WO2015079753A1 - Vehicle air purifier - Google Patents

Vehicle air purifier Download PDF

Info

Publication number
WO2015079753A1
WO2015079753A1 PCT/JP2014/072083 JP2014072083W WO2015079753A1 WO 2015079753 A1 WO2015079753 A1 WO 2015079753A1 JP 2014072083 W JP2014072083 W JP 2014072083W WO 2015079753 A1 WO2015079753 A1 WO 2015079753A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
filter
vehicle
ion generator
air passage
Prior art date
Application number
PCT/JP2014/072083
Other languages
French (fr)
Japanese (ja)
Inventor
茂幸 原田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015550587A priority Critical patent/JP6100918B2/en
Priority to CN201480044016.0A priority patent/CN105452031B/en
Publication of WO2015079753A1 publication Critical patent/WO2015079753A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/0071Electrically conditioning the air, e.g. by ionizing
    • B60H3/0078Electrically conditioning the air, e.g. by ionizing comprising electric purifying means

Definitions

  • the present invention relates to a vehicle air cleaning device that cleans the air in a passenger compartment.
  • Patent Document 1 A conventional vehicle air cleaning device is disclosed in Patent Document 1.
  • This vehicle air cleaning device has a housing, and the housing is provided with an air passage having an outside air inlet and an inside air inlet opened at one end and an air outlet opened at the other end.
  • the outside air inlet sucks air outside the vehicle, and the inside air inlet sucks air inside the vehicle interior.
  • the air outlet blows out the air flowing through the air passage into the passenger compartment.
  • a first damper that selectively switches between an outside air inlet and an inside air inlet is arranged, and a blower is arranged downstream of the first damper.
  • a first branch path and a second branch path whose flow paths are switched by the second damper are provided downstream of the blower.
  • a first filter is disposed on the first branch path, and a second filter having a lower airflow resistance than the first filter is disposed on the second branch path.
  • An evaporator for cooling the air is disposed downstream of the junction of the first branch path and the second branch path.
  • the air flow path is switched to the first branch path by the second damper when the air volume is normal. Thereby, dust etc. contained in the air flowing through the air passage are collected by the first filter.
  • the second damper switches the air flow path to the second branch path. Thereby, the dust contained in the air flowing through the air passage is collected by the second filter. At this time, since the ventilation resistance of the second filter is smaller than the ventilation resistance of the first filter, a large amount of cold air can be supplied into the vehicle interior without increasing the size of the blower.
  • Patent Document 2 a vehicle air cleaning device including an ion generator that emits negative ions and positive ions in an air passage is known (Patent Document 2).
  • the sterilization and deodorization of the passenger compartment can be performed by negative ions and positive ions sent out from the outlet.
  • Japanese Patent Laid-Open No. 9-39559 page 3, FIG. 1
  • Japanese Patent Laying-Open No. 2013-18451 5th page, FIG. 2
  • An object of the present invention is to provide a vehicle air cleaning device capable of collecting fine particles without deteriorating convenience.
  • the present invention provides an air passage that communicates a suction port that sucks air outside or inside a vehicle and a blowout port that blows out air into the vehicle, a blower disposed in the air passage, A particulate sensor for detecting the concentration of particulates in the passenger compartment, an ion generator for generating negative ions and positive ions, and a filter that collects particulates contained in the air flowing through the air passage and is charged with a predetermined polarity.
  • a first release mode in which both negative ions and positive ions are released to the air passage by the ion generator, and ions having a polarity opposite to that of the filter are mainly released by the ion generator to the air passage.
  • the second release mode when the concentration of the particulates in the passenger compartment exceeds a predetermined concentration during the first release mode. It is characterized by switching.
  • the mode is switched to the second release mode.
  • ions having a polarity opposite to that of the filter charged with a predetermined polarity are sent from the outlet to the vehicle interior, and particles in the vehicle interior are charged with a polarity opposite to that of the filter.
  • Fine particles charged with a polarity opposite to that of the filter are sucked into the air passage from the suction port and adsorbed on the filter.
  • the present invention is preferably provided with a charging device for charging the filter positively or negatively in the vicinity of the filter.
  • the charging device includes a first ion generating unit that generates one of negative ions and positive ions, and a second ion generating unit that generates the other.
  • a first ion generator is disposed upstream of the filter, a second ion generator is disposed downstream of the filter, and a distance between the second ion generator and the filter is determined between the first ion generator and the filter. It is preferable that the distance is shorter than.
  • the ion generator boosts a voltage from a power source, a first discharge electrode connected to one end of the secondary winding of the boost transformer, A second discharge electrode; and a first induction electrode and a second induction electrode connected to the other end of the secondary winding and facing the first discharge electrode and the second discharge electrode, respectively, and grounded via a switch
  • One of negative ions and positive ions is generated from the first discharge electrode and the other is generated from the second discharge electrode, and the first discharge electrode is disposed downstream of the second discharge electrode, and the first discharge mode is It is preferable that the switch is turned off and the switch is turned on in the second discharge mode.
  • the communication passage branched from the air passage downstream of the ion generation device and connected to the filter, and the communication passage and the air passage are selected.
  • a damper that opens in a second manner, and generates one of negative ions and positive ions by the ion generator in the second release mode opens the communication path by the damper, leads to the filter, and generates the other to generate the It is preferable to switch the damper and guide it to the outlet.
  • the vehicle interior can be sterilized and deodorized by both negative ions and positive ions. .
  • a filter charged with a predetermined polarity the ion generator has a second release mode in which ions having a polarity opposite to that of the filter are mainly released into the air passage, and the concentration of particulates in the vehicle interior during the first release mode. Is switched to the second release mode when the concentration exceeds a predetermined concentration.
  • the particles in the passenger compartment are charged with ions having a polarity opposite to that of the filter, so that the particulates in the passenger compartment can be reliably collected without using a HEPA filter having a high particle dust collection rate. Therefore, it is possible to collect the fine particles without reducing the air volume and clogging the filter and reducing the convenience.
  • a charging device for charging fine particles in the passenger compartment with the ion generating device an increase in the cost of the vehicle air cleaning device can be suppressed.
  • FIG. 1 shows a side cross-sectional view of a vehicle provided with the vehicle air cleaning device of the first embodiment.
  • the vehicle 1 is divided into an engine room 5, an equipment room 4, and a vehicle room 6.
  • the engine room 5 and the equipment room 4 are partitioned by a partition wall 7, and the equipment room 4 and the vehicle compartment 6 are partitioned by an instrument panel 8.
  • the engine room 5 is covered with the bonnet 3 on the upper surface and accommodates an engine (not shown) and a radiator (not shown).
  • the passenger compartment 6 is a space in which passengers get in, and a plurality of seats 60 are provided in the passenger compartment 6.
  • a cigar socket 9 is provided at a position facing the vehicle compartment 6 of the instrument panel 8.
  • the vehicle 1 includes a vehicle air cleaning device 2.
  • the vehicle air cleaning device 2 includes a main body 20 disposed in the equipment room 4 and a particulate sensor 21 disposed in the vehicle room 6.
  • the particulate sensor 21 is provided on the ceiling surface of the passenger compartment 6 and detects the concentration of, for example, microparticulate matter PM2.5 (particulate matter 2.5) in the air by a light scattering method.
  • An ion generator 18 (see FIG. 2) described later is controlled based on the detection result of the fine particle sensor 21.
  • the particulate sensor 21 may also be provided in the air passage 13 (see FIG. 2) in the vicinity of the outside air inlet 11a (see FIG. 2) of the vehicle air cleaning device 2. Thereby, the concentration of PM2.5 that has entered the air passage 13 from the outside of the vehicle 1 can also be detected.
  • the fine particle sensor 21 may detect the concentration of the fine particulate matter PM10 (particulateicmatter 10) and other fine particles.
  • FIG. 2 is a side sectional view showing a schematic configuration of the main body portion 20 of the vehicle air cleaning device 2.
  • the main body 20 has a housing 10, which forms an air passage 13 in which a suction port 11 is opened at one end and an outlet 12 is opened at the other end.
  • the suction port 11 includes an outside air suction port 11a and an inside air suction port 11b.
  • the outside air inlet 11a communicates with the outside of the vehicle 1 and sucks air outside the vehicle 1 (outside air OA).
  • the inside air suction port 11b communicates with the passenger compartment 6 and sucks air in the passenger compartment 6 (inside air IA).
  • the air outlet 12 communicates with the passenger compartment 6 and blows out conditioned air CA into the passenger compartment 6.
  • the switching damper 31, the filter 14, the blower 15, the evaporator 16, the heater core 17, and the ion generation are arranged in order.
  • the switching damper 31 selectively opens the outside air suction port 11a and the inside air suction port 11b to switch between the suction of the outside air OA and the inside air IA.
  • the filter 14 is detachably disposed in a storage chamber 13a provided in the air passage 13, and is made of a porous filter material made of, for example, a nonwoven fabric, and is positively charged in advance at the time of shipment. Fine particles, dust, pollen and the like contained in the air flowing through the air passage 13 are collected by the filter 14.
  • the blower 15 is composed of, for example, a sirocco fan. By driving the blower 15, the outside air OA or the inside air IA is taken into the air passage 13 from the outside air inlet 11 a or the inside air inlet 11 b, and an air flow toward the outlet 12 is generated in the air passage 13.
  • the evaporator 16 is disposed on the downstream side of the blower 15 and is formed by joining a plurality of fins (not shown) to a refrigerant pipe (not shown) through which the refrigerant flows.
  • the evaporator 16 is connected to a compressor (not shown) that operates the refrigeration cycle.
  • the compressor When power is transmitted from the engine to the compressor via a V-belt (not shown), the refrigerant flows through the refrigerant pipe.
  • the cooling medium is performed by cooling the air flowing between the fins while the refrigerant is evaporated in the evaporator 16 by absorbing heat.
  • the heater core 17 is formed by joining a plurality of fins to a corrugated tube (not shown) arranged in parallel with a radiator through which engine coolant flows. By circulating the cooling water heated by the engine through the corrugated tube, the air flowing between the fins is heated to perform the heating operation. Further, the power transmission from the engine to the compressor is interrupted, and the ventilation operation is performed by interrupting the flow of the cooling water to the corrugated tube of the heater core 17.
  • a display unit including a plurality of operation switches (not shown) and a plurality of displays (not shown) is provided.
  • the operation switch When the user operates the operation switch, the cooling operation, the heating operation, and the air blowing operation can be switched.
  • each indicator is turned on to notify the cooling operation, the heating operation, or the air blowing operation. Thereby, the user can easily visually recognize and determine the cooling operation, the heating operation, or the air blowing operation.
  • the ion generator 18 is disposed in the vicinity of the outlet 12. During the cooling operation, the heating operation, and the air blowing operation, the ion generator 18 generates negative ions and positive ions and releases them to the air passage 13.
  • FIG. 3 shows a perspective view in which a part of the ion generator 18 is broken.
  • the ion generator 18 is covered with a housing 180 made of an insulator.
  • a substrate 183 is provided in the housing 180.
  • the substrate 183 has needle-shaped first and second discharge electrodes 181a and 181b arranged apart from each other, and annular first and second induction electrodes respectively facing the first and second discharge electrodes 181a and 181b.
  • 182a and 182b are arranged.
  • First and second ion generators 18a and 18b are formed between the first and second discharge electrodes 181a and 181b and the first and second induction electrodes 182a and 182b, respectively.
  • the housing 180 is provided with a through hole (not shown) that faces the first ion generator 18a and a through hole 185b that faces the second ion generator 18b.
  • a through hole (not shown) that faces the first ion generator 18a and a through hole 185b that faces the second ion generator 18b.
  • High voltage for example, about 2 kV
  • negative polarity and positive polarity is applied to the first and second discharge electrodes 181a and 181b with respect to the first and second induction electrodes 182a and 182b, respectively.
  • negative ions and positive ions are generated by corona discharge in the first and second ion generators 18a and 18b, respectively.
  • the ion generator 18 is arranged such that the first discharge electrode 181a is downstream of the second discharge electrode 181b in the air flow direction.
  • the ion generator 18 is arranged such that the first and second ion generators 18 a and 18 b face the air passage 13 and substantially follow the wall surface of the air passage 13. Thereby, the ion generator 18 can discharge
  • the housing 180 is provided with a connector 184 protruding from the side surface.
  • the connector 184 is connected to a power source (not shown) via a cord (not shown). Thereby, electric power is supplied to the ion generator 18.
  • a power source for example, a battery (not shown) arranged in the engine room 5 can be used.
  • the vehicle air cleaning device 2 has a first release mode and a second release mode.
  • first release mode both the negative ions and the positive ions are released to the air passage 13 by the ion generator 18.
  • second release mode ions having a polarity opposite to that of the filter 14 are mainly released to the air passage 13 by the ion generator 18.
  • negative ions are mainly emitted to the air passage 13 by the ion generator 18 in the second emission mode.
  • each indicator is turned on to notify the first release mode or the second release mode. Thereby, the user can easily visually recognize and determine the first release mode or the second release mode.
  • FIG. 4 is a circuit diagram showing a drive circuit of the ion generator 18.
  • the drive circuit of the ion generator 18 has terminals 80a and 80b connected to a power supply circuit (not shown). + 13V is input to the terminal 80a, and the ground line 90a is connected to the terminal 80b while maintaining the ground potential.
  • a capacitor C1 is connected between the terminals 80a and 80b via a resistor R1, and a primary winding T1a of the step-up transformer T1 and a transistor Q1 are connected in parallel with the capacitor C1.
  • One end of the pulse generator 70 is connected between the terminal 80a and the resistor R1, and the other end of the pulse generator 70 is connected to the base of the transistor Q1.
  • a pulse wave of a rectangular wave is given to the transistor Q1 by the pulse generator 70.
  • the first discharge electrode 181a and the second discharge electrode 181b are connected in parallel to one end of the secondary winding T1b of the step-up transformer T1 via diodes D1 and D2 in opposite directions.
  • the other end of the secondary winding T1b is connected to the first induction electrode 182a and the second induction electrode 182b, and is connected to the ground line 90a via the switch SW1.
  • the switch SW1 is opened / closed according to a signal output according to the detection result of the particle sensor 21, and switches between the first release mode and the second release mode.
  • a boosted impulse-like high voltage is generated in the secondary winding T1b. Accordingly, a high voltage (for example, 2 kV) is applied from the secondary winding T1b of the step-up transformer T1 to the first and second discharge electrodes 181a and 181b via the diodes D1 and D2.
  • a high voltage for example, 2 kV
  • the switch SW1 In the first emission mode, the switch SW1 is turned off, and the first and second induction electrodes 182a and 182b and the ground line 90a are not connected.
  • a positive voltage is applied to the second discharge electrode 181b, and ions generated by ionization combine with moisture in the air, and charges mainly composed of H + (H 2 O) m generate positive cluster ions.
  • a negative voltage is applied to the first discharge electrode 181a, and ions generated by ionization combine with moisture in the air to generate negatively clustered ions mainly composed of O 2 ⁇ (H 2 O) n.
  • m and n are arbitrary natural numbers.
  • H + (H 2 O) m and O 2 ⁇ (H 2 O) n are aggregated on the surface of airborne microbes in the passenger compartment 6, adhering microbes adhering to the seat 60, and odorous components. surround.
  • the active species [.OH] hydroxyl radical
  • H 2 O 2 hydrogen peroxide
  • m ′ and n ′ are arbitrary natural numbers.
  • the ion generator 18 In the first release mode, the ion generator 18 generates both negative ions and positive ions and discharges them into the air passage 13, thereby sterilizing the cabin 6, inactivating the virus, and removing odors. be able to.
  • the switch SW1 when the switch SW1 is turned on to execute the second emission mode, the first and second induction electrodes 182a and 182b and the ground line 90a are connected. That is, the first and second induction electrodes 182a and 182b are grounded via the switch SW1.
  • FIG. 5 is a flowchart showing the operation of the vehicle air cleaning device 2 configured as described above.
  • release mode are similarly performed by air_conditionaing
  • the switching damper 31 closes the outside air inlet 11a and opens the inside air inlet 11b.
  • step # 1 the blower 15 is driven.
  • the inside air circulation is performed in which the air in the vehicle compartment 6 is taken into the air passage 13 from the inside air suction port 11 b, sent into the vehicle compartment 6 from the outlet 12, and taken into the air passage 13 again.
  • the compressor circulates the refrigerant in the circulation flow path, and the refrigerant flows into the evaporator 16.
  • the air that has passed through the evaporator 16 is cooled, and cool air is sent from the air outlet 12 into the passenger compartment 6. Thereby, the cooling operation is performed. Further, dust, pollen and the like contained in the air flowing through the air passage 13 are collected by the filter 14.
  • step # 2 the concentration of PM2.5 in the passenger compartment 6 is detected by the particulate sensor 21.
  • Step # 3 it is determined whether or not the concentration of PM2.5 in the passenger compartment 6 has become equal to or higher than a predetermined upper limit concentration Ci (for example, 35 ⁇ g / m 3 ). If the concentration of PM2.5 in the passenger compartment 6 is less than the upper limit concentration Ci, the process proceeds to step # 4, and if it is greater than or equal to the upper limit concentration Ci, the process proceeds to step # 5.
  • a predetermined upper limit concentration Ci for example, 35 ⁇ g / m 3
  • step # 4 the first release mode is executed, and both the negative ions and the positive ions are released to the air passage 13 by the ion generator 18. Thereby, the disinfection in the vehicle interior 6, the inactivation of a virus, and odor removal can be performed.
  • step # 5 the second release mode is executed, and negative ions are mainly released to the air passage 13 by the ion generator 18.
  • negative ions are mainly released into the passenger compartment 6, and PM2.5 in the passenger compartment 6 is negatively charged.
  • the negatively charged PM2.5 is taken into the air passage 13 through the inside air suction port 11b and collected in the positively charged filter 14. Therefore, it is possible to reliably collect PM2.5 in the passenger compartment 6.
  • step # 4 and step # 5 the process returns to step # 2, and step # 2 to step # 5 are repeated.
  • the switching damper 31 closes the outside air suction port 11a and opens the inside air suction port 11b in the second release mode of Step # 5. .
  • the inside air circulation is performed in the second release mode, and the PM 2.5 in the passenger compartment 6 can be collected by the filter 14.
  • the first discharge electrode 181a may be disposed upstream of the second discharge electrode 181b.
  • positive ions are mainly released into the passenger compartment 6 and PM2.5 in the passenger compartment 6 is charged positively.
  • the positively charged PM2.5 is taken into the air passage 13 from the inside air suction port 11b and collected by a negatively charged filter.
  • the second generation mode in which negative ions having a polarity opposite to that of the positively charged filter 14 are discharged to the air passage 13 by the ion generator 18 is provided, and the PM2.
  • concentration of 5 fine particles exceeds a predetermined upper limit concentration Ci, the mode is switched to the second release mode.
  • negative ions are generated from the first discharge electrode 181a
  • positive ions are generated from the second discharge electrode 181b
  • the first discharge electrode 181a is disposed downstream of the second discharge electrode 181b.
  • the switch SW1 is turned on in the second release mode.
  • the positive ions emitted from the second discharge electrode 181b in the second emission mode are attracted to the first discharge electrode 181a, and the positive charges flow to the ground potential via the ground line 90a. Accordingly, the positive ions emitted from the second discharge electrode 181b are almost disappeared from the air passage 13. As a result, only negative ions can be delivered into the passenger compartment 6 with a simple configuration.
  • FIG. 6 shows a circuit diagram of a drive circuit of the ion generator 18 of the vehicle air cleaning device 2 of the present embodiment.
  • step-up transformers T1 and T2 are provided corresponding to the first and second discharge electrodes 181a and 181b, respectively.
  • the same reference numerals are assigned to the same parts as those in the first embodiment shown in FIGS.
  • the ion generator 18 has a first discharge circuit 18c and a second discharge circuit 18d.
  • the first discharge circuit 18c applies a voltage to the first discharge electrode 181a
  • the second discharge circuit 18d applies a voltage to the second discharge electrode 181b.
  • the first discharge circuit 18c is different from the circuit configuration of FIG. 4 in that a diode D3 and a capacitor C3 are added. Further, only the first discharge electrode 181a is connected to one end of the secondary winding T1b, and only the first induction electrode 182a is connected to the other end of the secondary winding T1b. Is different. The other parts are almost the same as the circuit configuration of FIG.
  • the second discharge circuit 18d has a resistor R2, a diode D4, a capacitor C2, a transistor Q2, and a step-up transformer T2, and corresponds to the resistor R1, the diode D3, the capacitor C1, the transistor Q1, and the step-up transformer T1, respectively.
  • the step-up transformer T2 has a primary winding T2a and a secondary winding T2b, and corresponds to the primary winding T1a and the secondary winding T1b, respectively.
  • the second discharge circuit 18d is first in that only the second discharge electrode 181b is connected to one end of the secondary winding T2b and only the second induction electrode 182b is connected to the other end of the secondary winding T2b. It is different from the discharge circuit 18c. In the first discharge circuit 18c and the second discharge circuit 18d, the directions of the diode D1 and the diode D2 are reversed.
  • One end of the capacitor C3 is connected between the terminal 80a and one end of the pulse generator 70, and the other end of the capacitor C3 is connected to the ground line 90a.
  • the anode of the diode D3 is connected to the terminal 80a, and the cathode is connected to one end of the resistor R1.
  • the anode of the diode D4 is connected between the terminal 80a and the anode of the diode D3, and the cathode is connected to one end of the resistor R2.
  • the switch SW2 connects or disconnects the pulse generator 70 and the second discharge circuit 18d.
  • the switch SW2 may be a data selector.
  • One end of the primary winding T2a of the step-up transformer T2 is connected to the terminal 80a via the resistor R2, and the other end of the primary winding T2a is connected to the ground line 90a via the transistor Q2.
  • a voltage is applied to the first discharge electrode 181a and the second discharge electrode 181b as in the circuit configuration of FIG.
  • the pulse generator 70 and the second discharge circuit 18d are connected by the switch SW2, and negative ions are emitted from the first discharge electrode 181a and the second discharge electrode. Positive ions are released from 181b.
  • Step # 5 in FIG. 5 the second discharge circuit 18d is disconnected from the pulse generator 70 by the switch SW2. As a result, positive ions are not released from the second discharge electrode 181b, but negative ions are released from the first discharge electrode 181a.
  • the same effect as that of the first embodiment can be obtained.
  • the first discharge circuit 18c and the second discharge circuit 18d are provided, the pulse generator 70 and the second discharge circuit 18d are connected by the switch SW2 in the first discharge mode, and the switch SW2 in the second discharge mode.
  • the second discharge circuit 18d is disconnected from the pulse generator 70.
  • FIG. 7 is a side sectional view showing a schematic configuration of the main body 20 of the vehicle air cleaning device 2 of the present embodiment.
  • This embodiment is different from the first embodiment in that an ion generator 18 is provided as a charging device in the vicinity of the filter 14.
  • Other parts are the same as those in the first embodiment.
  • the same reference numerals are assigned to the same parts as those in the first embodiment shown in FIGS.
  • the ion generator 18 in addition to the ion generator 18 in the vicinity of the air outlet 12, the ion generator 18 is also disposed in the vicinity of the side of the filter 14. That is, in this embodiment, two ion generators 18 are provided in the vehicle air cleaning device 2.
  • FIG. 8 shows a side sectional view of the vicinity of the filter 14 of the vehicle air cleaning device 2.
  • the arrow S indicates the direction of air flow.
  • the ion generator 18 is arranged so that the first and second discharge electrodes 181a and 181b face the air passages 13 on the upstream side and the downstream side of the filter 14, respectively.
  • the distance D2 between the second ion generator 18b and the exhaust surface 14b of the filter 14 is smaller than the distance D1 between the first ion generator 18a and the intake surface 14a of the filter 14.
  • the positive ions generated by the second ion generator 18b easily adhere to the filter 14. Therefore, the filter 14 can be easily charged positively.
  • the timing of generating negative ions and positive ions by the ion generator 18 in the vicinity of the filter 14 is not particularly limited. However, when the filter 14 is positively charged by the ion generator 18 in the vicinity of the filter 14 in the first release mode of Step # 4 in FIG. 5, the process proceeds to the second release mode of Step # 5 in FIG. In this case, it is preferable because PM2.5 can be quickly collected by the filter 14.
  • the filter 14 may be continuously charged positively by the ion generator 18 in the vicinity of the filter 14 in the second emission mode. Accordingly, it is possible to prevent a decrease in positive charge of the filter 14 due to adsorption of the negatively charged PM2.5 to the filter 14.
  • the filter 14 may be negatively charged by changing the arrangement of the first and second discharge electrodes 181a and 181b.
  • positive ions are mainly released by the ion generator 18 in the vicinity of the outlet 12 in the second release mode.
  • an ion generator 18 (charging device) that charges the filter 14 positively is provided in the vicinity of the filter 14.
  • the filter 14 can be easily charged positively with the filter 14 attached to the vehicle air cleaning device 2.
  • the first ion generator 18a is arranged on the upstream side of the filter 14 and the second ion generator 18b is arranged on the downstream side of the filter 14, and the distance D2 between the second ion generator 18b and the filter 14 is set.
  • the distance is shorter than the distance D1 between the first ion generator 18a and the filter 14.
  • the charging device provided in the vicinity of the filter 14 is not limited to the ion generator 18 as long as it is a charging device that applies charge to the filter 14.
  • a charging device that releases only positive charges or only negative charges may be used.
  • FIG. 9 is a side sectional view showing a schematic configuration of the main body 20 of the vehicle air cleaning device 2 of the present embodiment.
  • This embodiment is different from the first embodiment in that the communication path 40 and the damper 50 are provided. Further, the position of the ion generator 18 is different from that of the first embodiment. Moreover, the ion generator 18 has the same circuit (refer FIG. 6) as 2nd Embodiment. Other parts are the same as those in the first embodiment. For convenience of explanation, the same reference numerals are assigned to the same parts as those in the first embodiment shown in FIGS.
  • the ion generator 18 is disposed closer to the heater core 17 than the ion generator of the first embodiment.
  • the connecting path 40 branches from the air passage 13 downstream of the ion generator 18 and is connected to the filter 14.
  • the opening 40a at one end of the communication passage 40 communicates with the air passage 13, and the opening 40b at the other end communicates with the storage chamber 13a between the intake surface 14a and the exhaust surface 14b of the filter 14.
  • the damper 50 is provided in the vicinity of the opening 40 a in the air passage 13.
  • the damper 50 alternatively opens the communication passage 40 and the air passage 13. Thereby, the air flow path is selectively switched between the communication path 40 and the air path 13 by the damper 50.
  • the damper 50 is disposed at the position A indicated by a solid line in the first release mode of Step # 4 in FIG. Thereby, the damper 50 closes the opening 40a, closes the communication passage 40, and opens the air passage 13. Then, both negative ions and positive ions generated by the ion generator 18 are sent into the passenger compartment 6 through the air outlet 12.
  • FIG. 10 is a flowchart showing the operation of the vehicle air cleaning device 2 of this embodiment in the second release mode. If it is determined in step # 3 of FIG. 5 that the concentration of PM2.5 in the passenger compartment 6 is equal to or higher than the predetermined upper limit concentration Ci, the damper 50 is arranged in the position B indicated by the alternate long and short dash line in step # 11. Thereby, the damper 50 opens the opening 40a to open the communication passage 40 and close the air passage 13.
  • step # 12 the ion generator 18 releases only positive ions.
  • the positive ions flow through the communication path 40 and are guided to the filter 14.
  • the filter 14 is positively charged.
  • step # 13 the process waits until a predetermined time (for example, 5 minutes) elapses. When the predetermined time has elapsed, the process proceeds to step # 14.
  • a predetermined time for example, 5 minutes
  • step # 14 the damper 50 is disposed at the position A, and the communication path 40 is closed.
  • step # 15 only negative ions are released into the air passage 13 by the ion generator 18. Thereby, PM2.5 in the passenger compartment 6 is negatively charged. The negatively charged PM2.5 is taken into the air passage 13 from the inside air suction port 11b and is easily collected by the positively charged filter 14.
  • step # 16 it waits until a predetermined time (for example, 15 minutes) elapses.
  • a predetermined time for example, 15 minutes
  • the same effect as that of the first embodiment can be obtained.
  • positive ions are generated by the ion generator 18, and the communication path 40 is opened by the damper 50 and guided to the filter 14.
  • negative ions are generated by the ion generator 18 and the damper 50 is switched and guided to the outlet 12.
  • the filter 14 can be charged using the ion generator 18 which supplies ion in the vehicle interior 6. FIG. Therefore, an increase in the cost of the vehicle air cleaning device 2 can be suppressed.
  • negative ions are generated by the ion generator 18 and the communication path 40 is opened by the damper 50 and guided to the filter 14.
  • Positive ions are generated by the ion generator 18 and the damper 50 is switched to blow the air. You may lead to the outlet 12.
  • the present invention can be used in a vehicle air cleaning device that cleans the air in the passenger compartment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Electrostatic Separation (AREA)

Abstract

The purpose of the present invention is to provide a vehicle air purifier that can collect fine particles of dust without diminished convenience. This vehicle air purifier is provided with: an air passage (13) which allows communication between a suction port (11), which sucks in air from outside the vehicle or from the vehicle cabin (6), and a blow port (12), which blows air into the vehicle cabin (6); a fan (15) which is arranged inside of the air passage (13); a fine particle sensor (21) which detects the concentration of PM2.5 (fine particles) inside of the vehicle cabin (6); an ion generation device (18) which generates negative and positive ions; and a filter (14) which collects PM2.5 contained in air flowing through the air passage (13) and is charged with a prescribed polarity. This vehicle air purifier has a first emission mode in which the ion generation device (18) emits both negative ions and positive ions into the air passage (13), and a second emission mode in which the ion generation device (18) emits primarily ions of the polarity opposite that of the filter (14) into the air passage (13). If in the first emission mode the PM2.5 concentration in the vehicle cabin (6) exceeds a prescribed concentration, the vehicle air purifier switches to the second emission mode.

Description

車両用空気清浄装置Air purifier for vehicles
 本発明は、車室内の空気を清浄する車両用空気清浄装置に関する。 The present invention relates to a vehicle air cleaning device that cleans the air in a passenger compartment.
 従来の車両用空気清浄装置は特許文献1に開示されている。この車両用空気清浄装置はハウジングを有し、ハウジングには一端に外気吸込口及び内気吸込口が開口して他端に吹出口が開口した空気通路が設けられている。外気吸込口は車外の空気を吸い込み、内気吸込口は車室内の空気を吸い込む。吹出口は空気通路を流通した空気を車室内に吹き出す。 A conventional vehicle air cleaning device is disclosed in Patent Document 1. This vehicle air cleaning device has a housing, and the housing is provided with an air passage having an outside air inlet and an inside air inlet opened at one end and an air outlet opened at the other end. The outside air inlet sucks air outside the vehicle, and the inside air inlet sucks air inside the vehicle interior. The air outlet blows out the air flowing through the air passage into the passenger compartment.
 空気通路内には外気吸込口と内気吸込口とを択一的に切り換える第1ダンパが配され、第1ダンパの下流に送風機が配される。送風機の下流には第2ダンパにより流路を切り換えられる第1分岐路及び第2分岐路が設けられる。第1分岐路には第1フィルタが配され、第2分岐路には第1フィルタよりも通気抵抗の小さい第2フィルタが配される。第1分岐路及び第2分岐路の合流点の下流には空気を冷却する蒸発器が配される。 In the air passage, a first damper that selectively switches between an outside air inlet and an inside air inlet is arranged, and a blower is arranged downstream of the first damper. A first branch path and a second branch path whose flow paths are switched by the second damper are provided downstream of the blower. A first filter is disposed on the first branch path, and a second filter having a lower airflow resistance than the first filter is disposed on the second branch path. An evaporator for cooling the air is disposed downstream of the junction of the first branch path and the second branch path.
 上記構成の車両用空気清浄装置において、通常の風量のときには第2ダンパにより空気の流路を第1分岐路に切り換えている。これにより、空気通路を流通する空気に含まれる塵埃等は第1フィルタにより捕集される。 In the vehicle air cleaning device having the above-described configuration, the air flow path is switched to the first branch path by the second damper when the air volume is normal. Thereby, dust etc. contained in the air flowing through the air passage are collected by the first filter.
 また、急速に車室内を冷却するために風量を多く必要とする場合には、第2ダンパにより空気の流路を第2分岐路に切り換える。これにより、空気通路を流通する空気に含まれる塵埃等は第2フィルタで捕集される。この時、第2フィルタの通気抵抗は第1フィルタの通気抵抗よりも小さいため、送風機を大型化することなく車室内に大量の冷気を供給することができる。 Also, when a large amount of air is required to cool the passenger compartment rapidly, the second damper switches the air flow path to the second branch path. Thereby, the dust contained in the air flowing through the air passage is collected by the second filter. At this time, since the ventilation resistance of the second filter is smaller than the ventilation resistance of the first filter, a large amount of cold air can be supplied into the vehicle interior without increasing the size of the blower.
 また、空気通路内にマイナスイオン及びプラスイオンを放出するイオン発生装置を備えた車両用空気清浄装置も知られている(特許文献2)。吹出口から送出されるマイナスイオン及びプラスイオンによって車室内の除菌及び脱臭を行うことができる。 Also, a vehicle air cleaning device including an ion generator that emits negative ions and positive ions in an air passage is known (Patent Document 2). The sterilization and deodorization of the passenger compartment can be performed by negative ions and positive ions sent out from the outlet.
特開平9-39559号公報(第3頁、第1図)Japanese Patent Laid-Open No. 9-39559 (page 3, FIG. 1) 特開2013-18451号公報(第5頁、第2図)Japanese Patent Laying-Open No. 2013-18451 (5th page, FIG. 2)
 近年、空気中のPM2.5等の微粒子が健康被害を招くことから、車室内においても微粒子を集塵可能な車両用空気清浄装置の要望が高くなっている。しかしながら、上記従来の車両用空気清浄装置によると、微粒子の集塵のために第1、第2フィルタとして粒子集塵率の高いHEPAフィルタ等を用いると、風量が低下するとともに目詰まりし易くなる。このため、車室内の空気調和を迅速に行うことができないため利便性が低下する問題や、フィルタの交換頻度が高くなるため利便性が低下する問題があった。 Recently, since particulates such as PM2.5 in the air cause health damage, there is a growing demand for a vehicle air purifier that can collect particulates even in the passenger compartment. However, according to the conventional vehicle air cleaning device described above, if a HEPA filter having a high particle dust collection rate is used as the first and second filters for collecting fine particles, the air volume is reduced and clogging is likely to occur. . For this reason, there is a problem that convenience is lowered because air conditioning in the passenger compartment cannot be performed quickly, and a problem that convenience is lowered because the frequency of filter replacement increases.
 本発明は、利便性を低下させずに微粒子を集塵できる車両用空気清浄装置を提供することを目的とする。 An object of the present invention is to provide a vehicle air cleaning device capable of collecting fine particles without deteriorating convenience.
 上記目的を達成するために本発明は、車外または車室内の空気を吸い込む吸込口と前記車室内に空気を吹き出す吹出口とを連通させる空気通路と、前記空気通路内に配される送風機と、前記車室内の微粒子の濃度を検知する微粒子センサと、マイナスイオン及びプラスイオンを発生するイオン発生装置と、前記空気通路を流通する空気に含まれる微粒子を集塵するとともに所定の極性で帯電したフィルタとを備え、前記イオン発生装置によりマイナスイオン及びプラスイオンの両方を前記空気通路に放出する第1放出モードと、前記イオン発生装置により主として前記フィルタと逆極性のイオンを前記空気通路に放出する第2放出モードとを有し、第1放出モードの際に前記車室内の微粒子の濃度が所定濃度を超えたときに第2放出モードに切り換えることを特徴としている。 In order to achieve the above object, the present invention provides an air passage that communicates a suction port that sucks air outside or inside a vehicle and a blowout port that blows out air into the vehicle, a blower disposed in the air passage, A particulate sensor for detecting the concentration of particulates in the passenger compartment, an ion generator for generating negative ions and positive ions, and a filter that collects particulates contained in the air flowing through the air passage and is charged with a predetermined polarity. A first release mode in which both negative ions and positive ions are released to the air passage by the ion generator, and ions having a polarity opposite to that of the filter are mainly released by the ion generator to the air passage. The second release mode when the concentration of the particulates in the passenger compartment exceeds a predetermined concentration during the first release mode. It is characterized by switching.
 この構成によると、送風機を駆動させると、吸込口から車外または車室内の空気が吸い込まれ、空気通路を流通する。第1放出モード時にはイオン発生装置によりマイナスイオン及びプラスイオンの両方が空気通路に放出される。マイナスイオン及びプラスイオンを含んだ空気は吹出口から車室内に送出される。 According to this configuration, when the blower is driven, the air outside or inside the vehicle is sucked from the air inlet and flows through the air passage. In the first release mode, both negative ions and positive ions are released into the air passage by the ion generator. Air containing negative ions and positive ions is sent out from the blowout opening into the passenger compartment.
 また、第1放出モードの際に車室内の微粒子の濃度が所定濃度を超えたときに第2放出モードに切り換わる。これにより、所定の極性で帯電したフィルタと逆極性のイオンが吹出口から車室内に送出され、車室内の微粒子がフィルタと逆極性に帯電する。フィルタと逆極性に帯電した微粒子は吸込口から空気通路に吸い込まれ、フィルタに吸着する。 In addition, when the concentration of fine particles in the passenger compartment exceeds a predetermined concentration during the first release mode, the mode is switched to the second release mode. As a result, ions having a polarity opposite to that of the filter charged with a predetermined polarity are sent from the outlet to the vehicle interior, and particles in the vehicle interior are charged with a polarity opposite to that of the filter. Fine particles charged with a polarity opposite to that of the filter are sucked into the air passage from the suction port and adsorbed on the filter.
 また本発明は、上記構成の車両用空気清浄装置において、前記フィルタをプラスまたはマイナスに帯電させる帯電装置を前記フィルタの近傍に設けると好ましい。 In the vehicle air purifier having the above-described configuration, the present invention is preferably provided with a charging device for charging the filter positively or negatively in the vicinity of the filter.
 また本発明は、上記構成の車両用空気清浄装置において、前記帯電装置はマイナスイオン及びプラスイオンの一方を発生する第1イオン発生部と他方を発生する第2イオン発生部とを有し、第1イオン発生部を前記フィルタの上流側に配置するとともに第2イオン発生部を前記フィルタの下流側に配置し、第2イオン発生部と前記フィルタとの距離が第1イオン発生部と前記フィルタとの距離よりも短いと好ましい。 According to the present invention, in the vehicle air cleaning device configured as described above, the charging device includes a first ion generating unit that generates one of negative ions and positive ions, and a second ion generating unit that generates the other. A first ion generator is disposed upstream of the filter, a second ion generator is disposed downstream of the filter, and a distance between the second ion generator and the filter is determined between the first ion generator and the filter. It is preferable that the distance is shorter than.
 また本発明は、上記構成の車両用空気清浄装置において、前記イオン発生装置が電源からの電圧を昇圧する昇圧トランスと、前記昇圧トランスの二次巻線の一端に接続される第1放電電極及び第2放電電極と、前記二次巻線の他端に接続して第1放電電極及び第2放電電極にそれぞれ対向するとともにスイッチを介して接地される第1誘導電極及び第2誘導電極とを有し、マイナスイオン及びプラスイオンの一方を第1放電電極から発生して他方を第2放電電極から発生するとともに第1放電電極を第2放電電極の下流に配置し、第1放出モード時に前記スイッチをオフして第2放出モード時に前記スイッチをオンすると好ましい。 According to the present invention, in the vehicle air cleaning apparatus having the above-described configuration, the ion generator boosts a voltage from a power source, a first discharge electrode connected to one end of the secondary winding of the boost transformer, A second discharge electrode; and a first induction electrode and a second induction electrode connected to the other end of the secondary winding and facing the first discharge electrode and the second discharge electrode, respectively, and grounded via a switch One of negative ions and positive ions is generated from the first discharge electrode and the other is generated from the second discharge electrode, and the first discharge electrode is disposed downstream of the second discharge electrode, and the first discharge mode is It is preferable that the switch is turned off and the switch is turned on in the second discharge mode.
 また本発明は、上記構成の車両用空気清浄装置において、前記イオン発生装置の下流で前記空気通路から分岐して前記フィルタに連結される連通路と、前記連通路と前記空気通路とを択一的に開くダンパとを備え、第2放出モード時に前記イオン発生装置によりマイナスイオン及びプラスイオンの一方を発生して前記ダンパにより前記連通路を開いて前記フィルタに導くとともに、他方を発生して前記ダンパを切り換えて前記吹出口に導くと好ましい。 According to the present invention, in the vehicle air cleaning device having the above-described configuration, the communication passage branched from the air passage downstream of the ion generation device and connected to the filter, and the communication passage and the air passage are selected. And a damper that opens in a second manner, and generates one of negative ions and positive ions by the ion generator in the second release mode, opens the communication path by the damper, leads to the filter, and generates the other to generate the It is preferable to switch the damper and guide it to the outlet.
 本発明によると、イオン発生装置によりマイナスイオン及びプラスイオンの両方を空気通路に放出する第1放出モードを有するので、マイナスイオン及びプラスイオンの両方によって車室内の除菌及び脱臭を行うことができる。 According to the present invention, since it has the first release mode in which both negative ions and positive ions are released into the air passage by the ion generator, the vehicle interior can be sterilized and deodorized by both negative ions and positive ions. .
 また、所定の極性で帯電したフィルタを備え、イオン発生装置により主としてフィルタと逆極性のイオンを空気通路に放出する第2放出モードを有し、第1放出モードの際に車室内の微粒子の濃度が所定濃度を超えたときに第2放出モードに切り換える。これにより、フィルタと逆極性のイオンで車室内の微粒子を帯電させるため、粒子集塵率の高いHEPAフィルタ等を用いることなく車室内の微粒子を確実に集塵することができる。したがって、風量の低下やフィルタの目詰まりを防止して利便性を低下させずに微粒子を集塵することができる。また、車室内の微粒子を帯電させる帯電装置をイオン発生装置と別途設ける必要がないため、車両空気清浄装置のコストの増加を抑制することができる。 In addition, a filter charged with a predetermined polarity is provided, the ion generator has a second release mode in which ions having a polarity opposite to that of the filter are mainly released into the air passage, and the concentration of particulates in the vehicle interior during the first release mode. Is switched to the second release mode when the concentration exceeds a predetermined concentration. As a result, the particles in the passenger compartment are charged with ions having a polarity opposite to that of the filter, so that the particulates in the passenger compartment can be reliably collected without using a HEPA filter having a high particle dust collection rate. Therefore, it is possible to collect the fine particles without reducing the air volume and clogging the filter and reducing the convenience. In addition, since it is not necessary to separately provide a charging device for charging fine particles in the passenger compartment with the ion generating device, an increase in the cost of the vehicle air cleaning device can be suppressed.
本発明の第1実施形態の車両用空気清浄装置を取り付けた車両の側面断面図Side surface sectional drawing of the vehicle which attached the air purifying apparatus for vehicles of 1st Embodiment of this invention. 本発明の第1実施形態の車両用空気清浄装置の本体部の概略構成を示す側面断面図Side surface sectional drawing which shows schematic structure of the main-body part of the air purifying apparatus for vehicles of 1st Embodiment of this invention. 本発明の第1実施形態の車両用空気清浄装置のイオン発生装置の一部を破断した斜視図The perspective view which fractured | ruptured a part of ion generator of the air cleaner for vehicles of 1st Embodiment of this invention. 本発明の第1実施形態の車両用空気清浄装置のイオン発生装置の駆動回路を示す回路図The circuit diagram which shows the drive circuit of the ion generator of the air cleaner for vehicles of 1st Embodiment of this invention. 本発明の第1実施形態の車両用空気清浄装置の動作を示すフローチャートThe flowchart which shows operation | movement of the air cleaner for vehicles of 1st Embodiment of this invention. 本発明の第2実施形態の車両用空気清浄装置のイオン発生装置の駆動回路を示す回路図The circuit diagram which shows the drive circuit of the ion generator of the air purifying apparatus for vehicles of 2nd Embodiment of this invention. 本発明の第3実施形態の車両用空気清浄装置の本体部の概略構成を示す側面断面図Side surface sectional drawing which shows schematic structure of the main-body part of the air purifying apparatus for vehicles of 3rd Embodiment of this invention. 本発明の第3実施形態の車両用空気清浄装置のフィルタの近傍の側面断面図Side surface sectional drawing of the vicinity of the filter of the air purifying apparatus for vehicles of 3rd Embodiment of this invention. 本発明の第4実施形態の車両用空気清浄装置の本体部の概略構成を示す側面断面図Side surface sectional drawing which shows schematic structure of the main-body part of the air cleaner for vehicles of 4th Embodiment of this invention. 本発明の第4実施形態の車両用空気清浄装置の第2放出モード時の動作を示すフローチャートThe flowchart which shows the operation | movement at the time of 2nd discharge | release mode of the air cleaner for vehicles of 4th Embodiment of this invention.
 <第1実施形態>
 以下に本発明の第1実施形態を図面を参照して説明する。図1は第1実施形態の車両用空気清浄装置を備えた車両の側面断面図を示している。車両1は、エンジンルーム5、機器室4及び車室6に区画されている。エンジンルーム5と機器室4とは隔壁7によって仕切られるとともに、機器室4と車室6とはインストルメントパネル8によって仕切られている。
<First Embodiment>
A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a side cross-sectional view of a vehicle provided with the vehicle air cleaning device of the first embodiment. The vehicle 1 is divided into an engine room 5, an equipment room 4, and a vehicle room 6. The engine room 5 and the equipment room 4 are partitioned by a partition wall 7, and the equipment room 4 and the vehicle compartment 6 are partitioned by an instrument panel 8.
 エンジンルーム5は上面がボンネット3に覆われてエンジン(不図示)及びラジエータ(不図示)を収容している。車室6は乗員が乗り込む空間であり、車室6内にはシート60が複数備え付けられている。インストルメントパネル8の車室6に面する位置にはシガーソケット9が設けられる。 The engine room 5 is covered with the bonnet 3 on the upper surface and accommodates an engine (not shown) and a radiator (not shown). The passenger compartment 6 is a space in which passengers get in, and a plurality of seats 60 are provided in the passenger compartment 6. A cigar socket 9 is provided at a position facing the vehicle compartment 6 of the instrument panel 8.
 また、車両1は車両用空気清浄装置2を備える。車両用空気清浄装置2は機器室4に配される本体部20と車室6内に配される微粒子センサ21とを有する。 Further, the vehicle 1 includes a vehicle air cleaning device 2. The vehicle air cleaning device 2 includes a main body 20 disposed in the equipment room 4 and a particulate sensor 21 disposed in the vehicle room 6.
 微粒子センサ21は車室6の天井面に設けられ、空気中の例えば微小粒子状物質PM2.5(particulate  matter  2.5)の濃度を光散乱方式によって検知する。微粒子センサ21の検知結果により後述のイオン発生装置18(図2参照)が制御される。 The particulate sensor 21 is provided on the ceiling surface of the passenger compartment 6 and detects the concentration of, for example, microparticulate matter PM2.5 (particulate matter 2.5) in the air by a light scattering method. An ion generator 18 (see FIG. 2) described later is controlled based on the detection result of the fine particle sensor 21.
 なお、微粒子センサ21の設置位置に特に限定はなく、例えばインストルメントパネル8上に設置してもよい。また、車両用空気清浄装置2の外気吸込口11a(図2参照)の近傍の空気通路13(図2参照)にも微粒子センサ21を設けてもよい。これにより、車両1の外部から空気通路13に侵入したPM2.5の濃度も検知することができる。また、微粒子センサ21は微小粒子状物質PM10(particulate  matter  10)や他の微粒子の濃度を検知してもよい。 In addition, there is no limitation in particular in the installation position of the fine particle sensor 21, For example, you may install on the instrument panel 8. FIG. The particulate sensor 21 may also be provided in the air passage 13 (see FIG. 2) in the vicinity of the outside air inlet 11a (see FIG. 2) of the vehicle air cleaning device 2. Thereby, the concentration of PM2.5 that has entered the air passage 13 from the outside of the vehicle 1 can also be detected. The fine particle sensor 21 may detect the concentration of the fine particulate matter PM10 (particulateicmatter 10) and other fine particles.
 図2は車両用空気清浄装置2の本体部20の概略構成を示す側面断面図である。本体部20はハウジング10を有し、ハウジング10は吸込口11が一端に開口して吹出口12が他端に開口した空気通路13を形成する。吸込口11は外気吸込口11aと内気吸込口11bとから成る。外気吸込口11aは車両1の外部に連通して車両1外の空気(外気OA)を吸い込む。内気吸込口11bは車室6に連通して車室6内の空気(内気IA)を吸い込む。吹出口12は車室6に連通して車室6内に調和空気CAを吹き出す。 FIG. 2 is a side sectional view showing a schematic configuration of the main body portion 20 of the vehicle air cleaning device 2. The main body 20 has a housing 10, which forms an air passage 13 in which a suction port 11 is opened at one end and an outlet 12 is opened at the other end. The suction port 11 includes an outside air suction port 11a and an inside air suction port 11b. The outside air inlet 11a communicates with the outside of the vehicle 1 and sucks air outside the vehicle 1 (outside air OA). The inside air suction port 11b communicates with the passenger compartment 6 and sucks air in the passenger compartment 6 (inside air IA). The air outlet 12 communicates with the passenger compartment 6 and blows out conditioned air CA into the passenger compartment 6.
 空気通路13内には吸込口11から吹出口12に向かって(空気流通方向で上流側から下流側に向かって)、切換ダンパ31、フィルタ14、送風機15、蒸発器16、ヒータコア17、イオン発生装置18が順に配されている。 In the air passage 13, from the suction port 11 toward the blowout port 12 (from the upstream side to the downstream side in the air flow direction), the switching damper 31, the filter 14, the blower 15, the evaporator 16, the heater core 17, and the ion generation The devices 18 are arranged in order.
 切換ダンパ31は外気吸込口11a及び内気吸込口11bを択一的に開放して、外気OA及び内気IAの吸込みの切換えを行う。フィルタ14は空気通路13に設けた収納室13a内に着脱可能に配され、例えば不織布で構成された多孔質の濾過材から成って出荷時に予めプラスに帯電している。フィルタ14により空気通路13内を流通する空気に含まれる微粒子、塵埃や花粉等が集塵される。 The switching damper 31 selectively opens the outside air suction port 11a and the inside air suction port 11b to switch between the suction of the outside air OA and the inside air IA. The filter 14 is detachably disposed in a storage chamber 13a provided in the air passage 13, and is made of a porous filter material made of, for example, a nonwoven fabric, and is positively charged in advance at the time of shipment. Fine particles, dust, pollen and the like contained in the air flowing through the air passage 13 are collected by the filter 14.
 送風機15は例えばシロッコファンから成る。送風機15の駆動により外気吸込口11aまたは内気吸込口11bから空気通路13内に外気OAまたは内気IAが取り込まれ、空気通路13内に吹出口12へ向かう気流が発生する。 The blower 15 is composed of, for example, a sirocco fan. By driving the blower 15, the outside air OA or the inside air IA is taken into the air passage 13 from the outside air inlet 11 a or the inside air inlet 11 b, and an air flow toward the outlet 12 is generated in the air passage 13.
 蒸発器16は送風機15の下流側に配され、冷媒が流通する冷媒管(不図示)に複数のフィン(不図示)を接合して形成される。また、蒸発器16は冷凍サイクルを運転する圧縮機(不図示)に接続され、エンジンからVベルト(不図示)を介して圧縮機に動力が伝達されると冷媒管を冷媒が流通する。これにより、冷媒が蒸発器16で蒸発しながらフィン間を流通する空気を吸熱により冷却して冷房運転が行われる。 The evaporator 16 is disposed on the downstream side of the blower 15 and is formed by joining a plurality of fins (not shown) to a refrigerant pipe (not shown) through which the refrigerant flows. The evaporator 16 is connected to a compressor (not shown) that operates the refrigeration cycle. When power is transmitted from the engine to the compressor via a V-belt (not shown), the refrigerant flows through the refrigerant pipe. Thereby, the cooling medium is performed by cooling the air flowing between the fins while the refrigerant is evaporated in the evaporator 16 by absorbing heat.
 ヒータコア17はエンジンの冷却水が流通するラジエータと並列に配されたコルゲートチューブ(不図示)に複数のフィンを接合して形成される。エンジンにより昇温された冷却水をコルゲートチューブに流通させることにより、フィン間を流通する空気を加熱して暖房運転が行われる。また、エンジンから圧縮機への動力伝達を遮断するとともに、ヒータコア17のコルゲートチューブに対して冷却水の流通を遮断することにより、送風運転が行われる。 The heater core 17 is formed by joining a plurality of fins to a corrugated tube (not shown) arranged in parallel with a radiator through which engine coolant flows. By circulating the cooling water heated by the engine through the corrugated tube, the air flowing between the fins is heated to perform the heating operation. Further, the power transmission from the engine to the compressor is interrupted, and the ventilation operation is performed by interrupting the flow of the cooling water to the corrugated tube of the heater core 17.
 インストルメントパネル8上には複数の操作スイッチ(不図示)及び複数の表示器(不図示)から成る表示部(不図示)が設けられている。使用者が操作スイッチを操作することにより、冷房運転、暖房運転及び送風運転を切り換えることができる。また、各表示器は点灯して冷房運転、暖房運転または送風運転を報知する。これにより、使用者は冷房運転、暖房運転または送風運転を容易に視認して判別することができる。 On the instrument panel 8, a display unit (not shown) including a plurality of operation switches (not shown) and a plurality of displays (not shown) is provided. When the user operates the operation switch, the cooling operation, the heating operation, and the air blowing operation can be switched. In addition, each indicator is turned on to notify the cooling operation, the heating operation, or the air blowing operation. Thereby, the user can easily visually recognize and determine the cooling operation, the heating operation, or the air blowing operation.
 イオン発生装置18は吹出口12の近傍に配置されている。冷房運転、暖房運転及び送風運転の際にイオン発生装置18はマイナスイオンやプラスイオンを発生して空気通路13に放出する。 The ion generator 18 is disposed in the vicinity of the outlet 12. During the cooling operation, the heating operation, and the air blowing operation, the ion generator 18 generates negative ions and positive ions and releases them to the air passage 13.
 図3は、イオン発生装置18の一部を破断した斜視図を示している。イオン発生装置18は絶縁体から成るハウジング180により覆われている。ハウジング180内には、基板183が設けられている。基板183には針状の第1、第2放電電極181a、181bが互いに離れて配置されているとともに、第1、第2放電電極181a、181bにそれぞれ対向する環状の第1、第2誘導電極182a、182bが配置されている。第1、第2放電電極181a、181bと第1、第2誘導電極182a、182bとの間にはそれぞれ第1、第2イオン発生部18a、18bが形成される。 FIG. 3 shows a perspective view in which a part of the ion generator 18 is broken. The ion generator 18 is covered with a housing 180 made of an insulator. A substrate 183 is provided in the housing 180. The substrate 183 has needle-shaped first and second discharge electrodes 181a and 181b arranged apart from each other, and annular first and second induction electrodes respectively facing the first and second discharge electrodes 181a and 181b. 182a and 182b are arranged. First and second ion generators 18a and 18b are formed between the first and second discharge electrodes 181a and 181b and the first and second induction electrodes 182a and 182b, respectively.
 ハウジング180には第1イオン発生部18aに対向する貫通孔(不図示)及び第2イオン発生部18bに対向する貫通孔185bが設けられている。これにより、第1、第2イオン発生部18a、18bはハウジング180の外部に露出する。第1、第2放電電極181a、181bには第1、第2誘導電極182a、182bに対してそれぞれ負極性及び正極性の高電圧(例えば、約2kV)が印加される。これにより、第1、第2イオン発生部18a、18bにコロナ放電によりそれぞれマイナスイオン及びプラスイオンが発生する。 The housing 180 is provided with a through hole (not shown) that faces the first ion generator 18a and a through hole 185b that faces the second ion generator 18b. As a result, the first and second ion generators 18 a and 18 b are exposed to the outside of the housing 180. High voltage (for example, about 2 kV) of negative polarity and positive polarity is applied to the first and second discharge electrodes 181a and 181b with respect to the first and second induction electrodes 182a and 182b, respectively. As a result, negative ions and positive ions are generated by corona discharge in the first and second ion generators 18a and 18b, respectively.
 また本実施形態では、イオン発生装置18は第1放電電極181aが第2放電電極181bよりも空気流通方向の下流になるように配置されている。また、イオン発生装置18は第1、第2イオン発生部18a、18bが空気通路13に面して空気通路13の壁面に略沿うように配置されている。これにより、イオン発生装置18は空気通路13に円滑にマイナスイオン及びプラスイオンを放出することができる。 In this embodiment, the ion generator 18 is arranged such that the first discharge electrode 181a is downstream of the second discharge electrode 181b in the air flow direction. The ion generator 18 is arranged such that the first and second ion generators 18 a and 18 b face the air passage 13 and substantially follow the wall surface of the air passage 13. Thereby, the ion generator 18 can discharge | release a negative ion and a positive ion smoothly to the air path 13. FIG.
 また、ハウジング180には側面から突出したコネクタ184が設けられる。コネクタ184はコード(不図示)を介して電源(不図示)に接続されている。これにより、イオン発生装置18に電力が供給される。なお、電源としては例えばエンジンルーム5内に配置されたバッテリー(不図示)を用いることができる。 Also, the housing 180 is provided with a connector 184 protruding from the side surface. The connector 184 is connected to a power source (not shown) via a cord (not shown). Thereby, electric power is supplied to the ion generator 18. As a power source, for example, a battery (not shown) arranged in the engine room 5 can be used.
 また、車両用空気清浄装置2は第1放出モードと第2放出モードとを有する。第1放出モードでは、イオン発生装置18によりマイナスイオン及びプラスイオンの両方を空気通路13に放出する。第2放出モードでは、イオン発生装置18により主としてフィルタ14と逆極性のイオンを空気通路13に放出する。本実施形態ではフィルタ14はプラスに帯電しているので、第2放出モードではイオン発生装置18により主としてマイナスイオンを空気通路13に放出する。 Also, the vehicle air cleaning device 2 has a first release mode and a second release mode. In the first release mode, both the negative ions and the positive ions are released to the air passage 13 by the ion generator 18. In the second release mode, ions having a polarity opposite to that of the filter 14 are mainly released to the air passage 13 by the ion generator 18. In the present embodiment, since the filter 14 is positively charged, negative ions are mainly emitted to the air passage 13 by the ion generator 18 in the second emission mode.
 使用者が操作スイッチを操作した場合も第1放出モードと第2放出モードとを切り換えることができる。また、各表示器は点灯して第1放出モードまたは第2放出モードを報知する。これにより、使用者は第1放出モードまたは第2放出モードを容易に視認して判別することができる。 Even when the user operates the operation switch, the first release mode and the second release mode can be switched. In addition, each indicator is turned on to notify the first release mode or the second release mode. Thereby, the user can easily visually recognize and determine the first release mode or the second release mode.
 図4はイオン発生装置18の駆動回路を示す回路図である。イオン発生装置18の駆動回路は電源回路(不図示)に接続される端子80a、80bを有している。端子80aは+13Vが入力され、端子80bは接地電位に維持してグランド線90aが接続される。端子80a、80b間には抵抗R1を介してコンデンサC1が接続され、コンデンサC1と並列に昇圧トランスT1の一次巻線T1a及びトランジスタQ1が接続される。 FIG. 4 is a circuit diagram showing a drive circuit of the ion generator 18. The drive circuit of the ion generator 18 has terminals 80a and 80b connected to a power supply circuit (not shown). + 13V is input to the terminal 80a, and the ground line 90a is connected to the terminal 80b while maintaining the ground potential. A capacitor C1 is connected between the terminals 80a and 80b via a resistor R1, and a primary winding T1a of the step-up transformer T1 and a transistor Q1 are connected in parallel with the capacitor C1.
 端子80aと抵抗R1との間にはパルス発生器70の一端が接続され、パルス発生器70の他端はトランジスタQ1のベースに接続される。パルス発生器70により矩形波のパルス波がトランジスタQ1に与えられる。 One end of the pulse generator 70 is connected between the terminal 80a and the resistor R1, and the other end of the pulse generator 70 is connected to the base of the transistor Q1. A pulse wave of a rectangular wave is given to the transistor Q1 by the pulse generator 70.
 昇圧トランスT1の二次巻線T1bの一端には逆向きのダイオードD1、D2を介して第1放電電極181a及び第2放電電極181bが並列に接続される。二次巻線T1bの他端は第1誘導電極182a及び第2誘導電極182bに接続されるとともに、スイッチSW1を介してグランド線90aに接続される。 The first discharge electrode 181a and the second discharge electrode 181b are connected in parallel to one end of the secondary winding T1b of the step-up transformer T1 via diodes D1 and D2 in opposite directions. The other end of the secondary winding T1b is connected to the first induction electrode 182a and the second induction electrode 182b, and is connected to the ground line 90a via the switch SW1.
 スイッチSW1は微粒子センサ21の検知結果に応じて出力される信号に応じて開閉され、第1放出モードと第2放出モードとを切り換える。 The switch SW1 is opened / closed according to a signal output according to the detection result of the particle sensor 21, and switches between the first release mode and the second release mode.
 電源回路を介して端子80a、80b間にDC13Vの電圧が印加されるとコンデンサC1がR1を介して充電される。この状態でパルス発生器70は矩形波のパルス波を生成してトランジスタQ1にパルス波を与えると、コンデンサC1に充電された電荷が昇圧トランスT1の一次巻線T1aを通じて接地電位に放電する。 When a voltage of DC 13 V is applied between the terminals 80a and 80b via the power supply circuit, the capacitor C1 is charged via R1. In this state, when the pulse generator 70 generates a rectangular pulse wave and gives the pulse wave to the transistor Q1, the charge charged in the capacitor C1 is discharged to the ground potential through the primary winding T1a of the step-up transformer T1.
 この時、二次巻線T1bには、昇圧されたインパルス状の高電圧が発生する。これにより、昇圧トランスT1の二次巻線T1bからダイオードD1、D2を介して第1、第2放電電極181a、181bに高電圧(例えば、2kV)が印加される。 At this time, a boosted impulse-like high voltage is generated in the secondary winding T1b. Accordingly, a high voltage (for example, 2 kV) is applied from the secondary winding T1b of the step-up transformer T1 to the first and second discharge electrodes 181a and 181b via the diodes D1 and D2.
 第1放出モードではスイッチSW1はオフされ、第1、第2誘導電極182a、182bとグランド線90aとは接続されていない。 In the first emission mode, the switch SW1 is turned off, and the first and second induction electrodes 182a and 182b and the ground line 90a are not connected.
 この時、第2放電電極181bには正電圧が印加され、電離により発生するイオンが空気中の水分と結合して主としてH+(H2O)mから成る電荷が正のクラスタイオンを発生する。第1放電電極181aには負電圧が印加され、電離により発生するイオンが空気中の水分と結合して主としてO2 -(H2O)nから成る電荷が負のクラスタイオンを発生する。ここで、m、nは任意の自然数である。H+(H2O)m及びO2 -(H2O)nは車室6内の空気中の浮遊菌、シート60等に付着した付着菌、及び臭い成分の表面で凝集してこれらを取り囲む。 At this time, a positive voltage is applied to the second discharge electrode 181b, and ions generated by ionization combine with moisture in the air, and charges mainly composed of H + (H 2 O) m generate positive cluster ions. . A negative voltage is applied to the first discharge electrode 181a, and ions generated by ionization combine with moisture in the air to generate negatively clustered ions mainly composed of O 2 (H 2 O) n. Here, m and n are arbitrary natural numbers. H + (H 2 O) m and O 2 (H 2 O) n are aggregated on the surface of airborne microbes in the passenger compartment 6, adhering microbes adhering to the seat 60, and odorous components. surround.
 そして、式(1)~(3)に示すように、衝突により活性種である[・OH](水酸基ラジカル)やH22(過酸化水素)を微生物等の表面上で凝集生成して浮遊菌等や臭い成分等を破壊する。ここで、m’、n’は任意の自然数である。第1放出モードの際にイオン発生装置18がマイナスイオン及びプラスイオンの両方を発生して空気通路13内に放出することにより、車室6内の除菌、ウイルスの不活化及び臭い除去を行うことができる。 Then, as shown in the formulas (1) to (3), the active species [.OH] (hydroxyl radical) and H 2 O 2 (hydrogen peroxide) are agglomerated and produced on the surface of a microorganism or the like by collision. Destroy airborne bacteria and odor components. Here, m ′ and n ′ are arbitrary natural numbers. In the first release mode, the ion generator 18 generates both negative ions and positive ions and discharges them into the air passage 13, thereby sterilizing the cabin 6, inactivating the virus, and removing odors. be able to.
 H+(H2O)m+O2 -(H2O)n
    →・OH+1/2O2+(m+n)H2O ・・・(1)
 H+(H2O)m+H+(H2O)m’+O2 -(H2O)n+O2 -(H2O)n’
    → 2・OH+O2+(m+m’+n+n’)H2O ・・・(2)
 H+(H2O)m+H+(H2O)m’+O2 -(H2O)n+O2 -(H2O)n’
    → H22+O2+(m+m’+n+n’)H2O ・・・(3)
H + (H 2 O) m + O 2 (H 2 O) n
→ OH + 1 / 2O 2 + (m + n) H 2 O (1)
H + (H 2 O) m + H + (H 2 O) m '+ O 2 - (H 2 O) n + O 2 - (H 2 O) n'
→ 2.OH + O 2 + (m + m ′ + n + n ′) H 2 O (2)
H + (H 2 O) m + H + (H 2 O) m '+ O 2 - (H 2 O) n + O 2 - (H 2 O) n'
→ H 2 O 2 + O 2 + (m + m ′ + n + n ′) H 2 O (3)
 また、スイッチSW1をオンして第2放出モードが実行されると、第1、第2誘導電極182a、182bとグランド線90aとが接続される。すなわち、スイッチSW1を介して第1、第2誘導電極182a、182bが接地される。 Further, when the switch SW1 is turned on to execute the second emission mode, the first and second induction electrodes 182a and 182b and the ground line 90a are connected. That is, the first and second induction electrodes 182a and 182b are grounded via the switch SW1.
 これにより、第2放電電極181bと第2誘導電極182bとの間で発生したプラスイオンは第1放電電極181aに引き寄せられて空気通路13からほぼ消失する。 Thereby, the positive ions generated between the second discharge electrode 181b and the second induction electrode 182b are attracted to the first discharge electrode 181a and almost disappear from the air passage 13.
 図5は、上記構成の車両用空気清浄装置2の動作を示すフローチャートである。なお、第1放出モード及び第2放出モードは冷房運転、暖房運転及び送風運転で同様に実行されるので、ここでは冷房運転の場合を例として説明する。車両1のエンジンを始動して操作スイッチの操作により冷房運転が選択されると、切換ダンパ31により外気吸込口11aが閉じられるとともに内気吸込口11bが開かれる。 FIG. 5 is a flowchart showing the operation of the vehicle air cleaning device 2 configured as described above. In addition, since the 1st discharge | release mode and 2nd discharge | release mode are similarly performed by air_conditionaing | cooling operation, heating operation, and ventilation operation, the case of air_conditionaing | cooling operation is demonstrated as an example here. When the engine of the vehicle 1 is started and the cooling operation is selected by operating the operation switch, the switching damper 31 closes the outside air inlet 11a and opens the inside air inlet 11b.
 ステップ#1では送風機15が駆動される。これにより、車室6の空気が内気吸込口11bから空気通路13に取り込まれて吹出口12から車室6内に送出されて再び空気通路13に取り込まれる内気循環が行われる。この時、圧縮機が循環流路内で冷媒を循環させ、蒸発器16に冷媒が流れ込む。蒸発器16を通過した空気は冷却されて吹出口12から車室6内に冷気が送出される。これにより、冷房運転が行われる。また、空気通路13内を流通する空気に含まれる塵挨や花粉等はフィルタ14によって捕集される。 In step # 1, the blower 15 is driven. Thus, the inside air circulation is performed in which the air in the vehicle compartment 6 is taken into the air passage 13 from the inside air suction port 11 b, sent into the vehicle compartment 6 from the outlet 12, and taken into the air passage 13 again. At this time, the compressor circulates the refrigerant in the circulation flow path, and the refrigerant flows into the evaporator 16. The air that has passed through the evaporator 16 is cooled, and cool air is sent from the air outlet 12 into the passenger compartment 6. Thereby, the cooling operation is performed. Further, dust, pollen and the like contained in the air flowing through the air passage 13 are collected by the filter 14.
 ステップ#2では微粒子センサ21により車室6内のPM2.5の濃度が検知される。ステップ#3では、車室6内のPM2.5の濃度が所定の上限濃度Ci(例えば35μg/m3)以上になったか否かが判断される。車室6内のPM2.5の濃度が上限濃度Ci未満の場合にはステップ#4に移行し、上限濃度Ci以上の場合にはステップ#5に移行する。 In step # 2, the concentration of PM2.5 in the passenger compartment 6 is detected by the particulate sensor 21. In Step # 3, it is determined whether or not the concentration of PM2.5 in the passenger compartment 6 has become equal to or higher than a predetermined upper limit concentration Ci (for example, 35 μg / m 3 ). If the concentration of PM2.5 in the passenger compartment 6 is less than the upper limit concentration Ci, the process proceeds to step # 4, and if it is greater than or equal to the upper limit concentration Ci, the process proceeds to step # 5.
 ステップ#4では第1放出モードが実行され、イオン発生装置18によりマイナスイオン及びプラスイオンの両方が空気通路13に放出される。これにより、車室6内の除菌、ウイルスの不活化及び臭い除去を行うことができる。 In step # 4, the first release mode is executed, and both the negative ions and the positive ions are released to the air passage 13 by the ion generator 18. Thereby, the disinfection in the vehicle interior 6, the inactivation of a virus, and odor removal can be performed.
 ステップ#5では第2放出モードが実行され、イオン発生装置18により主としてマイナスイオンが空気通路13に放出される。これにより、車室6内に主としてマイナスイオンが放出され、車室6内のPM2.5はマイナスに帯電する。そして、マイナスに帯電したPM2.5は内気吸込口11bを介して空気通路13内に取り込まれ、プラスに帯電したフィルタ14に集塵される。したがって、車室6内のPM2.5を確実に集塵することができる。 In step # 5, the second release mode is executed, and negative ions are mainly released to the air passage 13 by the ion generator 18. As a result, negative ions are mainly released into the passenger compartment 6, and PM2.5 in the passenger compartment 6 is negatively charged. Then, the negatively charged PM2.5 is taken into the air passage 13 through the inside air suction port 11b and collected in the positively charged filter 14. Therefore, it is possible to reliably collect PM2.5 in the passenger compartment 6.
 そして、ステップ#4及びステップ#5の後はステップ#2に戻り、ステップ#2~ステップ#5が繰り返される。 Then, after step # 4 and step # 5, the process returns to step # 2, and step # 2 to step # 5 are repeated.
 なお、暖房運転または送風運転を行う際に外気吸込口11aが開放されている場合には、ステップ#5の第2放出モード時に切換ダンパ31により外気吸込口11aを閉じるとともに内気吸込口11bを開く。これにより、暖房運転または送風運転の際にも第2放出モード時には内気循環が行われ、車室6内のPM2.5をフィルタ14で集塵することができる。 When the outside air suction port 11a is opened during the heating operation or the air blowing operation, the switching damper 31 closes the outside air suction port 11a and opens the inside air suction port 11b in the second release mode of Step # 5. . Thereby, also in the heating operation or the air blowing operation, the inside air circulation is performed in the second release mode, and the PM 2.5 in the passenger compartment 6 can be collected by the filter 14.
 また、フィルタ14をマイナスに帯電させている場合には、第2放電電極181bの上流に第1放電電極181aを配置すればよい。これにより、第2放出モード時には車室6内に主としてプラスイオンが放出され、車室6内のPM2.5はプラスに帯電する。そして、プラスに帯電したPM2.5は内気吸込口11bから空気通路13に取り込まれ、マイナスに帯電したフィルタで集塵される。 Further, when the filter 14 is negatively charged, the first discharge electrode 181a may be disposed upstream of the second discharge electrode 181b. Thereby, in the second release mode, positive ions are mainly released into the passenger compartment 6 and PM2.5 in the passenger compartment 6 is charged positively. The positively charged PM2.5 is taken into the air passage 13 from the inside air suction port 11b and collected by a negatively charged filter.
 本実施形態によると、イオン発生装置18によりマイナスイオン及びプラスイオンの両方を空気通路13に放出する第1放出モードを有するので、マイナスイオン及びプラスイオンの両方によって車室6内の除菌及び脱臭が行われる。 According to this embodiment, since it has the 1st discharge | release mode which discharge | releases both a negative ion and positive ion to the air path 13 by the ion generator 18, it is disinfecting and deodorizing in the compartment 6 by both negative ion and positive ion. Is done.
 また、プラスに帯電しているフィルタ14と逆極性のマイナスイオンをイオン発生装置18により空気通路13に放出する第2放出モードを有し、第1放出モードの際に車室6内のPM2.5(微粒子)の濃度が所定の上限濃度Ciを超えたときに第2放出モードに切り換える。 In addition, the second generation mode in which negative ions having a polarity opposite to that of the positively charged filter 14 are discharged to the air passage 13 by the ion generator 18 is provided, and the PM2. When the concentration of 5 (fine particles) exceeds a predetermined upper limit concentration Ci, the mode is switched to the second release mode.
 これにより、第2放出モードの際にフィルタ14と逆極性のマイナスイオンで車室6内のPM2.5を帯電させるため、粒子集塵率の高いHEPAフィルタ等を用いることなく車室6内のPM2.5を確実に集塵することができる。したがって、風量の低下やフィルタ14の目詰まりを防止して利便性を低下させずにPM2.5を集塵することができる。また、車室6内のPM2.5を帯電させる帯電装置をイオン発生装置18と別途設ける必要がないため、車両空気清浄装置2のコストの増加を抑制することができる。 Thereby, in order to charge PM2.5 in the passenger compartment 6 with negative ions having a polarity opposite to that of the filter 14 in the second release mode, the interior of the passenger compartment 6 is not used without using a HEPA filter having a high particle collection rate. PM2.5 can be reliably collected. Therefore, it is possible to collect PM2.5 without reducing the air volume and clogging the filter 14 and reducing convenience. In addition, since it is not necessary to separately provide the charging device for charging PM2.5 in the passenger compartment 6 with the ion generating device 18, an increase in the cost of the vehicle air cleaning device 2 can be suppressed.
 また、マイナスイオンを第1放電電極181aから発生してプラスイオンを第2放電電極181bから発生して第1放電電極181aを第2放電電極181bの下流に配置し、第1放出モード時にスイッチSW1をオフして第2放出モード時にスイッチSW1をオンしている。 Further, negative ions are generated from the first discharge electrode 181a, positive ions are generated from the second discharge electrode 181b, and the first discharge electrode 181a is disposed downstream of the second discharge electrode 181b. And the switch SW1 is turned on in the second release mode.
 これにより、第2放出モードの際に第2放電電極181bから放出されたプラスイオンは第1放電電極181aに引き寄せられ、プラス電荷がグランド線90aを介して接地電位へ流れていく。したがって、第2放電電極181bから放出されたプラスイオンは空気通路13からほぼ消失する。その結果、簡単な構成でほぼマイナスイオンのみを車室6内に送出することができる。 Thereby, the positive ions emitted from the second discharge electrode 181b in the second emission mode are attracted to the first discharge electrode 181a, and the positive charges flow to the ground potential via the ground line 90a. Accordingly, the positive ions emitted from the second discharge electrode 181b are almost disappeared from the air passage 13. As a result, only negative ions can be delivered into the passenger compartment 6 with a simple configuration.
 <第2実施形態>
 次に本発明の第2実施形態について説明する。図6は、本実施形態の車両用空気清浄装置2のイオン発生装置18の駆動回路の回路図を示している。本実施形態では第1実施形態とは異なり、第1、第2放電電極181a、181bのそれぞれに対応して昇圧トランスT1、T2を設けている。なお、説明の便宜上、前述の図1~図5に示す第1実施形態と同様の部分には同一の符号を付している。
Second Embodiment
Next, a second embodiment of the present invention will be described. FIG. 6 shows a circuit diagram of a drive circuit of the ion generator 18 of the vehicle air cleaning device 2 of the present embodiment. In this embodiment, unlike the first embodiment, step-up transformers T1 and T2 are provided corresponding to the first and second discharge electrodes 181a and 181b, respectively. For convenience of explanation, the same reference numerals are assigned to the same parts as those in the first embodiment shown in FIGS.
 イオン発生装置18は、第1放電回路18c及び第2放電回路18dを有する。第1放電回路18cは第1放電電極181aに電圧を印加するとともに、第2放電回路18dは第2放電電極181bに電圧を印加する。第1放電回路18cはダイオードD3及びコンデンサC3を追加している点で図4の回路構成とは異なっている。また、二次巻線T1bの一端には第1放電電極181aのみが接続されるとともに二次巻線T1bの他端には第1誘導電極182aのみが接続されている点で図4の回路構成とは異なっている。なお、その他の部分は図4の回路構成とほぼ同様である。 The ion generator 18 has a first discharge circuit 18c and a second discharge circuit 18d. The first discharge circuit 18c applies a voltage to the first discharge electrode 181a, and the second discharge circuit 18d applies a voltage to the second discharge electrode 181b. The first discharge circuit 18c is different from the circuit configuration of FIG. 4 in that a diode D3 and a capacitor C3 are added. Further, only the first discharge electrode 181a is connected to one end of the secondary winding T1b, and only the first induction electrode 182a is connected to the other end of the secondary winding T1b. Is different. The other parts are almost the same as the circuit configuration of FIG.
 第2放電回路18dは抵抗R2、ダイオードD4、コンデンサC2、トランジスタQ2、昇圧トランスT2を有し、それぞれ抵抗R1、ダイオードD3、コンデンサC1、トランジスタQ1、昇圧トランスT1に対応している。また、昇圧トランスT2は一次巻線T2a及び二次巻線T2bを有し、それぞれ一次巻線T1a及び二次巻線T1bに対応している。 The second discharge circuit 18d has a resistor R2, a diode D4, a capacitor C2, a transistor Q2, and a step-up transformer T2, and corresponds to the resistor R1, the diode D3, the capacitor C1, the transistor Q1, and the step-up transformer T1, respectively. The step-up transformer T2 has a primary winding T2a and a secondary winding T2b, and corresponds to the primary winding T1a and the secondary winding T1b, respectively.
 第2放電回路18dは、二次巻線T2bの一端に第2放電電極181bのみが接続されるとともに二次巻線T2bの他端に第2誘導電極182bのみが接続されている点で第1放電回路18cとは異なっている。また、第1放電回路18cと第2放電回路18dとではダイオードD1とダイオードD2の向きが逆になっている。 The second discharge circuit 18d is first in that only the second discharge electrode 181b is connected to one end of the secondary winding T2b and only the second induction electrode 182b is connected to the other end of the secondary winding T2b. It is different from the discharge circuit 18c. In the first discharge circuit 18c and the second discharge circuit 18d, the directions of the diode D1 and the diode D2 are reversed.
 コンデンサC3の一端は端子80aとパルス発生器70の一端との間に接続され、コンデンサC3の他端はグランド線90aに接続されている。ダイオードD3のアノードは端子80aに接続されるとともにカソードは抵抗R1の一端に接続されている。ダイオードD4のアノードは端子80aとダイオードD3のアノードとの間に接続されるとともにカソードは抵抗R2の一端に接続されている。 One end of the capacitor C3 is connected between the terminal 80a and one end of the pulse generator 70, and the other end of the capacitor C3 is connected to the ground line 90a. The anode of the diode D3 is connected to the terminal 80a, and the cathode is connected to one end of the resistor R1. The anode of the diode D4 is connected between the terminal 80a and the anode of the diode D3, and the cathode is connected to one end of the resistor R2.
 スイッチSW2の一端はパルス発生器70の他端とトランジスタQ1との間に接続され、スイッチSW2の他端はトランジスタQ2に接続されている。スイッチSW2はパルス発生器70と第2放電回路18dとの接続または接続の解除を行う。なお、スイッチSW2はデータセレクタでもよい。 One end of the switch SW2 is connected between the other end of the pulse generator 70 and the transistor Q1, and the other end of the switch SW2 is connected to the transistor Q2. The switch SW2 connects or disconnects the pulse generator 70 and the second discharge circuit 18d. The switch SW2 may be a data selector.
 昇圧トランスT2の一次巻線T2aの一端は抵抗R2を介して端子80aに接続されるとともに、一次巻線T2aの他端はトランジスタQ2を介してグランド線90aに接続されている。 One end of the primary winding T2a of the step-up transformer T2 is connected to the terminal 80a via the resistor R2, and the other end of the primary winding T2a is connected to the ground line 90a via the transistor Q2.
 図6の回路構成において、図4の回路構成と同様に第1放電電極181a及び第2放電電極181bに電圧が印加される。図5のステップ#4の第1放出モードの際にはスイッチSW2によりパルス発生器70と第2放電回路18dとが接続され、第1放電電極181aからマイナスイオンが放出されるとともに第2放電電極181bからプラスイオンが放出される。 In the circuit configuration of FIG. 6, a voltage is applied to the first discharge electrode 181a and the second discharge electrode 181b as in the circuit configuration of FIG. In the first emission mode of Step # 4 in FIG. 5, the pulse generator 70 and the second discharge circuit 18d are connected by the switch SW2, and negative ions are emitted from the first discharge electrode 181a and the second discharge electrode. Positive ions are released from 181b.
 図5のステップ#5の第2放出モードの際にはスイッチSW2により第2放電回路18dはパルス発生器70から切断される。これにより、第2放電電極181bからはプラスイオンが放出されずに第1放電電極181aからマイナスイオンが放出される。 In the second discharge mode of Step # 5 in FIG. 5, the second discharge circuit 18d is disconnected from the pulse generator 70 by the switch SW2. As a result, positive ions are not released from the second discharge electrode 181b, but negative ions are released from the first discharge electrode 181a.
 本実施形態によると、第1実施形態と同様の効果を得ることができる。また、第1放電回路18c及び第2放電回路18dを設け、第1放出モードの際にスイッチSW2によりパルス発生器70と第2放電回路18dとを接続し、第2放出モードの際にスイッチSW2により第2放電回路18dをパルス発生器70から切断する。これにより、例えば第1放電電極181aと第2放電電極181bとを結ぶ線が空気の流通方向に対して垂直になるようにイオン発生装置18を配置した場合でも第2放出モード時にマイナスイオンのみを車室6内に送出することができる。すなわち、第1実施形態に比して第1、第2放電電極181a、181bの位置関係を自由に設定できる。したがって、車両用空気清浄装置2の設計の自由度を高めることができる。 According to this embodiment, the same effect as that of the first embodiment can be obtained. Further, the first discharge circuit 18c and the second discharge circuit 18d are provided, the pulse generator 70 and the second discharge circuit 18d are connected by the switch SW2 in the first discharge mode, and the switch SW2 in the second discharge mode. Thus, the second discharge circuit 18d is disconnected from the pulse generator 70. Thereby, for example, even when the ion generator 18 is arranged so that the line connecting the first discharge electrode 181a and the second discharge electrode 181b is perpendicular to the air flow direction, only negative ions are generated in the second release mode. It can be sent into the passenger compartment 6. That is, the positional relationship between the first and second discharge electrodes 181a and 181b can be freely set as compared with the first embodiment. Therefore, the freedom degree of design of the air cleaner 2 for vehicles can be raised.
 <第3実施形態>
 次に本発明の第3実施形態について説明する。図7は本実施形態の車両用空気清浄装置2の本体部20の概略構成を示す側面断面図である。本実施形態では、フィルタ14の近傍にも帯電装置としてイオン発生装置18を設けている点で第1実施形態とは異なっている。その他の部分は第1実施形態と同様である。なお、説明の便宜上、前述の図1~図5に示す第1実施形態と同様の部分には同一の符号を付している。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. FIG. 7 is a side sectional view showing a schematic configuration of the main body 20 of the vehicle air cleaning device 2 of the present embodiment. This embodiment is different from the first embodiment in that an ion generator 18 is provided as a charging device in the vicinity of the filter 14. Other parts are the same as those in the first embodiment. For convenience of explanation, the same reference numerals are assigned to the same parts as those in the first embodiment shown in FIGS.
 本実施形態では、吹出口12近傍のイオン発生装置18の他に、フィルタ14の側方近傍にもイオン発生装置18が配置されている。すなわち、本実施形態では、車両用空気清浄装置2にイオン発生装置18が2つ設けられている。 In this embodiment, in addition to the ion generator 18 in the vicinity of the air outlet 12, the ion generator 18 is also disposed in the vicinity of the side of the filter 14. That is, in this embodiment, two ion generators 18 are provided in the vehicle air cleaning device 2.
 図8は、車両用空気清浄装置2のフィルタ14の近傍の側面断面図を示している。なお、矢印Sは空気の流通方向を示している。イオン発生装置18は第1、第2放電電極181a、181bがそれぞれフィルタ14よりも上流側及び下流側の空気通路13に面するように配置されている。 FIG. 8 shows a side sectional view of the vicinity of the filter 14 of the vehicle air cleaning device 2. The arrow S indicates the direction of air flow. The ion generator 18 is arranged so that the first and second discharge electrodes 181a and 181b face the air passages 13 on the upstream side and the downstream side of the filter 14, respectively.
 この時、第2イオン発生部18bとフィルタ14の排気面14bとの間の距離D2は、第1イオン発生部18aとフィルタ14の吸気面14aとの間の距離D1よりも小さくなっている。これにより、第2イオン発生部18bで発生したプラスイオンはフィルタ14に容易に付着する。したがって、フィルタ14を容易にプラスに帯電させることができる。 At this time, the distance D2 between the second ion generator 18b and the exhaust surface 14b of the filter 14 is smaller than the distance D1 between the first ion generator 18a and the intake surface 14a of the filter 14. As a result, the positive ions generated by the second ion generator 18b easily adhere to the filter 14. Therefore, the filter 14 can be easily charged positively.
 また、第1放電電極181aから放出されたマイナスイオンはフィルタ14の上流側の空気通路13内のPM2.5に付着する。これにより、PM2.5はマイナスに帯電し、プラスに帯電したフィルタ14に容易に集塵される。 Also, negative ions released from the first discharge electrode 181a adhere to PM2.5 in the air passage 13 on the upstream side of the filter 14. As a result, PM2.5 is negatively charged and is easily collected by the positively charged filter 14.
 なお、フィルタ14近傍のイオン発生装置18によりマイナスイオンやプラスイオンを発生させる時期は特に限定されない。ただし、図5のステップ#4の第1放出モードの際にフィルタ14近傍のイオン発生装置18によりフィルタ14をプラスに帯電させておくと、図5のステップ#5の第2放出モードに移行した際にフィルタ14で速やかにPM2.5を集塵できるので好ましい。 Note that the timing of generating negative ions and positive ions by the ion generator 18 in the vicinity of the filter 14 is not particularly limited. However, when the filter 14 is positively charged by the ion generator 18 in the vicinity of the filter 14 in the first release mode of Step # 4 in FIG. 5, the process proceeds to the second release mode of Step # 5 in FIG. In this case, it is preferable because PM2.5 can be quickly collected by the filter 14.
 また、第2放出モード時にフィルタ14近傍のイオン発生装置18により継続的にフィルタ14をプラスに帯電させてもよい。これにより、マイナスに帯電したPM2.5のフィルタ14への吸着によるフィルタ14のプラス電荷の減少を防止できる。 Further, the filter 14 may be continuously charged positively by the ion generator 18 in the vicinity of the filter 14 in the second emission mode. Accordingly, it is possible to prevent a decrease in positive charge of the filter 14 due to adsorption of the negatively charged PM2.5 to the filter 14.
 また、第1、第2放電電極181a、181bの配置を入れ替えてフィルタ14をマイナスに帯電させてもよい。この場合には、第2放出モード時には吹出口12近傍のイオン発生装置18により主としてプラスイオンを放出する。 Alternatively, the filter 14 may be negatively charged by changing the arrangement of the first and second discharge electrodes 181a and 181b. In this case, positive ions are mainly released by the ion generator 18 in the vicinity of the outlet 12 in the second release mode.
 本実施形態によると、第1実施形態と同様の効果を得ることができる。また、フィルタ14をプラスに帯電させるイオン発生装置18(帯電装置)をフィルタ14の近傍に設けている。これにより、フィルタ14を車両用空気清浄装置2に取り付けた状態で容易にプラスに帯電させることができる。 According to this embodiment, the same effect as that of the first embodiment can be obtained. Further, an ion generator 18 (charging device) that charges the filter 14 positively is provided in the vicinity of the filter 14. As a result, the filter 14 can be easily charged positively with the filter 14 attached to the vehicle air cleaning device 2.
 また、第1イオン発生部18aをフィルタ14の上流側に配置するとともに第2イオン発生部18bをフィルタ14の下流側に配置し、第2イオン発生部18bとフィルタ14との間の距離D2が第1イオン発生部18aとフィルタ14との間の距離D1よりも短い。これにより、フィルタ14を確実にプラスに帯電させることができる。また、フィルタ14の上流側を流通する空気に含まれるPM2.5をマイナスに確実に帯電させることができる。したがって、フィルタ14によってPM2.5を一層確実に集塵することができる。 In addition, the first ion generator 18a is arranged on the upstream side of the filter 14 and the second ion generator 18b is arranged on the downstream side of the filter 14, and the distance D2 between the second ion generator 18b and the filter 14 is set. The distance is shorter than the distance D1 between the first ion generator 18a and the filter 14. Thereby, the filter 14 can be positively charged positively. In addition, PM2.5 contained in the air flowing on the upstream side of the filter 14 can be positively charged negatively. Therefore, PM2.5 can be more reliably collected by the filter 14.
 なお、フィルタ14の近傍に設ける帯電装置はフィルタ14に電荷を与える帯電装置であればよく、イオン発生装置18に限定されない。例えば、プラス電荷のみ又はマイナス電荷のみを放出する帯電装置でもよい。 The charging device provided in the vicinity of the filter 14 is not limited to the ion generator 18 as long as it is a charging device that applies charge to the filter 14. For example, a charging device that releases only positive charges or only negative charges may be used.
 <第4実施形態>
 次に本発明の第4実施形態について説明する。図9は本実施形態の車両用空気清浄装置2の本体部20の概略構成を示す側面断面図である。本実施形態では連通路40及びダンパ50を設けている点で第1実施形態とは異なっている。また、イオン発生装置18の位置が第1実施形態とは異なっている。また、イオン発生装置18は第2実施形態と同様の回路(図6参照)を有している。その他の部分は第1実施形態と同様である。なお、説明の便宜上、前述の図1~図5に示す第1実施形態と同様の部分には同一の符号を付している。
<Fourth embodiment>
Next, a fourth embodiment of the present invention will be described. FIG. 9 is a side sectional view showing a schematic configuration of the main body 20 of the vehicle air cleaning device 2 of the present embodiment. This embodiment is different from the first embodiment in that the communication path 40 and the damper 50 are provided. Further, the position of the ion generator 18 is different from that of the first embodiment. Moreover, the ion generator 18 has the same circuit (refer FIG. 6) as 2nd Embodiment. Other parts are the same as those in the first embodiment. For convenience of explanation, the same reference numerals are assigned to the same parts as those in the first embodiment shown in FIGS.
 イオン発生装置18は第1実施形態のイオン発生装置よりもヒータコア17側に配置されている。連結路40はイオン発生装置18の下流で空気通路13から分岐してフィルタ14に連結されている。連通路40の一端の開口40aは空気通路13に連通するとともに、他端の開口40bはフィルタ14の吸気面14aと排気面14bとの間で収納室13aに連通している。 The ion generator 18 is disposed closer to the heater core 17 than the ion generator of the first embodiment. The connecting path 40 branches from the air passage 13 downstream of the ion generator 18 and is connected to the filter 14. The opening 40a at one end of the communication passage 40 communicates with the air passage 13, and the opening 40b at the other end communicates with the storage chamber 13a between the intake surface 14a and the exhaust surface 14b of the filter 14.
 ダンパ50は空気通路13内の開口40aの近傍に設けられている。ダンパ50は連通路40と空気通路13とを択一的に開く。これにより、空気の流路はダンパ50により連通路40と空気通路13とに択一的に切り換えられる。 The damper 50 is provided in the vicinity of the opening 40 a in the air passage 13. The damper 50 alternatively opens the communication passage 40 and the air passage 13. Thereby, the air flow path is selectively switched between the communication path 40 and the air path 13 by the damper 50.
 上記構成の車両用空気清浄装置2において、図5のステップ#4の第1放出モードの際にはダンパ50は実線で示すA位置に配される。これにより、ダンパ50は開口40aを塞いで連通路40を閉じるとともに空気通路13を開く。そして、イオン発生装置18で発生したマイナスイオン及びプラスイオンの両方は吹出口12を介して車室6内に送出される。 In the vehicle air cleaning device 2 configured as described above, the damper 50 is disposed at the position A indicated by a solid line in the first release mode of Step # 4 in FIG. Thereby, the damper 50 closes the opening 40a, closes the communication passage 40, and opens the air passage 13. Then, both negative ions and positive ions generated by the ion generator 18 are sent into the passenger compartment 6 through the air outlet 12.
 なお、本実施形態の車両用空気清浄装置2では図5のステップ#5の第2放出モード時の動作が第1実施形態とは異なっている。図10は本実施形態の車両用空気清浄装置2の第2放出モード時の動作を示すフローチャートである。図5のステップ#3で車室6内のPM2.5の濃度が所定の上限濃度Ci以上であると判断されると、ステップ#11でダンパ50は一点鎖線で示すB位置に配される。これにより、ダンパ50は開口40aを開放して連通路40を開くとともに空気通路13を閉じる。 In addition, in the vehicle air purification apparatus 2 of this embodiment, the operation | movement at the time of the 2nd discharge | release mode of step # 5 of FIG. 5 differs from 1st Embodiment. FIG. 10 is a flowchart showing the operation of the vehicle air cleaning device 2 of this embodiment in the second release mode. If it is determined in step # 3 of FIG. 5 that the concentration of PM2.5 in the passenger compartment 6 is equal to or higher than the predetermined upper limit concentration Ci, the damper 50 is arranged in the position B indicated by the alternate long and short dash line in step # 11. Thereby, the damper 50 opens the opening 40a to open the communication passage 40 and close the air passage 13.
 ステップ#12ではイオン発生装置18はプラスイオンのみを放出する。プラスイオンは連通路40を流通してフィルタ14に導かれる。これにより、フィルタ14はプラスに帯電する。ステップ#13では所定時間(例えば5分)が経過するまで待機する。所定時間が経過すると、ステップ#14に移行する。 In step # 12, the ion generator 18 releases only positive ions. The positive ions flow through the communication path 40 and are guided to the filter 14. As a result, the filter 14 is positively charged. In step # 13, the process waits until a predetermined time (for example, 5 minutes) elapses. When the predetermined time has elapsed, the process proceeds to step # 14.
 ステップ#14ではダンパ50はA位置に配され、連通路40が閉じられる。ステップ#15ではイオン発生装置18によりマイナスイオンのみが空気通路13に放出される。これにより、車室6内のPM2.5はマイナスに帯電する。マイナスに帯電したPM2.5は内気吸込口11bから空気通路13に取り込まれ、プラスに帯電したフィルタ14で容易に集塵される。 In step # 14, the damper 50 is disposed at the position A, and the communication path 40 is closed. In step # 15, only negative ions are released into the air passage 13 by the ion generator 18. Thereby, PM2.5 in the passenger compartment 6 is negatively charged. The negatively charged PM2.5 is taken into the air passage 13 from the inside air suction port 11b and is easily collected by the positively charged filter 14.
 ステップ#16では所定時間(例えば15分)が経過するまで待機する。所定時間が経過すると図5のステップ#2に戻る。 In step # 16, it waits until a predetermined time (for example, 15 minutes) elapses. When the predetermined time has elapsed, the process returns to step # 2 in FIG.
 本実施形態によると、第1実施形態と同様の効果を得ることができる。また、第2放出モード時にイオン発生装置18によりプラスイオンを発生してダンパ50により連通路40を開いてフィルタ14に導く。そして、イオン発生装置18によりマイナスイオンを発生してダンパ50を切り換えて吹出口12に導く。これにより、車室6内にイオンを供給するイオン発生装置18を用いてフィルタ14を帯電させることができる。したがって、車両用空気清浄装置2のコストの増加を抑制することができる。 According to this embodiment, the same effect as that of the first embodiment can be obtained. Further, in the second emission mode, positive ions are generated by the ion generator 18, and the communication path 40 is opened by the damper 50 and guided to the filter 14. Then, negative ions are generated by the ion generator 18 and the damper 50 is switched and guided to the outlet 12. Thereby, the filter 14 can be charged using the ion generator 18 which supplies ion in the vehicle interior 6. FIG. Therefore, an increase in the cost of the vehicle air cleaning device 2 can be suppressed.
 なお、第2放出モード時にイオン発生装置18によりマイナスイオンを発生してダンパ50により連通路40を開いてフィルタ14に導くとともに、イオン発生装置18によりプラスイオンを発生してダンパ50を切り換えて吹出口12に導いてもよい。 In the second discharge mode, negative ions are generated by the ion generator 18 and the communication path 40 is opened by the damper 50 and guided to the filter 14. Positive ions are generated by the ion generator 18 and the damper 50 is switched to blow the air. You may lead to the outlet 12.
 本発明は、車室内の空気を清浄する車両用空気清浄装置に利用することができる。 The present invention can be used in a vehicle air cleaning device that cleans the air in the passenger compartment.
  1  車両
  2  車両用空気清浄装置
  3  ボンネット
  4  機器室
  5  エンジンルーム
  6  車室
  7  隔壁
  8  インストルメントパネル
  9  シガーソケット
  10  ハウジング
  11  吸込口
  11a 外気吸込口
  11b 内気吸込口
  12  吹出口
  13  空気通路
  14  フィルタ
  14a  吸気面
  14b  排気面
  15  送風機
  16  蒸発器
  17  ヒータコア
  18  イオン発生装置
  18a  第1イオン発生部
  18b  第2イオン発生部
  20  本体部
  21  微粒子センサ
  40  連通路
  50  ダンパ
  60  シート
  70  パルス発生器
  181a  第1放電電極
  181b  第2放電電極
  182a  第1誘導電極
  182b  第2誘導電極
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Air purifier for vehicles 3 Bonnet 4 Equipment room 5 Engine room 6 Car compartment 7 Bulkhead 8 Instrument panel 9 Cigar socket 10 Housing 11 Suction port 11a Outside air inlet 11b Inside air inlet 12 Outlet 13 Air passage 14 Filter 14a Intake surface 14b Exhaust surface 15 Blower 16 Evaporator 17 Heater core 18 Ion generator 18a First ion generator 18b Second ion generator 20 Main body 21 Particle sensor 40 Communication path 50 Damper 60 Sheet 70 Pulse generator 181a First discharge electrode 181b Second discharge electrode 182a First induction electrode 182b Second induction electrode

Claims (5)

  1.  車外または車室内の空気を吸い込む吸込口と前記車室内に空気を吹き出す吹出口とを連通させる空気通路と、前記空気通路内に配される送風機と、前記車室内の微粒子の濃度を検知する微粒子センサと、マイナスイオン及びプラスイオンを発生するイオン発生装置と、前記空気通路を流通する空気に含まれる微粒子を集塵するとともに所定の極性で帯電したフィルタとを備え、
     前記イオン発生装置によりマイナスイオン及びプラスイオンの両方を前記空気通路に放出する第1放出モードと、前記イオン発生装置により主として前記フィルタと逆極性のイオンを前記空気通路に放出する第2放出モードとを有し、
     第1放出モードの際に前記車室内の微粒子の濃度が所定濃度を超えたときに第2放出モードに切り換えることを特徴とする車両用空気清浄装置。
    An air passage that communicates a suction port for sucking air outside or inside the vehicle interior and an air outlet that blows air into the vehicle interior, a blower disposed in the air passage, and fine particles that detect the concentration of particulates in the vehicle interior A sensor, an ion generator that generates negative ions and positive ions, and a filter that collects fine particles contained in the air flowing through the air passage and is charged with a predetermined polarity,
    A first release mode in which both negative ions and positive ions are released into the air passage by the ion generator; and a second release mode in which ions having a polarity opposite to that of the filter are mainly released into the air passage by the ion generator. Have
    A vehicle air cleaning device that switches to a second release mode when the concentration of particulates in the vehicle compartment exceeds a predetermined concentration during the first release mode.
  2.  前記フィルタをプラスまたはマイナスに帯電させる帯電装置を前記フィルタの近傍に設けたことを特徴とする請求項1に記載の車両用空気清浄装置。 The vehicle air cleaning device according to claim 1, wherein a charging device for charging the filter positively or negatively is provided in the vicinity of the filter.
  3.  前記帯電装置はマイナスイオン及びプラスイオンの一方を発生する第1イオン発生部と他方を発生する第2イオン発生部とを有し、第1イオン発生部を前記フィルタの上流側に配置するとともに第2イオン発生部を前記フィルタの下流側に配置し、第2イオン発生部と前記フィルタとの距離が第1イオン発生部と前記フィルタとの距離よりも短いことを特徴とする請求項2に記載の車両用空気清浄装置。 The charging device includes a first ion generation unit that generates one of negative ions and positive ions, and a second ion generation unit that generates the other. The first ion generation unit is disposed on the upstream side of the filter. The two-ion generator is disposed downstream of the filter, and the distance between the second ion generator and the filter is shorter than the distance between the first ion generator and the filter. Vehicle air purifier.
  4.  前記イオン発生装置が電源からの電圧を昇圧する昇圧トランスと、前記昇圧トランスの二次巻線の一端に接続される第1放電電極及び第2放電電極と、前記二次巻線の他端に接続して第1放電電極及び第2放電電極にそれぞれ対向するとともにスイッチを介して接地される第1誘導電極及び第2誘導電極とを有し、
     マイナスイオン及びプラスイオンの一方を第1放電電極から発生して他方を第2放電電極から発生するとともに第1放電電極を第2放電電極の下流に配置し、第1放出モード時に前記スイッチをオフして第2放出モード時に前記スイッチをオンすることを特徴とする請求項1~請求項3のいずれかに記載の車両用空気清浄装置。
    The ion generator boosts a voltage from a power source, a first discharge electrode and a second discharge electrode connected to one end of a secondary winding of the boost transformer, and the other end of the secondary winding A first induction electrode and a second induction electrode that are connected to face the first discharge electrode and the second discharge electrode, respectively, and are grounded via a switch;
    One of negative ions and positive ions is generated from the first discharge electrode, the other is generated from the second discharge electrode, the first discharge electrode is arranged downstream of the second discharge electrode, and the switch is turned off in the first discharge mode. The vehicle air cleaning device according to any one of claims 1 to 3, wherein the switch is turned on in the second release mode.
  5.  前記イオン発生装置の下流で前記空気通路から分岐して前記フィルタに連結される連通路と、前記連通路と前記空気通路とを択一的に開くダンパとを備え、第2放出モード時に前記イオン発生装置によりマイナスイオン及びプラスイオンの一方を発生して前記ダンパにより前記連通路を開いて前記フィルタに導くとともに、他方を発生して前記ダンパを切り換えて前記吹出口に導くことを特徴とする請求項1に記載の車両用空気清浄装置。 A communication passage branched from the air passage downstream of the ion generation device and connected to the filter; and a damper for selectively opening the communication passage and the air passage, and the ions in the second discharge mode. The generator generates one of negative ions and positive ions, and the damper opens the communication path and guides it to the filter, and the other generates and switches the damper to lead to the outlet. Item 2. The vehicle air cleaning device according to Item 1.
PCT/JP2014/072083 2013-11-27 2014-08-25 Vehicle air purifier WO2015079753A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015550587A JP6100918B2 (en) 2013-11-27 2014-08-25 Air purifier for vehicles
CN201480044016.0A CN105452031B (en) 2013-11-27 2014-08-25 Vehicle air cleaning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-245176 2013-11-27
JP2013245176 2013-11-27

Publications (1)

Publication Number Publication Date
WO2015079753A1 true WO2015079753A1 (en) 2015-06-04

Family

ID=53198710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072083 WO2015079753A1 (en) 2013-11-27 2014-08-25 Vehicle air purifier

Country Status (3)

Country Link
JP (1) JP6100918B2 (en)
CN (1) CN105452031B (en)
WO (1) WO2015079753A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3039259A1 (en) * 2015-07-22 2017-01-27 Peugeot Citroen Automobiles Sa AIR TREATMENT FACILITY
WO2017147778A1 (en) * 2016-03-01 2017-09-08 GM Global Technology Operations LLC Systems and methods for portable ashtray with fine dust sensor
WO2019039137A1 (en) * 2017-08-25 2019-02-28 株式会社デンソー Vehicle air conditioning apparatus
JP2019038523A (en) * 2017-08-25 2019-03-14 株式会社デンソー Vehicle air conditioning device
CN113599562A (en) * 2019-01-18 2021-11-05 艾洁弗环境集团公司 Apparatus, system, and method for advanced oxidation process using photohydrogen ionization
WO2021228221A1 (en) * 2020-05-15 2021-11-18 Knorr-Bremse Espana, S.A. Positive and negative oxygen ion air purification system using dielectric barrier discharge for rail transport
CN113829844A (en) * 2021-11-29 2021-12-24 深圳市凯仕德科技有限公司 Plasma sterilization and deodorization system
WO2023273143A1 (en) * 2021-07-02 2023-01-05 一汽奔腾轿车有限公司 Vehicle air conditioner filter element replacement reminding method and system based on environmental pm2.5

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063773A (en) * 2015-12-10 2017-08-18 株式会社堀场制作所 The control method of Exhaust Measurement Equipment and Exhaust Measurement Equipment
CN106394187A (en) * 2016-08-31 2017-02-15 广州市健霖全能贸易有限公司 Air purification control method and device
CN109927517A (en) * 2019-04-15 2019-06-25 郑永宏 A kind of air purification system for automobiles and method
JP7273657B2 (en) * 2019-08-19 2023-05-15 シャープ株式会社 Blower

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014789A (en) * 2003-06-26 2005-01-20 Nissan Motor Co Ltd Static preventing device
JP2007045174A (en) * 2005-08-05 2007-02-22 Nissan Motor Co Ltd Ventilation disinfection system for vehicle
JP2007290577A (en) * 2006-04-26 2007-11-08 Matsushita Electric Ind Co Ltd Air-conditioner
JP2008207806A (en) * 2008-04-18 2008-09-11 Toyota Motor Corp Dust reduction device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007151A (en) * 2005-06-30 2007-01-18 Hitachi Appliances Inc Air cleaner
JP4251199B2 (en) * 2006-07-05 2009-04-08 ダイキン工業株式会社 Air cleaner
JP5840888B2 (en) * 2011-08-05 2016-01-06 シャープ株式会社 Ion delivery device and electrical apparatus equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014789A (en) * 2003-06-26 2005-01-20 Nissan Motor Co Ltd Static preventing device
JP2007045174A (en) * 2005-08-05 2007-02-22 Nissan Motor Co Ltd Ventilation disinfection system for vehicle
JP2007290577A (en) * 2006-04-26 2007-11-08 Matsushita Electric Ind Co Ltd Air-conditioner
JP2008207806A (en) * 2008-04-18 2008-09-11 Toyota Motor Corp Dust reduction device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3039259A1 (en) * 2015-07-22 2017-01-27 Peugeot Citroen Automobiles Sa AIR TREATMENT FACILITY
WO2017147778A1 (en) * 2016-03-01 2017-09-08 GM Global Technology Operations LLC Systems and methods for portable ashtray with fine dust sensor
CN108778804A (en) * 2016-03-01 2018-11-09 通用汽车环球科技运作有限责任公司 System and method for the portable grey cylinder with thin dust sensor
WO2019039137A1 (en) * 2017-08-25 2019-02-28 株式会社デンソー Vehicle air conditioning apparatus
JP2019038523A (en) * 2017-08-25 2019-03-14 株式会社デンソー Vehicle air conditioning device
CN113599562A (en) * 2019-01-18 2021-11-05 艾洁弗环境集团公司 Apparatus, system, and method for advanced oxidation process using photohydrogen ionization
CN113599562B (en) * 2019-01-18 2024-03-12 艾洁弗环境集团公司 Apparatus, systems, and methods for advanced oxidation processes using photo-hydroionization
WO2021228221A1 (en) * 2020-05-15 2021-11-18 Knorr-Bremse Espana, S.A. Positive and negative oxygen ion air purification system using dielectric barrier discharge for rail transport
WO2023273143A1 (en) * 2021-07-02 2023-01-05 一汽奔腾轿车有限公司 Vehicle air conditioner filter element replacement reminding method and system based on environmental pm2.5
CN113829844A (en) * 2021-11-29 2021-12-24 深圳市凯仕德科技有限公司 Plasma sterilization and deodorization system

Also Published As

Publication number Publication date
CN105452031B (en) 2017-08-11
CN105452031A (en) 2016-03-30
JPWO2015079753A1 (en) 2017-03-16
JP6100918B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6100918B2 (en) Air purifier for vehicles
CN112682895B (en) Air purification device, air purification method and air purifier
JP6173459B2 (en) Disinfection device using electric discharge
JP2008105613A (en) Electrostatic atomizer for vehicle
KR20160084756A (en) Blower of air conditioning system for vehicle
JP2006250447A (en) Electric equipment with ion generator
US20100243768A1 (en) Air Conditioner Including Electrostatic Atomization Device
JP2011519779A (en) Disinfection device for automotive air conditioning system
JP2009051387A (en) Vehicle air conditioner with ionizer
KR20160099311A (en) Electrostatic dust collector system for vehicles and control method
US20230226556A1 (en) Air purification device and air conditioning device
WO2013008837A1 (en) Filter unit and vehicle air-conditioning device provided therewith
JP7273657B2 (en) Blower
JP2002228180A (en) Air conditioner
JPH09173762A (en) Air cleaner
JP5130148B2 (en) Air conditioner for vehicles
JP2013157169A (en) Ion generation device and ion generation method
EP4205774A2 (en) Methods and systems for sanitizing air conditioned by a climate control system
JP2001074265A (en) Indoor unit of air conditioner
JP4766076B2 (en) Air conditioner
KR20160099312A (en) Air conditioner for vehicles and controlling method of the same
JP2006170467A (en) Air conditioner
KR102003349B1 (en) Air conditioner for vehicle and method for controlling ion generator
KR20080007988A (en) Control method of cluster negative/positive ion generator for car air conditioning system
JP4674615B2 (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044016.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866224

Country of ref document: EP

Kind code of ref document: A1