WO2015079093A1 - Composición farmacéutica para el tratamiento y/o prevención de enfermedades retinianas degenerativas - Google Patents

Composición farmacéutica para el tratamiento y/o prevención de enfermedades retinianas degenerativas Download PDF

Info

Publication number
WO2015079093A1
WO2015079093A1 PCT/ES2014/070879 ES2014070879W WO2015079093A1 WO 2015079093 A1 WO2015079093 A1 WO 2015079093A1 ES 2014070879 W ES2014070879 W ES 2014070879W WO 2015079093 A1 WO2015079093 A1 WO 2015079093A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
retinal
pharmaceutical composition
nic
vip
Prior art date
Application number
PCT/ES2014/070879
Other languages
English (en)
French (fr)
Inventor
Amar Kumar SINGH
Girish Kumar SRIVASTAVA
Iván FERNÁNDEZ BUENO
Manuel José GAYOSO RODRÍGUEZ
José Carlos PASTOR JIMENO
Original Assignee
Universidad De Valladolid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Valladolid filed Critical Universidad De Valladolid
Publication of WO2015079093A1 publication Critical patent/WO2015079093A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/203Retinoic acids ; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/455Nicotinic acids, e.g. niacin; Derivatives thereof, e.g. esters, amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/2278Vasoactive intestinal peptide [VIP]; Related peptides (e.g. Exendin)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells

Definitions

  • the present invention falls within the field of cellular therapy for the regeneration of ocular tissues, specifically within pharmaceutical compositions comprising mesenchymal stem cells useful for tissue regeneration of the damaged retina, preferably of the retinal pigment epithelium (RPE). , of photoreceptors or neurorethrin affected by a degenerative retinal disease.
  • RPE retinal pigment epithelium
  • the retina is a tissue with great complexity, consisting of several clearly differentiated layers: the pigment epithelium of the retina (EPR), the photoreceptors (PRs), the internal and external limiting membranes (ILM and OLM), the internal and external nuclear layers (INL and ONL), internal and external plexiform layers (IPL and OPL), the ganglion cell layer (GCL) and the optic nerve fiber layer (NFL).
  • EPR pigment epithelium of the retina
  • PRs photoreceptors
  • ILM and OLM the internal and external limiting membranes
  • IPL and ONL internal and external nuclear layers
  • IPL and OPL internal and external plexiform layers
  • GCL ganglion cell layer
  • NNL optic nerve fiber layer
  • AMD age-related macular degeneration
  • RP retinitis pigmentosa
  • NOIANA acute anterior ischemic optic neuropathy non-arteritic
  • Dry DMAE encompasses a market of 25-30 billion dollars between the United States and Europe and has a negative annual impact of around 30 billion dollars on the gross domestic product of the United States.
  • the population called "senior citizens" will increase considerably in the coming decades in industrialized countries, which should alert health systems as it will increase the economic and social burden of the system. Therefore, the DMAE is considered a major public health problem, which can have a devastating effect on the quality of life of patients and also entail significant financial consequences for the economy of the industrialized world.
  • Current AMD therapies have shown only small advances, especially in CNV, but in many cases they have only slowed the course of the disease. In the case of the dry form of AMD there is no clinically acceptable and / or effective treatment today.
  • the RP is caused by a progressive dysfunction of the photoreceptors, which subsequently extends to other retinal layers.
  • the PR has a prevalence of 1 case per 4000 individuals, with the population affected in the world being 1.5 million. This pathology affects patients of school age and also working age. At present, there is no treatment, although it has a great socio-sanitary impact on the affected population.
  • the objective of advanced therapies is to be reconstructed jointly, by tissue engineering with tissue / cellular and non-tissue / cellular components, such as a substrate that acts as the basement membrane on which RPE cells can grow.
  • tissue engineering with tissue / cellular and non-tissue / cellular components, such as a substrate that acts as the basement membrane on which RPE cells can grow.
  • stem cells have the ability to regenerate themselves and differentiate into any adult cell using the right conditions. Therefore, stem cells can be a potential therapy in cell replacement, such as EPR, photoreceptors or even the entire retina.
  • stem cells have created enormous hope in the regeneration of retinal cells.
  • ESCs endothelial stem cells
  • ⁇ PSCs induced pluripotent stem cells
  • the EPR supplies the nutrients, from the choroidal circulation, to the outermost layers of the neural retina, recycles the external segments of the photoreceptors and secretes different growth and neurotrophic factors, such as the PEDF (in English, pigment epithelium-derived factor ), BDNF (in English, brain-derived neurotrophic factor) and VEGF (in English, vascular endothelial growth factor).
  • PEDF in English, pigment epithelium-derived factor
  • BDNF in English, brain-derived neurotrophic factor
  • VEGF in English, vascular endothelial growth factor
  • the present invention relates to a composition
  • a composition comprising mesenchymal stem cells (MSCs), preferably from adipose tissue (AD-MSCs), combined with vasoactive intestinal peptide (VIP) and nicotinamide (NIC), and more preferably further combined with retinoic acid. (ATRA) and with the supernatant of an EPR cell culture.
  • MSCs mesenchymal stem cells
  • VIP vasoactive intestinal peptide
  • NIC nicotinamide
  • ATRA retinoic acid.
  • This composition is useful for the treatment and / or prevention of tissue damage caused in the retina, preferably as a consequence of a degenerative retinal disease, including degeneration of RPE, photoreceptors and neuroretin.
  • composition described in the present invention can be used for the maintenance of the retina if it is decided to transplant it to the damaged tissue; or it can be used in the preparation of medicaments, preferably of cell therapy, intended for the treatment and / or prevention of retinal degenerative diseases, including but not limited to inflammatory or genetic diseases.
  • Mesenchymal stem cells preferably derived from adipose tissue, in combination with VIP and NIC biomolecules, and preferably also with ATRA and with factors secreted by the EPR, they protect against degeneration of the EPR, photoreceptors and neuroretin, which can be used in the treatment of degenerative diseases of the retina in, for example, but not limited to, humans.
  • the AD-MSCs, the factors secreted by the EPR or the VIP, NIC and ATRA biomolecules used individually show an effectiveness lower than that observed when used in the combinations proposed herein.
  • composition of the invention comprising mesenchymal stem cells, vasoactive intestinal peptide and nicotinamide.
  • mesenchymal stem cells “stromal stem cells” or “MSC”, are multipotent cells, with fibroblastoid morphology, originating from the mesodermal germ layer, with the ability to differentiate into various cell types.
  • the MSCs express at least one of the CD105, CD73 and CD90 specific surface antigens, and do not express the CD45, CD34, CD14 or CD1 1b, CD79a or CD19 and HLA class II antigens.
  • MSCs are capable of differentiating, for example, but not limited to osteoblasts, adipocytes and chondroblasts under standard in vitro differentiation conditions.
  • MSCs can be isolated from various tissues, including, but not limited to, the bone marrow (BM), adipose tissue (lipoaspirates) (AD), liver, spleen, testicles, menstrual blood, amniotic fluid, pancreas, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, trabecular bone, umbilical cord, lung, dental pulp or peripheral blood.
  • BM bone marrow
  • AD adipose tissue
  • liver spleen
  • testicles menstrual blood
  • amniotic fluid pancreas
  • periosteum synovial membrane
  • skeletal muscle dermis
  • pericytes pericytes
  • trabecular bone umbilical cord
  • umbilical cord lung
  • adipose tissue has different advantages over other sources, such as bone marrow, due to the ease of obtaining stem cells and the availability of a large number of cells, without large differences in the properties of BM-MSCs and AD-MSCs. Therefore, in one embodiment Preferred of the composition of the invention, the MSCs come from adipose tissue.
  • ESCs endothelial stem cells
  • PSCs induced pluripotent stem cells
  • MSCs could be an advantage compared to genetically modified EPR cells that have also been used in cell therapy for tissue regeneration of degenerating retina.
  • vasoactive intestinal peptide or "VIP” (from English, vasoactive intestinal peptide) is a neuropeptide that belongs to the glucagon-VIP growth hormone of 28 amino acids (His-Ser-Asp-Ala-Val- Phe-Thr- Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-lle-Leu-Asn, SEQ ID NO: 1) and with the empirical formula C147H238N44O42S (molecular weight 3325.9).
  • VIP is a strong secretagogue that promotes the release of factors derived from astroglia (chemokines), such as IL-1 (from English, interleukin 1), IL-6, NT-3 (from English, neurotrophin-3), PN-1 (from English, protease nexin-1), RANTES (from English, regulated upon activation normal T cell expressed and presuma bly secreted), MIP-1 (in English, macrophage inflammatory protein-1), ADNF (in English, activity dependent neuroprotective factor) and ADNP (in English, activity dependent neuroprotective protein).
  • VIP receptors VPAC-1, VPAC-2 and PAC-1
  • VPAC-1 occur in EPR cells, neurons and glial cells. The expression of the VPAC-1 receptor increases in pathological conditions, as in ischemic damage.
  • NIC Neurotinamide
  • vitamin B also called niacinamide or nicotinic acid amide
  • the chemical name is pyrido-3-carboxamide and its empirical formula is C6H 6 N 2 0.
  • the NIC is the first precursor of nicotinamide dinucleotide adenine (NAD +) and its phosphorylated derivative (NADP +), an essential coenzyme for mitochondrial production of ATP and the only nuclear enzyme substrate PARP-1 (English, poly-ADP-ribose polymerase-1).
  • the NIC acts as an inhibitor of the PARP enzyme, which plays an important role in the repair of cellular DNA, also in retinal cells, in case of cell degeneration.
  • the NIC also inhibits histone-dependent NAD deacetylase, which plays an important role in silencing and differentiating gene expression, in genomic stability, in the transduction signal and in cell growth and death.
  • the NIC has various effects on cell cultures, including the inhibition of PARP, which protects cells from oxidative stress.
  • PARP activation influences some of the apoptotic pathways and it has been suggested that overregulation is involved in some types of retinal cell death. PARP activation is NAD + dependent and during the poly-ADP ribosylation process the PARP dependent mechanism is activated and It leads to apoptosis. These multiple effects of the NIC may be due to the fact that it is an essential substrate for NADH and NADPH.
  • composition of the invention further comprises retinoic acid (ATRA).
  • ATRA retinoic acid
  • Retinoic acid or "ATRA” (from English, all-trans-retinoic acid) is also known as vitamin A acid. Its empirical formula is C20H28O2 (molecular weight 300.4). It is a lipophilic molecule that can easily cross the cell membrane. It is synthesized in vivo in neural tissue from retinol. ATRA is involved in the differentiation of the optic vesicle in EPR. ATRA is the natural metabolite of retinoic acid and plays an important role in growth and differentiation. It is used in the differentiation of embryonic stem cells to different cell types, such as neurons, heart cells, smooth muscle or germ cells. ATRA is also associated with neuroprotection, both in vivo and in vitro.
  • the composition of the invention further comprises the supernatant of a retinal pigment epithelial cell culture.
  • the "pigment epithelium of the retina” or “EPR” is the layer of pigmented cells located on the outside of the retina that interacts closely with the photoreceptor cells (cones and rods) in maintaining visual function. It is firmly anchored to the underlying choroid by Bruch's membrane.
  • the retinal pigmentary epithelium is composed of a layer of hexagonal cells that are densely packed with pigment granules. Seen in section, each cell consists of a non-pigmented outer part in which a large and oval shaped core is located and a pigmented inner portion that extends a series of straight filiform processes between the rods. It serves as a limiting factor of the transport that maintains the environment of the retina, providing small molecules such as amino acids, ascorbic acid and D-glucose, while representing a narrow barrier for substances carried by the choroid's blood.
  • the retinal pigment epithelium also has the function of phagocytosis of the external segments of the photoreceptor cells and regeneration of the photopigment.
  • EPR cells means any cell type present in said epithelium, preferably epithelial cells. EPR cells can be cultured in the presence of culture media and conditions known in the technical field for epithelial cell culture.
  • the culture medium may comprise, for example, but not limited to, fetal bovine (FBS) or human serum, antibiotics, antifungals, growth factors, etc.
  • the base medium that can be used in the culture medium could be any of those known in the state of the art for in vitro cell culture, such as, but not limited to, basal medium “Eagle”, CRCM-30, CMRL - 1066, "Dulbecco's Modified Eagle's Medium” (DMEM), “Fischer's Medium”, “Glasgow Minimum Essential Medium”, Ham's F-10, Ham's F-12 (F12), "High Cell Density Medium “,”Iscove's Modified Dulbecco's Medium “, Leibovitz's L-15, McCoy's 5A, medium 199," Minimum Essential Medium Eagle “,” Alpha Minimum Essential Medium “, CnT20, NCTC 109, NCTC 135, RPMI-1640,”William's Medium E “, Waymouth's MB 7521 1, Waymouth's MB 7051 1,” Keratinocyte serum-free medium “(KSFM), or any combination thereof.
  • basal medium “Eagle", CRCM-30,
  • the culture medium comprises a DMEM / F12 base medium.
  • the conditions of culture may be, for example, but not limited to, in the presence of between 5 and 10% CO2, between 36 and 38 ° C and for 24 to 48 hours
  • said culture is carried out as described below. in the examples of the present invention.
  • the composition of the invention comprises AD-MSCs, VIP, NIC, ATRA and the supernatant of an EPR cell culture.
  • the MSCs and EPR cells referred to in the present invention can be derived from any animal, preferably mammal, more preferably human. In another preferred embodiment, the MSCs and EPR cells come from a human. In addition, both MSCs and EPR cells can be of autologous or heterologous origin.
  • the MSCs are of autologous origin.
  • Autologous origin means any origin of the sample, taken from the tissues or cells of an individual or patient, which is the same in the donor and the recipient thereof when administered after treatment or transplanted after modification.
  • the MSCs are of autologous origin and the EPR cells are of heterologous origin.
  • composition of the invention further comprises a pharmaceutically acceptable carrier.
  • said composition may comprise one or more excipients.
  • excipient refers to a substance that helps the absorption of the elements of the composition of the invention, stabilizes said elements, activates or aids the preparation of the composition in the sense of giving it consistency.
  • the excipients could have the function of keeping the ingredients together, such as starches, sugars or cellulose, for example, the dye function, the protective function of the composition, for example, to isolate it from the air and / or moisture, the filling function of a tablet, capsule or any other form of presentation, the disintegrating function to facilitate the dissolution of the components and their absorption in the intestine, without excluding other types of excipients not mentioned in this paragraph.
  • the term excipient includes, for example, but not limited to, binders, dispersing agents, lubricants, glidants, etc.
  • the "pharmaceutically acceptable carrier” is a substance that is used in the composition to dilute any of the components included therein to a certain volume or weight.
  • the pharmaceutically acceptable carrier is an inert substance or action analogous to any of the elements included in the composition of the present invention.
  • the function of the vehicle is to facilitate the incorporation of other elements, allow a better dosage and administration or give consistency and form to the composition.
  • the composition of the invention comprises MSCs, VIP and NIC, and more preferably also ATRA and the supernatant of an EPR cell culture, in a therapeutically effective amount, "therapeutically effective amount” being understood as the level, amount or concentration of said elements that produce the desired effect by treating and / or preventing damage or degeneration of the retina without causing adverse effects.
  • the dosage to obtain a therapeutically effective amount depends on a variety of factors, such as, for example, the age, weight, sex, disease or tolerance of the individual to whom the composition of the invention is to be administered.
  • composition of the present invention can be formulated for administration in a variety of ways known in the state of the art.
  • preparations include any solid composition (tablets, pills, capsules, tablets, pearls, granules, pastes, pellets, etc.), semi-solid (gels, creams, ointments, etc.) or liquid (solutions, suspensions, osmotic device or emulsions) for oral, topical or parenteral administration.
  • the composition of the present invention may also be in the form of sustained release formulations of drugs or any other conventional release system, so it may be contained, but not limited to, in nanoparticles, liposomes or nanospheres, in a polymeric material, in a polymeric material.
  • Biodegradable or non-biodegradable implant or in biodegradable microparticles, such as biodegradable microspheres can be administered to an animal, including a mammal and, therefore, to man, in a variety of ways, including, but not limited to, intraperitoneal, intravenous, intradermal, intraspinal, intrastromal, intraarticular, intrasynovial, intrathecal, intralesional, intraarterial, intramuscular, intranasal, intracranial, subcutaneous, intraorbital, intravitreal, intracamerular, intraretinal, subretinal, intracapsular, topical, using transdermal patches, percutaneous, nasal spray, surgical implant, internal surgical paint or infusion pump.
  • the composition of the invention is formulated for ophthalmic administration.
  • formulated for ophthalmic administration refers to a formulation that allows the composition of the invention to be administered ocularly, for example, but not limited to, topically or infraocularly (including intravitreal, intracamerular, intraretinal, subretinal and others) without such administration negatively affecting the properties, for example structural and / or physiological, of the eye.
  • examples of the composition of the invention formulated for ophthalmic administration are, but not limited to, said composition associated with water, salts, a polymeric or semi-solid liquid carrier, a phosphate buffer or any other ophthalmically acceptable liquid carrier of known in the state of the art.
  • the composition of the invention further comprises another active ingredient.
  • active ingredient refers to any component that potentially provides a pharmacological activity or other different effect on the cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals.
  • the term includes those components that promote a chemical change in the preparation of the drug and are present therein in a modified form intended to provide the specific activity or effect.
  • the composition of the invention is a "combined preparation” or also called “juxtaposition”, which means that the components of the combined preparation need not be present as a joint, for example in a composition, in order to be available for separate or sequential application.
  • the expression “juxtaposed” implies that it is not necessarily a true combination, in view of the physical separation of components.
  • the components included in the composition of the invention can be administered simultaneously or sequentially.
  • the composition of the invention is capable of improving the conservation status of both neuroretinal explants and RPE cells cultured ex vivo that have undergone a degenerative process.
  • another aspect of the invention relates to the use of the composition of the invention for the preparation of a medicament, or alternatively, to the composition of the invention for use as a medicament.
  • the “medicaments” referred to in the present invention may be for human or veterinary use.
  • the "medicine for human use” is any substance or combination of substances that is presented as having properties for the treatment or prevention of diseases in humans or that can be used in humans or administered to humans in order to restore, correct or modify the physiological functions exerting a pharmacological, immunological or metabolic action.
  • the "veterinary medicinal product” is any substance or combination of substances that is presented as having curative or preventive properties with respect to animal diseases or that can be administered to the animal in order to restore, correct or modify its physiological functions by exercising a Pharmacological, immunological or metabolic action.
  • Another aspect of the invention relates to the use of the composition of the invention for the preparation of a medicament for the treatment and / or prevention of degenerative retinal diseases, or alternatively to the composition of the invention for use in the treatment and / or prevention of degenerative retinal diseases.
  • treatment refers to combating the effects caused as a result of the disease or pathological condition of interest in a subject (preferably mammal, and more preferably a human) that includes:
  • prevention consists in preventing the onset of the disease, that is, preventing the disease or the pathological condition from occurring in a subject (preferably mammal, and more preferably a human). , in particular, when said subject has a predisposition for the pathological condition, but has not yet been diagnosed as having it.
  • Degenerative retinal disease means any disease or pathology that triggers or causes a retinal tissue degeneration or retinal degeneration, meaning “retina” any of its layers: retinal pigment epithelium, photoreceptors, internal and external limiting membranes , internal and external nuclear layers, internal and external plexiform layers, ganglion cell layer and optic nerve fiber layer.
  • degenerative retinal disease is a degenerative disease of RPE, photoreceptors or any of the other neurons or retinal cells, that is, of any other neuroretinal layer.
  • a “degenerative disease of RPE” is any disease or pathology that triggers or causes a degeneration of the retinal pigment epithelium. Examples of such diseases are, but not limited to, AMD, pathological myopia and pigmentary retinosis, among others.
  • Photoreceptors are specialized light-sensitive neurons, located in the external retina of vertebrates. Cones and canes are one of the most specialized and complex cells in the body. They convert the light into nerve impulses that the brain transforms into images. The photoreceptors contain several zones where specific functions are performed: an external segment, an internal segment, a cell body and a synaptic terminal.
  • the external segments of the rods are formed by an accumulation of membranous discs in the form of coin stacks surrounded by the cell membrane, where the phenomenon of phototransduction is carried out and the photosensitive pigment, rhodopsin, is found.
  • the discs are formed by folds of the plasma membrane itself and the photosensitive molecules are the opsins.
  • Separating the outer segment from the inner segment is an internal connecting cilia that has a structure similar to the cilia or flagella of other cells.
  • the cilia connector region serves as a passage of vesicles between the external and internal segment.
  • a "degenerative disease of the photoreceptors” is any disease or pathology that triggers or causes a degeneration of the photoreceptors of the retina. Examples of such diseases are, but not limited to, cones and stick dystrophy, Stargardt's disease, fundus flavimaculatus or pattern dystrophies, among others.
  • the disease is DMAE, RP, Stargardt's disease or some of the optic nerve diseases such as ischemic optic neuropathy, preferably NOIANA.
  • "Macular degeneration” or “age-related macular degeneration” or “AMD” is a disease caused by degeneration, damage or deterioration of the macula.
  • the macula is a yellowish layer of light sensitive tissue that is found in the back of the eye, in the center of the retina. This area provides visual acuity, allowing the eye to perceive fine and small details. When the macula does not work properly, the areas of the center of the visual field begin to lose sharpness, becoming cloudy, blurred.
  • the macular degeneration referred to in the present invention includes both dry and wet AMD.
  • Retinitis pigmentosa is not a single disease, but a set of chronic eye diseases of genetic origin and degenerative character that are grouped under this name. It is characterized by a progressive degeneration of the retina, which gradually loses the cones and rods. It produces as main symptoms a slow but progressive decrease in visual acuity that predominantly affects night vision and the peripheral field in the early stages, while maintaining central vision.
  • the "non-arteritic anterior ischemic optic neuropathy” or “NOIANA” is defined as an infarction in the head of the optic nerve, that is, an interruption of the blood supply, after which a certain degree of ischemia occurs with its consequent associated visual loss.
  • retinal disease affects a human.
  • T indicates treatment with MMC (50 ⁇ g / ml) of RPE cells.
  • Statistical significance is set at p ⁇ 0.01 ( ** ) / (+) and P ⁇ 0.001 (+++).
  • Rhodopsin occurs in sticks and nuclei are identified with DAPI.
  • Control I A
  • Control II B
  • Control III C
  • VIP D
  • NIC E
  • ATRA F
  • VIP + NIC G
  • VIP + ATRA H
  • NIC + ATRA I
  • VIP + NIC + ATRA J
  • Scale bar 50pm.
  • AD-MSCs cells together with factors secreted by the EPR and different biomolecules (VIP, NIC and ATRA) to create an environment that allows differentiation of AD-MSCs to EPR cells, which simultaneously they can protect EPR and degenerating neuroretin.
  • VIP EPR and different biomolecules
  • EXAMPLE 1 Co-culture of EPR cells that have undergone a process of cell degeneration and AD-MSCs in the presence of VIP, NIC, ATRA and their combinations.
  • AD-MSCs and EPR cells were co-cultured in a 2: 1 ratio, in 6-well plates (BD Falcon), with DMEM / F12 medium supplemented with 10% FBS, 1% antibiotics (penicillin / streptomycin) and 1% antifungal (amphotericin ). Both cell types were physically separated by a porous membrane (BD Falcon).
  • EPR cells 60,000 cells / cm 2
  • EPR cells were grown in the bottom of 24-well plates for 24 hours, and treated for 2 hours with an optimal concentration of mitomycin C (50 pg / ml dissolved in the culture medium ) to induce a process of cell degeneration (RPE cells under stress conditions).
  • AD-MSCs were cultured (30,000 cells / cm 2 ) for 24 hours on top of Transwell-type well tissue membranes (tissue culture treated track-etched polyethylene terephthalate (PET); pore size membrane of 0.4pm and pore density of 2.0 ⁇ 0.2x10 6 / cm 2 ) for adhesion and growth.
  • the growth medium is supplemented with VIP (5 ⁇ ), NIC (10 mM), ATRA (5 ⁇ ) or its 4 combinations VIP + NIC, VIP + ATRA, NIC + ATRA and VIP + NIC + ATRA, for evaluate the effect of these biomolecules and their combinations in the presence of AD-MSCs on the cells of the RPE under stress.
  • the protective capacity of the AD-MSCs alone, as well as in the different combinations with the biomolecules was evaluated at 3 and 5 days using the alamarBIue® method.
  • VIP, NIC and ATRA individually and their combinations showed a suppressive effect on the proliferation of stress-prone EPR cells (Fig. 1).
  • VIP, ATRA, VIP + NIC, NIC + ATRA or VIP + NIC + ATRA stimulated the proliferation of EPR cells. This was not observed in the combinations with NIC and VIP + ATRA (Fig. 2).
  • EXAMPLE 2 Co-culture of human neuroretinal explants that undergo progressive degeneration with AD-MSCs, medium conditioned with EPR and VIP, NIC, ATRA and their combinations.
  • AD-MSCs cells were cocultured with human neuroretinal explants that spontaneously undergo progressive degeneration during culture.
  • 6-well Transwell plates were used, so that the retinal tissue and the AD-MSCs remained physically separated by the membrane of the Transwell wells.
  • DMEM / F12 culture medium supplemented with 10% FBS, 1% antibiotics, 1% antifungal and 50% medium conditioned with RPE was used.
  • AD-MSCs 30,000 cells / cm 2
  • Neuroretinal explants (7x7 mm) were obtained from the central retinal area and placed on the membrane of the TransweII (tissue culture treated polycarbonate (PC) membrane diameters 24 mm thick, 10 pm thick, and pore size 0.4 pm with density of 1x10 8 pores / cm 2 ) with the photoreceptors in contact with the membrane of the well.
  • TransweII tissue culture treated polycarbonate (PC) membrane diameters 24 mm thick, 10 pm thick, and pore size 0.4 pm with density of 1x10 8 pores / cm 2
  • the medium conditioned with EPR was prepared by culturing EPR cells up to 90% confluence, at which time the medium was replaced and the culture was continued for 48 hours. Finally, the medium was collected, centrifuged at 1000 rpm for 10 minutes to discard possible cell debris and the supernatant (EPR conditioned medium) was stored at -80 ° C until use.
  • the culture medium is supplemented with VIP (5 ⁇ ), NIC (10mM), ATRA (5 ⁇ ) or its 4 VIP + NIC, VIP + ATRA, NIC + ATRA and VIP + combinations NIC + ATRA, to assess the effect of these biomolecules and their combinations on AD-MSCs and neuroretin in degeneration.
  • AD-MSCs alone, as well as in the different combinations with biomolecules, was evaluated after 7 days of co-culture by studying retinal morphology (toluidine blue staining) and cell immunoexpression of different proteins, calbindin (CB), synaptophysin (SYP), rhodopsin (RHO), cellular retinaldehyde binding protein (CRALBP) and acidic fibrillar glial protein (GFAP).
  • CB calbindin
  • SYP synaptophysin
  • RHO rhodopsin
  • GFAP acidic fibrillar glial protein
  • Anti-CB and -RHO antibodies were used to assess the integrity of the cones and rods, respectively; anti-SYP to evaluate synapses between different retinal neurons at the level of OPL and IPL; anti-CRALBP to evaluate the functional status of Müller cells and differentiate them from astrocytes (GFAP + and CRALP-); and anti-GFAP to evaluate the process of reactive gliosis of retinal tissue.
  • DAPI staining was used to identify cell nuclei. 2.1. Results
  • Control I (0-day neuroretinal explants) (Fig. 3A, B, C and 4A)
  • 3B fluorescence band, due to the combination of calbindin (CB) and synaptophysin (SYP)); the cytoplasm of integration neurons appeared slightly edematous (ONL); IPL neural processes appeared slightly edematous and the dense cytoplasm could be differentiated from Müller cells; ganglion cells appeared adequately conserved while the NFL was edematized; the ILM was clearly defined.
  • CB calbindin
  • SYP synaptophysin
  • Control II Neuronal explants cultured 7 days in the presence of EPR conditioned medium
  • FIG. 3D, E, F and 4B The retinal structure appeared disorganized and cell degeneration processes were shown. The photoreceptors appeared unstructured and in a small number; cellular edematization, picnosis, cariorrexis and karyolysis were observed in retinal cells; the OPL disappeared, which overlapped the ONL and the INL; ganglion cells were degenerated; a seemingly intact ILM was observed. In many of the samples studied, retinal architecture was completely disorganized.
  • Control III Neurooretinal explants cultured 7 days in the presence of conditioned medium EPR + AD-MSCs (Fig. 3G. H, I and 4C)
  • the general retinal structure was better preserved compared to Control II.
  • the VIP culture showed a marked reactive gliosis, determined by the intense GFAP tide (Fig. 3L), where Müller cells appeared hypertrophic extending to fill the space left by degenerating neurons.
  • the VIP did not seem to improve retinal status compared to Control III, and even in some cases the state of neuroretinal degeneration was greater.
  • NIC and ATRA showed a better neuroretinal conservation, which can be considered as a protective effect on the general conservation of human neuroretin explants.
  • the samples with VIP + NIC showed some external segments of the apparently intact cones (Fig. 3T, arrows). In these samples and in the VIP + NIC + ATRA a good conservation of the retinal structure was observed in comparison with the rest of the groups of the experiment.
  • NIC and ATRA appear to have a positive effect for conservation of the retinal structure, but that is not significantly better than AD-MSCs individually, contrary to what was observed in the case of VIP + NIC and VIP + NIC + ATRA compared to the rest of experimental groups.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Endocrinology (AREA)
  • Rheumatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

La presente invención se refiere a una composición que comprende células madre mesenquimales (MSCs), preferiblemente procedentes de tejido adiposo (AD-MSCs), combinadas con péptido intestinal vasoactivo (VIP) y nicotinamida (NIC), y más preferiblemente combinadas además con ácido retinoico (ATRA) y con sobrenadante de un cultivo de células del epitelio pigmentario de la retina (EPR). También se refiere al uso de esta composición para el tratamiento y/o prevención de daños retinianos, preferiblemente de enfermedades degenerativas de la retina, por ejemplo, aunque sin limitarnos, enfermedades degenerativas del EPR, de los fotorreceptores y de la neurorretina.

Description

COMPOSICIÓN FARMACÉUTICA PARA EL TRATAMIENTO Y/O PREVENCIÓN DE ENFERMEDADES RETINIANAS DEGENERATIVAS
DESCRIPCIÓN
La presente invención se encuadra en el campo de la terapia celular para la regeneración de tejidos oculares, concretamente dentro de las composiciones farmacéuticas que comprenden células madre mesenquimales útiles para la regeneración tisular de la retina dañada, preferiblemente del epitelio pigmentario de la retina (EPR), de los fotorreceptores o de la neurorretina afectados por una enfermedad retiniana degenerativa.
ESTADO DE LA TÉCNICA La retina es un tejido con una gran complejidad, constituido por varias capas claramente diferenciadas: el epitelio pigmentario de la retina (EPR), los fotorreceptores (PRs), las membranas limitantes interna y externa (ILM y OLM), las capas nucleares interna y externa (INL y ONL), las capas plexiformes interna y externa (IPL y OPL), la capa de las células ganglionares (GCL) y la capa de fibras del nervio óptico (NFL). La integridad de estas capas es fundamental para el funcionamiento normal de la retina. Así, cualquier alteración estructural o funcional en las mismas origina una enfermedad retiniana. Las degeneraciones de la retina son responsables de alteraciones en la estructura y función retiniana. Dichas degeneraciones finalmente inducen enfermedades retinianas que resultan en una disfunción visual y/o en la pérdida de visión. Existen un gran número de enfermedades oculares relacionadas con la degeneración retiniana que no poseen actualmente un tratamiento adecuado, como la degeneración macular asociada a la edad (DMAE), la retinitis pigmentosa (RP), la enfermedad de Stargardt y la neuropatía óptica isquémica anterior aguda no arterítica (NOIANA). La DMAE es la principal causa de ceguera en los países industrializados (Europa y Norteamérica) entre las personas mayores de 65 años. Esta patología tiene dos formas, la seca y la húmeda. La forma seca de la DMAE constituye entre el 60 y el 90% de los casos, mientras que la forma húmeda (también denominada CNV, del inglés choroidal neovascularization) representa entre el 10 y el 40% de los casos totales de DMAE. La DMAE seca engloba un mercado de 25-30 mil millones de dólares entre los Estados Unidos y Europa y tiene un impacto anual negativo de alrededor de 30 mil millones de dólares en el producto interior bruto de los Estados Unidos. La población denominada "tercera edad" va a aumentar considerablemente en las próximas décadas en los países industrializados, lo que debería alertar a los sistemas sanitarios ya que aumentará la carga económica y social del sistema. Por ello, la DMAE se considera un importante problema de salud pública, que puede originar un efecto devastador respecto a la calidad de vida de los pacientes y que además conllevará importantes consecuencias financieras para la economía del mundo industrializado. Las actuales terapias de la DMAE solo han mostrado pequeños avances, especialmente en la CNV, pero en muchos casos únicamente han conseguido ralentizar el curso de la enfermedad. En el caso de la forma seca de la DMAE no existe ningún tratamiento clínicamente aceptable y/o eficaz a día de hoy.
La RP se origina por una disfunción progresiva de los fotorreceptores, que posteriormente se extiende a otras capas retinianas. La RP tiene una prevalencia de 1 caso por cada 4000 individuos, siendo la población afectada en el mundo de 1 ,5 millones. Esta patología afecta a pacientes en edad escolar y también laboral. En la actualidad, no existe ningún tratamiento, a pesar de que tiene un gran impacto socio-sanitario en la población afectada.
Además de las dos patologías mencionadas, hay un gran número de enfermedades retinianas provocadas por la degeneración de las diferentes células retinianas, y para la mayoría de ellas no existe un tratamiento adecuado. El EPR juega un papel extremadamente importante en el desarrollo de una función visual normal, así como en el mantenimiento de la estructura e integridad de la retina. Se considera al EPR como uno de los principales responsables de la patogénesis de vanadas patologías retinianas, debido a los cambios estructurales y bioquímicos que suceden a lo largo de la vida en estas células. Todos estos cambios perjudiciales afectan progresivamente a la salud retiniana. Así, la retina neural, principalmente los fotorreceptores, comienzan a degenerar gradualmente y de forma sincronizada con el deterioro funcional del EPR. En este caso, parece lógico que si el EPR dañado pudiera ser reemplazado por EPR sano y nuevo, especialmente en el estado inicial de la patología cuando los fotorreceptores aún funcionan adecuadamente, se podría prevenir o ralentizar su degeneración. Existen algunos ejemplos donde los investigadores han intentado trasplantar EPR y epitelio pigmentario del iris de fuentes autólogas, homologas y heterologas. Sin embargo, en el caso de las células homologas y heterologas se produjeron importantes rechazos inmunológicos. Por el contrario, las fuentes autólogas mostraron una adecuada tolerancia inmune, pero no consiguieron una mejora en la función visual, debido a que las células tienen las mismas huellas genéticas y ambientales. Las tres estructuras que principalmente se ven afectadas en las patologías retinianas son la membrana de Bruch (BM), el EPR y los fotorreceptores. El objetivo de las terapias avanzadas pretende su reconstrucción conjuntamente, mediante ingeniería tisular con componentes tisulares/celulares y no tisulares/celulares, como por ejemplo un substrato que actúe como la membrana basal sobre la que se puedan crecer células de EPR. Se conoce claramente que las células madre tienen la capacidad de regenerarse a sí mismas y de diferenciarse hacia cualquier célula adulta utilizando las condiciones adecuadas. Por ello, las células madre pueden ser una terapia potencial en el reemplazamiento celular, como podrían ser el EPR, los fotorreceptores o incluso la retina al completo. Así, las células madre han originado una enorme esperanza en la regeneración de células retinianas. Existen importantes avances para la obtención de células de EPR frescas y funcionales, incluso de fotorreceptores, a partir de células madre endoteliales (ESCs) y de células madre pluripotentes inducidas (¡PSCs). Se están desarrollando diversos ensayos clínicos para el trasplante de células de EPR derivadas de ESCs en pacientes con enfermedades retinianas degenerativas. En Japón, el Riken Centre for Development Biology ha lanzado un estudio piloto para evaluar la segundad y factibilidad del trasplante autólogo de capas de células del EPR derivadas de ¡PSCs en pacientes con DMAE húmeda (Sipp, Douglas and Takahashi, Masayo. Pilot Clinical Study into iPS Cell Therapy for Eye Disease Starts in Japan, 30th July, 2013, http://www.riken.jp/en/pr/press/2013/20130730_1/). No obstante, la utilización tanto de las ESCs como de las ¡PSCs tiene algunas dificultades, debido a problemas de tipo ético y al riesgo de desarrollo de tumores.
Por otro lado, existen diversos factores de crecimiento que juegan un papel importante en el mantenimiento de la salud neurorretiniana, y también del EPR, como PEDF, BDNF, VEGF, CNTF, HGF, NGF, LIF, etc. El EPR suministra los nutrientes, procedentes de la circulación coroidea, a las capas más externas de la retina neural, recicla los segmentos externos de los fotorreceptores y secreta diferentes factores de crecimiento y neurotróficos, como el PEDF (del inglés, pigment epithelium-derived factor), el BDNF (del inglés, brain-derived neurotrophic factor) y el VEGF (del inglés, vascular endothelial growth factor). Estos factores son imprescindibles para el mantenimiento de la homeostasis neurorretiniana. Algunos ensayos clínicos recientes (Kauper K, et al. Two-year intraocuiar delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retí nal degenerative diseases. Invest Ophthalmol Vis Sci. 2012 Nov 1 ; 53(12):7484-91 ; Zhang K, et al. Ciliary neurotrophic factor delivered by encapsulated cell intraocuiar implants for treatment of geographic atrophy in age-related macular degeneration. Proc Nati Acad Sci. USA. 201 1 Apr 12; 108(15):6241 -5; Sieving PA, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocuiar implants. Proc Nati Acad Sci. USA. 2006 Mar 7; 103(10):3896-901 ; Thanos CG, et al. Sustained secretion of ciliar/ neurotrophic factor to the vitreous, using the encapsulated cell therapy- based NT-501 infraocular device. Tissue Eng. 2004 Nov-Dec; 10(1 1 -12): 1617- 22) han estudiado las propiedades paracrinas de células de EPR modificadas genéticamente (NTC-201 humanas derivadas de la línea celular ARPE19) encapsuladas en un implante infraocular, en enfermedades retinianas degenerativas (como la RP y la atrofia geográfica o AG).
No obstante, continua siendo una necesidad el desarrollo de terapias seguras y eficaces para el tratamiento y/o prevención de enfermedades degenerativas retinianas que permitan mejorar la calidad de vida de los pacientes afectados.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a una composición que comprende células madre mesenquimales (MSCs), preferiblemente procedentes de tejido adiposo (AD-MSCs), combinadas con péptido intestinal vasoactivo (VIP) y nicotinamida (NIC), y más preferiblemente combinadas además con ácido retinoico (ATRA) y con el sobrenadante de un cultivo de células del EPR. Esta composición es de utilidad para el tratamiento y/o prevención del daño tisular provocado en la retina, preferiblemente como consecuencia de una enfermedad degenerativa retiniana, incluyendo degeneración del EPR, de los fotorreceptores y de la neurorretina.
Así, la composición descrita en la presente invención puede ser utilizada para el mantenimiento de la retina si se decide trasplantarla al tejido dañado; o puede ser empleada en la elaboración de medicamentos, preferiblemente de terapia celular, destinados al tratamiento y/o prevención de enfermedades degenerativas retinianas, incluyendo aunque sin limitarnos a enfermedades inflamatorias o genéticas.
Las células madre mesenquimales, preferiblemente derivadas de tejido adiposo, en combinación con las biomoléculas VIP y NIC, y preferiblemente además con ATRA y con factores secretados por el EPR, protegen frente a la degeneración del EPR, de los fotorreceptores y de la neurorretina, lo que puede ser utilizado en el tratamiento de enfermedades degenerativas de la retina en, por ejemplo, aunque sin limitarnos, humanos. Como muestran los ejemplos de la presente invención, las AD-MSCs, los factores secretados por el EPR o las biomoléculas VIP, NIC y ATRA empleadas individualmente muestran una efectividad inferior a la observada cuando se utilizan en las combinaciones aquí propuestas. Por todo ello, un primer aspecto de la invención se refiere a una composición farmacéutica, de ahora en adelante "composición de la invención", que comprende células madre mesenquimales, péptido intestinal vasoactivo y nicotinamida. Las "células madre mesenquimales", "células madre estromales" o "MSC", son células multipotentes, con morfología fibroblastoide, originadas a partir de la capa germinal mesodermal, con la capacidad de diferenciarse en diversos tipos de células. Preferiblemente, las MSCs expresan al menos uno de los antígenos específicos de superficie CD105, CD73 y CD90, y no expresan los antígenos CD45, CD34, CD14 o CD1 1 b, CD79a o CD19 y HLA de clase II. Estas MSCs son capaces de diferenciarse, por ejemplo, aunque sin limitarnos, a osteoblastos, adipocitos y condroblastos bajo condiciones estándares de diferenciación in vitro. Las MSCs pueden ser aisladas de diversos tejidos, incluyendo, aunque sin limitarnos, la médula ósea (BM), tejido adiposo (lipoaspirados) (AD), hígado, bazo, testículos, sangre menstrual, fluido amniótico, páncreas, periostio, membrana sinovial, músculo esquelético, dermis, pericitos, hueso trabecular, cordón umbilical, pulmón, pulpa dental o sangre periférica. Concretamente el tejido adiposo presenta diferentes ventajas respecto a otras fuentes, como por ejemplo la médula ósea, debido a la facilidad de obtención de las células madre y a la disponibilidad de un gran número de células, sin que existan grandes diferencias en cuanto a las propiedades de las BM-MSCs y las AD-MSCs. Por ello, en una realización preferida de la composición de la invención, las MSCs proceden de tejido adiposo.
La utilización tanto de las células madre endoteliales (ESCs) como de las células madre pluripotentes inducidas (¡PSCs) en terapia celular presenta algunas dificultades, debido a problemas de tipo ético y al riesgo de desarrollo de tumores. Sin embargo, en el caso de utilizar una fuente de células madre adultas, como las células madre mesenquimales, estos problemas se minimizan significativamente. Además, la utilidad de las MSCs en el tratamiento/prevención de enfermedades degenerativas retinianas no se debe únicamente a su capacidad de diferenciación hacia células del EPR o fotorreceptores, sino además al efecto neurotrófico, inmunomodulador o antiinflamatorio de los factores secretados por estas células.
Además, la utilización de MSCs podría suponer una ventaja en comparación con las células de EPR genéticamente modificadas que también han sido empleadas antenormente en terapia celular para la regeneración tisular de la retina en degeneración.
Por otro lado, el "péptido intestinal vasoactivo" o "VIP" (del inglés, vasoactive intestinal peptide) es un neuropéptido que pertenece a la hormona de crecimiento glucagón-VIP, de 28 aminoácidos (His-Ser-Asp-Ala-Val-Phe-Thr- Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser- lle-Leu-Asn, SEQ ID NO: 1 ) y con la fórmula empírica C147H238N44O42S (peso molecular 3325,9). Pertenece a la superfamilia de las secretinas, que se encuentran en la retina (células amacrinas) y coroides en el globo ocular, así como en la corteza cerebral, la pituitaria, las glándulas adrenales, las terminaciones nerviosas del sistema respiratorio, el tracto gastrointestinal y el sistema reproductor. Este péptido promueve el crecimiento y la diferenciación de múltiples tipos celulares en cultivos tisulares. El efecto del VIP sobre la proliferación, la diferenciación y la neuroprotección es dosis dependiente. Su efecto neuroprotector in vivo está mediado por el BDNF. VIP es un fuerte secretagogo que promueve la liberación de factores derivados de la astroglía (quemoquinas), como IL-1 (del inglés, interleukin 1), IL-6, NT-3 (del inglés, neurotrophin-3), PN-1 (del inglés, protease nexin-1), RANTES (del inglés, regulated upon activation normal T cell expressed and presuma bly secreted), MIP-1 (del inglés, macrophage inflammatory protein-1), ADNF (del inglés, activity dependent neuroprotective factor) y ADNP (del inglés, activity dependent neuroprotective protein). Los receptores del VIP (VPAC-1 , VPAC-2 y PAC-1 ) se presentan en las células del EPR, las neuronas y las células gliales. La expresión del receptor VPAC-1 aumenta en los estados patológicos, como en los daños isquémicos.
La "nicotinamida" o "NIC" (del inglés, nicotinamide) o "vitamina B", también denominado niacinamida o amida del ácido nicotínico, es una amida soluble en agua originada a partir del ácido nicotínico (vitamina B3/niacina). El nombre químico es pyrido-3-carboxamida y su fórmula empírica es C6H6N20. El NIC es el primer precursor de la nicotinamida adenina dinucleótico (NAD+) y de su derivado fosforilado (NADP+), una coenzima esencial para la producción mitocondrial del ATP y el único substrato de la enzima nuclear PARP-1 (del inglés, poly-ADP-ribose polymerase-1). El NIC actúa como inhibidor de la enzima PARP, que juega un papel importante en la reparación del ADN celular, también en las células retinianas, en caso de degeneración celular. El NIC también inhibe el NAD deacetilasa dependiente de histona, que juega un papel importante en la silenciación y diferenciación de la expresión génica, en la estabilidad genómica, en la señal de transducción y en el crecimiento y muerte celular. El NIC tiene diversos efectos en cultivos celulares, incluyendo la inhibición de la PARP, que protege a las células del estrés oxidativo. Existen además trabajos científicos que apoyan el papel neuroprotectivo del NIC. Los daños retiñíanos in vivo e in vitro se extienden más allá de la propia zona lesionada, abarcando las diferentes capas de la retina. La activación del PARP influye sobre algunas de las rutas apoptóticas y se ha sugerido que su sobreregulación está implicada en algunos tipos de muerte celular retiniana. La activación del PARP es dependiente del NAD+ y durante el proceso de ribosilación del poly-ADP el mecanismo dependiente de PARP es activado y conduce a la apoptosis. Estos múltiples efectos del NIC pueden deberse a que es un substrato esencial para el NADH y el NADPH.
En una realización más preferida de la composición de la invención, ésta además comprende ácido retinoico (ATRA).
El "ácido retinoico" o "ATRA" (del inglés, all-trans-retinoic acid) también es conocido como ácido de la vitamina A. Su fórmula empírica es C20H28O2 (peso molecular 300,4). Es una molécula lipofílica que puede atravesar fácilmente la membrana celular. Se sintetiza in vivo en el tejido neural a partir del retinol. El ATRA está implicado en la diferenciación de la vesícula óptica en EPR. El ATRA es el metabolito natural del ácido retinoico y juega un papel importante en el crecimiento y la diferenciación. Es utilizado en la diferenciación de células madre embrionarias hacia diferentes tipos celulares, como neuronas, células cardíacas, de músculo liso o germinales. El ATRA también está asociado con la neuroprotección, tanto in vivo como in vitro. Se ha demostrado que reduce el estrés oxidativo en neuronas embrionarias mediante el incremento de la actividad de las enzimas superóxido dismutasa, catalasa y glutation reductasa. Se ha descrito además que modula la proliferación, la diferenciación y la apoptosis, tanto en células normales como alteradas, in vitro. Potencia el efecto neuroprotectivo del NGF. Influencia los estadios del desarrollo temprano, como la neurogénesis o el crecimiento axonal, mediante la unión a los receptores RARs (del inglés, nuclear retinoic acid receptors) y RXRs (del inglés, retinoid X receptors), que regulan la transcripción génica. Se ha descrito que tiene un potente efecto antiapoptótico en la muerte espontánea de los eosinófilos. Juega un papel importante en la diferenciación de las células madre mediante la alteración de cambios epigenéticos en el ADN, así como en las proteínas histonas. Se ha descrito que tiene un efecto neuroprotectivo en diferentes experimentos in vivo e in vitro y que induce la pigmentación en líneas celulares de melanoma. En una realización más preferida, la composición de la invención además comprende el sobrenadante de un cultivo de células de epitelio pigmentano de la retina. El "epitelio pigmentario de la retina" o "EPR" es la capa de células pigmentadas ubicada en la parte exterior de la retina que interactúa estrechamente con las células fotorreceptoras (conos y bastones) en el mantenimiento de la función visual. Está firmemente anclado a la coroides subyacente por la membrana de Bruch. El epitelio pigmentario retiniano está compuesto por una capa de células hexagonales que están densamente empaquetadas con gránulos de pigmentos. Vistas en sección, cada célula consta de una parte externa no pigmentada en la que se sitúa un núcleo de forma grande y oval y una porción interior pigmentada que extiende una serie de procesos filiformes rectos entre los bastones. Sirve como factor limitante del transporte que mantiene el ambiente de la retina, suministrando pequeñas moléculas como aminoácidos, ácido ascórbico y D-glucosa, al tiempo que representa una barrera estrecha para las sustancias transportadas por la sangre de la coroides. El epitelio pigmentario de la retina también tiene como función la fagocitosis de los segmentos externos de las células fotorreceptoras y regeneración del fotopigmento.
Se entiende por "células de EPR" cualquier tipo celular presente en dicho epitelio, preferiblemente células epiteliales. Las células de EPR se pueden cultivar en presencia de los medios y condiciones de cultivo conocidas en el campo técnico para el cultivo de células epiteliales. Así, el medio de cultivo puede comprender, por ejemplo, aunque sin limitarnos, suero fetal bovino (FBS) o humano, antibióticos, antimicóticos, factores de crecimiento, etc. El medio base que puede ser utilizado en el medio de cultivo podría ser cualquiera de los conocidos en el estado de la técnica para el cultivo celular in vitro, como por ejemplo, aunque sin limitarnos, medio basal "Eagle", CRCM-30, CMRL- 1066, "Dulbecco's Modified Eagle's Médium" (DMEM), "Fischer's Médium", "Glasgow Mínimum Essential Médium", Ham's F-10, Ham's F-12 (F12), "High Cell Density Médium", "Iscove's Modified Dulbecco's Médium", Leibovitz's L-15, McCoy's 5A, medio 199, "Mínimum Essential Médium Eagle", "Alpha Mínimum Essential Médium", CnT20, NCTC 109, NCTC 135, RPMI-1640, "William's Médium E", Waymouth's MB 7521 1 , Waymouth's MB 7051 1 , "Keratinocyte serum-free médium" (KSFM), o cualquiera de sus combinaciones. Preferiblemente, el medio de cultivo comprende un medio base DMEM/F12. Además, las condiciones de cultivo pueden ser, por ejemplo, aunque sin limitarnos, en presencia de entre el 5 y el 10% de CO2, entre 36 y 38°C y durante 24 a 48h. Preferiblemente, dicho cultivo se lleva a cabo como se describe a continuación en los ejemplos de la presente invención.
Como muestran los ejemplos de la presente invención, explantes neurorretinianos que habían sufrido una degeneración progresiva durante el cultivo estaban significativamente mejor conservados cuando se cocultivaron con AD-MSCs en presencia del sobrenadante de un cultivo de células de EPR y VIP+NIC ó VIP+NIC+ATRA. Por ello, en una realización aun más preferida, la composición de la invención comprende AD-MSCs, VIP, NIC, ATRA y el sobrenadante de un cultivo de células de EPR. Las MSCs y las células de EPR a las que se refiere la presente invención pueden proceder de cualquier animal, preferiblemente mamífero, más preferiblemente humano. En otra realización preferida, las MSCs y las células de EPR proceden de un humano. Además, tanto las MSCs como las células de EPR pueden ser de origen autólogo o heterólogo. La posibilidad de que dichas células sean de origen autólogo permite que el posterior trasplante o la administración de la composición de la invención para la regeneración tisular de la retina dañada pueda realizarse sin que sea necesaria la inmunosupresión del sujeto tratado. Por ello, en una realización más preferida, las MSCs son de origen autólogo. Se entiende por "origen autólogo" cualquier procedencia de la muestra, tomada de los tejidos o células de un individuo o paciente, que es la misma en el donante y en el receptor de los mismos cuando le son administrados tras su tratamiento o trasplantados tras su modificación. En una realización aun más preferida, las MSCs son de origen autólogo y las células de EPR son de origen heterólogo.
En otra realización preferida, la composición de la invención además comprende un vehículo farmacéuticamente aceptable. Además, dicha composición puede comprender uno o más excipientes. El término "excipiente" hace referencia a una sustancia que ayuda a la absorción de los elementos de la composición de la invención, estabiliza dichos elementos, activa o ayuda a la preparación de la composición en el sentido de darle consistencia. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos, como por ejemplo es el caso de almidones, azúcares o celulosas, la función de colorante, la función de protección de la composición, como por ejemplo, para aislarla del aire y/o la humedad, la función de relleno de una pastilla, cápsula o cualquier otra forma de presentación, la función desintegradora para facilitar la disolución de los componentes y su absorción en el intestino, sin excluir otro tipo de excipientes no mencionados en este párrafo. Así, el término excipiente incluye, por ejemplo aunque sin limitarnos, aglutinantes, agentes dispersantes, lubricantes, deslizantes, etc.
El "vehículo farmacéuticamente aceptable", al igual que el excipiente, es una sustancia que se emplea en la composición para diluir cualquiera de los componentes comprendidos en ella hasta un volumen o peso determinado. El vehículo farmacéuticamente aceptable es una sustancia inerte o de acción análoga a cualquiera de los elementos comprendidos en la composición de la presente invención. La función del vehículo es facilitar la incorporación de otros elementos, permitir una mejor dosificación y administración o dar consistencia y forma a la composición. Preferiblemente, la composición de la invención comprende MSCs, VIP y NIC, y más preferiblemente además ATRA y el sobrenadante de un cultivo de células de EPR, en una cantidad terapéuticamente efectiva, entendiéndose por "cantidad terapéuticamente efectiva" el nivel, cantidad o concentración de dichos elementos que produzca el efecto deseado tratando y/o previniendo el daño o degeneración de la retina sin causar efectos adversos. La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores, como por ejemplo, la edad, peso, sexo, enfermedad o tolerancia del individuo al que le va a ser administrada la composición de la invención.
La composición de la presente invención puede formularse para su administración en una variedad de formas conocidas en el estado de la técnica. Como ejemplos de preparaciones se incluye cualquier composición sólida (comprimidos, pildoras, cápsulas, tabletas, perlas, gránulos, pastas, pellets, etc.), semisólida (geles, cremas, ungüentos, etc.) o líquida (soluciones, suspensiones, dispositivo osmótico o emulsiones) para administración oral, tópica o parenteral. La composición de la presente invención también puede estar en forma de formulaciones de liberación sostenida de drogas o de cualquier otro sistema convencional de liberación, así puede estar contenida, aunque sin limitarnos, en nanopartículas, liposomas o nanosferas, en un material polimérico, en un implante biodegradable o no biodegradable o en micropartículas biodegradables, como por ejemplo, microesferas biodegradables. Tal composición y/o sus formulaciones pueden administrarse a un animal, incluyendo un mamífero y, por tanto, al hombre, en una variedad de formas, incluyendo, pero sin limitarse, intraperitoneal, intravenosa, intradérmica, intraespinal, intraestromal, intraarticular, intrasinovial, intratecal, intralesional, intraarterial, intramuscular, intranasal, intracraneal, subcutánea, intraorbital, intravítrea, intracamerular, intraretiniana, subretiniana, intracapsular, tópica, mediante parches transdérmicos, percutánea, espray nasal, implante quirúrgico, pintura quirúrgica interna o bomba de infusión. En una realización aun más preferida, la composición de la invención se encuentra formulada para su administración oftálmica. La expresión "formulada para su administración oftálmica" se refiere a una formulación que permita que la composición de la invención pueda ser administrada ocularmente, por ejemplo aunque sin limitarnos, de manera tópica o de manera infraocular (incluyendo intravítrea, intracamerular, intraretiniana, subretiniana y otras) sin que dicha administración afecte negativamente a las propiedades, por ejemplo estructurales y/o fisiológicas, del ojo. Ejemplos de la composición de la invención formulada para su administración oftálmica son, aunque sin limitarnos, dicha composición asociada a agua, a sales, a un vehículo líquido polimérico o semi-sólido, a un tampón fosfato o a cualquier otro vehículo líquido oftálmicamente aceptable de los conocidos en el estado de la técnica.
En otra realización preferida, la composición de la invención comprende además otro principio activo. Como se emplea aquí, el término "principio activo", "sustancia activa", "sustancia farmacéuticamente activa", "ingrediente activo" ó "ingrediente farmacéuticamente activo" se refiere a cualquier componente que potencialmente proporcione una actividad farmacológica u otro efecto diferente en la cura, mitigación, tratamiento, o prevención de una enfermedad, o que afecta a la estructura o función del cuerpo del hombre u otros animales. El término incluye aquellos componentes que promueven un cambio químico en la elaboración del fármaco y están presentes en el mismo de una forma modificada prevista que proporciona la actividad específica o el efecto.
En otra realización preferida, la composición de la invención es una "preparación combinada" o también denominada "yuxtaposición", lo que significa que los componentes de la preparación combinada no necesitan encontrarse presentes como unión, por ejemplo en una composición, para poder encontrarse disponibles para su aplicación separada o secuencial. De esta manera, la expresión "yuxtapuesta" implica que no resulta necesariamente una combinación verdadera, a la vista de la separación física de los componentes. Así, los componentes comprendidos en la composición de la invención pueden ser administrados de manera simultánea o secuencial.
Como muestran los ejemplos de la presente invención la composición de la invención es capaz de mejorar el estado de conservación tanto de explantes neurorretinianos como de células del EPR cultivados ex vivo que han sufrido un proceso degenerativo.
Por ello, otro aspecto de la invención se refiere al uso de la composición de la invención para la elaboración de un medicamento, o alternativamente, a la composición de la invención para su uso como medicamento.
Los "medicamentos" a los que se refiere la presente invención pueden ser de uso humano o veterinario. El "medicamento de uso humano" es toda sustancia o combinación de sustancias que se presente como poseedora de propiedades para el tratamiento o prevención de enfermedades en seres humanos o que pueda usarse en seres humanos o administrarse a seres humanos con el fin de restaurar, corregir o modificar las funciones fisiológicas ejerciendo una acción farmacológica, inmunológica o metabólica. El "medicamento de uso veterinario" es toda sustancia o combinación de sustancias que se presente como poseedora de propiedades curativas o preventivas con respecto a las enfermedades animales o que pueda administrarse al animal con el fin de restablecer, corregir o modificar sus funciones fisiológicas ejerciendo una acción farmacológica, inmunológica o metabólica. Otro aspecto de la invención se refiere al uso de la composición de la invención para la elaboración de un medicamento para el tratamiento y/o prevención de enfermedades retinianas degenerativas, o alternativamente a la composición de la invención para su uso en el tratamiento y/o prevención de enfermedades retinianas degenerativas.
El término "tratamiento", tal como se entiende en la presente invención, se refiere a combatir los efectos causados como consecuencia de la enfermedad o condición patológica de interés en un sujeto (preferiblemente mamífero, y más preferiblemente un humano) que incluye:
(i) inhibir la enfermedad o condición patológica, es decir, detener su desarrollo;
(¡i) aliviar la enfermedad o la condición patológica, es decir, causar la regresión de la enfermedad o la condición patológica o su sintomatología;
(iii) estabilizar la enfermedad o la condición patológica.
El término "prevención", tal como se entiende en la presente invención, consiste en evitar la aparición de la enfermedad, es decir, evitar que se produzca la enfermedad o la condición patológica en un sujeto (preferiblemente mamífero, y más preferiblemente un humano), en particular, cuando dicho sujeto tiene predisposición por la condición patológica, pero aún no se ha diagnosticado que la tenga.
Se entiende por "enfermedad retiniana degenerativa" cualquier enfermedad o patología que desencadene o curse con una degeneración tisular de la retina o degeneración retiniana, entendiéndose por "retina" cualquiera de sus capas: epitelio pigmentario de la retina, fotorreceptores, membranas limitantes interna y externa, capas nucleares interna y externa, capas plexiformes interna y externa, capa de células ganglionares y capa de fibras del nervio óptico. En una realización más preferida, la enfermedad retiniana degenerativa es una enfermedad degenerativa del EPR, de los fotorreceptores o de cualquiera de las otras neuronas o células retinianas, es decir, de cualquier otra capa neurorretiniana.
Una "enfermedad degenerativa del EPR" es cualquier enfermedad o patología que desencadene o curse con una degeneración del epitelio pigmentario de la retina. Ejemplos de este tipo de enfermedades son, aunque sin limitarnos, la DMAE, la miopía patológica y la retinosis pigmentaria, entre otras. Los "fotorreceptores" son neuronas especializadas sensibles a la luz, localizadas en la retina externa de los vertebrados. Los conos y los bastones son unas de las células más especializadas y complejas del cuerpo. Realizan la conversión de la luz en impulsos nerviosos que el cerebro transforma en imágenes. Los fotorreceptores contienen varias zonas donde se realizan funciones específicas: un segmento externo, un segmento interno, un cuerpo celular y un terminal sináptico. Los segmentos externos de los bastones están formados por una acumulación de discos membranosos en forma de pilas de monedas rodeados por la membrana celular, donde se realiza el fenómeno de la fototransducción y se encuentra el pigmento fotosensible, rodopsina. En los conos, los discos están formados por repliegues de la propia membrana plasmática y las moléculas fotosensibles son las opsinas. Separando el segmento externo del segmento interno se localiza un cilio conector interno que presenta una estructura similar a los cilios o flagelos de otras células. La región del cilio conector sirve de paso de vesículas entre el segmento externo e interno. En el segmento interno se diferencian dos partes: el elipsoide y el mioide; en el primero se localizan una gran acumulación de mitocondrias y en el segundo es donde reside la maquinaria de síntesis proteica de la célula. Una "enfermedad degenerativa de los fotorreceptores" es cualquier enfermedad o patología que desencadene o curse con una degeneración de los fotorreceptores de la retina. Ejemplos de este tipo de enfermedades son, aunque sin limitarnos, la distrofia de conos y bastones, la enfermedad de Stargardt, el fundus flavimaculatus o las distrofias en patrón, entre otras.
En una realización aun más preferida, la enfermedad es DMAE, RP, enfermedad de Stargardt o algunas de las enfermedades del nervio óptico como la neuropatía óptica isquémica, preferiblemente la NOIANA. La "degeneración macular" o "degeneración macular asociada a la edad" o "DMAE", es una enfermedad ocasionada por degeneración, daño o deterioro de la mácula. La mácula es una capa amarillenta de tejido sensible a la luz que se encuentra en la parte posterior del ojo, en el centro de la retina. Esta área proporciona la agudeza visual, permitiendo al ojo percibir detalles finos y pequeños. Cuando la mácula no funciona correctamente, las áreas del centro del campo visual empiezan a perder nitidez, volviéndose turbias, borrosas. La degeneración macular a la que se refiere la presente invención incluye tanto la DMAE seca como la húmeda.
La "retinitis pigmentosa", "retinosis pigmentaria" o "RP" no es una enfermedad única, sino un conjunto de enfermedades oculares crónicas de origen genético y carácter degenerativo que se agrupan bajo este nombre. Se caracteriza por una degeneración progresiva de la retina, que poco a poco va perdiendo los conos y los bastones. Produce como síntomas principales una disminución lenta pero progresiva de la agudeza visual que en las primeras etapas afecta predominantemente a la visión nocturna y al campo periférico, manteniéndose sin embargo la visión central.
La "enfermedad de Stargardt", también conocida como "distrofia macular de Stargardt", es una enfermedad ocular hereditaria que se caracteriza por una degeneración macular. El inicio de los síntomas tiene lugar en la infancia o adolescencia, y se manifiesta por perdida de agudeza visual progresiva. Los síntomas más comunes de esta enfermedad son visión borrosa, zonas ciegas en el campo visual o escotomas, dificultad para adaptarse a la penumbra y sensibilidad a la luz. La "neuropatía óptica isquémica anterior no arterítica" o "NOIANA, se define como un infarto en la cabeza del nervio óptico, es decir una interrupción del aporte sanguíneo, tras el cual se produce un determinado grado de isquemia con su consecuente pérdida visual asociada. Se caracteriza por un episodio unilateral, súbito e indoloro de pérdida de visión, aunque se considera generalmente que la etiología es sistémica por lo que la afección puede ser bilateral. Representa un grupo de desórdenes del nervio óptico caracterizados por una falta del flujo vascular adecuado y que determina la muerte y posterior desaparición de las células ganglionares de la retina. Esta entidad constituye un infarto de la papila.
En una realización aun más preferida, la enfermedad retiniana afecta a un humano.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. DESCRIPCIÓN DE LAS FIGURAS
Fig. 1. Proliferación celular de las células de EPR (ARPE19) tratadas con mitomicina C (MMC), cultivadas con VIP, NIC o ATRA y sus combinaciones (VIP+NIC=VN, VIP+ATRA=VA, NIC+ATRA=NA y VIP+NIC+ATRA=VNA) evaluada mediante el ensayo alamarBIue®. T indica el tratamiento con MMC (50 μg/ml) de las células de EPR. La significancia estadística se establece en p<0,01 (**)/(+) y P<0,001 (+++). Signos "+" han sido empleados para indicar la diferencia significativa entre 3 y 5 días. La barra de error es indicada como ±SD (n=3).
Fig. 2. Proliferación celular de las células de EPR (ARPE19) tratadas con mitomicina C (MMC) en cultivo indirecto con AD-MSCs, evaluada mediante el ensayo alamarBIue®, en presencia de factores (VIP, NIC o ATRA) y sus combinaciones (VIP+NIC=VN, VIP+ATRA=VA, NIC+ATRA=NA y VIP+NIC+ATRA=VNA). T indica el tratamiento con MMC (50 μς/ηιΙ) de las células de EPR. La significancia estadística se establece en p≤0,5 (*), p<0,01 (**) y p<0,001 (***)/(+). La barra de error es indicada como ±SD (n=3). Fig. 3. Evaluación de los explantes neurorretinianos cocultivados con AD- MSCs, medio condicionado EPR (RCM) y factores (VIP, NIC o ATRA) o sus combinaciones a los 7 días de cultivo, mediante azul de toluidina (primera columna) y marcadores inmunohistoquímicos (segunda y tercera columna). Calbindina, CRALBP, GFAP y sinaptofisina representan conos, células de Müller, gliosis reactiva y sinapsis, mientras que los núcleos se marcan con DAPI. Barra de escala: 50pm. Fig. 4. Evaluación de los explantes neurorretinianos cocultivados con AD- MSCs, medio condicionado EPR y factores (VIP, NIC o ATRA) o sus combinaciones a los 7 días de cultivo, mediante inmunohistoquímica. La rodopsina se presenta en bastones y los núcleos aparecen identificados con DAPI. Control I (A), Control II (B), Control III (C), VIP (D), NIC (E), ATRA (F), VIP+NIC (G), VIP+ATRA (H), NIC+ATRA (I) and VIP+NIC+ATRA (J). Barra de escala: 50pm.
Fig. 5. Evaluación de la degeneración de los explantes neurorretinianos basado en el estudio histológico e inmunohistoquímico. La evaluación del estado neurorretiniano de las muestras cultivadas en todos los experimentos fue llevado a cabo por tres expertos en la materia de manera individualizada, de modo que se valoró numéricamente de 0 a 10 el estado de conservación neurorretiniana. Así, una valoración de 0 representa la total desorganización y degeneración retiniana, mientras que el 10 corresponde a una retina bien preservada. La significancia estadística se establece en p<0,05 (*)/(+). Donde el signo "+" indica diferencia significativa entre el Control II y los experimentos, y el "*" indica diferencia significativa entre el Control III y los experimentos. La barra de erros se indica como ±SD (n=3 a 6). EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores que ponen de manifiesto la efectividad de la composición de la invención. Así, los siguientes ejemplos ¡lustran la utilización de células AD- MSCs junto con factores secretados por el EPR y diferentes biomoléculas (VIP, NIC y ATRA) para crear un ambiente que permita la diferenciación de las AD- MSCs hacía células del EPR, que simultáneamente puedan proteger al EPR y a la neurorretina en degeneración. Para este objetivo, se desarrollaron varios métodos en condiciones de cultivo estándar de 5% de CO2 a 37°C en atmósfera humidificada, con recambios del medio de cultivo cada 2-3 días, los cuales se describen a continuación.
EJEMPLO 1. Cocultivo de células del EPR que han sufrido un proceso de degeneración celular y células AD-MSCs en presencia de VIP, NIC, ATRA y sus combinaciones.
Células AD-MSCs y EPR fueron cocultivadas en una proporción 2: 1 , en placas de 6 pocilios (BD Falcon), con medio DMEM/F12 suplementado con 10% FBS, 1 % antibióticos (penicilina/estreptomicina) y 1 % antimicóticos (anfotericina). Ambos tipos celulares se mantuvieron separados físicamente por una membrana porosa (BD Falcon). Previamente, las células del EPR (60.000 células/cm2) fueron cultivadas en el fondo de placas de 24 pocilios durante 24 horas, y tratadas durante 2 horas con una concentración óptima de mitomicina C (50 pg/ml disueltos en el medio de cultivo) para inducir un proceso de degeneración celular (células de EPR bajo condiciones de estrés).
Las AD-MSCs fueron cultivadas (30.000 células/cm2) durante 24 horas en la parte superior de las membranas de pocilios tipo Transwell (tissue culture treated track-etched polyethylene terephthalate (PET); membrana con tamaño de poro de 0,4pm y densidad de poro de 2,0±0,2x106/cm2) para su adhesión y crecimiento. Para el cocultivo se suplemento el medio de crecimiento con VIP (5 μΜ), NIC (10 mM), ATRA (5 μΜ) o sus 4 combinaciones VIP+NIC, VIP+ATRA, NIC+ATRA y VIP+NIC+ATRA, para evaluar la efecto de estas biomoléculas y sus combinaciones en presencia de las AD-MSCs sobre las células del EPR sometidas a estrés. La capacidad protectiva de las AD-MSCs por sí solas, así como en las diferentes combinaciones con las biomoléculas fue evaluada a los 3 y 5 días mediante el método del alamarBIue®.
1 .1 . Resultados
En cuanto a la evaluación de la capacidad de protección, VIP, NIC y ATRA individualmente y sus combinaciones mostraron un efecto supresivo sobre la proliferación de las células de EPR sometidas a estrés (Fig. 1 ). Sin embargo, en presencia de las AD-MSCs algunas de las combinaciones con estos factores (VIP, ATRA, VIP+NIC, NIC+ATRA o VIP+NIC+ATRA) estimularon la proliferación de las células del EPR. Esto no se observó en las combinaciones con NIC y VIP+ATRA (Fig. 2).
EJEMPLO 2. Co-cultivo de explantes neuroretinianos humanos que sufren una degeneración progresiva con células AD-MSCs, medio condicionado con EPR y VIP, NIC, ATRA y sus combinaciones.
Células AD-MSCs fueron cocultivadas con explantes neurorretinianos humanos que espontáneamente sufren una degeneración progresiva durante el cultivo. Para el cocultivo se emplearon placas tipo Transwell de 6 pocilios, de modo que el tejido retiniano y las AD-MSCs permanecieron separadas físicamente por la membrana de los pocilios Transwell. Se empleó medio de cultivo DMEM/F12 suplementado con 10% FBS, 1 % antibióticos, 1 % antimicóticos y 50% de medio condicionado con EPR.
Previamente las AD-MSCs (30.000 células/cm2) fueron cultivadas durante 24 horas en el fondo de placas de 24 pocilios. Los explantes neurorretinianos (7x7 mm) se obtuvieron del área retiniana central y se colocaron sobre la membrana de los pocilios TransweII (tissue culture treated polycarbonate (PC) diámetro de membrana 24 mm, grosor 10 pm, y tamaño del poro 0,4 pm con densidad de 1x108 poros/cm2) con los fotorreceptores en contacto con la membrana del pocilio.
El medio condicionado con EPR se preparó mediante el cultivo de células de EPR hasta el 90% de confluencia, momento en el que se recambió el medio y se continuó el cultivo durante 48 horas. Finalmente, se recogió el medio, se centrifugó a 1000 rpm durante 10 minutos para desechar posibles restos celulares y el sobrenadante (medio condicionado EPR) se guardó a -80°C hasta su utilización.
Para el cocultivo de AD-MSCs con explantes de neurorretina el medio de cultivo se suplemento con VIP (5μΜ), NIC (10mM), ATRA (5μΜ) o sus 4 combinaciones VIP+NIC, VIP+ATRA, NIC+ATRA y VIP+NIC+ATRA, para evaluar el efecto de estas biomoléculas y sus combinaciones sobre las AD- MSCs y la neurorretina en degeneración. La capacidad protectiva de las AD-MSCs por sí solas, así como en las diferentes combinaciones con las biomoléculas, fue evaluada a los 7 días de cocultivo mediante el estudio de la morfología retiniana (tinción con azul de toluidina) y de la inmunoexpresion celular de diferentes proteínas, calbindina (CB), sinaptofisina (SYP), rodopsina (RHO), proteína de unión al retinaldehído celular (CRALBP) y proteína glial fibrilar acídica (GFAP). Los anticuerpos anti- CB y -RHO se emplearon para evaluar la integridad de los conos y bastones, respectivamente; el anti-SYP para evaluar las sinapsis entre las diferentes neuronas retinianas a nivel de la OPL e IPL; el anti-CRALBP para evaluar el estado funcional de las células de Müller y diferenciarlas de los astrocitos (GFAP+ y CRALP-); y el anti-GFAP para evaluar el proceso de gliosis reactiva del tejido retiniano. Se utilizó la tinción DAPI para identificar los núcleos celulares. 2.1 . Resultados
Como controles se utilizaron explantes retiñíanos iniciales (sin cultivar) (Control I) (Figs. 3A, B, C y 4A), explantes cultivados durante 7 días con medio condicionado EPR (Control II) (Figs. 3D, E, F y 4B) y con medio condicionado EPR + AD-MSCs (Control III) (Fig. 3G, H, I y 4C).
Control I (Explantes neurorretinianos de 0 días) (Fig. 3A, B, C y 4A)
Estos explantes neurorretinianos mostraron cambios degenerativos iniciales en las células retinianas, principalmente en los fotorreceptores (Fig. 3A), y ligera vacuolización celular, probablemente debidos a daños isquémicos post-mortem (carencia del aporte de nutrientes celulares) y a la manipulación de los explantes para el cultivo. Sin embargo, la estructura general de la retina se presentó adecuadamente conservada, donde se preservaron adecuadamente los segmentos externos e internos de los fotorreceptores (Fig. 3B, flechas blancas), que son las estructuras más sensibles al daño, los núcleos de estas células se presentaron ligeramente edematosos (INL); se identificó perfectamente la OLM así como las conexiones sinápticas entre los pedículos de los conos y las células horizontales y bipolares de cono a nivel de la OPL (Fig. 3B, banda de fluorescencia, debido a la combinación del mareaje con calbindina (CB) y sinaptofisina (SYP)); el citoplasma de las neuronas de integración apareció ligeramente edematoso (ONL); los procesos neurales de la IPL aparecieron ligeramente edematosos y se pudo diferenciar el denso citoplasma de las células de Müller; las células ganglionares aparecieron adecuadamente conservadas mientras que la NFL se presentó edematizada; la ILM se observó claramente definida.
Control II (Explantes neurorretinianos cultivados 7 días en presencia de medio condicionado EPR) (Fig. 3D, E, F y 4B) La estructura retiniana apareció desorganizada y se mostraron procesos de degeneración celular. Los fotorreceptores aparecieron desestructurados y en un pequeño número; se observó edematización celular, picnosis, cariorrexis y cariolisis en las células retinianas; la OPL desapareció, lo que solapó la ONL y la INL; las células ganglionares estaban degeneradas; se observó una ILM aparentemente intacta. En muchas de las muestras estudiadas, la arquitectura retiniana estaba completamente desorganizada.
Control III (Explantes neurorretinianos cultivados 7 días en presencia de medio condicionado EPR + AD-MSCs) (Fig. 3G. H, I y 4C)
La estructura retiniana general se mostró mejor preservada en comparación con el Control II. En las capas retinianas externas se pudieron apreciar algunas áreas donde los fotorreceptores formaban rosetas, pero mantenían sus segmentos externos e internos, con algunos núcleos picnóticos, en cariorrexis y cariolisis, su citoplasma aparecía edematoso y contenía restos nucleares; la OPL había desaparecido y la INL mostraba picnosis, cariorrexis y cariolisis; la IPL se diferenciaba claramente pero los procesos neuronales aparecían prácticamente degenerados; la NFL mostró un alto grado de degeneración y se apreciaron engrosadas prolongaciones de las células de Müller; la ILM estaba claramente definida.
Experimentos (Explantes neurorretinianos cultivados 7 días en presencia de medio condicionado EPR + AD-MSCs con los diferentes factores o sus combinaciones) (Figs. 3J-AD, 4D-J)
En estas muestras se pudieron apreciar diferentes grados de degeneración en comparación con el Control III, aparecieron diversas variaciones en el estado de los explantes retiñíanos dependiendo del estado inicial del Control I.
El cultivo con VIP mostró una marcada gliosis reactiva, determinada por el intenso mareaje GFAP (Fig. 3L), donde las células de Müller aparecieron hipertróficas extendiéndose para rellenar el espacio dejado por las neuronas en degeneración. El VIP no parecía mejorar el estado retiniano en comparación con el Control III, e incluso en algunos casos el estado de degeneración neurorretiniana era mayor. Sin embargo, NIC y ATRA mostraron una mejor conservación neurorretiniana, lo que puede considerarse como un efecto protectivo sobre la conservación general de los explantes de neurorretina humana. Las muestras con VIP+NIC mostraron algunos segmentos externos de los conos aparentemente intactos (Fig. 3T, flechas). En estas muestras y en las VIP+NIC+ATRA se observó una buena conservación de la estructura retiniana en comparación con el resto de grupos del experimento.
En el análisis ¡nmunohistoquímico los explantes neurorretinianos en presencia de las AD-MSCs aparecían mejor preservados que en ausencia de estas células. NIC y ATRA parecen tener un efecto positivo para conservación de la estructura retiniana, pero que no es significativamente mejor que las AD-MSCs individualmente, al contrario de lo observado en el caso de VIP+NIC y VIP+NIC+ATRA en comparación con el resto de grupos experimentales.
La evaluación del estado neurorretiniano de las muestras cultivadas en todos los experimentos fue llevado a cabo por tres expertos en la materia de manera individualizada, de modo que se valoró numéricamente de 0 a 10 el estado de conservación neurorretiniana. Así, una valoración de 0 representa la total desorganización y degeneración retiniana, mientras que 10 corresponde a una retina bien preservada, como sería el caso de los Controles I. Se resume y representa la evaluación de los efectos de cada factor en la Figura 5. Los explantes neurorretinianos con AD-MSCs (Control III) claramente estaban mejor conservados (p<0,05) que con medio condicionado EPR (Control II). Los explantes cultivados con AD-MSCs y biomoléculas (NIC y ATRA) no mostraban un grado de conservación significativamente mejor que con AD-MSCs (Control III). Los explantes cultivados solo con VIP y AD-MSCs no conservaron la neurorretina, desarrollando una gliosis reactiva (inmunoexpresión GFAP). Los explantes neurorretinianos con medio condicionado EPR, AD-MSCs y combinaciones de biomoleculas (VIP+NIC y VIP+NIC+ATRA) estaban significativamente mejor conservados (p<0,05) que en cualquier otro tratamiento.
Así, teniendo en cuenta los resultados obtenidos se puede concluir que:
- VIP, NIC y ATRA individualmente y sus combinaciones no muestran una conservación significativamente efectiva sobre las células del EPR en degeneración. Sin embargo, algunas combinaciones de estas biomoleculas muestran un efecto positivo en presencia de AD-MSCs.
- VIP, NIC y ATRA y sus combinaciones, junto con AD-MSCs y los factores secretados por el EPR, muestran una capacidad potencial para conservación de la estructura neurorretiniana.
- En todos los casos las combinaciones de estas biomoleculas siempre han mostrado mejores efectos para conservar el EPR en degeneración y la estructura neurorretiniana que VIP, NIC y ATRA individualmente.

Claims

REIVINDICACIONES
1 . Composición farmacéutica que comprende células madre mesenquimales, péptido intestinal vasoactivo (VIP) y nicotinamida (NIC).
2. Composición farmacéutica según la reivindicación 1 , que además comprende ácido retinoico (ATRA).
3. Composición farmacéutica según cualquiera de las reivindicaciones 1 ó 2, que además comprende el sobrenadante de un cultivo de células de epitelio pigmentario de la retina.
4. Composición farmacéutica según cualquiera de las reivindicaciones 1 a 3, donde las células madre mesenquimales proceden de tejido adiposo.
Composición farmacéutica según cualquiera de las reivindicaciones 1 a
4, que comprende células madre mesenquimales procedentes de tejido adiposo, VIP, NIC, ATRA y el sobrenadante de un cultivo de células de epitelio pigmentario de la retina.
Composición farmacéutica según cualquiera de las reivindicaciones 1 a
5, donde las células madre mesenquimales y las células de epitelio pigmentario de la retina proceden de un humano.
7. Composición farmacéutica según cualquiera de las reivindicaciones 1 a
6, donde las células madre mesenquimales son de origen autólogo o heterólogo.
8. Composición farmacéutica según cualquiera de las reivindicaciones 1 a 7, que además comprende un vehículo farmacéuticamente aceptable.
9. Uso de la composición farmacéutica según cualquiera de las reivindicaciones 1 a 8, para la elaboración de un medicamento.
10. Uso según la reivindicación 9, donde el medicamento es para el tratamiento y/o prevención de enfermedades retinianas degenerativas.
1 1 . Uso según la reivindicación 10, donde la enfermedad retiniana degenerativa es una enfermedad degenerativa del epitelio pigmentario de la retina o de cualquier otra capa neurorretiniana.
12. Uso según cualquiera de las reivindicaciones 10 u 1 1 , donde la enfermedad es degeneración macular, retinitis pigmentosa (RP), enfermedad de Stargardt o neuropatía óptica isquémica anterior no arterítica (NOIANA).
13. Uso según cualquiera de las reivindicaciones 10 a 12, donde la enfermedad retiniana degenerativa afecta a un humano.
PCT/ES2014/070879 2013-11-29 2014-11-28 Composición farmacéutica para el tratamiento y/o prevención de enfermedades retinianas degenerativas WO2015079093A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201331743 2013-11-29
ES201331743A ES2539329B1 (es) 2013-11-29 2013-11-29 Composición farmacéutica para el tratamiento y/o prevención deenfermedades retinianas degenerativas

Publications (1)

Publication Number Publication Date
WO2015079093A1 true WO2015079093A1 (es) 2015-06-04

Family

ID=53198412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070879 WO2015079093A1 (es) 2013-11-29 2014-11-28 Composición farmacéutica para el tratamiento y/o prevención de enfermedades retinianas degenerativas

Country Status (2)

Country Link
ES (1) ES2539329B1 (es)
WO (1) WO2015079093A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174173A1 (en) * 2020-02-28 2021-09-02 The Trustees Of The University Of Pennsylvania Treating autosomal dominant bestrophinopathies and methods for evaluating same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223140A1 (en) * 2009-10-06 2011-09-15 Snu R&Db Foundation Method for differentiation into retinal cells from stem cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223140A1 (en) * 2009-10-06 2011-09-15 Snu R&Db Foundation Method for differentiation into retinal cells from stem cells

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BOROOAH S. ET AL.: "Using human induced pluripotent stem cells to treat retinal disease.", PROGRESS IN RETINAL AND EYE RESEARCH, vol. 37, 6 October 2013 (2013-10-06), pages 163 - 181, XP028769233, DOI: doi:10.1016/j.preteyeres.2013.09.002 *
BUCHHOLZ D. E. ET AL.: "Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium.", STEM CELLS TRANSLATIONAL MEDICINE UNITED STATES, vol. 2, no. 5, 18 April 2013 (2013-04-18), pages 384 - 393, XP055114659, DOI: doi:10.5966/sctm.2012-0163 *
KOH S M.: "VIP enhances the differentiation of retinal pigment epithelium in culture: from CAMP and pp60(c-src) to melanogenesis and development of fluid transport capacity.", PROGRESS IN RETINAL AND EYE RESEARCH ENGLAND, vol. 19, no. 6, November 2000 (2000-11-01), pages 669 - 688 *
VOSSMERBAEUMER U ET AL.: "Retinal pigment epithelial phenotype induced in human adipose tissue-derived mesenchymal stromal cells.", CYTOTHERAPY ENGLAND, vol. 11, no. 2, 2009, pages 177 - 188 *
ZAHABI A. ET AL.: "A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells.", STEM CELLS AND DEVELOPMENT UNITED STATES, vol. 21, no. 12, 10 August 2012 (2012-08-10), pages 2262 - 2272, XP002725344, DOI: doi:10.1089/SCD.2011.0599 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174173A1 (en) * 2020-02-28 2021-09-02 The Trustees Of The University Of Pennsylvania Treating autosomal dominant bestrophinopathies and methods for evaluating same

Also Published As

Publication number Publication date
ES2539329A1 (es) 2015-06-29
ES2539329B1 (es) 2016-05-12

Similar Documents

Publication Publication Date Title
Manafi et al. Organoids and organ chips in ophthalmology
ES2388403T3 (es) Procedimientos, composiciones farmacéuticas y artículos de fabricación para administrar células terapéuticas al sistema nervioso central animal
ES2952700T3 (es) Composiciones oftálmicas y métodos de uso de las mismas
US20210198625A1 (en) Low oxygen culture conditions for maintaining retinal progenitor cell multipotency
ES2962285T3 (es) Composición para su uso en el tratamiento de enfermedades neuroinflamatorias que contiene células progenitoras neurales o secretoma de las mismas como principios activos
JP2010539084A5 (es)
US11753623B2 (en) Compositions for treating retinal diseases and methods for making and using them
KR102704051B1 (ko) 세포 밖 소포체 함유 안표면 염증 질환 예방 또는 치료용 조성물
Norte-Muñoz et al. Neuroprotection and axonal regeneration induced by bone marrow mesenchymal stromal cells depend on the type of transplant
CN102625707A (zh) Hip/pap或其衍生物的新应用
ES2539329B1 (es) Composición farmacéutica para el tratamiento y/o prevención deenfermedades retinianas degenerativas
US20130302273A1 (en) Compositions derived from stem cell released molecules &amp; methods for formulation thereof
US20220233598A1 (en) Methods of preventative therapy for post-traumatic osteoarthritis
Young et al. Blunt Force Trauma-Induced Total Bilateral Visual Impairment of 13 Years Duration Treated with Autologous Telomerase-Positive Stem Cells
ES2947577T3 (es) Uso de suero sanguíneo en el tratamiento de patologías oftalmológicas neurodegenerativas
KR102525093B1 (ko) 사람 신경능 유래 코 하비갑개 줄기세포를 유효성분으로 포함하는 망막변성질환 예방 또는 치료용 약학적 조성물
US20200085735A1 (en) Novel methods for delivering therapeutics agents to the eye via the nasal passages
Kimbrel et al. Retinal degeneration
TW202421776A (zh) 預調節間質幹細胞及其製備與應用
US11919942B2 (en) Methods for treating an ocular condition with cellular fibronectin compositions
US20240012011A1 (en) Methods and assays for secretome activity analysis
Wang et al. Encapsulated cell technology: Delivering cytokines to treat posterior ocular diseases
US20240091268A1 (en) Preparation and purification methods for mesenchymal stem cell derived secretome
Jordan et al. Iris pigment epithelial cells transplanted into the vitreous accumulate at the optic nerve head
Florido et al. Different Applications of Stem Cells Therapy for Degenerative Retinal Diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865138

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865138

Country of ref document: EP

Kind code of ref document: A1