WO2015080279A1 - Antiglare film - Google Patents

Antiglare film Download PDF

Info

Publication number
WO2015080279A1
WO2015080279A1 PCT/JP2014/081669 JP2014081669W WO2015080279A1 WO 2015080279 A1 WO2015080279 A1 WO 2015080279A1 JP 2014081669 W JP2014081669 W JP 2014081669W WO 2015080279 A1 WO2015080279 A1 WO 2015080279A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
mold
antiglare
meth
antiglare film
Prior art date
Application number
PCT/JP2014/081669
Other languages
French (fr)
Japanese (ja)
Inventor
勉 古谷
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201480064353.6A priority Critical patent/CN105765417A/en
Priority to KR1020167016832A priority patent/KR20160091956A/en
Publication of WO2015080279A1 publication Critical patent/WO2015080279A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to an antiglare film having excellent antiglare properties.
  • Image display devices such as liquid crystal display, plasma display panel, cathode ray tube (CRT) display, organic electroluminescence (EL) display, etc.
  • An antiglare film is disposed on the display surface.
  • As an antiglare film a transparent film having an uneven surface shape is mainly studied.
  • Such an anti-glare film exhibits anti-glare properties by reducing reflection by scattering and reflecting external light (external light scattered light) due to the uneven surface shape.
  • external light scattering light is strong, so-called “whiteness” may occur in which the entire display surface of the image display device becomes whitish or the display becomes cloudy.
  • Patent Document 1 discloses an anti-glare film that does not generate glare even when placed in a high-definition image display device and that is sufficiently prevented from being whitish.
  • the surface irregularity shape is fine, and the average length PSm in the arbitrary sectional curve of the surface irregularity shape is 12 ⁇ m or less, and the ratio Pa / PSm of the arithmetic average height Pa to the average length PSm in the sectional curve is An anti-glare film having a surface ratio of 0.005 or more and 0.012 or less, the surface irregularity shape having an inclination angle of 2 ° or less, and a surface ratio having an inclination angle of 6 ° or less is 90% or more. It is disclosed.
  • the antiglare film disclosed in Patent Document 1 has a surface irregularity shape with a period of about 50 ⁇ m that makes it easy to generate glare by making the average length PSm in an arbitrary cross-sectional curve very small, Glare can be effectively suppressed.
  • the anti-glare film disclosed in Patent Document 1 tries to make the haze smaller (to make it low haze)
  • the anti-glare film when the display surface of the image display device on which the anti-glare film is arranged is observed obliquely. There was a case where the dazzle was reduced. Therefore, the antiglare film disclosed in Patent Document 1 has room for improvement in terms of antiglare properties at a wide observation angle.
  • the present invention provides an anti-glare film that has excellent anti-glare properties at a wide viewing angle even at low haze, and can sufficiently suppress the occurrence of whitish and glare when placed in an image display device.
  • the purpose is to do.
  • the present invention An anti-glare film comprising a transparent support and an anti-glare layer having fine surface irregularities formed thereon,
  • the total haze is 0.1% or more and 3% or less
  • the surface haze is 0.1% or more and 2% or less
  • the ratio R (40) / R (30) of the reflectance R (30) at a reflection angle of 30 ° and the reflectance R (40) at a reflection angle of 40 ° is 0.00001. More than 0.0025
  • the surface uneven shape is an antiglare film characterized in that the power spectrum of the altitude satisfies all the following conditions (1) to (3).
  • the intensity I (0.01) at a spatial frequency of 0.01 ⁇ m ⁇ 1 is 2 ⁇ m 4 or more and 10 ⁇ m 4 or less; (2) The intensity I (0.02) at a spatial frequency of 0.02 ⁇ m ⁇ 1 is 0.1 ⁇ m 4 or more and 1.5 ⁇ m 4 or less; and (3) the intensity I at a spatial frequency of 0.1 ⁇ m ⁇ 1 (0. 1) is 0.0001 ⁇ m 4 or more and 0.01 ⁇ m 4 or less.
  • the sum Tc of transmitted sharpness measured using five types of optical combs in which the widths of the dark part and the bright part are 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively, is 375%. That's it, Rc of reflection sharpness Rc measured at an incident angle of 45 ° using four types of optical combs having a dark portion and a bright portion width of 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively.
  • (45) is 180% or less, Rc of reflection sharpness Rc measured at an incident angle of light of 60 ° using four types of optical combs in which the widths of the dark part and the bright part are 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm, respectively.
  • (60) is preferably 240% or less.
  • an anti-glare film having sufficient anti-glare property at a wide observation angle even with low haze and sufficiently suppressed generation of whitish and glare when placed in an image display device. Can be provided.
  • FIG. 1 It is a schematic diagram which shows the state which calculates a one-dimensional power spectrum from the two-dimensional power spectrum of the elevation of the surface uneven
  • FIG. 4 is a diagram showing a part of a pattern A used in Examples 1 to 3 and Comparative Example 1.
  • 10 is a diagram illustrating a part of a pattern B used in Comparative Example 2.
  • the antiglare film of the present invention has a ratio R (40) / R of a reflectance R (30) having a reflection angle of 30 ° and a reflectance R (40) having a reflection angle of 40 ° with respect to light incident at an incident angle of 30 °.
  • (30) is 0.00001 or more and 0.0025 or less, and the intensity at the spatial frequency of 0.01 ⁇ m ⁇ 1 , 0.02 ⁇ m ⁇ 1 , and 0.1 ⁇ m ⁇ 1 of the power spectrum of the surface unevenness-shaped altitude is It is in the range.
  • FIG. 1 is a drawing (perspective view) for simply explaining the reflectance for each angle when light is incident at an incident angle of 30 ° from the antiglare layer side of the antiglare film of the present invention.
  • the incident direction and the reflection direction of the light from the glare-proof layer side with respect to the film 10 are shown typically.
  • the reflected light is reflected in the direction of the reflection angle of 30 °, that is, in the regular reflection direction 12.
  • the rate that is, the regular reflectance
  • the reflected light at an arbitrary reflection angle ⁇ is denoted by reference numeral 15, and the directions 12 and 15 of the reflected light when measuring the reflectance are within the plane 30 including the direction 11 of the incident light and the normal line 20.
  • the reflectance in the direction with a reflection angle of 40 ° is R (40). In measuring the reflectance of the antiglare film, it is necessary to accurately measure a reflectance of 0.001% or less.
  • a detector having a wide dynamic range it is effective to use a detector having a wide dynamic range, and such a commercially available optical power meter can be preferably used.
  • An aperture is provided in front of the detector of the optical power meter, and measurement is performed using a goniophotometer in which the angle at which the antiglare film is viewed is 2 °.
  • visible light 380 to 780 nm can be used as incident light.
  • a light source for measurement a collimated light emitted from a light source such as a halogen lamp may be used, or a monochromatic light source such as a laser having a high degree of parallelism may be used.
  • the smooth surface of the antiglare film that is the object of measurement should be adhered to the black acrylic resin plate with an adhesive or optically adhered using a liquid such as water or glycerin. Therefore, it is preferable that only the reflectance of the outermost surface of the antiglare film can be measured.
  • the reflectance in the direction of the reflection angle 30 ° with respect to the incident light having the incident angle of 30 ° that is, the reflectance R (40 in the direction of the reflection angle 40 ° of the regular reflectance R (30).
  • Ratio R (40) / R (30) is 0.00001 or more and 0.0025 or less.
  • An image display device in which an antiglare film having a ratio R (40) / R (30) of less than 0.00001 has an insufficient antiglare property.
  • an image display device in which an antiglare film having a ratio R (40) / R (30) exceeding 0.025 is likely to be whitish.
  • FIG. 2 is a cross-sectional view schematically showing the surface of the antiglare film of the present invention.
  • the antiglare film 1 of the present invention has a transparent support 101 and an antiglare layer 102 formed thereon, and the antiglare layer 102 is opposite to the transparent support 101.
  • the antiglare layer 102 is opposite to the transparent support 101.
  • the “elevation of the surface uneven shape” as used in the present invention means an arbitrary point P on the surface of the film 1 and a virtual plane 103 having the height at the average height of the surface uneven shape (the altitude is used as a reference).
  • 0 ⁇ m means a linear distance in the main normal direction 5 (normal direction in the virtual plane 103) of the film.
  • the antiglare film has an antiglare layer having fine irregularities formed on a two-dimensional plane. Therefore, as shown in FIG. 3, the elevation of the surface irregularity shape is expressed as a two-dimensional function h (x, y) of coordinates (x, y) when orthogonal coordinates in the film plane are displayed as (x, y). Can be represented.
  • the elevation of the surface irregularity shape can be obtained from the three-dimensional information of the surface shape measured by an apparatus such as a confocal microscope, an interference microscope, an atomic force microscope (AFM) or the like.
  • the horizontal resolution required for the measuring instrument is at least 5 ⁇ m or less, preferably 2 ⁇ m or less, and the vertical resolution is at least 0.1 ⁇ m or less, preferably 0.01 ⁇ m or less.
  • Examples of the non-contact three-dimensional surface shape / roughness measuring apparatus suitable for this measurement include New View 5000 series (manufactured by Zygo Corporation), three-dimensional microscope PL ⁇ 2300 (manufactured by Sensofar), and the like.
  • the measurement area is preferably at least 200 ⁇ m ⁇ 200 ⁇ m, and more preferably 500 ⁇ m ⁇ 500 ⁇ m or more.
  • a method for obtaining an altitude power spectrum from a two-dimensional function h (x, y) will be described.
  • a two-dimensional function H (f x , f y ) is obtained from the two-dimensional function h (x, y) by a two-dimensional Fourier transform defined by equation (1).
  • f x and f y are frequency of x and y directions, respectively, with the dimension of reciprocal length.
  • is a pi and i is an imaginary unit.
  • the two-dimensional power spectrum I (f x , f y ) can be obtained by equation (2).
  • the two-dimensional power spectrum I (f x, f y) represents the spatial frequency distribution of the surface irregularities of the antiglare film has. Since the antiglare film is isotropic, the two-dimensional function I (f x , f y ) representing the two-dimensional power spectrum of the elevation of the surface irregularity shape depends only on the distance f from the origin (0, 0). It can be represented by a one-dimensional function I (f).
  • I (f x, f y) is a two-dimensional power spectrum of the altitude of the equation (3).
  • is a declination angle in Fourier space.
  • the one-dimensional function I (f) can be obtained by calculating the rotational average of the two-dimensional function I (fcos ⁇ , fsin ⁇ ) displayed in polar coordinates based on the equation (4).
  • the antiglare film of the present invention has an intensity I (0.01) at a spatial frequency of 0.01 ⁇ m ⁇ 1 and a spatial frequency of 0.02 ⁇ m ⁇ of the one-dimensional power spectrum I (f) calculated from the elevation of the surface uneven shape.
  • the intensity I (0.1) in the spatial frequency 0.1 [mu] m -1 is characterized in that both are within the specified range.
  • FIG. 4 is a schematic diagram showing a state where functions h (x, y) representing altitude are obtained discretely.
  • the orthogonal coordinates in the film plane are displayed as (x, y), and on the film projection plane 3, a line divided every ⁇ x in the x-axis direction and a division every ⁇ y in the y-axis direction.
  • the elevation of the surface uneven shape is obtained as a discrete elevation value for each area ⁇ x ⁇ ⁇ y divided by each broken line on the film projection surface 3.
  • ⁇ x, n ⁇ y when the coordinates of the point of interest A on the film projection surface 3 are (m ⁇ x, n ⁇ y) [where m is 0 or more and M ⁇ 1 or less, and n is 0 or more and N ⁇ 1 or less].
  • the elevation of the point P on the film surface corresponding to the point of interest A can be expressed as h (m ⁇ x, n ⁇ y).
  • the measurement intervals ⁇ x and ⁇ y depend on the horizontal resolution of the measuring device, and in order to accurately evaluate the surface unevenness shape, both ⁇ x and ⁇ y are preferably 5 ⁇ m or less, and preferably 2 ⁇ m or less. Is more preferable.
  • the measurement ranges X and Y are both preferably 200 ⁇ m or more, and more preferably 500 ⁇ m or more.
  • the function representing the elevation of the surface irregularity shape is obtained as a discrete function h (x, y) having M ⁇ N values. Therefore, the two-dimensional function H (f x , f y ) obtained by the two-dimensional Fourier transform of the two-dimensional function h (x, y) of the elevation of the surface uneven shape is also a discrete Fourier obtained by discretely calculating the expression (1). By conversion, it is obtained as a discrete function as shown in Equation (5).
  • j in the formula (5) is an integer of ⁇ M / 2 or more and M / 2 or less
  • k is an integer of ⁇ N / 2 or more and N / 2 or less.
  • ⁇ f x and ⁇ f y are frequency intervals in the x direction and the y direction, respectively, and are defined by Expression (6) and Expression (7).
  • the two-dimensional power spectrum I (f x , f y ) is obtained as shown in equation (8) by squaring the absolute value of the discrete function H (f x , f y ) obtained by equation (5).
  • the rotational average may be calculated in the same manner as in the equation (4).
  • Two-dimensional discrete function I (f x, f y) discrete rotational average can be calculated by Equation (9).
  • M ⁇ N l is an integer from 0 to N / 2
  • M ⁇ N l is an integer from 0 to M / 2.
  • ⁇ (x) is a heavy side function defined by the equation (10).
  • f jk is the distance from the origin at (j, k), and is calculated by equation (11).
  • the calculation shown in Formula (9) is demonstrated using FIG.
  • the function ⁇ (f jk ⁇ (l ⁇ 1 / 2) ⁇ f) is 0 when f jk is less than (l ⁇ 1 / 2) ⁇ f, and 1 when f jk is equal to or greater than (l ⁇ 1 / 2) ⁇ f.
  • the function ⁇ (f jk ⁇ (l + 1/2) ⁇ f) is 0 when f jk is less than (l + 1/2) ⁇ f, and 1 when f jk is equal to or greater than (l + 1/2) ⁇ f.
  • ⁇ (f jk - (l- 1/2) ⁇ f) - ⁇ (f jk - (l + 1/2) ⁇ f) is, f jk is (l-1/2) ⁇ f or more (l-1/2 ) 1 only when it is less than ⁇ f, 0 otherwise.
  • the denominator of the equation (9) has a distance f jk from the origin O of (l ⁇ 1 / 2) The number of all points (black circle points in FIG. 5) located at or above ⁇ f and below (l + 1/2) ⁇ f is calculated.
  • the numerator of the formula (9) has the distance f jk from the origin O of I (f x , f y ) of all points located at (l ⁇ 1 / 2) ⁇ f or more and less than (l + 1/2) ⁇ f.
  • the total value (the total value of I (f x , f y ) at the black circle points in FIG. 5) is calculated.
  • the one-dimensional power spectrum obtained by the above-described method includes noise in measurement. To determine the one-dimensional power spectrum here, in order to eliminate the influence of this noise, the elevation of the surface irregularities at multiple locations on the antiglare film is measured, and the one-dimensionality obtained from the elevation of each surface irregularity shape.
  • the average value of the power spectrum is preferably used as the one-dimensional power spectrum I (f).
  • the number of locations for measuring the elevation of the surface unevenness on the antiglare film is preferably 3 or more, more preferably 5 or more.
  • FIG. 6 shows I (f) of the one-dimensional power spectrum of the elevation of the surface unevenness obtained in this way.
  • the one-dimensional power spectrum I (f) in FIG. 6 is an average of the one-dimensional power spectra obtained from the elevations of the surface irregularities at five different locations on the antiglare film.
  • the intensity I (0.01) at a spatial frequency of 0.01 ⁇ m ⁇ 1 of the one-dimensional power spectrum I (f) calculated from the elevation of the surface uneven shape is 2 ⁇ m 4 or more and 10 ⁇ m 4 or less.
  • the intensity I (0.02) at a spatial frequency of 0.02 ⁇ m ⁇ 1 is 0.1 ⁇ m 4 or more and 1.5 ⁇ m 4 or less, and the intensity I (0.1) at a spatial frequency of 0.1 ⁇ m ⁇ 1 is 0.0001 ⁇ m 4. It is 0.01 ⁇ m 4 or more.
  • the intensity I (f 1 ) at a specific spatial frequency f 1 can be obtained by interpolation as shown in the equation (12). .
  • the anti-glare film of the present invention prevents the occurrence of whitish and glare well by synergistic effects with the haze and reflectance ratio described later by setting the intensity at the specific spatial frequency within a predetermined range. While exhibiting excellent anti-glare properties.
  • the strength I (0.01) is preferably 2.5 ⁇ m 4 or more and 9 ⁇ m 4 or less, more preferably 3 ⁇ m 4 or more and 8 ⁇ m 4 or less.
  • the intensity I (0.02) is preferably 0.2 [mu] m 4 or more 1.2 [mu] m 4 or less, 0.25 [mu] m 4 or more 1 [mu] m 4 further preferably less intensity I (0.1) is, 0.0003Myuemu 4 or more 0.0075Myuemu 4 or less, and further preferably 0.0005 4 or 0.005 .mu.m 4 or less.
  • I (0.01) is less than the above range, a swell of about 100 ⁇ m (corresponding to 0.01 ⁇ m ⁇ 1 in spatial frequency) contributing to the antiglare effect when the antiglare film is observed obliquely. Since it will be small, anti-glare property will become inadequate.
  • I (0.01) exceeds the above range, the undulation with a period of about 100 ⁇ m becomes too large, the surface uneven shape of the antiglare film becomes rough, and haze tends to increase, which is not preferable.
  • I (0.02) is less than the above range, a swell of a period of about 50 ⁇ m (corresponding to 0.02 ⁇ m ⁇ 1 in spatial frequency) contributing to the antiglare effect when the antiglare film is observed from the front. Since it will be small, anti-glare property will become inadequate.
  • I (0.02) exceeds the above range, the undulation with a period of about 50 ⁇ m becomes too large and glare occurs.
  • I (0.1) When I (0.1) is less than the above range, the short-period uneven shape of about 10 ⁇ m (corresponding to 0.1 ⁇ m ⁇ 1 in spatial frequency) is very small, and the surface uneven shape of the antiglare film is long. Since it will be formed only from the uneven shape of a period and the surface texture of an anti-glare film becomes coarse, it is not preferable.
  • I (0.1) exceeds the above range, scattering due to surface irregularities having a short period of about 10 ⁇ m becomes strong, and whitening tends to occur.
  • the antiglare film of the present invention exhibits antiglare properties and prevents whitishness, so that the total haze with respect to normal incident light is in the range of 0.1% to 3%, and the surface haze is 0.1. % Or more and 2% or less.
  • the total haze of the antiglare film can be measured by a method based on the method described in JIS K7136. An image display device in which an antiglare film having a total haze or surface haze of less than 0.1% is not preferable because it does not exhibit sufficient antiglare properties.
  • the antiglare film is not preferable because the image display device on which the antiglare film is disposed will generate whiteness. .
  • such an image display device has a disadvantage that the contrast becomes insufficient.
  • the image display apparatus in which the antiglare film having the internal haze exceeding 2.5% has a tendency to decrease the contrast.
  • the antiglare film of the present invention preferably has a transmission clarity sum Tc of 375% or more determined under the following measurement conditions.
  • the sum Tc of transmitted sharpness is calculated by measuring the image sharpness using an optical comb having a predetermined width by a method based on JIS K 7105, and calculating the sum thereof. Specifically, five types of optical combs are used in which the ratio of the width of the dark part to the bright part is 1: 1 and the width is 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm. The image definition is then measured, and the total is obtained as Tc.
  • the antiglare film of the present invention preferably has a reflection definition Rc (45) measured by incident light having an incident angle of 45 ° of 180% or less.
  • the reflection definition Rc (45) is measured by a method based on JIS K 7105, as in the case of Tc.
  • the width is 0.25 mm, 0.5 mm,
  • the image sharpness measured using four types of optical combs of 1.0 mm and 2.0 mm is measured, and the sum thereof is obtained as Rc (45).
  • Rc (45) is 180% or less, an image display device in which such an antiglare film is disposed is preferable because the antiglare property when observed from the front and oblique directions becomes better.
  • the lower limit of Rc (45) is not particularly limited, but is preferably 80% or more, for example, in order to satisfactorily suppress the occurrence of whitishness and glare.
  • the antiglare film of the present invention preferably has a reflection definition Rc (60) of 240% or less as measured with incident light having an incident angle of 60 °.
  • the reflection definition Rc (60) is measured by a method based on the same JIS K 7105 as the reflection definition Rc (45) except that the incident angle is changed.
  • Rc (60) is 240% or less, an image display device in which the antiglare film is disposed is preferable because the antiglare property when observed obliquely becomes better.
  • the lower limit of Rc (60) is not particularly limited, but is preferably, for example, 150% or more in order to better suppress the occurrence of whitish or glare.
  • the antiglare film of the present invention is produced, for example, as follows.
  • the first method is to prepare a fine unevenness forming mold in which a surface unevenness shape based on a predetermined pattern is formed on a molding surface, transfer the shape of the uneven surface of the mold to a transparent support, In this method, the transparent support on which the shape of the surface is transferred is peeled off from the mold.
  • the second method is to prepare a composition containing fine particles, a resin (binder) and a solvent, in which the fine particles are dispersed in a resin solution, apply the composition onto a transparent support, and dry as necessary. This is a method of curing the coating film (coating film containing fine particles) formed in (1).
  • the coating film thickness and the aggregation state of the fine particles are adjusted according to the composition of the composition, the drying conditions of the coating film, etc., thereby exposing the fine particles to the surface of the coating film, and transparent random irregularities. Form on the support.
  • the 1st method preferable as a manufacturing method of the anti-glare film of this invention is explained in full detail.
  • a prepared fine unevenness forming mold hereinafter sometimes abbreviated as “mold” is important.
  • the surface irregularity shape of the mold (hereinafter, sometimes referred to as “mold irregular surface”) is formed based on a predetermined pattern, and this predetermined pattern is the one-dimensional power spectrum.
  • the “pattern” means image data for forming the surface uneven shape of the antiglare layer of the antiglare film, a mask having a light transmitting part and a light shielding part, etc. ".
  • a method for defining a pattern for forming the surface irregularity shape of the antiglare layer of the antiglare film of the present invention will be described.
  • a method for obtaining a two-dimensional power spectrum of a pattern will be described, for example, when the pattern is image data.
  • the gradation is expressed by a two-dimensional function g (x, y).
  • the obtained two-dimensional function g (x, y) is Fourier-transformed as shown in the following formula (13) to calculate a two-dimensional function G (f x , f y ), and as shown in the following formula (14), the resulting two-dimensional function G (f x, f y) by squaring the absolute value of the obtained two-dimensional power spectrum ⁇ (f x, f y) .
  • x and y represent orthogonal coordinates in the image data plane.
  • f x and f y respectively represent the frequencies of the x and y directions, with the dimensions of the reciprocal of length.
  • is a pi
  • i is an imaginary unit.
  • This two-dimensional power spectrum ⁇ (f x , f y ) represents the spatial frequency distribution of the pattern.
  • the pattern for anti-glare film manufacture of this invention also becomes isotropic. Therefore, two-dimensional function representing the two-dimensional power spectrum of the pattern gamma (f x, f y) can be represented by one-dimensional functions that depend only on the distance f from the origin (0,0) ⁇ (f).
  • two-dimensional function is a two-dimensional power spectrum of the gradation pattern ⁇ a (f x, f y) is displayed in polar coordinates by the equation (15).
  • is a declination angle in Fourier space.
  • the one-dimensional function ⁇ (f) can be obtained by calculating the rotational average of the two-dimensional function ⁇ (fcos ⁇ , fsin ⁇ ) displayed in polar coordinates as shown in equation (16).
  • Two-dimensional function ⁇ (f x, f y) is a two-dimensional power spectrum of the gradation pattern one-dimensional function is determined from the rotational mean of gamma and (f), also referred to as a one-dimensional power spectrum gamma (f) in the following.
  • the intensity in the intensity gamma (0.01) and the spatial frequency 0.02 [mu] m -1 in the spatial frequency 0.01 [mu] m -1 of the one-dimensional power spectrum of the pattern gamma (0. 02) ratio ⁇ (0.02) / ⁇ (0.01) is 0.05 or more and 1.2 or less, and the intensity ⁇ (0.01) and the spatial frequency 0.1 ⁇ m at the spatial frequency 0.01 ⁇ m ⁇ 1 .
  • the ratio ⁇ (0.1) / ⁇ (0.01) of the intensity ⁇ (0.1) at ⁇ 1 is preferably 4 or more and 25 or less.
  • the two-dimensional function g (x, y) of gradation is usually obtained as a discrete function.
  • a two-dimensional power spectrum may be calculated by discrete Fourier transform.
  • the one-dimensional power spectrum of the pattern is obtained in the same manner from the two-dimensional power spectrum of the pattern.
  • the average value of the two-dimensional function g (x, y) is the maximum value of the two-dimensional function g (x, y) and the two-dimensional function. It is preferably 30 to 70% of the difference from the minimum value of g (x, y).
  • the two-dimensional function g (x, y) is a pattern aperture ratio.
  • the pattern aperture ratio here is defined.
  • the aperture ratio when the resist used in the lithography method is a positive resist means the ratio of the exposed area to the entire surface area of the coating film when image data is drawn on the coating film of the positive resist.
  • the aperture ratio when the resist used in the lithography method is a negative resist means the ratio of the unexposed area to the entire surface area of the coating film when image data is drawn on the coating film of the negative resist.
  • the aperture ratio when the lithography method is batch exposure means the ratio of the light-transmitting portion of the mask having the light-transmitting portion and the light-shielding portion.
  • each of the intensity ratios ⁇ (0.02) / ⁇ (0.01) and ⁇ (0.1) / ⁇ (0.01) of the one-dimensional power spectrum of the pattern is In this range, a desired mold can be manufactured, and the first method using the mold can be manufactured.
  • a random brightness distribution whose density is determined by a pattern created by randomly arranging dots or a random number or a pseudo-random number generated by a computer is used.
  • a pattern (preliminary pattern) having the predetermined spatial frequency range is removed from the preliminary pattern.
  • the preliminary pattern may be passed through a band pass filter.
  • a mold uneven surface for transferring the surface uneven shape formed based on the predetermined pattern to a transparent support. is manufactured.
  • the first method using such a mold is an embossing method characterized by producing an antiglare layer on a transparent support. Examples of the embossing method include a photoembossing method using a photocurable resin and a hot embossing method using a thermoplastic resin.
  • the photo-embossing method is preferable from the viewpoint of productivity.
  • a photocurable resin layer is formed on a transparent support (the surface of the transparent support), and the photocurable resin layer is cured while being pressed against the uneven surface of the mold.
  • This is a method of transferring the shape of the uneven surface of the mold to the photocurable resin layer. Specifically, in a state in which a photocurable resin layer formed by applying a photocurable resin on a transparent support is in close contact with the uneven surface of the mold, light is emitted from the transparent support side (the light is photocurable).
  • a photocurable resin (photocurable resin contained in the photocurable resin layer) is cured by irradiating with a resin that can cure the resin, and then the cured photocurable resin layer is formed.
  • the support is peeled from the mold.
  • the cured photocurable resin layer becomes an antiglare layer.
  • an ultraviolet curable resin is preferable as the photocurable resin, and when the ultraviolet curable resin is used, ultraviolet light is used as the irradiation light (the ultraviolet curable resin is used as the photocurable resin).
  • the embossing method using a functional resin is hereinafter referred to as “UV embossing method”).
  • a polarizing film may be used as a transparent support, and the transparent support may be replaced with a polarizing film in the embossing method described here.
  • the kind of the ultraviolet curable resin used for the UV embossing method is not particularly limited, and an appropriate one can be used from commercially available resins according to the kind of transparent support to be used and the kind of ultraviolet light.
  • Such an ultraviolet curable resin is a concept including a monomer (polyfunctional monomer), an oligomer and a polymer that are photopolymerized by ultraviolet irradiation, and a mixture thereof.
  • a resin that can be cured even with visible light having a wavelength longer than that of ultraviolet rays can be used by using a combination of photoinitiators appropriately selected according to the type of the ultraviolet curable resin.
  • a description of suitable examples of the ultraviolet curable resin will be given later.
  • the transparent support used in the UV embossing method for example, glass or plastic film can be used. Any plastic film can be used as long as it has appropriate transparency and mechanical strength.
  • These transparent resin films may be solvent cast films or extruded films.
  • the thickness of the transparent support is, for example, 10 to 500 ⁇ m, preferably 10 to 100 ⁇ m, and more preferably 10 to 60 ⁇ m. When the thickness of the transparent support is within this range, an antiglare film having sufficient mechanical strength tends to be obtained, and the image display device provided with the antiglare film is more unlikely to cause glare. .
  • the hot embossing method a transparent resin film formed of a thermoplastic resin is pressed against a mold uneven surface while being heated and softened, and the surface uneven shape of the mold uneven surface is transferred to the transparent resin film. Is the method.
  • the transparent resin film used for the hot embossing method may be any material as long as it is substantially optically transparent. Specifically, examples include those exemplified as the transparent resin film used for the UV embossing method. Can do.
  • a method for manufacturing a mold used for the embossing method will be described. As for the mold manufacturing method, the molding surface of the mold can transfer the surface uneven shape formed based on the above-described predetermined pattern onto the transparent support (the surface uneven shape formed based on the predetermined pattern). In order to produce the anti-glare layer having an uneven surface with high accuracy and good reproducibility, a lithography method is preferred.
  • the lithography method includes [1] first plating step, [2] polishing step, [3] photosensitive resin film forming step, [4] exposure step, [5] development step, and [6]. It is preferable to include an etching step, a [7] photosensitive resin film peeling step, and an [8] second plating step.
  • FIG. 7 is a view schematically showing a preferred example of the first half of the mold manufacturing method. FIG. 7 schematically shows a cross section of the mold in each step.
  • die for anti-glare film manufacture of this invention is demonstrated in detail, referring FIG.
  • a base material (mold base material) used for mold production is prepared, and copper plating is applied to the surface of the mold base material.
  • copper plating has a high covering property and a strong smoothing action, so that a flat and glossy surface can be formed by filling minute irregularities and voids of the mold base. Therefore, by performing copper plating on the mold substrate surface in this way, even if chromium plating is performed in the second plating step described later, it is caused by minute irregularities and voids existing on the substrate.
  • the rough surface of the chrome plating that appears is eliminated, and the occurrence of fine cracks is reduced due to the high coverage of the copper plating. Therefore, even if a surface irregularity shape (fine irregularity surface shape) based on a predetermined pattern is created on the mold substrate molding surface, the influence of the surface (mold substrate) surface such as minute irregularities, voids, cracks, etc. Can be prevented sufficiently.
  • As copper used for the copper plating in the first plating step pure copper metal or an alloy containing copper as a main component (copper alloy) may be used. Therefore, “copper” used for copper plating is a concept including copper and a copper alloy.
  • the copper plating may be electrolytic plating or electroless plating, but the copper plating in the first plating step is preferably electrolytic plating.
  • the preferable plating layer in the first plating step is not limited to a copper plating layer but may be a laminate of a copper plating layer and a plating layer made of a metal other than copper. If the plating layer formed by applying copper plating on the surface of the mold base is too thin, the influence of the underlying surface (fine irregularities, voids, cracks, etc.) cannot be eliminated, so the thickness is 50 ⁇ m. The above is preferable.
  • the upper limit of the plating layer thickness is not critical, but is preferably about 500 ⁇ m or less in consideration of cost and the like.
  • the mold base is preferably a base made of a metal material.
  • the metal material is preferably aluminum or iron.
  • a lightweight aluminum base is particularly preferable as the mold base.
  • aluminum and iron here do not need to be a pure metal, respectively, and may be an alloy containing aluminum or iron as a main component.
  • the shape of the base material for molds should just be an appropriate shape according to the manufacturing method of the anti-glare film of this invention. Specifically, it is selected from a flat substrate, a columnar substrate, a cylindrical (roll shape) substrate, and the like. When manufacturing the anti-glare film of this invention continuously, it is preferable in a metal mold
  • Such a mold is manufactured from a roll-shaped mold substrate.
  • Polishing Step In the subsequent polishing step, the surface (plating layer) of the mold base that has been subjected to copper plating in the first plating step described above is polished.
  • polish In the manufacturing method of the metal mold
  • Commercial products such as flat and roll-shaped substrates used as mold substrates are often subjected to machining such as cutting and grinding to achieve the desired accuracy. Fine processed marks remain on the substrate surface. Therefore, even if a plating (preferably copper plating) layer is formed by the first plating step, the processed marks may remain.
  • the surface of the mold base is not always completely smooth. That is, even when the mold substrate having a surface with such deep processed marks remaining thereon is subjected to the steps [3] to [8] described later, the surface irregularity shape of the obtained mold surface is obtained. May differ from the surface uneven shape based on the predetermined pattern, or may include unevenness derived from the processed eyes.
  • the target optical characteristics such as anti-glare property cannot be sufficiently exhibited, and there is a possibility of unexpected influence.
  • the polishing method applied in the polishing step is not particularly limited, and a polishing method according to the shape and properties of the mold base material to be polished is selected.
  • Specific examples of the polishing method applicable to the polishing step include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • the mechanical polishing method any of super finishing method, lapping, fluid polishing method, buff polishing method and the like can be used.
  • the surface of the base material for molds as a mirror surface by carrying out mirror surface cutting using a cutting tool in a grinding
  • the surface roughness after polishing is preferably 0.1 ⁇ m or less, and more preferably 0.05 ⁇ m or less, expressed as a centerline average roughness Ra based on JIS B 0601.
  • the center line average roughness Ra after polishing is larger than 0.1 ⁇ m, there is a possibility that the influence of the surface roughness remains on the mold uneven surface of the finally obtained mold.
  • the lower limit of the center line average roughness Ra is not particularly limited. Therefore, the lower limit may be determined from the viewpoint of processing time (polishing time) and processing cost in the polishing process.
  • FIG. 7 schematically shows a state in which the photosensitive resin film 50 is formed on the surface 41 of the mold base 40 (FIG. 7B).
  • the photosensitive resin conventionally known photosensitive resins can be used, and those already marketed as resists can be used as they are or after being purified by filtration or the like as necessary.
  • a negative photosensitive resin having a property of curing a photosensitive part a monomer or prepolymer of a (meth) acrylic acid ester having an acryloyl group or a methacryloyl group in a molecule, a mixture of bisazide and a diene rubber Polyvinyl cinnamate compounds and the like can be used.
  • a positive photosensitive resin having a property that a photosensitive portion is eluted by development and only an unexposed portion remains a phenol resin type or a novolac resin type can be used.
  • Such a positive or negative photosensitive resin can also be easily obtained from the market as a positive resist or a negative resist.
  • the photosensitive resin solution may contain various additives such as a sensitizer, a development accelerator, an adhesion modifier, and a coating property improver, if necessary. What mixed with the commercially available resist can also be used as a photosensitive resin solution.
  • an optimum solvent is selected to form a smoother photosensitive resin film, and the photosensitive resin is dissolved in the solvent.
  • a photosensitive resin solution obtained by dilution is preferable to use. Such a solvent is further selected depending on the type of the photosensitive resin and its solubility.
  • a cellosolve solvent, a propylene glycol solvent, an ester solvent, an alcohol solvent, a ketone solvent, a highly polar solvent, or the like is selected.
  • an optimal resist may be selected and used as a photosensitive resin solution depending on the type of the solvent contained in the resist or by conducting an appropriate preliminary experiment.
  • the method of applying the photosensitive resin solution to the mirror-polished surface of the mold base is as follows: meniscus coating, fountain coating, dip coating, spin coating, roll coating, wire bar coating, air knife coating, blade coating, curtain The method is selected from known methods such as coating and ring coating according to the shape of the mold base.
  • the thickness of the photosensitive resin film after coating is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 6 to 9 ⁇ m, as the thickness after drying.
  • Exposure Step is a step of transferring the target pattern to the photosensitive resin film 50 by exposing the photosensitive resin film 50 formed in the above-described photosensitive resin film forming step. is there.
  • the light source used in the exposure process may be appropriately selected according to the photosensitive wavelength and sensitivity of the photosensitive resin contained in the photosensitive resin film. For example, the g-line (wavelength: 436 nm) and h-line (wavelength: high-pressure mercury lamp).
  • the exposure method may be a batch exposure method using a mask corresponding to a target pattern, or a drawing method.
  • the target pattern is the spatial frequency intensity ratio ⁇ (0.02) / ⁇ (0.01) and ⁇ (0.1) / ⁇ (0.01) of the one-dimensional power spectrum. Is set to a predetermined preferable range.
  • the mold manufacturing method it is preferable to expose the target pattern on the photosensitive resin film in a precisely controlled state in order to form the surface uneven shape of the mold with higher accuracy.
  • a target pattern is created as image data on a computer, and a pattern based on the image data is formed on the photosensitive resin film by laser light emitted from a computer-controlled laser head. It is preferable to draw (laser drawing).
  • FIG. 7C schematically shows a state in which the pattern is exposed to the photosensitive resin film 50.
  • the photosensitive resin film 50 contains a negative photosensitive resin (for example, when a negative resist is used as the photosensitive resin solution)
  • the exposed region 51 receives the exposure energy and receives the photosensitive resin.
  • the crosslinking reaction proceeds and the solubility in the developer described later is lowered.
  • the unexposed area 52 in the development process is dissolved by the developer, and only the exposed area 51 remains on the surface of the base material to become the mask 60.
  • the photosensitive resin film 50 contains a positive photosensitive resin (for example, when a positive resist is used as the photosensitive resin solution)
  • the exposed region 51 receives the exposure energy and is exposed to light.
  • the bonding of the functional resin is broken, it is easily dissolved in the developer described later. Therefore, the area 51 exposed in the development process is dissolved by the developer, and only the unexposed area 52 remains on the substrate surface to become the mask 60.
  • the developer includes inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia; primary amines such as ethylamine and n-propylamine; Secondary amines such as n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium hydroxide, tetraethylammonium hydroxide, trimethylhydroxyethylammonium Quaternary ammonium compounds such as hydroxide; alkaline aqueous solutions such as cyclic amines such as pyrrole and pihelidine; and organic solvents such as xylene and toluene.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous
  • FIG. 7D schematically shows a state after the development process is performed using a negative type photosensitive resin.
  • the unexposed region 52 is dissolved by the developer, and only the exposed region 51 remains on the substrate surface, and the photosensitive resin film in this region becomes the mask 60.
  • FIG. 7E schematically shows a state after the development process is performed using a positive type photosensitive resin. In FIG. 7E, the exposed region 51 is dissolved by the developer, and only the unexposed region 52 remains on the substrate surface, and the photosensitive resin film in this region becomes the mask 60.
  • FIG. 8 is a diagram schematically showing a preferred example of the latter half of the mold manufacturing method.
  • FIG. 8A schematically shows a state after the plating layer mainly having no mask is etched by the etching process.
  • the plating layer under the mask 60 is not etched because the photosensitive resin film functions as the mask 60, but the etching from the region 45 without the mask proceeds with the progress of etching.
  • the plating layer under the mask 60 is also etched.
  • the etching of the plating layer under the mask 60 in the vicinity of the boundary between the region with the mask 60 and the region 45 without the mask is called side etching.
  • Etching treatment in the etching step is usually performed using an etching solution such as ferric chloride (FeCl 3 ) solution, cupric chloride (CuCl 2 ) solution, alkaline etching solution (Cu (NH 3 ) 4 Cl 2 ), This is mainly performed by corroding a plating layer (metal surface) in a region where the mask 60 is not provided on the surface of the mold base.
  • etching treatment a strong acid such as hydrochloric acid or sulfuric acid can be used as an etching solution.
  • a strong acid such as hydrochloric acid or sulfuric acid
  • reverse electrolytic etching is performed by applying a potential opposite to that at the time of electrolytic plating.
  • Etching treatment can also be performed using.
  • the surface irregularities formed on the mold base material when the etching process is performed are the constituent material (metal material) or plating layer type of the mold base material, the type of photosensitive resin film, and the etching process. Since it differs depending on the type of etching process, etc., it cannot be generally stated.
  • the etching amount is 10 ⁇ m or less, the etching is performed approximately isotropically from the surface of the mold substrate in contact with the etching solution.
  • the etching amount here is the thickness of the plating layer that is scraped off by etching.
  • the etching amount in the etching step is preferably 1 to 20 ⁇ m, more preferably 1 to 8 ⁇ m, and further preferably 3 to 6 ⁇ m.
  • the etching amount is less than 1 ⁇ m, almost no surface unevenness is formed on the mold, and the mold has a substantially flat surface. Therefore, even if an antiglare film is produced using the mold, it is necessary.
  • the antiglare film has almost no surface irregularity.
  • the etching process in the etching process may be performed by one etching process, or the etching process may be performed in two or more times.
  • the total etching amount in the two or more etching processes is preferably 1 to 20 ⁇ m.
  • Photosensitive resin film peeling step The subsequent photosensitive resin film peeling step is a step of acting as a mask 60 in the etching step to remove the photosensitive resin film remaining on the mold substrate. It is preferable to completely remove the photosensitive resin film remaining on the mold base. In the photosensitive resin film peeling step, it is preferable to dissolve the photosensitive resin film using a peeling solution.
  • a peeling solution those prepared by changing the concentration and pH of the developer exemplified as the developer can be used. Or the same thing as the developing solution used at the image development process is used, and the photosensitive resin film can also be peeled by changing temperature, immersion time, etc. with the image development process.
  • the contact method (peeling method) between the peeling liquid and the mold substrate is not particularly limited, and immersion peeling, spray peeling, brush peeling, ultrasonic peeling, and the like can be used.
  • FIG. 8B schematically shows a state where the photosensitive resin film used as the mask 60 in the etching process is completely dissolved and removed by the photosensitive resin film peeling process.
  • the first surface uneven shape 46 is formed on the surface of the mold base by the mask 60 made of the photosensitive resin film and the etching process.
  • Second plating step The final stage of the mold production is a second step in which plating (preferably, chromium plating described later) is performed on the surface of the mold substrate that has undergone the steps [6] and [7].
  • the uneven surface shape 46 of the mold base can be blunted, and the mold surface can be protected by the plating.
  • dulling the uneven surface shape of the mold base is referred to as “shape blunting”.
  • the surface uneven shape is blunted by forming the chromium plating layer 71 on the first surface uneven shape 46 formed by the etching process as described above (mold uneven surface 70). Shows the state.
  • the plating layer formed by the second plating step is preferably chromium plating in that it has gloss, high hardness, a low friction coefficient, and good release properties.
  • chromium plating that expresses good gloss, so-called glossy chromium plating or decorative chromium plating, is particularly preferable.
  • Chromium plating is usually carried out by electrolysis, and as the plating bath, an aqueous solution containing chromic anhydride (CrO 3 ) and a small amount of sulfuric acid is used as the plating solution.
  • CrO 3 chromic anhydride
  • the thickness of the chromium plating layer can be controlled.
  • die for glare-proof film manufacture of this invention is obtained by performing the metal plating in a 2nd plating process, Preferably chromium plating.
  • the mold By performing chrome plating on the surface irregularities on the surface of the mold substrate after the etching treatment, the mold can be blunted and a mold whose surface hardness is increased can be obtained.
  • the greatest factor in controlling the degree of shape blunting is the thickness of the chromium plating layer.
  • the thickness is small, the degree of shape blunting becomes insufficient, and the antiglare film obtained using such a mold has a ratio R (40) of the reflectance R (30) and the reflectance R (40). ) / R (30) may exceed 0.0025.
  • the ratio R (40) / R (30) will be less than 0.00001.
  • the inventors of the present invention provide an antiglare film for sufficiently preventing the occurrence of whitish and obtaining an image display device having an excellent antiglare property, so that the thickness of the chromium plating layer is within a predetermined range.
  • the thickness of the chromium plating layer is preferably in the range of 6 to 15 ⁇ m, and more preferably in the range of 8 to 11 ⁇ m.
  • the chromium plating layer formed in the second plating step is preferably formed so as to have a Vickers hardness of 800 or more, and more preferably 1000 or more.
  • the chrome plating layer has a Vickers hardness of less than 800
  • the durability of the mold tends to decrease.
  • the said photoembossing method preferable as a method for manufacturing the anti-glare film of this invention is demonstrated.
  • the UV embossing method is particularly preferable as the photoembossing method.
  • the embossing method using an active energy ray-curable resin will be specifically described.
  • [P1] A coating process in which a coating liquid containing an active energy ray-curable resin is coated on a transparent support that is continuously conveyed to form a coating layer
  • [P2] a coating layer It is preferable to include a main curing step of irradiating active energy rays from the transparent support side with the surface of the mold pressed against the surface of the mold.
  • FIG. 9 is a diagram schematically showing a preferred example of a production apparatus used in the method for producing an antiglare film of the present invention.
  • the arrow in FIG. 9 shows the conveyance direction of a film, or the rotation direction of a roll.
  • a coating liquid containing an active energy ray-curable resin is coated on a transparent support to form a coating layer.
  • a coating liquid containing an active energy ray-curable resin composition is applied in the coating zone 83 to the transparent support 81 that is fed from the feed roll 80.
  • Coating of the coating liquid on the transparent support 81 can be performed by, for example, a gravure coating method, a micro gravure coating method, a rod coating method, a knife coating method, an air knife coating method, a kiss coating method, a die coating method, or the like. .
  • the transparent support 81 only needs to be translucent, and for example, glass or plastic film can be used.
  • the plastic film only needs to have appropriate transparency and mechanical strength. Specifically, any of those already exemplified as the transparent support for use in the UV embossing method can be used. Further, in order to continuously produce the antiglare film of the present invention by the photoembossing method, an appropriate flexibility is obtained. Those having sex are selected.
  • the surface of the transparent support 81 (surface on the coating layer side) may be subjected to various surface treatments. Good.
  • the surface treatment examples include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment. Further, another layer such as a primer layer may be formed on the transparent support 81, and a coating solution may be applied on the other layer.
  • the surface (coating layer and Is preferably hydrophilized by various surface treatments. This surface treatment may be performed after the production of the antiglare film.
  • the coating liquid contains an active energy ray-curable resin and usually further contains a photopolymerization initiator (radical polymerization initiator).
  • Active energy ray curable resin As an active energy ray curable resin, what contains a polyfunctional (meth) acrylate compound can be used preferably, for example.
  • the polyfunctional (meth) acrylate compound is a compound having at least two (meth) acryloyloxy groups in the molecule.
  • polyfunctional (meth) acrylate compound examples include, for example, ester compounds of polyhydric alcohol and (meth) acrylic acid, urethane (meth) acrylate compounds, polyester (meth) acrylate compounds, epoxy (meth) acrylate compounds, and the like. And a polyfunctional polymerizable compound containing two or more (meth) acryloyl groups.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, propanediol, butanediol, and pentanediol.
  • Hexanediol Hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2'-thiodiethanol, divalent alcohols such as 1,4-cyclohexanedimethanol; trimethylolpropane, glycerol, pentaerythritol , Trihydric or higher alcohols such as diglycerol, dipentaerythritol and ditrimethylolpropane.
  • esterified products of polyhydric alcohol and (meth) acrylic acid include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and neopentyl glycol.
  • Examples of the urethane (meth) acrylate compound include a urethanization reaction product of an organic isocyanate having a plurality of isocyanate groups in one molecule and a (meth) acrylic acid derivative having a hydroxyl group.
  • Examples of organic isocyanates having a plurality of isocyanate groups in one molecule include two isocyanates in one molecule such as hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, and dicyclohexylmethane diisocyanate.
  • Organic isocyanate having a group organic isocyanate having three isocyanate groups in one molecule obtained by subjecting these organic isocyanates to isocyanurate modification, adduct modification, biuret modification, and the like.
  • examples of the (meth) acrylic acid derivative having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- Examples include hydroxy-3-phenoxypropyl (meth) acrylate and pentaerythritol triacrylate.
  • a preferable polyester (meth) acrylate compound is a polyester (meth) acrylate obtained by reacting a hydroxyl group-containing polyester with (meth) acrylic acid.
  • the hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof.
  • the polyhydric alcohol include the same compounds as those described above.
  • bisphenol A etc. are mentioned as phenols other than a polyhydric alcohol.
  • the carboxylic acid include formic acid, acetic acid, butyl carboxylic acid, benzoic acid and the like.
  • the compounds having a plurality of carboxyl groups and / or anhydrides thereof include maleic acid, phthalic acid, fumaric acid, itaconic acid, adipic acid, terephthalic acid, maleic anhydride, phthalic anhydride, trimellitic acid, cyclohexanedicarboxylic anhydride Thing etc. are mentioned.
  • polyfunctional (meth) acrylate compounds as described above hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, diethylene glycol di (meta) from the viewpoint of improving the strength of the cured product and availability.
  • Ester compounds such as acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate; hexamethylene diisocyanate and 2-hydroxyethyl Adduct of (meth) acrylate; adduct of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate; of tolylene diisocyanate and 2-hydroxyethyl (meth) acrylate Adducts; adduct adduct modified isophorone diisocyanate with 2-hydroxyethyl (meth) acrylate; and adducts with biuret of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate.
  • the active energy ray curable resin may contain a monofunctional (meth) acrylate compound in addition to the polyfunctional (meth) acrylate compound.
  • the monofunctional (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-hydroxyethyl (meth) ) Acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine , N-vinylpyrrolidone, tetrahydrofurfuryl (
  • the active energy ray-curable resin may contain a polymerizable oligomer.
  • the polymerizable oligomer is, for example, the polyfunctional (meth) acrylate compound, that is, an ester compound of a polyhydric alcohol and (meth) acrylic acid, a urethane (meth) acrylate compound, a polyester (meth) acrylate compound, or an epoxy (meth). It can be an oligomer such as a dimer, trimer or the like such as an acrylate.
  • polymerizable oligomers include urethane (meth) acrylate oligomers obtained by reacting polyisocyanates having at least two isocyanate groups in the molecule with polyhydric alcohols having at least one (meth) acryloyloxy group.
  • polyisocyanate examples include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, and a polymer of xylylene diisocyanate.
  • the polyhydric alcohol having at least one (meth) acryloyloxy group includes Hydroxyl group-containing (meth) acrylic acid ester obtained by esterification reaction of alcohol and (meth) acrylic acid, and as polyhydric alcohol, for example, 1,3-butanediol, 1,4-butanediol, 1,6 -Hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, glycerin, pentaerythritol, What is pentaerythritol.
  • this polyhydric alcohol having at least one (meth) acryloyloxy group a part of the alcoholic hydroxyl group of the polyhydric alcohol is esterified with (meth) acrylic acid, and the alcoholic hydroxyl group is present in the molecule. It remains.
  • a polyester (meta) obtained by reacting a compound having a plurality of carboxyl groups and / or an anhydride thereof with a polyhydric alcohol having at least one (meth) acryloyloxy group.
  • Acrylate oligomers a polyester (meta) obtained by reacting a compound having a plurality of carboxyl groups and / or an anhydride thereof with a polyhydric alcohol having at least one (meth) acryloyloxy group.
  • Examples of the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described for the polyester (meth) acrylate of the polyfunctional (meth) acrylate compound.
  • Examples of the polyhydric alcohol having at least one (meth) acryloyloxy group include those described for the urethane (meth) acrylate oligomer.
  • further examples of urethane (meth) acrylate oligomers are obtained by reacting isocyanates with hydroxyl groups of a hydroxyl group-containing polyester, a hydroxyl group-containing polyether or a hydroxyl group-containing (meth) acrylic acid ester.
  • the hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof.
  • Examples of the polyhydric alcohol and the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described for the polyester (meth) acrylate compound of the polyfunctional (meth) acrylate compound.
  • the hydroxyl group-containing polyether preferably used is a hydroxyl group-containing polyether obtained by adding one or more alkylene oxides and / or ⁇ -caprolactone to a polyhydric alcohol.
  • the polyhydric alcohol may be the same as that which can be used for the hydroxyl group-containing polyester.
  • the hydroxyl group-containing (meth) acrylic acid ester preferably used include the same as those described for the polymerizable oligomeric urethane (meth) acrylate oligomer.
  • isocyanates compounds having one or more isocyanate groups in the molecule are preferable, and divalent isocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable. These polymerizable oligomer compounds can be used alone or in combination of two or more.
  • Photoinitiator A photoinitiator can be suitably selected according to the kind of active energy ray applied to anti-glare film manufacture of this invention. Moreover, when using an electron beam as an active energy ray, the coating liquid which does not contain a photoinitiator may be used for anti-glare film manufacture of this invention.
  • the photopolymerization initiator include acetophenone photopolymerization initiator, benzoin photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, triazine photopolymerization initiator, and oxadiazole photopolymerization initiator. An initiator or the like is used.
  • photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2 '-Biimidazole, 10-butyl-2-chloroacridone, 2-ethylanthraquinone, benzyl, 9,10-phenanthrenequinone, camphorquinone, methyl phenylglyoxylate, titanocene compound and the like can also be used.
  • the amount of the photopolymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin.
  • the coating liquid may contain a solvent such as an organic solvent in order to improve the coating property on the transparent support.
  • organic solvents examples include aliphatic hydrocarbons such as hexane, cyclohexane, and octane; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol, 1-propanol, isopropanol, 1-butanol, and cyclohexanol; methyl ethyl ketone, methyl isobutyl Ketones such as ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and isobutyl acetate; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Ethers; ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, etc.
  • aliphatic hydrocarbons such
  • Stealted glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol; 2- (2-methoxyethoxy) ethanol, 2- (2-ethoxyethoxy) ethanol, 2- (2- It can be selected from carbitols such as butoxyethoxy) ethanol in consideration of viscosity and the like.
  • These solvents may be used alone or as a mixture of several kinds as required. After coating, it is necessary to evaporate the organic solvent. Therefore, the boiling point is desirably in the range of 60 ° C to 160 ° C.
  • the saturated vapor pressure at 20 ° C. is preferably in the range of 0.1 kPa to 20 kPa.
  • a coating liquid contains a solvent
  • the drying temperature is appropriately selected depending on the solvent used and the type of transparent support. Generally, it is in the range of 20 ° C. to 120 ° C., but is not limited thereto. When there are a plurality of drying furnaces, the temperature may be changed for each drying furnace.
  • the thickness of the coating layer after drying is preferably 1 to 30 ⁇ m. Thus, a laminate in which the transparent support and the coating layer are laminated is formed.
  • Curing step This step is performed by irradiating the surface of the coating layer with active energy rays from the transparent support side in a state where the mold uneven surface (molded surface) having a desired surface uneven shape is pressed. It is a step of forming a cured resin layer on the transparent support by curing the work layer. Thereby, the coating layer is cured, and the surface irregularity shape of the mold irregularity surface is transferred to the coating layer surface.
  • the mold used here is of a roll shape, and is manufactured by using a roll-shaped mold substrate in the mold manufacturing method already described. For example, as shown in FIG.
  • this step is performed by a coating zone 83 (in the case of drying, a drying zone 84, and in the case of performing a pre-curing step described later, the active energy ray irradiation device 86 is further irradiated. Irradiating the laminated body having the coating layer that has passed through the pre-curing zone) with an active energy ray using an active energy ray irradiating device 86 such as an ultraviolet ray irradiating device disposed on the transparent support 81 side. Can be performed.
  • a roll-shaped mold 87 is pressed against the surface of the coating layer of the laminate that has undergone the curing process using a crimping device such as a nip roll 88, and in this state, the active energy ray irradiation device 86 is used to make the transparent
  • the coating layer 82 is cured by irradiating active energy rays from the support 81 side.
  • curing the coating layer means that the active energy ray-curable resin contained in the coating layer receives the energy of the active energy ray to cause a curing reaction.
  • the use of the nip roll is effective in preventing air bubbles from being mixed between the coating layer of the laminate and the mold.
  • One or a plurality of active energy ray irradiation apparatuses can be used. After irradiation with the active energy ray, the laminate is peeled from the mold 87 with the nip roll 89 on the outlet side as a fulcrum. In the obtained transparent support and the cured coating layer, the cured coating layer becomes an antiglare layer, and the antiglare film of the present invention is obtained.
  • the obtained antiglare film is usually wound up by a film winding device 90. At this time, for the purpose of protecting the antiglare layer, it may be wound up while a protective film made of polyethylene terephthalate, polyethylene or the like is adhered to the surface of the antiglare layer through a pressure-sensitive adhesive layer having removability.
  • the active energy ray used in this step is appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays and the like according to the type of the active energy ray curable resin contained in the coating liquid.
  • ultraviolet rays and electron beams are preferable, and ultraviolet rays are particularly preferable because they are easy to handle and high energy is obtained (as described above, the UV embossing method is preferable).
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, an electrodeless lamp, a metal halide lamp, a xenon arc lamp, or the like can be used.
  • An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used.
  • an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, an electrodeless lamp, a xenon arc lamp, and a metal halide lamp are preferably used.
  • the electron beam 50 to 1000 keV emitted from various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100
  • An electron beam having an energy of ⁇ 300 keV can be mentioned.
  • the active energy ray is ultraviolet
  • the integrated amount of light at UVA ultraviolet is preferably at 100 mJ / cm 2 or more 3000 mJ / cm 2 or less, more preferably at 200 mJ / cm 2 or more 2000 mJ / cm 2 or less.
  • the transparent support may absorb ultraviolet rays on the short wavelength side, irradiation is performed so that the integrated light quantity of ultraviolet rays UVV (395 to 445 nm) in the wavelength region including visible light is preferable for the purpose of suppressing the absorption.
  • the amount may be adjusted.
  • Integrated light intensity in such UVV is preferably at 100 mJ / cm 2 or more 3000 mJ / cm 2 or less, and more preferably 200 mJ / cm 2 or more 2000 mJ / cm 2 or less.
  • an end region 82b in the width direction of the coating layer is a region having a predetermined width from the end portion including the end portion of the coating layer.
  • the end region is cured in advance, thereby further improving the adhesion with the transparent support 81 in the end region, and part of the cured resin is peeled off in the step after the curing step. It can prevent falling and contaminating the process.
  • the end region 82b can be a region from 5 mm to 50 mm from the end of the coating layer 82, for example.
  • the irradiation of the active energy ray to the end region of the coating layer is performed, for example, with reference to FIGS. 9 and 10, for example, the coating layer that has passed through the coating zone 83 (drying zone 84 when drying).
  • This is performed by irradiating the transparent support 81 having 82 with active energy rays using an active energy ray irradiating device 85 such as an ultraviolet ray irradiating device installed in the vicinity of both ends on the coating layer 82 side.
  • the active energy ray irradiation device 85 may be any device as long as it can irradiate the end region 82b of the coating layer 82 with active energy rays, and may be installed on the transparent support 81 side.
  • the type of active energy ray and the light source are the same as in the main curing step.
  • the integrated amount of light at UVA ultraviolet is preferably at 10 mJ / cm 2 or more 400 mJ / cm 2 or less, and more preferably 50 mJ / cm 2 or more 400 mJ / cm 2 or less.
  • the antiglare film of the present invention obtained as described above is used for an image display device or the like, and is usually used by being bonded to a polarizing film as a viewing side protective film of a viewing side polarizing plate (that is, an image). Placed on the surface of the display device).
  • an antiglare film integrated with a polarizing film is obtained. Therefore, such an antiglare film integrated with a polarizing film may be used for an image display device. it can.
  • the image display device provided with the antiglare film of the present invention has sufficient antiglare properties at a wide viewing angle, and can well prevent both whitening and glare.
  • an optically transparent pressure-sensitive adhesive was used, and the surface opposite to the antiglare layer of the measurement sample was bonded to a glass substrate, and then subjected to measurement.
  • the objective lens was measured at a magnification of 10 times.
  • the horizontal resolutions ⁇ x and ⁇ y were both 1.66 ⁇ m and the measurement area was 1270 ⁇ m ⁇ 950 ⁇ m.
  • Sampling 512 ⁇ 512 data (measured area 850 ⁇ m ⁇ 850 ⁇ m) from the center of the obtained measurement data, the elevation of the surface uneven shape (surface uneven shape of the antiglare layer) of the antiglare film is two-dimensional
  • the function h (x, y) was obtained.
  • Two-dimensional function h (x, y) of the discrete Fourier transform to two-dimensional function H (f x, f y) was determined.
  • Two-dimensional function H (f x, f y) of a two-dimensional function I (f x, f y) of the absolute value squared by the two-dimensional power spectrum to calculate the one-dimensional power is a function of the distance f from the origin
  • a one-dimensional function I (f) of the spectrum was calculated.
  • the elevation is measured for five surface irregularities for each sample, and the average value of the one-dimensional function I (f) of the one-dimensional power spectrum calculated from the data is obtained as the one-dimensional function I of the one-dimensional power spectrum of each sample. (F).
  • the internal haze was measured in the same manner as the total haze after a triacetyl cellulose film having a haze of approximately 0 was attached to the antiglare layer surface of the measurement sample after measuring the total haze with glycerin.
  • Transparency definition By the method based on JIS K 7105, the transmission clarity of the anti-glare film was measured using the image clarity measuring device “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd. Also in this case, in order to prevent the sample from warping, the surface opposite to the antiglare layer of the measurement sample was bonded to the glass substrate using an optically transparent adhesive, and then used for the measurement. In this state, light was incident from the glass substrate side and measurement was performed.
  • the measured values here are values measured using five types of optical combs in which the widths of the dark part and the bright part are 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively. Is the sum of (Reflection sharpness measured at 45 ° light incident angle)
  • the reflection clarity of the antiglare film was measured using an image clarity measuring device “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd.
  • the surface opposite to the antiglare layer of the measurement sample was bonded to the black acrylic substrate using an optically transparent adhesive, and then subjected to measurement. .
  • the measured values are the total values of the values measured using four types of optical combs in which the widths of the dark part and the bright part are 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm, respectively. is there. (Reflection sharpness measured at 60 ° light incident angle)
  • the reflection clarity of the antiglare film was measured using an image clarity measuring device “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd.
  • the surface opposite to the antiglare layer of the measurement sample was bonded to the black acrylic substrate using an optically transparent adhesive, and then subjected to measurement. .
  • light was incident at 60 ° from the antiglare layer surface side, and measurement was performed.
  • the measured values are the total values of the values measured using four types of optical combs in which the widths of the dark part and the bright part are 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm, respectively. is there.
  • the antiglare layer of the antiglare film is irradiated with parallel light from a He-Ne laser having a wavelength of 543.5 nm from a direction inclined by 30 ° with respect to the normal line of the antiglare film, and the film normal line and the irradiation direction are changed.
  • the change in the angle of the reflectance in the plane including it was measured.
  • both “32903 Optical Power Sensor” and “3292 Optical Power Meter” manufactured by Yokogawa Electric Corporation were used.
  • the surface opposite to the antiglare layer of the measurement sample was bonded to the black acrylic substrate using an optically transparent adhesive, and then subjected to measurement. .
  • Glare was evaluated according to the following procedure. That is, first, a photomask having a unit cell pattern as shown in a plan view in FIG. 11 was prepared. In this figure, a unit cell 100 has a key-shaped chrome light-shielding pattern 101 having a line width of 10 ⁇ m formed on a transparent substrate, and a portion where the chrome light-shielding pattern 101 is not formed is an opening 102.
  • a unit cell having a size of 211 ⁇ m ⁇ 70 ⁇ m (vertical ⁇ horizontal in the figure) and an opening having a dimension of 201 ⁇ m ⁇ 60 ⁇ m (vertical ⁇ horizontal in the figure) was used.
  • a large number of unit cells shown in the figure are arranged vertically and horizontally to form a photomask.
  • the chrome light-shielding pattern 111 of the photomask 113 is placed on the light box 115 and the antiglare film 110 is attached to the glass plate 117 with an adhesive on the antiglare layer.
  • the sample bonded to the surface is placed on the photomask 113.
  • a light source 116 is disposed in the light box 115.
  • Level 1 corresponds to a state where no glare is observed
  • level 7 corresponds to a state where severe glare is observed
  • level 4 refers to a state where only slight glare is observed.
  • the polarizing plates on both the front and back surfaces were peeled off from a commercially available liquid crystal television (“KDL-32EX550” manufactured by Sony Corporation). Instead of these original polarizing plates, both the back side and the display side are polarizing plates "Sumikaran SRDB831E” manufactured by Sumitomo Chemical Co., Ltd.
  • the antiglare film shown in each of the following examples was laminated on the display surface side polarizing plate via an adhesive such that the concavo-convex surface was the surface.
  • the liquid crystal television thus obtained was activated in a dark room, and the luminance in the black display state and the white display state was measured using a luminance meter “BM5A” manufactured by Topcon Corporation, and the contrast was calculated.
  • the contrast is represented by the ratio of the luminance in the white display state to the luminance in the black display state.
  • the result showed the contrast measured in the state which bonded the anti-glare film in the ratio of the contrast measured in the state which does not bond an anti-glare film.
  • Two-dimensional function G (f x, f y) of a two-dimensional function gamma (f x, f y) of the absolute value squared by the two-dimensional power spectrum to calculate the one-dimensional power is a function of the distance f from the origin
  • a one-dimensional function ⁇ (f) of the spectrum was calculated.
  • Example 1> (Production of molds for the production of anti-glare films)
  • Copper ballad plating consists of a copper plating layer / thin silver plating layer / surface copper plating layer, and the thickness of the entire plating layer was set to be about 200 ⁇ m.
  • the copper plating surface was mirror-polished, and a photosensitive resin was applied to the polished copper plating surface and dried to form a photosensitive resin film.
  • a pattern in which the pattern A shown in FIG. 13 was repeatedly arranged was exposed on a photosensitive resin film with a laser beam and developed. Laser beam exposure and development were performed using Laser Stream FX (manufactured by Sink Laboratories).
  • the photosensitive resin film a film containing a positive photosensitive resin was used.
  • the pattern A is created by passing a plurality of Gaussian function type band pass filters from a pattern having a random brightness distribution, the aperture ratio is 45%, and the spatial frequency of the one-dimensional power spectrum is 0.
  • the chromium plating thickness was set to 10 ⁇ m.
  • Each of the following components was dissolved in ethyl acetate at a solid content concentration of 60%, and an ultraviolet curable resin composition A capable of forming a film having a refractive index of 1.53 after curing was prepared.
  • Pentaerythritol triacrylate 60 parts Multifunctional urethanated acrylate 40 parts (Reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate) 5 parts of diphenyl (2,4,6-trimethoxybenzoyl) phosphine oxide
  • TAC triacetyl cellulose
  • this UV curable resin composition A is dried to have a thickness of 5 ⁇ m. And dried in a dryer set at 60 ° C. for 3 minutes. The dried film was brought into close contact with the molding surface of the mold A obtained previously (the surface having an uneven surface shape) with a rubber roll so that the coating layer after drying was on the mold side.
  • an anti-glare film is manufactured by irradiating light from a high-pressure mercury lamp with an intensity of 20 mW / cm 2 from the TAC film side so that the amount of light converted to h-ray is 200 mJ / cm 2 and curing the coating layer. did. Thereafter, the obtained antiglare film was peeled off from the mold to produce a transparent antiglare film A having an antiglare layer on the TAC film.
  • Example 2> Except that the chrome plating thickness in the chrome plating process was set to 9 ⁇ m, the mold B was prepared in the same manner as the mold A in Example 1, and the mold A was replaced with the mold B. An antiglare film was prepared in the same manner as in Example 1.
  • This antiglare film is designated as an antiglare film B.
  • Example 3> Except that the chrome plating thickness in the chrome plating process was set to 11 ⁇ m, the mold C was prepared in the same manner as the mold A in Example 1, and the mold A was replaced with the mold C. An antiglare film was prepared in the same manner as in Example 1. This antiglare film is designated as an antiglare film C.
  • ⁇ Comparative Example 1> Except that the chrome plating thickness in the chrome plating process was set to 7 ⁇ m, the mold D was manufactured in the same manner as the mold A in Example 1, and the mold A was replaced with the mold D. An antiglare film was prepared in the same manner as in Example 1. This antiglare film is designated as an antiglare film D.
  • a mold E was prepared in the same manner as the mold A in Example 1 except that a pattern in which the patterns B shown in FIG. 14 were repeatedly arranged was exposed on the photosensitive resin film with laser light.
  • An antiglare film was produced in the same manner as in Example 1 except that the mold E was used. This antiglare film is designated as an antiglare film E.
  • the pattern B is created by passing a plurality of Gaussian function type bandpass filters from a pattern having a random brightness distribution, has an aperture ratio of 45.0%, and has a one-dimensional power spectrum space.
  • the ratio ⁇ (0.02) / ⁇ (0.01 ) is 2.69 of the intensity in the intensity gamma (0.01) and the spatial frequency 0.02 [mu] m -1 in the frequency 0.01 ⁇ m -1 ⁇ (0.02)
  • the ratio gamma (0.1) of the intensity in the intensity gamma (0.01) and the spatial frequency 0.1 [mu] m -1 in the spatial frequency 0.01 ⁇ m -1 ⁇ (0.1) / ⁇ (0.01) 278 .67.
  • the electroless nickel plating thickness was set to 15 ⁇ m.
  • An antiglare film was produced in the same manner as in Example 1 except that the mold A was replaced with the mold F. This antiglare film is designated as an antiglare film F.
  • a 200 mm diameter aluminum roll (A5056 according to JIS) was prepared by applying copper ballad plating to the surface. Copper ballad plating consists of a copper plating layer / thin silver plating layer / surface copper plating layer, and the thickness of the entire plating layer was about 200 ⁇ m.
  • the copper plating surface is mirror-polished, and the blasting device (manufactured by Fuji Seisakusho Co., Ltd.) is used on the polished surface, and zirconia beads “TZ-SX-17” (manufactured by Tosoh Corp., average particle diameter: 20 ⁇ m) was blasted at a blast pressure of 0.05 MPa (gauge pressure, the same applies hereinafter) and a bead usage of 6 g / cm 2 , and the aluminum roll surface was uneven.
  • the resulting copper-plated aluminum roll with unevenness was subjected to chrome plating to produce a mold G. At this time, the chromium plating thickness was set to 6 ⁇ m.
  • Example 1 An antiglare film was produced in the same manner as in Example 1 except that the mold A was replaced with the mold G.
  • This antiglare film is designated as an antiglare film G.
  • Table 1 shows the results of evaluating the above antiglare films for the above Examples and Comparative Examples.
  • the antiglare films A to C Examples 1 to 3 satisfying the requirements of the present invention have low haze, they have excellent antiglare properties regardless of whether the observation angle is front or oblique. In addition, the effect of suppressing whitishness and glare was sufficient.
  • the antiglare film D Comparative Example 1 was whitish.
  • Anti-glare film E (Comparative Example 2) had insufficient anti-glare properties when observed obliquely.
  • the antiglare film F (Comparative Example 3) was easily glaring.
  • the antiglare film G (Comparative Example 4) had insufficient antiglare properties when observed from an oblique direction.
  • the antiglare film of the present invention is useful for an image display device such as a liquid crystal display.

Abstract

Provided is an antiglare film that has excellent antiglare properties at a wide observation angle even with a low haze, and that can sufficiently suppress the occurrence of white turbidity and glare when arranged on an image display device. This antiglare film comprises a transparent support body, and an antiglare layer formed thereon and having fine surface irregularities, wherein: the total haze is from 0.1% to 3% inclusive; the surface haze is from 0.1% to 2% inclusive; with respect to light that is incident at an incident angle of 30°, the ratio R(40)/R(30) between the reflectance R(30) at a reflection angle of 30° and the reflectance R(40) at a reflection angle of 40° is from 0.00001 to 0.0025 inclusive; and intensities I (0.01), I (0.02), and I (0.1) at a spatial frequency of 0.01 µm-1, a spatial frequency of 0.02 µm-1, and a spatial frequency of 0.1 µm-1, respectively, in a power spectrum of the height of said surface irregularities are within respective predetermined ranges.

Description

防眩フィルムAnti-glare film
 本発明は、防眩性に優れた防眩(アンチグレア)フィルムに関する。 The present invention relates to an antiglare film having excellent antiglare properties.
 液晶ディスプレイやプラズマディスプレイパネル、ブラウン管(陰極線管:CRT)ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイなどの画像表示装置は、その表示面に外光が映り込むことによる視認性の悪化を避けるために、当該表示面に防眩フィルムが配置されている。
 防眩フィルムとしては、表面凹凸形状を備えた透明フィルムが主として検討されている。かかる防眩フィルムは、表面凹凸形状により外光を散乱反射させること(外光散乱光)で映り込みを低減することにより防眩性を発現する。しかしながら、外光散乱光が強い場合には、画像表示装置の表示面全体が白っぽくなったり、表示が濁った色になったりする、いわゆる「白ちゃけ」が発生することがある。また、画像表示装置の画素と防眩フィルムの表面凹凸とが干渉して、輝度分布が発生して見えにくくなる、いわゆる「ギラツキ」も発生することがある。以上のことから、防眩フィルムには、優れた防眩性を確保しつつ、この「白ちゃけ」や「ギラツキ」の発生を十分防止することが要望されている。
 かかる防眩フィルムとして、例えば特許文献1には、高精細な画像表示装置に配置した際にもギラツキが発生せず、白ちゃけの発生も十分防止された防眩フィルムとして、透明基材上に微細な表面凹凸形状が形成されており、該表面凹凸形状の任意の断面曲線における平均長さPSmが12μm以下、該断面曲線における算術平均高さPaと平均長さPSmの比Pa/PSmが0.005以上0.012以下、該表面凹凸形状が傾斜角度2°以下である面の割合が50%以下、該傾斜角度6°以下である面の割合が90%以上である防眩フィルムが開示されている。
 特許文献1に開示された防眩フィルムは、任意の断面曲線における平均長さPSmを非常に小さくすることで、ギラツキを発生させやすくする50μm付近の周期を持つ表面凹凸形状をなくすことにより、当該ギラツキを効果的に抑制することができる。しかしながら、特許文献1に開示された防眩フィルムはヘイズをより小さくしようとすると(低ヘイズにしようとすると)、この防眩フィルムを配置した画像表示装置の表示面を斜めから観察したときの防眩性が低下する場合があった。したがって、特許文献1に開示された防眩フィルムは、広い観察角度における防眩性の点では改良の余地が残されていた。
Image display devices such as liquid crystal display, plasma display panel, cathode ray tube (CRT) display, organic electroluminescence (EL) display, etc. An antiglare film is disposed on the display surface.
As an antiglare film, a transparent film having an uneven surface shape is mainly studied. Such an anti-glare film exhibits anti-glare properties by reducing reflection by scattering and reflecting external light (external light scattered light) due to the uneven surface shape. However, when the external light scattering light is strong, so-called “whiteness” may occur in which the entire display surface of the image display device becomes whitish or the display becomes cloudy. In addition, the pixel of the image display device and the surface unevenness of the anti-glare film interfere with each other, so that a so-called “glare” that is difficult to see due to a luminance distribution may occur. In view of the above, anti-glare films are required to sufficiently prevent the occurrence of this “whitening” and “glare” while ensuring excellent anti-glare properties.
As such an anti-glare film, for example, Patent Document 1 discloses an anti-glare film that does not generate glare even when placed in a high-definition image display device and that is sufficiently prevented from being whitish. The surface irregularity shape is fine, and the average length PSm in the arbitrary sectional curve of the surface irregularity shape is 12 μm or less, and the ratio Pa / PSm of the arithmetic average height Pa to the average length PSm in the sectional curve is An anti-glare film having a surface ratio of 0.005 or more and 0.012 or less, the surface irregularity shape having an inclination angle of 2 ° or less, and a surface ratio having an inclination angle of 6 ° or less is 90% or more. It is disclosed.
The antiglare film disclosed in Patent Document 1 has a surface irregularity shape with a period of about 50 μm that makes it easy to generate glare by making the average length PSm in an arbitrary cross-sectional curve very small, Glare can be effectively suppressed. However, when the anti-glare film disclosed in Patent Document 1 tries to make the haze smaller (to make it low haze), the anti-glare film when the display surface of the image display device on which the anti-glare film is arranged is observed obliquely. There was a case where the dazzle was reduced. Therefore, the antiglare film disclosed in Patent Document 1 has room for improvement in terms of antiglare properties at a wide observation angle.
特開2007−187952号公報JP 2007-188792 A
 本発明は、低ヘイズであっても広い観察角度において優れた防眩性を有し、画像表示装置に配置したときに、白ちゃけ及びギラツキの発生を十分に抑制し得る防眩フィルムを提供することを目的とする。 The present invention provides an anti-glare film that has excellent anti-glare properties at a wide viewing angle even at low haze, and can sufficiently suppress the occurrence of whitish and glare when placed in an image display device. The purpose is to do.
 本発明者は、上記課題を解決するために鋭意検討を行った結果、本発明を完成するに至った。すなわち、本発明は、
 透明支持体と、その上に形成された微細な表面凹凸形状を有する防眩層とを備える防眩フィルムであって、
 全ヘイズが0.1%以上3%以下であり、
 表面ヘイズが0.1%以上2%以下であり、
 入射角30°で入射した光に対し、反射角30°の反射率R(30)と反射角40°の反射率R(40)との比R(40)/R(30)が0.00001以上0.0025以下であり、
 前記表面凹凸形状は、その標高のパワースペクトルが下記(1)~(3)の条件をいずれも満たすことを特徴とする防眩フィルムである。
(1)空間周波数0.01μm−1における強度I(0.01)が2μm以上10μm以下であること;
(2)空間周波数0.02μm−1における強度I(0.02)が0.1μm以上1.5μm以下であること;及び
(3)空間周波数0.1μm−1における強度I(0.1)が0.0001μm以上0.01μm以下であること。
 さらに本発明の防眩フィルムにおいては、
 暗部と明部の幅がそれぞれ、0.125mm、0.25mm、0.5mm、1.0mm及び2.0mmである5種類の光学くしを用いて測定される透過鮮明度の和Tcが375%以上であり、
 暗部と明部の幅がそれぞれ、0.25mm、0.5mm、1.0mm及び2.0mmである4種類の光学くしを用いて光の入射角45°で測定される反射鮮明度の和Rc(45)が180%以下であり、
 暗部と明部の幅がそれぞれ、0.25mm、0.5mm、1.0mm及び2.0mmである4種類の光学くしを用いて光の入射角60°で測定される反射鮮明度の和Rc(60)が240%以下であることが好ましい。
As a result of intensive studies to solve the above problems, the present inventor has completed the present invention. That is, the present invention
An anti-glare film comprising a transparent support and an anti-glare layer having fine surface irregularities formed thereon,
The total haze is 0.1% or more and 3% or less,
The surface haze is 0.1% or more and 2% or less,
For light incident at an incident angle of 30 °, the ratio R (40) / R (30) of the reflectance R (30) at a reflection angle of 30 ° and the reflectance R (40) at a reflection angle of 40 ° is 0.00001. More than 0.0025,
The surface uneven shape is an antiglare film characterized in that the power spectrum of the altitude satisfies all the following conditions (1) to (3).
(1) The intensity I (0.01) at a spatial frequency of 0.01 μm −1 is 2 μm 4 or more and 10 μm 4 or less;
(2) The intensity I (0.02) at a spatial frequency of 0.02 μm −1 is 0.1 μm 4 or more and 1.5 μm 4 or less; and (3) the intensity I at a spatial frequency of 0.1 μm −1 (0. 1) is 0.0001 μm 4 or more and 0.01 μm 4 or less.
Furthermore, in the antiglare film of the present invention,
The sum Tc of transmitted sharpness measured using five types of optical combs in which the widths of the dark part and the bright part are 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively, is 375%. That's it,
Rc of reflection sharpness Rc measured at an incident angle of 45 ° using four types of optical combs having a dark portion and a bright portion width of 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively. (45) is 180% or less,
Rc of reflection sharpness Rc measured at an incident angle of light of 60 ° using four types of optical combs in which the widths of the dark part and the bright part are 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm, respectively. (60) is preferably 240% or less.
 本発明によれば、低ヘイズであっても広い観察角度において十分な防眩性を有し、画像表示装置に配置したときに、白ちゃけ及びギラツキの発生が十分抑制された防眩フィルムを提供することができる。 According to the present invention, an anti-glare film having sufficient anti-glare property at a wide observation angle even with low haze and sufficiently suppressed generation of whitish and glare when placed in an image display device. Can be provided.
防眩層側から入射角30°で光を入射したときの角度毎の防眩フィルムの反射率を簡単に説明するための図である。It is a figure for demonstrating simply the reflectance of the glare-proof film for every angle when light injects with the incident angle of 30 degrees from the glare-proof layer side. 防眩フィルムの表面凹凸形状の標高を簡単に説明するための図である。It is a figure for demonstrating simply the elevation of the surface uneven | corrugated shape of an anti-glare film. 防眩フィルムの表面凹凸形状の標高と座標(x,y)の関係を簡単に説明するための図である。It is a figure for demonstrating simply the relationship between the altitude of the surface uneven | corrugated shape of an anti-glare film, and a coordinate (x, y). 防眩フィルムの表面凹凸形状の標高が離散的に得られる状態を示す模式図である。It is a schematic diagram which shows the state from which the elevation of the surface uneven | corrugated shape of an anti-glare film is obtained discretely. 離散関数として得られた表面凹凸形状の標高の二次元パワースペクトルから一次元パワースペクトルを計算する状態を示す模式図である。It is a schematic diagram which shows the state which calculates a one-dimensional power spectrum from the two-dimensional power spectrum of the elevation of the surface uneven | corrugated shape obtained as a discrete function. 防眩フィルムの表面凹凸形状の標高の一次元パワースペクトルI(f)を空間周波数fに対して示した図である。It is the figure which showed the one-dimensional power spectrum I (f) of the altitude of the surface uneven | corrugated shape of an anti-glare film with respect to the spatial frequency f. 金型の製造方法(前半部分)の好ましい一例を模式的に示す図である。It is a figure which shows typically a preferable example of the manufacturing method (first half part) of a metal mold | die. 金型の製造方法(後半部分)の好ましい一例を模式的に示す図である。It is a figure which shows typically a preferable example of the manufacturing method (second half part) of a metal mold | die. 本発明の防眩フィルムの製造方法に用いられる製造装置の好ましい一例を模式的に示す図である。It is a figure which shows typically a preferable example of the manufacturing apparatus used for the manufacturing method of the anti-glare film of this invention. 本発明の防眩フィルムの製造方法において、好適な予備硬化工程を模式的に示す図である。In the manufacturing method of the anti-glare film of this invention, it is a figure which shows typically a suitable precuring process. ギラツキ評価のためのユニットセルを模式的に示す図である。It is a figure which shows typically the unit cell for glare evaluation. ギラツキ評価装置を模式的に示す図である。It is a figure which shows a glare evaluation apparatus typically. 実施例1~3及び比較例1で用いたパターンAの一部を表す図である。FIG. 4 is a diagram showing a part of a pattern A used in Examples 1 to 3 and Comparative Example 1. 比較例2で用いたパターンBの一部を表す図である。10 is a diagram illustrating a part of a pattern B used in Comparative Example 2. FIG.
 以下、本発明の好ましい実施形態を必要に応じて図面を参照して説明するが、当該図面に示す寸法などは、見やすさのために任意になっている。
 本発明の防眩フィルムは入射角30°で入射した光に対し、反射角30°の反射率R(30)と反射角40°の反射率R(40)との比R(40)/R(30)が0.00001以上0.0025以下であり、表面凹凸形状の標高のパワースペクトルの空間周波数0.01μm−1、0.02μm−1、及び0.1μm−1における強度がそれぞれ前記の範囲にあることを特徴とする。
 まずは、本発明の防眩フィルムに関し、反射率比R(40)/R(30)及び表面凹凸形状の標高のパワースペクトルの求め方について説明する。
[反射率比]
 反射率の比R(40)/R(30)の求め方について説明する。
 図1は、本発明の防眩フィルムが有する防眩層側から入射角30°で光を入射したときの角度毎の反射率を簡単に説明するための図面(斜視図)であり、防眩フィルム10に対する防眩層側からの光の入射方向と反射方向とを模式的に示している。この図では、防眩フィルム10の防眩層側で法線20から30°の角度で入射した入射光11に対し、反射角30°の方向、すなわち、正反射方向12への反射光の反射率(つまり正反射率)をR(30)とする。また、任意の反射角θでの反射光を符号15で表しており、反射率を測定するときの反射光の方向12,15は、入射光の方向11と法線20とを含む面30内とする。そして、反射角40°の方向への反射率をR(40)とする。
 防眩フィルムの反射率を測定するにあたっては、0.001%以下の反射率を精度良く測定することが必要である。そのため、ダイナミックレンジの広い検出器の使用が有効であり、そのような市販の光パワーメーターなどを好ましく用いることができる。この光パワーメーターの検出器前にアパーチャーを設け、防眩フィルムを見込む角度が2°になるようにした変角光度計を用いて測定を行う。この場合の入射光としては、380~780nmの可視光線を用いることができる。測定用光源としては、ハロゲンランプ等の光源から出た光をコリメートしたものを用いてもよいし、レーザなどの単色光源で平行度の高いものを用いてもよい。裏面が平滑で透明な防眩フィルムに関して反射率を求める場合には、防眩フィルム裏面からの反射が測定値に影響を及ぼすことがあり、かかる影響を避ける必要がある。そのため、反射率を測定する際に、測定対象である防眩フィルムの平滑面を黒色のアクリル樹脂板に、粘着剤により密着させたり、水やグリセリンなどの液体を用いて光学密着させたりすることにより、防眩フィルム最表面の反射率のみが測定できるようにすることが好ましい。
 本発明の防眩フィルムにおいては、入射角30°の入射光に対し、反射角30°の方向の反射率、すなわち正反射率R(30)の反射角40°の方向の反射率R(40)の比R(40)/R(30)が0.00001以上0.0025以下である。比R(40)/R(30)が0.00001を下回る防眩フィルムを配置した画像表示装置は、その防眩性が不十分となる。一方、比R(40)/R(30)が0.025を上回る防眩フィルムを配置した画像表示装置は、白ちゃけが発生しやすくなる。優れた防眩性を有し、白ちゃけの発生が十分防止された画像表示装置を得るためには、防眩フィルムの比R(40)/R(30)は0.00005以上0.001以下であるとより好ましい。
[表面凹凸形状の標高のパワースペクトル]
 以下、防眩フィルムの表面凹凸形状の標高のパワースペクトルについて説明する。図2は、本発明の防眩フィルムの表面を模式的に示す断面図である。図2に示されるように、本発明の防眩フィルム1は、透明支持体101とその上に形成された防眩層102とを有し、防眩層102は、透明支持体101と反対側に微細な凹凸2を有する表面凹凸形状を備える。
 ここで、本発明でいう「表面凹凸形状の標高」とは、フィルム1表面の任意の点Pと、表面凹凸形状の平均高さにおいて当該高さを有する仮想的な平面103(標高は基準として0μm)とのフィルムの主法線方向5(上記仮想的な平面103における法線方向)における直線距離を意味する。
 実際には、防眩フィルムは図3に模式的に示すように、二次元平面上に微細な凹凸が形成された防眩層を有する。そこで、表面凹凸形状の標高は図3に示すように、フィルム面内の直交座標を(x,y)で表示したときに、座標(x,y)の二次元関数h(x,y)と表すことができる。
 表面凹凸形状の標高は、共焦点顕微鏡、干渉顕微鏡、原子間力顕微鏡(AFM)などの装置により測定される表面形状の三次元情報から求めることができる。測定機に要求される水平分解能は、少なくとも5μm以下、好ましくは2μm以下であり、また垂直分解能は、少なくとも0.1μm以下、好ましくは0.01μm以下である。この測定に好適な非接触三次元表面形状・粗さ測定機としては、New View 5000シリーズ(Zygo Corporation社製)、三次元顕微鏡PLμ2300(Sensofar社製)などを挙げることができる。測定面積は、標高のパワースペクトルの分解能が0.005μm−1以下である必要があるため、少なくとも200μm×200μmとすることが好ましく、500μm×500μm以上とすることがより好ましい。
 次に、二次元関数h(x,y)より標高のパワースペクトルを求める方法について説明する。まず、二次元関数h(x,y)より、式(1)で定義される二次元フーリエ変換によって二次元関数H(f,f)を求める。
Figure JPOXMLDOC01-appb-I000001
 ここでf及びfは、それぞれx方向及びy方向の周波数であり、長さの逆数の次元を持つ。また、式(1)中のπは円周率、iは虚数単位である。得られた二次元関数H(f,f)の絶対値を二乗することによって、二次元パワースペクトルI(f,f)を式(2)により求めることができる。
Figure JPOXMLDOC01-appb-I000002
 この二次元パワースペクトルI(f,f)は、防眩フィルムが有する表面凹凸形状の空間周波数分布を表している。防眩フィルムは等方的であるため、表面凹凸形状の標高の二次元パワースペクトルを表す二次元関数I(f,f)は、原点(0,0)からの距離fのみに依存する一次元関数I(f)で表すことができる。次に、二次元関数I(f,f)から一次元関数I(f)を求める方法を示す。まず、標高の二次元パワースペクトルである二次元関数I(f,f)を式(3)に基づいて極座標で表示する。
Figure JPOXMLDOC01-appb-I000003
 ここでθはフーリエ空間中の偏角である。一次元関数I(f)は極座標表示した二次元関数I(fcosθ,fsinθ)の回転平均を式(4)に基づき計算することにより求めることができる。標高の二次元パワースペクトルである二次元関数I(f,f)の回転平均から求められる一次元関数I(f)を、以下では一次元パワースペクトルI(f)ともいう。
Figure JPOXMLDOC01-appb-I000004
 本発明の防眩フィルムは、その表面凹凸形状の標高から計算される一次元パワースペクトルI(f)の空間周波数0.01μm−1における強度I(0.01)と、空間周波数0.02μm−1における強度I(0.02)と、空間周波数0.1μm−1における強度I(0.1)とがいずれも特定の範囲内であることを特徴とするものである。
 以下、防眩フィルムが有する表面凹凸形状の標高の二次元パワースペクトルを求める方法をさらに具体的に説明する。上記の共焦点顕微鏡、干渉顕微鏡、原子間力顕微鏡などによって実際に測定される表面形状の三次元情報は一般的に離散的な値、すなわち、多数の測定点に対応する標高として得られる。図4は、標高を表す関数h(x,y)が離散的に得られる状態を示す模式図である。図4に示すように、フィルム面内の直交座標を(x,y)で表示し、フィルム投影面3上に、x軸方向にΔx毎に分割した線と、y軸方向にΔy毎に分割した線とを破線で示すと、実際の測定では、表面凹凸形状の標高はフィルム投影面3上の各破線で分割された面積Δx×Δy毎の離散的な標高値として得られる。
 得られる標高値の数は測定範囲と、Δx及びΔyとによって決まり、図4に示すようにx軸方向の測定範囲をX=MΔxとし、y軸方向の測定範囲をY=NΔyとすると、得られる標高値の数はM×N個である。
 図4に示すようにフィルム投影面3上の着目点Aの座標を(mΔx,nΔy)[ここでmは0以上M−1以下であり、nは0以上N−1以下である]とすると、着目点Aに対応するフィルム面上の点Pの標高はh(mΔx,nΔy)と表すことができる。
 ここで、測定間隔Δx及びΔyは、測定機器の水平分解能に依存し、精度良く表面凹凸形状を評価するためには、Δx及びΔyはともに、5μm以下であることが好ましく、2μm以下であることがより好ましい。また、測定範囲X及びYは上述したとおり、ともに200μm以上が好ましく、500μm以上がより好ましい。
 このように実際の測定では、表面凹凸形状の標高を表す関数は、M×N個の値を持つ離散関数h(x,y)として得られる。そこで、表面凹凸形状の標高の二次元関数h(x,y)の二次元フーリエ変換により求められる二次元関数H(f,f)も、式(1)を離散的に計算した離散フーリエ変換により式(5)のように離散関数として求められる。
Figure JPOXMLDOC01-appb-I000005
 ここで、式(5)中のjは−M/2以上M/2以下の整数であり、kは−N/2以上N/2以下の整数である。また、Δf及びΔfはそれぞれ、x方向及びy方向の周波数間隔であり、式(6)及び式(7)により定義される。
Figure JPOXMLDOC01-appb-I000006
 二次元パワースペクトルI(f,f)は式(5)により求められた離散関数H(f,f)の絶対値を二乗することによって式(8)に示すように求められる。
Figure JPOXMLDOC01-appb-I000007
 式(8)において、|H(jΔf,kΔf)|をMNΔxΔyで除した理由は、実際の測定の場合には測定面積によって積分範囲が異なることを規格化するためである。
 離散関数として得られた二次元パワースペクトルI(f,f)も防眩フィルムが有する表面凹凸形状の空間周波数分布を表している。また、防眩フィルムは等方的であるため、表面凹凸形状の標高の二次元パワースペクトルを表す二次元離散関数I(f,f)も原点(0,0)からの距離fのみに依存する一次元離散関数I(f)で表すことができる。二次元離散関数I(f,f)から一次元離散関数I(f)を求める場合も式(4)と同様に回転平均を計算すればよい。二次元離散関数I(f,f)の離散的な回転平均は式(9)により計算できる。
Figure JPOXMLDOC01-appb-I000008
 ここで、M≧Nの場合、lは0以上N/2以下の整数であり、M<Nの場合、lは0以上M/2以下の整数である。また、Δfは原点からの距離の間隔であり、Δf=(Δf+Δf)/2とした。また、Θ(x)は式(10)で定義されるヘヴィサイド関数である。fjkは(j,k)における原点からの距離であり、式(11)により計算される。
Figure JPOXMLDOC01-appb-I000009
 式(9)に示す計算について図5を用いて説明する。関数Θ(fjk−(l−1/2)Δf)は、fjkが(l−1/2)Δf未満のときは0で、(l−1/2)Δf以上の時は1であり、関数Θ(fjk−(l+1/2)Δf)は、fjkが(l+1/2)Δf未満のときは0で、(l+1/2)Δf以上のときは1であることから、式(9)のΘ(fjk−(l−1/2)Δf)−Θ(fjk−(l+1/2)Δf)は、fjkが(l−1/2)Δf以上(l−1/2)Δf未満のときのみ1となり、それ以外の場合には0となる。ここでfjkは周波数空間において、原点O(f=0,f=0)からの距離であるため、式(9)の分母は原点Oからの距離fjkが、(l−1/2)Δf以上(l+1/2)Δf未満に位置する全ての点(図5中の黒丸の点)の個数を計算していることとなる。また、式(9)の分子は原点Oからの距離fjkが、(l−1/2)Δf以上(l+1/2)Δf未満に位置する全ての点のI(f,f)の合計値(図5中の黒丸の点におけるI(f,f)の合計値)を計算していることとなる。
 一般的に、前記した方法によって求められる一次元パワースペクトルは、測定における雑音を含んでいる。ここで一次元パワースペクトルを求めるのに際して、この雑音の影響を除くためには、防眩フィルム上の複数箇所の表面凹凸形状の標高を測定し、それぞれの表面凹凸形状の標高から求められる一次元パワースペクトルの平均値を一次元パワースペクトルI(f)として用いることが好ましい。防眩フィルム上の表面凹凸形状の標高を測定する箇所の数は3箇所以上が好ましく、より好ましくは5箇所以上である。
 図6に、このようにして得られた表面凹凸形状の標高の一次元パワースペクトルのI(f)を示す。図6の一次元パワースペクトルI(f)は防眩フィルム上の5箇所の異なる箇所の表面凹凸形状の標高から求められた一次元パワースペクトルを平均したものである。
 本発明の防眩フィルムは、表面凹凸形状の標高から計算される一次元パワースペクトルI(f)の空間周波数0.01μm−1における強度I(0.01)が2μm以上10μm以下であり、空間周波数0.02μm−1における強度I(0.02)が0.1μm以上1.5μm以下であり、空間周波数0.1μm−1における強度I(0.1)が0.0001μm以上0.01μm以下であることを特徴とする。ここで一次元パワースペクトルI(f)は離散関数として得られるため、特定の空間周波数fにおける強度I(f)を求めるには式(12)に示すように内挿して計算すればよい。
Figure JPOXMLDOC01-appb-I000010
 本発明の防眩フィルムは、前記の特定空間周波数における強度をそれぞれ所定の範囲にすることにより、後述のヘイズ及び反射率比との相乗効果により、白ちゃけ及びギラツキの発生を良好に防止しつつ、優れた防眩性を発現する。かかる効果をより発現するためには、強度I(0.01)は、2.5μm以上9μm以下が好ましく、3μm以上8μm以下がさらに好ましい。同様に、強度I(0.02)は0.2μm以上1.2μm以下が好ましく、0.25μm以上1μm以下がさらに好ましく、強度I(0.1)は、0.0003μm以上0.0075μm以下が好ましく、0.0005μm以上0.005μm以下がさらに好ましい。
 I(0.01)が前記範囲を下回る場合には、斜めから防眩フィルムを観察したときの防眩効果に寄与する100μm程度(空間周波数で0.01μm−1に相当)の周期のうねりが小さいこととなることから、防眩性が不十分となる。I(0.01)が前記範囲を上回る場合には、100μm程度の周期のうねりが大きくなりすぎ、防眩フィルムの表面凹凸形状が粗くなり、ヘイズが上昇する傾向があるため好ましくない。
 I(0.02)が前記範囲を下回る場合には、正面から防眩フィルムを観察したときの防眩効果に寄与する50μm程度(空間周波数で0.02μm−1に相当)の周期のうねりが小さいこととなることから、防眩性が不十分となる。I(0.02)が前記範囲を上回る場合には、50μm程度の周期のうねりが大きくなりすぎ、ギラツキが発生することとなる。
 I(0.1)が前記範囲を下回る場合には、10μm程度(空間周波数で0.1μm−1に相当)の短周期の凹凸形状が非常に少なく、防眩フィルムが有する表面凹凸形状が長周期の凹凸形状からのみ形成されることとなり、防眩フィルムの表面質感が粗くなるため好ましくない。I(0.1)が前記範囲を上回る場合には、10μm程度の短周期の表面凹凸形状による散乱が強くなり、白ちゃけが発生しやすくなる。
[全ヘイズ、表面ヘイズ]
 本発明の防眩フィルムは、防眩性を発現し、白ちゃけを防止するために、垂直入射光に対する全ヘイズが0.1%以上3%以下の範囲であり、表面ヘイズが0.1%以上2%以下の範囲のものである。防眩フィルムの全ヘイズは、JIS K7136に示される方法に準拠した方法により測定することができる。全ヘイズ又は表面ヘイズが0.1%を下回る防眩フィルムを配置した画像表示装置は、十分な防眩性を発現しないため好ましくない。また、全ヘイズが3%を上回る場合、又は表面ヘイズが2%を上回る場合の防眩フィルムは、当該防眩フィルムを配置した画像表示装置が、白ちゃけを発生するものとなるため好ましくない。また、かかる画像表示装置は、そのコントラストも不十分となるといった不都合もある。
 全ヘイズから表面ヘイズを差し引いて求められる内部ヘイズは低いほど好ましく、具体的には2.5%以下であることが好ましい。当該内部ヘイズが2.5%を上回る防眩フィルムを配置した画像表示装置は、そのコントラストが低下する傾向がある。
[透過鮮明度Tc、反射鮮明度Rc(45)、及び反射鮮明度Rc(60)]
 本発明の防眩フィルムは、下記する測定条件で求められる透過鮮明度の和Tcが375%以上であることが好ましい。透過鮮明度の和Tcは、JIS K 7105に準拠する方法により所定幅の光学くしを用いて像鮮明度をそれぞれ測定し、その合計を求めることで算出される。具体的には、暗部と明部の幅の比が1:1で、その幅が0.125mm、0.25mm、0.5mm、1.0mm及び2.0mmである5種類の光学くしを用いて像鮮明度をそれぞれ測定し、その合計を求めて、Tcとする。Tcが375%を下回る防眩フィルムは、より高精細な画像表示装置に配置した場合に、ギラツキが発生しやすくなることがある。Tcの上限は、その最大値である500%以下の範囲で選ばれるが、このTcが高すぎると、正面からの防眩性が低下しやすい画像表示装置が得られるため、例えば450%以下であることが好ましい。
 本発明の防眩フィルムは、入射角45°の入射光で測定される反射鮮明度Rc(45)が180%以下であることが好ましい。反射鮮明度Rc(45)は、前記Tcと同様に、JIS K 7105に準拠する方法で測定されるものであり、前記5種類の光学くしのうち、その幅が0.25mm、0.5mm、1.0mm及び2.0mmである4種類の光学くしを用いて測定された像鮮明度をそれぞれ測定し、その合計を求めて、Rc(45)とする。Rc(45)が180%以下であると、かかる防眩フィルムを配置した画像表示装置は、正面及び斜めから観察したときの防眩性がより良好となるので、好ましい。Rc(45)の下限は特に制限されないが、白ちゃけやギラツキの発生を良好に抑制するためには、例えば80%以上であることが好ましい。
 本発明の防眩フィルムは、入射角60°の入射光で測定される反射鮮明度Rc(60)が240%以下であることが好ましい。反射鮮明度Rc(60)は、入射角を変更する以外は、反射鮮明度Rc(45)と同じJIS K 7105に準拠する方法で測定される。Rc(60)が240%以下であると、その防眩フィルムを配置した画像表示装置は、斜めから観察したときの防眩性がより良好となるので、好ましい。Rc(60)の下限は特に制限されないが、白ちゃけやギラツキの発生をより良好に抑制するためには、例えば150%以上であることが好ましい。
[本発明の防眩フィルムの製造方法]
 本発明の防眩フィルムは、例えば以下のようにして製造される。第1の方法は、所定のパターンに基づいた表面凹凸形状が成形表面に形成された微細凹凸形成用金型を準備し、当該金型の凹凸面の形状を透明支持体に転写した後、凹凸面の形状が転写された透明支持体を金型から剥がすという方法である。第2の方法は、微粒子、樹脂(バインダー)及び溶剤を含み、かかる微粒子が樹脂溶液に分散した組成物を準備し、当該組成物を透明支持体上に塗布し、必要に応じて乾燥することで形成した塗布膜(微粒子を含む塗布膜)を硬化するという方法である。第2の方法では、塗布膜厚や微粒子の凝集状態を、前記組成物の組成や前記塗布膜の乾燥条件等によって調整することで、微粒子を塗布膜の表面に露出させ、ランダムな凹凸を透明支持体上に形成する。防眩フィルムの生産安定性、生産再現性の観点からは、第1の方法により本発明の防眩フィルムを製造することが好ましい。
 ここでは、本発明の防眩フィルムの製造方法として好ましい第1の方法について詳述する。
 上述のような特性を有する表面凹凸形状の防眩層を精度よく形成するためには、準備する微細凹凸形成用金型(以下、「金型」と略記することがある)が重要である。より具体的には、金型が有する表面凹凸形状(以下、「金型凹凸表面」ということがある)が所定のパターンに基づいて形成されており、この所定パターンが、その一次元パワースペクトルの空間周波数0.01μm−1における強度Γ(0.01)と空間周波数0.02μm−1における強度Γ(0.02)の比Γ(0.02)/Γ(0.01)が0.05以上1.2以下であり、空間周波数0.01μm−1における強度Γ(0.01)と空間周波数0.1μm−1における強度Γ(0.1)の比Γ(0.1)/Γ(0.01)が4以上25以下であると好ましい。ここで、「パターン」とは、防眩フィルムが有する防眩層の表面凹凸形状を形成するための画像データや透光部と遮光部を有するマスクなどを意味するものであり、以下、「パターン」と略記することとする。
 まずは、本発明の防眩フィルムが有する防眩層の表面凹凸形状を形成するためのパターンを定める方法について説明する。
 パターンの二次元パワースペクトルの求め方を、例えば当該パターンが画像データである場合について示す。まず、当該画像データを2階調の二値化画像データに変換した後、その階調を二次元関数g(x,y)で表す。得られた二次元関数g(x,y)を下記式(13)のようにフーリエ変換して二次元関数G(f,f)を計算し、下記式(14)に示すように、得られた二次元関数G(f,f)の絶対値を二乗することによって、二次元パワースペクトルΓ(f,f)を求める。ここで、x及びyは画像データ面内の直交座標を表す。また、f及びfはそれぞれ、x方向及びy方向の周波数を表しており、長さの逆数の次元を持つ。
Figure JPOXMLDOC01-appb-I000011
 式(13)中のπは円周率、iは虚数単位である。
Figure JPOXMLDOC01-appb-I000012
 この二次元パワースペクトルΓ(f,f)はパターンの空間周波数分布を表している。通常、防眩フィルムは等方的であることが求められるため、本発明の防眩フィルム製造用のパターンも等方的となる。そのため、パターンの二次元パワースペクトルを表す二次元関数Γ(f,f)は、原点(0,0)からの距離fのみに依存する一次元関数Γ(f)で表すことができる。次に、二次元関数Γ(f,f)から一次元関数Γ(f)を求める方法を説明する。まず、パターンの階調の二次元パワースペクトルである二次元関数Γ(f,f)を式(15)のように極座標で表示する。
Figure JPOXMLDOC01-appb-I000013
 ここで、θはフーリエ空間中の偏角である。一次元関数Γ(f)は極座標表示した二次元関数Γ(fcosθ,fsinθ)の回転平均を式(16)のように計算することによって求めることができる。パターンの階調の二次元パワースペクトルである二次元関数Γ(f,f)の回転平均から求められる一次元関数Γ(f)を、以下では一次元パワースペクトルΓ(f)ともいう。
Figure JPOXMLDOC01-appb-I000014
 本発明の防眩フィルムを精度良く得るためには、パターンの一次元パワースペクトルの空間周波数0.01μm−1における強度Γ(0.01)と空間周波数0.02μm−1における強度Γ(0.02)の比Γ(0.02)/Γ(0.01)が0.05以上1.2以下であり、空間周波数0.01μm−1における強度Γ(0.01)と空間周波数0.1μm−1における強度Γ(0.1)の比Γ(0.1)/Γ(0.01)が4以上25以下であることが好ましい。
 パターンの二次元パワースペクトルを求める場合には、階調の二次元関数g(x,y)は通常、離散関数として得られる。その場合は、離散フーリエ変換によって、二次元パワースペクトルを計算すればよい。パターンの一次元パワースペクトルは、パターンの二次元パワースペクトルから、同様にして求められる。
 また、得られる表面凹凸形状を均一で連続的な曲面とするために、二次元関数g(x,y)の平均値は、二次元関数g(x,y)の最大値と、二次元関数g(x,y)の最小値との差の30~70%であることが好ましい。金型凹凸表面をリソグラフィー法により製造する場合には、この二次元関数g(x,y)はパターンの開口率となる。金型凹凸表面をリソグラフィー法により製造する場合に関して、ここでいうパターンの開口率を定義しておく。リソグラフィー法に用いるレジストがポジレジストである場合の開口率は、当該ポジレジストの塗布膜に画像データを描画したとき、当該塗布膜の全表面領域に対する、露光される領域の割合を意味する。一方、リソグラフィー法に用いるレジストがネガレジストである場合の開口率は、当該ネガレジストの塗布膜に画像データを描画するとき、当該塗布膜の全表面領域に対する、露光されない領域の割合を意味する。リソグラフィー法が一括露光である場合の開口率は、透光部と遮光部を有するマスクの透光部の割合を意味する。
 本発明の防眩フィルムは、パターンの一次元パワースペクトルの強度比Γ(0.02)/Γ(0.01)及び、Γ(0.1)/Γ(0.01)のそれぞれを、前記の範囲として、所望の金型を製造し、当該金型を用いた第1の方法によれば製造することができる。
 このような強度比を有する一次元パワースペクトルのパターンを作成するためには、ドットをランダムに配置して作成したパターンや乱数若しくは計算機によって生成された疑似乱数により濃淡を決定したランダムな明度分布を有するパターン(予備パターン)を予め作成し、当該予備パターンから特定の空間周波数範囲の成分を除去する。この特定の空間周波数範囲の成分除去には、前記予備パターンをバンドパスフィルターに通過させればよい。
 所定パターンに基づいた表面凹凸形状が形成された防眩層を有する防眩フィルムを製造するため、当該所定パターンに基づいて形成された表面凹凸形状を透明支持体に転写するための金型凹凸表面を有する金型を製造する。かかる金型を用いる前記第1の方法は、防眩層を透明支持体上に作製することを特徴とするエンボス法である。
 前記エンボス法としては、光硬化性樹脂を用いる光エンボス法、熱可塑性樹脂を用いるホットエンボス法などが例示される。中でも、生産性の観点から、光エンボス法が好ましい。
 光エンボス法は、透明支持体上(透明支持体の表面)に光硬化性樹脂層を形成し、その光硬化性樹脂層を金型の金型凹凸表面に押し付けながら硬化させることで、金型の金型凹凸表面の形状を、光硬化性樹脂層に転写するという方法である。具体的には、透明支持体上に光硬化性樹脂を塗布して形成した光硬化性樹脂層を、金型凹凸表面に密着させた状態で、透明支持体側から光(当該光は光硬化性樹脂が硬化し得るものを用いる)を照射して光硬化性樹脂(光硬化性樹脂層に含まれる光硬化性樹脂)を硬化させ、その後、硬化後の光硬化性樹脂層が形成された透明支持体を金型から剥離する。このような製造方法で得られる防眩フィルムは、硬化後の光硬化性樹脂層が防眩層となる。なお、製造の容易さからみれば、光硬化性樹脂としては紫外線硬化性樹脂が好ましく、当該紫外線硬化性樹脂を用いる場合には、照射する光は紫外線を用いる(光硬化性樹脂として、紫外線硬化性樹脂を用いるエンボス法を以下、「UVエンボス法」という)。偏光フィルムと一体化した防眩フィルムを製造するためには、透明支持体として偏光フィルムを用い、ここで説明したエンボス法において透明支持体を偏光フィルムに置き換えて実施すればよい。
 UVエンボス法に用いる紫外線硬化性樹脂の種類は、特に限定されず、市販樹脂の中から、用いる透明支持体の種類や紫外線の種類に応じて適宜のものを用いることができる。かかる紫外線硬化性樹脂は、紫外線照射により光重合するモノマー(多官能モノマー)、オリゴマー及びポリマー、並びにそれらの混合物を含む概念である。また、紫外線硬化性樹脂の種類に応じて適宜、選択された光開始剤を組み合わせて用いることにより、紫外線より波長の長い可視光でも硬化が可能な樹脂を用いることもできる。この紫外線硬化性樹脂の好適例などの説明は後述する。
 UVエンボス法に用いる透明支持体としては、例えばガラスやプラスチックフィルムなどを用いることができる。プラスチックフィルムとしては適度の透明性、機械強度を有していれば使用可能である。具体的には、例えば、TAC(トリアセチルセルロース)等のセルロースアセテート系樹脂;アクリル系樹脂;ポリカーボネート系樹脂;ポリエチレンテレフタレート等のポリエステル系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂などからなる透明樹脂フィルムが挙げられる。これらの透明樹脂フィルムは、溶剤キャストフィルムであっても、押出フィルムであってもよい。
 透明支持体の厚みは、例えば10~500μmであり、好ましくは10~100μmであり、より好ましくは10~60μmである。透明支持体の厚みがこの範囲であると、十分な機械強度を有する防眩フィルムが得られる傾向があり、当該防眩フィルムを備えた画像表示装置が、より一層ギラツキを発生しにくいものとなる。
 一方、ホットエンボス法は、熱可塑性樹脂で形成された透明樹脂フィルムを、加熱して軟化させた状態で金型凹凸表面に押し付け、当該金型凹凸表面の表面凹凸形状を透明樹脂フィルムに転写する方法である。ホットエンボス法に用いる透明樹脂フィルムも、実質的に光学的に透明なものであればいかなるものであってもよく、具体的には、UVエンボス法に用いる透明樹脂フィルムとして例示したものを挙げることができる。
 続いて、エンボス法に用いる金型を製造する方法について説明する。
 金型の製造方法については、当該金型の成形面が、上述した所定パターンに基づいて形成された表面凹凸形状を透明支持体上に転写し得る(所定パターンに基づいて形成された表面凹凸形状の防眩層を形成し得る)金型凹凸表面となる範囲で、特に制限されないが、当該表面凹凸形状の防眩層を精度よく、かつ、再現性よく製造するために、リソグラフィー法が好ましい。さらに、当該リソグラフィー法は、〔1〕第1めっき工程と、〔2〕研磨工程と、〔3〕感光性樹脂膜形成工程と、〔4〕露光工程と、〔5〕現像工程と、〔6〕エッチング工程と、〔7〕感光性樹脂膜剥離工程と、〔8〕第2めっき工程とを含むことが好ましい。
 図7は、金型の製造方法の前半部分の好ましい一例を模式的に示す図である。図7は各工程での金型の断面を模式的に示している。以下、図7を参照しながら、本発明の防眩フィルム製造用の金型の製造方法の各工程について詳細に説明する。
〔1〕第1めっき工程
 まず、金型製造に用いる基材(金型用基材)を準備し、当該金型用基材の表面に、銅めっきを施す。このように、金型用基材の表面に銅めっきを施すことにより、後述の第2めっき工程におけるクロムめっきの密着性や光沢性を向上させることができる。銅めっきは、被覆性が高く、また平滑化作用が強いことから、金型用基材の微小な凹凸や鬆などを埋めて平坦で光沢のある表面を形成することができる。そのため、このようにして銅めっきを金型用基材表面に施すことで、後述する第2めっき工程においてクロムめっきを施したとしても、基材に存在していた微小な凹凸や鬆に起因すると思われるクロムめっき表面の荒れが解消され、また、銅めっきの被覆性の高さから、細かいクラックの発生が低減される。したがって、所定パターンに基づいた表面凹凸形状(微細凹凸表面形状)を金型用基材成形面に作成したとしても、微小な凹凸や鬆、クラック等の下地(金型用基材)表面の影響によるずれを十分防止することができる。
 第1めっき工程の銅めっきに用いられる銅としては、銅の純金属を用いても、銅を主成分とする合金(銅合金)を用いてもよい。したがって、銅めっきに用いられる「銅」は、銅及び銅合金を含む概念である。銅めっきは、電解めっきであっても、無電解めっきであってもよいが、第1めっき工程の銅めっきは、電解めっきを用いることが好ましい。さらに、第1めっき工程における好ましいめっき層は、銅めっき層からなるもののみならず、銅めっき層と、銅以外の金属からなるめっき層とが積層されたものであってもよい。
 金型用基材の表面上に銅めっきを施して形成されるめっき層は余り薄いと、下地表面の影響(微小な凹凸や鬆、クラック等)が排除しきれないことから、その厚みは50μm以上であることが好ましい。めっき層厚みの上限は臨界的でないが、コストなどを考慮した場合には、500μm程度以下であると好ましい。
 金型用基材は金属材料からなる基材が好ましい。さらに、コストの観点からは当該金属材料の材質としては、アルミニウム、鉄などが好ましい。さらに金型用基材の取扱いの利便性からみれば、軽量なアルミニウムからなる基材が金型用基材として特に好ましい。なお、ここでいうアルミニウムや鉄も、それぞれ純金属である必要はなく、アルミニウム又は鉄を主成分とする合金であってもよい。
 金型用基材の形状は、本発明の防眩フィルムの製造方法に応じて適宜の形状のものであればよい。具体的には、平板状基材、円柱状基材又は円筒状(ロール形状)基材などから選択される。本発明の防眩フィルムを連続的に製造する場合には、金型はロール形状であると好ましい。このような金型はロール形状の金型用基材から製造される。
〔2〕研磨工程
 続く研磨工程では、上述した第1めっき工程にて銅めっきが施された金型用基材の表面(めっき層)を研磨する。本発明の防眩フィルムの製造方法に用いる金型の製造方法では、当該研磨工程を経て、金型用基材表面を、鏡面に近い状態にまで研磨することが好ましい。金型用基材として用いる平板状基材やロール形状基材の市販品は、所望の精度にするために、切削や研削などの機械加工が施されていることが多く、それにより金型用基材表面には微細な加工目が残っている。そのため、第1めっき工程によりめっき(好ましくは、銅めっき)層を形成したとしても、前記加工目が残ることがある。また、第1めっき工程におけるめっきを施したとしても、金型用基材の表面が完全に平滑になるとは限らない。すなわち、このような深い加工目などが残った表面がある金型用基材に対して、後述する〔3〕~〔8〕の工程を施したとしても、得られる金型表面の表面凹凸形状が所定パターンに基づく表面凹凸形状とは異なることがあったり、加工目などに由来する凹凸が含まれることがあったりする。加工目などの影響が残っている金型を用いて防眩フィルムを製造した場合には、目的とする防眩性などの光学特性が十分発現できず、予期できない影響を及ぼすおそれがある。
 研磨工程において適用する研磨方法は特に制限されるものではなく、研磨対象となる金型用基材の形状・性状に応じた研磨方法が選択される。研磨工程に適用できる研磨方法を具体的に例示すると、機械研磨法、電解研磨法及び化学研磨法などが挙げられる。これらのうち、機械研磨法としては、超仕上げ法、ラッピング、流体研磨法、バフ研磨法などのいずれも使用できる。また、研磨工程において切削工具を用いて鏡面切削することによって、金型用基材の表面を鏡面としてもよい。この場合の切削工具の材質・形状は金型用基材の材質(金属材料)の種類に応じて、超硬バイト、CBNバイト、セラミックバイト、ダイヤモンドバイトなどを使用することができるが、加工精度の観点からはダイヤモンドバイトを用いることが好ましい。研磨後の表面粗度は、JIS B 0601に準拠した中心線平均粗さRaで表して、0.1μm以下であることが好ましく、0.05μm以下であることがより好ましい。研磨後の中心線平均粗さRaが0.1μmより大きいと、最終的に得られる金型の金型凹凸表面に、かかる表面粗度の影響が残るおそれがある。また、中心線平均粗さRaの下限については特に制限されない。したがって、研磨工程における加工時間(研磨時間)や加工コストの観点から、下限を定めればよい。
〔3〕感光性樹脂膜形成工程
 続いて、感光性樹脂膜形成工程を、図7を参照して説明する。
 感光性樹脂膜形成工程では、上述した研磨工程によって得られた鏡面研磨を施した金型用基材40の表面41に、感光性樹脂を溶媒に溶解した溶液(感光性樹脂溶液)を塗布し、加熱・乾燥することにより、感光性樹脂膜(レジスト膜)を形成する。図7では、金型用基材40の表面41に感光性樹脂膜50が形成された状態を模式的に示している(図7(b))。
 感光性樹脂としては従来公知の感光性樹脂を用いることができるし、すでにレジストとして市販されているものをそのまま、又は必要に応じてろ過等で精製してから用いることもできる。例えば、感光部分が硬化する性質をもったネガ型の感光性樹脂としては、分子中にアクリロイル基又はメタクリロイル基を有する(メタ)アクリル酸エステルの単量体やプレポリマー、ビスアジドとジエンゴムとの混合物、ポリビニルシンナマート系化合物などを用いることができる。また、現像により感光部分が溶出し、未感光部分だけが残る性質をもったポジ型の感光性樹脂としてはフェノール樹脂系やノボラック樹脂系などを用いることができる。このようなポジ型又はネガ型の感光性樹脂は、ポジレジストやネガレジストとして市場から容易に入手することもできる。また、感光性樹脂溶液は、必要に応じて、増感剤、現像促進剤、密着性改質剤、塗布性改良剤などの各種添加剤が配合されていてもよく、このような添加剤を市販のレジストに混合したものを感光性樹脂溶液として用いることもできる。
 これらの感光性樹脂溶液を金型用基材40の表面41に塗布するためには、より平滑な感光性樹脂膜を形成するうえで最適な溶剤を選択し、かかる溶剤に感光性樹脂を溶解・希釈して得られる感光性樹脂溶液を用いると好ましい。このような溶剤はさらに、感光性樹脂の種類及びその溶解性によって選択される。具体的には、例えば、セロソルブ系溶剤、プロピレングリコール系溶剤、エステル系溶剤、アルコール系溶剤、ケトン系溶剤、高極性溶剤などから選択される。市販のレジストを用いる場合、当該レジストに含まれる溶剤の種類に応じて、又は、適当な予備実験を行って、最適なレジストを選択し、感光性樹脂溶液として用いてもよい。
 金型用基材の鏡面研磨された表面に感光性樹脂溶液を塗布する方法は、メニスカスコート、ファウンティンコート、ディップコート、回転塗布、ロール塗布、ワイヤーバー塗布、エアーナイフ塗布、ブレード塗布、カーテン塗布、リングコートなどの公知の方法のなかから、当該金型用基材の形状などに応じて選択される。塗布後の感光性樹脂膜の厚さは、乾燥後の厚さで1~10μmの範囲とすることが好ましく、6~9μmの範囲とすることがより好ましい。
〔4〕露光工程
 続く露光工程は、目的とするパターンを、上述した感光性樹脂膜形成工程で形成された感光性樹脂膜50を露光することで、当該感光性樹脂膜50に転写する工程である。露光工程に用いる光源は、感光性樹脂膜に含まれる感光性樹脂の感光波長や感度等に合わせて適宜選択すればよく、例えば、高圧水銀灯のg線(波長:436nm)、h線(波長:405nm)、又はi線(波長:365nm)、半導体レーザ(波長:830nm、532nm、488nm、405nmなど)、YAGレーザ(波長:1064nm)、KrFエキシマレーザ(波長:248nm)、ArFエキシマレーザ(波長:193nm)、F2エキシマレーザ(波長:157nm)などを用いることができる。露光方式は、目的とするパターンに対応したマスクを用いて一括露光する方式でもよいし、描画方式でもよい。なお、目的とするパターンとはすでに説明したとおり、一次元パワースペクトルの空間周波数の強度比Γ(0.02)/Γ(0.01)及びΓ(0.1)/Γ(0.01)をそれぞれ所定の好ましい範囲とする。
 金型の製造方法において、当該金型の表面凹凸形状をより精度良く形成するためには、目的とするパターンを感光性樹脂膜上に、精密に制御された状態で露光することが好ましい。このような状態で露光するためには、コンピュータ上で目的のパターンを画像データとして作成し、その画像データに基づいたパターンを、コンピュータ制御されたレーザヘッドから発するレーザ光によって感光性樹脂膜上に描画(レーザ描画)することが好ましい。レーザ描画を行うに際しては、例えば印刷版作製などで汎用のレーザ描画装置を使用することができる。このようなレーザ描画装置の市販品としては、例えば、Laser Stream FX((株)シンク・ラボラトリー製)などが挙げられる。
 図7(c)は、感光性樹脂膜50にパターンが露光された状態を模式的に示している。感光性樹脂膜50にネガ型の感光性樹脂が含まれる場合(例えば、感光性樹脂溶液としてネガレジストを用いた場合)には、露光された領域51は、露光エネルギーを受けて感光性樹脂の架橋反応が進行し、後述する現像液に対する溶解性が低下する。よって、現像工程において露光されていない領域52が現像液によって溶解され、露光された領域51のみ基材表面上に残り、マスク60となる。一方、感光性樹脂膜50にポジ型の感光性樹脂が含まれる場合(例えば、感光性樹脂溶液としてポジレジストを用いた場合)には、露光された領域51では、露光エネルギーを受けて、感光性樹脂の結合が切断されるなどにより、後述する現像液に溶解されやすくなる。よって、現像工程において露光された領域51が現像液によって溶解され、露光されていない領域52のみ基材表面上に残り、マスク60となる。
〔5〕現像工程
 現像工程においては、感光性樹脂膜50にネガ型の感光性樹脂が含まれる場合には、露光されていない領域52は現像液によって溶解され、露光された領域51が金型用基材上に残存しマスク60となる。一方、感光性樹脂膜50にポジ型の感光性樹脂が含まれる場合には、露光された領域51のみ現像液によって溶解され、露光されていない領域52が、金型用基材上に残存しマスク60となる。所定のパターンを感光性樹脂膜として形成せしめた金型用基材は、エッチング工程において、金型用基材上に残存する感光性樹脂膜が、後述のエッチング工程におけるマスクとして作用する。
 現像工程に用いる現像液については従来公知のもののなかから、用いた感光性樹脂の種類に応じて適切なものを選択することができる。例えば、当該現像液は、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水などの無機アルカリ類;エチルアミン、n−プロピルアミンなどの第一アミン類;ジエチルアミン、ジ−n−ブチルアミンなどの第二アミン類;トリエチルアミン、メチルジエチルアミンなどの第三アミン類;ジメチルエタノールアミン、トリエタノールアミンなどのアルコールアミン類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルヒドロキシエチルアンモニウムヒドロキシドなどの第四級アンモニウム化合物;ピロール、ピヘリジンなどの環状アミン類などのアルカリ性水溶液、キシレン、トルエンなどの有機溶剤などが挙げられる。
 現像工程における現像方法については特に制限されず、浸漬現像、スプレー現像、ブラシ現像、超音波現像などを用いることができる。
 図7(d)には、感光性樹脂としてネガ型のものを用い、現像工程を行った後の状態を模式的に示している。図7(d)において露光されていない領域52が現像液によって溶解され、露光された領域51のみ基材表面上に残り、この領域の感光性樹脂膜がマスク60となる。図7(e)には、感光性樹脂としてポジ型のものを用い、現像工程を行った後の状態を模式的に示している。図7(e)において露光された領域51が現像液によって溶解され、露光されていない領域52のみ基材表面上に残り、この領域の感光性樹脂膜がマスク60となる。
〔6〕エッチング工程
 エッチング工程は、上述した現像工程後に金型用基材表面上に残存した感光性樹脂膜をマスクとして用い、金型用基材表面のうち、主にマスクのない領域にあるめっき層をエッチングする工程である。
 図8は、金型の製造方法の後半部分の好ましい一例を模式的に示す図である。図8(a)には、エッチング工程によって、主にマスクのない領域のめっき層がエッチングされた後の状態を模式的に示している。マスク60の下部のめっき層は、感光性樹脂膜がマスク60として働くことでエッチングされないが、エッチングの進行とともにマスクのない領域45からのエッチングが進行する。よって、マスク60のある領域とマスクのない領域45の境界付近では、マスク60の下部にあるめっき層もエッチングされることになる。このように、マスク60のある領域とマスクのない領域45の境界付近において、マスク60の下部のめっき層もエッチングされることをサイドエッチングと呼ぶ。
 エッチング工程におけるエッチング処理は、通常、塩化第二鉄(FeCl)液、塩化第二銅(CuCl)液、アルカリエッチング液(Cu(NHCl)などのエッチング液を用いて、金型用基材表面のうち、主としてマスク60のない領域のめっき層(金属表面)を腐食させることによって行われる。当該エッチング処理としては、塩酸や硫酸などの強酸をエッチング液として用いることもできるし、当該めっき層を電解めっきにより形成した場合には、電解めっきの時と逆の電位をかけることによる逆電解エッチングを用いてエッチング処理することもできる。エッチング処理を施した際の金型用基材に形成される表面凹凸形状は、金型用基材の構成材料(金属材料)又はめっき層の種類、感光性樹脂膜の種類及び、エッチング工程におけるエッチング処理の種類などによって異なるため、一概にはいえないが、エッチング量が10μm以下である場合には、エッチング液に接触する金型用基材表面から略等方的にエッチングされる。ここでいうエッチング量とは、エッチングにより削られるめっき層の厚みである。
 エッチング工程におけるエッチング量は好ましくは1~20μmであり、より好ましくは1~8μmであり、さらに好ましくは3~6μmである。エッチング量が1μm未満である場合には、金型に表面凹凸形状がほとんど形成されず、ほぼ平坦な表面を有するものとなるため、当該金型を用いて防眩フィルムを製造しても、かかる防眩フィルムは表面凹凸形状をほとんど有さないものとなる。このような防眩フィルムを配置した画像表示装置では、十分な防眩性を示さなくなってしまう。また、エッチング量が大きすぎる場合には、最終的に得られる金型凹凸表面が、凹凸の高低差が大きいものとなりやすい。当該金型を用いて防眩フィルムを製造しても、当該防眩フィルムを備えた画像表示装置では、白ちゃけの発生を十分防止できないことがある。エッチング工程におけるエッチング処理は1回のエッチング処理によって行ってもよいし、エッチング処理を2回以上に分けて行ってもよい。ここでエッチング処理を2回以上に分けて行う場合には、2回以上のエッチング処理におけるエッチング量の合計が1~20μmであることが好ましい。
〔7〕感光性樹脂膜剥離工程
 続く感光性樹脂膜剥離工程では、エッチング工程でマスク60として作用し、金型用基材上に残存した感光性樹脂膜を除去する工程であり、当該工程により、金型用基材上に残存した感光性樹脂膜を完全に除去することが好ましい。感光性樹脂膜剥離工程では剥離液を用いて感光性樹脂膜を溶解することが好ましい。剥離液としては、現像液として例示したものを、その濃度やpHなどを変更することで調製したものを用いることができる。又は、現像工程で用いた現像液と同じものを用い、現像工程とは、温度や浸漬時間などを変えることで感光性樹脂膜を剥離することもできる。感光性樹脂膜剥離工程において、剥離液と金型用基材との接触方法(剥離方法)については特に制限されず、浸漬剥離、スプレー剥離、ブラシ剥離、超音波剥離などを用いることができる。
 図8(b)は、感光性樹脂膜剥離工程によって、エッチング工程でマスク60として使用した感光性樹脂膜を完全に溶解し除去した状態を模式的に示している。感光性樹脂膜によるマスク60と、エッチング処理とによって、第1の表面凹凸形状46が金型用基材表面に形成される。
〔8〕第2めっき工程
 金型製造の最後の段階は、前記〔6〕及び〔7〕の工程を経た金型用基材の表面にめっき(好ましくは、後述のクロムめっき)を施す第2めっき工程である。第2めっき工程を行うことにより、金型用基材の表面凹凸形状46を鈍らせるとともに、当該めっきによって金型表面を保護することができる。以下、このように金型用基材の表面凹凸形状を鈍らせることを「形状鈍化」という。図8(c)には、上述したようにエッチング処理によって形成された第1の表面凹凸形状46上にクロムめっき層71を形成することで、表面凹凸形状が形状鈍化(金型凹凸表面70)した状態を示している。
 第2めっき工程により形成するめっき層としては、光沢があって、硬度が高く、摩擦係数が小さく、良好な離型性を与え得るという点でクロムめっきが好ましい。クロムめっきのなかでも、いわゆる光沢クロムめっきや装飾用クロムめっきなどと呼ばれる、良好な光沢を発現するクロムめっきが特に好ましい。クロムめっきは通常、電解によって行われるが、そのめっき浴としては、無水クロム酸(CrO)と少量の硫酸を含む水溶液がめっき液として用いられる。電流密度と電解時間を調節することにより、クロムめっき層の厚みを制御することができる。
 このようにして第2めっき工程におけるめっき、好ましくはクロムめっきを施すことで、本発明の防眩フィルム製造用の金型が得られる。エッチング処理後の金型用基材表面にある表面凹凸形状に、クロムめっきを施すことにより、形状鈍化ができるとともに、その表面硬度が高められた金型が得られる。この場合の形状鈍化の度合いを制御するうえで最も大きな因子は、クロムめっき層の厚みである。当該厚みが薄いと、形状鈍化の度合いが不十分となり、このような金型を用いて得られる防眩フィルムは、その反射率R(30)と反射率R(40)との比R(40)/R(30)が0.0025を上回ることがある。一方、クロムめっき層の厚みが厚すぎると、比R(40)/R(30)が0.00001を下回ることとなる。本発明者らは、白ちゃけの発生を十分防止し、優れた防眩性を有する画像表示装置を得るための防眩フィルムは、クロムめっき層の厚みが所定の範囲となるように金型を製造することが有効であることを見出している。すなわち、クロムめっき層の厚みは6~15μmの範囲内であると好ましく、8~11μmの範囲内であるとより好ましい。
 第2めっき工程で形成されるクロムめっき層は、ビッカース硬度が800以上となるように形成されていることが好ましく、1000以上となるように形成されていることがより好ましい。クロムめっき層のビッカース硬度が800未満である場合には、金型を使用して防眩フィルムを製造する際、当該金型の耐久性が低下する傾向がある。
 以下では、本発明の防眩フィルムを製造するための方法として好ましい前記光エンボス法について説明する。すでに述べたとおり、UVエンボス法が光エンボス法として特に好ましいが、ここでは活性エネルギー線硬化性樹脂を用いるエンボス法について具体的に説明する。
 本発明の防眩フィルムを連続的に製造するために、本発明の防眩フィルムを光エンボス法によって製造する場合は、下記工程:
 〔P1〕連続して搬送される透明支持体上に、活性エネルギー線硬化性樹脂を含有する塗工液を塗工して、塗工層を形成する塗工工程、及び
 〔P2〕塗工層の表面に、金型の表面を押し当てた状態で、透明支持体側から活性エネルギー線を照射する本硬化工程
を含むことが好ましい。
 また、本発明の防眩フィルムを光エンボス法によって製造する場合は、
 〔P3〕塗工工程〔P1〕の後であって、硬化工程〔P2〕の前に、塗工層の幅方向の両方の端部領域に活性エネルギー線を照射する予備硬化工程を含むことがより好ましい。
 以下、図面を参照しながら、各工程について詳細に説明する。図9は、本発明の防眩フィルムの製造方法に用いられる製造装置の好ましい一例を模式的に示す図である。図9中の矢印は、フィルムの搬送方向又はロールの回転方向を示す。
〔P1〕塗工工程
 塗工工程では、透明支持体上に、活性エネルギー線硬化性樹脂を含有する塗工液を塗工して、塗工層を形成する。塗工工程は、例えば図9に示されるように、送り出しロール80から繰り出される透明支持体81に対し、塗工ゾーン83で活性エネルギー線硬化性樹脂組成物を含有する塗工液が塗布される。
 塗工液の透明支持体81上への塗工は、例えば、グラビアコート法、マイクログラビアコート法、ロッドコート法、ナイフコート法、エアーナイフコート法、キスコート法、ダイコート法などによって行うことができる。
(透明支持体)
 透明支持体81は透光性のものであればよく、例えばガラスやプラスチックフィルムなどを用いることができる。プラスチックフィルムとしては適度の透明性、機械強度を有していればよい。具体的には、すでにUVエンボス法に用いる透明支持体として例示したものがいずれも使用可能であり、さらに光エンボス法により連続的に本発明の防眩フィルムを製造するために、適度な可とう性を有するものが選択される。
 塗工液の塗工性の改良、透明支持体と塗工層との接着性の改良を目的として、透明支持体81の表面(塗工層側表面)には、各種表面処理を施してもよい。表面処理としては、コロナ放電処理、グロー放電処理、酸表面処理、アルカリ表面処理、紫外線照射処理などが挙げられる。また、透明支持体81上に、例えばプライマー層等の他の層を形成し、この他の層の上に、塗工液を塗工するようにしてもよい。
 また、本発明の防眩フィルムとして、偏光フィルムと一体化したものを製造する場合には、透明支持体と偏光フィルムとの接着性を向上させるために、透明支持体の表面(塗工層とは反対側の表面)を各種表面処理によって親水化しておくことが好ましい。この表面処理は、防眩フィルムの製造後に行ってもよい。
(塗工液)
 塗工液は、活性エネルギー線硬化性樹脂を含有し、通常は、光重合開始剤(ラジカル重合開始剤)をさらに含む。必要に応じて、透光性微粒子、有機溶剤等の溶剤、レベリング剤、分散剤、帯電防止剤、防汚剤、界面活性剤等の各種添加剤を含んでいてもよい。
(1)活性エネルギー線硬化性樹脂
 活性エネルギー線硬化性樹脂としては、例えば、多官能(メタ)アクリレート化合物を含有するものを好ましく用いることができる。多官能(メタ)アクリレート化合物とは、分子中に少なくとも2個の(メタ)アクリロイルオキシ基を有する化合物である。多官能(メタ)アクリレート化合物の具体例としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート化合物、エポキシ(メタ)アクリレート化合物等の(メタ)アクリロイル基を2個以上含む多官能重合性化合物等が挙げられる。
 多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、2,2′−チオジエタノール、1,4−シクロヘキサンジメタノールのような2価のアルコール;トリメチロールプロパン、グリセロール、ペンタエリスリトール、ジグリセロール、ジペンタエリスリトール、ジトリメチロールプロパンのような3価以上のアルコールが挙げられる。
 多価アルコールと(メタ)アクリル酸とのエステル化物として、具体的には、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタグリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。
 ウレタン(メタ)アクリレート化合物としては、1分子中に複数個のイソシアネート基を有する有機イソシアネートと、水酸基を有する(メタ)アクリル酸誘導体のウレタン化反応物を挙げることができる。1分子中に複数個のイソシアネート基を有する有機イソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、ジフェニルメタンジイソシアネート、キシレリンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等の1分子中に2個のイソシアネート基を有する有機イソシアネート、それら有機イソシアネートをイソシアヌレート変性、アダクト変性、ビウレット変性した1分子中に3個のイソシアネート基を有する有機イソシアネート等が挙げられる。水酸基を有する(メタ)アクリル酸誘導体としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、ペンタエリスリトールトリアクリレートが挙げられる。
 ポリエステル(メタ)アクリレート化合物として好ましいものは、水酸基含有ポリエステルと(メタ)アクリル酸とを反応させて得られるポリエステル(メタ)アクリレートである。好ましく用いられる水酸基含有ポリエステルは、多価アルコールとカルボン酸や複数のカルボキシル基を有する化合物及び/又はその無水物のエステル化反応によって得られる水酸基含有ポリエステルである。多価アルコールとしては前述した化合物と同様のものが例示できる。また、多価アルコール以外にも、フェノール類としてビスフェノールA等が挙げられる。カルボン酸としては、ギ酸、酢酸、ブチルカルボン酸、安息香酸等が挙げられる。複数のカルボキシル基を有する化合物及び/又はその無水物としては、マレイン酸、フタル酸、フマル酸、イタコン酸、アジピン酸、テレフタル酸、無水マレイン酸、無水フタル酸、トリメリット酸、シクロヘキサンジカルボン酸無水物等が挙げられる。
 以上のような多官能(メタ)アクリレート化合物の中でも、その硬化物の強度向上や入手の容易性の点から、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のエステル化合物;ヘキサメチレンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;イソホロンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;トリレンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;アダクト変性イソホロンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;及びビウレット変性イソホロンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートとの付加体が好ましい。さらに、これらの多官能(メタ)アクリレート化合物は、それぞれ単独で、又は2種以上を併用することができる。
 活性エネルギー線硬化性樹脂は、上記の多官能(メタ)アクリレート化合物のほかに、単官能(メタ)アクリレート化合物を含有していてもよい。単官能(メタ)アクリレート化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N−ビニルピロリドン、テトラヒドロフルフリール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アセチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシプロピルフタレート、ジメチルアミノエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート等の(メタ)アクリレート類を挙げることができる。これらの化合物はそれぞれ単独で又は2種類以上を併用することができる。
 また、活性エネルギー線硬化性樹脂は重合性オリゴマーを含有していてもよい。重合性オリゴマーを含有させることにより、硬化物の硬度を調整することができる。重合性オリゴマーは、例えば、前記多官能(メタ)アクリレート化合物、すなわち、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート化合物又はエポキシ(メタ)アクリレート等の2量体、3量体などのようなオリゴマーであることができる。
 その他の重合性オリゴマーとしては、分子中に少なくとも2個のイソシアネート基を有するポリイソシアネートと、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとの反応により得られるウレタン(メタ)アクリレートオリゴマーを挙げることができる。ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシレリンジイソシアネートの重合物等が挙げられ、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとしては、多価アルコールと(メタ)アクリル酸のエステル化反応によって得られる水酸基含有(メタ)アクリル酸エステルであって、多価アルコールとして、例えば、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、ポリエチレングリコール、ポリプロピレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール等であるものが挙げられる。この少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールは、多価アルコールのアルコール性水酸基の一部が(メタ)アクリル酸とエステル化反応しているとともに、アルコール性水酸基が分子中に残存するものである。
 さらに、その他の重合性オリゴマーの例として、複数のカルボキシル基を有する化合物及び/又はその無水物と、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとの反応により得られるポリエステル(メタ)アクリレートオリゴマーを挙げることができる。複数のカルボキシル基を有する化合物及び/又はその無水物としては、前記多官能(メタ)アクリレート化合物のポリエステル(メタ)アクリレートで記載したものと同様のものが例示できる。また、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとしては、上記ウレタン(メタ)アクリレートオリゴマーで記載したものと同様のものが例示できる。
 以上のような重合性オリゴマーに加えて、さらにウレタン(メタ)アクリレートオリゴマーの例として、水酸基含有ポリエステル、水酸基含有ポリエーテル又は水酸基含有(メタ)アクリル酸エステルの水酸基にイソシアネート類を反応させて得られる化合物が挙げられる。好ましく用いられる水酸基含有ポリエステルは、多価アルコールとカルボン酸や複数のカルボキシル基を有する化合物及び/又はその無水物のエステル化反応によって得られる水酸基含有ポリエステルである。多価アルコールや、複数のカルボキシル基を有する化合物及び/又はその無水物としては、それぞれ、多官能(メタ)アクリレート化合物のポリエステル(メタ)アクリレート化合物で記載したものと同様のものが例示できる。好ましく用いられる水酸基含有ポリエーテルは、多価アルコールに1種又は2種以上のアルキレンオキサイド及び/又はε−カプロラクトンを付加することによって得られる水酸基含有ポリエーテルである。多価アルコールは、前記水酸基含有ポリエステルに使用できるものと同じものであってよい。好ましく用いられる水酸基含有(メタ)アクリル酸エステルとしては、重合性オリゴマーのウレタン(メタ)アクリレートオリゴマーで記載したものと同様のものが例示できる。イソシアネート類としては、分子中に1個以上のイソシアネート基を持つ化合物が好ましく、トリレンジイソシアネートや、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどの2価のイソシアネート化合物が特に好ましい。
 これらの重合性オリゴマー化合物は、それぞれ単独で用いることもできるし、2種以上を併用することもできる。
(2)光重合開始剤
 光重合開始剤は、本発明の防眩フィルム製造に適用する活性エネルギー線の種類に応じて適宜選択できる。また、活性エネルギー線として電子線を用いる場合には、光重合開始剤を含有しない塗工液を本発明の防眩フィルム製造に用いることもある。
 光重合開始剤としては、例えば、アセトフェノン系光重合開始剤、ベンゾイン系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、トリアジン系光重合開始剤、オキサジアゾール系光重合開始剤などが用いられる。また、光重合開始剤として、例えば、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,2′−ビス(o−クロロフェニル)−4,4′,5,5′−テトラフェニル−1,2′−ビイミダゾール、10−ブチル−2−クロロアクリドン、2−エチルアントラキノン、ベンジル、9,10−フェナンスレンキノン、カンファーキノン、フェニルグリオキシル酸メチル、チタノセン化合物等も用いることができる。光重合開始剤の使用量は、活性エネルギー線硬化性樹脂100重量部に対して、通常0.5~20重量部であり、好ましくは1~5重量部である。
 塗工液は、透明支持体に対する塗工性を改良するために、有機溶剤等の溶剤を含むこともある。有機溶剤としては、ヘキサン、シクロヘキサン、オクタンなどの脂肪族炭化水素;トルエン、キシレンなどの芳香族炭化水素;エタノール、1−プロパノール、イソプロパノール、1−ブタノール、シクロヘキサノールなどのアルコール類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル化グリコールエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール等のセルソルブ類;2−(2−メトキシエトキシ)エタノール、2−(2−エトキシエトキシ)エタノール、2−(2−ブトキシエトキシ)エタノール等のカルビトール類などから、粘度等を考慮して選択して用いることができる。これらの溶剤は、単独で用いてもよいし、必要に応じて数種類を混合して用いてもよい。塗工後は、上記有機溶剤を蒸発させる必要がある。そのため、沸点は60℃~160℃の範囲であることが望ましい。また、20℃における飽和蒸気圧は0.1kPa~20kPaの範囲であることが好ましい。
 塗工液が溶剤を含む場合、上記塗工工程の後、第1硬化工程の前に、溶剤を蒸発させて乾燥を行う乾燥工程を設けることが好ましい。乾燥は、例えば図9に示される例のように、塗工層を備える透明支持体81を、乾燥ゾーン84内を通過させることによって行うことができる。乾燥温度は、使用する溶剤や透明支持体の種類により適宜選択される。一般に20℃~120℃の範囲であるが、これに限定されない。また、乾燥炉が複数ある場合は、乾燥炉毎に温度を変えてもよい。乾燥後の塗工層の厚みは、1~30μmであることが好ましい。
 かくして、透明支持体と塗工層とが積層した積層体が形成される。
〔P2〕硬化工程
 本工程は、塗工層の表面に、所望の表面凹凸形状を有する金型凹凸表面(成形面)を押し当てた状態で、透明支持体側から活性エネルギー線を照射し、塗工層を硬化させることにより、透明支持体上に硬化された樹脂層を形成する工程である。これにより、塗工層が硬化されるとともに、金型凹凸表面の表面凹凸形状が塗工層表面に転写される。ここで用いる金型はロール形状のものであり、すでに説明した金型製造方法においてロール形状の金型用基材を用いることで製造されたものである。
 本工程は、例えば図9に示されるように、塗工ゾーン83(乾燥を行う場合には、乾燥ゾーン84、後述する予備硬化工程を行う場合にはさらに活性エネルギー線照射装置86による照射がなされる予備硬化ゾーン)を通過した塗工層を有する積層体に対して、透明支持体81側に配置された紫外線照射装置等の活性エネルギー線照射装置86を用いて、活性エネルギー線を照射することにより行うことができる。
 まず、硬化工程を経た積層体の塗工層の表面に、ニップロール88等の圧着装置を用いて、ロール形状の金型87を押し当て、この状態で活性エネルギー線照射装置86を用いて、透明支持体81側から活性エネルギー線を照射して塗工層82を硬化させる。ここで、「塗工層を硬化させる」とは、当該塗工層に含まれる活性エネルギー線硬化性樹脂が活性エネルギー線のエネルギーを受けて硬化反応を生じさせることをいう。ニップロールの使用は、積層体の塗工層と金型との間への気泡の混入を防止するうえで有効である。活性エネルギー線照射装置は、1機若しくは複数機を使用することができる。
 活性エネルギー線の照射後、積層体は、出口側のニップロール89を支点として金型87から剥離される。得られた透明支持体と硬化した塗工層は、当該硬化した塗工層が防眩層となって本発明の防眩フィルムが得られる。得られた防眩フィルムは通常、フィルム巻き取り装置90によって巻き取られる。この際、防眩層を保護する目的で、再剥離性を有した粘着剤層を介して、防眩層表面にポリエチレンテレフタレートやポリエチレン等からなる保護フィルムを貼着しながら巻き取ってもよい。なお、ここでは用いる金型はロール形状のものの場合を説明したが、ロール形状以外の金型を用いることもできる。また、金型から剥離された後に、追加の活性エネルギー線照射を行ってもよい。
 本工程で用いる活性エネルギー線としては、塗工液に含まれる活性エネルギー線硬化性樹脂の種類に応じて紫外線、電子線、近紫外線、可視光、近赤外線、赤外線、X線などから適宜選択することができるが、これらの中で紫外線及び電子線が好ましく、取り扱いが簡便で高エネルギーが得られることから紫外線が特に好ましい(上述のとおり、光エンボス法としては、UVエンボス法が好ましい)。
 紫外線の光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、無電極ランプ、メタルハライドランプ、キセノンアークランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプ又はシンクロトロン放射光等も用いることができる。これらの中でも、超高圧水銀灯、高圧水銀灯、低圧水銀灯、無電極ランプ、キセノンアークランプ、メタルハライドランプが好ましく用いられる。
 また、電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50~1000keV、好ましくは100~300keVのエネルギーを有する電子線を挙げることができる。
 活性エネルギー線が紫外線である場合、紫外線のUVAにおける積算光量は、好ましくは100mJ/cm以上3000mJ/cm以下であり、より好ましくは200mJ/cm以上2000mJ/cm以下である。また、透明支持体が短波長側の紫外線を吸収する場合もあるため、当該吸収を抑制する目的で可視光を含む波長領域の紫外線UVV(395~445nm)の積算光量が好ましくなるようにして照射量を調整することもある。かかるUVVにおける積算光量は、100mJ/cm以上3000mJ/cm以下であることが好ましく、200mJ/cm以上2000mJ/cm以下であることがより好ましい。積算光量が100mJ/cm未満である場合、塗工層の硬化が不十分となり、得られる防眩層の硬度が低くなったり、未硬化の樹脂がガイドロール等に付着し、工程汚染の原因となったりする傾向がある。また、積算光量が3000mJ/cmを超える場合、紫外線照射装置から放射される熱により、透明支持体が収縮して皺の原因になることがある。
〔P3〕予備硬化工程
 本工程は、前記硬化工程に先立って、塗工層の透明支持体の幅方向の両方の端部領域に活性エネルギー線を照射して、この両端部領域を予備硬化させる工程である。図10は、予備硬化工程を模式的に示す断面図である。図10において、塗工層の幅方向(搬送方向と直交する方向)の端部領域82bは、塗工層の端部を含み端部から所定の幅の領域である。
 予備硬化工程において、端部領域を予め硬化させておくことにより、端部領域において、透明支持体81との密着性を一段と高めて、硬化工程後の工程で、硬化樹脂の一部が剥がれて落下し、工程が汚染されるのを防止することができる。端部領域82bは、塗工層82の端部から、例えば、5mm以上50mm以下の領域とすることができる。
 塗工層の端部領域への活性エネルギー線の照射は、図9及び図10を参照して、例えば、塗工ゾーン83(乾燥を行う場合には、乾燥ゾーン84)を通過した塗工層82を有する透明支持体81に対して、塗工層82側の両端部近傍にそれぞれ設置された紫外線照射装置等の活性エネルギー線照射装置85を用いて、活性エネルギー線を照射することにより行うことができる。活性エネルギー線照射装置85は、塗工層82の端部領域82bに活性エネルギー線を照射できるものであればよく、透明支持体81側に設置されていてもよい。
 活性エネルギー線の種類及び光源については本硬化工程と同様である。活性エネルギー線が紫外線である場合、紫外線のUVAにおける積算光量は、10mJ/cm以上400mJ/cm以下であることが好ましく、50mJ/cm以上400mJ/cm以下であることがより好ましい。50mJ/cm以上となるように照射することにより、本硬化工程にける変形をより効果的に防止することができる。なお、400mJ/cmを超えると、硬化反応が過度に進行する結果、硬化部分と未硬化部分との境界において、膜厚差や内部応力の歪みに起因して樹脂剥がれが生じる場合がある。
[本発明の防眩フィルムの用途]
 以上のようにして得られる本発明の防眩フィルムは画像表示装置などに用いられるものであり、通常、視認側偏光板の視認側保護フィルムとして偏光フィルムに貼合して用いられる(すなわち、画像表示装置の表面に配置される。)。また、すでに述べたとおり、透明支持体として偏光フィルムを用いた場合には、偏光フィルム一体型の防眩フィルムが得られるため、かかる偏光フィルム一体型の防眩フィルムを画像表示装置に用いることもできる。本発明の防眩フィルムを備えた画像表示装置は、広い観察角度において十分な防眩性を有し、さらに白ちゃけ及びギラツキの発生をともに良好に防止することができる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings as necessary, but the dimensions and the like shown in the drawings are arbitrary for ease of viewing.
The antiglare film of the present invention has a ratio R (40) / R of a reflectance R (30) having a reflection angle of 30 ° and a reflectance R (40) having a reflection angle of 40 ° with respect to light incident at an incident angle of 30 °. (30) is 0.00001 or more and 0.0025 or less, and the intensity at the spatial frequency of 0.01 μm −1 , 0.02 μm −1 , and 0.1 μm −1 of the power spectrum of the surface unevenness-shaped altitude is It is in the range.
First, regarding the antiglare film of the present invention, how to obtain the reflectance ratio R (40) / R (30) and the power spectrum of the elevation of the surface irregularity shape will be described.
[Reflectance ratio]
A method for obtaining the reflectance ratio R (40) / R (30) will be described.
FIG. 1 is a drawing (perspective view) for simply explaining the reflectance for each angle when light is incident at an incident angle of 30 ° from the antiglare layer side of the antiglare film of the present invention. The incident direction and the reflection direction of the light from the glare-proof layer side with respect to the film 10 are shown typically. In this figure, with respect to the incident light 11 incident at an angle of 30 ° from the normal 20 on the antiglare layer side of the antiglare film 10, the reflected light is reflected in the direction of the reflection angle of 30 °, that is, in the regular reflection direction 12. Let the rate (that is, the regular reflectance) be R (30). The reflected light at an arbitrary reflection angle θ is denoted by reference numeral 15, and the directions 12 and 15 of the reflected light when measuring the reflectance are within the plane 30 including the direction 11 of the incident light and the normal line 20. And The reflectance in the direction with a reflection angle of 40 ° is R (40).
In measuring the reflectance of the antiglare film, it is necessary to accurately measure a reflectance of 0.001% or less. Therefore, it is effective to use a detector having a wide dynamic range, and such a commercially available optical power meter can be preferably used. An aperture is provided in front of the detector of the optical power meter, and measurement is performed using a goniophotometer in which the angle at which the antiglare film is viewed is 2 °. In this case, visible light of 380 to 780 nm can be used as incident light. As a light source for measurement, a collimated light emitted from a light source such as a halogen lamp may be used, or a monochromatic light source such as a laser having a high degree of parallelism may be used. When the reflectance is calculated for an antiglare film having a smooth and transparent back surface, reflection from the back surface of the antiglare film may affect the measurement value, and it is necessary to avoid such influence. Therefore, when measuring the reflectance, the smooth surface of the antiglare film that is the object of measurement should be adhered to the black acrylic resin plate with an adhesive or optically adhered using a liquid such as water or glycerin. Therefore, it is preferable that only the reflectance of the outermost surface of the antiglare film can be measured.
In the antiglare film of the present invention, the reflectance in the direction of the reflection angle 30 ° with respect to the incident light having the incident angle of 30 °, that is, the reflectance R (40 in the direction of the reflection angle 40 ° of the regular reflectance R (30). ) Ratio R (40) / R (30) is 0.00001 or more and 0.0025 or less. An image display device in which an antiglare film having a ratio R (40) / R (30) of less than 0.00001 has an insufficient antiglare property. On the other hand, an image display device in which an antiglare film having a ratio R (40) / R (30) exceeding 0.025 is likely to be whitish. In order to obtain an image display device having excellent antiglare properties and sufficiently prevented the occurrence of whitish, the ratio R (40) / R (30) of the antiglare film is 0.00005 or more and 0.001. The following is more preferable.
[Power spectrum of elevation of surface irregularities]
Hereinafter, the power spectrum of the elevation of the surface unevenness shape of the antiglare film will be described. FIG. 2 is a cross-sectional view schematically showing the surface of the antiglare film of the present invention. As shown in FIG. 2, the antiglare film 1 of the present invention has a transparent support 101 and an antiglare layer 102 formed thereon, and the antiglare layer 102 is opposite to the transparent support 101. Are provided with a surface uneven shape having fine unevenness 2.
Here, the “elevation of the surface uneven shape” as used in the present invention means an arbitrary point P on the surface of the film 1 and a virtual plane 103 having the height at the average height of the surface uneven shape (the altitude is used as a reference). 0 μm) means a linear distance in the main normal direction 5 (normal direction in the virtual plane 103) of the film.
Actually, as schematically shown in FIG. 3, the antiglare film has an antiglare layer having fine irregularities formed on a two-dimensional plane. Therefore, as shown in FIG. 3, the elevation of the surface irregularity shape is expressed as a two-dimensional function h (x, y) of coordinates (x, y) when orthogonal coordinates in the film plane are displayed as (x, y). Can be represented.
The elevation of the surface irregularity shape can be obtained from the three-dimensional information of the surface shape measured by an apparatus such as a confocal microscope, an interference microscope, an atomic force microscope (AFM) or the like. The horizontal resolution required for the measuring instrument is at least 5 μm or less, preferably 2 μm or less, and the vertical resolution is at least 0.1 μm or less, preferably 0.01 μm or less. Examples of the non-contact three-dimensional surface shape / roughness measuring apparatus suitable for this measurement include New View 5000 series (manufactured by Zygo Corporation), three-dimensional microscope PL μ2300 (manufactured by Sensofar), and the like. Since the resolution of the power spectrum of the altitude needs to be 0.005 μm −1 or less, the measurement area is preferably at least 200 μm × 200 μm, and more preferably 500 μm × 500 μm or more.
Next, a method for obtaining an altitude power spectrum from a two-dimensional function h (x, y) will be described. First, a two-dimensional function H (f x , f y ) is obtained from the two-dimensional function h (x, y) by a two-dimensional Fourier transform defined by equation (1).
Figure JPOXMLDOC01-appb-I000001
Where f x and f y are frequency of x and y directions, respectively, with the dimension of reciprocal length. Further, in Expression (1), π is a pi and i is an imaginary unit. By squaring the absolute value of the obtained two-dimensional function H (f x , f y ), the two-dimensional power spectrum I (f x , f y ) can be obtained by equation (2).
Figure JPOXMLDOC01-appb-I000002
The two-dimensional power spectrum I (f x, f y) represents the spatial frequency distribution of the surface irregularities of the antiglare film has. Since the antiglare film is isotropic, the two-dimensional function I (f x , f y ) representing the two-dimensional power spectrum of the elevation of the surface irregularity shape depends only on the distance f from the origin (0, 0). It can be represented by a one-dimensional function I (f). Next, a method of obtaining a two-dimensional function I (f x, f y) from a one-dimensional function I (f). First, it displayed in polar coordinates based two-dimensional function I (f x, f y) is a two-dimensional power spectrum of the altitude of the equation (3).
Figure JPOXMLDOC01-appb-I000003
Here, θ is a declination angle in Fourier space. The one-dimensional function I (f) can be obtained by calculating the rotational average of the two-dimensional function I (fcos θ, fsin θ) displayed in polar coordinates based on the equation (4). The one-dimensional function I (f) obtained from the rotating average of the two-dimensional function I (f x , f y ), which is a two-dimensional power spectrum at an altitude, is also referred to as a one-dimensional power spectrum I (f) below.
Figure JPOXMLDOC01-appb-I000004
The antiglare film of the present invention has an intensity I (0.01) at a spatial frequency of 0.01 μm −1 and a spatial frequency of 0.02 μm − of the one-dimensional power spectrum I (f) calculated from the elevation of the surface uneven shape. the intensity I (0.02) in 1, and the intensity I (0.1) in the spatial frequency 0.1 [mu] m -1 is characterized in that both are within the specified range.
Hereinafter, the method for obtaining the two-dimensional power spectrum of the elevation of the surface unevenness of the antiglare film will be described more specifically. The three-dimensional information of the surface shape actually measured by the above confocal microscope, interference microscope, atomic force microscope or the like is generally obtained as discrete values, that is, elevations corresponding to a large number of measurement points. FIG. 4 is a schematic diagram showing a state where functions h (x, y) representing altitude are obtained discretely. As shown in FIG. 4, the orthogonal coordinates in the film plane are displayed as (x, y), and on the film projection plane 3, a line divided every Δx in the x-axis direction and a division every Δy in the y-axis direction. When the measured line is indicated by a broken line, in the actual measurement, the elevation of the surface uneven shape is obtained as a discrete elevation value for each area Δx × Δy divided by each broken line on the film projection surface 3.
The number of elevation values obtained is determined by the measurement range and Δx and Δy. As shown in FIG. 4, when the measurement range in the x-axis direction is X = MΔx and the measurement range in the y-axis direction is Y = NΔy, The number of elevation values to be obtained is M × N.
As shown in FIG. 4, when the coordinates of the point of interest A on the film projection surface 3 are (mΔx, nΔy) [where m is 0 or more and M−1 or less, and n is 0 or more and N−1 or less]. The elevation of the point P on the film surface corresponding to the point of interest A can be expressed as h (mΔx, nΔy).
Here, the measurement intervals Δx and Δy depend on the horizontal resolution of the measuring device, and in order to accurately evaluate the surface unevenness shape, both Δx and Δy are preferably 5 μm or less, and preferably 2 μm or less. Is more preferable. Further, as described above, the measurement ranges X and Y are both preferably 200 μm or more, and more preferably 500 μm or more.
As described above, in actual measurement, the function representing the elevation of the surface irregularity shape is obtained as a discrete function h (x, y) having M × N values. Therefore, the two-dimensional function H (f x , f y ) obtained by the two-dimensional Fourier transform of the two-dimensional function h (x, y) of the elevation of the surface uneven shape is also a discrete Fourier obtained by discretely calculating the expression (1). By conversion, it is obtained as a discrete function as shown in Equation (5).
Figure JPOXMLDOC01-appb-I000005
Here, j in the formula (5) is an integer of −M / 2 or more and M / 2 or less, and k is an integer of −N / 2 or more and N / 2 or less. Δf x and Δf y are frequency intervals in the x direction and the y direction, respectively, and are defined by Expression (6) and Expression (7).
Figure JPOXMLDOC01-appb-I000006
The two-dimensional power spectrum I (f x , f y ) is obtained as shown in equation (8) by squaring the absolute value of the discrete function H (f x , f y ) obtained by equation (5).
Figure JPOXMLDOC01-appb-I000007
The reason why | H (jΔf x , kΔf y ) | 2 in equation (8) is divided by MNΔxΔy is to normalize that the integration range differs depending on the measurement area in the actual measurement.
The two-dimensional power spectrum I (f x , f y ) obtained as a discrete function also represents the spatial frequency distribution of the uneven surface shape of the antiglare film. Further, since the antiglare film is isotropic, two-dimensional discrete function I (f x, f y) representing the two-dimensional power spectrum of the altitude of the surface unevenness shape only at a distance f from the origin (0, 0) It can be expressed by a dependent one-dimensional discrete function I (f). When obtaining the one-dimensional discrete function I (f) from the two-dimensional discrete function I (f x , f y ), the rotational average may be calculated in the same manner as in the equation (4). Two-dimensional discrete function I (f x, f y) discrete rotational average can be calculated by Equation (9).
Figure JPOXMLDOC01-appb-I000008
Here, when M ≧ N, l is an integer from 0 to N / 2, and when M <N, l is an integer from 0 to M / 2. Δf is the distance from the origin, and Δf = (Δf x + Δf y ) / 2. Θ (x) is a heavy side function defined by the equation (10). f jk is the distance from the origin at (j, k), and is calculated by equation (11).
Figure JPOXMLDOC01-appb-I000009
The calculation shown in Formula (9) is demonstrated using FIG. The function Θ (f jk − (l−1 / 2) Δf) is 0 when f jk is less than (l−1 / 2) Δf, and 1 when f jk is equal to or greater than (l−1 / 2) Δf. The function Θ (f jk − (l + 1/2) Δf) is 0 when f jk is less than (l + 1/2) Δf, and 1 when f jk is equal to or greater than (l + 1/2) Δf. 9) Θ (f jk - (l- 1/2) Δf) -Θ (f jk - (l + 1/2) Δf) is, f jk is (l-1/2) Δf or more (l-1/2 ) 1 only when it is less than Δf, 0 otherwise. Here, since f jk is a distance from the origin O (f x = 0, f y = 0) in the frequency space, the denominator of the equation (9) has a distance f jk from the origin O of (l−1 / 2) The number of all points (black circle points in FIG. 5) located at or above Δf and below (l + 1/2) Δf is calculated. In addition, the numerator of the formula (9) has the distance f jk from the origin O of I (f x , f y ) of all points located at (l−1 / 2) Δf or more and less than (l + 1/2) Δf. The total value (the total value of I (f x , f y ) at the black circle points in FIG. 5) is calculated.
In general, the one-dimensional power spectrum obtained by the above-described method includes noise in measurement. To determine the one-dimensional power spectrum here, in order to eliminate the influence of this noise, the elevation of the surface irregularities at multiple locations on the antiglare film is measured, and the one-dimensionality obtained from the elevation of each surface irregularity shape. The average value of the power spectrum is preferably used as the one-dimensional power spectrum I (f). The number of locations for measuring the elevation of the surface unevenness on the antiglare film is preferably 3 or more, more preferably 5 or more.
FIG. 6 shows I (f) of the one-dimensional power spectrum of the elevation of the surface unevenness obtained in this way. The one-dimensional power spectrum I (f) in FIG. 6 is an average of the one-dimensional power spectra obtained from the elevations of the surface irregularities at five different locations on the antiglare film.
In the antiglare film of the present invention, the intensity I (0.01) at a spatial frequency of 0.01 μm −1 of the one-dimensional power spectrum I (f) calculated from the elevation of the surface uneven shape is 2 μm 4 or more and 10 μm 4 or less. The intensity I (0.02) at a spatial frequency of 0.02 μm −1 is 0.1 μm 4 or more and 1.5 μm 4 or less, and the intensity I (0.1) at a spatial frequency of 0.1 μm −1 is 0.0001 μm 4. It is 0.01 μm 4 or more. Here, since the one-dimensional power spectrum I (f) is obtained as a discrete function, the intensity I (f 1 ) at a specific spatial frequency f 1 can be obtained by interpolation as shown in the equation (12). .
Figure JPOXMLDOC01-appb-I000010
The anti-glare film of the present invention prevents the occurrence of whitish and glare well by synergistic effects with the haze and reflectance ratio described later by setting the intensity at the specific spatial frequency within a predetermined range. While exhibiting excellent anti-glare properties. In order to express such an effect more, the strength I (0.01) is preferably 2.5 μm 4 or more and 9 μm 4 or less, more preferably 3 μm 4 or more and 8 μm 4 or less. Similarly, the intensity I (0.02) is preferably 0.2 [mu] m 4 or more 1.2 [mu] m 4 or less, 0.25 [mu] m 4 or more 1 [mu] m 4 further preferably less intensity I (0.1) is, 0.0003Myuemu 4 or more 0.0075Myuemu 4 or less, and further preferably 0.0005 4 or 0.005 .mu.m 4 or less.
When I (0.01) is less than the above range, a swell of about 100 μm (corresponding to 0.01 μm −1 in spatial frequency) contributing to the antiglare effect when the antiglare film is observed obliquely. Since it will be small, anti-glare property will become inadequate. When I (0.01) exceeds the above range, the undulation with a period of about 100 μm becomes too large, the surface uneven shape of the antiglare film becomes rough, and haze tends to increase, which is not preferable.
When I (0.02) is less than the above range, a swell of a period of about 50 μm (corresponding to 0.02 μm −1 in spatial frequency) contributing to the antiglare effect when the antiglare film is observed from the front. Since it will be small, anti-glare property will become inadequate. When I (0.02) exceeds the above range, the undulation with a period of about 50 μm becomes too large and glare occurs.
When I (0.1) is less than the above range, the short-period uneven shape of about 10 μm (corresponding to 0.1 μm −1 in spatial frequency) is very small, and the surface uneven shape of the antiglare film is long. Since it will be formed only from the uneven shape of a period and the surface texture of an anti-glare film becomes coarse, it is not preferable. When I (0.1) exceeds the above range, scattering due to surface irregularities having a short period of about 10 μm becomes strong, and whitening tends to occur.
[All haze, surface haze]
The antiglare film of the present invention exhibits antiglare properties and prevents whitishness, so that the total haze with respect to normal incident light is in the range of 0.1% to 3%, and the surface haze is 0.1. % Or more and 2% or less. The total haze of the antiglare film can be measured by a method based on the method described in JIS K7136. An image display device in which an antiglare film having a total haze or surface haze of less than 0.1% is not preferable because it does not exhibit sufficient antiglare properties. Further, when the total haze exceeds 3% or the surface haze exceeds 2%, the antiglare film is not preferable because the image display device on which the antiglare film is disposed will generate whiteness. . In addition, such an image display device has a disadvantage that the contrast becomes insufficient.
The lower the internal haze obtained by subtracting the surface haze from the total haze, the better. Specifically, it is preferably 2.5% or less. The image display apparatus in which the antiglare film having the internal haze exceeding 2.5% has a tendency to decrease the contrast.
[Transmission definition Tc, reflection definition Rc (45), and reflection definition Rc (60)]
The antiglare film of the present invention preferably has a transmission clarity sum Tc of 375% or more determined under the following measurement conditions. The sum Tc of transmitted sharpness is calculated by measuring the image sharpness using an optical comb having a predetermined width by a method based on JIS K 7105, and calculating the sum thereof. Specifically, five types of optical combs are used in which the ratio of the width of the dark part to the bright part is 1: 1 and the width is 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm. The image definition is then measured, and the total is obtained as Tc. When the antiglare film having a Tc of less than 375% is disposed in a higher-definition image display device, glare may easily occur. The upper limit of Tc is selected in the range of 500% or less, which is the maximum value. However, if this Tc is too high, an image display device in which the antiglare property from the front tends to decrease can be obtained. Preferably there is.
The antiglare film of the present invention preferably has a reflection definition Rc (45) measured by incident light having an incident angle of 45 ° of 180% or less. The reflection definition Rc (45) is measured by a method based on JIS K 7105, as in the case of Tc. Among the five types of optical combs, the width is 0.25 mm, 0.5 mm, The image sharpness measured using four types of optical combs of 1.0 mm and 2.0 mm is measured, and the sum thereof is obtained as Rc (45). When Rc (45) is 180% or less, an image display device in which such an antiglare film is disposed is preferable because the antiglare property when observed from the front and oblique directions becomes better. The lower limit of Rc (45) is not particularly limited, but is preferably 80% or more, for example, in order to satisfactorily suppress the occurrence of whitishness and glare.
The antiglare film of the present invention preferably has a reflection definition Rc (60) of 240% or less as measured with incident light having an incident angle of 60 °. The reflection definition Rc (60) is measured by a method based on the same JIS K 7105 as the reflection definition Rc (45) except that the incident angle is changed. When Rc (60) is 240% or less, an image display device in which the antiglare film is disposed is preferable because the antiglare property when observed obliquely becomes better. The lower limit of Rc (60) is not particularly limited, but is preferably, for example, 150% or more in order to better suppress the occurrence of whitish or glare.
[Production Method of Antiglare Film of the Present Invention]
The antiglare film of the present invention is produced, for example, as follows. The first method is to prepare a fine unevenness forming mold in which a surface unevenness shape based on a predetermined pattern is formed on a molding surface, transfer the shape of the uneven surface of the mold to a transparent support, In this method, the transparent support on which the shape of the surface is transferred is peeled off from the mold. The second method is to prepare a composition containing fine particles, a resin (binder) and a solvent, in which the fine particles are dispersed in a resin solution, apply the composition onto a transparent support, and dry as necessary. This is a method of curing the coating film (coating film containing fine particles) formed in (1). In the second method, the coating film thickness and the aggregation state of the fine particles are adjusted according to the composition of the composition, the drying conditions of the coating film, etc., thereby exposing the fine particles to the surface of the coating film, and transparent random irregularities. Form on the support. From the viewpoint of production stability and production reproducibility of the antiglare film, it is preferable to produce the antiglare film of the present invention by the first method.
Here, the 1st method preferable as a manufacturing method of the anti-glare film of this invention is explained in full detail.
In order to accurately form a surface uneven-shaped antiglare layer having the above-described properties, a prepared fine unevenness forming mold (hereinafter sometimes abbreviated as “mold”) is important. More specifically, the surface irregularity shape of the mold (hereinafter, sometimes referred to as “mold irregular surface”) is formed based on a predetermined pattern, and this predetermined pattern is the one-dimensional power spectrum. the ratio of the intensity gamma (0.02) in the intensity gamma (0.01) and the spatial frequency 0.02 [mu] m -1 in the spatial frequency 0.01μm -1 Γ (0.02) / Γ (0.01) 0.05 or 1.2 or less, the ratio gamma (0.1) of the intensity in the intensity gamma (0.01) and the spatial frequency 0.1 [mu] m -1 in the spatial frequency 0.01μm -1 Γ (0.1) / Γ ( 0.01) is preferably 4 or more and 25 or less. Here, the “pattern” means image data for forming the surface uneven shape of the antiglare layer of the antiglare film, a mask having a light transmitting part and a light shielding part, etc. ".
First, a method for defining a pattern for forming the surface irregularity shape of the antiglare layer of the antiglare film of the present invention will be described.
A method for obtaining a two-dimensional power spectrum of a pattern will be described, for example, when the pattern is image data. First, after converting the image data into binary image data of two gradations, the gradation is expressed by a two-dimensional function g (x, y). The obtained two-dimensional function g (x, y) is Fourier-transformed as shown in the following formula (13) to calculate a two-dimensional function G (f x , f y ), and as shown in the following formula (14), the resulting two-dimensional function G (f x, f y) by squaring the absolute value of the obtained two-dimensional power spectrum Γ (f x, f y) . Here, x and y represent orthogonal coordinates in the image data plane. Further, f x and f y respectively represent the frequencies of the x and y directions, with the dimensions of the reciprocal of length.
Figure JPOXMLDOC01-appb-I000011
In Expression (13), π is a pi, and i is an imaginary unit.
Figure JPOXMLDOC01-appb-I000012
This two-dimensional power spectrum Γ (f x , f y ) represents the spatial frequency distribution of the pattern. Usually, since it is calculated | required that an anti-glare film is isotropic, the pattern for anti-glare film manufacture of this invention also becomes isotropic. Therefore, two-dimensional function representing the two-dimensional power spectrum of the pattern gamma (f x, f y) can be represented by one-dimensional functions that depend only on the distance f from the origin (0,0) Γ (f). Next, a method of obtaining a two-dimensional function Γ (f x, f y) a one-dimensional function from a gamma (f). First, two-dimensional function is a two-dimensional power spectrum of the gradation pattern Γ a (f x, f y) is displayed in polar coordinates by the equation (15).
Figure JPOXMLDOC01-appb-I000013
Here, θ is a declination angle in Fourier space. The one-dimensional function Γ (f) can be obtained by calculating the rotational average of the two-dimensional function Γ (fcosθ, fsinθ) displayed in polar coordinates as shown in equation (16). Two-dimensional function Γ (f x, f y) is a two-dimensional power spectrum of the gradation pattern one-dimensional function is determined from the rotational mean of gamma and (f), also referred to as a one-dimensional power spectrum gamma (f) in the following.
Figure JPOXMLDOC01-appb-I000014
To obtain anti-glare film of the present invention accurately the intensity in the intensity gamma (0.01) and the spatial frequency 0.02 [mu] m -1 in the spatial frequency 0.01 [mu] m -1 of the one-dimensional power spectrum of the pattern gamma (0. 02) ratio Γ (0.02) / Γ (0.01) is 0.05 or more and 1.2 or less, and the intensity Γ (0.01) and the spatial frequency 0.1 μm at the spatial frequency 0.01 μm −1 . The ratio Γ (0.1) / Γ (0.01) of the intensity Γ (0.1) at −1 is preferably 4 or more and 25 or less.
When obtaining a two-dimensional power spectrum of a pattern, the two-dimensional function g (x, y) of gradation is usually obtained as a discrete function. In that case, a two-dimensional power spectrum may be calculated by discrete Fourier transform. The one-dimensional power spectrum of the pattern is obtained in the same manner from the two-dimensional power spectrum of the pattern.
In addition, in order to make the obtained surface unevenness shape a uniform and continuous curved surface, the average value of the two-dimensional function g (x, y) is the maximum value of the two-dimensional function g (x, y) and the two-dimensional function. It is preferably 30 to 70% of the difference from the minimum value of g (x, y). When the uneven surface of the mold is manufactured by a lithography method, the two-dimensional function g (x, y) is a pattern aperture ratio. With respect to the case where the mold uneven surface is manufactured by a lithography method, the pattern aperture ratio here is defined. The aperture ratio when the resist used in the lithography method is a positive resist means the ratio of the exposed area to the entire surface area of the coating film when image data is drawn on the coating film of the positive resist. On the other hand, the aperture ratio when the resist used in the lithography method is a negative resist means the ratio of the unexposed area to the entire surface area of the coating film when image data is drawn on the coating film of the negative resist. The aperture ratio when the lithography method is batch exposure means the ratio of the light-transmitting portion of the mask having the light-transmitting portion and the light-shielding portion.
In the antiglare film of the present invention, each of the intensity ratios Γ (0.02) / Γ (0.01) and Γ (0.1) / Γ (0.01) of the one-dimensional power spectrum of the pattern is In this range, a desired mold can be manufactured, and the first method using the mold can be manufactured.
In order to create a pattern of a one-dimensional power spectrum having such an intensity ratio, a random brightness distribution whose density is determined by a pattern created by randomly arranging dots or a random number or a pseudo-random number generated by a computer is used. A pattern (preliminary pattern) having the predetermined spatial frequency range is removed from the preliminary pattern. In order to remove components in this specific spatial frequency range, the preliminary pattern may be passed through a band pass filter.
In order to manufacture an anti-glare film having an anti-glare layer having a surface uneven shape formed based on a predetermined pattern, a mold uneven surface for transferring the surface uneven shape formed based on the predetermined pattern to a transparent support. Is manufactured. The first method using such a mold is an embossing method characterized by producing an antiglare layer on a transparent support.
Examples of the embossing method include a photoembossing method using a photocurable resin and a hot embossing method using a thermoplastic resin. Of these, the photo-embossing method is preferable from the viewpoint of productivity.
In the photo-embossing method, a photocurable resin layer is formed on a transparent support (the surface of the transparent support), and the photocurable resin layer is cured while being pressed against the uneven surface of the mold. This is a method of transferring the shape of the uneven surface of the mold to the photocurable resin layer. Specifically, in a state in which a photocurable resin layer formed by applying a photocurable resin on a transparent support is in close contact with the uneven surface of the mold, light is emitted from the transparent support side (the light is photocurable). A photocurable resin (photocurable resin contained in the photocurable resin layer) is cured by irradiating with a resin that can cure the resin, and then the cured photocurable resin layer is formed. The support is peeled from the mold. In the antiglare film obtained by such a production method, the cured photocurable resin layer becomes an antiglare layer. From the viewpoint of ease of production, an ultraviolet curable resin is preferable as the photocurable resin, and when the ultraviolet curable resin is used, ultraviolet light is used as the irradiation light (the ultraviolet curable resin is used as the photocurable resin). The embossing method using a functional resin is hereinafter referred to as “UV embossing method”). In order to produce an antiglare film integrated with a polarizing film, a polarizing film may be used as a transparent support, and the transparent support may be replaced with a polarizing film in the embossing method described here.
The kind of the ultraviolet curable resin used for the UV embossing method is not particularly limited, and an appropriate one can be used from commercially available resins according to the kind of transparent support to be used and the kind of ultraviolet light. Such an ultraviolet curable resin is a concept including a monomer (polyfunctional monomer), an oligomer and a polymer that are photopolymerized by ultraviolet irradiation, and a mixture thereof. In addition, a resin that can be cured even with visible light having a wavelength longer than that of ultraviolet rays can be used by using a combination of photoinitiators appropriately selected according to the type of the ultraviolet curable resin. A description of suitable examples of the ultraviolet curable resin will be given later.
As the transparent support used in the UV embossing method, for example, glass or plastic film can be used. Any plastic film can be used as long as it has appropriate transparency and mechanical strength. Specifically, for example, a transparent resin film made of cellulose acetate resin such as TAC (triacetyl cellulose); acrylic resin; polycarbonate resin; polyester resin such as polyethylene terephthalate; polyolefin resin such as polyethylene and polypropylene Is mentioned. These transparent resin films may be solvent cast films or extruded films.
The thickness of the transparent support is, for example, 10 to 500 μm, preferably 10 to 100 μm, and more preferably 10 to 60 μm. When the thickness of the transparent support is within this range, an antiglare film having sufficient mechanical strength tends to be obtained, and the image display device provided with the antiglare film is more unlikely to cause glare. .
On the other hand, in the hot embossing method, a transparent resin film formed of a thermoplastic resin is pressed against a mold uneven surface while being heated and softened, and the surface uneven shape of the mold uneven surface is transferred to the transparent resin film. Is the method. The transparent resin film used for the hot embossing method may be any material as long as it is substantially optically transparent. Specifically, examples include those exemplified as the transparent resin film used for the UV embossing method. Can do.
Next, a method for manufacturing a mold used for the embossing method will be described.
As for the mold manufacturing method, the molding surface of the mold can transfer the surface uneven shape formed based on the above-described predetermined pattern onto the transparent support (the surface uneven shape formed based on the predetermined pattern). In order to produce the anti-glare layer having an uneven surface with high accuracy and good reproducibility, a lithography method is preferred. Further, the lithography method includes [1] first plating step, [2] polishing step, [3] photosensitive resin film forming step, [4] exposure step, [5] development step, and [6]. It is preferable to include an etching step, a [7] photosensitive resin film peeling step, and an [8] second plating step.
FIG. 7 is a view schematically showing a preferred example of the first half of the mold manufacturing method. FIG. 7 schematically shows a cross section of the mold in each step. Hereafter, each process of the manufacturing method of the metal mold | die for anti-glare film manufacture of this invention is demonstrated in detail, referring FIG.
[1] First Plating Step First, a base material (mold base material) used for mold production is prepared, and copper plating is applied to the surface of the mold base material. Thus, by performing copper plating on the surface of the mold base, it is possible to improve the adhesion and gloss of chromium plating in the second plating step described later. Copper plating has a high covering property and a strong smoothing action, so that a flat and glossy surface can be formed by filling minute irregularities and voids of the mold base. Therefore, by performing copper plating on the mold substrate surface in this way, even if chromium plating is performed in the second plating step described later, it is caused by minute irregularities and voids existing on the substrate. The rough surface of the chrome plating that appears is eliminated, and the occurrence of fine cracks is reduced due to the high coverage of the copper plating. Therefore, even if a surface irregularity shape (fine irregularity surface shape) based on a predetermined pattern is created on the mold substrate molding surface, the influence of the surface (mold substrate) surface such as minute irregularities, voids, cracks, etc. Can be prevented sufficiently.
As copper used for the copper plating in the first plating step, pure copper metal or an alloy containing copper as a main component (copper alloy) may be used. Therefore, “copper” used for copper plating is a concept including copper and a copper alloy. The copper plating may be electrolytic plating or electroless plating, but the copper plating in the first plating step is preferably electrolytic plating. Furthermore, the preferable plating layer in the first plating step is not limited to a copper plating layer but may be a laminate of a copper plating layer and a plating layer made of a metal other than copper.
If the plating layer formed by applying copper plating on the surface of the mold base is too thin, the influence of the underlying surface (fine irregularities, voids, cracks, etc.) cannot be eliminated, so the thickness is 50 μm. The above is preferable. The upper limit of the plating layer thickness is not critical, but is preferably about 500 μm or less in consideration of cost and the like.
The mold base is preferably a base made of a metal material. Furthermore, from the viewpoint of cost, the metal material is preferably aluminum or iron. Further, from the viewpoint of convenience of handling the mold base, a lightweight aluminum base is particularly preferable as the mold base. In addition, aluminum and iron here do not need to be a pure metal, respectively, and may be an alloy containing aluminum or iron as a main component.
The shape of the base material for molds should just be an appropriate shape according to the manufacturing method of the anti-glare film of this invention. Specifically, it is selected from a flat substrate, a columnar substrate, a cylindrical (roll shape) substrate, and the like. When manufacturing the anti-glare film of this invention continuously, it is preferable in a metal mold | die being a roll shape. Such a mold is manufactured from a roll-shaped mold substrate.
[2] Polishing Step In the subsequent polishing step, the surface (plating layer) of the mold base that has been subjected to copper plating in the first plating step described above is polished. In the manufacturing method of the metal mold | die used for the manufacturing method of the anti-glare film of this invention, it is preferable to grind | polish to the state close | similar to a mirror surface through the said grinding | polishing process. Commercial products such as flat and roll-shaped substrates used as mold substrates are often subjected to machining such as cutting and grinding to achieve the desired accuracy. Fine processed marks remain on the substrate surface. Therefore, even if a plating (preferably copper plating) layer is formed by the first plating step, the processed marks may remain. Moreover, even if the plating in the first plating step is performed, the surface of the mold base is not always completely smooth. That is, even when the mold substrate having a surface with such deep processed marks remaining thereon is subjected to the steps [3] to [8] described later, the surface irregularity shape of the obtained mold surface is obtained. May differ from the surface uneven shape based on the predetermined pattern, or may include unevenness derived from the processed eyes. When an anti-glare film is produced using a mold having effects such as processing eyes remaining, the target optical characteristics such as anti-glare property cannot be sufficiently exhibited, and there is a possibility of unexpected influence.
The polishing method applied in the polishing step is not particularly limited, and a polishing method according to the shape and properties of the mold base material to be polished is selected. Specific examples of the polishing method applicable to the polishing step include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. Among these, as the mechanical polishing method, any of super finishing method, lapping, fluid polishing method, buff polishing method and the like can be used. Moreover, it is good also considering the surface of the base material for molds as a mirror surface by carrying out mirror surface cutting using a cutting tool in a grinding | polishing process. In this case, carbide tool, CBN tool, ceramic tool, diamond tool, etc. can be used as the material and shape of the cutting tool depending on the type (metal material) of the mold base material. From this point of view, it is preferable to use a diamond bite. The surface roughness after polishing is preferably 0.1 μm or less, and more preferably 0.05 μm or less, expressed as a centerline average roughness Ra based on JIS B 0601. When the center line average roughness Ra after polishing is larger than 0.1 μm, there is a possibility that the influence of the surface roughness remains on the mold uneven surface of the finally obtained mold. Further, the lower limit of the center line average roughness Ra is not particularly limited. Therefore, the lower limit may be determined from the viewpoint of processing time (polishing time) and processing cost in the polishing process.
[3] Photosensitive Resin Film Forming Step Next, the photosensitive resin film forming step will be described with reference to FIG.
In the photosensitive resin film forming step, a solution (photosensitive resin solution) in which a photosensitive resin is dissolved in a solvent is applied to the surface 41 of the mold base 40 subjected to the mirror polishing obtained in the above-described polishing step. A photosensitive resin film (resist film) is formed by heating and drying. FIG. 7 schematically shows a state in which the photosensitive resin film 50 is formed on the surface 41 of the mold base 40 (FIG. 7B).
As the photosensitive resin, conventionally known photosensitive resins can be used, and those already marketed as resists can be used as they are or after being purified by filtration or the like as necessary. For example, as a negative photosensitive resin having a property of curing a photosensitive part, a monomer or prepolymer of a (meth) acrylic acid ester having an acryloyl group or a methacryloyl group in a molecule, a mixture of bisazide and a diene rubber Polyvinyl cinnamate compounds and the like can be used. In addition, as a positive photosensitive resin having a property that a photosensitive portion is eluted by development and only an unexposed portion remains, a phenol resin type or a novolac resin type can be used. Such a positive or negative photosensitive resin can also be easily obtained from the market as a positive resist or a negative resist. Moreover, the photosensitive resin solution may contain various additives such as a sensitizer, a development accelerator, an adhesion modifier, and a coating property improver, if necessary. What mixed with the commercially available resist can also be used as a photosensitive resin solution.
In order to apply these photosensitive resin solutions to the surface 41 of the mold base 40, an optimum solvent is selected to form a smoother photosensitive resin film, and the photosensitive resin is dissolved in the solvent. -It is preferable to use a photosensitive resin solution obtained by dilution. Such a solvent is further selected depending on the type of the photosensitive resin and its solubility. Specifically, for example, a cellosolve solvent, a propylene glycol solvent, an ester solvent, an alcohol solvent, a ketone solvent, a highly polar solvent, or the like is selected. When a commercially available resist is used, an optimal resist may be selected and used as a photosensitive resin solution depending on the type of the solvent contained in the resist or by conducting an appropriate preliminary experiment.
The method of applying the photosensitive resin solution to the mirror-polished surface of the mold base is as follows: meniscus coating, fountain coating, dip coating, spin coating, roll coating, wire bar coating, air knife coating, blade coating, curtain The method is selected from known methods such as coating and ring coating according to the shape of the mold base. The thickness of the photosensitive resin film after coating is preferably in the range of 1 to 10 μm, more preferably in the range of 6 to 9 μm, as the thickness after drying.
[4] Exposure Step The subsequent exposure step is a step of transferring the target pattern to the photosensitive resin film 50 by exposing the photosensitive resin film 50 formed in the above-described photosensitive resin film forming step. is there. The light source used in the exposure process may be appropriately selected according to the photosensitive wavelength and sensitivity of the photosensitive resin contained in the photosensitive resin film. For example, the g-line (wavelength: 436 nm) and h-line (wavelength: high-pressure mercury lamp). 405 nm) or i-line (wavelength: 365 nm), semiconductor laser (wavelength: 830 nm, 532 nm, 488 nm, 405 nm, etc.), YAG laser (wavelength: 1064 nm), KrF excimer laser (wavelength: 248 nm), ArF excimer laser (wavelength: 193 nm), F2 excimer laser (wavelength: 157 nm), or the like can be used. The exposure method may be a batch exposure method using a mask corresponding to a target pattern, or a drawing method. As already described, the target pattern is the spatial frequency intensity ratio Γ (0.02) / Γ (0.01) and Γ (0.1) / Γ (0.01) of the one-dimensional power spectrum. Is set to a predetermined preferable range.
In the mold manufacturing method, it is preferable to expose the target pattern on the photosensitive resin film in a precisely controlled state in order to form the surface uneven shape of the mold with higher accuracy. In order to perform exposure in such a state, a target pattern is created as image data on a computer, and a pattern based on the image data is formed on the photosensitive resin film by laser light emitted from a computer-controlled laser head. It is preferable to draw (laser drawing). When performing laser drawing, a general-purpose laser drawing apparatus can be used, for example, for making a printing plate. As a commercially available product of such a laser lithography apparatus, for example, Laser Stream FX (manufactured by Sink Laboratory Co., Ltd.) and the like can be mentioned.
FIG. 7C schematically shows a state in which the pattern is exposed to the photosensitive resin film 50. When the photosensitive resin film 50 contains a negative photosensitive resin (for example, when a negative resist is used as the photosensitive resin solution), the exposed region 51 receives the exposure energy and receives the photosensitive resin. The crosslinking reaction proceeds and the solubility in the developer described later is lowered. Therefore, the unexposed area 52 in the development process is dissolved by the developer, and only the exposed area 51 remains on the surface of the base material to become the mask 60. On the other hand, when the photosensitive resin film 50 contains a positive photosensitive resin (for example, when a positive resist is used as the photosensitive resin solution), the exposed region 51 receives the exposure energy and is exposed to light. When the bonding of the functional resin is broken, it is easily dissolved in the developer described later. Therefore, the area 51 exposed in the development process is dissolved by the developer, and only the unexposed area 52 remains on the substrate surface to become the mask 60.
[5] Development Step In the development step, when the photosensitive resin film 50 contains a negative photosensitive resin, the unexposed region 52 is dissolved by the developer, and the exposed region 51 is a mold. The mask 60 remains on the substrate for use. On the other hand, when the photosensitive resin film 50 contains a positive photosensitive resin, only the exposed region 51 is dissolved by the developer, and the unexposed region 52 remains on the mold base. A mask 60 is obtained. In the mold base material in which the predetermined pattern is formed as the photosensitive resin film, the photosensitive resin film remaining on the mold base material acts as a mask in the etching process described later in the etching process.
About the developing solution used for a image development process, an appropriate thing can be selected according to the kind of photosensitive resin used among conventionally well-known things. For example, the developer includes inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia; primary amines such as ethylamine and n-propylamine; Secondary amines such as n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium hydroxide, tetraethylammonium hydroxide, trimethylhydroxyethylammonium Quaternary ammonium compounds such as hydroxide; alkaline aqueous solutions such as cyclic amines such as pyrrole and pihelidine; and organic solvents such as xylene and toluene.
The development method in the development step is not particularly limited, and immersion development, spray development, brush development, ultrasonic development and the like can be used.
FIG. 7D schematically shows a state after the development process is performed using a negative type photosensitive resin. In FIG. 7D, the unexposed region 52 is dissolved by the developer, and only the exposed region 51 remains on the substrate surface, and the photosensitive resin film in this region becomes the mask 60. FIG. 7E schematically shows a state after the development process is performed using a positive type photosensitive resin. In FIG. 7E, the exposed region 51 is dissolved by the developer, and only the unexposed region 52 remains on the substrate surface, and the photosensitive resin film in this region becomes the mask 60.
[6] Etching process The etching process is mainly in a region without a mask on the surface of the mold base using the photosensitive resin film remaining on the surface of the mold base as a mask after the development process described above. This is a step of etching the plating layer.
FIG. 8 is a diagram schematically showing a preferred example of the latter half of the mold manufacturing method. FIG. 8A schematically shows a state after the plating layer mainly having no mask is etched by the etching process. The plating layer under the mask 60 is not etched because the photosensitive resin film functions as the mask 60, but the etching from the region 45 without the mask proceeds with the progress of etching. Therefore, in the vicinity of the boundary between the region with the mask 60 and the region 45 without the mask, the plating layer under the mask 60 is also etched. Thus, the etching of the plating layer under the mask 60 in the vicinity of the boundary between the region with the mask 60 and the region 45 without the mask is called side etching.
Etching treatment in the etching step is usually performed using an etching solution such as ferric chloride (FeCl 3 ) solution, cupric chloride (CuCl 2 ) solution, alkaline etching solution (Cu (NH 3 ) 4 Cl 2 ), This is mainly performed by corroding a plating layer (metal surface) in a region where the mask 60 is not provided on the surface of the mold base. As the etching treatment, a strong acid such as hydrochloric acid or sulfuric acid can be used as an etching solution. When the plating layer is formed by electrolytic plating, reverse electrolytic etching is performed by applying a potential opposite to that at the time of electrolytic plating. Etching treatment can also be performed using. The surface irregularities formed on the mold base material when the etching process is performed are the constituent material (metal material) or plating layer type of the mold base material, the type of photosensitive resin film, and the etching process. Since it differs depending on the type of etching process, etc., it cannot be generally stated. However, when the etching amount is 10 μm or less, the etching is performed approximately isotropically from the surface of the mold substrate in contact with the etching solution. The etching amount here is the thickness of the plating layer that is scraped off by etching.
The etching amount in the etching step is preferably 1 to 20 μm, more preferably 1 to 8 μm, and further preferably 3 to 6 μm. When the etching amount is less than 1 μm, almost no surface unevenness is formed on the mold, and the mold has a substantially flat surface. Therefore, even if an antiglare film is produced using the mold, it is necessary. The antiglare film has almost no surface irregularity. In an image display device in which such an antiglare film is disposed, sufficient antiglare properties are not exhibited. Moreover, when the etching amount is too large, the finally obtained mold uneven surface tends to have a large uneven height difference. Even if an antiglare film is produced using the mold, the image display device provided with the antiglare film may not be able to sufficiently prevent the occurrence of whitening. The etching process in the etching process may be performed by one etching process, or the etching process may be performed in two or more times. Here, when the etching process is performed twice or more, the total etching amount in the two or more etching processes is preferably 1 to 20 μm.
[7] Photosensitive resin film peeling step The subsequent photosensitive resin film peeling step is a step of acting as a mask 60 in the etching step to remove the photosensitive resin film remaining on the mold substrate. It is preferable to completely remove the photosensitive resin film remaining on the mold base. In the photosensitive resin film peeling step, it is preferable to dissolve the photosensitive resin film using a peeling solution. As the stripper, those prepared by changing the concentration and pH of the developer exemplified as the developer can be used. Or the same thing as the developing solution used at the image development process is used, and the photosensitive resin film can also be peeled by changing temperature, immersion time, etc. with the image development process. In the photosensitive resin film peeling step, the contact method (peeling method) between the peeling liquid and the mold substrate is not particularly limited, and immersion peeling, spray peeling, brush peeling, ultrasonic peeling, and the like can be used.
FIG. 8B schematically shows a state where the photosensitive resin film used as the mask 60 in the etching process is completely dissolved and removed by the photosensitive resin film peeling process. The first surface uneven shape 46 is formed on the surface of the mold base by the mask 60 made of the photosensitive resin film and the etching process.
[8] Second plating step The final stage of the mold production is a second step in which plating (preferably, chromium plating described later) is performed on the surface of the mold substrate that has undergone the steps [6] and [7]. It is a plating process. By performing the second plating step, the uneven surface shape 46 of the mold base can be blunted, and the mold surface can be protected by the plating. Hereinafter, dulling the uneven surface shape of the mold base is referred to as “shape blunting”. In FIG. 8 (c), the surface uneven shape is blunted by forming the chromium plating layer 71 on the first surface uneven shape 46 formed by the etching process as described above (mold uneven surface 70). Shows the state.
The plating layer formed by the second plating step is preferably chromium plating in that it has gloss, high hardness, a low friction coefficient, and good release properties. Among the chromium platings, chromium plating that expresses good gloss, so-called glossy chromium plating or decorative chromium plating, is particularly preferable. Chromium plating is usually carried out by electrolysis, and as the plating bath, an aqueous solution containing chromic anhydride (CrO 3 ) and a small amount of sulfuric acid is used as the plating solution. By adjusting the current density and electrolysis time, the thickness of the chromium plating layer can be controlled.
Thus, the metal mold | die for glare-proof film manufacture of this invention is obtained by performing the metal plating in a 2nd plating process, Preferably chromium plating. By performing chrome plating on the surface irregularities on the surface of the mold substrate after the etching treatment, the mold can be blunted and a mold whose surface hardness is increased can be obtained. In this case, the greatest factor in controlling the degree of shape blunting is the thickness of the chromium plating layer. When the thickness is small, the degree of shape blunting becomes insufficient, and the antiglare film obtained using such a mold has a ratio R (40) of the reflectance R (30) and the reflectance R (40). ) / R (30) may exceed 0.0025. On the other hand, if the thickness of the chromium plating layer is too thick, the ratio R (40) / R (30) will be less than 0.00001. The inventors of the present invention provide an antiglare film for sufficiently preventing the occurrence of whitish and obtaining an image display device having an excellent antiglare property, so that the thickness of the chromium plating layer is within a predetermined range. Has been found to be effective. That is, the thickness of the chromium plating layer is preferably in the range of 6 to 15 μm, and more preferably in the range of 8 to 11 μm.
The chromium plating layer formed in the second plating step is preferably formed so as to have a Vickers hardness of 800 or more, and more preferably 1000 or more. When the chrome plating layer has a Vickers hardness of less than 800, when the antiglare film is produced using the mold, the durability of the mold tends to decrease.
Below, the said photoembossing method preferable as a method for manufacturing the anti-glare film of this invention is demonstrated. As described above, the UV embossing method is particularly preferable as the photoembossing method. Here, the embossing method using an active energy ray-curable resin will be specifically described.
In order to continuously produce the antiglare film of the present invention, when the antiglare film of the present invention is produced by the photoembossing method, the following steps are performed:
[P1] A coating process in which a coating liquid containing an active energy ray-curable resin is coated on a transparent support that is continuously conveyed to form a coating layer, and [P2] a coating layer. It is preferable to include a main curing step of irradiating active energy rays from the transparent support side with the surface of the mold pressed against the surface of the mold.
In addition, when producing the antiglare film of the present invention by the photoembossing method,
[P3] After the coating step [P1] and before the curing step [P2], including a preliminary curing step of irradiating active energy rays to both end regions in the width direction of the coating layer. More preferred.
Hereafter, each process is demonstrated in detail, referring drawings. FIG. 9 is a diagram schematically showing a preferred example of a production apparatus used in the method for producing an antiglare film of the present invention. The arrow in FIG. 9 shows the conveyance direction of a film, or the rotation direction of a roll.
[P1] Coating process In the coating process, a coating liquid containing an active energy ray-curable resin is coated on a transparent support to form a coating layer. In the coating process, for example, as shown in FIG. 9, a coating liquid containing an active energy ray-curable resin composition is applied in the coating zone 83 to the transparent support 81 that is fed from the feed roll 80. .
Coating of the coating liquid on the transparent support 81 can be performed by, for example, a gravure coating method, a micro gravure coating method, a rod coating method, a knife coating method, an air knife coating method, a kiss coating method, a die coating method, or the like. .
(Transparent support)
The transparent support 81 only needs to be translucent, and for example, glass or plastic film can be used. The plastic film only needs to have appropriate transparency and mechanical strength. Specifically, any of those already exemplified as the transparent support for use in the UV embossing method can be used. Further, in order to continuously produce the antiglare film of the present invention by the photoembossing method, an appropriate flexibility is obtained. Those having sex are selected.
For the purpose of improving the coating property of the coating liquid and improving the adhesion between the transparent support and the coating layer, the surface of the transparent support 81 (surface on the coating layer side) may be subjected to various surface treatments. Good. Examples of the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment. Further, another layer such as a primer layer may be formed on the transparent support 81, and a coating solution may be applied on the other layer.
Moreover, when manufacturing what was integrated with the polarizing film as an anti-glare film of this invention, in order to improve the adhesiveness of a transparent support and a polarizing film, the surface (coating layer and Is preferably hydrophilized by various surface treatments. This surface treatment may be performed after the production of the antiglare film.
(Coating fluid)
The coating liquid contains an active energy ray-curable resin and usually further contains a photopolymerization initiator (radical polymerization initiator). If necessary, it may contain various additives such as translucent fine particles, solvents such as organic solvents, leveling agents, dispersants, antistatic agents, antifouling agents, and surfactants.
(1) Active energy ray curable resin As an active energy ray curable resin, what contains a polyfunctional (meth) acrylate compound can be used preferably, for example. The polyfunctional (meth) acrylate compound is a compound having at least two (meth) acryloyloxy groups in the molecule. Specific examples of the polyfunctional (meth) acrylate compound include, for example, ester compounds of polyhydric alcohol and (meth) acrylic acid, urethane (meth) acrylate compounds, polyester (meth) acrylate compounds, epoxy (meth) acrylate compounds, and the like. And a polyfunctional polymerizable compound containing two or more (meth) acryloyl groups.
Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, propanediol, butanediol, and pentanediol. , Hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2'-thiodiethanol, divalent alcohols such as 1,4-cyclohexanedimethanol; trimethylolpropane, glycerol, pentaerythritol , Trihydric or higher alcohols such as diglycerol, dipentaerythritol and ditrimethylolpropane.
Specific examples of esterified products of polyhydric alcohol and (meth) acrylic acid include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and neopentyl glycol. Di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tetramethylolmethanetetra ( (Meth) acrylate, pentaglycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, glycerol tri (meth) acrylate, di Pentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate.
Examples of the urethane (meth) acrylate compound include a urethanization reaction product of an organic isocyanate having a plurality of isocyanate groups in one molecule and a (meth) acrylic acid derivative having a hydroxyl group. Examples of organic isocyanates having a plurality of isocyanate groups in one molecule include two isocyanates in one molecule such as hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, and dicyclohexylmethane diisocyanate. Organic isocyanate having a group, organic isocyanate having three isocyanate groups in one molecule obtained by subjecting these organic isocyanates to isocyanurate modification, adduct modification, biuret modification, and the like. Examples of the (meth) acrylic acid derivative having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- Examples include hydroxy-3-phenoxypropyl (meth) acrylate and pentaerythritol triacrylate.
A preferable polyester (meth) acrylate compound is a polyester (meth) acrylate obtained by reacting a hydroxyl group-containing polyester with (meth) acrylic acid. The hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof. Examples of the polyhydric alcohol include the same compounds as those described above. Moreover, bisphenol A etc. are mentioned as phenols other than a polyhydric alcohol. Examples of the carboxylic acid include formic acid, acetic acid, butyl carboxylic acid, benzoic acid and the like. The compounds having a plurality of carboxyl groups and / or anhydrides thereof include maleic acid, phthalic acid, fumaric acid, itaconic acid, adipic acid, terephthalic acid, maleic anhydride, phthalic anhydride, trimellitic acid, cyclohexanedicarboxylic anhydride Thing etc. are mentioned.
Among the polyfunctional (meth) acrylate compounds as described above, hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, diethylene glycol di (meta) from the viewpoint of improving the strength of the cured product and availability. ) Ester compounds such as acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate; hexamethylene diisocyanate and 2-hydroxyethyl Adduct of (meth) acrylate; adduct of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate; of tolylene diisocyanate and 2-hydroxyethyl (meth) acrylate Adducts; adduct adduct modified isophorone diisocyanate with 2-hydroxyethyl (meth) acrylate; and adducts with biuret of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate. Furthermore, these polyfunctional (meth) acrylate compounds can be used alone or in combination of two or more.
The active energy ray curable resin may contain a monofunctional (meth) acrylate compound in addition to the polyfunctional (meth) acrylate compound. Examples of the monofunctional (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-hydroxyethyl (meth) ) Acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine , N-vinylpyrrolidone, tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, acetyl (Meth) acrylate, benzyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxy (meth) acrylate, ethylene oxide modified phenoxy (meth) Acrylate, propylene oxide (meth) acrylate, nonylphenol (meth) acrylate, ethylene oxide modified (meth) acrylate, propylene oxide modified nonylphenol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, 2- (meth) acryloyloxyethyl-2- Such as hydroxypropyl phthalate, dimethylaminoethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, etc. Mention may be made of the data) acrylates. These compounds can be used alone or in combination of two or more.
Moreover, the active energy ray-curable resin may contain a polymerizable oligomer. By including the polymerizable oligomer, the hardness of the cured product can be adjusted. The polymerizable oligomer is, for example, the polyfunctional (meth) acrylate compound, that is, an ester compound of a polyhydric alcohol and (meth) acrylic acid, a urethane (meth) acrylate compound, a polyester (meth) acrylate compound, or an epoxy (meth). It can be an oligomer such as a dimer, trimer or the like such as an acrylate.
Other polymerizable oligomers include urethane (meth) acrylate oligomers obtained by reacting polyisocyanates having at least two isocyanate groups in the molecule with polyhydric alcohols having at least one (meth) acryloyloxy group. Can be mentioned. Examples of the polyisocyanate include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, and a polymer of xylylene diisocyanate. The polyhydric alcohol having at least one (meth) acryloyloxy group includes Hydroxyl group-containing (meth) acrylic acid ester obtained by esterification reaction of alcohol and (meth) acrylic acid, and as polyhydric alcohol, for example, 1,3-butanediol, 1,4-butanediol, 1,6 -Hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, glycerin, pentaerythritol, What is pentaerythritol. In this polyhydric alcohol having at least one (meth) acryloyloxy group, a part of the alcoholic hydroxyl group of the polyhydric alcohol is esterified with (meth) acrylic acid, and the alcoholic hydroxyl group is present in the molecule. It remains.
Furthermore, as another example of the polymerizable oligomer, a polyester (meta) obtained by reacting a compound having a plurality of carboxyl groups and / or an anhydride thereof with a polyhydric alcohol having at least one (meth) acryloyloxy group. ) Acrylate oligomers. Examples of the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described for the polyester (meth) acrylate of the polyfunctional (meth) acrylate compound. Examples of the polyhydric alcohol having at least one (meth) acryloyloxy group include those described for the urethane (meth) acrylate oligomer.
In addition to the polymerizable oligomers as described above, further examples of urethane (meth) acrylate oligomers are obtained by reacting isocyanates with hydroxyl groups of a hydroxyl group-containing polyester, a hydroxyl group-containing polyether or a hydroxyl group-containing (meth) acrylic acid ester. Compounds. The hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof. Examples of the polyhydric alcohol and the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described for the polyester (meth) acrylate compound of the polyfunctional (meth) acrylate compound. The hydroxyl group-containing polyether preferably used is a hydroxyl group-containing polyether obtained by adding one or more alkylene oxides and / or ε-caprolactone to a polyhydric alcohol. The polyhydric alcohol may be the same as that which can be used for the hydroxyl group-containing polyester. Examples of the hydroxyl group-containing (meth) acrylic acid ester preferably used include the same as those described for the polymerizable oligomeric urethane (meth) acrylate oligomer. As the isocyanates, compounds having one or more isocyanate groups in the molecule are preferable, and divalent isocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
These polymerizable oligomer compounds can be used alone or in combination of two or more.
(2) Photoinitiator A photoinitiator can be suitably selected according to the kind of active energy ray applied to anti-glare film manufacture of this invention. Moreover, when using an electron beam as an active energy ray, the coating liquid which does not contain a photoinitiator may be used for anti-glare film manufacture of this invention.
Examples of the photopolymerization initiator include acetophenone photopolymerization initiator, benzoin photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, triazine photopolymerization initiator, and oxadiazole photopolymerization initiator. An initiator or the like is used. Examples of the photopolymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2 '-Biimidazole, 10-butyl-2-chloroacridone, 2-ethylanthraquinone, benzyl, 9,10-phenanthrenequinone, camphorquinone, methyl phenylglyoxylate, titanocene compound and the like can also be used. The amount of the photopolymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin.
The coating liquid may contain a solvent such as an organic solvent in order to improve the coating property on the transparent support. Examples of organic solvents include aliphatic hydrocarbons such as hexane, cyclohexane, and octane; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol, 1-propanol, isopropanol, 1-butanol, and cyclohexanol; methyl ethyl ketone, methyl isobutyl Ketones such as ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and isobutyl acetate; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Ethers; ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, etc. Stealted glycol ethers; Cellsolves such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol; 2- (2-methoxyethoxy) ethanol, 2- (2-ethoxyethoxy) ethanol, 2- (2- It can be selected from carbitols such as butoxyethoxy) ethanol in consideration of viscosity and the like. These solvents may be used alone or as a mixture of several kinds as required. After coating, it is necessary to evaporate the organic solvent. Therefore, the boiling point is desirably in the range of 60 ° C to 160 ° C. The saturated vapor pressure at 20 ° C. is preferably in the range of 0.1 kPa to 20 kPa.
When a coating liquid contains a solvent, it is preferable to provide the drying process which evaporates a solvent and drys after the said coating process and before a 1st hardening process. Drying can be performed by passing the inside of the drying zone 84 through the transparent support body 81 provided with a coating layer, for example like the example shown by FIG. The drying temperature is appropriately selected depending on the solvent used and the type of transparent support. Generally, it is in the range of 20 ° C. to 120 ° C., but is not limited thereto. When there are a plurality of drying furnaces, the temperature may be changed for each drying furnace. The thickness of the coating layer after drying is preferably 1 to 30 μm.
Thus, a laminate in which the transparent support and the coating layer are laminated is formed.
[P2] Curing step This step is performed by irradiating the surface of the coating layer with active energy rays from the transparent support side in a state where the mold uneven surface (molded surface) having a desired surface uneven shape is pressed. It is a step of forming a cured resin layer on the transparent support by curing the work layer. Thereby, the coating layer is cured, and the surface irregularity shape of the mold irregularity surface is transferred to the coating layer surface. The mold used here is of a roll shape, and is manufactured by using a roll-shaped mold substrate in the mold manufacturing method already described.
For example, as shown in FIG. 9, this step is performed by a coating zone 83 (in the case of drying, a drying zone 84, and in the case of performing a pre-curing step described later, the active energy ray irradiation device 86 is further irradiated. Irradiating the laminated body having the coating layer that has passed through the pre-curing zone) with an active energy ray using an active energy ray irradiating device 86 such as an ultraviolet ray irradiating device disposed on the transparent support 81 side. Can be performed.
First, a roll-shaped mold 87 is pressed against the surface of the coating layer of the laminate that has undergone the curing process using a crimping device such as a nip roll 88, and in this state, the active energy ray irradiation device 86 is used to make the transparent The coating layer 82 is cured by irradiating active energy rays from the support 81 side. Here, “curing the coating layer” means that the active energy ray-curable resin contained in the coating layer receives the energy of the active energy ray to cause a curing reaction. The use of the nip roll is effective in preventing air bubbles from being mixed between the coating layer of the laminate and the mold. One or a plurality of active energy ray irradiation apparatuses can be used.
After irradiation with the active energy ray, the laminate is peeled from the mold 87 with the nip roll 89 on the outlet side as a fulcrum. In the obtained transparent support and the cured coating layer, the cured coating layer becomes an antiglare layer, and the antiglare film of the present invention is obtained. The obtained antiglare film is usually wound up by a film winding device 90. At this time, for the purpose of protecting the antiglare layer, it may be wound up while a protective film made of polyethylene terephthalate, polyethylene or the like is adhered to the surface of the antiglare layer through a pressure-sensitive adhesive layer having removability. In addition, although the metal mold | die used here demonstrated the case of the thing of roll shape, metal mold | dies other than roll shape can also be used. Moreover, you may perform additional active energy ray irradiation after peeling from a metal mold | die.
The active energy ray used in this step is appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays and the like according to the type of the active energy ray curable resin contained in the coating liquid. Among these, ultraviolet rays and electron beams are preferable, and ultraviolet rays are particularly preferable because they are easy to handle and high energy is obtained (as described above, the UV embossing method is preferable).
As the ultraviolet light source, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, an electrodeless lamp, a metal halide lamp, a xenon arc lamp, or the like can be used. An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Among these, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, an electrodeless lamp, a xenon arc lamp, and a metal halide lamp are preferably used.
As the electron beam, 50 to 1000 keV emitted from various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100 An electron beam having an energy of ~ 300 keV can be mentioned.
When the active energy ray is ultraviolet, the integrated amount of light at UVA ultraviolet is preferably at 100 mJ / cm 2 or more 3000 mJ / cm 2 or less, more preferably at 200 mJ / cm 2 or more 2000 mJ / cm 2 or less. In addition, since the transparent support may absorb ultraviolet rays on the short wavelength side, irradiation is performed so that the integrated light quantity of ultraviolet rays UVV (395 to 445 nm) in the wavelength region including visible light is preferable for the purpose of suppressing the absorption. The amount may be adjusted. Integrated light intensity in such UVV is preferably at 100 mJ / cm 2 or more 3000 mJ / cm 2 or less, and more preferably 200 mJ / cm 2 or more 2000 mJ / cm 2 or less. When the integrated light quantity is less than 100 mJ / cm 2 , the coating layer is not sufficiently cured, the hardness of the resulting antiglare layer becomes low, or the uncured resin adheres to the guide roll, etc., causing process contamination Tend to be. Moreover, when the integrated light quantity exceeds 3000 mJ / cm 2 , the transparent support may shrink and cause wrinkles due to heat radiated from the ultraviolet irradiation device.
[P3] Pre-curing step In this step, prior to the curing step, both end regions in the width direction of the transparent support of the coating layer are irradiated with active energy rays to pre-cure both end regions. It is a process. FIG. 10 is a cross-sectional view schematically showing the preliminary curing step. In FIG. 10, an end region 82b in the width direction of the coating layer (direction orthogonal to the transport direction) is a region having a predetermined width from the end portion including the end portion of the coating layer.
In the preliminary curing step, the end region is cured in advance, thereby further improving the adhesion with the transparent support 81 in the end region, and part of the cured resin is peeled off in the step after the curing step. It can prevent falling and contaminating the process. The end region 82b can be a region from 5 mm to 50 mm from the end of the coating layer 82, for example.
The irradiation of the active energy ray to the end region of the coating layer is performed, for example, with reference to FIGS. 9 and 10, for example, the coating layer that has passed through the coating zone 83 (drying zone 84 when drying). This is performed by irradiating the transparent support 81 having 82 with active energy rays using an active energy ray irradiating device 85 such as an ultraviolet ray irradiating device installed in the vicinity of both ends on the coating layer 82 side. Can do. The active energy ray irradiation device 85 may be any device as long as it can irradiate the end region 82b of the coating layer 82 with active energy rays, and may be installed on the transparent support 81 side.
The type of active energy ray and the light source are the same as in the main curing step. When the active energy ray is ultraviolet, the integrated amount of light at UVA ultraviolet is preferably at 10 mJ / cm 2 or more 400 mJ / cm 2 or less, and more preferably 50 mJ / cm 2 or more 400 mJ / cm 2 or less. By irradiating so that it may become 50 mJ / cm < 2 > or more, the deformation | transformation in this hardening process can be prevented more effectively. In addition, when it exceeds 400 mJ / cm < 2 >, as a result of a hardening reaction progressing excessively, resin peeling may arise in the boundary of a hardening part and an unhardened part resulting from a film thickness difference or distortion of an internal stress.
[Use of the antiglare film of the present invention]
The antiglare film of the present invention obtained as described above is used for an image display device or the like, and is usually used by being bonded to a polarizing film as a viewing side protective film of a viewing side polarizing plate (that is, an image). Placed on the surface of the display device). In addition, as described above, when a polarizing film is used as the transparent support, an antiglare film integrated with a polarizing film is obtained. Therefore, such an antiglare film integrated with a polarizing film may be used for an image display device. it can. The image display device provided with the antiglare film of the present invention has sufficient antiglare properties at a wide viewing angle, and can well prevent both whitening and glare.
 以下に実施例を挙げて、本発明をさらに詳しく説明する。例中、含有量ないし使用量を表す「%」及び「部」は、特記ない限り重量基準である。
 以下の例における金型又は防眩フィルムの評価方法は、次のとおりである。
〔1〕防眩フィルムの表面形状の測定
(表面凹凸形状の標高のパワースペクトル)
 三次元顕微鏡PLμ2300(Sensofar社製)を用いて、測定サンプルである防眩フィルムの防眩層の表面凹凸形状の標高を測定した。サンプルの反りを防止するため、光学的に透明な粘着剤を用いて、測定サンプルの防眩層とは反対側の面をガラス基板に貼合してから、測定に供した。測定の際、対物レンズの倍率は10倍として測定を行った。水平分解能Δx及びΔyはともに1.66μmであり、測定面積は1270μm×950μmであった。得られた測定データの中央部から512個×512個(測定面積で850μm×850μm)のデータをサンプリングし、防眩フィルムが有する表面凹凸形状(防眩層の表面凹凸形状)の標高を二次元関数h(x,y)として求めた。次いで、二次元関数h(x,y)を離散フーリエ変換して二次元関数H(f,f)を求めた。二次元関数H(f,f)の絶対値を二乗して二次元パワースペクトルの二次元関数I(f,f)を計算し、原点からの距離fの関数である一次元パワースペクトルの一次元関数I(f)を計算した。各サンプルにつき5箇所の表面凹凸形状について標高を測定し、それらのデータから計算される一次元パワースペクトルの一次元関数I(f)の平均値を各サンプルの一次元パワースペクトルの一次元関数I(f)とした。
〔2〕防眩フィルムの光学特性の測定
(ヘイズ)
 防眩フィルムの全ヘイズは、防眩フィルムを光学的に透明な粘着剤を用い、測定サンプルの防眩層とは反対側の面をガラス基板に貼合し、該ガラス基板に貼合された防眩フィルムについて、ガラス基板側から光を入射させ、JIS K 7136に準拠した方法により、(株)村上色彩技術研究所製のヘイズメーター「HM−150」型を用いて、測定した。表面ヘイズは、防眩フィルムの内部ヘイズを求め、次式
 表面ヘイズ=全ヘイズ−内部ヘイズ
によって全ヘイズから内部ヘイズを差し引くことで求めた。内部ヘイズは、全ヘイズを測定した後の測定サンプルの防眩層面にヘイズがほぼ0のトリアセチルセルロースフィルムをグリセリンで貼り付けた後、全ヘイズと同様にして測定した。
(透過鮮明度)
 JIS K 7105に準拠した方法により、スガ試験機(株)製の写像性測定器「ICM−1DP」を用いて、防眩フィルムの透過鮮明度を測定した。この場合も、サンプルの反りを防止するため、光学的に透明な粘着剤を用いて、測定サンプルの防眩層とは反対側の面をガラス基板に貼合してから、測定に供した。この状態でガラス基板側から光を入射させ、測定を行った。ここでの測定値は、暗部と明部の幅がそれぞれ0.125mm、0.25mm、0.5mm、1.0mm及び2.0mmである5種類の光学くしを用いて、それぞれ測定された値の合計値である。
(光の入射角45°で測定される反射鮮明度)
 JIS K 7105に準拠した方法により、スガ試験機(株)製の写像性測定器「ICM−1DP」を用いて、防眩フィルムの反射鮮明度を測定した。この場合も、サンプルの反りを防止するため、光学的に透明な粘着剤を用いて、測定サンプルの防眩層とは反対側の面を黒色アクリル基板に貼合してから、測定に供した。この状態で防眩層面側から光を45°で入射させ、測定を行った。ここでの測定値は、暗部と明部の幅がそれぞれ0.25mm、0.5mm、1.0mm及び2.0mmである4種類の光学くしを用いて、それぞれ測定された値の合計値である。
(光の入射角60°で測定される反射鮮明度)
 JIS K 7105に準拠した方法により、スガ試験機(株)製の写像性測定器「ICM−1DP」を用いて、防眩フィルムの反射鮮明度を測定した。この場合も、サンプルの反りを防止するため、光学的に透明な粘着剤を用いて、測定サンプルの防眩層とは反対側の面を黒色アクリル基板に貼合してから、測定に供した。この状態で防眩層面側から光を60°で入射させ、測定を行った。ここでの測定値は、暗部と明部の幅がそれぞれ0.25mm、0.5mm、1.0mm及び2.0mmである4種類の光学くしを用いて、それぞれ測定された値の合計値である。
(反射率比)
 防眩フィルムの防眩層に、当該防眩フィルムの法線に対して30°傾斜した方向から、波長543.5nmのHe−Neレーザからの平行光を照射し、フィルム法線と照射方向を含む平面内における反射率の角度変化の測定を行った。反射率の測定には、いずれも横河電機(株)製の“3292 03オプティカルパワーセンサー”及び“3292オプティカルパワーメーター”を用いた。この場合も、サンプルの反りを防止するため、光学的に透明な粘着剤を用いて、測定サンプルの防眩層とは反対側の面を黒色アクリル基板に貼合してから、測定に供した。
〔3〕防眩フィルムの防眩性能の評価
(映り込み、白ちゃけの目視評価)
 防眩フィルムの裏面からの反射を防止するために、測定サンプルの防眩層とは反対側の面を黒色アクリル樹脂板に防眩フィルムを貼合し、蛍光灯のついた明るい室内で防眩層側から目視で観察し、蛍光灯の映り込みの程度、白ちゃけの程度を目視で評価した。映り込みに関しては、防眩フィルムを正面から観察したときの映り込みの程度と斜め30°から観察したときの映り込みの程度をそれぞれ評価した。映り込み及び白ちゃけは、それぞれ1から3の3段階で次の基準により評価した。
 映り込み 1:映り込みが観察されない。
      2:映り込みが少し観察される。
      3:映り込みが明瞭に観察される。
 白ちゃけ 1:白ちゃけが観察されない。
      2:白ちゃけが少し観察される。
      3:白ちゃけが明瞭に観察される。
(ギラツキの評価)
 ギラツキは次の手順で評価した。すなわち、まず図11に平面図で示すようなユニットセルのパターンを有するフォトマスクを用意した。この図において、ユニットセル100は、透明な基板上に、線幅10μmでカギ形のクロム遮光パターン101が形成され、そのクロム遮光パターン101の形成されていない部分が開口部102となっている。ここでは、ユニットセルの寸法が211μm×70μm(図の縦×横)、したがって開口部の寸法が201μm×60μm(図の縦×横)のものを用いた。図示するユニットセルが縦横に多数並んで、フォトマスクを形成する。
 そして、図12に模式的な断面図で示すように、フォトマスク113のクロム遮光パターン111を上にしてライトボックス115に置き、ガラス板117に粘着剤で防眩フィルム110をその防眩層が表面となるように貼合したサンプルをフォトマスク113上に置く。ライトボックス115の中には、光源116が配置されている。この状態で、サンプルから約30cm離れた位置119で目視観察することにより、ギラツキの程度を7段階で官能評価した。レベル1はギラツキが全く認められない状態、レベル7はひどくギラツキが観察される状態に該当し、レベル4はごくわずかにギラツキが観察される状態である。
(コントラストの評価)
 市販の液晶テレビ〔ソニー(株)製の“KDL−32EX550”〕から表裏両面の偏光板を剥離した。それらオリジナル偏光板の代わりに、背面側及び表示面側とも、住友化学(株)製の偏光板“スミカランSRDB831E”を、それぞれの吸収軸がオリジナルの偏光板の吸収軸と一致するように粘着剤を介して貼合し、さらに表示面側偏光板の上には、以下の各例に示す防眩フィルムを凹凸面が表面となるように粘着剤を介して貼合した。こうして得られた液晶テレビを暗室内で起動し、(株)トプコン製の輝度計“BM5A”型を用いて、黒表示状態及び白表示状態における輝度を測定し、コントラストを算出した。ここでコントラストは、黒表示状態の輝度に対する白表示状態の輝度の比で表される。結果は防眩フィルムを貼合した状態で測定されたコントラストを、防眩フィルムを貼合しない状態で測定したコントラストの比で示した。
〔4〕防眩フィルム製造用のパターンの評価
 作成したパターンデータを2階調の二値化画像データとし、階調を二次元の離散関数g(x,y)で表した。離散関数g(x,y)の水平分解能Δx及びΔyはともに、2μmとした。得られた二次元関数g(x,y)を離散フーリエ変換して、二次元関数G(f,f)を求めた。二次元関数G(f,f)の絶対値を二乗して二次元パワースペクトルの二次元関数Γ(f,f)を計算し、原点からの距離fの関数である一次元パワースペクトルの一次元関数Γ(f)を計算した。
<実施例1>
(防眩フィルム製造用の金型の作製)
 直径300mmのアルミロール(JISによるA6063)の表面に銅バラードめっきが施されたものを準備した。銅バラードめっきは、銅めっき層/薄い銀めっき層/表面銅めっき層からなるものであり、めっき層全体の厚みは、約200μmとなるように設定した。その銅めっき表面を鏡面研磨し、研磨された銅めっき表面に感光性樹脂を塗布、乾燥して感光性樹脂膜を形成した。ついで、図13に示すパターンAを繰り返し並べたパターンを感光性樹脂膜上にレーザ光によって露光し、現像した。レーザ光による露光、及び現像はLaser Stream FX((株)シンク・ラボラトリー製)を用いて行った。感光性樹脂膜としてはポジ型の感光性樹脂を含むものを使用した。ここで、パターンAはランダムな明度分布を有するパターンから、複数のガウス関数型のバンドパスフィルターを通過させて作成したものであり、開口率は45%であり、一次元パワースペクトルの空間周波数0.01μm−1における強度Γ(0.01)と空間周波数0.02μm−1における強度Γ(0.02)の比Γ(0.02)/Γ(0.01)は0.09であり、空間周波数0.01μm−1における強度Γ(0.01)と空間周波数0.1μm−1における強度Γ(0.1)の比Γ(0.1)/Γ(0.01)は8.13である。
 その後、塩化第二銅液でエッチング処理を行った。その際のエッチング量は4.5μmとなるように設定した。エッチング処理後のロールから感光性樹脂膜を除去し、クロムめっき加工を行い、金型Aを作製した。このとき、クロムめっき厚みが10μmとなるように設定した。
(防眩フィルムの作製)
 以下の各成分が酢酸エチルに固形分濃度60%で溶解されており、硬化後に1.53の屈折率を示す膜を形成し得る紫外線硬化性樹脂組成物Aを準備した。
 ペンタエリスリトールトリアクリレート               60部
 多官能ウレタン化アクリレート                   40部
 (ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)
 ジフェニル(2,4,6−トリメトキシベンゾイル)ホスフィンオキシド 5部
 この紫外線硬化性樹脂組成物Aを厚み60μmのトリアセチルセルロース(TAC)フィルム上に、乾燥後の塗布層の厚みが5μmとなるように塗布し、60℃に設定した乾燥機中で3分間乾燥させた。乾燥後のフィルムを、先に得られた金型Aの成形面(表面凹凸形状を有する面)に、乾燥後の塗工層が金型側となるようにゴムロールで押し付けて密着させた。この状態でTACフィルム側より、強度20mW/cmの高圧水銀灯からの光をh線換算光量で200mJ/cmとなるように照射して、塗工層を硬化させることで防眩フィルムを製造した。この後、得られた防眩フィルムを金型から剥離して、TACフィルム上に防眩層を備えた透明な防眩フィルムAを作製した。
<実施例2>
 クロムめっき加工におけるクロムめっき厚みを9μmとなるように設定したこと以外は実施例1の金型A作製と同様にして金型Bを作製し、金型Aを金型Bに置き換えた以外は実施例1と同様にして防眩フィルムを作製した。この防眩フィルムを防眩フィルムBとする。
<実施例3>
 クロムめっき加工におけるクロムめっき厚みを11μmとなるように設定したこと以外は実施例1の金型A作製と同様にして金型Cを作製し、金型Aを金型Cに置き換えた以外は実施例1と同様にして防眩フィルムを作製した。この防眩フィルムを防眩フィルムCとする。
<比較例1>
 クロムめっき加工におけるクロムめっき厚みを7μmとなるように設定したこと以外は実施例1の金型A作製と同様にして金型Dを作製し、金型Aを金型Dに置き換えた以外は実施例1と同様にして防眩フィルムを作製した。この防眩フィルムを防眩フィルムDとする。
<比較例2>
 図14に示すパターンBを繰り返し並べたパターンを感光性樹脂膜上にレーザ光によって露光したこと以外は実施例1の金型A作製と同様にして金型Eを作製し、金型Aを金型Eに置き換えた以外は実施例1と同様にして防眩フィルムを作製した。この防眩フィルムを防眩フィルムEとする。ここで、パターンBはランダムな明度分布を有するパターンから、複数のガウス関数型のバンドパスフィルターを通過させて作成したものであり、開口率が45.0%であり、一次元パワースペクトルの空間周波数0.01μm−1における強度Γ(0.01)と空間周波数0.02μm−1における強度Γ(0.02)の比Γ(0.02)/Γ(0.01)は2.69であり、空間周波数0.01μm−1における強度Γ(0.01)と空間周波数0.1μm−1における強度Γ(0.1)の比Γ(0.1)/Γ(0.01)は278.67である。
<比較例3>
 直径300mmのアルミロール(JISによるA5056)の表面を鏡面研磨し、研磨されたアルミ面に、ブラスト装置((株)不二製作所製)を用いて、ジルコニアビーズTZ−SX−17(東ソー(株)製、平均粒径:20μm)を、ブラスト圧力0.1MPa(ゲージ圧、以下同じ)、ビーズ使用量8g/cm(ロールの表面積1cmあたりの使用量、以下同じ)でブラストし、アルミロール表面に凹凸をつけた。得られた凹凸つきアルミロールに対し、無電解ニッケルめっき加工を行い、金型Fを作製した。このとき、無電解ニッケルめっき厚みが15μmとなるように設定した。金型Aを金型Fに置き換えた以外は、実施例1と同様にして防眩フィルムを作製した。この防眩フィルムを防眩フィルムFとする。
<比較例4>
 直径200mmのアルミロール(JISによるA5056)の表面に銅バラードめっきが施されたものを準備した。銅バラードめっきは、銅めっき層/薄い銀めっき層/表面銅めっき層からなるものであり、めっき層全体の厚さは、約200μmであった。その銅めっき表面を鏡面研磨し、さらにその研磨面に、ブラスト装置((株)不二製作所製)を用いて、ジルコニアビーズ“TZ−SX−17”(東ソー(株)製、平均粒径:20μm)を、ブラスト圧力0.05MPa(ゲージ圧、以下同じ)、ビーズ使用量6g/cmでブラストし、アルミロール表面に凹凸をつけた。得られた凹凸つき銅めっきアルミロールにクロムめっき加工を行い、金型Gを作製した。このとき、クロムめっき厚みが6μmとなるように設定した。金型Aを金型Gに置き換えた以外は、実施例1と同様にして防眩フィルムを作製した。この防眩フィルムを防眩フィルムGとする。
[評価結果]
 以上の実施例及び比較例について、上述の防眩フィルムの評価を行った結果を表1に示す。
Figure JPOXMLDOC01-appb-T000015
 本発明の要件を満たす防眩フィルムA~C(実施例1~3)は低ヘイズであるにも拘わらず、観察角度が正面であっても斜めであっても優れた防眩性を有し、白ちゃけ及びギラツキの抑制効果も十分なものであった。一方、防眩フィルムD(比較例1)は白ちゃけが発生するものであった。防眩フィルムE(比較例2)は、斜めから観察した際の防眩性が不十分であった。防眩フィルムF(比較例3)はギラツキが発生しやすいものであった。防眩フィルムG(比較例4)は、斜めから観察したときの防眩性が不十分であった。
Hereinafter, the present invention will be described in more detail with reference to examples. In the examples, “%” and “parts” representing the content or amount used are based on weight unless otherwise specified.
The evaluation method of the metal mold | die or anti-glare film in the following examples is as follows.
[1] Measurement of surface shape of antiglare film (power spectrum of elevation of surface irregularity)
Using a three-dimensional microscope PLμ2300 (manufactured by Sensofar), the elevation of the surface uneven shape of the antiglare layer of the antiglare film as a measurement sample was measured. In order to prevent the sample from warping, an optically transparent pressure-sensitive adhesive was used, and the surface opposite to the antiglare layer of the measurement sample was bonded to a glass substrate, and then subjected to measurement. During the measurement, the objective lens was measured at a magnification of 10 times. The horizontal resolutions Δx and Δy were both 1.66 μm and the measurement area was 1270 μm × 950 μm. Sampling 512 × 512 data (measured area 850 μm × 850 μm) from the center of the obtained measurement data, the elevation of the surface uneven shape (surface uneven shape of the antiglare layer) of the antiglare film is two-dimensional The function h (x, y) was obtained. Then, two-dimensional function h (x, y) of the discrete Fourier transform to two-dimensional function H (f x, f y) was determined. Two-dimensional function H (f x, f y) of a two-dimensional function I (f x, f y) of the absolute value squared by the two-dimensional power spectrum to calculate the one-dimensional power is a function of the distance f from the origin A one-dimensional function I (f) of the spectrum was calculated. The elevation is measured for five surface irregularities for each sample, and the average value of the one-dimensional function I (f) of the one-dimensional power spectrum calculated from the data is obtained as the one-dimensional function I of the one-dimensional power spectrum of each sample. (F).
[2] Measurement of optical properties of antiglare film (haze)
The total haze of the antiglare film was bonded to the glass substrate by using an optically transparent adhesive for the antiglare film, pasting the surface opposite to the antiglare layer of the measurement sample to the glass substrate. About the anti-glare film, light was incident from the glass substrate side and measured by a method based on JIS K 7136 using a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd. The surface haze was determined by determining the internal haze of the antiglare film and subtracting the internal haze from the total haze by the following formula: surface haze = total haze-internal haze. The internal haze was measured in the same manner as the total haze after a triacetyl cellulose film having a haze of approximately 0 was attached to the antiglare layer surface of the measurement sample after measuring the total haze with glycerin.
(Transparency definition)
By the method based on JIS K 7105, the transmission clarity of the anti-glare film was measured using the image clarity measuring device “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd. Also in this case, in order to prevent the sample from warping, the surface opposite to the antiglare layer of the measurement sample was bonded to the glass substrate using an optically transparent adhesive, and then used for the measurement. In this state, light was incident from the glass substrate side and measurement was performed. The measured values here are values measured using five types of optical combs in which the widths of the dark part and the bright part are 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively. Is the sum of
(Reflection sharpness measured at 45 ° light incident angle)
By a method based on JIS K 7105, the reflection clarity of the antiglare film was measured using an image clarity measuring device “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd. Also in this case, in order to prevent the sample from warping, the surface opposite to the antiglare layer of the measurement sample was bonded to the black acrylic substrate using an optically transparent adhesive, and then subjected to measurement. . In this state, light was incident at 45 ° from the antiglare layer surface side, and measurement was performed. The measured values here are the total values of the values measured using four types of optical combs in which the widths of the dark part and the bright part are 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm, respectively. is there.
(Reflection sharpness measured at 60 ° light incident angle)
By a method based on JIS K 7105, the reflection clarity of the antiglare film was measured using an image clarity measuring device “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd. Also in this case, in order to prevent the sample from warping, the surface opposite to the antiglare layer of the measurement sample was bonded to the black acrylic substrate using an optically transparent adhesive, and then subjected to measurement. . In this state, light was incident at 60 ° from the antiglare layer surface side, and measurement was performed. The measured values here are the total values of the values measured using four types of optical combs in which the widths of the dark part and the bright part are 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm, respectively. is there.
(Reflectance ratio)
The antiglare layer of the antiglare film is irradiated with parallel light from a He-Ne laser having a wavelength of 543.5 nm from a direction inclined by 30 ° with respect to the normal line of the antiglare film, and the film normal line and the irradiation direction are changed. The change in the angle of the reflectance in the plane including it was measured. In the measurement of reflectance, both “32903 Optical Power Sensor” and “3292 Optical Power Meter” manufactured by Yokogawa Electric Corporation were used. Also in this case, in order to prevent the sample from warping, the surface opposite to the antiglare layer of the measurement sample was bonded to the black acrylic substrate using an optically transparent adhesive, and then subjected to measurement. .
[3] Evaluation of anti-glare performance of anti-glare film (visual evaluation of reflection and whitishness)
In order to prevent reflection from the back of the antiglare film, the antiglare film is bonded to a black acrylic resin plate on the surface opposite to the antiglare layer of the measurement sample. Visual observation was made from the layer side, and the degree of reflection of the fluorescent lamp and the degree of whitening were visually evaluated. Regarding reflection, the degree of reflection when the antiglare film was observed from the front and the degree of reflection when observed from an oblique angle of 30 ° were evaluated. Reflection and whitishness were evaluated according to the following criteria in three stages of 1 to 3, respectively.
Reflection 1: Reflection is not observed.
2: Reflection is slightly observed.
3: Reflection is clearly observed.
Whiteness 1: No whiteness is observed.
2: A little whitish is observed.
3: The whitish is clearly observed.
(Evaluation of glare)
Glare was evaluated according to the following procedure. That is, first, a photomask having a unit cell pattern as shown in a plan view in FIG. 11 was prepared. In this figure, a unit cell 100 has a key-shaped chrome light-shielding pattern 101 having a line width of 10 μm formed on a transparent substrate, and a portion where the chrome light-shielding pattern 101 is not formed is an opening 102. Here, a unit cell having a size of 211 μm × 70 μm (vertical × horizontal in the figure) and an opening having a dimension of 201 μm × 60 μm (vertical × horizontal in the figure) was used. A large number of unit cells shown in the figure are arranged vertically and horizontally to form a photomask.
Then, as shown in the schematic cross-sectional view of FIG. 12, the chrome light-shielding pattern 111 of the photomask 113 is placed on the light box 115 and the antiglare film 110 is attached to the glass plate 117 with an adhesive on the antiglare layer. The sample bonded to the surface is placed on the photomask 113. A light source 116 is disposed in the light box 115. In this state, by visually observing at a position 119 that is about 30 cm away from the sample, the degree of glare was sensory evaluated in seven stages. Level 1 corresponds to a state where no glare is observed, level 7 corresponds to a state where severe glare is observed, and level 4 refers to a state where only slight glare is observed.
(Contrast evaluation)
The polarizing plates on both the front and back surfaces were peeled off from a commercially available liquid crystal television (“KDL-32EX550” manufactured by Sony Corporation). Instead of these original polarizing plates, both the back side and the display side are polarizing plates "Sumikaran SRDB831E" manufactured by Sumitomo Chemical Co., Ltd. so that the respective absorption axes coincide with the absorption axes of the original polarizing plates. Further, the antiglare film shown in each of the following examples was laminated on the display surface side polarizing plate via an adhesive such that the concavo-convex surface was the surface. The liquid crystal television thus obtained was activated in a dark room, and the luminance in the black display state and the white display state was measured using a luminance meter “BM5A” manufactured by Topcon Corporation, and the contrast was calculated. Here, the contrast is represented by the ratio of the luminance in the white display state to the luminance in the black display state. The result showed the contrast measured in the state which bonded the anti-glare film in the ratio of the contrast measured in the state which does not bond an anti-glare film.
[4] Evaluation of pattern for production of anti-glare film The created pattern data was made into binary image data of two gradations, and the gradation was expressed by a two-dimensional discrete function g (x, y). The horizontal resolutions Δx and Δy of the discrete function g (x, y) are both 2 μm. The resulting two-dimensional function g (x, y) and by discrete Fourier transform, two-dimensional function G (f x, f y) was determined. Two-dimensional function G (f x, f y) of a two-dimensional function gamma (f x, f y) of the absolute value squared by the two-dimensional power spectrum to calculate the one-dimensional power is a function of the distance f from the origin A one-dimensional function Γ (f) of the spectrum was calculated.
<Example 1>
(Production of molds for the production of anti-glare films)
An aluminum roll having a diameter of 300 mm (A6063 by JIS) having a copper ballad plating applied thereto was prepared. Copper ballad plating consists of a copper plating layer / thin silver plating layer / surface copper plating layer, and the thickness of the entire plating layer was set to be about 200 μm. The copper plating surface was mirror-polished, and a photosensitive resin was applied to the polished copper plating surface and dried to form a photosensitive resin film. Next, a pattern in which the pattern A shown in FIG. 13 was repeatedly arranged was exposed on a photosensitive resin film with a laser beam and developed. Laser beam exposure and development were performed using Laser Stream FX (manufactured by Sink Laboratories). As the photosensitive resin film, a film containing a positive photosensitive resin was used. Here, the pattern A is created by passing a plurality of Gaussian function type band pass filters from a pattern having a random brightness distribution, the aperture ratio is 45%, and the spatial frequency of the one-dimensional power spectrum is 0. .01μm intensity in the intensity gamma (0.01) and the spatial frequency 0.02 [mu] m -1 at -1 gamma ratio gamma (0.02) in (0.02) / Γ (0.01) is 0.09, the ratio of the intensity in the intensity gamma (0.01) and the spatial frequency 0.1 [mu] m -1 in the spatial frequency 0.01μm -1 Γ (0.1) Γ ( 0.1) / Γ (0.01) 8.13 It is.
Then, the etching process was performed with cupric chloride solution. The etching amount at that time was set to 4.5 μm. The photosensitive resin film was removed from the roll after the etching treatment, and chrome plating was performed to produce a mold A. At this time, the chromium plating thickness was set to 10 μm.
(Preparation of antiglare film)
Each of the following components was dissolved in ethyl acetate at a solid content concentration of 60%, and an ultraviolet curable resin composition A capable of forming a film having a refractive index of 1.53 after curing was prepared.
Pentaerythritol triacrylate 60 parts Multifunctional urethanated acrylate 40 parts (Reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate)
5 parts of diphenyl (2,4,6-trimethoxybenzoyl) phosphine oxide On the triacetyl cellulose (TAC) film having a thickness of 60 μm, this UV curable resin composition A is dried to have a thickness of 5 μm. And dried in a dryer set at 60 ° C. for 3 minutes. The dried film was brought into close contact with the molding surface of the mold A obtained previously (the surface having an uneven surface shape) with a rubber roll so that the coating layer after drying was on the mold side. In this state, an anti-glare film is manufactured by irradiating light from a high-pressure mercury lamp with an intensity of 20 mW / cm 2 from the TAC film side so that the amount of light converted to h-ray is 200 mJ / cm 2 and curing the coating layer. did. Thereafter, the obtained antiglare film was peeled off from the mold to produce a transparent antiglare film A having an antiglare layer on the TAC film.
<Example 2>
Except that the chrome plating thickness in the chrome plating process was set to 9 μm, the mold B was prepared in the same manner as the mold A in Example 1, and the mold A was replaced with the mold B. An antiglare film was prepared in the same manner as in Example 1. This antiglare film is designated as an antiglare film B.
<Example 3>
Except that the chrome plating thickness in the chrome plating process was set to 11 μm, the mold C was prepared in the same manner as the mold A in Example 1, and the mold A was replaced with the mold C. An antiglare film was prepared in the same manner as in Example 1. This antiglare film is designated as an antiglare film C.
<Comparative Example 1>
Except that the chrome plating thickness in the chrome plating process was set to 7 μm, the mold D was manufactured in the same manner as the mold A in Example 1, and the mold A was replaced with the mold D. An antiglare film was prepared in the same manner as in Example 1. This antiglare film is designated as an antiglare film D.
<Comparative example 2>
A mold E was prepared in the same manner as the mold A in Example 1 except that a pattern in which the patterns B shown in FIG. 14 were repeatedly arranged was exposed on the photosensitive resin film with laser light. An antiglare film was produced in the same manner as in Example 1 except that the mold E was used. This antiglare film is designated as an antiglare film E. Here, the pattern B is created by passing a plurality of Gaussian function type bandpass filters from a pattern having a random brightness distribution, has an aperture ratio of 45.0%, and has a one-dimensional power spectrum space. the ratio Γ (0.02) / Γ (0.01 ) is 2.69 of the intensity in the intensity gamma (0.01) and the spatial frequency 0.02 [mu] m -1 in the frequency 0.01μm -1 Γ (0.02) There, the ratio gamma (0.1) of the intensity in the intensity gamma (0.01) and the spatial frequency 0.1 [mu] m -1 in the spatial frequency 0.01μm -1 Γ (0.1) / Γ (0.01) 278 .67.
<Comparative Example 3>
The surface of a 300 mm diameter aluminum roll (JIS A5056) is mirror-polished, and the polished aluminum surface is coated with zirconia beads TZ-SX-17 (Tosoh Corp.) using a blasting device (Fuji Seisakusho). ), Average particle size: 20 μm), and blasted at a blast pressure of 0.1 MPa (gauge pressure, the same applies hereinafter) and a bead usage of 8 g / cm 2 (a used amount per 1 cm 2 of surface area of the roll, the same applies hereinafter) The roll surface was uneven. The obtained uneven aluminum roll was subjected to electroless nickel plating to produce a mold F. At this time, the electroless nickel plating thickness was set to 15 μm. An antiglare film was produced in the same manner as in Example 1 except that the mold A was replaced with the mold F. This antiglare film is designated as an antiglare film F.
<Comparative example 4>
A 200 mm diameter aluminum roll (A5056 according to JIS) was prepared by applying copper ballad plating to the surface. Copper ballad plating consists of a copper plating layer / thin silver plating layer / surface copper plating layer, and the thickness of the entire plating layer was about 200 μm. The copper plating surface is mirror-polished, and the blasting device (manufactured by Fuji Seisakusho Co., Ltd.) is used on the polished surface, and zirconia beads “TZ-SX-17” (manufactured by Tosoh Corp., average particle diameter: 20 μm) was blasted at a blast pressure of 0.05 MPa (gauge pressure, the same applies hereinafter) and a bead usage of 6 g / cm 2 , and the aluminum roll surface was uneven. The resulting copper-plated aluminum roll with unevenness was subjected to chrome plating to produce a mold G. At this time, the chromium plating thickness was set to 6 μm. An antiglare film was produced in the same manner as in Example 1 except that the mold A was replaced with the mold G. This antiglare film is designated as an antiglare film G.
[Evaluation results]
Table 1 shows the results of evaluating the above antiglare films for the above Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000015
Although the antiglare films A to C (Examples 1 to 3) satisfying the requirements of the present invention have low haze, they have excellent antiglare properties regardless of whether the observation angle is front or oblique. In addition, the effect of suppressing whitishness and glare was sufficient. On the other hand, the antiglare film D (Comparative Example 1) was whitish. Anti-glare film E (Comparative Example 2) had insufficient anti-glare properties when observed obliquely. The antiglare film F (Comparative Example 3) was easily glaring. The antiglare film G (Comparative Example 4) had insufficient antiglare properties when observed from an oblique direction.
 10 防眩フィルム,
 11 光の入射角(30°),12 正反射角への反射光(30°),
 40 金型用基材,
 41 第1めっき工程及び研磨工程を経た金型用基材表面(めっき層),
 46 エッチング処理によって形成された第1の表面凹凸形状,
 50 感光性樹脂膜,60 マスク,
 70 クロムめっき後の表面凹凸形状が形状鈍化した表面,
 71 クロムめっき層,
 80 送り出しロール,81 透明支持体,83 塗工ゾーン,
 86 活性エネルギー線照射装置, 87 ロール形状の金型,
 88,89 ニップロール,90 フィルム巻き取り装置。
10 anti-glare film,
11 Light incident angle (30 °), 12 Reflected light to regular reflection angle (30 °),
40 Mold substrate,
41 The mold substrate surface (plating layer) that has undergone the first plating step and the polishing step,
46 1st surface uneven | corrugated shape formed by the etching process,
50 photosensitive resin film, 60 mask,
70 Surface with uneven surface shape after chrome plating,
71 chromium plating layer,
80 feed roll, 81 transparent support, 83 coating zone,
86 active energy ray irradiation device, 87 roll-shaped mold,
88, 89 Nip roll, 90 Film take-up device.
 本発明の防眩フィルムは、液晶ディスプレイなどの画像表示装置に有用である。 The antiglare film of the present invention is useful for an image display device such as a liquid crystal display.

Claims (2)

  1.  透明支持体と、その上に形成された微細な表面凹凸形状を有する防眩層とを備える防眩フィルムであって、
     防眩フィルムの全ヘイズが0.1%以上3%以下であり、
     表面ヘイズが0.1%以上2%以下であり、
     入射角30°で入射した光に対し、反射角30°の反射率R(30)と反射角40°との反射率R(40)との比R(40)/R(30)が0.00001以上0.0025以下であり、
     前記表面凹凸形状は、その標高のパワースペクトルが、下記(1)~(3)の条件:
    (1)空間周波数0.01μm−1における強度I(0.01)が2μm以上10μm以下であること;
    (2)空間周波数0.02μm−1における強度I(0.02)が0.1μm以上1.5μm以下であること;及び
    (3)空間周波数0.1μm−1における強度I(0.1)が0.0001μm以上0.01μm以下であること
    をいずれも満たすことを特徴とする防眩フィルム。
    An anti-glare film comprising a transparent support and an anti-glare layer having fine surface irregularities formed thereon,
    The total haze of the antiglare film is 0.1% or more and 3% or less,
    The surface haze is 0.1% or more and 2% or less,
    For light incident at an incident angle of 30 °, the ratio R (40) / R (30) of the reflectance R (30) at the reflection angle of 30 ° and the reflectance R (40) at the reflection angle of 40 ° is 0. 00001 or more and 0.0025 or less,
    The surface uneven shape has a power spectrum at an altitude of the following conditions (1) to (3):
    (1) The intensity I (0.01) at a spatial frequency of 0.01 μm −1 is 2 μm 4 or more and 10 μm 4 or less;
    (2) The intensity I (0.02) at a spatial frequency of 0.02 μm −1 is 0.1 μm 4 or more and 1.5 μm 4 or less; and (3) the intensity I at a spatial frequency of 0.1 μm −1 (0. 1. An antiglare film characterized in that both 1) are 0.0001 μm 4 or more and 0.01 μm 4 or less.
  2.  暗部と明部の幅が、0.125mm、0.25mm、0.5mm、1.0mm及び2.0mmである5種類の光学くしを用いて測定される透過鮮明度の和Tcが375%以上であり、
     暗部と明部の幅が0.25mm、0.5mm、1.0mm及び2.0mmである4種類の光学くしを用いて光の入射角45°で測定される反射鮮明度の和Rc(45)が180%以下であり、
     暗部と明部の幅が0.25mm、0.5mm、1.0mm及び2.0mmである4種類の光学くしを用いて光の入射角60°で測定される反射鮮明度の和Rc(60)が240%以下であることを特徴とする請求項1に記載の防眩フィルム。
    The sum Tc of transmission clarity measured using five types of optical combs in which the width of the dark part and the bright part is 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm is 375% or more. And
    The sum Rc of reflection sharpness Rc (45) measured at an incident angle of 45 ° using four types of optical combs in which the width of the dark part and the bright part is 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm. ) Is 180% or less,
    The sum Rc of reflection sharpness Rc (60) measured at a light incident angle of 60 ° using four types of optical combs having a dark part and a bright part width of 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm. ) Is 240% or less, the antiglare film according to claim 1.
PCT/JP2014/081669 2013-11-29 2014-11-25 Antiglare film WO2015080279A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480064353.6A CN105765417A (en) 2013-11-29 2014-11-25 Antiglare film
KR1020167016832A KR20160091956A (en) 2013-11-29 2014-11-25 Antiglare film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013247804A JP2015106038A (en) 2013-11-29 2013-11-29 Antiglare film
JP2013-247804 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080279A1 true WO2015080279A1 (en) 2015-06-04

Family

ID=53199214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081669 WO2015080279A1 (en) 2013-11-29 2014-11-25 Antiglare film

Country Status (5)

Country Link
JP (1) JP2015106038A (en)
KR (1) KR20160091956A (en)
CN (1) CN105765417A (en)
TW (1) TW201529324A (en)
WO (1) WO2015080279A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102593914B1 (en) * 2017-09-29 2023-10-26 다이니폰 인사츠 가부시키가이샤 Anti-glare film and display device using the same
JP7358739B2 (en) * 2018-03-02 2023-10-11 住友化学株式会社 Polarizing plate and polarizing plate manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156132A (en) * 2005-12-06 2007-06-21 Sumitomo Chemical Co Ltd Anti-glare film and image display device
JP2008262190A (en) * 2007-03-19 2008-10-30 Dainippon Printing Co Ltd Antidazzle optical laminate
JP2010066761A (en) * 2008-08-13 2010-03-25 Sony Corp Optical film, method for manufacturing the same, antiglare film, optical layer-attached polarizer, and display apparatus
JP2011100027A (en) * 2009-11-06 2011-05-19 Sony Corp Antiglare film and method for producing the same
JP2012068473A (en) * 2010-09-24 2012-04-05 Sumitomo Chemical Co Ltd Liquid crystal display device
JP2012133066A (en) * 2010-12-21 2012-07-12 Samsung Yokohama Research Institute Co Ltd Antiglare film
JP2013130876A (en) * 2009-06-01 2013-07-04 Tomoegawa Paper Co Ltd Antiglare film and display using the same
JP2013176953A (en) * 2012-02-29 2013-09-09 Sumitomo Chemical Co Ltd Die for manufacturing antiglare film and method for manufacturing the same
JP2013210620A (en) * 2012-02-29 2013-10-10 Sumitomo Chemical Co Ltd Antiglare film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187952A (en) 2006-01-16 2007-07-26 Sumitomo Chemical Co Ltd Anti-glare film, method of manufacturing same, method of manufacturing die for same, and display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156132A (en) * 2005-12-06 2007-06-21 Sumitomo Chemical Co Ltd Anti-glare film and image display device
JP2008262190A (en) * 2007-03-19 2008-10-30 Dainippon Printing Co Ltd Antidazzle optical laminate
JP2010066761A (en) * 2008-08-13 2010-03-25 Sony Corp Optical film, method for manufacturing the same, antiglare film, optical layer-attached polarizer, and display apparatus
JP2013130876A (en) * 2009-06-01 2013-07-04 Tomoegawa Paper Co Ltd Antiglare film and display using the same
JP2011100027A (en) * 2009-11-06 2011-05-19 Sony Corp Antiglare film and method for producing the same
JP2012068473A (en) * 2010-09-24 2012-04-05 Sumitomo Chemical Co Ltd Liquid crystal display device
JP2012133066A (en) * 2010-12-21 2012-07-12 Samsung Yokohama Research Institute Co Ltd Antiglare film
JP2013176953A (en) * 2012-02-29 2013-09-09 Sumitomo Chemical Co Ltd Die for manufacturing antiglare film and method for manufacturing the same
JP2013210620A (en) * 2012-02-29 2013-10-10 Sumitomo Chemical Co Ltd Antiglare film

Also Published As

Publication number Publication date
KR20160091956A (en) 2016-08-03
CN105765417A (en) 2016-07-13
JP2015106038A (en) 2015-06-08
TW201529324A (en) 2015-08-01

Similar Documents

Publication Publication Date Title
JP2015152660A (en) Antiglare film
JP2016033659A (en) Antiglare film
JP2016033658A (en) Antiglare film
JP2016033660A (en) Antiglare film
KR20150095197A (en) Anti-glare film
WO2015050274A1 (en) Anti-glare film
WO2015050275A1 (en) Anti-glare film
JP2016033657A (en) Antiglare film
JP2015152658A (en) Antiglare film
JP2014232159A (en) Antiglare film, mold for producing antiglare film, and method for producing the same
WO2015080279A1 (en) Antiglare film
WO2015080282A1 (en) Antiglare film
WO2015080280A1 (en) Antiglare film
WO2015080281A1 (en) Antiglare film
WO2015050272A1 (en) Anti-glare film
JP2015152657A (en) Antiglare film
WO2015050273A1 (en) Anti-glare film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167016832

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14865352

Country of ref document: EP

Kind code of ref document: A1