WO2015078177A1 - 非对称带宽的分配方法、装置、eNB和计算机存储介质 - Google Patents

非对称带宽的分配方法、装置、eNB和计算机存储介质 Download PDF

Info

Publication number
WO2015078177A1
WO2015078177A1 PCT/CN2014/080554 CN2014080554W WO2015078177A1 WO 2015078177 A1 WO2015078177 A1 WO 2015078177A1 CN 2014080554 W CN2014080554 W CN 2014080554W WO 2015078177 A1 WO2015078177 A1 WO 2015078177A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
actual
virtual
bandwidth range
range
Prior art date
Application number
PCT/CN2014/080554
Other languages
English (en)
French (fr)
Inventor
张庆宏
雒艳
胡成冈
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14865186.2A priority Critical patent/EP3076707B1/en
Priority to JP2016534716A priority patent/JP6324509B2/ja
Publication of WO2015078177A1 publication Critical patent/WO2015078177A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a bandwidth allocation technique in a communication system, and in particular, to an asymmetric bandwidth allocation method and apparatus, an evolved base station (eNB, evolved Node B), and a computer storage medium.
  • eNB evolved base station
  • Background technique eNB, evolved Node B
  • TDD Time Division Duplex
  • Frequency Division Duplex (FDD) mode communication system is a system based on uplink and downlink symmetric bandwidth.
  • FDD Frequency Division Duplex
  • the embodiments of the present invention mainly provide an asymmetric bandwidth allocation method, device, eNB, and computer storage medium.
  • An asymmetric bandwidth allocation method provided by an embodiment of the present invention includes: The evolved base station eNB determines an uplink UL virtual bandwidth range, and configures related uplink physical resources according to the difference between the UL actual bandwidth range and the UL virtual bandwidth range.
  • An embodiment of the present invention further provides an asymmetric bandwidth allocation device, where the distribution device includes: a parameter determination module and a configuration module;
  • the parameter determination module is configured to determine a UL virtual bandwidth range
  • the configuration module is configured to configure related uplink physical resources according to the difference between the actual bandwidth range of the UL and the UL virtual bandwidth range.
  • the embodiment of the present invention further provides an evolved base station eNB, where the eNB includes the above asymmetric bandwidth allocation apparatus.
  • Embodiments of the present invention provide a computer storage medium in which a computer program for performing the above-described asymmetric bandwidth allocation method is stored.
  • Embodiments of the present invention provide an asymmetric bandwidth allocation method, apparatus, eNB, and computer storage medium, determining an uplink (UL, Up Link) virtual bandwidth range, and according to an UL actual bandwidth range and the UL virtual bandwidth range. Differentiate, configure related uplink physical resources; thus, flexible configuration of uplink and downlink bandwidth can be realized without changing the FDD protocol framework, which can greatly improve the utilization efficiency of spectrum resources in the wireless communication system.
  • FIG. 1 is a schematic flowchart of a method for allocating an asymmetric bandwidth according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an asymmetric bandwidth allocation apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of asymmetric bandwidth allocation according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a virtual bandwidth and an actual bandwidth of a UL spectrum continuous period according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram showing specific implementation steps of asymmetric uplink and downlink bandwidth allocation according to an embodiment of the present invention
  • FIG. 6 is a diagram showing the virtual bandwidth and the actual bandwidth of the UL spectrum discontinuity provided by Embodiment 2 of the present invention. Intention
  • FIG. 7 is a schematic flowchart of a method for allocating asymmetric bandwidth when a UL virtual bandwidth range and an UL actual bandwidth range are directly given according to Embodiment 3 of the present invention. detailed description
  • the eNB determines the UL virtual bandwidth range, and configures the related uplink physical resource according to the difference between the actual bandwidth range of the UL and the UL virtual bandwidth range.
  • An embodiment of the present invention provides an asymmetric bandwidth allocation method. As shown in FIG. 1, the allocation method includes the following steps:
  • Step 101 The eNB determines an uplink UL virtual bandwidth range.
  • the UL virtual bandwidth range is determined according to a given UL actual bandwidth and a starting and ending position of the UL actual frequency band and a DL bandwidth;
  • the eNB Determining, by the eNB, the UL virtual bandwidth range according to a given downlink (DL, Down Link) bandwidth and a central carrier frequency of the UL bandwidth;
  • the center carrier frequency of the UL bandwidth is the frequency at the midpoint of the band
  • the UL virtual bandwidth range is:
  • the upper limit of the virtual bandwidth range is the center carrier frequency plus half of the DL bandwidth, and the lower limit is the center carrier frequency minus half of the DL bandwidth (central carrier frequency-DL bandwidth/2 ⁇ center carrier frequency + DL bandwidth/2 );
  • This step further includes: when the UL virtual bandwidth range is directly given, and the UL actual bandwidth range is also given, step 102 is directly performed.
  • Step 102 Configure related uplink physical resources according to the difference between the actual bandwidth range of the UL and the virtual bandwidth of the UL.
  • a Physical Link Control Channel PUCCH
  • PRACH Physical Random Access Channel
  • SRS Sound Reference Signal
  • the PUCCH is configured to: use a frequency resource that is in the UL virtual bandwidth but not in the UL actual bandwidth as part of the system PUCCH resource, and allocate all the RB indexes corresponding to the part of the frequency resource to the virtual User equipment (UE, User Equipment) ensures that real users do not use the resource;
  • UE User Equipment
  • the PRACH and the SRS are configured to: configure the RBs of the SRS and the PRACH to not exceed the actual bandwidth of the UL;
  • the UL bandwidth and the DL bandwidth in the FDD can be different, and the allocation of the uplink and downlink asymmetric bandwidths can be realized.
  • the embodiment of the present invention further provides an asymmetric bandwidth allocation device as shown in FIG. 2, which is implemented by an indoor baseband processing unit BBU of an eNB, and includes: a parameter determining module 21 and Configuration module 22; wherein
  • the parameter determining module 21 is configured to determine a UL virtual bandwidth range
  • the configuration module 22 is configured to configure related uplink physical resources according to the difference between the actual bandwidth range of the UL and the UL virtual bandwidth range;
  • the related uplink physical resources are: PUCCH, PRACH, SRS;
  • the parameter determining module 21 is specifically configured to determine a UL virtual bandwidth range according to a directly given UL virtual bandwidth range or according to a given UL actual bandwidth, a starting and ending position of an UL actual frequency band; wherein, when a given UL actual bandwidth, UL
  • the parameter determining module 21 further includes: an initializing module 31, a central carrier frequency determining module 32, and a UL virtual bandwidth determining module 33, where the starting and ending positions of the actual frequency band and the DL bandwidth are included;
  • the initialization module 31 is specifically configured to initialize the DL bandwidth, the UL actual bandwidth, and the start and stop positions of the UL actual frequency band;
  • the central carrier frequency determining module 32 is specifically configured to determine a central carrier frequency of the UL bandwidth according to the starting and ending position of the UL actual frequency band;
  • the UL virtual bandwidth determining module 33 is specifically configured to determine an UL virtual bandwidth range according to the DL bandwidth and a central carrier frequency of the UL bandwidth;
  • the initialization module 31 can initialize the DL bandwidth to 10 MHz, the UL actual bandwidth to 6 MHz, and the start and stop positions of the UL band are 2000 MHz and 2006 MHz, respectively. Therefore, the UL center carrier frequency determining module 32 can determine the center carrier frequency of the UL bandwidth to be 2003 MHz. The UL virtual bandwidth determining module can determine the range of the UL virtual bandwidth as: 1998 MHz to 2008 MHz.
  • the configuration module 22 specifically includes: a PUCCH setting module 34, a PRACH resource constraint module 35, and an SRS resource constraint module 36;
  • the PUCCH setting module 34 is configured to allocate a frequency resource that is in the virtual bandwidth but not in the actual bandwidth as part of the system PUCCH resource, and allocate all the RB indexes corresponding to the part of the frequency resource to the virtual UE. Ensuring that the real user does not use the resource; the PRACH resource constraint module 35 is specifically configured to restrict the resources allocated by the PRACH, so that the RB occupied by the PRACH cannot exceed the actual bandwidth of the UL;
  • the SRS resource constraint module 36 is specifically configured to constrain resources allocated by the SRS, so that the RB occupied by the SRS may not exceed the actual bandwidth of the UL;
  • the UL virtual bandwidth range is: 1998 MHz to 2008 MHz
  • the UL actual bandwidth range is: 2000 ⁇ 2006 ⁇ .
  • the difference between them is: 1998MHz ⁇ 2000MHz and 2006MHz ⁇ 2008MHz.
  • the setting module 34 allocates the above two parts of the spectrum resource in the virtual bandwidth range but not in the actual bandwidth range as part of the system PUCCH resource, and allocates all the RB indexes corresponding to the part of the spectrum resource to the virtual UE, ensuring that the real user does not use
  • the resource; the PRACH resource constraint module 35 and the SRS resource constraint module 36 enable the RBs occupied by the PRACH and the SRS to not exceed the UL actual bandwidth range of 2000 MHz to 2006 MHz; Flexible allocation of asymmetric bandwidth of 6 MHz downlink bandwidth of 10 MHz;
  • the initialization module 31 can be implemented by a main control board in the BBU board;
  • the central carrier frequency determining module 32 and the UL virtual bandwidth determining module 33 can be implemented by a baseband board in the BBU board;
  • the configuration module 22 can be implemented by a baseband board in the BBU board.
  • the present invention further provides an eNB.
  • the eNB includes the above-mentioned asymmetric bandwidth allocation apparatus, that is, the eNB includes a parameter determination module 21 and a configuration module in the distribution apparatus.
  • FIG. 4 is a schematic diagram of a virtual spectrum and an actual bandwidth of a UL spectrum continuous period according to Embodiment 1 of the present invention.
  • Step 501 Determine a central carrier frequency of the UL bandwidth according to the set DL bandwidth, the actual UL bandwidth, and the start and stop positions.
  • the DL bandwidth is set to BW
  • the actual bandwidth of the UL is bw
  • the initial position of the UL actual frequency band is X2ul
  • the actual bandwidth range of the UL is: X2ul ⁇ X2ul+bw;
  • Step 502 Determine a UL virtual bandwidth range according to a central carrier frequency and a DL bandwidth of the UL bandwidth.
  • the central carrier frequency of the UL bandwidth obtained from step 501 is ULfc
  • the DL bandwidth is BW
  • the UL virtual bandwidth range is: ULfc-BW/2 ⁇ ULfc+BW/2
  • the corresponding RB index is 0-N- 1;
  • the size of N depends on the value of the system bandwidth in the LTE protocol.
  • the 20M, 15M, ⁇ , 5M, and 1.4M bandwidths respectively correspond to N values of 100, 75, 50, 25, and 6.
  • Step 503 Configure PUCCH, PRACH, and SRS according to the difference between the UL actual bandwidth range and the UL virtual bandwidth range.
  • the actual bandwidth range of the UL is: ULfc-bw/2 ⁇ ULfc+bw/2, and the corresponding RB index is s ⁇ N-s-l;
  • Step 502 The UL virtual bandwidth range is: ULfc-BW/2 ⁇ ULfc+BW/2, and the corresponding RB index is 0 ⁇ N-1;
  • the PUCHH, the PRACH, and the SRS are configured; specifically,
  • the PUCCH is configured to: allocate, as part of the system PUCCH resource, a spectrum resource that is in the range of the UL virtual bandwidth but not in the UL actual bandwidth, and allocate all the RB indexes corresponding to the part of the spectrum resource to the virtual UE. Ensure that real users do not use this part of the resources;
  • s RBs of high frequency and s RBs of low frequency in the UL virtual bandwidth range are taken as part of the system PUCCH resource, and all 2s RB indexes are allocated to the virtual UE (as shown in FIG. 4,
  • the line padding unit allocates resources to the virtual UE in the virtual bandwidth.
  • the s RBs of the high frequency are RB N-1-RB Ns, and the RBs of the ⁇ frequency are RB0 ⁇ RBs-l, and the remaining blank part is Actual bandwidth) to ensure that the real UE of the system does not use the resource;
  • the SRS and the PRACH are configured as follows: Configuring the SRS and the PRACH to occupy the RB cannot exceed the UL actual bandwidth range, that is, the RBs of the SRS and the PRACH can only be in the ULfc-bw/2 ⁇ ULfc+bw/2 In the range.
  • FIG. 6 is a schematic diagram showing the virtual bandwidth and the actual bandwidth of the UL spectrum discontinuity according to Embodiment 2 of the present invention.
  • the method includes: Step 501: According to the configuration Determining the DL bandwidth, the actual UL bandwidth, and the starting and ending positions to determine the center carrier frequency of the UL bandwidth;
  • the DL bandwidth is set to BW
  • the actual bandwidth of the UL is
  • Step 502 Determine a UL virtual bandwidth range according to a central carrier frequency and a DL bandwidth of the UL bandwidth.
  • the central carrier frequency of the UL bandwidth obtained from step 501 is ULfc
  • the DL bandwidth is BW
  • the UL virtual bandwidth range is: ULfc-BW/2 ⁇ ULfc+BW/2
  • the corresponding RB index is 0-N-
  • the size of N depends on the value of the system bandwidth in the LTE protocol.
  • the bandwidths of 20M, 15M, 10M, 5M, and 1.4M respectively correspond to N values of 100, 75, 50, and 25.
  • Step 503 According to the difference between the UL actual bandwidth range and the UL virtual bandwidth range, PUCCH, PRACH, SRS are configured;
  • the actual bandwidth range of the UL is: X2ul wide XSu + bw X2ul 2 ⁇ X2ul 2 + bw 2 , ..., X2uli ⁇ X2uli+bwi
  • the UL virtual bandwidth range obtained in step 502 is: ULfc-BW/2 ⁇ ULfc+BW/2;
  • the PUCCH is configured to: allocate, as part of a system PUCCH resource, a spectrum resource that is within the UL virtual bandwidth but not within the UL actual bandwidth, and allocate all the RB indexes corresponding to the part of the spectrum resource to the virtual UE to ensure The real user will not use the resource; that is, all the RBs corresponding to the UL virtual bandwidth range are excluded. , bwzRB!-bwzRB ⁇ , ..., the remaining RBs other than bwiRB ⁇ bwiRBsi are part of the system PUCCH resource, and all the N-(sl+s2+...+si) RB indexes are allocated to the virtual UE (as shown in the figure). As shown in Fig.
  • the slanted line filling part is the resource allocated to the virtual UE in the virtual bandwidth, and the slanted line filling part respectively represents these RB indexes.
  • Bw 2 RBi ⁇ bw 2 RB s2 , ..., bwiRB ⁇ bwiRBsi corresponds to sl ⁇ si RBs, blank part is UL actual bandwidth), thereby ensuring that the real UE of the system does not use the resource;
  • the SRS and the PRACH are configured as follows: Configuring the SRS and the PRACH to occupy the RB cannot exceed the UL actual bandwidth range, that is, the RBs occupied by the SRS and the PRACH can only be in the X2ul wide XSu + bw X2ul 2 ⁇ X2ul 2 +bw 2 , ..., ⁇ 2 ⁇ 1 ⁇ ⁇ 2 ⁇ 1 ⁇ + ⁇ 3 ⁇ ⁇ range.
  • FIG. 7 is a schematic flowchart of a method for allocating asymmetric bandwidth when a UL virtual bandwidth range and an UL actual bandwidth range are directly provided according to Embodiment 3 of the present invention, including:
  • Step 701 Given a UL virtual bandwidth range and an UL actual bandwidth range; Specifically, for example, given a UL virtual bandwidth range of 2000 MHz to 2010 MHz, the UL actual bandwidth range is 2002 MHz to 2008 MHz.
  • Step 702 Configure PUCCH, PRACH, and SRS according to the difference between the UL actual bandwidth range and the UL virtual bandwidth range.
  • the PUCCH is configured to: use a spectrum resource that is in the UL virtual bandwidth but not in the UL actual bandwidth as part of the system PUCCH resource, and allocate all the RB indexes corresponding to the part of the spectrum resource to the virtual UE, ensuring that real users do not use this part of the resources;
  • the SRS and the PRACH are configured as follows: Configuring the SRS and the PRACH to occupy the RB cannot exceed the actual bandwidth of the UL;
  • the UL virtual bandwidth range is a given 2000MHz ⁇ 2010MHz, and the UL actual bandwidth range is 2002MHz ⁇ 2008MHz; wherein, the difference between them is: 2000MHz ⁇ 2002MHz and 2008MHz ⁇ 2010MHz, therefore, the difference will be
  • the spectrum resource is used as part of the system PUCCH resource, and all the RB indexes corresponding to the part of the frequency resource are allocated to the virtual UE, so that the real user does not use the part of the resource; the RB occupied by the PRACH and the SRS cannot exceed the actual bandwidth of the UL.
  • the asymmetric bandwidth allocation method according to the embodiment of the present invention may also be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a separate product.
  • a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a separate product.
  • embodiments of the present application can provide a method, apparatus, or computer program product.
  • the application can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer usable storage media having computer usable program code, including but not limited to a USB flash drive, a mobile hard drive, a read only memory ( ROM, Read-Only Memory), disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a block diagram of a flow chart of the method of the invention.
  • an embodiment of the present invention further provides a computer storage medium, wherein a computer program is stored, and the computer program is used to perform an asymmetric bandwidth allocation method according to an embodiment of the present invention.
  • the asymmetric bandwidth allocation method and the distribution device change the existing symmetric uplink and downlink bandwidths in the existing FDD protocol framework, and realize flexible allocation of uplink and downlink bandwidths.
  • the utilization efficiency of limited spectrum resources in a wireless communication system is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种非对称带宽的分配方法,eNB确定上行链路UL虚拟带宽范围,并根据UL实际带宽范围和所述UL虚拟带宽范围的差异,对相关上行物理资源进行配置;本发明还公开了一种非对称带宽的分配装置、 eNB和计算机存储介质,该分配装置包括参数确定模块和配置模块,参数确定模块确定UL虚拟带宽范围,配置模块根据所述UL虚拟带宽范围和UL实际带宽范围的差异对相关上行物理资源进行配置。

Description

非对称带宽的分配方法、 装置、 eNB和计算机存储介质
技术领域 本发明涉及通信系统中的带宽分配技术, 尤其涉及一种非对称带宽的 分配方法、 装置、 演进型基站(eNB , evolved Node B )和计算机存储介质。 背景技术
随着无线宽带通信技术的发展, 无线频谱资源的有限性日益凸显, 可 用的无线频谱资源就越发珍贵。
在无线通信系统中, 虽然时分双工 (TDD, Time Division Duplex ) 系 统具有灵活的带宽, 但是, 由于主流设备厂商投入不足, TDD终端产品产 业链发展滞后。 因此, TDD系统的带宽灵活优势并没有对无线频谱资源应 用的紧张局面带来理想的改善。
然而, 在长期演进(LTE, Long Time Evolution ) 以及未来的 4G无线 通信系统中, 采用最广泛的频分双工 (FDD, Frequency Division Duplex ) 模式的通信系统是一种基于上下行对称带宽的系统。 然而, 人们对于网络 的应用, 一般来说都是下载多于上传, 也就是说, 人们对下行链路带宽的 要求高于上行链路。 因此, 上下行链路采用同样多的频谱资源存在一定程 度的资源浪费。 发明内容
为解决现有存在的技术问题, 本发明实施例主要提供一种非对称带宽 的分配方法、 装置、 eNB和计算机存储介质。
本发明实施例的技术方案是这样实现的:
本发明实施例提供的一种非对称带宽的分配方法, 该分配方法包括: 演进型基站 eNB确定上行链路 UL虚拟带宽范围, 并根据 UL实际带 宽范围和所述 UL虚拟带宽范围的差异, 对相关上行物理资源进行配置。
本发明实施例还提供的一种非对称带宽的分配装置, 该分配装置包括: 参数确定模块和配置模块; 其中,
所述参数确定模块, 配置为确定 UL虚拟带宽范围;
所述配置模块,配置为根据 UL实际带宽范围和所述 UL虚拟带宽范围 的差异, 对相关上行物理资源进行配置。
本发明实施例还提供一种演进型基站 eNB, 该 eNB包括上述非对称带 宽的分配装置。
本发明实施例提供一种计算机存储介质, 其中存储有计算机程序, 该 计算机程序用于执行上述的非对称带宽的分配方法。
本发明实施例提供一种非对称带宽的分配方法、 装置、 eNB 和计算机 存储介质, 确定上行链路(UL, Up Link )虚拟带宽范围, 并根据 UL实际 带宽范围和所述 UL虚拟带宽范围的差异, 对相关上行物理资源进行配置; 如此, 就可以在不改变 FDD协议框架的前提下, 实现上下行带宽的灵活配 置 , 很大程度上能够提高无线通信系统中频谱资源的利用效率。 附图说明
图 1为本发明实施例提供的非对称带宽的分配方法流程示意图; 图 2为本发明实施例提供的非对称带宽的分配装置结构示意图; 图 3为本发明实施例提供的非对称带宽的分配 eNB结构示意图; 图 4为本发明实施例一提供的 UL频谱连续时虚拟带宽和实际带宽示意 图;
图 5 为本发明实施例提供的非对称上下行带宽分配的具体实施步骤示 意图;
图 6为本发明实施例二提供的 UL频谱非连续时虚拟带宽和实际带宽示 意图;
图 7为本发明实施例三提供的当直接给定 UL虚拟带宽范围和 UL实际 带宽范围时, 非对称带宽的分配方法流程示意图。 具体实施方式
本发明实施例中, eNB确定 UL虚拟带宽范围, 并根据 UL实际带宽范 围和所述 UL虚拟带宽范围的差异, 对相关上行物理资源进行配置。
下面通过附图及具体实施例对本发明做进一步的详细说明。
本发明实施例提供一种非对称带宽的分配方法, 如图 1 所示, 该分配 方法包括以下步骤:
步骤 101 : eNB确定上行链路 UL虚拟带宽范围;
具体的, 所述 UL虚拟带宽范围根据给定的 UL实际带宽和 UL实际频 带的起止位置以及 DL带宽来确定; 其中,
所述 eNB根据所述给定的 UL实际带宽和 UL实际频带的起止位置, 确定 UL带宽的中心载频;
所述 eNB再根据给定的下行链路(DL, Down Link ) 带宽和所述 UL 带宽的中心载频确定所述 UL虚拟带宽范围; 其中,
所述 UL带宽的中心载频为频带中点处的频率;
所述 UL虚拟带宽范围为: 虚拟带宽范围上限是中心载频加上一半 DL 带宽, 下限是中心载频减去一半 DL带宽 (中心载频 -DL带宽 /2~中心载频 +DL带宽 /2 );
本步骤还包括: 当直接给定 UL虚拟带宽范围的同时也给定 UL实际带 宽范围时, 直接执行步骤 102。
步骤 102: 根据 UL实际带宽范围和 UL虚拟带宽范围的差异, 对相关 上行物理资源进行配置;
具体的, 根据 UL实际带宽范围和 UL虚拟带宽范围的差异, 对物理上 行链路控制信道(PUCCH, Physical Uplink Control Channel ), 物理随机接 入信道( PRACH, Physical Random Access Channel )和探测参考信号( SRS, Sound Reference Signal )进行配置;
其中, 所述对 PUCCH进行配置为: 将在 UL虚拟带宽范围内但不在 UL实际带宽范围内的频语资源作为系统 PUCCH资源的一部分, 并将该部 分频语资源对应的 RB 索引全部分配给虚拟用户设备 ( UE , User Equipment ), 确保真实用户不会使用该资源;
所述对 PRACH和 SRS进行配置为: 配置 SRS、 PRACH所占的 RB分 别不超出 UL实际带宽范围;
通过上述分配方法, 就可以使 FDD中 UL带宽与 DL带宽不同, 实现 上下行非对称带宽的分配。
为了实现上述分配方法, 本发明实施例还提供一种如图 2所示的非对 称带宽的分配装置,该分配装置由 eNB的室内基带处理单元 BBU单板来实 现, 包括: 参数确定模块 21和配置模块 22; 其中,
所述参数确定模块 21 , 配置为确定 UL虚拟带宽范围;
所述配置模块 22, 配置为根据 UL实际带宽范围和所述 UL虚拟带宽 范围的差异, 对相关上行物理资源进行配置; 其中,
所述相关上行物理资源为: PUCCH、 PRACH, SRS;
所述参数确定模块 21具体配置为根据直接给定的 UL虚拟带宽范围或 根据给定的 UL实际带宽、 UL实际频带的起止位置来确定 UL虚拟带宽范 围; 其中, 当给定 UL实际带宽、 UL实际频带的起止位置以及 DL带宽时, 所述参数确定模块 21还包括: 初始化模块 31、 中心载频确定模块 32和 UL 虚拟带宽确定模块 33; 其中,
所述初始化模块 31 , 具体配置为对 DL带宽、 UL实际带宽和 UL实际 频带的起止位置等进行初始化; 所述中心载频确定模块 32, 具体配置为根据所述 UL实际频带的起止 位置确定 UL带宽的中心载频;
所述 UL虚拟带宽确定模块 33, 具体配置为根据所述 DL带宽和所述 UL带宽的中心载频确定 UL虚拟带宽范围;
例如, 所述初始化模块 31可以初始化 DL带宽为 10MHz, UL实际带 宽为 6MHz, UL频带的起止位置分别为 2000MHz和 2006MHz, 因此, UL 中心载频确定模块 32可以确定 UL带宽的中心载频为 2003MHz, UL虚拟 带宽确定模块可以确定 UL虚拟带宽的范围为: 1998MHz~2008MHz。
所述配置模块 22具体还包括: PUCCH设置模块 34、 PRACH资源约 束模块 35和 SRS资源约束模块 36; 其中,
所述 PUCCH设置模块 34, 具体配置为将在虚拟带宽范围内但不在实 际带宽范围内的频语资源作为系统 PUCCH资源的一部分,并将该部分频语 资源对应的 RB索引全部分配给虚拟 UE, 确保真实用户不会使用该资源; 所述 PRACH资源约束模块 35, 具体配置为对 PRACH分配的资源进 行约束, 使 PRACH所占的 RB不能超出 UL实际带宽范围;
所述 SRS资源约束模块 36, 具体配置为对 SRS分配的资源进行约束, 使 SRS所占 RB不得超出 UL实际带宽范围;
例如, 在上述例子中, UL虚拟带宽范围为: 1998MHz~2008MHz, UL 实际带宽范围 为: 2000ΜΗζ~2006ΜΗζ , 它们之间 的差异为: 1998MHz~2000MHz 和 2006MHz~2008MHz 这两部分频谱资源; 所述 PUCCH设置模块 34将在虚拟带宽范围内但不在实际带宽范围内的上述两 部分频谱资源作为系统 PUCCH资源的一部分,并将该部分频谱资源对应的 RB索引全部分配给虚拟 UE, 确保真实用户不会使用该资源; 所述 PRACH 资源约束模块 35和所述 SRS资源约束模块 36使 PRACH和 SRS所占的 RB 不超出 UL 实际带宽范围 2000MHz~2006MHz; 这就实现了上行链路带宽 6MHz下行链路带宽 10MH的非对称带宽的灵活分配;
在上述分配装置中, 所述初始化模块 31可由所述 BBU单板中的主控 板来实现;
所述中心载频确定模块 32和 UL虚拟带宽确定模块 33均可由所述 BBU 单板中的基带板来实现;
所述配置模块 22可由所述 BBU单板中的基带板来实现。
本发明还提供一种 eNB , 如图 3所示, 该 eNB包括上述非对称带宽的 分配装置,即所述 eNB包括所述分配装置中的参数确定模块 21和配置模块
22。 实施例一
图 4为本发明实施例一提供的 UL频谱连续时虚拟带宽和实际带宽示意 图。
在图 4所示的 UL频谱连续的情况下,本发明实施例提供的上下行非对 称带宽分配的具体实施步骤如图 5所示, 包括:
步骤 501: 根据设定的 DL带宽、 UL实际带宽及起止位置, 确定 UL 带宽的中心载频;
具体的, 设定 DL带宽为 BW, UL实际带宽为 bw, UL实际频带的起 始位置为 X2ul, 则 UL实际带宽范围为: X2ul~X2ul+bw;
其中, UL实际带宽 bw和频带起始位置 X2ul可根据实际需要进行设置, 且满足条件: 0<bw=<BW, 单位 Hz;
令 UL带宽的中心载频为 ULfc,
贝' j ULfc=X2ul+bw/2。
步骤 502: 根据所述 UL带宽的中心载频和 DL带宽, 确定 UL虚拟带 宽范围; 具体的, 从步骤 501 中得到 UL带宽的中心载频为 ULfc, DL带宽为 BW, 则 UL虚拟带宽范围为: ULfc-BW/2~ULfc+BW/2, 对应的 RB索引为 0-N-1 ; 其中, N的大小取决于 LTE协议中系统带宽的值, 如, 20M、 15M、 匪、 5M、 1.4M带宽分别对应的 N值为 100、 75、 50、 25、 6。
步骤 503: 根据 UL 实际带宽范围和 UL虚拟带宽范围的差异, 对 PUCCH、 PRACH、 SRS进行配置;
具体的, UL实际带宽范围为: ULfc-bw/2~ULfc+bw/2, 对应的 RB索 引为 s~N-s- l ;
步骤 502得到 UL虚拟带宽范围为: ULfc-BW/2~ULfc+BW/2, 对应的 RB索引为 0~N-1 ;
相比之下, 如图 4所示, 所述 UL虚拟带宽范围对应的 RB比所述 UL 实际带宽范围对应的 RB 多 2s 个, 其中, s取整数, 满足 floor ( ( N-1 ) /2)〉=s〉=0; 其中, floor ( * )表示下取整; 例如, 当虚拟带宽为 5M、 10M、 20M时, 分别对应的 N值为 25、 50、 100, 对应的是 s的最大取值分别为 12、 24、 49;
根据上述 UL实际带宽范围和 UL虚拟带宽范围的差异, 对 PUCHH、 PRACH和 SRS进行配置; 具体的,
所述对 PUCCH进行配置为: 将在所述 UL虚拟带宽范围内但不在 UL 实际带宽范围内的频谱资源作为系统 PUCCH资源的一部分,并将该部分频 谱资源对应的 RB索引全部分配给虚拟 UE, 确保真实用户不会使用该部分 资源;
也就是, 将 UL虚拟带宽范围内高频的 s个 RB和低频的 s个 RB作为 系统 PUCCH资源的一部分, 并将这 2s个 RB索引全部分配给虚拟 UE (如 图 4所示, 图中斜线填充部为虚拟带宽内分配给虚拟 UE的资源, 高频的 s 个 RB为 RB N-1-RB N-s, 氐频的 s个 RB为 RB0~RBs- l , 剩余空白部分为 实际带宽), 从而确保系统真实 UE不会使用该资源;
所述对 SRS、 PRACH进行配置为: 配置 SRS、 PRACH所占 RB不能 超出 UL实际带宽范围, 也就是, 所述 SRS、 PRACH各自所占 RB只能在 ULfc-bw/2~ULfc+bw/2的范围内。
实施例二
图 6所示为本发明实施例二提供的 UL频谱非连续时虚拟带宽和实际带 宽示意图。
在图 6所示的 UL频谱非连续的情况下,本发明实施例二提供的实现上 下行非对称带宽的具体实施步骤与实施例一相同, 如图 5所示, 包括: 步骤 501: 根据设定的 DL带宽、 UL实际带宽及起止位置, 确定 UL 带宽的中心载频;
具体的,设定 DL带宽为 BW, UL实际带宽为
Figure imgf000010_0001
UL 实际频带的起始位置为 X2ull 5 X2ul2, …, X2uli, 其中, 可对 bw和 X2ull 5 X2ul2 , …, X2uli根据实际需要进行设置, 且满足条件: 0<bw=<BW,
Figure imgf000010_0002
单位 Hz; 令 UL带宽的中心载频为 ULfc,
则 ULfc:
Figure imgf000010_0003
/20
步骤 502: 根据所述 UL带宽的中心载频和 DL带宽确定 UL虚拟带宽 范围;
具体的, 从步骤 501 中得到 UL带宽的中心载频为 ULfc, DL带宽为 BW, 则 UL虚拟带宽范围为: ULfc-BW/2~ULfc+BW/2, 对应的 RB索引为 0-N-1 ;与实施例一相同,其中, N的大小取决于 LTE协议中系统带宽的值, 如, 20M、 15M、 10M、 5M、 1.4M带宽分别对应 N值为 100、 75、 50、 25、
6。
步骤 503: 根据 UL 实际带宽范围和 UL虚拟带宽范围的差异, 对 PUCCH、 PRACH、 SRS进行配置;
具体的, UL实际带宽范围为: X2ul广 XSu +bw X2ul2~X2ul2+bw2, …, X2uli~X2uli+bwi , 对应 的 RB 索 引 分另' J 为 :
Figure imgf000011_0001
, bw2RBi~bw2RBs2,…, bwiRBi~bwiRBsi,对应的 RB个数分别为 si , s2,…, si; 其中, sl+s2+...+si<=N;
步骤 502得到的 UL虚拟带宽范围为: ULfc-BW/2~ULfc+BW/2;
根据所述 UL 实际带宽范围与所述 UL虚拟带宽范围之间的差异, 对 PUCHH、 PRACH和 SRS进行配置; 具体的,
所述对 PUCCH进行配置为: 将在所述 UL虚拟带宽范围内但不在 UL 实际带宽范围内的频谱资源作为系统 PUCCH资源的一部分,并将该部分频 谱资源对应的 RB索引全部分配给虚拟 UE确保真实用户不会使用该资源; 也就是,将 UL虚拟带宽范围内对应的所有 RB中除
Figure imgf000011_0002
, bwzRB!-bwzRB^, …, bwiRB^bwiRBsi之外的其余 RB作为系统 PUCCH资 源的一部分, 并将这 N- ( sl+s2+...+si )个 RB索引全部分配给虚拟 UE (如 图 6所示, 图中斜线填充部分为虚拟带宽内分配给虚拟 UE的资源,斜线填 充部分分别表示这些 RB 索引
Figure imgf000011_0003
bw2RBi~bw2RBs2, …, bwiRB^bwiRBsi对应的 sl~si个 RB, 空白部分为 UL实际带宽), 从而确保 系统真实 UE不会使用该资源;
所述对 SRS、 PRACH进行配置为: 配置 SRS、 PRACH所占的 RB不 能超出 UL实际带宽范围, 也就是, 所述 SRS、 PRACH各自所占的 RB只 能在 X2ul广 XSu +bw X2ul2~X2ul2+bw2, …, Χ2ιι1ι~Χ2ιι1ι+ΐ3\νι范围内。 实施例三
图 7为本发明实施例三提供的当直接给定 UL虚拟带宽范围和 UL实际 带宽范围时, 非对称带宽的分配方法流程示意图, 包括:
步骤 701: 给定 UL虚拟带宽范围和 UL实际带宽范围; 具体的, 例如, 给定 UL虚拟带宽范围为 2000MHz~2010MHz, UL实 际带宽范围为 2002MHz~2008MHz。
步骤 702: 根据 UL 实际带宽范围和 UL虚拟带宽范围的差异, 对 PUCCH、 PRACH、 SRS进行配置;
具体的所述对 PUCCH进行配置为:将在所述 UL虚拟带宽范围内但不 在 UL实际带宽范围内的频谱资源作为系统 PUCCH资源的一部分,并将该 部分频谱资源对应的 RB索引全部分配给虚拟 UE, 确保真实用户不会使用 该部分资源;
所述对 SRS、 PRACH进行配置为: 配置 SRS、 PRACH所占 RB不能 超出 UL实际带宽范围;
例如, 上述例子中, UL虚拟带宽范围为给定的 2000MHz~2010MHz, UL 实际带宽范围为 2002MHz~2008MHz; 其中, 它们之间的差异为: 2000MHz~2002MHz和 2008MHz~2010MHz, 因此,将差异部分的频谱资源 作为系统 PUCCH资源的一部分,并将该部分频语资源对应的 RB索引全部 分配给虚拟 UE, 确保真实用户不会使用该部分资源; 所述 PRACH、 SRS 所占的 RB不能超出 UL实际带宽 2002MHz~2008MHz的范围。
本发明实施例所述非对称带宽的分配方法如果以软件功能模块的形式 实现并作为独立的产品销售或使用时, 也可以存储在一个计算机可读取存 储介质中。 基于这样的理解, 本领域内的技术人员应明白, 本申请的实施 例可提供方法、 装置、 或计算机程序产品。 因此, 本申请可采用完全硬件 实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用 存储介质上实施的计算机程序产品的形式, 所述存储介质包括但不限于 U 盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory ), 磁盘存储器、 CD-ROM, 光学存储器等; 这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存 储器中的指令产生包括指令装置的制造品, 该指令装置实现在本发明方法 流程图的一个流程或多个流程和 /或装置方框图的一个方框或多个方框中 指定的功能;
相应的, 本发明实施例还提供一种计算机存储介质, 其中存储有计算 机程序, 该计算机程序用于执行本发明实施例的非对称带宽的分配方法。
以上所述, 仅为本发明的最佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。
工业实用性
从上述实施例可以看出, 本发明实施例提供的非对称带宽的分配方法 和分配装置, 在现有 FDD协议框架内, 改变了现有对称上下行带宽, 实现 了上下行带宽灵活分配, 大大提高了无线通信系统中对有限频谱资源的利 用效率。

Claims

权利要求书
1、 一种非对称带宽的分配方法, 该分配方法包括:
演进型基站 eNB确定上行链路 UL虚拟带宽范围, 并根据 UL实际带 宽范围和所述 UL虚拟带宽范围的差异, 对相关上行物理资源进行配置。
2、 根据权利要求 1所述的分配方法, 其中, 所述 UL虚拟带宽范围根 据给定的 UL实际带宽、 UL实际频带的起止位置来确定; 其中,
所述 eNB根据所述给定的 UL实际带宽和 UL实际频带的起止位置, 确定 UL带宽的中心载频, 所述 eNB再根据所述给定的下行链路 DL带宽 和所述 UL带宽的中心载频确定所述 UL虚拟带宽范围。
3、根据权利要求 2所述的分配方法, 其中, 所述 UL虚拟带宽范围为: 虚拟带宽范围上限是中心载频加上一半 DL带宽,下限是中心载频减去一半 DL带宽。
4、 根据权利要求 3所述的分配方法, 其中, 所述对相关上行物理资源 进行配置为: 所述 eNB对物理上行链路控制信道 PUCCH、 物理随机接入 信道 PRACH和探测参考信号 SRS进行配置。
5、 根据权利要求 1所述的分配方法, 其中, 所述 UL虚拟带宽范围为 直接给定的, 所述 eNB根据所述直接给定的 UL虚拟带宽范围和 UL实际 带宽范围的差异, 对物理上行链路控制信道 PUCCH、 物理随机接入信道 PRACH和探测参考信号 SRS进行配置。
6、 根据权利要求 4或 5所述的分配方法, 其中, 所述对 PUCCH进行 配置为:将在 UL虚拟带宽范围内但不在 UL实际带宽范围内的频语资源作 为系统 PUCCH资源的一部分,并将所述频语资源对应的资源块 RB索引全 部分配给虚拟用户设备 UE。
7、 根据权利要求 6所述的分配方法, 其中, 所述对 PRACH和 SRS进 行配置为: 配置 SRS、 PRACH所占的 RB分别不能超出 UL实际带宽范围。
8、 一种非对称带宽的分配装置, 该分配装置包括: 参数确定模块和配 置模块; 其中,
所述参数确定模块, 配置为确定 UL虚拟带宽范围;
所述配置模块,配置为根据 UL实际带宽范围和所述 UL虚拟带宽范围 的差异, 对相关上行物理资源进行配置。
9、 根据权利要求 8所述的分配装置, 其中, 所述参数确定模块, 配置 为根据直接给定的 UL虚拟带宽范围或根据给定的 UL实际带宽、 UL实际 频带的起止位置来确定 UL虚拟带宽范围; 其中, 当给定 UL实际带宽、 UL 实际频带的起止位置以及 DL带宽时,所述参数确定模块包括:初始化模块、 中心载频确定模块和 UL虚拟带宽确定模块; 其中,
所述初始化模块, 配置为对 DL带宽、 UL实际带宽及 UL实际频带的 起止位置进行初始化;
所述中心载频确定模块,配置为根据所述 UL实际频带的起止位置确定 UL带宽的中心载频;
所述 UL虚拟带宽确定模块, 配置为根据所述 DL带宽和所述 UL带宽 的中心载频来确定 UL虚拟带宽范围。
10、根据权利要求 9所述的分配装置,其中,所述配置模块包括: PUCCH 设置模块、 PRACH资源约束模块和 SRS资源约束模块; 其中,
所述 PUCCH设置模块,配置为将在虚拟带宽范围内但不在实际带宽范 围内的频语资源作为系统 PUCCH资源的一部分,并将所述频语资源对应的 RB索引全部分配给虚拟 UE;
所述 PRACH资源约束模块, 配置为对 PRACH分配的资源进行约束, 使 PRACH所占的 RB不能超出 UL实际带宽范围;
所述 SRS资源约束模块, 配置为对 SRS分配的资源进行约束, 使 SRS 所占 RB不得超出 UL实际带宽范围。
11、一种演进型基站 eNB,所述 eNB包括权利要求 8至 10任一项所述 的非对称带宽的分配装置。
12—种计算机存储介质, 其中存储有计算机程序, 该计算机程序用于 执行权利要求 1至 7任一项所述的非对称带宽的分配方法。
PCT/CN2014/080554 2013-11-28 2014-06-23 非对称带宽的分配方法、装置、eNB和计算机存储介质 WO2015078177A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14865186.2A EP3076707B1 (en) 2013-11-28 2014-06-23 Method and device for allocating asymmetrical bandwidth, enb and computer storage medium
JP2016534716A JP6324509B2 (ja) 2013-11-28 2014-06-23 非対称帯域幅の割り当て方法、装置、eNB及びコンピュータ記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310627183.5A CN104684027A (zh) 2013-11-28 2013-11-28 一种非对称带宽的分配方法、装置及演进型基站
CN201310627183.5 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015078177A1 true WO2015078177A1 (zh) 2015-06-04

Family

ID=53198298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080554 WO2015078177A1 (zh) 2013-11-28 2014-06-23 非对称带宽的分配方法、装置、eNB和计算机存储介质

Country Status (4)

Country Link
EP (1) EP3076707B1 (zh)
JP (1) JP6324509B2 (zh)
CN (1) CN104684027A (zh)
WO (1) WO2015078177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210127395A1 (en) * 2017-06-16 2021-04-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135053B (zh) * 2016-02-26 2019-08-16 北京佰才邦技术有限公司 探测参考信号的传输方法、装置及终端
CN112738810A (zh) * 2019-10-28 2021-04-30 中国移动通信集团山西有限公司 网络资源分配方法、装置、设备及存储介质
CN112003760B (zh) * 2020-07-25 2022-02-18 苏州浪潮智能科技有限公司 检测虚拟化管理系统网络虚接的方法、装置、设备、产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064902A (zh) * 2011-01-10 2011-05-18 江阴和普微电子有限公司 一种数字无线传输的非对称分时复用方法及其实现系统
CN102438320A (zh) * 2010-09-29 2012-05-02 电信科学技术研究院 一种下行调度信息的配置方法和设备
EP2482603A1 (en) * 2009-09-23 2012-08-01 ZTE Corporation Method and device for implementing asymmetrical bandwidth system
CN103001754A (zh) * 2011-11-10 2013-03-27 微软公司 用于将信号从虚拟频带映射到物理频带的方法和无线装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3000974B2 (ja) * 1997-08-28 2000-01-17 日本電気株式会社 セルラシステムの周波数キャリア割り当て方法
JPH11205277A (ja) * 1998-01-07 1999-07-30 Toshiba Corp 無線通信システム
JP3116893B2 (ja) * 1998-03-26 2000-12-11 日本電気株式会社 セルラシステム
US8825065B2 (en) * 2007-01-19 2014-09-02 Wi-Lan, Inc. Transmit power dependent reduced emissions from a wireless transceiver
US8125974B2 (en) * 2008-05-02 2012-02-28 Wi-Lan, Inc. Transmit emission control in a wireless transceiver
CN103024904A (zh) * 2011-09-20 2013-04-03 北京三星通信技术研究有限公司 一种无线通信系统中的上行数据传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2482603A1 (en) * 2009-09-23 2012-08-01 ZTE Corporation Method and device for implementing asymmetrical bandwidth system
CN102438320A (zh) * 2010-09-29 2012-05-02 电信科学技术研究院 一种下行调度信息的配置方法和设备
CN102064902A (zh) * 2011-01-10 2011-05-18 江阴和普微电子有限公司 一种数字无线传输的非对称分时复用方法及其实现系统
CN103001754A (zh) * 2011-11-10 2013-03-27 微软公司 用于将信号从虚拟频带映射到物理频带的方法和无线装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3076707A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210127395A1 (en) * 2017-06-16 2021-04-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
US11937242B2 (en) * 2017-06-16 2024-03-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device

Also Published As

Publication number Publication date
JP6324509B2 (ja) 2018-05-16
EP3076707A4 (en) 2016-11-16
JP2017504237A (ja) 2017-02-02
CN104684027A (zh) 2015-06-03
EP3076707A1 (en) 2016-10-05
EP3076707B1 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6928109B2 (ja) フレキシブルスロットフォーマットインジケータを利用するための装置、システム、及び方法
RU2676873C2 (ru) Устройство и способ для синхронного мультиплексирования и множественного доступа для различных целей запаздывания, используя тонкое управление
CN107624258B (zh) 用于确定几乎连续的资源分配a-mpr应用于上行链路传输的方法和装置
TWI687116B (zh) 一種資源配置方法及裝置、電腦存儲介質
WO2017041601A1 (zh) 一种物理下行控制信道传输方法及装置
WO2017036272A1 (zh) 一种资源选择方法及装置
WO2019096131A1 (zh) 一种指示和确定时域资源的方法、装置及系统
WO2015158004A1 (zh) 一种功率配置方法、用户设备及基站
CN109152029A (zh) 一种通信方法、网络设备及用户设备
US20230209540A1 (en) Method of allocating uplink data packet resource and user equipment
CN109787730A (zh) 一种资源配置方法及装置、计算机存储介质
WO2015078177A1 (zh) 非对称带宽的分配方法、装置、eNB和计算机存储介质
US20130188588A1 (en) Signaling for Configurable Dual-Cluster Resource Assignments
WO2020200176A1 (zh) 确定传输资源的方法及装置
WO2018137688A1 (zh) 一种rs生成、接收方法及终端、基站
CN111432423B (zh) 一种资源配置方法及装置
WO2017088598A1 (zh) 一种传输数据的方法及装置
CN107113796A (zh) 资源分配、指示及识别资源类型、接收数据的方法及装置
WO2018094618A1 (zh) 一种资源分配和传输数据包的方法及设备
WO2019157679A1 (zh) 一种信息指示方法及相关设备
WO2020056766A1 (zh) 一种通信方法及装置
WO2018120985A1 (zh) 一种进行资源分配的方法和设备
WO2018032243A1 (zh) 数据传输方法、装置和系统
CN114503487B (zh) 一种通信方法及装置
CN111373812A (zh) 用于分配资源块的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014865186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865186

Country of ref document: EP