WO2015078652A1 - Procédé et dispositif pour faire fonctionner un système de refroidissement de batterie pour refroidir une batterie - Google Patents

Procédé et dispositif pour faire fonctionner un système de refroidissement de batterie pour refroidir une batterie Download PDF

Info

Publication number
WO2015078652A1
WO2015078652A1 PCT/EP2014/073298 EP2014073298W WO2015078652A1 WO 2015078652 A1 WO2015078652 A1 WO 2015078652A1 EP 2014073298 W EP2014073298 W EP 2014073298W WO 2015078652 A1 WO2015078652 A1 WO 2015078652A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
cooling system
temperature
opt
Prior art date
Application number
PCT/EP2014/073298
Other languages
German (de)
English (en)
Inventor
Joachim Bamberger
Philipp Wolfrum
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2015078652A1 publication Critical patent/WO2015078652A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method and a computer program product for operating a battery cooling system for cooling a battery. Furthermore, the present invention relates to a device for operating a battery cooling system for cooling a battery and an arrangement with a battery, a battery cooling system for cooling the battery and such a device for operating the battery cooling system.
  • a battery cooling system for cooling the battery When operating a battery cooled by a battery cooling system, energy losses occur at the internal resistance of the battery. Further, power is consumed by the operation of the battery cooling system for cooling the battery. Furthermore, the battery is subject to capacity losses, in particular due to aging of the battery.
  • the procedure The first step is to determine the optimum battery temperature of the battery for its operation.
  • the battery temperature with respect to a dependent on a battery power and a battery temperature power consumption on the internal resistance of the
  • the battery cooling system is operated to cool the battery as a function of the determined optimum battery temperature.
  • the battery cooling system for cooling the battery is operated based on the determined optimum battery temperature.
  • the battery cooling system can thus set the current battery temperature to the determined optimum battery temperature.
  • the battery temperature determined according to the first step is optimized in terms of the power consumption of the internal resistance of the battery in terms of the capacity loss of the battery, in particular by aging, and in terms of the power consumption of the battery cooling system. As a result, the optimum battery temperature adjusted for battery usage is currently determined.
  • the power consumption dependent on the battery power and the battery temperature on the internal resistance of the battery can be described as a cost function (hereinafter also referred to as the first cost function).
  • the capacity loss of the battery, which is dependent on the battery power and the battery temperature can also be formulated as a cost function (hereinafter also referred to as the second cost function).
  • the power consumption of the battery cooling system dependent on the battery power and the battery temperature for cooling the battery can be formulated as a cost function (hereinafter also referred to as a third cost function).
  • these cost functions can be formulated as a total cost function. By minimizing this total cost function over temperature, the optimum battery temperature can be calculated.
  • the air conditioning costs (via the first cost function) the costs due to the battery aging (via the second cost function) and the energy losses (via the third cost function) in the battery are modeled here, and the total costs are minimized mathematically as an overall cost function.
  • the battery temperature or battery internal temperature is controlled or regulated by the temperature of the amount of the coolant, for example air or water, of the battery cooling system so that the battery internal temperature corresponds to the determined optimum battery temperature.
  • the thermal behavior of the battery and the battery cooling system can be taken into account.
  • the battery cooling system is controlled in response to the determined optimal battery temperature.
  • the control of the battery cooling system based on the determined optimum battery temperature represents a technically simple embodiment for the operation of the battery cooling system.
  • the battery cooling system is controlled in dependence on the determined optimum battery temperature such that a current battery temperature corresponds to the determined optimum battery temperature.
  • the battery cooling system is regulated as a function of the determined optimum battery temperature.
  • the battery cooling system is controlled in dependence on the determined optimum battery temperature such that a current battery temperature corresponds to the determined optimum battery temperature.
  • a constant desired power is selected as the battery power, and the optimum constant battery temperature is determined by minimizing the following total cost function:
  • T opt min (ci (P, T) + C2 (P, T) + C3 (P, T)) where T is the battery temperature, P is the battery power, Cl is a cost function for the power consumption on the internal resistance of the battery, C2 is a cost function for the capacity loss of the battery, C3 denotes a cost function for the power consumption of the battery cooling system for cooling the battery and T opt the optimum battery temperature.
  • the battery power is constant and a priori known
  • this case can also be referred to as a stationary and deterministic case.
  • the battery power is selected for a power range between a minimum value and a maximum value, and the optimal battery temperature is determined by minimizing the following total cost function: p
  • T opt min
  • T is the battery temperature
  • P is the battery power
  • Cl is a cost function for the power consumption at the internal resistance of the battery
  • C2 is a cost function for the capacity loss of the battery
  • C3 is a cost function for the battery
  • T opt the optimal battery temperature
  • P min the minimum value of the battery power
  • P max the maximum value of the battery power
  • This embodiment is particularly useful for temperature planning of the battery, in which the performance of the battery to be provided is not known a priori accurately, but the operating temperature of the battery still needs to be fixed, for example because the expected fluctuations can be very short-term.
  • the total cost function can then be probabilistically formulated and solved.
  • p (P) denotes a probability density for the power to be provided.
  • the present solution also differs qualitatively from the solution of the deterministic problem, since the power losses depend strongly on the power, but hardly any parts of the aging costs. Therefore, performance that is poorly retrieved results in a different optimal battery temperature than a certain future known power.
  • a time-variable setpoint power is selected as battery power, and a time-variable optimum battery temperature is determined by minimizing the following total cost function:
  • T opt (t) min (ci func (P / T) + C2 func (P, T) + C3 func (P / T))
  • T T (t) where T is the battery temperature , P is the battery power, Cl fun c is a functional of the power consumption on the internal resistance of the battery, C 2 func is a function of the capacity loss of the battery Battery, C3 func A functional of the power consumption of the battery cooling system to cool the battery and T opt the optimal battery temperature .
  • both the target power and the optimum battery temperature are variable over time. This can be done by the above total cost function as
  • the second step comprises determining an optimum electrical power of the battery cooling system in dependence on the determined optimum battery temperature and a current ambient temperature of the battery cooling system.
  • the second step comprises determining an optimum electrical power of the battery cooling system as a function of the determined optimum battery temperature, a time derivative of the determined optimum battery temperature and a current ambient temperature of the battery cooling system.
  • the battery cooling system is operated at the determined optimum power.
  • the following example illustrates the calculation of the optimal performance for the battery cooling system.
  • the optimum performance for the battery cooling system is hereinafter referred to as P opt and is related to the battery temperature T, the battery power P and the ambient temperature T amb as follows:
  • the battery has a battery power of at least 50kW.
  • the method comprises the following steps:
  • the power consumption at the internal resistance may be determined as a first cost function, the capacity loss of the battery as a second cost function, and the power consumption of the battery cooling system as a third cost function a priori.
  • a total cost function can be determined from which the optimum battery temperature can be determined by minimizing them.
  • a computer program product such as a computer program means, for example, as a storage medium, such as memory card, USB stick, CD-ROM, DVD or in the form of a
  • Downloadable file can be provided or delivered by a server in a network. This can be done, for example, in a wireless communication network by transmitting a corresponding file with the computer program product or the computer program means.
  • the device comprises a computing unit and a control unit.
  • the arithmetic unit is configured to determine battery life and battery temperature dependent power consumption at the battery internal resistance, battery capacity loss depending on the battery power and battery temperature, and battery battery power optimal battery temperature dependent battery power and temperature.
  • the control unit is set up to operate the battery cooling system as a function of the determined optimum battery temperature.
  • the respective unit for example arithmetic unit or control unit, can be implemented in terms of hardware and / or software technology.
  • the respective unit can be used as a device or as part of a device, for example as a computer or as a microprocessor or as a control computer of a vehicle. be trained.
  • the respective unit may be designed as a computer program product, as a function, as a routine, as part of a program code or as an executable object.
  • an arrangement which comprises a battery, a battery cooling system for cooling the battery and a device for operating the battery cooling system as described above.
  • the two following implementations show two examples of the presently described optimized operation of a battery cooling system for cooling a battery.
  • the first example concerns optimized operation of a battery for daily photovoltaic (PV) buffering in an isolated grid.
  • PV photovoltaic
  • a conventional operation of a battery for photovoltaic buffering comprises: After sunrise, charging of the battery begins as soon as the PV generation exceeds the local power requirement. Once the maximum capacity has been reached, the battery remains full until after sunset it returns the stored energy to the island grid. During the night, it will be parked at a favorable charge.
  • the following second example concerns the operation of a battery for local PV buffering during a short-term unpredictable cloud train.
  • the battery power demanded by the battery is not known a priori, because in the event of clouds suddenly appearing, the battery must give off power for a short time. If the duration of cloud cover is very short, for example in sheep clouds, then the optimum temperature of the battery must be set in advance.
  • the energy losses will only occur with a probability p, as will the costs of cyclic aging. In any case, the costs of calendar aging and cooling will be incurred.
  • the respective costs are multiplied by their probability of occurrence and the total cost term over the temperature T is minimized in order to obtain the optimal predictively set battery temperature T opt . This changes the above second total cost function to:
  • T opt mm C2 (P, T) + C3 (P, T)) p
  • 1 is a flowchart of a first embodiment of a method for operating a battery cooling system
  • 2 is a diagram illustrating a total cost function for determining the optimum battery temperature
  • FIG. 3 is a flowchart of a second embodiment of a method for operating a battery cooling system
  • 4 is a schematic block diagram of an embodiment of an apparatus for operating a battery cooling system
  • FIG. 5 shows a schematic block diagram of an exemplary embodiment of an arrangement with battery, battery cooling system and the device for operating the battery cooling system according to FIG. 4.
  • FIG. 1 shows a flowchart of a first exemplary embodiment of a method for operating a battery cooling system 10 for cooling a battery 20.
  • the battery has in particular a battery power of at least 50 kW.
  • an optimum battery temperature T opt of the battery 20 is determined for its operation.
  • the battery temperature T opt with regard to a battery power P and a battery temperature T dependent power consumption Ci on the internal resistance of the battery 20, one dependent on the battery power P and the battery temperature T capacity loss C2 of the battery 20 and one of the battery power P and the Battery temperature T dependent power consumption of the battery cooling system 10 optimized.
  • the battery cooling system 10 is operated in dependence on the determined optimum battery temperature T opt .
  • the battery cooling system 10 is controlled or regulated as a function of the determined battery temperature T opt , in particular such that a current battery temperature of the battery 20 corresponds to the determined optimum battery temperature T opt . Consequently, the current battery temperature is set to the optimal battery temperature T opt .
  • step 102 includes determining an optimal electrical power P opt of the battery cooling system 10 in response to the determined optimal battery temperature T opt and a current ambient temperature of the battery cooling system 10.
  • the optimum electrical power P opt of the battery cooling system 10 is determined as a function of the determined optimum battery temperature T opt , a time derivation of the determined optimum battery temperature T opt and the current ambient temperature of the battery cooling system 10.
  • the battery cooling system 10 is then operated with the determined optimum power P opt so that the battery cooling system 10 cools the battery 20 to the determined optimum battery temperature T opt .
  • the step 101 of determining the optimum battery temperature T opt may be configured, for example, by one of the three following examples.
  • T designates the battery temperature, P the battery power, Cl a cost function for power consumption on the internal resistance of the battery 20, C2 a cost function for the capacity loss of the battery 20, C3 a cost function for the power consumption of the battery cooling system 10 for cooling the Battery 20, T opt the optimum battery temperature for the battery 20, P m i n a minimum value of the battery power P and P max a maximum value of the battery power P.
  • Cfunc a function of the power consumption on the internal resistance of the battery 20
  • a constant target power is selected as the battery power P, and the optimum battery temperature T opt is determined by minimizing the following total cost function C4:
  • T opt min (ci (P, T) + C2 (P, T) + C3 (P, T))
  • the curve C4 is obtained by adding the cost functions Cl, C2 and C3 and shows its minimum at about 22 ° C. That is, for the example shown in FIG. 2, the optimum battery temperature T opt is 22 ° C
  • the battery power P is selected for a power range between the minimum value P m i n and the maximum value P max , and the optimum battery temperature T op t is determined by minimizing the following total cost function: p
  • T opt min
  • FIG. 3 shows a flow chart of a second exemplary embodiment of a method for operating a battery cooling system 10 for cooling a battery 20.
  • the method of FIG. 3 has the following method steps 301 - 305:
  • step 301 the power consumption Cl (in particular as a cost function) dependent on the battery power P and the battery temperature T is determined on the internal resistance of the battery 20.
  • step 302 the capacity loss C2 dependent on the battery power P and the battery temperature T C (in particular as a cost function) of the battery 20 is determined.
  • step 303 the power consumption C3 (in particular as a cost function) of the battery cooling system 10 for cooling the battery 20, which is dependent on the battery power P and the battery temperature T, is determined.
  • step 304 the optimum battery temperature T opt with respect to the determined power consumption Cl on the internal resistance of the battery 20, the determined capacity loss C2 of the battery 10 and the specific power consumption C3 of the battery cooling system 10 is determined.
  • step 305 the battery cooling system 10 is operated as a function of the determined optimum battery temperature T opt .
  • the electrical power for operating the battery cooling system 10 is selected such that the current battery temperature of the battery 20 corresponds to the determined optimum battery temperature T opt .
  • 4 shows a schematic block diagram of an exemplary embodiment of a device 1 for operating a battery cooling system 10 for cooling a battery 20.
  • the device according to FIG. 1 includes a computing unit 2 and a
  • the arithmetic unit 2 is set up with respect to the dependent on the battery power P and the battery temperature T power consumption Cl on the internal resistance of the battery 20, dependent on the battery power P and the battery temperature T capacity loss C2 of the battery 20 and the battery power P and the Battery temperature T dependent power consumption C3 of the battery cooling system 10 optimal battery temperature T opt to operate the battery 20 to determine.
  • the control unit 3 is set up to operate the battery cooling system 10 as a function of the determined optimum battery temperature T opt .
  • FIG. 5 shows a schematic block diagram of an embodiment of an arrangement 30 with a battery 20, a battery cooling system 10 for cooling the battery 20 and a device 1 for operating, controlling or regulating the battery cooling system 10.
  • FIG. 5 shows schematically that the battery 20 is arranged in the battery cooling system 10.
  • the device 1 is formed, for example, according to FIG. 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner un système de refroidissement de batterie (10) pour refroidir une batterie (20), consistant à déterminer (101) une température de batterie (Topt) optimale relativement à une consommation de courant (C1) dépendant d'une puissance de batterie (P) et d'une température de batterie (T) sur la résistance interne de la batterie (20), à une perte de puissance (C2) de la batterie (20) dépendant de la puissance de batterie (P) et de la température de batterie (T) et à une consommation de courant (C3) du système de refroidissement de batterie (10) dépendant de la puissance de batterie (P) et de la température de batterie (T), et à faire fonctionner (102) le système de refroidissement de batterie (10) en fonction de la température de batterie (Topt) optimale déterminée. Le système de refroidissement de batterie peut ainsi régler la température de batterie en cours sur la température de batterie optimale déterminée. L'invention concerne en outre un produit programme informatique, un dispositif pour faire fonctionner un système de refroidissement de batterie, ainsi qu'un ensemble comprenant une batterie, un système de refroidissement de batterie et un dispositif pour faire fonctionner un système de refroidissement de batterie.
PCT/EP2014/073298 2013-11-26 2014-10-30 Procédé et dispositif pour faire fonctionner un système de refroidissement de batterie pour refroidir une batterie WO2015078652A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013224076.7 2013-11-26
DE102013224076.7A DE102013224076A1 (de) 2013-11-26 2013-11-26 Verfahren und Vorrichtung zum Betreiben eines Batteriekühlsystems zum Kühlen einer Batterie

Publications (1)

Publication Number Publication Date
WO2015078652A1 true WO2015078652A1 (fr) 2015-06-04

Family

ID=51862280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/073298 WO2015078652A1 (fr) 2013-11-26 2014-10-30 Procédé et dispositif pour faire fonctionner un système de refroidissement de batterie pour refroidir une batterie

Country Status (2)

Country Link
DE (1) DE102013224076A1 (fr)
WO (1) WO2015078652A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019126951A1 (de) * 2019-10-08 2021-04-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Temperieren einer Traktionsbatterie, Steuereinrichtung, Bordnetz sowie Kraftfahrzeug
CN116087798A (zh) * 2023-04-03 2023-05-09 中北润良新能源(济宁)股份有限公司 一种动力电池检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795664A (en) * 1995-12-05 1998-08-18 Norand Corporation Rechargeable battery system having intelligent temperature control
WO2006080740A1 (fr) * 2004-11-02 2006-08-03 Lg Chem, Ltd. Procede pour reguler la temperature d'un bloc-batterie
EP1876051A1 (fr) * 2006-07-03 2008-01-09 Mazda Motor Corporation Contrôle thermique dýun dispositif de stockage électrique
EP2177389A1 (fr) * 2007-08-09 2010-04-21 Toyota Jidosha Kabushiki Kaisha Voiture équipée d'un dispositif de batterie rechargeable, et procédé de régulation thermique du dispositif de batterie rechargeable
EP2408054A1 (fr) * 2010-07-15 2012-01-18 Behr GmbH & Co. KG Système de refroidissement
FR2973298A1 (fr) * 2011-04-01 2012-10-05 Peugeot Citroen Automobiles Sa Procede de regulation thermique d'une batterie haute tension de traction d'un vehicule hybride
US20130103240A1 (en) * 2011-10-25 2013-04-25 Hitachi Automotive Systems, Ltd. Battery Temperature Control Device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8082743B2 (en) * 2009-02-20 2011-12-27 Tesla Motors, Inc. Battery pack temperature optimization control system
DE102009014300A1 (de) * 2009-03-25 2010-09-30 Behr Gmbh & Co. Kg Verfahren und Regelvorrichtung zur Regelung einer Temperatur einer Energiespeichereinheit
US8600598B2 (en) * 2011-06-08 2013-12-03 GM Global Technology Operations LLC Thermal conditioning of vehicle rechargeable energy storage systems
DE102012204410A1 (de) * 2012-03-20 2013-09-26 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Batterieanordnung eines Kraftfahrzeugs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795664A (en) * 1995-12-05 1998-08-18 Norand Corporation Rechargeable battery system having intelligent temperature control
WO2006080740A1 (fr) * 2004-11-02 2006-08-03 Lg Chem, Ltd. Procede pour reguler la temperature d'un bloc-batterie
EP1876051A1 (fr) * 2006-07-03 2008-01-09 Mazda Motor Corporation Contrôle thermique dýun dispositif de stockage électrique
EP2177389A1 (fr) * 2007-08-09 2010-04-21 Toyota Jidosha Kabushiki Kaisha Voiture équipée d'un dispositif de batterie rechargeable, et procédé de régulation thermique du dispositif de batterie rechargeable
EP2408054A1 (fr) * 2010-07-15 2012-01-18 Behr GmbH & Co. KG Système de refroidissement
FR2973298A1 (fr) * 2011-04-01 2012-10-05 Peugeot Citroen Automobiles Sa Procede de regulation thermique d'une batterie haute tension de traction d'un vehicule hybride
US20130103240A1 (en) * 2011-10-25 2013-04-25 Hitachi Automotive Systems, Ltd. Battery Temperature Control Device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019126951A1 (de) * 2019-10-08 2021-04-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Temperieren einer Traktionsbatterie, Steuereinrichtung, Bordnetz sowie Kraftfahrzeug
CN116087798A (zh) * 2023-04-03 2023-05-09 中北润良新能源(济宁)股份有限公司 一种动力电池检测方法

Also Published As

Publication number Publication date
DE102013224076A1 (de) 2015-05-28

Similar Documents

Publication Publication Date Title
DE112010001968T5 (de) Schätzen und Steigern der Restleistung in einem Energiespeicherungssystem
DE102014203074A1 (de) Photovoltaik-Leistungserzeugungssystem, Steuerungsverfahren und Steuerungsprogramm für ein Photovoltaik-Leistungserzeugungssystem
DE112020005154B4 (de) Ansteuerungsreserveverwaltung mit geschlossenem regelkreis zum aufladen von batterien
DE102012110555B4 (de) Kombiniertes PI-Regelungs- und Vorsteuerverfahren für den Zellenladezustandsausgleich
DE102013112077A1 (de) Verfahren zum Betrieb einer Photovoltaikanlage mit Energiespeicher und bidirektionaler Wandler für den Anschluss eines Energiespeichers
EP3058615A1 (fr) Procédé et dispositif permettant d'ajuster une profondeur de décharge maximale d'un accumulateur d'énergie pour une période
DE102015101738A1 (de) Verfahren zum Betrieb einer Energieerzeugungsanlage und Energieerzeugungsanlage
DE112017004964T5 (de) Signalerzeugungsschaltung und Stromversorgungsvorrichtung
DE102014220696A1 (de) Verfahren und vorrichtung zum regeln einer ausgangsspannung
WO2015078652A1 (fr) Procédé et dispositif pour faire fonctionner un système de refroidissement de batterie pour refroidir une batterie
WO2014095346A2 (fr) Procédé de fourniture de puissance de réglage en vue de stabiliser un réseau à courant alternatif
DE102013217752A1 (de) Bestimmung der Kapazität einer Batterie
DE102012113051A1 (de) Verfahren zur Erbringung von Regelleistung zur Stabilisierung eines Wechselstromnetzes, umfassend einen Energiespeicher
DE112010003227B4 (de) System und verfahren zum ausgleichen von eingangsstrom mit parallelen leistungsversorgungen
DE112015006416B4 (de) Batterieladungszustandsschätzvorrichtung und Ladungszustandsschätzverfahren
DE102013213253A1 (de) Verfahren und System zur Minimierung von Leistungsverlusten bei einem Energiespeicher
DE102021132750A1 (de) Schnellladen eines fahrzeugs mit gleichstrom
DE102015222683B4 (de) Verfahren zum rechnergestützten Ermitteln von Parametern eines elektrochemischen Energiespeichers
DE102020110155A1 (de) Batteriewiderstandsmessvorrichtung
DE102016218767A1 (de) Verfahren und Vorrichtung zur Bestimmung mindestens einer Zustandsgröße eines Speicherelements für elektrische Energie
EP3741022B1 (fr) Procédé et dispositif de régulation d'une tension électrique
WO2021140085A2 (fr) Dispositif doté d'un dispositif de commande et procédé de commande d'une alimentation électrique du dispositif
DE102010035363A1 (de) Verfahren zur Vorhersage der durch einen elektrochemischen Energiespeicher an einen Verbraucher abgebbaren Leistung
DE102019103416A1 (de) Verfahren und Steuervorrichtung zum Steuern einer Leistungselektronik für eine Peak-Shaving-Steuerung sowie elektrisches Energiespeichersystem und elektrische Anlage
EP3664243A1 (fr) Planification de fonctionnement prédictive dans un micro-réseau en fonction des fenêtres temporelles de charge élevé d'un réseau électrique principal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14793505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14793505

Country of ref document: EP

Kind code of ref document: A1