Formulación con hongos entomopatógenos para el control de plagas particularmente para matar garrapatas Bóophilus en bovinos ya que se genera mediante un proceso totalmente orgánico y amigable con el medio ambiente y todos los seres vivos.
Cabe mencionar que las moléculas de los químicos actuales tienen una vida promedio de 100 años para degradarse al no ser orgánicos y emanar de procesos totalmente químicos como pesticiadas ó plaguicidas, como son los organofósforados, ya hemos analizado en el Laboratorio del Centro Universitario de Estudios de Investigación de Proyectos, S.C. la calidad del agua de la zona conurbada también avalados y respaldados por estudios de laboratorios acreditados ante EMA como QUANTUM, en donde se observa trazas (concentraciones) de éstos químicos que se canalizan a través de los mantos freáticos en donde inicia el agua subterránea que después desemboca en pozos, lagos, lagunas, manantiales, etc. y contamina todo tipo de organismos y en escenario cancerígenos para el Ser Humano. Éste hecho marca el inicio de la Patología de Insectos y plagas. Se conocen aproximadamente 100 géneros y 700 especies de hongos entomopatógenos. Entre los más importantes están: Metarhizium, Beauveria, Aschersonia, Entomophthora, Zoophthora, Érinia, Eryniopsis, Akanthomyces, Fusarium, Hirsutella, Hymenostilbe, Paecilomyces y Verticillium.
A mvel mundial, las dos especies más frecuentes y estudiadas de hongos entomopatógenos son Beauveria bassiana y Metarhizium anisopliae, debido a su eficiencia y facilidad de multiplicación, por los cual éstos pueden servir de agentes entomopatógenos, contra organismos patógenos causantes de enfermedades, o de organismos que sirven de vectores de otros microorganismos que causan daño a plantaciones, animales y al propio ser humano.
Én general, las fases que desarrollan los hongos soore sus nospeaanres son: germinación, formación de apresorios, formación de estructuras de penetración, colonización y reproducción. Él inoculo o unidad inefectiva esta constituido por las estructuras de reproducción sexual y asexual, es decir las esporas o conidias.
El proceso se inicia cuando la espora o conidia se adhiere a la cutícula de la garrapata Boophilus; luego se producé un tubo germinativo y un apresorio, con éste se fija en la cutícula y con el tubo germinativo ó haustorio (hifa de penetración) se da la penetración al interior del cuerpo de la garrapata boophilus, en la que participa un mecanismo físico y uno químico, el primero consiste en la presión ejercida por la hifa, la cual rompe las áreas esclerosadas y membranosas de la cutícula. El mecanismo químico consiste en la acción enzimática, principalmente proteasas, lipasas y quitinasas, las cuales causan descomposición del tejido de la zona de penetración. Después de la penetración, la hifa se ensancha y ramifica dentro del tejido de la garrapata Boophilus, colonizando completamente y a partir de la cual se forman pequeñas colonias y estructuras del hongo, lo que corresponde a la fase final de la enfermedad plagizante.
Algunas de las ventajas de la formulación con hongos entómopatógenos para el control de plagas particularmente para matar garrapatas Boophilus en bovinos son: la especificidad, la cual varía considerablemente, algunos hongos infectan un amplio rango de hospederos y Otros están restringidos a unos pocos o a una sola especie de plagas. Por ejemplo la Beauveria Bassiana y Metharhizium anisopliae, infectan cerca de 100 especies diferentes de insectos1, larbas y plagas en varios ordenes, (Coleóptera, Lepidóptera, Herhíptera, Hómóptera) peró los aislamientos de estos dos hongos tienen un alto grado de efectividad. Los hongos entómopatógenos son efectivos y más en ésta formulación y composición planteada para ser suj eta de patente.
Cabe mencionar que la formulación con hongos entómopatógenos para él control de plagas particularmente para matar garrapatas boophilus en ganado bovino será efectiva contra las plagas, no contaminará el medio ambiente por su composición natural, no destruirá insectos benéficos, no será tóxica para el ser humano ya que está demostrado que existen otras propuestas de origen químico que alteran los niveles hormonales de los hombres, afectando su fuerza y generándoles escenarios de debilidad física y sexual. La formulación con hongos entomopatógenos para el control de plagas particularmente para matar garrapatas boophilus en ganado bovino no desarrolla resistencia, y no deja residuos en la piel o en el organismo del bovino.
Hay investigaciones prometedoras sobre el posible uso de hongos entomopatógenos para el control de garrapatas Boophilus. Pero hasta ahora la disponibilidad de productos comerciales y la experiencia con los mismos es limitada y aún NO existen composiciones ó formulaciones patentadas en México, según rastreo y revisión pormenorizada en distintos medios de información y con especialistas en el área.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1.- Muestra una vista frontal del Cultivo de Hongos Entomopatógenos dentro de una incubadora.
Figura 2.-Muestra una vista superior de una caja Petri con el cultivo de Beauveria bassiana donde se aprecian sus características morfológicas.
Figura 3.- Características morfológicas del Metarhizium anisopliae.
Figura 4.- Bioensayós realizados en larvas de entre 7 y 10 días con los 2 formulados de Beauveria bassiana llevando a cabo el método para la multiplicación de hongos entomopatógenos con sustrato natural (arroz).
Figura 5.- Bioensayós realizados en larvas de entre 7 y 10 días con los formulados de Beauveria bassiana cón materiales inertes, tales como vehículos, solventes, emulsificantes y otros aditivos llevando a cabo el método preferente de obtención de la formulación con hongos entomopatógenos para el control de plagas.
Figura 6.- Bioensáyo agregando el agente tensioactivo o surfactante aniónico " organofosforado al método preferente de obtención de íá* formulación con hongos entomopatógenos para el control de plagas.
Figura 7.- Muestra el procedimiento en donde la Beauveria bassiana se incorpora en el método preferente de obtención de la formulación con hongos entomopatógenos para el control de plagas. Se presenta la perspectiva de la cepa de hongo denominada Beauveria bassiana parte esencial de la formulación la cual se disuelve en 5 litros de agua.
Figura 8.- Muestra el procedimiento en donde el metarhizium se incorpora en el método preferente de obtención de la formulación con hongos entomopatógenos para el control de plagas. Se presenta la perspectiva de la cepa de hongo denominada Metharhizium anisopliae parte esencial de la formulación la Cual se disuelve en 5 litros de agua.
Figura 9.- Procedimiento en donde la materia prima celulosa se incorpora en el método preferente de obtención de la formulación con hongos entomopatógenos para el control de plagas
Figura 10.- Bioensáyo del Procedimiento en donde se muestra la combinación manual del método preferente de obtención de la formulación con hongos entomopatógenos para el ontrol de plagas.
Figura 11.- Bioensáyo del vertimiento del agente tensioactivo o surfactante anionico organofosforado dentro del método preferente de obtención de la formulación con hongos entomopatógenos para el control de plagas. Figura 12.- Muestra la formulación de hongos entomopatógenos recombinados preferentemente en partes iguales y los diluimos en agua ozonificada: un litro de agua por lgr. (gramo) de hongos entomopatógenos.
Figura 13.- determinando la fase final del método preferente de obtención de la formulación con hongos entomopatógenos para el control de plagas
Figura 14.- Muestra un diagrama general donde se aprecian los elementos para el aislamiento de hongos entomopatógenos de la formulación objeto de la presente invención en medios de cultivo.
Figura 15.- Muestra la aplicación preferente de la formulación objeto de la presente invención.
Figura 16.- Ilustra un diagrama con el Proceso de infección y de invasión del hospedero en ganado cuando se ha aplicado al cuerpo del animal la formulación de hongos entomopatógenos, en dónde se esquematiza las etapas de: adhesión de la espora a la cutícula del insecto, la germinación y formación del apresorio, penetración de la cutícula, crecimiento lateral y penetración en la epidermis, agregación de los hemocitos en el lugar de penetración fúngica, fagocitocis de cuerpos hifales por células fagócitas del insecto, transformación a cuerpos lavaduriformes, evasión del sistema inmune, propagación en el hemocelele, transformación a cuerpo hifal, esporulación y germinación atravesando la cutícula del insecto y diseminación de esporas.
Figura 17.- Proceso tóxicológico del hospedero en ganado cuando se ha aplicado al cuerpo del animal la formulación de hongos entomopatógenos.
Figura 18.- Diagrama de flujo general del proceso de producción de hongos entomopatógenos. Figura 19.- Muestra una gráfica dónde se aprecia el porcentaje de Eficacia contra plagas y pulgas.
Figura 20.- Muestra una gráfica de efectividad que ilustra el porcentaje de Eficacia contra garrapatas Figura 21.- Diagrama de flujo de proceso de la formulación con hongos entómopatógenos. Figura 22.- Muestra el cadáver de garrapa boophilus invadida por el efecto de la aplicación de la formulación de hongos entómopatógenos objeto de la presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Él MIP (Manejo Integral de Plagas) es una alternativa para disminuir la dependencia en el uso de insecticidas químicos sintéticos. Se basa en las prácticas culturales con orientación al control de plagas, la capacidad que tiene el ganado para tolerar o resistir sus dafios y la acción de los factores naturales de mortalidad de las mismas, como lo son los parasitóides, depredadores y patógenós de insectos-plagas. Estas tres últimas son la alternativa de control más usada para sustituir el uso inadecuado de los insecticidas
Es por lo anteriormente expuesto que el Centro Universitario de Estudios e Investigación de Proyectos, S.C., se dio a la tarea de hacer estudios de investigación en campo y gabinete, con la finalidad de usar microorganismos entómopatógenos (hongos) viviendo en un medio acuoso surfactante aniónico organofosfórado y su aplicación en suelos agrícolas y ganado vacuno; para el control de insectos plaga. Estos organismos generalmente tienen como efecto la muerte directa de la especie de insecto que atacan o actúan como antagonistas inhibiendo el desarrollo de otros microorganismos mediante sustancias que excretan. La formulación con Hongos Entomopatógenos para el control de plagas particularmente para matar garrapatas Boophilus en bovinos es una invención única sujeta a patentarse por sus cualidades y relevantes resultados, ya que constituye una solución importante eñ el cofttról biológico de diversas plagas, considerando como prioridad a la garrapata boophilus.
Él Laboratorio del Centro Universitario de Estudios e Investigación de Proyectos, S.C. es la Institución sede para la creación de ésta formulación, es el lugar idóneo conformado y adaptado para el cultivo de éstas dos cepas de hongos ya que se acondicionó de tal forma que tuviera los aspectos como temperatura, escasa iluminación, medio ambiente y atmósfera acordes a los escenarios idóneos para su reproducción, todo está delimitado dentro del Laboratorio de Cultivo.
EJEMPLO 1: MÉTODO PREFERENTE DÉ CULTIVO DE LOS HONGOS ÉNTOMOPATÓGÉNOS
El medio de cultivo es una sustancia o solución que permite el desarrollo de microorganismos, mientras que el cultivo es el producto del crecimiento de un organismo. Los medios utilizados en micología deben contener los nutrientes suficientes para asegurar el desarrollo y reproducción de los hongos (carbono, nitrógeno, vitaminas, oligoelementos, etc.) y un pH ligeramente ácido (6 - 6.3) para facilitar su crecimiento e inhibir al mismo tiempo el desarrollo de otros microorganismos. Se puede añadir antibióticos antibacterianos para inhibir el crecimiento de bacterias saprofitas que suelen contaminar las muestras. Los medios pueden ser sólidos o líquidos. Para conseguir un medio sólido (arroz) se debe agregar una sustancia solidificante como el agar (gelatina vegetal) o el agar agar (polisacáridos provenientes de algas), el cual no tiene valor nutritivo sino que sirve simplemente para mantener la humedad por un tiempo más o menos prolongado. (Figura 1).
La humedad es fundamental para el desarrollo de los hongos, porque cuando ésta comienza a disminuir, la formación de micelio también disminuye y el hongo tiene que asegurar su perpetuidad formando estructuras propagativas (esporas, conidias) y de conservación (clamidosporas). El agar empieza a derretirse a partir de 80 °C y soporta temperaturas altas sin descomponerse, solidificándose entre los 35 y 50 oC. Los medios de cultivo se vierten en placas Petri o en tubos inclinados. Los primeros ofrecen la ventaja de tener mayor superficie para el desarrollo del hongo y se utilizan para trabajos rutinarios de aislamientos, aspecto del cultivo, velocidad de crecimiento, etc. sin embargo, son más fáciles de contaminarse. Los tubos, a pesar de tener una superficie mucho más reducida, ofrecen seguridad en su manipulación y buena resistencia a la deshidratación y a la contaminación. Se utilizan para conservar cultivos por tiempo más o menos prolongado. Los medios se seleccionan en base al tipo de muestra que queremos reproducir. (Figura 20)
El pH recomendado para el cultivo de hongos en el laboratorio es de alrededor de 7, un pH neutro o ligeramente ácido (6.8). Para seguridad del que opera y evitar Contaminaciones, los medios de cultivo se deben manipular en campanas de flujo laminar.
ÉJEMPLÓ 2: EVALUACIÓN DÉ LAS CARACTERÍSTICAS MORFOLÓGICAS MÁS IMPORTANTES DÉ LÓS HONGOS ENTOMOPATÓGENOS Beauveria bassiana (Bálsamo) Vuillemiñ Cólonia: La colonia en PDA a los 14 días es algodonosa a polvorienta, blanca. A medida que va pasando el tiempo la colonia se vuelve amarillenta, cremosa. El revés es de color rojizo al centro y amarillento alrededor. (Figura 2) EJEMPLO 3: EVALUACIONES DE LAS CARACTERÍSTICAS MORFOLÓGICAS
MÁS IMPORTANTES DÉ LOS HONGOS ENTOMOPATÓGENOS Metarhizium anisopliae (Metschnikoff) Sorokin Colonia a los diez días: Pegada al medio, completamente redonda, de colores oliváceo, amarillento, verdoso, marrón oscuro, dependiendo del aislamiento. Revés incoloro a marrón, a veces verdoso citrino. (Figura 3)
EJEMPLO 4: DE UN MÉTODO PARA LA MULTIPLICACIÓN DE HONGOS ENTOMOPATOGENOS CON SUSTRATO NATURAL (ARROZ).
El sustrato puede ser humedecido previa esterilización o previa inoculación dependiendo del tipo de materia prima o combinación de estas y ajustes realizados. Un exceso de humedad (70-80% aproximadamente) provocaría baja disponibilidad de oxigenó y por ende pobre desarrollo del microorganismo. Además compactaría el substrato impidiendo una colonización total de su superficie. Por otro lado, una baja humedad podría inhibir el desarrollo del microorganismo al no poner la suficiente cantidad de nutrientes en solución para ser usado por este además de la poca resistencia a la desecación que tienen los hongos en el periodo activo de crecimiento micelial.
Durante la incubación se debe regular el régimen luz-oscuridad. Cuando se obtiene la biomasa conidial óptima sobre tódá la superficie del sustrato se pasa al proceso de secado para que los conidios permanezcan viables en almacenamiento por mayor tiempo. Este proceso se optimiza con deshumidificadóres o aires acondicionados o acelerando la ventilación con ventiladores lo que depende de las condiciones locales. El sustrato con el hongo proveniente del cuarto de crecimiento se coloca en el cuarto de secado, a una temperatura no mayor de 28 °C, con baja humedad relativa (<70%) y sin entrada de rayos solares. Un cuarto con acondicionador de aire provee las condiciones adecuadas para el secado de este material. El material se esparce sobre papel periódico y sobre un plástico negro, manteniéndose por 12 días, hasta que el contenido de humedad descienda al 12 ó 14% . En estas condiciones el material es enfundado en recipientes de 1 Kg y estará listo para ser utilizado directamente en las aplicaciones en el campo ó almacenarse en refrigeración (4 a 8°C). En este último caso, el hongo puede permanecer viable hasta por 6 meses. Posterior al secado y previo al paso final de envasado en el flujo de producción se realiza la cosecha. Es en este momento que comienza la etapa de formulación donde se prepara una combinación de ingredientes de forma que el principio activo (esporas) se mantenga estable, efectivo y fácil de aplicar. Durante todo el proceso la regulación de la temperatura ambiental es esencial la que debe ser ló más próxima posible a la temperatura óptima (máxima 22.1 grados centígrados y mínima 12.6 grados centígrados) de desarrollo del microorganismo.
Los sustratos utilizados varían según la región y la finalidad de la multiplicación. En éste procedimiento se utilizó arroz pelado (Figura 20). El Procedimiento es el siguiente:
1. Remojar el sustrato en agua con hipoclorito de sodio al 1% durante 16 horas.
2. Enjuagar varias veces con abundante agua, hasta que ya no se sienta el olor a hipoclorito. 3. Embolsar 800 gramos de sustrato por bolsa y agregar 200 mi de agua destilada.
4. Esterilizar durante 20 minutos á 15 libras de presión por dos días consecutivos.
Preparación del inoculo:
1. Preparar un litro de medio PDA líquido y mantener durante tres días en agitación de 130 rpm.
2. Sembrar el hongo en el medio. Inoculación al sustrato:
1. Agregar en cada bolsa 20 mi del inoculo, en la cámara de flujo laminar.
2. Sellar las bolsas.
3. Incubar a 20 °C durante siete días.
4. A los siete días, realizar el primer conteo de número de conidias
Conteo del número de estructuras propagativas:
1. Agregar en un vaso de precipitados o en un tubo de ensayo un gramo del sustrato y 10 mi de agua destilada estéril.
2. Agitar enérgicamente, o con un agitador, por espacio de un minuto, para que las conidias se desprendan.
3. Tomar 100 μΐ de la suspensión y completar a 1 mi con agua destilada más Tween al 0.1%.
4. Hacer las diluciones necesarias hasta poder contar las conidias en la cámara de Neubauer. 5. Realizar el cálculo correspondiente al peso de la bolsa. (Figura 4)
EJEMPLO 5: MÉTODO PREFERENTE DE OBTENCIÓN DE LA FORMULACIÓN CON HONGOS ÉNTOMOPATÓGENOS PARA EL CONTROL DE PLAGAS. En donde la formulación del hongo es el proceso mediante el cual el ingrediente activo, es decir las conidias del hongo, se mezclan con materiales inertes, tales como vehículos, solventes, enlulsificantes y otros aditivos. Estos materiales inertes ayudan a que el hongo trabaje mejor. Todo esto se hace con el fin de lograr una buena homogeneidad y distribución de las partículas del hongo, para poder ser manipuladas y aplicadas adecuadamente. Para ser formulado, la viabilidad del hongo no debe ser menor de 95% y el contenido de humedad debe estar entre 4 y 6 %.A temperatura ambiente las conidias mantienen su viabilidad por m.s tiempo cuando el hongo ha sido formulado que cuando se almacena el polvo sin formular. (Figura 5) EJEMPLO 6: DEL AGENTE TENSIO ACTIVO O SURFACTANTE AGREGADO AL MÉTODO PREFERENTE DE OBTENCIÓN DE LA FORMULACIÓN CON HONGOS ÉNTOMOPATÓGENOS PARA EL CONTROL DE PLAGAS. En cuanto a la formulación en mención se adhirió el agente tensioactivo o surfactante anionico organofosforado anionico organófosforado agregado a la composición en una proporción de 0-20% preferentemente. (Figura 6) EJEMPLO 7: DE LA BEAUVERIA BASSIANA EN EL MÉTODO PREFERENTE DÉ OBTENCIÓN DE LA FORMULACIÓN CON HONGOS ENTOMOPATÓGÉNOS PARA EL CONTROL DE PLAGAS. Se presenta la perspectiva de la cepa de hongo denominada Beauveria bassiana parte esencial de la formulación la cuáT¾é disuelve en 5 litros de agua con 1 gramo de la muestra'cóñ un dispersante, con lo cual se tendría la solución madre. De esta se toma un mililitro y se disuelve en 9 mi de agua destilada teniendo la dilución 10 -1 y así sucesivamente hasta obtener una dilución 10 -4, de la cual se toma una muestra de 0,01 mi y se llena el hemocitómetro. Se cuentan todos los cuadrantes el centro que son 25 y se aplica la siguiente fórmula (C= N * Dilución empleada * Factor de la cámara) donde C es la concentración de conidios que se desea conocer, N es el promedio de conidios por cuadrante y el factor de la cámara que es 104; de esta forma se determina la concentración de conidios del hongo evaluado por mi. (Figura 7)
EJEMPLO 8: DEL METARHIZIUM EN EL MÉTODO PREFERENTE DE OBTENCIÓN DE LA FORMULACIÓN CON HONGOS ENTOMOPATÓGÉNOS PARA EL CONTROL DE PLAGAS. La presente invención cuenta con los medios suficientes para soportar la viabilidad de la utilización de la FORMULACIÓN CON HONGOS ENTOMOPATÓGÉNOS PARA EL CONTROL DE PLAGAS particularmente para MATAR GARRAPATAS BOOPHILUS EN BOVINOS, es por esto que las figuras en mención muestra el panorama de la cepa de Hongo Metarhizium anisopliae en sus difereñtes etapas de producción hasta la fase en la que se encuentra lista para su incorporación en la composición de la fórmula, en una proporción propuesta de 0-18%. (Figura 8) EJEMPLO 9: MATERIA PRIMA CELULOSA EN EL MÉTODO PREFERENTE DE OBTENCIÓN DE LA FORMULACIÓN CON HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE PLAGAS. La materia prima celulosa se suma a la FORMULACIÓN CON HONGOS ENTOMOPATÓGENOS PARA ÉL CONTROL DE PLAGAS particularmente para MATAR GARRAPATAS 6ÓOPHILUS EN BOVINOS, ya que su función será la de formar cadenas largas y lineales, las cuales no se presentan aisladas sino unidas entre sí mediante enlaces de hidrógeno intramolecular formando una estructura supramolecular cristalina y organizada, resistente a la hidrólisis, las celulasas ó preparados con actividad enzimática múltiple (celulasa, hemicélulása y pectinasa) se indexaron debido a su efecto sinergísticó, por el potencial que tienen sobre la hidrólisis de los componentes estructurales de la pared celular de diversos organismos. (Figura 9)
EJEMPLO 10: MEZCLA MANUAL DEL MÉTODO PREFERENTE DE OBTENCIÓN DE LA FORMULACIÓN CON HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE PLAGAS. Según la panorámica en donde se presenta la combinación manual industrial de 9000 rpm de la formulación concentrada de hongos entomopatógenos, al efectuarse tal recombinación las proteínas se potencializarán y penetrarán Cón mayor fuerza en la cutícula de la piel de la garrapata y así se generará en su organismo una intoxicación lo que desencadenará su exterminio. (Figura 10)
EJEMPLO 11: VERTIMIENTO DEL AGENTÉ TENSIO ACTIVO O SURFACTANTE AMÓNICO ÓRGANOFOSFORADO DENTRO DEL MÉTODO PREFERENTE DE OBTENCIÓN DE LA FORMULACIÓN CON HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE PLAGAS. Se presenta la vista perspectiva del vertimiento del agente tensioactivo o surfactañte aniónico organofosforadó. Se observo en nuestros laboratorios' que la muerte del insecto se produce con mayor rapidez cuando es afectado por nuestro producto (hongo en medio acuoso surfactañte aniónico organofosforadó) que produce cantidades considerables de toxinas, ya que se adiciona la toxemia a la destrucción de los tejidos y a las deficiencias nutricionales. Los individuos enfermos no se alimentan, presentan debilidad, desorientación y cambian de color, presentando manchas oscuras sobre el tegumento, que corresponden con las esporas germinadas del hongó. Con la muerte del insecto termina el desarrollo parasítico del hongo y empieza la fase saprofítica: el hongo crece en el hemocele formando masas miceliares que salen al exterior fundamentalmente por las regiones intersegmentales, esporulando sobre el cadáver y produciendo inoculo para infectar a otros insectos y por las aberturas naturales: espiráculos, boca y ano. (Figura 11)
EJEMPLO 12: RECOMBINACIÓN DE HONGOS DENTRO DEL MÉTODO PREFERENTE DE OBTENCIÓN DE LA FORMULACIÓN CON HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE PLAGAS. En base a la Figura 9 las dos cepas de hongos Beauveria bassiana y Metarhizium anisopliae recombinados por un periodo de 20 días mezclan sus proteínas entre sí dejando un hongo entomopatogeno con patologías de alta efectividad para actuar sobre diversas plagas particularmente las garrapatas boophilus y exterminarlas. Nuestro microorganismo, hongos entomopatógenos, posee características muy especiales que les permiten sobrevivir en forma parasítica sobre los insectos y en forma saprofita sobre material vegetal en descomposición.
El crecimiento saprofito dio como resultado la producción de com&Yóforos, conidias y desarrollo miceliar, lo cual permite que el hongo pueda ser cultivado en el laboratorio utilizando técnicas de producción en masa de bajo costo. Prácticamente, todos los insectos son susceptibles a algunas de las enfermedades causadas por estos hongos. La formulación finalmente consta de hongos entomopatógenos recombinados preferentemente en partes iguales y los diluimos en agua ozonificada: un litro de agua por 1 gr. (gramo) de hongos entomopatógenos. (Figura 12)
EJEMPLO 13: FASE FINAL DEL MÉTODO PREFERENTE DE OBTENCIÓN DE LA FORMULACIÓN CON HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE PLAGAS. En donde se muestra la combinación de ésta cepas de hongos entomopatógenos en su fase final siendo una medida de supresión directa, su efecto depende de la siguiente aplicación: (Figura 13)
La formulación del hongo es el proceso mediante el cual el ingrediente activo, es decir las conidias del hongo, se mezclan con materiales inertes, tales como vehículos, solventes, emulsificantes y otros aditivos. Estos materiales inertes ayudan a que el hongo trabaje mejor. Todo esto se hace con el fin de lograr una buena homogeneidad y distribución de las partículas del hongo, para poder ser manipuladas y aplicadas adecuadamente. Para ser formulado, la viabilidad del hongo no debe ser menor de 95% y el contenido de humedad debe estar entre 4 y 6 %. A temperatura ambiente las conidias mantienen su viabilidad por mi. tiempo cuando el hongo ha sido formulado que cuando se almacena el polvo sin formular. (Figura 23)
EJEMPLO 14: EVALUACIÓN DE LA EFECTIVIDAD DE LA FORMULACIÓN CON HONGOS ENTÓMOPATÓGÉNOS PARA EL CONTROL DE PLAGAS.
Los parámetros que deben ser evaluados son:
Supervivencia de garrapatas adultas. Se registró en una hoja electrónica de datos diariamente durante tres meses el número de garrapatas adultas muertas para cada concentración del hongo.
Periodo de preoviposición y oviposición. Se calculó el periodo de preoviposición y oviposición en las hembras teleoginas inoculadas con las diferentes concentraciones del hongo. Porcentaje de eclosión y supervivencia larvaria. Para los dos ensayos el porcentaje de eclosión se calculó mediante un conteo de cascarones y la supervivencia larvaria se determinó ocho días después de observar la eclosión de todos los huevos. índice de eficiencia de la conversión (IEC). (IEC) = Peso de los huevos de la unidad experimental / peso de las hembras de la unidad experimental al inicio del ensayo, es un parámetro cuantitativo utilizado para determinar la conversión del peso de una hembra ingurgitada en huevos, Benavides et al. 1999. Eficiencia del hongo (EH). El índice de eficiencia de la conversión (IEC) de cada grupo de garrapatas tratadas se comparó con el IEC de los grupos, control para obtener la eficiencia del hongo. EH = (IEC grupo control - IEC grupo tratado)/ (IEC grupo control) x 100, Raymond et al. 2004. Análisis estadístico. Las variables peso final, peso de la oviposición, periodo de preoviposición, periodo de oviposición, y porcentaje de eclosión de huevos se estudiaron mediante análisis de varianza bifactorial teniendo en cuenta como factores el peso inicial de la garrapata y la concentración del hongo. La mortalidad diaria para cada concentración sé comparó mediante las curvas de supervivencia de Kaplan-Meier aplicando la prueba Generalizada de Gehan Wilcóxon. Se calculó también el tiempo letal 50 (TL50) para cada concentración. Las comparaciones múltiples de medias se efectuaron con la prueba de Newmañ- Keuls para a = 0,05. Los análisis se realizaron con el paquete estadístico STATISTICA 7.0, Statsoft, Inc. Tulsa, Ok, U.S.A.
EJEMPLO 15 EVALUACIÓN DÉ LA EFECTIVIDAD DE LA FORMULACIÓN CON HONGOS ENTÓMOPATÓGÉNOS PARA EL CONTROL DE PLAGAS. Según lo esquematizado en las Figuras 12-1 y 12-2 se presentó durante y después de la aplicación una acción ovicida, elimino el 100% de las larvas del parásito y además fue efectivo contra el 40% de los parásitos adultos tratados. Es por esto que nuestra propuesta de FORMULACIÓN qON HONGOS ENTOMOPATOGENOS PARA EL CONTROL DE PLAGAS particularmente para MATAR GARRAPATAS BOOPHILUS EN BOVINOS comprueba que la unión de lós elementos entomopatógenos nos ayuda a controlar el parásito en todos sus estados de vida. (Figura 21). Cabe mencionar que para el método de recuento de garrapatas y medición de los resultados de la aplicación de la FORMULACIÓN CON HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE PLAGAS particularmente MATAR GARRAPATAS BOOPHILUS EN BOVINOS se llevó a cabo bajo lo siguiente: (Figura 22)
a) La evaluación se realizó sobre dos grupos, cada uno de 20 caninos mestizos, uno de los grupos naturalmente infestado con una elevada carga de garrapatas de la especie boophilus. En uno de los establecimientos, la formulación en estudio, aplicada por el método spot on (exactamente o perfecto) demostró una eficacia en el control del 98.43% a las 24 horas posteriores de la aplicación del tratamiento y del 99.82% de eficacia al día +2 post-tratamiento, a partir del día +3 presentó un 100% de eficacia, la que se mantuvo durante los 32 días de duración del ensayo.
En el otro establecimiento, se trataron 20 bovinos, naturalmente infestados de garrapatas y la misma formulación aplicada en forma de spot on, demostró una eficacia, en el control de la garrapata de la especie boophilus del 97.76% el primer día post-tratamiento y del 98.86% el segundo día post-tratamiento. A partir del tercer día y hasta el día 28 (días de observación), presentó una eficacia del 100%. A pesar de que el día 32 la eficacia disminuyó al 98.07% aún se mantuvo en un buen nivel.
Ambos grupos fueron comparados con animales testigos, los que se mantuvieron parasitados durante los 32 días de duración del ensayo. b) Se revisó todo el cuerpo del animal, prestando especial atención a los pabellones auriculares, tabla del cuello y margen inferior del mismo, cara interna de las extremidades, región perianal y espacios interdigitales.
c) Se consideró el número total de formas parasitarias halladas, tanto teleoginas ovigeras como también larvas y ninfas.
d) Én ambas evaluaciones se revisaron los animales y se recontaron garrapatas de los animales tratados y testigos los días -1, 0, +1, +2, +7, +14, +21, +28 y +32.
e) Se evaluaron los resultados con el objetivo de medir la eficacia y el poder residual de la FORMULACIÓN sujeta a patentarse, la cuál se midió bajo la fórmula de Henderson & Milton, 1995.
100 - (IQOxpromedio de garrapatas del lote tratado) X promedio garrapatas lote testigo pre-tratamiento
Promedio garrapatas lote testigo promedio de garrapatas lote tratado pre-tratamiento
Ninguno de los animales en estudio recibió medicación alguna durante el transcurso de la prueba ni se realizó en las instalaciones aplicación de ningún insecticida y/o acaricida de acción ambiental, habiéndose constatado que tampoco se lo hubiera hecho en los treinta días previos para descarta cualquier tipo de reacción residual. f) Las garrapatas observadas estaban muertas y algunas no alcanzaron á desprenderse
lo que seguramente determinó una dispersión más lenta del producto sobre el cuerpo del animal. (Figura 24) Efi todos los escenarios los grupos testigos de bovinos sin tratamiento se mantuvieron con una infestación elevada de garrapatas, superior o igual a la infestación inicial.
EJEMPLO 16: PROTOCOLO PROPUESTO PARA EL AISLAMIENTO DE HONGOS ENTOMOPATOGENOS DE LA FORMULACIÓN OBJETO DE LA PRESENTE INVENSIÓN EN MEDIOS DE CULTIVO.
á) caja Petri con papel filtro (Cámara seca);
b) larvas muertas después del contacto con la muestra de suelo;
c) larvas que muestran la patología típica de infección por nematodos;
d) emergencia de juveniles infectivos en la trampa White.
e) dilución seriada de la suspensión acuosa que contiene al hongo;
í) inoculación de la suspensión (alícuota de 0.1 mi) en una caja petri con medio de cultivo; g) incubación bajo condiciones controladas en una cámara DBO;
h) almacenaje de conidios en tubos Eppendorf, bajo condiciones de congelación.
(Figura 14)
EJEMPLO 17: GENERALIDADES DE LA APLICACIÓN PREFERENTE DE LA FORMULACIÓN OBJETO DE LA PRESENTE INVENSIÓN Se sugiere utilizar cinco litros de la formulación de hongos entomopatógenos por cada 10 kg de peso del animal, a los diez días repetimos la aplicación y realizamos aplicaciones subsecuentes de acuerdo al comportamiento que presente el parásito. Las recomendaciones y el seguimiento del control biológico que debemos seguir para el buen uso de esta invención son:
• Aplicar en horas de baja luminosidad de 19:00 a 21 :00 hrs.
• Antes del ordeño lavar las ubres de las vacas tratadas. · Utilizar una bomba de espalda libre de residuos químicos.
• En zonas cálidas (> 30°C) conservar los productos refrigerados entre 2 y 9 °C.
• Si se han bañado los animales con venenos esperar 10 días para la aplicación del control biológico.
Resaltamos la importancia de que la aplicación tiene que ser hecha en las tardes para que lós hongos no mueran, durante la noche es asimilada la proteína tóxica sobre la piel de las garrapatas, y al día siguiente los hongos son exterminados por los rayos ultravioleta, haciendo prácticamente inocuos al medio ambiente a diferencia de otras alternativas para el control biológicos de plagas que dejan residuos tóxicos. (Figura 15)
EJEMPLO 18: PROCESO DE INFECCIÓN Y DE INVASIÓN DEL HOSPEDERO EN GANADO CUANDO SE HA APLICADO AL CUERPO DEL ANIMAL LA FORMULACIÓN DE HONGOS EN OMOPATOGENOS
La enfermedad producida por hongos se llama micosis y se presenta de la siguiente forma:
1.- Adhesión y germinación de la espora en la cutícula del insecto: El proceso de adhesión, dependiendo del hongo, puede ser un fenómeno específico o ño específico. Mientras que la germinación de las esporas es un proceso mediante el cual una espora emite uno o varios pequeños tubos germinativos que al crecer y alargarse dan origen a las hifas, este proceso depende de las condiciones de humedad, y temperatura ambiental. En menor grado la luz condiciona el ambiente alimenticio. La espora que germina en el insecto forma un tubo germinativo el cual funciona como una hifa de penetración de la cutícula/ También puede producir una estructura llamada apresorio, la cual ayuda a la adhesión de la espora.
El éxito de la germinación y penetración no dependen necesariamente del porcentaje de germinación sino del tiempo de duración de la germinación, modo de germinación, agresividad del hongo, tipo de espora y susceptibilidad del hospedante.
Los hongos, además, pueden infectar a los insectos a través de las aberturas corporales como son cavidad bucal, espiráculos y otras aberturas externas. Las esporas pueden germinar rápidamente en estos ambientes por ser húmedos. Cuando lo hacen en los fluidos digestivos, pueden destruir a la hifa germinativa. En este caso, el insecto no muere de micosis sino a causa de las toxinas.
2.- Penetración dentro del hemocele: Esta penetración por parte de la hifa es el resultado de la degradación enzimática de la cutícula y la presión mecánica ejercida por el tubo germinativo. Además, depende de las propiedades de la cutícula, grosor, esclerotización, presencia de sustancias nutricionales y antifungosas y estado de desarrollo del insecto. L digestión del integumento se produce mediante las enzimas (proteasas, aminopeptidasas, lipasas, esterasas y quitinasas). Cuando la hifa ha llegado al hemocele, se pueden producir diferentes reacciones de defensa del insecto frente a un cuerpo extraño: la fagocitosis, encapsulación celular y la formación de compuestos antimicrobianos como las lisozimas, aglutininas y melanización. En este caso, el hongo debe vencer el sistema inmunológico del hospedante antes de entrar a la hemolinfa y desarrollarse dentro del insecto. 3. Desarrollo del hongo que resulta en la muerte del insecto: Luego de que llegue al hemocele, el hongo puede evitar la defensa inmune del insecto produciendo células parecidas a levaduras, llamadas blastosporas, que se multiplican y dispersan rápidamente, desarrollando protoplastos, elementos discretos ameboideos, sin pared celular que no son reconocidos por los hemocitos del hospedante y produciendo micotoxinas. La dispersión de éstos en el hemocele depende de la especie del hongo.
Las toxinas producidas juegan un rol muy importante en el modo de acción de los hongos entomopatógenos. La muerte del insecto se produce con mayor rapidez cuando es afectado por un hongo entómopatógenó que produce cantidades considerables de toxinas, ya que se adiciona la toxemia a la destrucción de los tejidos y a las deficiencias nutricionales. Cuando se dá el crecimiento del hongo en el hemocele, se producen los síntomas fisiológicos del insecto afectado como convulsiones, carencia de coordinación y comportamientos alterados (deja de alimentarse, reduce su movimiento), entra en un estado letárgico y finalmente muere, lo que puede ocurrir relativamente rápido o en unos cuantos días. Ocurre una competencia entre el hongo y la flora intestinal. Los hongos pueden producir sustancias antibacterianas que alteran la coloración del cadáver. Con la muerte del insecto termina el desarrolló parasítico del hongo y empieza la fase saprofítica: el hongo crece en el hemocele formando masas micelianas que salen al exterior fundamentalmente por las regiones intersegmentales -esporulandó sobre el cadáver y produciendo inóculo para infectar a otros insectos- y por las aberturas naturales (espiráculos, boca y ano).
La gran dependencia de la humedad es el mayor factor limitante que presentan los hongos, ya que para que se produzca la germinación y esporulación fuera del hospedante se requieren valores de humedad relativa superiores al 6%. La invasión del hospedero, directamente a través de la cutícula, partes bucales, membranas intersegmentales, o a través de espiráculos, sitios donde existe alta humedad que promueve la germinación de las esporas y permite la penetración de las hifas, constituye el principal aspecto de la patogénesis. Una vez en contacto con la cutícula en hongo germina, produce un tubo que empieza a deslizarse sobre la cutícula buscando puntos 4ue faciliten su penetración.
Durante el procesó de invasión los tubos germinativos obedecen a cambios bioquímicos o procesos adaptativos y diferenciación celular. El hongo atraviesa la epicuticula, forma placas que van invadiendo y destruyendo los diferentes estratos. Una vez dentro del hemocele la colonización del hospedero se realiza por medio de blastosporas (un estado de desarrollo tipo levaduriforme) y del micelio. El hongo invade la hemolinfa, en cuyo casó la muerte es el resultado de una combinación de daños mecánicos producidos por el crecimiento del hongo, desnutrición (el hongo utiliza azucares y proteínas 'presentes en la hemolinfa) y por la acción de metabolitos secundarios o toxinas. Las enzimas degradadoras de la cutícula una vez absorbidas dentro de la cutícula degradan progresivamente los polímeros en monómerós precursores utilizables.
Las enzimas catabólicas candidatas son aquellas que afectan las proteínas, quitina, cera y lípidos, y otras capas del exoesquelétó tejidos del insecto, del hemocele y de la hemolinfa. (Figura 16)
EJEMPLO 19: PROCESO TOX1COLÓGICO DEL HOSPEDERO EN GANADO CUANDO SE HA APLICADO AL CUERPO DEL ANIMAL LA FORMULACIÓN DE HONGOS ENTOMOPATOGENOS: Los hongos sintetizan metabolitos con acción toxica, identificados a partir de los filtrados del cultivo de hongos o mediante la inyección en lepidópteros y dípteros, algunas toxinas son clasificadas dentro de los depsipeptidos cíclicos cómo la beauvericina producida por Lecanicillium (=vertícillium) lecanii y Beauveria bassiana, además del basianolide que es producido por este ultimo hongo y por Paecilomyces fumosoroseu, productos que alteran el transporte de cationes a través de la membrana celular.
Las toxinas provocan alteraciones en varios órganos, paralizan las células o causan un mal funcionamiento del intestino medio, tubos de malpigio, tejido muscular y hemocitos. ( Figura 17)

Claims

REIVINDICACIONES
Habiendo descrito suficiente mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas:
1. FORMULACION CON HONGOS ENTOMOPAT OGENOS PARA EL CONTROL DÉ PLAGAS Y SU MÉTODO, caracterizada porque comprende el
1% de Bauveria Bassiana junto con Metharhizium Anisopliae, un 10% de Celulasa y un 89% del Agente Tensioactivo o surfactante anionico organofosforado; lo anterior es porcentaje en Peso.
1. Formulación con hongos entomopatógenos para control de plagas, de conformidad con la reivindicación 1, caracterizada porque el hongo entomopatógeno es producto de la RECOMBINACIÓN de dos cepas B. Bassiana y Metharhizium Anisopliae.
3. FORMULACIÓN CON HONGOS ENTOMOPATÓGENÓS según cualquiera de las reivindicaciones anteriores caracterizada porque comprende además un efecto sinergético dejando un hongo entomopatógeno de alta efectividad para actuar sobre las diversas plagas particularmente la garrapata boophilus y exterminarlas.
4. Método para la producción DE HONGOS ENTOMOPATÓGENOS caracterizada porque comprende:
a) .- Remojar el sustrato en agua con hipoclorito de sodio al 1% durante 16 horas;
b) .- Enjuagar tres veces en un recipiente con de abundante agua, hasta que ya no se sienta el ólór a hipoclorito; c) .- Embolsar 800 gramos de sustrato por bolsa y agregar 200 mi de agua destilada;
d) .- Esterilizar durante 20 minutos a 15 libras de presión por dos días consecutivos;
Preparación del inoculo:
e) .- Preparar un litro de medio PDA líquido y mantener durante tres días en agitación de 130 rpm;
í).- Sembrar el hongo en el medio.
Inoculación al sustrato:
g) .- Agregar en cada bolsa 20 mi del inóculo, en la cámara de flujo laminar; h) .- Sellar las bolsas;
i) .- Incubar a 20 °C durante siete días;
j).- A los siete días, realizar el primer conteo de número de conidias;
Conteo del número de estructuras propagativas:
k).- Agregar en un vaso de precipitados o en un tubo de ensayo un gramo del sustrato y 10 mi de agua destilada estéril;
1).- Agitar enérgicamente, o con un agitador, por espacio de un minuto, para que las conidias se desprendan;
m).- Tomar 100 μΐ de la suspensión y completar a 1 mi con agua destilada más Tween al 0.1%;
n).- Hacer las diluciones necesarias hasta poder contar las conidias en la cámara de Neubauer; y
o).- Realizar el cálculo correspondiente al peso de la bolsa.
5. Método Subsecuente según reivindicación 5 donde, para la producción DE HONGOS ENTOMOPATÓGENOS según la reivindicación 1 se llevarán a efecto los siguientes pasos:
a) .- El vertimiento del agente tensioactivo o surfactante anionico organofosforado;
b) .- La recombinación preferentemente en partes iguales b. bassiana y Metharhizuim Anisopliae y diluidos en agua ozonificada: un litro de agua por Igr. (gramo) de hongos entomopatógenos; y c) .- La mezcla con celulasa, para formar cadenas largas y lineales, las cuales no se presentan aisladas sino unidas entre sí mediante enlaces de hidrógeno intramolecular formando una estructura supramolecular cristalina y organizada, resistente a la hidrólisis, por el potencial que tienen sobre la hidrólisis de los componentes estructurales de la pared celular de diversos organismos.
6. FORMULACIÓN CON HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE PLAGAS particularmente la garrapata boophilus EN BOVINOS de acuerdó a la reivindicación 1 caracterizado porque el proceso de recombinación de los hongos entomopatógenos se inicia cuando la espora o conidia se adhiere a la cutícula de la garrapata boophilus; luego se produce un tubo germinativo y un apresorio, con éste se fija en la cutícula y con el tubo germinativo o haustorio (hifa de penetración) se da la penetración al interior del cuerpo de la garrapata boophilus, en la que participa un mecanismo físico y uno químico, el primero consiste en la presión ejercida por la hifa, la cual rompe las áreas esclerosadas y membranosas de la cutícula y penetra al organismo de la garrapata boophilus exterminándola.
7. La FORMULACIÓN CON HONGOS ENTOMOPATOGENOS PARA EL CONTROL DE PLAGAS particularmente la garrapata boophilus EN BOVINOS según reivindicación 1 y 2 caracterizado porque consta de los elementos entomópatógenos en partes iguales y los diluimos en agua: un litro de agua por gramo de entomópatógenos. Utilizamos cinco litros de agua por animal, a los diez días repetimos la aplicación y realizamos aplicaciones subsecuentes de acuerdo al comportamiento que presente el parásito.
8. Que derivado de la Reivindicación 3 las recomendaciones para la aplicación de FORMULACIÓN CÓN HONGOS ENTOMÓPATÓGENOS PARA EL CONTROL DÉ PLAGAS caracterizado porque particularmente es para MATAR GARRAPATAS BOOPHILUS EN BOVINOS y el seguimiento del control biológico que debemos seguir para el buen uso de esta invención serán: a) Aplicar en horas de baja luminosidad, b)Antes del ordeño lavar las ubres de las vacas tratadas, c) Utilizar una bomba de espalda libre de residuos químicos, d) En zonas cálidas (> 30°C) conservar los productos refrigerados entre 2 y 9 °C y e) Si se han bañado los animales con venenos esperar 10 días para la aplicación del control biológico.
9. En basef a la Reivindicación No. 1 la FORMULACIÓN CON HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE PLAGAS
particularmente para MATAR GARRAPATAS BOOPHILUS EN BOVINOS caracterizado porque se origina de un PROCESO ORGÁNICO, es por esto que será efectiva contra las plagas, no contaminará el medio ambiente por su composición natural, no destruirá insectos benéficos, no será tóxica para el ser humano ya que está demostrado que existen otras propuestas de origen químico que alteran los niveles hormonales de los hombres, afectando su fuerza y generándoles escenarios de debilidad física y sexual.
10. Método según cualquiera de las reivindicaciones 4 a 5 caracterizado porque el hongo entomopatógeno es seleccionado de cualquiera de las cepas con número de depósito FHE25Ó312 (cepa 205) y FHE180513 (cepa 298).
11. Hongo entomopatógeno caracterizado porque es seleccionado de cualquiera de las cepas con número de depósito FHE250312 (cepa 205) y FHE 180513 (cepa 298).
12. Uso de la FORMULACIÓN según cualquiera de las reivindicaciones 1 a 3 para el control biológico de plagas.
13. Uso según la réivindicacióñ 2 donde la plaga es la recombinación de los hongos B. bassiana y Metharizium.
14. Que según reivindicaciones anteriores el HONGO ENTOMOPATÓGENO que se origina de la formulación presenta una patogenicidad que es diferente y inexistente y que la hace ser una medida de supresión directa hacia la garrapata boophilus sujeta a patentarse.
PCT/MX2014/000170 2013-11-26 2014-10-31 Formulacion con hongos entomopatogenos para el control de plagas WO2015080545A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2013/013822 2013-11-26
MX2013013822A MX2013013822A (es) 2013-11-26 2013-11-26 Formulacion con hongos entomopatógenos para el control de plagas.

Publications (1)

Publication Number Publication Date
WO2015080545A1 true WO2015080545A1 (es) 2015-06-04

Family

ID=53199418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2014/000170 WO2015080545A1 (es) 2013-11-26 2014-10-31 Formulacion con hongos entomopatogenos para el control de plagas

Country Status (2)

Country Link
MX (1) MX2013013822A (es)
WO (1) WO2015080545A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105893774A (zh) * 2016-04-25 2016-08-24 环境保护部南京环境科学研究所 生物多样性保护优先区域绿色发展生态安全评价指数的计算机建模方法
EP3732971A4 (en) * 2018-02-19 2021-12-15 Salus Mundi Investments Limited PROCEDURE FOR CONTRIBUTING RESISTANCE TO THIODICARB (CARBAMATE) AND BIFENTHRIN (PYRETHROID) FOR A GROUP OF FUNGI THAT SOLUBILIZE PHOSPHORUS AND ANTAGONIZE CERTAIN PATHOGENOUS ANTAGONICS, FOR BURNS AND USE IN FLÜSSEND

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAMARGO M. G. ET AL.: "Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions.", VETERINARY PARASITOLOGY, vol. 188, 2012, pages 140 - 147 *
FERNANDEZ RUVALCABA, M. ET AL.: "Evaluación de cepas de Beauveria bassiana y Metharhizium anisopliae sobre la inhibición de oviposición, eclosión y potencial reproductivo en una cepa triple resistente de garrapata Rhipicephalus (Boophilus) microplus (Canestrini) (Acari:Ixodidae).", ENTOMOTROPICA, vol. 25, no. 3, December 2010 (2010-12-01), pages 109 - 115 *
MARANGA R. O. ET AL.: "Effects of combining the fungi Beauveria bassiana and Metharhizium anisopliae on the mortality of the tick Amblyomma variegatum (ixodidae) in relation to seasonal changes.", MYCOPATHOLOGIA, vol. 159, 2005, pages 527 - 532 *
MOTTA-DELGADO P. A. ET AL.: "Hongos entomopatógenos como alternativa para el control biológico de plagas.", AMBI-AGUA, TAUBATÉ, vol. 6, 2011, pages 77 - 90 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105893774A (zh) * 2016-04-25 2016-08-24 环境保护部南京环境科学研究所 生物多样性保护优先区域绿色发展生态安全评价指数的计算机建模方法
EP3732971A4 (en) * 2018-02-19 2021-12-15 Salus Mundi Investments Limited PROCEDURE FOR CONTRIBUTING RESISTANCE TO THIODICARB (CARBAMATE) AND BIFENTHRIN (PYRETHROID) FOR A GROUP OF FUNGI THAT SOLUBILIZE PHOSPHORUS AND ANTAGONIZE CERTAIN PATHOGENOUS ANTAGONICS, FOR BURNS AND USE IN FLÜSSEND

Also Published As

Publication number Publication date
MX2013013822A (es) 2015-05-26

Similar Documents

Publication Publication Date Title
US10821145B2 (en) Integrative fungal solutions for protecting bees
Grønvold et al. Biological control aspects of biological control—with special reference to arthropods, protozoans and helminths of domesticated animals
Malik et al. House fly (Musca domestica): a review of control strategies for a challenging pest
CA2566864C (en) Microbial biosurfactants comprising rhamnolipids as an agent for controlling pests
Grace Biological control strategies for suppression of termites
EA032759B1 (ru) Способ улучшения здоровья пчел с помощью грибов
CN105794558A (zh) 一种用于蕉园绿色防控香蕉花蓟马的方法
Kwenti Biological control of parasites
US11752182B2 (en) Integrative fungal solutions for protecting bees
CN103783030B (zh) 一种捕食性天敌昆虫绿步甲与绿僵菌组合防治害虫的方法
CN106857683A (zh) 一种防治红火蚁的生物源饵剂
CN104222023B (zh) 一种斯氏线虫大批量繁殖培育方法
JP2008520562A (ja) 農業用または園芸用添加剤
CN105061078A (zh) 一种保健生物有机肥及其制法
RU2328493C1 (ru) Применение усниновой кислоты в качестве синергиста инсектицидов на основе энтомопатогенных микроорганизмов
WO2015080545A1 (es) Formulacion con hongos entomopatogenos para el control de plagas
Zeina et al. Field evaluation of Beauveria bassiana (Balsamo) Vuillemin isolates for the biocontrol of Rhipicephalus microplus (Canestrini) ticks on cattle
WO2009050482A1 (en) Composition for and method of pest control
Pirali-Kheirabadi Biological control of parasites
JP2008533054A (ja) 吸血シラミの駆除
CN113519558A (zh) 一种微生物杀虫剂配方
Turdiyeva EFFICACY OF BIOSLIP BW MICROBIOLOGICAL PREPARATION AGAINST HELIOTHIS ARMIGERA Hb IN BEANS
Kumar et al. Entomopathogenic Fungi: A Biological Weapon for Pest Management
Tan et al. Evaluations Of Entomopathogenic Fungi, Metarhizium Anisopliae Inoculate On The Treated Soils Towards Paederus fuscipes
Mavlanov et al. Integrated methods of combating sheep ectoparasites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866246

Country of ref document: EP

Kind code of ref document: A1