WO2015080049A1 - Electrodynamic vibration generator - Google Patents

Electrodynamic vibration generator Download PDF

Info

Publication number
WO2015080049A1
WO2015080049A1 PCT/JP2014/080912 JP2014080912W WO2015080049A1 WO 2015080049 A1 WO2015080049 A1 WO 2015080049A1 JP 2014080912 W JP2014080912 W JP 2014080912W WO 2015080049 A1 WO2015080049 A1 WO 2015080049A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
coil
magnetic
vibration
magnetic gap
Prior art date
Application number
PCT/JP2014/080912
Other languages
French (fr)
Japanese (ja)
Inventor
秀修 青木
中村 勝彦
一志 中西
Original Assignee
Imv株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imv株式会社 filed Critical Imv株式会社
Publication of WO2015080049A1 publication Critical patent/WO2015080049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations

Definitions

  • the present invention relates to an electrodynamic vibration generator used in a vibration test system or the like, and more particularly to its magnetic circuit structure.
  • FIG. 4 As a type of magnetic circuit structure of a conventional electrodynamic vibration generator, a single yoke magnetic circuit as shown in FIG. 4 (see, for example, Patent Documents 1 and 2) or a double yoke as shown in FIG. Magnetic circuits (see, for example, Patent Documents 3 and 4) are known.
  • the single yoke magnetic circuit shown in FIG. 4 is housed in a yoke 61 made of a ferromagnetic material having an inner magnetic pole 61a, an outer magnetic pole 61b, and a coil housing 61c, and a coil housing 61c inside the outer magnetic pole 61b of the yoke 61.
  • a cylindrical magnetic gap 63 formed in a part of the closed magnetic path of the magnetic flux ⁇ 11 excited by passing a current through the exciting coil 62, and the drive coil is included in the magnetic gap 63.
  • 64 is arranged so that vibration is applied to the vibration table 65 integral with the drive coil 64 by an alternating current of a predetermined frequency flowing through the drive coil 64.
  • a leakage flux ⁇ 12 is generated around the portion of the magnetic gap 63, which has a higher magnetic resistance than the ferromagnetic portions of the inner magnetic pole 61 a and the outer magnetic pole 61 b of the yoke 61.
  • a leakage flux ⁇ 12 is generated around the portion of the magnetic gap 63, which has a higher magnetic resistance than the ferromagnetic portions of the inner magnetic pole 61 a and the outer magnetic pole 61 b of the yoke 61.
  • the double yoke magnetic circuit shown in FIG. 5A includes a yoke 71 made of a ferromagnetic material having an inner magnetic pole 71a, an outer magnetic pole 71b, and two coil storage portions 71c and 71d, and a coil inside the outer magnetic pole 71b of the yoke 71.
  • the drive coil 75 is disposed in the magnetic gap 74, and the vibration table 76 integrated with the drive coil 75 is vibrated by an alternating current flowing through the drive coil 75.
  • This double yoke magnetic circuit has an advantage that the magnetic flux 74 having a large magnetic resistance is inside the yoke 71, so that the leakage magnetic flux hardly appears outside the yoke 71.
  • the base 76 has a plurality of ribs 76b for connecting the drive coil 75 that vibrates in the magnetic gap 74 to the external mounting base 76a, and openings 76c formed between the plurality of ribs 76b, and thus has a complicated shape. There is a problem of becoming.
  • Patent Document 5 discloses a single-magnet with a degaussing coil in which a demagnetizing coil is provided around the shaking table in order to reduce the influence of leakage magnetic flux on the DUT attached to the shaking table. A magnetic circuit with a yoke is described.
  • a single yoke magnetic circuit with a degaussing coil is shown in FIG.
  • a demagnetizing coil 66 for generating a magnetic flux ⁇ 13 that cancels the leakage magnetic flux ⁇ 12 is provided around the vibration table 65 of the single yoke magnetic circuit shown in FIG.
  • the subsequent configuration is the same as that of the single yoke magnetic circuit shown in FIG.
  • the single yoke magnetic circuit with the demagnetizing coil shown in FIG. 6 can reduce the leakage flux as compared with the single yoke magnetic circuit shown in FIG. 4, but the magnitude and direction of the magnetic flux ⁇ 13 generated by the demagnetizing coil 66 are Since it is difficult to completely match the magnitude and direction of the leakage flux ⁇ 12 , there is a problem that the leakage flux is larger than that of the double yoke magnetic circuit shown in FIG.
  • an object of the present invention is to provide an electrodynamic vibration generator having a magnetic circuit structure capable of reducing leakage magnetic flux as much as a double yoke magnetic circuit structure while having a single yoke magnetic circuit structure.
  • the electrodynamic vibration generator of the present invention is: An exciting coil for generating a static magnetic field; A yoke made of a ferromagnetic material for forming a magnetic circuit and a magnetic gap by a static magnetic field generated by the exciting coil; A drive coil for generating vibration disposed in the magnetic gap; A vibration table formed integrally with the drive coil, A demagnetizing coil for canceling a leakage magnetic flux out of a magnetic flux generated by the static magnetic field generated by the exciting coil is installed inside the yoke in the vicinity of the vibration table.
  • a magnetic circuit (static magnetic field) is generated in the yoke surrounding the exciting coil.
  • the yoke is provided with a magnetic gap.
  • the drive coil vibrates in a direction perpendicular to the direction of the magnetic flux.
  • the drive coil is integrally provided with a vibration table, and the DUT attached to the vibration table vibrates at the frequency of the alternating current flowing through the drive coil.
  • leakage magnetic flux is generated outside the magnetic circuit formed in the yoke due to the magnetic resistance of the magnetic gap, magnetic saturation of the yoke, etc.
  • the leakage magnetic flux is canceled out, thereby reducing the influence of the magnetic flux on the DUT. Since the degaussing coil is provided inside the yoke having a small magnetic resistance, the leakage magnetic flux can be greatly reduced as compared with the case where the degaussing coil is installed outside the yoke.
  • the yoke has an exciting coil housing part for housing the exciting coil on the opposite side of the vibrating table across the magnetic gap, and a degaussing coil housing for housing the degaussing coil on the vibrating table side of the magnetic gap. Since the magnetic flux generated by the exciting coil and the magnetic flux generated by the degaussing coil are superimposed in the same direction in the magnetic gap by providing the portion, there is no demagnetization in the magnetic gap due to the provision of the degaussing coil. Contributes to increased magnetic force.
  • the yoke includes a first yoke having the exciting coil housing portion opened upward, covers the opening of the exciting coil housing portion from above, the demagnetizing coil housing portion opens upward, and forms the magnetic gap.
  • a second yoke having an inner periphery and a third yoke that covers the demagnetizing coil housing part from above, the exciting coil and the degaussing coil can be easily housed and the assembly is simplified.
  • an electrodynamic vibration generator having a magnetic circuit structure capable of reducing a leakage magnetic flux as much as a double yoke magnetic circuit structure while having a single yoke magnetic circuit structure.
  • FIG. 4 is a cross-sectional view taken along line AA of FIG. 3 showing an embodiment of the electrodynamic vibration generator according to the present invention. It is a top view which shows embodiment of the electrodynamic type vibration generator which concerns on this invention. It is the schematic which shows the example of the electrodynamic type vibration generator of the conventional single yoke magnetic circuit structure. It is the schematic which shows the example of the electrodynamic type vibration generator of the conventional double yoke magnetic circuit structure. It is a perspective view which shows the example of the vibration table used for the electrodynamic vibration generator of the conventional double yoke magnetic circuit structure. It is the schematic which shows the example of the electrodynamic vibration generator of the conventional single yoke magnetic circuit structure with a demagnetizing coil.
  • an electrodynamic vibration generator includes a yoke 1 made of a ferromagnetic material having an inner magnetic pole 1a, an outer magnetic pole 1b, an exciting coil housing portion 1c, and a demagnetizing coil housing portion 1d, An excitation coil 2 for generating a static magnetic field in the yoke 1 housed in the excitation coil housing 1c, a degaussing coil 3 housed in the degaussing coil housing 1d, and a magnetic gap 4 formed in the yoke 1 are arranged.
  • the structure has a drive coil 5 for generating vibration and a vibration table 6 to which a test object is attached, which is integrally connected to the drive coil 5 by a cylindrical body 7 made of a non-magnetic material.
  • a magnetic material having high magnetic permeability and high strength for example, a low carbon steel such as SS400 can be suitably used.
  • a non-magnetic high-strength metal such as an aluminum alloy, or a synthetic resin such as a carbon fiber can be suitably used.
  • the yoke 1 is formed with a gap 8 for allowing the cylinder 7 connecting the drive coil 5 and the vibration table 6 to move up and down.
  • the main magnetic flux passing through the magnetic gap 4 is ⁇ m1
  • the magnetic flux passing through the gap 8 is ⁇ m2
  • the vibration table is ⁇ L1 .
  • the main magnetic flux passing through the magnetic gap 4 and the gap 8 is ⁇ c1
  • the canceling magnetic flux in the vicinity of the vibration table 6 is ⁇ c2.
  • the leakage flux ⁇ L1 caused by the excitation coil 2 is canceled out by the cancellation flux ⁇ c2 , so the leakage flux ⁇ L1 and the cancellation flux ⁇ c2 are equal in value and opposite in direction.
  • the leakage magnetic flux in the vicinity of the vibration table 6 can be canceled.
  • the magnetic flux density in the magnetic gap 4 is reduced by providing the demagnetizing coil 3. Rather, it contributes to an increase in magnetomotive force.
  • the yoke 1 is divided into a first yoke 11, a second yoke 12, and a third yoke 13. FIG. And is integrally fixed with a bolt or the like.
  • the first yoke 11 has a lower inner portion including the exciting coil storage portion 1c among the inner inner magnetic pole 1a and the outer magnetic pole 1b.
  • the second yoke portion 12 has a middle portion of the outer magnetic pole 1b including the magnetic gap 4 and the demagnetizing coil storage portion 1d.
  • the third yoke portion 13 is an upper portion of the outer magnetic pole 1b that covers the upper portion of the demagnetizing coil 3 housed in the degaussing coil housing portion 1d.
  • the vibration table 6 is made of a non-magnetic material such as plastic, preferably carbon fiber, integrally with the cylindrical body 7.
  • An annular drive coil 5 is connected to the lower portion of the cylindrical body 7 so that it can move up and down in the magnetic gap 4. Placed in.
  • a moving space is secured inside the exciting coil housing 1c below the magnetic gap 4 and inside the demagnetizing coil housing 1d above so that the drive coil 5 can freely move up and down.
  • the yoke 1 is formed with a gap 8 for allowing the cylinder 7 connecting the drive coil 5 and the vibration table 6 to move up and down.
  • the upper portion of the yoke 1 is in contact with vertical walls 7a formed at a plurality of locations (four locations in the example of FIG. 3) on the upper portion of the cylindrical body 7 so as not to be laterally shaken when the vibration table 6 vibrates up and down.
  • An upper support mechanism 20 having a guide roller 21 is provided.
  • a flange 31 is attached to the center of the bottom of the vibration table 6, and a ball spline 32 is attached to the lower part of the flange 31.
  • the ball spline 32 includes a spline shaft provided with a transfer groove for a steel ball and an outer outer cylinder.
  • a cage, a side ring, and a steel ball are incorporated in the outer cylinder, and the spline shaft moves smoothly up and down. It can be done.
  • a shaft hole 33 for inserting the outer cylinder of the ball spline 32 is provided in the upper center portion of the yoke 1, and the lower support mechanism 30 is configured by the ball spline 32
  • a bellows-like air spring 40 is provided between the bottom of the vibration table 6 and the top of the yoke 1 such that the bellows-like air spring 40 can extend and retract.
  • Air chambers 41 and 42 communicated with the inside of the air spring 40 above and below the shaft hole 33. Is formed.
  • the air spring 40 supports the weight of the movable part including the test object attached to the vibration table 6 so that the position of the drive coil 5 is held at the center position in the height direction of the magnetic gap 4.
  • the drive coil 5 vibrates up and down around the position.
  • the air chambers 41 and 42 are installed for the purpose of alleviating pressure fluctuations to the air spring 40 when the drive coil 5 vibrates, and by increasing the volume of the air chambers 41 and 42, The frequency can be lowered.
  • vibration isolators 50 using a vibration isolating material such as an anti-vibration rubber 51 are provided at a plurality of locations, and vibration is difficult to propagate to a target to which the electrodynamic vibration generator of the present embodiment is attached. I am doing so.
  • a magnetic circuit (static magnetic field) is generated in the yoke 1 surrounding the exciting coil 2 by passing a direct current through the exciting coil 2.
  • the yoke 1 is provided with a magnetic gap 4, and a static magnetic field generated in the magnetic gap 4 and the drive coil 5 are caused to flow by passing an alternating current of a predetermined frequency through the drive coil 5 disposed in the magnetic gap 4.
  • the drive coil 5 vibrates in a direction orthogonal to the direction of the magnetic flux due to the force acting between the alternating current and the alternating current.
  • the drive coil 5 is integrally provided with a vibration table 6, and the device under test attached to the vibration table 6 vibrates at the frequency of the alternating current flowing through the drive coil 5.
  • the second example had the least leakage magnetic flux. It was found that the balance between the magnetomotive force of the exciting coil 2 and the magnetomotive force of the degaussing coil 3 is delicate, and the leakage magnetic flux increases when the balance is lost even at about 1%. For this reason, in an actual machine, it is preferable to set an appropriate magnitude of the magnetomotive force of the degaussing coil 3 by experiment.
  • the present invention is an electrodynamic vibration generator having a magnetic circuit structure capable of reducing leakage flux as much as a double yoke magnetic circuit structure while being a single yoke magnetic circuit structure. It can be suitably used for vibration tests.

Abstract

An electrodynamic vibration generator is provided that has a single-yoke magnetic circuit structure but is capable of reducing leakage flux to the level of that of a double-yoke magnetic circuit structure. This electrodynamic vibration generator is provided with an excitation coil (2) for generating a static magnetic field, a yoke (1) comprising a ferromagnetic body for forming a magnetic circuit using the static magnetic field generated by the excitation coil (2) and forming a magnetic gap (4), a drive coil (5) for vibration generation that is disposed in the magnetic gap (4), and a vibration table (6) that is integrally formed with the drive coil (5). A degaussing coil (3) for generating a canceling magnetic flux (ϕc2) for canceling the leakage flux (ϕL1) of the magnetic flux of the static magnetic field generated by the excitation coil (2) is disposed inside the yoke (1) near the vibration table (6). The yoke (1) has, to the side of the magnetic gap (4) opposite from the vibration table (6), an excitation coil accommodation part (1c) for accommodating the excitation coil (2) and, to the same side of the magnetic gap (4) as the vibration table (6), a degaussing coil accommodation part (1d) for accommodating the degaussing coil (3).

Description

動電型振動発生機Electrodynamic vibration generator
 本発明は、振動試験システム等で用いられる動電型振動発生機に関し、特にその磁気回路構造に関する。 The present invention relates to an electrodynamic vibration generator used in a vibration test system or the like, and more particularly to its magnetic circuit structure.
 従来の動電型振動発生機の磁気回路の構造のタイプとしては、図4に示すようなシングル・ヨーク磁気回路(例えば、特許文献1,2参照)や、図5に示すようなダブル・ヨーク磁気回路(例えば、特許文献3,4参照)が知られている。 As a type of magnetic circuit structure of a conventional electrodynamic vibration generator, a single yoke magnetic circuit as shown in FIG. 4 (see, for example, Patent Documents 1 and 2) or a double yoke as shown in FIG. Magnetic circuits (see, for example, Patent Documents 3 and 4) are known.
 図4に示すシングル・ヨーク磁気回路は、内側磁極61aと外側磁極61bとコイル収納部61cを有する強磁性体からなるヨーク61と、ヨーク61の外側磁極61bの内側のコイル収納部61cに収納された励磁コイル62と、励磁コイル62に電流を流すことにより励起された磁束Φ11の閉磁路の一部に形成された円筒状の磁気ギャップ63とを有し、この磁気ギャップ63内にドライブコイル64を配置し、ドライブコイル64に流す所定周波数の交流電流により、ドライブコイル64と一体の振動台65に振動を与えるように構成されている。 The single yoke magnetic circuit shown in FIG. 4 is housed in a yoke 61 made of a ferromagnetic material having an inner magnetic pole 61a, an outer magnetic pole 61b, and a coil housing 61c, and a coil housing 61c inside the outer magnetic pole 61b of the yoke 61. And a cylindrical magnetic gap 63 formed in a part of the closed magnetic path of the magnetic flux Φ 11 excited by passing a current through the exciting coil 62, and the drive coil is included in the magnetic gap 63. 64 is arranged so that vibration is applied to the vibration table 65 integral with the drive coil 64 by an alternating current of a predetermined frequency flowing through the drive coil 64.
 このシングル・ヨーク磁気回路では、ヨーク61の内側磁極61aと外側磁極61bの強磁性体部分に比べて磁気抵抗が高い磁気ギャップ63の部分の周りに漏れ磁束Φ12が生じ、振動台5上に設置される被試験物に悪影響を与えるという問題がある。特に、被試験物が精密機器の場合等では、磁界の影響を極力、避けることが要求されることがある。 In this single yoke magnetic circuit, a leakage flux Φ 12 is generated around the portion of the magnetic gap 63, which has a higher magnetic resistance than the ferromagnetic portions of the inner magnetic pole 61 a and the outer magnetic pole 61 b of the yoke 61. There is a problem of adversely affecting the DUT to be installed. In particular, when the device under test is a precision instrument, it may be required to avoid the influence of a magnetic field as much as possible.
 一方、図5Aに示すダブル・ヨーク磁気回路は、内側磁極71aと外側磁極71bと2つのコイル収納部71c,71dを有する強磁性体からなるヨーク71と、ヨーク71の外側磁極71bの内側のコイル収納部71c,71dに収納された励磁コイル72,73と、励磁コイル72,73に直流電流を流すことにより励起された磁束Φ21、Φ22の閉磁路の一部に形成された円筒状の磁気ギャップ74とを有し、この磁気ギャップ74内にドライブコイル75を配置し、ドライブコイル75に流す交流電流により、ドライブコイル75と一体の振動台76に振動を与えるように構成されている。 On the other hand, the double yoke magnetic circuit shown in FIG. 5A includes a yoke 71 made of a ferromagnetic material having an inner magnetic pole 71a, an outer magnetic pole 71b, and two coil storage portions 71c and 71d, and a coil inside the outer magnetic pole 71b of the yoke 71. Exciting coils 72 and 73 accommodated in the accommodating portions 71c and 71d, and cylindrical shapes formed in a part of a closed magnetic path of magnetic fluxes Φ 21 and Φ 22 excited by flowing a direct current through the exciting coils 72 and 73 The drive coil 75 is disposed in the magnetic gap 74, and the vibration table 76 integrated with the drive coil 75 is vibrated by an alternating current flowing through the drive coil 75.
 このダブル・ヨーク磁気回路では、磁気抵抗が大きい磁気ギャップ74がヨーク71の内部にあるため、漏れ磁束はヨーク71の外部にはほとんど出ないという利点があるが、図5Bに示すように、振動台76は、磁気ギャップ74内で振動するドライブコイル75を外部の取付台76aに連結するための複数のリブ76bと、複数のリブ76b間に形成される開口76cとを有するため、形状が複雑になるという問題がある。 This double yoke magnetic circuit has an advantage that the magnetic flux 74 having a large magnetic resistance is inside the yoke 71, so that the leakage magnetic flux hardly appears outside the yoke 71. However, as shown in FIG. The base 76 has a plurality of ribs 76b for connecting the drive coil 75 that vibrates in the magnetic gap 74 to the external mounting base 76a, and openings 76c formed between the plurality of ribs 76b, and thus has a complicated shape. There is a problem of becoming.
 このような問題を解決するために、特許文献5には、振動台に取り付けられる被試験物への漏れ磁束の影響を低減するため、振動台の周囲に消磁コイルを設けた消磁コイル付きシングル・ヨーク付き磁気回路が記載されている。 In order to solve such a problem, Patent Document 5 discloses a single-magnet with a degaussing coil in which a demagnetizing coil is provided around the shaking table in order to reduce the influence of leakage magnetic flux on the DUT attached to the shaking table. A magnetic circuit with a yoke is described.
 この消磁コイル付きシングル・ヨーク磁気回路を図6に示す。この磁気回路は、図4に示したシングル・ヨーク磁気回路の振動台65の周囲に、漏れ磁束Φ12を打ち消す磁束Φ13を発生させる消磁コイル66を設けたものである。後の構成は図4に示したシングル・ヨーク磁気回路と同様であるため説明を省略する。 A single yoke magnetic circuit with a degaussing coil is shown in FIG. In this magnetic circuit, a demagnetizing coil 66 for generating a magnetic flux Φ 13 that cancels the leakage magnetic flux Φ 12 is provided around the vibration table 65 of the single yoke magnetic circuit shown in FIG. The subsequent configuration is the same as that of the single yoke magnetic circuit shown in FIG.
特開2005-91018号公報(特許第4150648号公報)Japanese Patent Laying-Open No. 2005-91018 (Patent No. 4150648) 特開2000-121490号公報(特許第3895479号公報)JP 2000-121490 A (Patent No. 3895479) 特開2001-133357号公報(特許第3427119号公報)JP 2001-133357 A (Patent No. 3427119) 国際公開第2009/130818号パンフレット(特許第5124017号公報)International Publication No. 2009/130818 (Patent No. 5124017) 特表2005-517922号公報JP 2005-517922 gazette
 図6に示した消磁コイル付きシングル・ヨーク磁気回路では、図4に示したシングル・ヨーク磁気回路に比べて漏れ磁束は低減できるが、消磁コイル66で発生する磁束Φ13の大きさと向きを、漏れ磁束Φ12の大きさと向きに完全に一致させることは困難であるため、図5に示したダブル・ヨーク磁気回路に比べると漏れ磁束は大きいという問題がある。 The single yoke magnetic circuit with the demagnetizing coil shown in FIG. 6 can reduce the leakage flux as compared with the single yoke magnetic circuit shown in FIG. 4, but the magnitude and direction of the magnetic flux Φ 13 generated by the demagnetizing coil 66 are Since it is difficult to completely match the magnitude and direction of the leakage flux Φ 12 , there is a problem that the leakage flux is larger than that of the double yoke magnetic circuit shown in FIG.
 そこで本発明は、シングル・ヨーク磁気回路構造でありながら、ダブル・ヨーク磁気回路構造程度に漏れ磁束を低減することのできる磁気回路構造を有する動電型振動発生機を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an electrodynamic vibration generator having a magnetic circuit structure capable of reducing leakage magnetic flux as much as a double yoke magnetic circuit structure while having a single yoke magnetic circuit structure. .
 前記課題を解決するため、本発明の動電型振動発生機は、
 静磁場を生成するための励磁コイルと、
 前記励磁コイルにより生成された静磁場による磁気回路および磁気ギャップを形成するための強磁性体からなるヨークと、
 前記磁気ギャップ内に配置された振動発生用のドライブコイルと、
 前記ドライブコイルと一体に形成された振動台と
を備え、
 前記励磁コイルにより生成された静磁場による磁束のうち漏れ磁束分を打ち消す消磁コイルを、前記振動台の近傍の前記ヨーク内部に設置したことを特徴とする。
In order to solve the above problems, the electrodynamic vibration generator of the present invention is:
An exciting coil for generating a static magnetic field;
A yoke made of a ferromagnetic material for forming a magnetic circuit and a magnetic gap by a static magnetic field generated by the exciting coil;
A drive coil for generating vibration disposed in the magnetic gap;
A vibration table formed integrally with the drive coil,
A demagnetizing coil for canceling a leakage magnetic flux out of a magnetic flux generated by the static magnetic field generated by the exciting coil is installed inside the yoke in the vicinity of the vibration table.
 本発明においては、励磁コイルに直流電流を流すことにより、励磁コイルを取り巻くヨーク内に磁気回路(静磁場)が生成される。ヨークには磁気ギャップが設けられており、磁気ギャップ内に配置されたドライブコイルに所定周波数の交流電流を流すことにより、磁気ギャップに生成される静磁場とドライブコイルに流れる交流電流との間に働くフレミングの左手の法則に基づき、ドライブコイルは磁束の方向と直交する方向に振動する。ドライブコイルには振動台が一体に設けられており、振動台に取り付けられた被試験物はドライブコイルに流される交流電流の周波数で振動する。このとき、ヨーク内に形成される磁気回路の外部には、磁気ギャップの磁気抵抗やヨークの磁気飽和等により漏れ磁束が発生するが、ヨーク内部の振動台近傍に消磁コイルを設け、漏れ磁束とは略同じ大きさで逆方向の磁束を発生させることにより、漏れ磁束は打ち消され、これにより、磁束による被試験物への影響を低減させる。消磁コイルは、磁気抵抗の小さなヨーク内部に設けられているので、消磁コイルがヨークの外部に設置される場合に比べ、漏れ磁束を大幅に低減できる。 In the present invention, by applying a direct current to the exciting coil, a magnetic circuit (static magnetic field) is generated in the yoke surrounding the exciting coil. The yoke is provided with a magnetic gap. By passing an alternating current of a predetermined frequency through a drive coil arranged in the magnetic gap, the yoke is provided between a static magnetic field generated in the magnetic gap and an alternating current flowing through the drive coil. Based on Fleming's left-hand rule, the drive coil vibrates in a direction perpendicular to the direction of the magnetic flux. The drive coil is integrally provided with a vibration table, and the DUT attached to the vibration table vibrates at the frequency of the alternating current flowing through the drive coil. At this time, leakage magnetic flux is generated outside the magnetic circuit formed in the yoke due to the magnetic resistance of the magnetic gap, magnetic saturation of the yoke, etc. By generating a reverse direction magnetic flux with substantially the same size, the leakage magnetic flux is canceled out, thereby reducing the influence of the magnetic flux on the DUT. Since the degaussing coil is provided inside the yoke having a small magnetic resistance, the leakage magnetic flux can be greatly reduced as compared with the case where the degaussing coil is installed outside the yoke.
 前記ヨークには、前記磁気ギャップを挟んで前記振動台の反対側には前記励磁コイルを収納する励磁コイル収納部を、前記磁気ギャップの前記振動台側には前記消磁コイルを収納する消磁コイル収納部を設けることにより、励磁コイルで生成される磁束と消磁コイルで生成される磁束が磁気ギャップにおいて同じ方向に重畳されるため、消磁コイルを設けたことによる磁気ギャップにおける減磁はなく、むしろ起磁力の増加に寄与する。 The yoke has an exciting coil housing part for housing the exciting coil on the opposite side of the vibrating table across the magnetic gap, and a degaussing coil housing for housing the degaussing coil on the vibrating table side of the magnetic gap. Since the magnetic flux generated by the exciting coil and the magnetic flux generated by the degaussing coil are superimposed in the same direction in the magnetic gap by providing the portion, there is no demagnetization in the magnetic gap due to the provision of the degaussing coil. Contributes to increased magnetic force.
 前記ヨークは、前記励磁コイル収納部が上部に開口した第1ヨークと、前記励磁コイル収納部の前記開口を上方から覆うとともに前記消磁コイル収納部が上部に開口し、かつ前記磁気ギャップを形成する内周を有する第2ヨークと、前記消磁コイル収納部を上方から覆う第3ヨークとを有する構成とすることで、励磁コイル、消磁コイルの収納が容易となり、組み立てが簡略化する。 The yoke includes a first yoke having the exciting coil housing portion opened upward, covers the opening of the exciting coil housing portion from above, the demagnetizing coil housing portion opens upward, and forms the magnetic gap. By having a second yoke having an inner periphery and a third yoke that covers the demagnetizing coil housing part from above, the exciting coil and the degaussing coil can be easily housed and the assembly is simplified.
 本発明によれば、シングル・ヨーク磁気回路構造でありながら、ダブル・ヨーク磁気回路構造程度に漏れ磁束を低減することのできる磁気回路構造を有する動電型振動発生機が得られる。 According to the present invention, it is possible to obtain an electrodynamic vibration generator having a magnetic circuit structure capable of reducing a leakage magnetic flux as much as a double yoke magnetic circuit structure while having a single yoke magnetic circuit structure.
本発明に係る動電型振動発生機の構成を示す概略図である。It is the schematic which shows the structure of the electrodynamic type vibration generator which concerns on this invention. 本発明に係る動電型振動発生機の実施の形態を示す図3のA-A線断面図である。FIG. 4 is a cross-sectional view taken along line AA of FIG. 3 showing an embodiment of the electrodynamic vibration generator according to the present invention. 本発明に係る動電型振動発生機の実施の形態を示す平面図である。It is a top view which shows embodiment of the electrodynamic type vibration generator which concerns on this invention. 従来のシングル・ヨーク磁気回路構造の動電型振動発生機の例を示す概略図である。It is the schematic which shows the example of the electrodynamic type vibration generator of the conventional single yoke magnetic circuit structure. 従来のダブル・ヨーク磁気回路構造の動電型振動発生機の例を示す概略図である。It is the schematic which shows the example of the electrodynamic type vibration generator of the conventional double yoke magnetic circuit structure. 従来のダブル・ヨーク磁気回路構造の動電型振動発生機に用いられる振動台の例を示す斜視図である。It is a perspective view which shows the example of the vibration table used for the electrodynamic vibration generator of the conventional double yoke magnetic circuit structure. 従来の消磁コイル付きシングル・ヨーク磁気回路構造の動電型振動発生機の例を示す概略図である。It is the schematic which shows the example of the electrodynamic vibration generator of the conventional single yoke magnetic circuit structure with a demagnetizing coil.
 本発明に係る動電型振動発生機は、図1に示すように、内側磁極1aと外側磁極1bと励磁コイル収納部1cと消磁コイル収納部1dとを有する強磁性体からなるヨーク1と、励磁コイル収納部1cに収納されヨーク1に静磁場を生成するための励磁コイル2と、消磁コイル収納部1dに収納された消磁コイル3と、ヨーク1に形成された磁気ギャップ4内に配置された振動発生用のドライブコイル5と、非磁性体からなる筒体7によりドライブコイル5と一体に連結された、被試験物を取り付ける振動台6とを有した構造となっている。ヨーク1の材料としては、高透磁率で高強度の磁性材料、例えばSS400等の低炭素鋼を好適に用いることができる。振動台6の材料としては、非磁性体の高強度の金属、例えばアルミニウム合金、あるいは合成樹脂、例えばカーボンファイバを好適に用いることができる。 As shown in FIG. 1, an electrodynamic vibration generator according to the present invention includes a yoke 1 made of a ferromagnetic material having an inner magnetic pole 1a, an outer magnetic pole 1b, an exciting coil housing portion 1c, and a demagnetizing coil housing portion 1d, An excitation coil 2 for generating a static magnetic field in the yoke 1 housed in the excitation coil housing 1c, a degaussing coil 3 housed in the degaussing coil housing 1d, and a magnetic gap 4 formed in the yoke 1 are arranged. The structure has a drive coil 5 for generating vibration and a vibration table 6 to which a test object is attached, which is integrally connected to the drive coil 5 by a cylindrical body 7 made of a non-magnetic material. As the material of the yoke 1, a magnetic material having high magnetic permeability and high strength, for example, a low carbon steel such as SS400 can be suitably used. As a material of the vibration table 6, a non-magnetic high-strength metal such as an aluminum alloy, or a synthetic resin such as a carbon fiber can be suitably used.
 なお、ヨーク1には、ドライブコイル5が配置される磁気ギャップ4のほかに、ドライブコイル5と振動台6とを連結する筒体7が上下動できるためのギャップ8が形成されている。 In addition to the magnetic gap 4 in which the drive coil 5 is disposed, the yoke 1 is formed with a gap 8 for allowing the cylinder 7 connecting the drive coil 5 and the vibration table 6 to move up and down.
 図1において、励磁コイル2に直流電流を流すことによってヨーク1内に形成される静磁界の磁束のうち、磁気ギャップ4を通る主磁束をΦm1、ギャップ8を通る磁束をΦm2、振動台6近辺における漏れ磁束をΦL1とする。また、消磁コイル3に直流電流を流すことによってヨーク1内に形成される静磁界の磁束のうち、磁気ギャップ4およびギャップ8を通る主磁束をΦc1、振動台6近辺における打ち消し磁束をΦc2とする。 In FIG. 1, among the static magnetic fluxes formed in the yoke 1 by passing a direct current through the exciting coil 2, the main magnetic flux passing through the magnetic gap 4 is Φ m1 , the magnetic flux passing through the gap 8 is Φ m2 , and the vibration table. Let the leakage flux near 6 be Φ L1 . Of the static magnetic field magnetic flux formed in the yoke 1 by passing a direct current through the demagnetizing coil 3, the main magnetic flux passing through the magnetic gap 4 and the gap 8 is Φ c1 , and the canceling magnetic flux in the vicinity of the vibration table 6 is Φ c2. And
 本発明では、励磁コイル2による漏れ磁束ΦL1を打ち消し磁束Φc2で打ち消そうとしているので、漏れ磁束ΦL1と打ち消し磁束Φc2を、値は等しく、向きが反対になるように消磁コイル3に流す電流を設定することで、振動台6近傍の漏れ磁束を打ち消すことができることになる。 In the present invention, the leakage flux Φ L1 caused by the excitation coil 2 is canceled out by the cancellation flux Φ c2 , so the leakage flux Φ L1 and the cancellation flux Φ c2 are equal in value and opposite in direction. By setting the current to flow through the leakage flux, the leakage magnetic flux in the vicinity of the vibration table 6 can be canceled.
 なお、励磁コイル2による主磁束Φm1と、消磁コイル3による主磁束Φc1は、磁気ギャップ4においては同じ向きになるので、消磁コイル3を設けたことにより磁気ギャップ4における磁束密度の減少はなく、むしろ起磁力の増加に寄与する。 Since the main magnetic flux Φ m1 due to the exciting coil 2 and the main magnetic flux Φ c1 due to the degaussing coil 3 are in the same direction in the magnetic gap 4, the magnetic flux density in the magnetic gap 4 is reduced by providing the demagnetizing coil 3. Rather, it contributes to an increase in magnetomotive force.
 以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。
 図2および図3は、本発明の実施の形態に係る動電型振動発生機を示すものであり、ヨーク1は、第1ヨーク11と、第2ヨーク12と、第3ヨーク13とに分割して構成され、ボルト等で一体に固定される。第1ヨーク11は、中央の内側磁極1aと、外側磁極1bのうち励磁コイル収納部1cを含む下段の部分を有する。第2ヨーク部12は、外側磁極1bのうち、磁気ギャップ4と消磁コイル収納部1dを含む中段の部分を有する。第3ヨーク部13は、外側磁極1bのうち、消磁コイル収納部1dに収納された消磁コイル3の上部を覆う上段の部分となる。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
2 and 3 show an electrodynamic vibration generator according to an embodiment of the present invention. The yoke 1 is divided into a first yoke 11, a second yoke 12, and a third yoke 13. FIG. And is integrally fixed with a bolt or the like. The first yoke 11 has a lower inner portion including the exciting coil storage portion 1c among the inner inner magnetic pole 1a and the outer magnetic pole 1b. The second yoke portion 12 has a middle portion of the outer magnetic pole 1b including the magnetic gap 4 and the demagnetizing coil storage portion 1d. The third yoke portion 13 is an upper portion of the outer magnetic pole 1b that covers the upper portion of the demagnetizing coil 3 housed in the degaussing coil housing portion 1d.
 振動台6は筒体7と一体に非磁性体、例えばプラスチック、好ましくはカーボンファイバで形成され、筒体7の下部には、環状のドライブコイル5が連結されて磁気ギャップ4内に上下動自在に配置される。磁気ギャップ4の下部の励磁コイル収納部1cの内側と上部の消磁コイル収納部1dの内側には、ドライブコイル5が自由に上下動できるよう、移動スペースが確保されている。
 なお、ヨーク1には、ドライブコイル5が配置される磁気ギャップ4のほかに、ドライブコイル5と振動台6とを連結する筒体7が上下動できるためのギャップ8が形成されている。
The vibration table 6 is made of a non-magnetic material such as plastic, preferably carbon fiber, integrally with the cylindrical body 7. An annular drive coil 5 is connected to the lower portion of the cylindrical body 7 so that it can move up and down in the magnetic gap 4. Placed in. A moving space is secured inside the exciting coil housing 1c below the magnetic gap 4 and inside the demagnetizing coil housing 1d above so that the drive coil 5 can freely move up and down.
In addition to the magnetic gap 4 in which the drive coil 5 is disposed, the yoke 1 is formed with a gap 8 for allowing the cylinder 7 connecting the drive coil 5 and the vibration table 6 to move up and down.
 ヨーク1の上部には、振動台6が上下に振動する際に横ブレしないように、筒体7の上部の複数箇所(図3の例では4箇所)に形成された垂直壁7aに当接するガイドローラ21を有する上部支持機構20が設けられている。さらに、振動台6の底部中心部にはフランジ31が取り付けられており、このフランジ31の下部にボールスプライン32が取り付けられている。ボールスプライン32は鋼球の転送溝を設けたスプライン軸と外側の外筒とからなっており、外筒には保持器、サイドリング、鋼球が組み込まれており、スプライン軸が円滑に上下動できるようになっている。ヨーク1の上部中心部にはボールスプライン32の外筒を挿入するための軸穴33が設けられ、ボールスプライン32と軸穴33によって下部支持機構30が構成されている。 The upper portion of the yoke 1 is in contact with vertical walls 7a formed at a plurality of locations (four locations in the example of FIG. 3) on the upper portion of the cylindrical body 7 so as not to be laterally shaken when the vibration table 6 vibrates up and down. An upper support mechanism 20 having a guide roller 21 is provided. Further, a flange 31 is attached to the center of the bottom of the vibration table 6, and a ball spline 32 is attached to the lower part of the flange 31. The ball spline 32 includes a spline shaft provided with a transfer groove for a steel ball and an outer outer cylinder. A cage, a side ring, and a steel ball are incorporated in the outer cylinder, and the spline shaft moves smoothly up and down. It can be done. A shaft hole 33 for inserting the outer cylinder of the ball spline 32 is provided in the upper center portion of the yoke 1, and the lower support mechanism 30 is configured by the ball spline 32 and the shaft hole 33.
 振動台6の底部とヨーク1の上部との間には、蛇腹状の空気ばね40が伸縮自在に設けられ、軸穴33の上下には、空気ばね40の内部と連通する空気室41,42が形成されている。空気ばね40は、振動台6に取り付けられる被試験物を含む可動部の重量を支えて、ドライブコイル5の位置が磁気ギャップ4の高さ方向の中心位置に保持されるようにするものであり、その位置を中心にして、ドライブコイル5は上下振動することになる。
 空気室41,42は、ドライブコイル5が振動するときに、空気ばね40への圧力変動の緩和を目的として設置され、また空気室41,42の容積を大きくすることにより、空気ばね40の固有振動数を下げることができる。
 ヨーク1の底部には、防振ゴム51等の防振材を用いた防振装置50が複数箇所に設けられ、本実施の形態の動電型振動発生機を取り付ける対象に振動が伝播しにくいようにしている。
A bellows-like air spring 40 is provided between the bottom of the vibration table 6 and the top of the yoke 1 such that the bellows-like air spring 40 can extend and retract. Air chambers 41 and 42 communicated with the inside of the air spring 40 above and below the shaft hole 33. Is formed. The air spring 40 supports the weight of the movable part including the test object attached to the vibration table 6 so that the position of the drive coil 5 is held at the center position in the height direction of the magnetic gap 4. The drive coil 5 vibrates up and down around the position.
The air chambers 41 and 42 are installed for the purpose of alleviating pressure fluctuations to the air spring 40 when the drive coil 5 vibrates, and by increasing the volume of the air chambers 41 and 42, The frequency can be lowered.
At the bottom of the yoke 1, vibration isolators 50 using a vibration isolating material such as an anti-vibration rubber 51 are provided at a plurality of locations, and vibration is difficult to propagate to a target to which the electrodynamic vibration generator of the present embodiment is attached. I am doing so.
 本実施の形態において、励磁コイル2に直流電流を流すことにより、励磁コイル2を取り巻くヨーク1内に磁気回路(静磁場)が生成される。ヨーク1には磁気ギャップ4が設けられており、磁気ギャップ4内に配置されたドライブコイル5に所定周波数の交流電流を流すことにより、磁気ギャップ4に生成される静磁場とドライブコイル5に流れる交流電流との間に働く力により、ドライブコイル5は磁束の方向と直交する方向に振動する。ドライブコイル5には振動台6が一体に設けられており、振動台6に取り付けられた被試験物はドライブコイル5に流される交流電流の周波数で振動する。このとき、ヨーク1内に形成される磁気回路の外部には、磁気ギャップ4の磁気抵抗やヨーク1の磁気飽和等により漏れ磁束が発生するが、ヨーク1内部の振動台6近傍に消磁コイル3を設け、漏れ磁束とは略同じ大きさで逆方向の磁束を発生させることにより、漏れ磁束を打ち消し、これにより、磁束による被試験物への影響を低減させることができる。 In this embodiment, a magnetic circuit (static magnetic field) is generated in the yoke 1 surrounding the exciting coil 2 by passing a direct current through the exciting coil 2. The yoke 1 is provided with a magnetic gap 4, and a static magnetic field generated in the magnetic gap 4 and the drive coil 5 are caused to flow by passing an alternating current of a predetermined frequency through the drive coil 5 disposed in the magnetic gap 4. The drive coil 5 vibrates in a direction orthogonal to the direction of the magnetic flux due to the force acting between the alternating current and the alternating current. The drive coil 5 is integrally provided with a vibration table 6, and the device under test attached to the vibration table 6 vibrates at the frequency of the alternating current flowing through the drive coil 5. At this time, leakage magnetic flux is generated outside the magnetic circuit formed in the yoke 1 due to the magnetic resistance of the magnetic gap 4, magnetic saturation of the yoke 1, etc., but the degaussing coil 3 is located near the vibration table 6 inside the yoke 1. , And generating a magnetic flux in the opposite direction that is substantially the same size as the leakage magnetic flux, thereby canceling out the leakage magnetic flux, thereby reducing the influence of the magnetic flux on the DUT.
 ここで、励磁コイル2の起磁力と、その起磁力に起因する漏れ磁束を打ち消すために消磁コイル3に流す電流による起磁力と、振動台6上の観測部位における計測磁束密度の関係の実験例を下に示す。 Here, an experimental example of the relationship between the magnetomotive force of the exciting coil 2, the magnetomotive force due to the current flowing through the degaussing coil 3 to cancel the leakage magnetic flux caused by the magnetomotive force, and the measured magnetic flux density at the observation site on the vibration table 6. Is shown below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この実験例では、第2例が、最も漏れ磁束が少なかった。励磁コイル2の起磁力と消磁コイル3の起磁力のバランスは微妙であり、バランスが1%程度でも崩れると、漏れ磁束が大きくなることが判明した。このため、実機においては、実験により、適正な消磁コイル3の起磁力の大きさを設定することが好適である。 In this experimental example, the second example had the least leakage magnetic flux. It was found that the balance between the magnetomotive force of the exciting coil 2 and the magnetomotive force of the degaussing coil 3 is delicate, and the leakage magnetic flux increases when the balance is lost even at about 1%. For this reason, in an actual machine, it is preferable to set an appropriate magnitude of the magnetomotive force of the degaussing coil 3 by experiment.
 本発明は、シングル・ヨーク磁気回路構造でありながら、ダブル・ヨーク磁気回路構造程度に漏れ磁束を低減することのできる磁気回路構造を有する動電型振動発生機として、車載機器、その他の機器の振動試験に好適に利用することができる。 The present invention is an electrodynamic vibration generator having a magnetic circuit structure capable of reducing leakage flux as much as a double yoke magnetic circuit structure while being a single yoke magnetic circuit structure. It can be suitably used for vibration tests.
 1 ヨーク
 1a 内側磁極
 1b 外側磁極
 1c 励磁コイル収納部
 1d 消磁コイル収納部
 2 励磁コイル
 3 消磁コイル
 4 磁気ギャップ
 5 ドライブコイル
 6 振動台
 7 筒体
 7a 垂直壁
 8 ギャップ
 11 第1ヨーク
 12 第2ヨーク
 13 第3ヨーク
 20 上部支持機構
 21 ガイドローラ
 30 下部支持機構
 31 フランジ
 32 ボールスプライン
 33 軸穴
 40 空気ばね
 41,42 空気室
 50 防振装置
 51 防振ゴム
DESCRIPTION OF SYMBOLS 1 Yoke 1a Inner magnetic pole 1b Outer magnetic pole 1c Excitation coil accommodating part 1d Demagnetizing coil accommodating part 2 Exciting coil 3 Demagnetizing coil 4 Magnetic gap 5 Drive coil 6 Shaking table 7 Cylindrical body 7a Vertical wall 8 Gap 11 1st yoke 12 2nd yoke 13 Third yoke 20 Upper support mechanism 21 Guide roller 30 Lower support mechanism 31 Flange 32 Ball spline 33 Shaft hole 40 Air spring 41, 42 Air chamber 50 Vibration isolator 51 Vibration isolator rubber

Claims (7)

  1.  静磁場を生成するための励磁コイルと、
     前記励磁コイルにより生成された静磁場による磁気回路および磁気ギャップを形成するための強磁性体からなるヨークと、
     前記磁気ギャップ内に配置された振動発生用のドライブコイルと、
     前記ドライブコイルと一体に形成された振動台と
    を備え、
     前記励磁コイルにより生成された静磁場による磁束のうち漏れ磁束分を打ち消す消磁コイルを、前記振動台の近傍の前記ヨーク内部に設置したことを特徴とする動電型振動発生機。
    An exciting coil for generating a static magnetic field;
    A yoke made of a ferromagnetic material for forming a magnetic circuit and a magnetic gap by a static magnetic field generated by the exciting coil;
    A drive coil for generating vibration disposed in the magnetic gap;
    A vibration table formed integrally with the drive coil,
    An electrodynamic vibration generator characterized in that a degaussing coil for canceling a leakage magnetic flux out of a magnetic flux generated by the static magnetic field generated by the excitation coil is installed inside the yoke in the vicinity of the vibration table.
  2.  前記ヨークには、前記磁気ギャップを挟んで前記振動台の反対側には前記励磁コイルを収納する励磁コイル収納部を、前記磁気ギャップの前記振動台側には前記消磁コイルを収納する消磁コイル収納部を設けた請求項1記載の動電型振動発生機。 The yoke has an exciting coil housing part for housing the exciting coil on the opposite side of the vibrating table across the magnetic gap, and a degaussing coil housing for housing the degaussing coil on the vibrating table side of the magnetic gap. The electrodynamic vibration generator according to claim 1, further comprising a portion.
  3.  前記ヨークは、前記励磁コイル収納部が上部に開口した第1ヨークと、前記励磁コイル収納部の前記開口を上方から覆うとともに前記消磁コイル収納部が上部に開口し、かつ前記磁気ギャップを形成する内周を有する第2ヨークと、前記消磁コイル収納部を上方から覆う第3ヨークとを有する請求項2記載の動電型振動発生機。 The yoke includes a first yoke having the exciting coil housing portion opened upward, covers the opening of the exciting coil housing portion from above, the demagnetizing coil housing portion opens upward, and forms the magnetic gap. The electrodynamic vibration generator according to claim 2, further comprising: a second yoke having an inner periphery, and a third yoke that covers the demagnetizing coil storage portion from above.
  4.  前記振動台は筒体と一体に成形され、前記筒体の下部には、環状の前記ドライブコイルが連結されて前記磁気ギャップ内に振動自在に配置された、請求項1記載の動電型振動発生機。 2. The electrodynamic vibration according to claim 1, wherein the vibration table is formed integrally with a cylindrical body, and the annular drive coil is connected to a lower portion of the cylindrical body so as to freely vibrate in the magnetic gap. Generator.
  5.  前記ヨークの上部には、前記筒体の上部の複数箇所に形成された垂直壁に当接するガイドローラを有する上部支持機構が設けられている、請求項1記載の動電型振動発生機。 The electrodynamic vibration generator according to claim 1, wherein an upper support mechanism having guide rollers that abut against vertical walls formed at a plurality of positions on the upper portion of the cylindrical body is provided at an upper portion of the yoke.
  6.  前記振動台の底部と前記ヨークの上部との間には、空気ばねが伸縮自在に設けられ、前記ヨークの上部中心部に設けられた軸穴の上下には、前記空気ばねの内部と連通する空気室が形成されている、請求項1記載の動電型振動発生機。 An air spring is telescopically provided between the bottom of the vibration table and the top of the yoke, and communicates with the interior of the air spring above and below a shaft hole provided in the upper center of the yoke. The electrodynamic vibration generator according to claim 1, wherein an air chamber is formed.
  7.  前記ヨークの底部には、防振装置が複数箇所に設けられている、請求項1記載の導電型振動発生機。 The conductive vibration generator according to claim 1, wherein a vibration isolator is provided at a plurality of locations on the bottom of the yoke.
PCT/JP2014/080912 2013-11-28 2014-11-21 Electrodynamic vibration generator WO2015080049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013246284A JP5758475B2 (en) 2013-11-28 2013-11-28 Electrodynamic vibration generator
JP2013-246284 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015080049A1 true WO2015080049A1 (en) 2015-06-04

Family

ID=53198991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080912 WO2015080049A1 (en) 2013-11-28 2014-11-21 Electrodynamic vibration generator

Country Status (2)

Country Link
JP (1) JP5758475B2 (en)
WO (1) WO2015080049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111964855A (en) * 2019-12-31 2020-11-20 苏州苏试试验集团股份有限公司 Automatic magnetic flux leakage control method for electric vibration table

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210153753A (en) 2016-01-15 2021-12-17 고쿠사이 게이소쿠키 가부시키가이샤 Vibration application device, and electrodynamic actuator
JP6855050B2 (en) * 2016-01-15 2021-04-07 国際計測器株式会社 Electrodynamic actuator and vibration exciter
JP7382062B2 (en) 2020-01-30 2023-11-16 Imv株式会社 Support devices and vibration generators
CN111693238A (en) * 2020-06-24 2020-09-22 苏州苏试试验集团股份有限公司 Dual-output electric vibration table
JP7407463B2 (en) 2022-01-06 2024-01-04 Imv株式会社 Electrodynamic vibration generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1507163A (en) * 1966-03-26 1967-12-29 Vibration generator
US4715229A (en) * 1986-05-05 1987-12-29 Ling Electronics, Inc. Apparatus for vibration testing
JPH11173954A (en) * 1997-12-08 1999-07-02 Kayaba Ind Co Ltd Suspension testing apparatus of single wheel model
JP2005517922A (en) * 2002-02-11 2005-06-16 エルディーエス テスト アンド メジャーメント リミテッド Electromagnetic actuator
JP2010261765A (en) * 2009-05-01 2010-11-18 Aichi Electric Co Ltd Device and method for performing vibration characteristics testing
JP2013015544A (en) * 2008-04-24 2013-01-24 Kokusai Keisokki Kk Excitation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1507163A (en) * 1966-03-26 1967-12-29 Vibration generator
US4715229A (en) * 1986-05-05 1987-12-29 Ling Electronics, Inc. Apparatus for vibration testing
JPH11173954A (en) * 1997-12-08 1999-07-02 Kayaba Ind Co Ltd Suspension testing apparatus of single wheel model
JP2005517922A (en) * 2002-02-11 2005-06-16 エルディーエス テスト アンド メジャーメント リミテッド Electromagnetic actuator
JP2013015544A (en) * 2008-04-24 2013-01-24 Kokusai Keisokki Kk Excitation device
JP2010261765A (en) * 2009-05-01 2010-11-18 Aichi Electric Co Ltd Device and method for performing vibration characteristics testing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111964855A (en) * 2019-12-31 2020-11-20 苏州苏试试验集团股份有限公司 Automatic magnetic flux leakage control method for electric vibration table

Also Published As

Publication number Publication date
JP2015105823A (en) 2015-06-08
JP5758475B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2015080049A1 (en) Electrodynamic vibration generator
US9743192B2 (en) Speaker and vibration control unit
US8837762B2 (en) Speaker
CN207818356U (en) Three-phase reactor and motor drive
WO2018058809A1 (en) Linear vibration motor
JP2007221787A (en) Audio speaker and method for incorporating vibration system in driving unit of audio speaker
JP5689519B1 (en) Static load holding device for electrodynamic vibration generator
JP7073080B2 (en) Vibration test equipment
JP2007007515A (en) Vibration actuator
JP2006034955A (en) Magnetic resonance imaging apparatus
JP2013223334A (en) Vibration generation device
US20160006333A1 (en) Linear actuator
JP2012013221A (en) Electromotive active dynamic vibration absorbing apparatus for vehicle
JP2018133492A (en) Reactor including iron core part and coil, motor drive device, power conditioner, and machine
JP2006005852A (en) Speaker system
KR101178330B1 (en) Linear actuator
KR101115253B1 (en) Linear vibration generator
CN106160399B (en) Short stroke linear motor
US10492005B1 (en) High-efficiency speaker with multi-magnet structure
JP2018124120A (en) Vibration testing device
US20150280634A1 (en) Electro-magnetic transducer and vibration control system
KR20110006519A (en) Linear vibration motor
KR101397816B1 (en) Vibrator
JP2019115200A (en) Vibration power generator
JP2019115196A (en) Vibration power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865369

Country of ref document: EP

Kind code of ref document: A1