WO2015076589A1 - Nerve-cell-regenerating or nerve-cell growth-promoting pharmaceutical composition containing vax protein as active ingredient - Google Patents

Nerve-cell-regenerating or nerve-cell growth-promoting pharmaceutical composition containing vax protein as active ingredient Download PDF

Info

Publication number
WO2015076589A1
WO2015076589A1 PCT/KR2014/011208 KR2014011208W WO2015076589A1 WO 2015076589 A1 WO2015076589 A1 WO 2015076589A1 KR 2014011208 W KR2014011208 W KR 2014011208W WO 2015076589 A1 WO2015076589 A1 WO 2015076589A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaxl
protein
cells
nerve
retinal ganglion
Prior art date
Application number
PCT/KR2014/011208
Other languages
French (fr)
Korean (ko)
Inventor
김진우
김남석
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140158645A external-priority patent/KR101742650B1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to EP14864546.8A priority Critical patent/EP3072520B1/en
Publication of WO2015076589A1 publication Critical patent/WO2015076589A1/en
Priority to US15/159,739 priority patent/US9968651B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Definitions

  • composition for promoting neuronal regeneration or neuronal growth containing ⁇ Vax protein as an active ingredient ;
  • the present invention relates to a pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing Vax protein as an active ingredient, and a method for screening candidate substances for promoting neuronal regeneration or neuronal growth using Vax protein.
  • the mammalian binocular visual system is a retinal ganglion cell in the neurons of the dorsal lateral geniculate nucleus (dLGN) of the brain and in the superior colliculus (SC) of the brain.
  • RGC dorsal lateral geniculate nucleus
  • SC superior colliculus
  • RGC retinal ganglion cell in the neurons of the dorsal lateral geniculate nucleus (dLGN) of the brain and in the superior colliculus (SC) of the brain.
  • RGC axons are formed in topographic synaptic connections.
  • Visual paths including optic disc (0D), optic bottle (optic stalk, OS), optic chiasm (0C), and optic tract (0T) for retinal ganglion cell axons to contact synaptic targets
  • Retinal ganglion cell axon induction signals include cell surface ligands such as semaphorin present in the ocular disease and ephrinB2 present in the optic nerve crossing, or netrin -l in the optic nerve disc and There is a secreted factor such as Slitl in the periphery of the optic nerve crossing (Erskine and Herrera, 2007).
  • Slitl in the periphery of the optic nerve crossing
  • ventral hypothalamic cells express molecules that determine the direction of retinal ganglion cell axons in the optic nerve crossing.
  • ventral hypothalamic glial cells express ephrin B2, which binds to EphBl receptors expressed in ventral temporal retinal ganglion cell axons, leading to retraction of axons directed to the ipsilateral visual field.
  • vascular endothelial growth factor 164 vascular endothelial growth factor 164
  • Nr CAM neuronal cell adhesion molecule
  • Retinal ganglion cell axons must pass through the ventral-lateral diencephalic area where high levels of repulsive induction signals such as Slit and semaphorin are expressed to receive directional induction signals of these molecules in the optic nerve cross.
  • VaxKventral anterior homeobox 1 includes medial and lateral geniculate eminence (MGE and LGE), abdominal septum, anterior entopeduncular area (AEP), and anterior optic nerve area (pre Dtic area, P0A). And homeodomain transcription factors expressed in various ventral-medial forebrain-derived structures, including ventral hypothalamus and ocular disease (Bertuzzi et al., 1999; Hall one t et al., 1998).
  • Vaxl in humans and rats Genetic inactivation of Vaxl in humans and rats is characterized by the lack of "coloboma of the eye, as well as multiple central structures of the brain, including anterior commissure, corpus cal losum, and optic nerve crossing. causes ageesis (Bertuzzi et al., 1999; Hal l one t et al. ⁇ 1999; Slavot inek et al. , 2012). Retinal ganglion cell axons in Vaxl-deficient mice can grow through ocular disease but fail to contact the ventral hypothalamus and eventually do not form optic nerve crossings.
  • Vaxl also plays an important role in retinal ganglion cell axon growth and fasci culat ion but is not expressed in retinal ganglion cells (Bertuzzi et al., 1999). Therefore, the present inventors tried to find a function related to the induction of Vax retinal ganglion cell axon growth and molecules that mediate it. As a result, Vaxl is secreted from ventral hypothalamus (vHT) fragments isolated from mice. The secreted Vaxl binds to the extracellular sugar group of heparan sul fate proteoglycans (HSPGs) present in the axon of retinal ganglion cells (RGC) of cocultured retinal sections.
  • HSPGs heparan sul fate proteoglycans
  • the present invention has been completed by revealing that it can be usefully used as a pharmaceutical composition for promotion.
  • An object of the present invention is to provide a pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing Vax protein as an active ingredient.
  • the present invention provides a pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing the Vax protein as an active ingredient.
  • the present invention is a nerve cell regeneration or nerve cell growth containing a vector or a cell containing a polynucleotide encoding Vax protein as an active ingredient
  • a pharmaceutical composition for promotion is provided.
  • step 2 2) measuring the binding level of Vaxl and hapharan sulfate proteoglycans in the cells of step 1);
  • It provides a method for screening a candidate substance for neuronal regeneration or neuronal growth promotion comprising the step of selecting a test substance to increase the Vaxl and heparan sulfate proteoglycan binding level of step 2) compared to the untreated control.
  • the present invention also provides a method for regenerating neurons comprising administering a pharmaceutically effective amount of Vax protein to a subject injured in a neuronal cell.
  • the present invention provides a method for promoting neuronal growth comprising administering a pharmaceutically effective amount of Vax protein to a subject injured in a neuronal cell.
  • the present invention provides a method for regenerating neurons comprising administering a vector or cell comprising a polynucleotide encoding a pharmaceutically effective amount of Vax protein to a subject injured in a neuron.
  • the present invention also provides a method for promoting neuronal growth, comprising administering a vector or cell comprising a polynucleotide encoding a pharmaceutically effective amount of Vax protein to an individual injured with neurons.
  • the present invention also provides the use of Vax protein for use as a pharmaceutical composition for promoting neuronal regeneration or neuronal growth.
  • the present invention also provides the use of a vector or cell comprising a polynucleotide encoding a Vax protein for use as a pharmaceutical composition for promoting neuronal regeneration or neuronal growth.
  • the present invention relates to a pharmaceutical composition for nerve cell regeneration containing Vax protein as an active ingredient, Vaxl is secreted from ventral hypothalamus (vHT) fragments isolated from embryonic mice, and the secreted Vaxl is Penetrates into the axonplasm by binding to extracellular sugar groups of heparan sulfate proteoglycans (HSPGs) present in retinal ganglion cells (RGC) axons of cocultured retinal sections. After that, by activating local protein synthesis to promote retinal ganglion cell axon growth, the secreted Vax protein can be usefully used as an active ingredient of a composition for promoting neuronal regeneration or neuronal growth. .
  • vHT ventral hypothalamus
  • RRC retinal ganglion cells
  • La shows neural progenitor cells (NPCs) of Vaxl normal mice (Vaxl + / +) and Vaxl deficient mice (Vaxl ⁇ / ⁇ ) with embryonic 13.5 (E 13.5) days, post-mitotic neuronal ) Is a diagram showing the expression of Vaxl protein in neurons.
  • FIG. Lb shows the expression of Vaxl protein in optic chiasm (0C) forming cells of E13.5 Vaxl + / + and Vaxl ⁇ / ⁇ mice.
  • Figure 2a is a schematic diagram illustrating a method for measuring the orientation of retinal ganglion cells (RGC) axon (axon).
  • RRC retinal ganglion cells
  • FIG. 2B shows retinal ganglion cell axons growing in neural retinal (NR) fragments co-cultured with ventral hypothalamic (vHT) isolated from E13.5 Vaxl + / + or Vaxl ⁇ / ⁇ mice It is also.
  • NR neural retinal
  • vHT ventral hypothalamic
  • FIG. 2C shows the orientation of retinal ganglion cell axon tips toward the ventral hypothalamus in neural retinal sections co-cultured with ventral hypothalamus isolated from E13.5 Vaxl + / + or Vaxl ⁇ / ⁇ mice :
  • 2D shows the ventral hypothalamus isolated from E13.5 Vaxl + / + or Vaxl ⁇ / ⁇ mice Diagram showing the direction of the retinal ganglion cell axon shaft to the ventral hypothalamus in cocultured neuroretinal sections:
  • FIG. 2E is a diagram illustrating defects in the ventral hypothalamus and retinal ganglion cell axons isolated from E13.5 Vaxl + / + or Vaxl ⁇ / ⁇ mice:
  • Vegfa vescular endothelial growth factor, VEGF164;
  • NrCAM neuronal cell adhesion molecule
  • 3A is a diagram showing retinal ganglion cell axons growing in neural retinal sections co-cultured with Vaxl, transcription inactive Vaxl mutants (Vaxl (R152S)) and C0S7 cells overexpressing Vax2.
  • 3B is a diagram showing the direction of retinal ganglion cell axons directed to C0S7 cells in neural retinal sections co-cultured with Vaxl, transcriptionally inactive Vaxl mutants (Vaxl (R152S)) and Vax2 overexpressed C0S7 cells.
  • Figure 3c is a diagram showing the detection of Vax protein present in the growth medium of Vaxl, transcription inactive Vaxl mutation (Vaxl (R152S)) and C0S7 cells overexpressed Vax2. '
  • FIG. 4A shows the location of Vax protein in C0S7 cells (right) treated with growth medium of HEK293T cells (left) overexpressing Vaxl, GFP-Vaxl and GFP-Vax2:
  • FIG. 4B is a diagram showing Vaxl protein present in the third ventricle of E13 mouse brain injected with growth medium of Myc-Vaxl overexpressed HEK293T cells:
  • FIG. 4C shows E14.5 normal (WT) and Vaxl deficient (Vaxl-/-) ventral hypothalamic sections In cell lysates (cel l lysate, CD and growth media (growth media eu GM) for a diagram showing the existence of Vaxl protein.
  • 4D shows the presence of Vaxl protein in cell lysates (CL) of ventral hypothalamic explants, and supernatants (S3) and dead cell debris (P2) of cerebrospinal fluid (cerebrospinal fucid, CSF) in E14.5 mice It is also.
  • Figure 4e is a retinal ganglion cell axon, the, wherein the non-immune (pre-immune) Rabbit (rabbi t) immunoglobulin (rblgG), Rabbit -Vaxl to verify the functionality of the secreted Vaxl Vaxl in C0S7 cells overexpressing in the growth induction Retinal ganglion cell axons that grow toward C0S7 in a retinal segment (NR) co-cultured with C0S7 cells treated with a polyclonal antibody (-Vaxl):
  • 5A shows pre-immune ' rabbi t immunoglobulin (rblgG), rabbit anti-Vaxl polyclonal antibody ( ⁇ -Vaxl) and rabbit anti—Vax2 polyclonal antibody (a-Vax2)
  • rblgG pre-immune ' rabbi t immunoglobulin
  • ⁇ -Vaxl rabbit anti-Vaxl polyclonal antibody
  • a-Vax2 polyclonal antibody a-Vax2 Is a diagram showing retinal ganglion cell axons growing toward ventral hypothalamic explants (NR) cocultured with ventral hypothalamic explants (vHT) treated with:
  • FIG. 5B shows co-administration with ventral hypothalamic explants (vHT) by treatment of non-immune rabbit immunoglobulin (rblgG), rabbit anti-Vaxl polyclonal antibody (a-Vaxl) and rabbit anti-Vax2 polyclonal antibody (a-Vax2)
  • rblgG non-immune rabbit immunoglobulin
  • a-Vaxl rabbit anti-Vaxl polyclonal antibody
  • a-Vax2 polyclonal antibody a-Vax2
  • FIG. 5C shows co-operation with ventral hypothalamic explants (vHT) treated with non-immune rabbit immunoglobulin (rblgG), rabbit anti-Vaxl polyclonal antibody (a -Vaxl) and rabbit anti-Vax2 polyclonal antibody (a— Vax2)
  • vHT ventral hypothalamic explants
  • rblgG non-immune rabbit immunoglobulin
  • a -Vaxl rabbit anti-Vaxl polyclonal antibody
  • a— Vax2 polyclonal antibody a— Vax2
  • FIG. 5D shows a recombinant protein labeled with peptide (100 ng / ml) or His-tagged Vaxl labeled with fluorescein isothiocyanate (FITC) at 6X-His on the retinal fragment. After incubation with (500 ng / ml), this is confirmed:
  • FIG. 5E is a diagram showing immunostaining after incubation with 6X-His peptide (100 ng / ml) or Vaxl-His-FITC protein (500 ng / ml) in retinal sections:
  • FIG. 5 ⁇ is treated with 6X-His peptide (25 ng / ml, white bar) or Vaxl-His protein (100 ng / ml, black bar) in the quadrant of the retinal section, measuring the changed axon length after 24 hours. Is shown:
  • VN VentraT Nasal
  • VT Ventral Temporal.
  • FIG. 5g is a diagram showing the histo-tagged Vax2 (100 ng / ml) added to the retinal fragments, or without the back-side staining cultured for 24 hours, (B) is retinal ganglion cells A graphical representation of measuring axon length:
  • FIG. 6A shows the growth of retinal ganglion cell axons in the third ventricle (V3) of E13.5 mice injected with non-immune rabbit immunoglobulin (rblgG), rabbit anti-Vaxl polyclonal antibody ( ⁇ -Vaxl):
  • A anterior;
  • FIG. 6B shows retinal ganglion cell axons growing in neural retinal sections treated with Vaxl recombinant protein, or Vaxl recombinant protein and rabbit anti-Vaxl polyclonal antibody ( ⁇ -Vaxl):
  • Figure 6c is a diagram showing the length of retinal ganglion cell axon over time in the retinal explants treated with Vaxl recombinant protein, or Vaxl recombinant protein and rabbit anti-Vaxl polyclonal antibody ( ⁇ -Vaxl).
  • 6D is a diagram showing the number, thickness and length of retinal ganglion cell axons in neural retinal sections treated with Vaxl recombinant protein, or Vaxl recombinant protein and rabbit anti-Vaxl polyclonal antibody (a -Vaxl).
  • FIG. 7A is a diagram showing the expression of Vaxl mRNA in the retina of Vaxl + / + and VaxllacZ / lacZ E14.5 mice.
  • FIG. 7B is a diagram showing expression of Vaxl protein and beta galactosidase ( ⁇ -galactosidase, ⁇ -gal) in the optic pathway structure of Vaxl + / lacZ and VaxllzcZ / lacZ E14.5 mice:
  • GCL ganglion cell layer
  • NBL neuroblast layer.
  • NF160 neuroofilament
  • retinal ganglion cell axon marker NF160 (neurofilament), a retinal ganglion cell axon marker
  • RGC retinal ganglion cell
  • OS APC ocular disc astrocyte precursor cell
  • ⁇ in RGC Vaxl protein present in intracellular vesicles (endocytic vesicle);
  • ⁇ in RGC Vaxl protein bound to the extracellular surface of the RGC plasma membrane
  • ⁇ in OS APC Vaxl protein present in transport vesicles (trafficking vesicle); And
  • ⁇ in OS APC Vaxl protein associated with chromatin in the nucleus.
  • FIG. 7E shows Mui et al using [33P1-CTP-labeled ant i sense Vaxl probes in brain sections prepared from Vaxl + / + (WT) and Vaxl ⁇ / ⁇ E14.5 mice. , In situ RNA hybridization by the method described in 2005 to visualize the radiation intensity of Va33 mRNA expression of the [33P] -CTP—labeled antisense Vaxl probe.
  • FIG. 7E is a diagram showing the brain sections obtained from E14.5 Vaxl + / lacZ and VaxllacZ / lacZ mice and visualized by immunostaining:
  • Figure 9a is a diagram showing the results of the coimmunoprecipitation (Co-i ⁇ unoprecipitation) of the binding of Vaxl and Sindecan 2 (Sdc2) in the optic nerve of the post-natal day 0, P0 mice.
  • Figure 9c is a diagram showing the results of investigating the binding of Vaxl, and Sdcl or Sdc2 in Vax2, and GFP-Sdcl or GFP-Sdc2 overexpressed HEK293T cells by the immunoimmunoprecipitation method.
  • Figure 9d shows Vaxl, and HEK293T cells overexpressed with GFP-Sdc2-N or GFP-Sdc2-C.
  • Fig. 3 shows the results of investigating the binding of Vaxl and Sdc2-N or Sdc2-C by co-immunoprecipitation method.
  • Figure 9e is a diagram showing the results of the coimmunoprecipitation method of the protein binding to Vaxl in the E14.5 mouse optic nerve treated with heparin (heparin).
  • 4B is a diagram showing the binding of resin and Vaxl protein.
  • VaxK green in the enlarged region appears as a yellow color with two colors overlapping when distributed on NF160 (red) labeled retinal ganglion cell axons (scale bar: 500 um).
  • FIG. 10B shows biotin labeled Vaxl KR-peptide (KR-bio), Vaxl protein and two important sugar binding residues 101 which encode Vaxl amino acid sequences 101-112 having homology with Vaxl protein and 0tx2 sugar binding motif.
  • FIG. 10c shows Vaxl protein, Vaxl protein and Heparinase I, and Vaxl protein and Growth of retinal ganglion cell axons in neural retinal sections treated with chondroitinase ABC, Vaxl protein and Vaxl KR-peptide (KR-bio), Vaxl protein and AA-bio peptide, and Vaxl (KR / AA) mutant protein Is a diagram showing.
  • Figure 11a is a diagram showing the results of Western blotting (Vaxl) protein in the growth medium of heparin-treated Vaxl and Vaxl (KR / M) overexpressing HEK293T cells.
  • FIG. Lib shows the results of investigation of the co-immunoprecipitation method of Vaxl protein binding to Sdc2 in GFP-Sdc2 and Vaxl or Vaxl (KR / AA) overexpressing HEK293T cells.
  • Figure 11c is a diagram showing the Vaxl protein present in C0S7 cells to which the growth medium of Myc— Vaxl or Myc_Vaxl (KR / AA) overexpressing HEK293T cells was added.
  • FIG. 12A shows Ser-Arg amino acid residues 147 tryptophan (Trp) and 148 phenylalanine (Phe) (WR) having homology with important residues of GFP-Sdc2, and the cell-penetrating region of antennapedia, Antp.
  • Fig. 2 shows the results of coimmunoprecipitation of Vadc protein binding to Sdc2 in Myc-Vaxl (WF / SR) mutants substituted with (SR) or HEK293T cells overexpressing Myc-Vaxl.
  • FIG. 12B is a diagram showing the results of Western blotting of Vaxl protein present in C0S7 cells added with growth medium of Myc-Vaxl or Myc-Vaxl (WF / SR) overexpressing HEK293T cells.
  • FIG. 12C shows retinal ganglion cell axons growing toward C0S7 cells in neural retinal (NR) fragments co-cultured with Myc-Vaxl or Myc-Vaxl (TOVSR) overexpressing C0S7 cells.
  • NR neural retinal
  • TOVSR Myc-Vaxl
  • 12D is a diagram showing the direction of retinal ganglion cell axons directed to C0S7 cells in neural retinal (NR) fragments co-cultured with Myc-Vaxl or Myc-Vaxl (WF / SR) overexpressing C0S7 cells.
  • NR neural retinal
  • WF / SR Myc-Vaxl
  • Figure 13a is a diagram showing the proteins constituting the Vaxl protein complex in the cytoplasm (cytoplasm) fraction in HEK293T cells overexpressed GST and GST- Vaxl.
  • Figure 13b is cultured in a medium containing Vaxl or Vaxl (WF / SR) protein
  • the newly synthesized protein in the neural retinal fragment is labeled with green fluorescence.
  • Figure 13c is a diagram showing the label using green fluorescence of a newly synthesized protein from axons isolated from neural retinal sections cultured in a medium containing Vaxl or Vaxl (WFYSR) protein.
  • Figure 13d is in a medium containing Vaxl or Vaxl (WF / SR) protein. Figure showing growth of axons isolated from cultured neural retinal sections.
  • Figure 14a shows the growth of retinal ganglion cell axons in the third ventricle of VaxllacZ / lacZ embryonic mice injected with His-peptide, Vaxl-His, Vaxl (WF / SR) -His, Robol-Fc segment, etc. It is a figure shown by immunostaining, (B) is a graph which shows the fluorescence intensity measured.
  • Figure 14b (A) is a diagram showing the retinal ganglion cell axons growing in the neural retinal section co-treated with Vaxl and Slit2 by concentration, retinal ganglion grown in the neural retinal section co-regulated by Vaxl and Slit2 by concentration A graph showing the length of cell axons.
  • FIG. 14C (A) shows that after incubating the E13.5 mouse neural retinal segment and Vaxl-knockout ventral hypothalamus section together with or without Robo 1-Fc for 24 hours, visualization and immunostaining were performed.
  • (B) is a graph showing the direction coefficient of retinal ganglion cell axon:
  • FIG. 14D shows immunostaining of retinal ganglion cell axons grown in neural retinal sections co-treated with Vaxl and Slit2 by concentration, and shows the fluorescence intensity thereof graphically (scale bar: 20 ⁇ .
  • FIG. 14E is a diagram showing Vaxl protein infiltrating into retinal ganglion cell axon in Vaxl or neural retinal sections treated with Vaxl and S1 2 proteins.
  • 14F treated with Vaxl, Vaxl (R152S) and Vaxl (WF / SR).
  • Cerebral Figure 1 shows the results of immunofluorescence staining of Vaxl protein infiltrated into axons of cort ical explants.
  • Figure 14g is a diagram showing a model of retinal ganglion cell axon growth regulation by secreted Vaxl protein. The best form for the implementation of the invention
  • the present invention provides a Vax ventral anterior homeobox . It provides a pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing white matter as an active ingredient.
  • the Vax protein is any one selected from the group consisting of a Vaxl protein having an amino acid sequence as set forth in SEQ ID NO: 1 or a Vax2 protein having an amino acid sequence as set forth in SEQ ID NO: 2, but not limited thereto.
  • the nerve cells are vaxl-deficient optic (opt ic nerve), cort ical commi ssural nerve, hippocampal commissur l nerve, hypothalamic commissural nerve, trigeminal nerve (tr igeminal nerve) nerve) is preferably any one selected from the group consisting of, but is not limited thereto.
  • the Vaxl is preferably bound to heparan sul fate proteoglycan (HSPG), but is not limited thereto.
  • HSPG heparan sul fate proteoglycan
  • the present inventors have identified VaxllacZ / + and VaxllacZ / lacZ knock-in and Vaxl-/-knockout to confirm the function of Vaxl protein in the growth of retinal ganglion cell axons.
  • -out mice were prepared and neural ret ina (NR) and ventral hypothalamic (vHT) explants were isolated and cultured in the obtained mice.
  • NR neural ret ina
  • vHT ventral hypothalamic
  • Vaxl + / + (T) and Vaxl ⁇ /-mice have performed immunostaining (i ⁇ unostaining) on the cross-optic cells of Vaxl + / + (T) and Vaxl ⁇ /-mice to determine the effect of Vaxl on the opt ic pathway structure.
  • Vaxl was found in Sox2 (SRY box 2) -positive neural stem cells and nestin (nest in, RC2) -positive glial cells.
  • neural stem cells and radioglial cells which are optic nerve cross-constituting cells, normally develop in Vaxl ⁇ / ⁇ mice.
  • Vaxl is expressed in the optic nerve crossings present in neural stem cells and radioglial cells, and it was confirmed that abnormal development of optic nerve crossings in Vaxl-/-mice was not caused by incorrect formation of ventral hypothalamic cells related to optic nerve cross-sectional formation ( See la and lb).
  • the inventors of the present invention share the same homeomai (homeodomai.n) as Vaxl, transcriptionally inactive Vaxl mutation (Vaxl (R152S)), and Vaxl, to determine whether Vaxl transcriptional activity affects retinal ganglion cell axon growth.
  • Vaxl and Vaxl (R152S) proteins are found in the cell lysates (cel l lysate, CD and growth media (GM)) of the Vaxl and Vaxl (R152S) overexpressed C0S7 cells, the Vaxl Irrespective of this transcriptional activity, it was secreted out of the cells to induce retinal ganglion cell axon growth (FIGS. 3A to 3C).
  • Vaxl protein is found in cell lysates and growth media of ventral hypothalamic explants, and cerebrospinal fluid (CSF). Therefore, it was confirmed that the Vaxl protein is a protein secreted from the ventral hypothalamus regardless of transcriptional activity (see FIGS. 4A to 4E).
  • the rabbit anti-Vaxl polyclonal antibody and anti Vax2 polyclonal Retinal ganglion cell axon growth direction and length measurements of co-cultivated neuroretinal and ventral hypothalamic fragments with extracellular Vax protein were isolated.
  • Anti-Vaxl antibody-treated neural retinal fragments Decrease in the number and thickness of retinal ganglion cell axons growing toward the ventral hypothalamic section in By confirming, the extracellular Vaxl plays an important role in the axon's fasciculat ion.
  • Vaxl-His-FITC protein shows a strong stimulatory effect on the growth of retinal ganglion cell axons.
  • Vax2 a strong stimulatory effect on the growth of retinal ganglion cell axons, and in the case of Vax2 was confirmed to induce the growth of retinal ganglion cell axons almost the same as Vaxl (see FIGS.
  • the present inventors have used E13.5 mouse brain slices in which anti-Vaxl polyclonal antibody was implanted into the third ventricle to confirm the role of extracellular Vaxl in retinal ganglion cell axon growth in vivo.
  • Di axon chromosome detection and immunostaining resulted in a decrease in retinal ganglion cell axons directed to the optic nerve crossover in mice implanted with anti-Vaxl polyclonal antibodies, axons stopped at the outer wall of the ventral hepatic brain, and retinal ganglion cell axons. It was confirmed that the distribution of intra Vaxl protein is reduced.
  • the present inventors treated the Vaxl recombinant protein or the anti-Vaxl polyclonal antibody to the neural retinal explant culture, and then immunostained, retinal ganglion cell axon growth, axon thickness measurement, the nerve treated with Vaxl recombinant protein
  • the number, thickness, and length of retinal ganglion cell axons in retinal sections increased, whereas the number, thickness, and length of retinal ganglion cell axons in neural retinal sections treated with retinal Vaxl recombinant protein and anti-Vaxl polyclonal antibody.
  • the recombinant Vaxl protein directly showed the retinal ganglion cell axon growth stimulating effect (see FIGS. 6A to 6D).
  • Vaxl + / + mice were found to have Vaxl mRNA in the optic disc (0D), eye disease (OS), and optic nerve cross-section (P0A) except for the retina.
  • Vaxl + acZ mouse eye fragments expressing Vaxl and beta-galactosidase (lacZ) in each homologous chromosome were treated with anti-Vaxl multiple antibodies.
  • Vaxl + acZ mice with co-expressing beta-galactosidase (OS) astrocytoblasts (astrocyte precursor cel l, APC) was confirmed. Separately, Vaxl protein was also detected in retinal ganglion cells that do not express beta-galactosidase.
  • OS beta-galactosidase
  • APC astrocytoblasts
  • Vaxl protein binds to the extracellular surface of the retinal ganglion cell plasma membrane in Vaxl + / + mice and endocyt ic vesicels Vaxl was expressed in and secreted from ophthalmic glial cells other than the retina, and the secreted Vaxl protein migrated into retinal ganglion cells (see FIGS. 7A to 7E).
  • the inventors of the present invention are syndecan (Sdc), a heparan sul fate proteoglycan (HSPG), which regulates the intercellular migration of Vaxl and regulates the intercellular migration of Vaxl.
  • Sdc syndecan
  • HSPG heparan sul fate proteoglycan
  • the present inventors performed immunoprecipitation using the optic nerve of E14.5 mice to which high concentrations of heparin were added in order to confirm that Vaxl binds to the heparan sulfate (HS) side chain of syndecane 2.
  • Heparin-treated optic nerves did not precipitate Sdc2, Sdc3, Glpl except Pax2 by anti-Vaxl antibodies, and HS-safarose 4B resin using heparin-coated sapharose 4B resin.
  • the Vaxl competed with heparin and confirmed binding to the heparan sulfate side chain of the heparan sulfate proteoglycan protein (see FIGS. 9E and 9F).
  • Vaxl stimulates the retinal ganglion cell axon growth
  • Vaxl was treated in the presence of jellyfishase Khepar inase I) or chondroitinase ABCCchondro inase ABC, ChnaseABC). It was confirmed that Vaxl accumulation in axons was inhibited by jellyinase I treatment (see FIG. 10A).
  • the present inventors have carried out a biotin-labeled Vaxl encoding this site to determine whether the binding to the heparan sulfate proteoglycan of Vaxl is mediated by Vaxl amino acid sequences 101-112 having homology with the 0tx2 sugar binding motif.
  • KR-peptide KR-bio or M-bio peptide, or Lysl01, substituted with alanine (Ala-Ala (AA)) for the two and important sugar binding residues 101 lysine and 102 arginine (Lysl01-Argl02 (KR))
  • alanine Ala-Ala (AA)
  • Vaxl is a sugar-binding motif by reducing the growth of retinal ganglion cell axons in neural retinal sections and reducing the growth of retinal ganglion cell axons in neural retinal sections treated with Vaxl (KR / AA) mutant proteins. It was confirmed that the stimulation of the growth of retinal ganglion cell axons in combination with haeparan sulfate using (see FIG. 10C). .
  • VaxKKR / AA mutant protein secretion and the binding force between the syndecan 2, Vaxl or Vaxl (KR / AA) Vaxl extracted in the growth medium after addition of heparin to the growth medium of overexpressing HEK293T cells
  • the amount of Vaxl (KR / AA) protein was compared with heparin-free growth medium, and immunoprecipitation and Western blotting were performed using Sdc2 and Vaxl or Vaxl (KR / M) overexpressing HEK293T cells.
  • KR / M) protein and Sdc2 interaction see Figure lib).
  • Vaxl (KR / AA) was observed in C0S7 cells containing VaxKKR / AA) overexpressing HEK293T cell growth medium.
  • the sugar binding motif of Vaxl binds to heparan sulfate of heparan sulfate proteoglycan, moves into retinal ganglion cell axon and induces axon growth (FIG. 11c).
  • Vaxl stimulates retinal ganglion cell axon growth by regulating cytoplasmic reaction after intracellular infiltration, or activates a subsignal of heparan sulfate proteoglycan, Sdc2, and Immunoprecipitation and Western blotting were performed using HEK293T cells overexpressing Vaxl (WF / SR) mutations that could bind to Vaxl or cell surface heparan sulfate proteoglycans but could not penetrate target cells.
  • WF / SR Vaxl
  • WF / SR Immunostaining using C0S7 cells with HEK293T overgrowth growth medium, and immunostaining and retinal retinal tissue using co-cultured retinal explants of Vaxl or VaxKWF / SR) overexpressing C0S7 cells Orientation measurements of ganglion cell axons showed that Vaxl (WF / SR) binds to synthecan 2 but not in C0S7 cells. Vaxl (WF / SR) through the undiscovered The mutations were able to bind heparan sulfate proteoglycans but were unable to penetrate into the cells.
  • the present inventors purified the protein complex interacting with the GST-Vaxl protein overexpressed in 293T cells in order to confirm the function of Vaxl in the cytoplasm, and confirmed the protein by MALDI-T0F after staining (si lver staining) Xl Ribosomal proteins (RPs) Lll, L23A, 126, S14 and S16, Vaxl and ribosomal ⁇ r ibosomal component '' , elF (eukaryot ic translat ion init iat ion factor, translating ion regulator)
  • RPs Ribosomal proteins
  • the present inventors have used immunostaining and retinal ganglion cells using neural retinal fragments of E13.5 mice cultured in a medium containing Vaxl or Vaxl (VSR) mutant protein to determine whether Vaxl is involved in local protein synthesis.
  • VSR Vaxl or Vaxl
  • the inventors of the present invention in order to determine whether the retinal ganglion cell axons damaged in the Vaxl-/-mice are recovered by extracellular Vaxl protein, VaxllacZ / lacZ collagen gel containing the recombinant protein, Vaxl WF / SR) After transplantation into the third brain ventricle of the mouse and immunostaining, the retinal ganglion cells of the mouse transplanted with VaxKWF / SR) protein were different from those of the Vaxl protein. We found that the axon's hypothalamus approached and grew poorly, and Robo
  • the growth of retinal ganglion cell axons in the ventral hypothalamus showed a stronger effect when transplanted with a collagen gel containing Vaxl-His and Robo 1-Fc.
  • the Vaxl protein was confirmed to infiltrate the axoplasm and stimulate the growth of retinal ganglion cell axons independent of the expression of axon inducing molecules (see FIG. 14A).
  • the present inventors performed immunostaining and retinal ganglion cell axon length measurement using neural retinal sections treated with Vaxl and Sl it2 proteins by concentration, in order to confirm the relationship between Vaxl and Sl it2, Vaxl alone.
  • Retinal ganglion cell axon growth was inhibited, axon length was decreased, and Vaxl confirmed that infiltration into retinal ganglion cell axons was not significantly affected by Sl i t2 in the group treated with Sl i t2.
  • the culture was treated with Vaxl and Robo 1-Fc together, the growth of axons of retinal ganglion cells was remarkably increased, and once again, the group treated with Vaxl and Sl i t2 competed with each other.
  • the Vaxl and Sl i t2 confirms that reciprocal antagonism with Sl i t2 without competitive binding to heparan sulfate proteoglycans was (see Fig.
  • Vaxl, Vaxl (R152S) and Vaxl (WF / SR) were treated on the cerebral explants and immunostained.
  • Vaxl protein was confirmed to induce the growth of cerebral nerve axons as well as retinal ganglion cell axons.
  • the transmembrane midline passage of various neuronal axons in gene deficient mice and humans was also confirmed to be regulated by Vaxl protein similarly to retinal ganglion cell axons (see FIG. 14F).
  • the present inventors are expressed in the radioglia and neural stem cells of the ventral hypothalamus of the mammalian brain through the above results and secreted out of the cells, and the secreted Vaxl binds to the blue sea sulfate sulfate proteoglycan including syndecan and retinal ganglion cells. After infiltrating into the axon, it was confirmed that the retinal ganglion cell axon growth was stimulated by promoting local protein synthesis in the axon morphology. Reference).
  • Vaxl secreted from the ventral hypothalamus and cerebral septum of the present invention binds to the extracellular sugar group of heparan sulfate proteoglycan present in retinal ganglion cells and cerebral cross nerve axons and infiltrate into the axonplasm. After that, by activating local protein synthesis to promote retinal ganglion cell axon growth, it can be usefully used as an active ingredient of a pharmaceutical composition for promoting neuronal regeneration or neuronal growth.
  • the present invention also provides a pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing a vector or cell comprising a polynucleotide encoding Vax protein as an active ingredient.
  • the Vax protein is any one selected from the group consisting of a Vaxl protein having an amino acid sequence as set out in SEQ ID NO: 1 or a Vax2 protein having an amino acid sequence as set out in SEQ ID NO: 2, but is not limited thereto.
  • the vector is preferably, but not limited to, linear DNA, fulllasmid DNA or recombinant viral vector.
  • the recombinant virus is from the group consisting of retrovirus, adenovirus, adeno-associated virus (AVA), herpes simplex virus, lentivirus. It is preferably any one selected, but is not limited thereto.
  • the cell is any one selected from the group consisting of hematopoietic stem cells, dendritic cells, autologous tumor cells, and established tumor cells. It is not limited to this.
  • Vax protein secreted from the ventral hypothalamus and cerebral septum of the present invention is heparan sulfate present in retinal ganglion cells and cerebral cross-neuronal axon After binding to the extracellular sugar group of the proteoglycan and penetrating into the axon morphology, it activates local protein synthesis to promote retinal ganglion cell axon growth.
  • Vectors or cells comprising polynucleotides encoding Vax proteins may be usefully used as active ingredients of pharmaceutical compositions for promoting neuronal regeneration or neuronal growth.
  • the composition of the present invention may further comprise suitable carriers, excipients and diluents commonly used in the manufacture of pharmaceutical compositions. '
  • composition of the present invention can be administered parenterally, when parenteral administration, external skin or intraperitoneal injection, rectal injection, subcutaneous injection, intravenous injection, intramuscular injection or intrathoracic injection injection method to select a solid body transplant It is preferable, but it is not limited to this.
  • composition of the present invention may be used in the form of external preparations, suppositories, and sterile injectable solutions, respectively, according to a conventional method.
  • Carriers, excipients, and diluents that may be included in the composition include lactose, dextrose, sucrose, sorbbi, manny, xili, erysri, malty, starch, acacia rubber, alginate, gelatin, calcium phosphate.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, suppositories.
  • a diluent or excipient such as fillers, extenders, binders, wetting agents, disintegrating agents and surfactants which are commonly used.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, suppositories.
  • the non-aqueous solvent and the suspending agent propylene glycol, polyethylene glycol, vegetable oils such as evolved oil, injectable esters such as ethyl oleate, and the like can be used.
  • a base of suppositories wi tepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
  • compositions of the present invention are determined by the condition and weight of the patient, Depending on the degree, drug form, route of administration, and duration, it may be appropriately selected by those skilled in the art. However, for the desired effect, the composition is preferably administered at 0.0001 to 1 g / kg, preferably 0.001 to 200 mg / kg per day, but is not limited thereto. The administration may be administered once a day, or may be divided several times. The dosage does not limit the scope of the invention in any aspect. In addition, the present invention
  • step 2 2) measuring the binding level of Vaxl and hapharan sulfate proteoglycans in the cells of step 1);
  • Vaxl and heparan sulphate proteoglycan binding level of the step 2) non-treated control Provides a method for screening a candidate substance for nerve cell regeneration or neuronal growth promotion comprising the step of selecting a test substance to increase compared to the group. do.
  • the binding level is preferably any one selected from the group consisting of immunofluorescence, mass spectrometry, protein chips, western blotting and ELISA, but is not limited thereto.
  • Vaxl secreted from the ventral hypothalamus ' and cerebral enlargement of the present invention binds to the extracellular sugar group of the heparan sulfate proteoglycan present in retinal ganglion cells and cerebral cross nerve axons, infiltrate into the axon morphology, and activate local protein synthesis. Since it promotes the growth of retinal ganglion cell axons, it can be usefully used as a screening candidate for neuronal regeneration or neuronal growth promotion.
  • the present invention also provides a method for regenerating neurons comprising administering a pharmaceutically effective amount of Vax protein to a subject injured in a neuronal cell.
  • the present invention provides a method for promoting neuronal growth comprising administering a pharmaceutically effective amount of Vax proteinol neurons to a damaged individual.
  • the present invention provides a method for regenerating neurons comprising administering a vector or cell comprising a polynucleotide encoding a pharmaceutically effective amount of Vax protein to a subject injured.
  • the present invention also provides a method for promoting neuronal growth, comprising administering a vector or cell comprising a polynucleotide encoding a pharmaceutically effective amount of Vax protein to an individual injured with neurons.
  • Vax protein secreted from the ventral hypothalamus and cerebral septum of the present invention binds to the extracellular sugar group of heparan sulfate proteoglycan present in retinal ganglion cells and cerebral cross nerve axons, infiltrate into the axon morphology, and then activate local protein synthesis.
  • a vector or cell containing the Vax protein, or a polynucleotide encoding the Vax protein is administered to an individual injured with nerve cells, which is useful as a method for promoting nerve cell regeneration or nerve cell growth.
  • the present invention also provides the use of Vax protein for use as a pharmaceutical composition for promoting neuronal regeneration or neuronal growth.
  • the present invention also provides the use of a vector or cell comprising a polynucleotide encoding a Vax protein for use as a pharmaceutical composition for promoting neuronal regeneration or neuronal growth.
  • Vax protein secreted from the ventral hypothalamus and cerebral septum of the present invention binds to the extracellular sugar group of heparan sulfate proteoglycan present in retinal ganglion cells and cerebral cross nerve axons, infiltrate into the axon morphology, and activate local protein synthesis.
  • the vector or cell comprising the Vax protein, or polynucleotide encoding the Vax protein is a pharmaceutical composition for promoting neuronal regeneration or neuronal growth. It can be usefully used for the purpose.
  • the present invention will be described in detail by way of examples.
  • NR neural retina
  • ventral hypothalamic
  • VaxllacZ / + and Vaxl-/-knock-out and VaxllacZ / lacZ knock-in mice are described in Bertuzzi et al. , 1999; Hal l one t et al. , According to the method described in 1999.
  • Neural ret ina (NR) and ventral hypothalamic (vHT) explants of the obtained mice were obtained from Sato et al. , Obtained by the method described in 1994.
  • the obtained neural retinal or ventral hypothalamic fragment was added to a collagen (col lagen) mixture, and the collagen mixture containing the neural retinal or ventral hypothalamic fragment was added to the poly-L-lysine at 10 / g / m.
  • Ptc-Gal4> UAS-Vaxl-EGFP, UAS-DsRed; Tertiary larvae of Dlp include Pt c-Ga 14>UAS-DsRed; Dip Drosophila and UAS-Vaxl-EGFP Drosophila were obtained by cross crossing.
  • Vaxl is expressed in cells located in opt ic pathway structures, such as opt ic stalk (OS) and optic nerve cross (opt ic chiasm, 0C), and fasciculat ion of retinal ganglion cell axons. And an important role in the formation of optic nerve crossing (Bertuzzi et al., 1999; Hal l one t et al., 1999). Therefore, in order to confirm the effect of Vaxl on the visual pathway structure, immunostaining was performed using optic cross-crossing cells of Vaxl deficient mice (Vaxl ⁇ / ⁇ ).
  • mice obtained by the method described in Example ⁇ 1-1> were cut into brain sections (vertical ion) (vertical). (coronal): 12).
  • the brain sections were washed with 1 XPBS and fixed with 43 ⁇ 4 (v / v) paraformaldehyde (PFA) / PBS for 2-16 hours at 4 ° C. and 203 ⁇ 4 (w / v for 16 hours at 4 ° C.).
  • PFA paraformaldehyde
  • OCT medium After incubation with sucrose / PBS solution, the cells were infiltrated with OCT medium and frozen.
  • the frozen brain section was 0.2% Tr itonX-100, 5% normal for 1 hour.
  • vHT neural retinal
  • NR neural retinal
  • ISH In situ Hybridizat Ion
  • IF Immunof Luorescence Staining
  • NrCAM and Vegfa which are signals of optic nerve crossing cells and optic nerve crossing parts, were expressed in Vaxl-/-mice, and the expression sites thereof were somewhat widened (FIG. 2E).
  • Example 2 confirmed that Vaxl regulates retinal ganglion cell axon growth by a non-cel i autonomous method.
  • Example 3 Confirmation of Extracellular Vaxl Secretion Independently of Transcription Activity
  • Vaxl (R152S) mutations that are transcriptionally inactivated are associated with ptosis, coloboma. It has been reported in patients with cleft palate and ages of corpus cal losum (ACC), a phenotype similar to mutations in Vaxl-deficient mice (Slavot inek et al., 2012).
  • Vaxl transcriptional activity affects retinal ganglion cell axon growth
  • C0S7 overexpressing Vaxl a transcriptionally inactive Vaxl mutation (Vaxl (R152S))
  • Vax2 which shares the same homeodomain as Vaxl
  • the cells were subjected to immunostaining, directional measurement of retinal ganglion cell axon growth, and western blotting.
  • the number of neurofibrillary fibers 160 kDaCneurof i lament 160 kDa, NF 160) co-cultured in the neuronal retinal explants co-cultured with Vaxl overexpressing C0S7 cells control
  • the number of retinal ganglion cell axons growing toward co-cultured wild type C0S7 cells and Vax2 overexpressing C0S7 cells was the same.
  • Vaxl and Vaxl (R152S) proteins are found in the growth medium (GM) of transformed C0S7 cells, while the Vax2 protein was confirmed by confirming that the Vaxl transcription Irrespective of activity, it was secreted out of cells to induce retinal ganglion cell axon growth (FIG. 3C).
  • HEK293T cells and C0S7 cells were mouse anti-GFP antibody (Santa Cruz Biotechnology) (Abstract) as in Example ⁇ 2-1>. And DAPK blue) and immunostained and visualized (scale bar: 20 Hz) (FIG. 4A).
  • MyC or Myc-Vaxl construct was transformed into HEK293T cells as in Example ⁇ 3-1>, and the supernatant (S3) of the growth medium was obtained after 48 hours.
  • the supernatant (S3) of the obtained growth medium was concentrated using a Centricon filters (cut-off limit 20 kDa; MiUipore) according to the manufacturer and the procedure, and the concentration including 50 // g protein.
  • One supernatant 2 ⁇ was injected into the lateral ventricle of the in utero E13.5 mouse brain. After 12 hours, the brain was removed and brain sections (horizontal: 20 mi) were obtained as in Example ⁇ 2-1>, and then immunostained and visualized using mouse anti-Myc antibody and DAP1ol (Fig. 4b).
  • the growth medium (GM) Pellets and cell lysates were obtained, and the obtained cell lysates and pellets were subjected to western blotting using anti-Vaxl antibodies and anti-tubulin-beta III antibodies (FIG. 4C).
  • GM growth medium
  • CSF cerebrospinal fluid
  • S3 was isolated from dead cell debris (P2).
  • the obtained supernatant (S3), dead cell debris (P2), and ventral hypothalamic explant cell lysate (CL) were subjected to anti-Vaxl and anti-leucine-beta III antibodies as in Example ⁇ 3-1>.
  • Western blotting was performed using (FIG. 4D).
  • Vaxl protein in the growth medium of Vaxl-transformed HEK293T cells is cultured in vitro ( in vi tro)
  • the Vaxl protein was transformed by confirming that it was found not only in C0S7 cells (FIG. 4A, line 2) but also in in vivo ventral diencephal ic (vDC) (FIG. 4B, line 2). It was confirmed that they migrate to secreted and cocultured retinal ganglion cell axons from HEK293T cells (FIGS. 4A and 4B).
  • the expression level of intracellular Vaxl expressed in the ventral hypothalamic fragment was similar to the expression level of Vaxl (FIG. 3C) overexpressed in C0S7 cells, and the growth medium of the ventral hypothalamic fragment ( 4C, GM) and cerebrospinal fluid (CSF) were found (Fig. 3D, CSF; S3), it was confirmed that the Vaxl is a protein secreted from cultured cells as well as in vitro culture.
  • Myc-tagged mouse Vaxl was transformed into C0S7 cells by calcium phosphate method and co-cultured with neural retinal sections obtained by the method described in Example ⁇ 1-1> for 24 hours. . Then, after co-culture for another 24 hours in a medium to which rb-IgG (l / g / m «) or anti -Vaxl antibody (-Vaxl, 1 / / m « added), the above ⁇ Example 2> Immunostained and visualized using anti-Myc antibody (green), anti-NF160 antibody (red) and DAP1 (blue) as shown in the box on the left is shown on the right and the arrow is labeled Myc- on the retinal ganglion cell axon. Indicates where tagged mouse Vaxl is present (scale bar: 500 (left), scale bar: 100 (right)).
  • extracellular Vax protein was isolated using a rabbit anti-Vaxl polyclonal antibody and an anti-Vax2 polyclonal antibody. Immunostaining, directionality of RGC axon growth and RGC axon length measurements were performed.
  • preimmune rabbit IgG (rblgG) l obtained in the ventral hypothalamic explants and neural retinal explants obtained by the method described in Example ⁇ 1-1>.
  • anti-Vaxl polyclonal antibody (a -Vaxl) 1 g / m or anti -Vax2 polyclonal antibody (a -Vax2) and incubated for 48 hours, the rabbit anti-Valk as in Example ⁇ 2-2> Immunostained and visualized using -Vaxl antibody (green) and anti-NF160 antibody (red). The centers of the two sections were connected by red dotted lines and the arrows were enlarged (scale bar: 500) (FIG. 5A).
  • pixels (pixe l) of the NF160 immunofluorescence image were calculated to graph the relative number and thickness of axons / bundles emerging from the retina.
  • the number of pixels was measured using the histogram function of Image-J software.
  • the relative number of axons / bundles is shown by subtracting the number of pixels inside the neural retinal segment from the total number of segments including the axons / bundles.
  • the thickness is represented by measuring the number of pixels between 3 and 40 rn in one axon / bundle each. Graph The values were averaged, the rblgG treatment group was set to 100%, and the error bars were obtained with SD (FIG. 5C).
  • FITC-labeled recombinant protein 500 ng / ml.
  • the rabbit a-Vaxl (green) and anti-His antibodies (by the method described in Example ⁇ 2-1> above) Immunostained in red), the right box shows the enlarged image portion on the left, and the arrow shows the location of Vaxl and His proteins in retinal ganglion cell axons (FIG. 5E) (scale bar: 100 ⁇ .
  • 6X-His peptide 25 ng / ml, white bar
  • Vaxl-His protein 100 ng / ml, black bar
  • His-tagged Vax2 100 ng / ml was added to the retinal fragments obtained by the method described in Example ⁇ 1-1>, or after culturing for 24 hours without the above Example ⁇ Visualization was performed by immunostaining with rabbit anti-Vax2 antibody (green), mouse anti-NF160 antibody (red) and DAPI (blue) by the method described in 2-1>.
  • the upper box represents the lower magnified image portion, and the arrow indicates the location of His-tagged Vax2 on the retinal ganglion cell axon (scale bar: 500 ⁇ (top), scale bar:: LOO ni (bottom) (Fig.
  • FIGS. 5A and 5B unlike the treatment with the rabbit IgG and the anti-Vax2 polyclonal antibody, when treated with the anti-Vaxl polyclonal antibody, Vaxl was not found in the retinal ganglion cell axon ( Figure 5a), confirming the reduction of retinal ganglion cell axons directed to the ventral hypothalamic explants ( Figure 5b), inhibiting the migration of Vaxl to retinal ganglion cell axons and growth of axons under the influence of anti-Vaxl polyclonal antibodies. Confirmed.
  • a lipophilic fluorescent dye (l ipophi lic f luorescent) was applied to the left eye of an E13.5 mouse. dye) After injecting Dil (25 ⁇ M), the dorsal half of the brain and the lower part of the mouth are cut and transferred to the culture slide cambers with the dorsal side down. And mouse brain slabs including midbrain structures.
  • a collagen solution containing non-immune rabbit IgG (rblgG) 1 jg / n or rabbit anti-Vaxl polyclonal antibody (a -Vaxl) 1 / «/ ⁇ was implanted into the third ventricle of the slab and filled with culture medium. Incubated for 12 hours at 37 ° C, 7% C02 incubator with humidity. Thereafter, brain slabs were cut as in Example ⁇ 2-1> to obtain brain sections (horizontal cut: 12; I), fixed with 4% PFA / PBS, and frozen in OCT medium.
  • the frozen brain sections were visualized by Olympus FV1000 confocal microscopy of the surface fluorescence (epifluorescence) of the DU to confirm Dil-labeled axon growth in the ventral hypothalamus ( Figure 1, row 1).
  • the brain sections containing the frozen optic nerve cross were immunostained and visualized using anti-Vaxl antibody (green) and anti-NF160 antibody (red) as in Example ⁇ 2-1> (scale bar: 200 m) (2 rows below FIG. 6).
  • Vaxl- was treated with or without the rabbit anti-Vaxl polyclonal antibody of 1 / g / ni.
  • mice transplanted with anti-Vaxl polyclonal antibody reduced retinal ganglion cell axons directed to the optic nerve crossing (Figs. 6A, 1, 1).
  • the addition of recombinant Vaxl protein to the growth medium increases the number, thickness and length of retinal ganglion cell axons, while adding the recombinant Vaxl protein and anti-Vaxl polyclonal antibody together
  • anti-Vaxl antibodies co-cultured with recombinant Vaxl protein antagonized each other in axon position and axon growth. It was confirmed that the recombinant Vaxl protein exhibits a strong retinal ganglion cell axon growth stimulation effect (Figs. 6B to 6D). Therefore, the results of Example 4 confirmed that extracellular Vaxl secreted out of the cells directly stimulate the growth of retinal ganglion cell axons.
  • Example ⁇ 2-1> E14.5 VaxllacZ / + obtained by the method described in Example ⁇ 1-1> and Brain sections were obtained from VaxllacZ / lacZ mice as in Example ⁇ 2-1>, rabbit anti-Vaxl antibodies (green), mouse anti-beta-galactosidase antibody (DSHB) (red) ) And DAPI (blue) and immunostained and visualized.
  • i and iii visualized neural retina (NR), ii and iv visualized eye disease (OS) (scale bar: 200 1 (columns 1 and 2)), scale bar: 20 1 (columns 3 and 4) ) (FIG. 7B).
  • mice obtained by the method described in Example ⁇ 1-1> as in Example ⁇ 2-1>, and the rabbit anti-Vaxl antibody ( Abstract), immunostained and visualized using mouse anti-NF160 antibody (red) and DAPK blue).
  • i and iii visualized neural retina (NR), ii and iv visualized eye disease (OS) (scalebar: 200 1 (column 1), scalebar: 20 (columns 2 and 3)) (FIG. 7C) ).
  • mice obtained by the method described in Example ⁇ 1-1>, as in Example ⁇ 2-1>, and the retina (stomach) ) And optic nerve (0N) (bottom) were immunostained with rabbit anti-Vaxl antibody and gold (250 nm) -labeled anti rabbit IgG and visualized by electron microscopy (EM).
  • EM electron microscopy
  • a brain section was obtained from E14.5 Vaxl + / lacZ and VaxllacZ / lacZ mice obtained by the method described in ⁇ 1-1> as in Example ⁇ 2x1>, and the rabbit anti-Vaxl antibody (green) ' and the mouse were obtained. Immunostained and visualized using anti-beta-galactosidase antibody (DSHB) (red). The left box shows the magnified image position on the right (scale bar: 50; wm) (FIG. 7E-B). As a result, as shown in FIG. 7A, Vaxl mRNA was expressed in the optic nerve disc (0D), the eye disease (OS), the optic cross section (P0A), and the ventral hypothalamus, but not in the retina. By confirming that the Vaxl was expressed in the retinal ganglion cell axon-related structure including the optic disc disc and the optic nerve cross-section except the retina (FIG. 7A).
  • Vaxl protein is expressed in retinal cells of VaxllacZ / + mice, and Vaxl and beta-galactosidase are simultaneously expressed in ophthalmic (OS) astrocyte precursor cel ls (APCs).
  • OS ophthalmic
  • Vaxl protein is mainly present in the nuclei (Fig. 7b, line 1), and Vaxl is perfect in retinal ganglion cells and ocular astrocytoblasts (OS APCs) of VaxllacZ / lacZ heterozygous knock-in mice.
  • OS APCs ocular astrocytoblasts
  • Vaxl and NF160 proteins were simultaneously expressed in the nucleus of Vaxl + / + mice with astrocytosis i (FIG. 7C, line 1), whereas NF160 was present in the ocular and neural retinas of VaxllacZ / lacZ mice.
  • FIG. 7C, line 2 the Vaxl is present in the retinal ganglion cell axon of Vax + / + mouse optic nerve, but in defibrated VaxllacZ / lacZ mouse retinal ganglion cell axon. It was confirmed that it did not appear (FIG. 7C).
  • Vaxl protein binds to the extracellular surface of the retinal ganglion cell plasma membrane and is present in endocytic vesicles (FIG. 7D, Line 1), eye blast glial progenitor cells (OP APC) were found to exist with transport vesicles and chromatin in the nucleus (Fig. 7D, line 2) (Fig. 7D).
  • OP APC eye blast glial progenitor cells
  • FIG. 7E mRNA of Vaxl is expressed in the hypothalamus cell code, optic nerve, and optic nerve cross-section, and VaxllacZ / lacZ . In mice, it was confirmed that it is not expressed in the brain (FIG. 7E).
  • the arc flies that the movement control of the inter-cell regulatory mechanisms and Vaxl of moving between cells of the Vaxl Meo domain transcription factor in order to ensure that the new decane 'involved, expressing Ptc-induced Gal4- Vaxl-EGFP and Ds-Red , Drosophila expressing Ptc-Gal4-induced Vaxl-EGFP, Ds-Red and Sdc or Sdc mutants (sdc23), and Ptc-Gal4-induced Vaxl-EGFP, Ds-Red and heparan sulfate proteoglycan glypican (glypican, Glp Immunostaining was performed using a Drosophila expressing Dlp (dal ly l ike protein), a Drosophila homology protein.
  • the reaction was reacted with anti-Vaxl antibody diluted 1: 10 at 4 ° C for 10 minutes and washed three times with PBS.
  • optic nerves prepared from post-natal day 0, P0 mice were treated with 10 mM Tr i s-HCl (pH 7.4), 200 mM NaCl, 1% Tr i ton X-100, and 1% NP— Dissolve with lysis buffer containing 40. Cell lysates were centrifuged at 12,000 ⁇ g for 10 minutes at 4 ° C. to obtain supernatant. The obtained supernatant was treated with anti-Vaxl and anti-Sdc2 antibodies (Santa Cruz Biotechnology) and reacted at 4 ° C. for 16 hours, followed by addition of Protein A-agarose bead (4 ° C.). The reaction was further precipitated for 16 hours at.
  • Example ⁇ 3-1> After washing 5 times with lysis buffer and adding 2 X SDS sample buffer, the reaction was terminated, followed by Western antibody using anti-Sdc2 and anti-Vaxl antibodies as the primary antibody as in Example ⁇ 3-1>. Blotting was performed (FIG. 9A). The negative control group was precipitated with rabbit IgG (rblgG) and Western blot was performed as above.
  • Vaxl, Vax2, GFP-tagged Sdcl and Sdc2 were transformed with HEK293T cells as shown in Example ⁇ 3-1> (FIG. 9B), and Vax2, and GFP-Sdcl or GFP-Sdc2 were transformed. (FIG. 9C). After 2 days, the cells were lysed as described above to obtain supernatant, immunoprecipitated with anti-GFP antibody, and then the anti-Vaxl antibody (Fig. 9b) or anti Western blotting was performed with -Vax2 antibody (FIG. 9C) (FIGS. 9B and 9C).
  • the extracellular domain of syndecane is primarily modified by heparan sulfate sugars (Bishop et al., 2007), and thus Vaxl can interact with sugar groups as well as the protein backbone of syndecane. Therefore, immunoprecipitation was performed to confirm that Vaxl binds to the heparan sulfate (HS) side chain of syndecane 2.
  • HS heparan sulfate
  • the negative control group was precipitated with rabbit IgG (rblgG) and Western blot was performed as above.
  • primary antibodies anti-sdc2, anti-Sdc3 (santa cruz Biotechnology), anti-GlpKSanta Cruz Biotechnology, anti-3 2 (111 ⁇ 1 "1 ⁇ 0 ⁇ ), and anti-Vaxl antibodies were used (FIG. 9E).
  • 1 g of Vaxl-Hi s protein was added at 4 ° C with sapharose 4B resin coated with HS or Chondroi t in sul fate at a final concentration of 0.2 mg / m £.
  • heparinase Khepar inase D (Sigma) 2.5 U / m £ or chondroitin (not shown) that cuts the heparin and heparan sulfate sugar chains into the neural retinal fragments obtained by the method described in Example ⁇ 1-1>.
  • chondroi t inase ABC Chondroi t inase ABC, ChnaseABC
  • chondroi t inase ABC Chondroi t inase ABC, ChnaseABC
  • Vaxl-His recombinant protein 0.1 / g / me Reaction for 24 hours.
  • Example ⁇ 1-1> After measuring the axon length of the neural retinal fragment as in Example ⁇ 4 ⁇ 1>, homologous to the binding motif of 0x2 sugar recombinant 0x2 and recombinant Vaxl-His 0.1 g / n in the neural retinal fragment as shown in Table 1 below.
  • Vaxl KR-peptides KR-bio; 100 ng / nd) encoding Vaxlamino acids SEQ ID NOs: 101 to 112, Vaxl-His (0.1 ⁇ g / mS ⁇ ) and two important sugar binding residues 101 M-bio peptide (100 ng / l) substituted with alanine (Ala-Ala (AA)) for lysine and 102-arginine (Lysl01-Argl02 (KR)), or Ala-Ala (AA) for Lysl01-Argl02 (KR) Vaxl (KR / AA) -His mutant protein ((hi / i KAnyGen) substituted with) was reacted for 24 hours.
  • Example ⁇ 4-1> The length of the axon was then re-measured as in Example ⁇ 4-1>. After fixing with 4% PFA / PBS, immunostained and visualized with anti-Vaxl antibody (green) and anti-NF160 antibody (red) as shown in Example ⁇ 2-1> (Fig. 10B). part The expressed (Scale bar: 500 ⁇ .
  • FIGS. 10A and 10C the neuroretinal explants treated with chondroitinase ABC were significantly reduced.
  • Heparan sulphate proteoglycan by Heparinase I was confirmed by inhibiting retinal ganglion cell axon growth in heparinase I-treated neural retinal fragments and decreasing axon immunostaining signals.
  • Vascular sugar chains were cleaved to prevent Vaxl from binding to the sulphated sulfate, thus inhibiting growth stimulation of retinal ganglion cell axons (FIGS. 10A and 10C).
  • Vaxl (KR / AA) mutant protein was tested for the effect of Vaxl (KR / AA) mutant protein on retinal ganglion cell axon growth.
  • immunoprecipitation, Western blotting and immunostaining were performed.
  • Example ⁇ 3-1> After constructing a construct encoding V5-tagged Vaxl or Vaxl (KR / AA), transformed into HEK293T cells as in Example ⁇ 3-1>, heparin 10 mg for 3 hours After culturing / m treated, cells were obtained and lysed as in Example ⁇ 3-1>, and the growth medium was centrifuged to obtain a supernatant (S3). The obtained supernatant was mixed with the same amount of 3 M trichloroacetic acid (TCA; 20% final concentration) solution to precipitate macromolecules, washed three times with cold acetone, and dried to obtain pellets.
  • TCA 3 M trichloroacetic acid
  • the obtained cell lysate and pellets were subjected to Western blotting using anti—V5 antibody (GenWay Biotech) as the primary antibody as in Example ⁇ 2-1> (FIG. Lla, above), and relative to the Vaxl band. Intensities were graphed using Image-J software (FIG. Lla, bottom).
  • GFP-Sdc2, and Myc-Vaxl or Myc-Vaxl (KR / AA) constructs were transformed into HEK293T cells as in Example ⁇ 3-1>. Then, the cells were lysed as in Example ⁇ 7-1> to obtain a supernatant of the cell lysate, followed by immunoprecipitation with an anti-Vaxl antibody, followed by the primary antibody as in Example ⁇ 3-1>. Anti-GFP antibodies Western blotting was performed using (FIG. Lib).
  • the Myc-Vaxl or Myc-Vaxl (KR / AA) construct was transformed into HEK293T cells as in Example ⁇ 3-1>, and the supernatant (S3) of the cell growth medium was added to C0S7 cells. Incubated for 3 hours. The C0S7 cells were then immunostained and visualized using anti-Myc antibody (green, cell surface), anti-Vaxl antibody (red) and DAPI (blue) (scale bar: 20) (FIG. 11C).
  • Vaxl (KR / M) precipitated in heparin-treated HEK293T cells is similar, but Vaxl (KR / AA) precipitated in heparin-untreated HE 293T cells.
  • Vaxl (KR / AA) and Sdc2 did not bind (FIG. Lib)
  • the number of retinal ganglion cell axons growing in neural retinal sections was small.
  • Example 7 and Example 8 confirmed that extracellular Vaxl not only binds to heparan sulfate proteoglycans but also migrates into the cytoplasm of retinal ganglion cell axons.
  • Vaxl stimulates retinal ganglion cell axon growth by regulating cytoplasmic reaction after intracellular penetration or by activating a subsignal of heparan sulfate proteoglycan, it stimulates cell surface haemoran sulfate proteoglycan.
  • Vaxl (WF / SR) mutations that can bind to but cannot penetrate target cells And immunoprecipitation and immunostaining were performed using the same.
  • the amino acid residues of tryptophan (Trp) and 148 phenylalanine (PheXWR) amino acids having homology with the important residues of the GFP-Sdc2 and the cell-penetrating region of the antennapedia (antp) were identified as Ser-Arg (SR).
  • Vaxl (WF / SR) mutant or Vaxl was substituted with HEK293T cells as in Example ⁇ 3-1>, and then cell lysate was obtained. After immunoprecipitation of the supernatant of the cell lysate with anti-GFP as in Example ⁇ 7-1>, Western blotting was performed using the anti-Vaxl antibody as the primary antibody as in Example ⁇ 3-1>. Was performed (FIG. 12A).
  • Example ⁇ 3-1> the supernatant (S3) ol of HEK293T cell growth medium overexpressing Vaxl and vaxl (WFVSR) was added to C0S7 cells as in Example ⁇ 3-1> and incubated for 3 hours.
  • the C0S7 cells were then immunostained and visualized using anti-Myc antibody (green), anti-Vaxl antibody (red) and DAPI (blue) as in Example ⁇ 3-1> (scale bar: 20 (FIG. 12B).
  • Example ⁇ 3-1> Myc-Vaxl (WT) or Vaxl (WF / SR) mutations were transformed into C0S7 cells as in Example ⁇ 3-1>.
  • the anti-Vaxl antibody as in Example ⁇ 2-1>. (Abstract) and visualized by immunostaining with anti-NF160 antibody (red) (scale bar: 500 above), 200 (bottom)) (12c), the orientation was measured (FIG. 12D).
  • the GST-Vaxl protein complex was purified and silver stained, and the protein was identified by MALDI-TOF.
  • Example ⁇ 3-1> After constructing a construct encoding GST and GST-Vaxl was transformed into HEK293T cells as in Example ⁇ 3-1>. Then, the cell lysate was obtained by lysing the GST and GST-Vaxl overexpressed HEK293T cells. The obtained lysate was centrifuged at 12,000 ⁇ g at 4 ° C. for 10 minutes to obtain cytoplasmic supernatant (S3), followed by glutathione Sepharose 4B resin at 4 ° C. for 1 hour. Incubated together. It was then washed 5 times with lysis buffer and eluted with 2XSDS sample buffer. The eluted protein was electrophoresed and silver.
  • S3 cytoplasmic supernatant
  • S3 cytoplasmic supernatant
  • glutathione Sepharose 4B resin at 4 ° C. for 1 hour. Incubated together. It was then washed 5 times with lysis buffer and eluted with
  • Staining was performed using the staining kit (Thermo) according to the manufacturer's procedure.
  • the cells were lysed with PBS solution containing 0.1% SDS and 1% Triton X-100, and a supernatant was obtained from the lysed cells as above and incubated with the resin. Then, washed twice with high salt buffer (10 mM Tris-HCl (H 7.4), 1 M NaCl, 1% Triton X-100 and 1% NP-40) and PBS, and 10 mM glutathione GST-conjugated protein was eluted with the included PBS solution.
  • high salt buffer (10 mM Tris-HCl (H 7.4), 1 M NaCl, 1% Triton X-100 and 1% NP-40
  • the samples were subjected to electrophoresis on 10% SDS-PAGE and stained with the Pierce Silver Stain Kit for Mass Spectrometry® (Pierce) following the manufacturer's procedure.
  • the dyed bands were analyzed by MALDI-TOF mass spectrometry by the Korea Basic Science Institute.
  • the main protein isolated by Vaxl affinity purification is ribosomal proteins (RPs) Lll, L23A, L26, S14 and S16
  • the translational regulator is a ribosomal component eukaryotic translation initiation factor (elF) 3B and 3C, which are translat ion regulators, and chaperon heat shock 70-KD protein 1A, HSPA1A.
  • Vaxl is involved in local protein synthesis. To determine whether Vaxl is involved in local protein synthesis, immunostaining was performed using Vaxl (WF / SR) mutations.
  • Example ⁇ 1-1> the E13.5 mouse neural retinal sections obtained by the method described in Example ⁇ 1-1> were cultured for 24 hours, and then transferred to a medium containing Vaxl or Vaxl (WF / SR) for further culture for 24 hours. It was. Then, 30 minutes after replacing the explant culture medium with methionine free medium, bioorthogonal noncanonical amino acid
  • retinal nerve fragments were placed on a microscope, and the axons were cut around the cell body using an anatomical knife. After removing only the cell bodies, the axons were separated from the cell bodies, and 50 ⁇ M of AHA was added as above, followed by 6 hours of incubation, and the fluorescence of the proteins including AHA-Alexa488 was visualized to confirm the protein synthesis rate (scale bar: 500 (Fig. 13c), the length of the retinal ganglion cell axon grown for 6 hours as in Example ⁇ 4-1> 0 *, pO.001) (FIG. 13D).
  • retinal axons isolated from cell bodies also increase the density of the synthesized protein when recombinant Vaxl is expressed (13c, 2nd row), and when the VaxKWF / SR) mutation is expressed.
  • the density of the protein was confirmed to be similar to the control (Fig. 13C, column 3).
  • the retinal axons isolated from the cell body increased axon growth by stimulation of Vaxl, but it was confirmed that VaxKWF / SR) mutant-expressed retinal: axons inhibited growth (FIG. 13D). Therefore, the results of Example 9 confirmed that Vaxl migrates into cells, promotes local protein synthesis, and stimulates retinal ganglion cell axon growth.
  • 0.1 fg 6 x Hi s peptide, Vaxl ⁇ His or Vaxl (WF / SR) -Hi.s protein is mixed in the third ventricle of VaxllacZ / lacZ embryonic mouse brain slab as in Example ⁇ 4-2>. After transplanting the collagen gel for 24 hours, the surface fluorescence of Di l was visualized and immunostained and visualized using anti-Vaxl antibody (green) and anti-NF160 antibody (red) (FIG. 14A_A).
  • the values indicate the expression intensity of the samples treated with rb-IgG, the number on the graph is the number of brain slabs analyzed, the error bar was obtained by SD, and the P-value was obtained by AN0VA. ⁇ 0.001) (FIGS. 14A-B).
  • FIG. 14A As a result, as shown in FIG. 14A, when the Vaxl deficient mouse embryo and the Vaxl (WF / SR) mutant protein were transplanted, the retinal ganglion cell axon approached the ventral hypothalamus and axon growth was poor. A large number of retinal ganglion cell axons were found in the ventral hypothalamus of the Vaxl deficient Mau ⁇ embryo implanted with collagen gel containing Vaxl protein (+ Vaxl-Hi s).
  • Vaxl protein was axon Penetrating into axoplasm was confirmed to stimulate retinal ganglion cell axon growth independent of expression of axon inducing molecules.
  • the growth of retinal ganglion cell axons in the ventral hypothalamus showed a more enhanced effect when transplanted with collagen gel containing Vaxl-His and Robo 1-Fc (FIG. 14A).
  • retinal ganglion cell axon projections are often associated with spinal cord axons directed to the f loor plate (FP).
  • FP f loor plate
  • Slitl which is expressed in the medial spinal cord, prevents immature entry into the midline, grows in the ventral direction, and in the same way, the Slitl and ventral-lateral hepatic brain in the anterooptic zone (P0A) Prevent retinal ganglion cell axons from entering the brain before reaching the optic nerve crossing.
  • Spinal cord axons sense induced signals such as netrin and Shh secreted from the lamination.
  • an E13.5 mouse obtained by the method described in Example ⁇ 1-1>. 100 ng / ml Robo with Neural Retinal Explants and Vaxl-knockout Ventral Hypothalamic Explants
  • FIG. 14C-A Incubate for 24 hours with or without 1-Fc (FIG. 14C-A) or without (FIG. 14C-B). Then it was visualized (left) or immunostained for visualization (right) (scale bar: 500) (FIG. 14C-A).
  • the direction of retinal ganglion cell axons was counted and graphed using NF160 immunostaining image pixel, an axon marker, where + is forward, 0 was positive,-was reverse, and error bars were SD. The number on the axis indicates the number of intercepts analyzed.
  • P-value was calculated as AN0VA ( ⁇ .01) (FIG. 14C-B).
  • Vaxl-His 10 ng / m £ was treated for 24 hours (FIG. 14D, bottom row). This was then visualized (FIG. 14B-A) and fluorescence intensities were graphed using Image-J software. Error bars were obtained in SD, and the numbers on the graph represent the number of analyzed regions (scale bar: 20) (FIG. 14D).
  • Example ⁇ 1-1> after obtaining the cortical explants (cortical explants) as in Example ⁇ 1-1>, after processing the Vaxl, Vaxl (R152S) and Vaxl (WF / SR) to the obtained cerebral explants, the implementation As shown in ⁇ 3-1>, immunostaining and visualization were performed using anti-Vaxl antibody (green), anti-NF160 antibody (red) and DAPK blue) (FIG. 14F).
  • Vaxl penetrates into the retinal ganglion cell axon, but by confirming that slit2 is caught on the axon surface, the reciprocal antagonism of Vaxl and Slit2 is mediated by heparan sulfate proteoglycans. Not sure (FIG. 14E).
  • Vaxl protein when treated with Vaxl and Vaxl (R152S), by confirming that axon growth is induced in cerebral sections, Vaxl protein induces not only retinal ganglion cell axon but also cerebral nerve axon growth. Thus, it was confirmed that the midline passage of various nerve axons is also regulated by Vaxl protein similarly to retinal ganglion cell axons (FIG. 140.
  • Vaxl is expressed in the ventral hypothalamus, radioglia and neural stem cells (NPCs), secreted out of the cells, forms a concentration gradient, and is present at high concentrations in the midline.
  • HSPGs heparan sulphate proteoglycans
  • retinal ganglion cell axon-induced signals enriched in the ventral hypothalamus such as induced VEGF164 ⁇ neuphyllin and inhibitory ephrinB2-EphBl, are retinal ganglion in the midline for optic nerve crossing formation. Determine the aroma of the cell axon.
  • Retinal ganglion cell axon growth regulation model was completed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a nerve-cell-regenerating pharmaceutical composition containing Vax protein as an active ingredient, and, more specifically, the Vax protein can advantageously be used as a nerve-cell-regenerating pharmaceutical composition as it has been confirmed that Vax1 is secreted from a ventral hypothalamus (vHT) section isolated from the mouse and that, after the secreted Vax1 has been bound to extracellular sugar groups of heparan sulphate proteoglycans (HSPGs) present in retinal ganglion cell (RGC) axons of a co-cultured retinal section such that the product penetrates as axoplasm (axonplasm), the synthesis of local protein is activated and the growth of retinal ganglion cells (RGCs) is promoted.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
^Vax 단백질을 유효성분으로 함유하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물 ; Pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing ^ Vax protein as an active ingredient ;
ί기술분야] ί Technical Field]
본 발명은 Vax 단백질을 유효성분으^ 함유하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물, 및 Vax 단백질을 이용한 신경세포 재생 또는 신경세포 성장 촉진용 후보 물질 스크리닝 방법에 관한 것이다.  The present invention relates to a pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing Vax protein as an active ingredient, and a method for screening candidate substances for promoting neuronal regeneration or neuronal growth using Vax protein.
【배경기술】 Background Art
포유류 양안 시력 시스템 (binocular visual system)은 뇌의 배외측 슬상핵 (dorsal lateral geniculate nucleus, dLGN) 및 뇌의 상구 (superior colliculus, SC)에 있는 신경세포 (neuron)에 망막신경절세포 (ret inal ganglion cell, RGC) 축삭 (axon)이 지형학적 시냅스 접촉 (topographic synaptic connection)을 이루며 형성된다. 망막신경절세포 축삭이 시냅스 표적에 접촉하기 위하여, 시신경 원판 (optic disc, 0D), 안병 (optic stalk, OS), 시신경교차 (optic chiasm, 0C) 및 시각로 (optic tract, 0T)를 포함한 시각경로 구조 (optic pathway structure)에서 발현되는 신경축삭 성장 유도 신호 (guidance cues)를 인식함으로써 , 망막으로부터 나와서 선택적 방향을 향해 성장한다 (Lemke and Reber , 2005; Petros et al. , 2008). 망막신경절세포 축삭 유도 신호로는 안병에 존재하는 세마포린 (semaphorin) 및 시신경교차에 존재하는 에프린 B2(ephrinB2)와 같은 세포 표면 리간드, 또는 시신경 원판에 있는 네트린 -l(netrin-l) 및 시신경교차의 주변 부위에 있는 Slitl과 같은 분비성 인자 (secreted factor)가 있다 (Erskine and Herrera, 2007) . 그러나, 마우스 망막의 복측 및 측두 부위로부터 유래한 망막신경절세포 축삭의 약 3%로만이 동측 (ipsi lateral) 뇌 반구로 진행하고, 대부분의 마우스 망막신경절세포 축삭은 시신경교차가 있는 복측 시상하부 (ventral hypothalamus) 중선 (midline)을 가로질러 반대 측 (contralateral) 뇌 반구로 진행한다. The mammalian binocular visual system is a retinal ganglion cell in the neurons of the dorsal lateral geniculate nucleus (dLGN) of the brain and in the superior colliculus (SC) of the brain. , RGC) axons are formed in topographic synaptic connections. Visual paths including optic disc (0D), optic bottle (optic stalk, OS), optic chiasm (0C), and optic tract (0T) for retinal ganglion cell axons to contact synaptic targets By recognizing the nerve axon growth induction cues expressed in the optic pathway structure, they grow out of the retina and grow in a selective direction (Lemke and Reber, 2005; Petros et al., 2008). Retinal ganglion cell axon induction signals include cell surface ligands such as semaphorin present in the ocular disease and ephrinB2 present in the optic nerve crossing, or netrin -l in the optic nerve disc and There is a secreted factor such as Slitl in the periphery of the optic nerve crossing (Erskine and Herrera, 2007). However, only about 3% of retinal ganglion cell axons derived from the ventral and temporal regions of the mouse retina proceed to the ipsi lateral cerebral hemisphere, and most mouse retinal ganglion cell axons are ventral hypothalamus with optic nerve crossing. hypothalamus) across the midline to the contralateral brain hemisphere.
복측 시상하부 세포는 시신경교차에서 망막신경절세포 축삭의 방향성을 결정하는 분자들을 발현한다. 예를 들어, 복측 시상하부 방사아교세포 (radial glial cell)는 복측ᅳ측두 망막신경절세포 축삭에서 발현된 EphBl 수용체 (receptor)에 결합하는 에프린 B2를 발현하여 동측 시각로로 향하는 축삭을 후퇴하게 한다 (Nakagawa et al. , 2000; Williams et al. , 2003). 반면, 복측 시상하부에서 발현되는 혈관 내피 성장 인자 164(vascular endothelial growth factor 164, VEGF164) 및 신경세포접착분자 (neuronal cell adhesion molecule, Nr CAM)는 각각 뉴로필린 UNeurophi Hn 1)및 플렉신 A Plexin Al)에 결합하여 복측 시상하부 증선을 가로질러 망막신경절세포 축삭 성장을 유도한다 (Erskine et al., 2011; Kuwaj ima et al. , 2012; Williams et al. , 2006) . 망막신경절세포 축삭은 시신경교차에 있는 이들 분자들의 방향성 유도 신호를 받기 위하여 Slit 및 세마포린과 같은 후퇴 (repulsive) 유도 신호가 높은 수준으로 발현되는 복측 -외측 간뇌 부위 (ventral-lateral diencephalic area)를 지나야 한다 (Erskine and Herrera, 2007). 그러나, 이들 후퇴 유도신호를 극복하고 망막신경절세포 축삭이 중선으로 성장하게 유도하는 복측 간뇌 부위 분자들의 정체는 아직 잘 알려져 있지 않다. VaxKventral anterior homeobox 1)은 내측 및 외측 무릎융기 (medial and lateral geniculate eminence, MGE and LGE), 복즉 격막 (septum), 각내핵 부위 (anterior entopeduncular area, AEP), 시신경앞부위 (pre이 Dtic area, P0A) , 복측 시상하부 및 안병을 포함한 다양한 복측 -내측 전뇌 (forebrain)-유래 구조에서 발현되는 호메오도메인 (homeodomain) 전사인자이다 (Bertuzzi et al . , 1999; Hall one t et al. , 1998). 인간 및 쥐에서 Vaxl의 유전적 비활성은 "검홍채맥락막선천적결손증 (coloboma of the eye) 뿐만 아니라, 전교련 (anterior commissure) , 뇌량 (corpus cal losum) 및 시신경교차를 포함한 뇌의 다증 중선 구조의 무발생 (agenesis)를 야기한다 (Bertuzzi et al. , 1999; Hal l one t et al .ᅳ 1999; Slavot inek et al . , 2012) . Vaxl-결핍 마우스에서 망막신경절세포 축삭은 안병을 통과하여 성장할 수는 있지만 복측 시상하부와 접촉하지 못하고, 결국, 시신경교차가 형성되지 못한다. 또한, Vaxl은 망막신경절세포 축삭의 성장 및 섬유속연축 ( fasci culat ion)에 있어서 중요한 역할을 하지만 망막신경절세포에서 발현되지 않는다 (Bertuzzi et al . , 1999) . 이에 본 발명자들은 Vax의 망막신경절세포 축삭의 성장을 유도와 관련된 기능과 이를 매개하는 분자를 찾기 위해 노력한 결과, 마우스에서 분리한 복측 시상하부 (ventral hypothalamus , vHT)절편체에서 Vaxl이 분비되고,상기 분비된 Vaxl이 공동배양한 망막 절편체의 망막신경절세포 (r inal gangl ion cel l , RGC) 축삭 (axon)에 존재하는 헤파란 설페이트 프로테오글리칸 (heparan sul fate proteoglycans , HSPGs)의 세포외 당 그룹에 결합하여 축삭형질 (axonplasm)로 침투한 후, 국소 단백질 ( local protein) 합성을 활성화하여 망막신경절세포 축삭의 성장을 촉진함을 확인함으로써, 상기 Vaxl 단백질을 망막신경절세포를 포함한 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물로 유용하게 사용할 수 있음을 밝힘으로써 본 발명을 완성하였다. The ventral hypothalamic cells express molecules that determine the direction of retinal ganglion cell axons in the optic nerve crossing. For example, ventral hypothalamic glial cells express ephrin B2, which binds to EphBl receptors expressed in ventral temporal retinal ganglion cell axons, leading to retraction of axons directed to the ipsilateral visual field. (Nakagawa et al., 2000; Williams et al., 2003). In contrast, vascular endothelial growth factor 164 (VEGF164) and neuronal cell adhesion molecule (Nr CAM) expressed in the ventral hypothalamus are neurophilin UNeurophi Hn 1 and flexin A Plexin Al, respectively. ) To induce retinal ganglion cell axon growth across the ventral hypothalamus liner (Erskine et al., 2011; Kuwaj ima et al., 2012; Williams et al., 2006). Retinal ganglion cell axons must pass through the ventral-lateral diencephalic area where high levels of repulsive induction signals such as Slit and semaphorin are expressed to receive directional induction signals of these molecules in the optic nerve cross. (Erskine and Herrera, 2007). However, the identity of the ventral hepatic region molecules that overcome these regression induction signals and induce retinal ganglion cell axons to grow into the midline is not well known. VaxKventral anterior homeobox 1) includes medial and lateral geniculate eminence (MGE and LGE), abdominal septum, anterior entopeduncular area (AEP), and anterior optic nerve area (pre Dtic area, P0A). And homeodomain transcription factors expressed in various ventral-medial forebrain-derived structures, including ventral hypothalamus and ocular disease (Bertuzzi et al., 1999; Hall one t et al., 1998). Genetic inactivation of Vaxl in humans and rats is characterized by the lack of "coloboma of the eye, as well as multiple central structures of the brain, including anterior commissure, corpus cal losum, and optic nerve crossing. Causes ageesis (Bertuzzi et al., 1999; Hal l one t et al. ᅳ 1999; Slavot inek et al. , 2012). Retinal ganglion cell axons in Vaxl-deficient mice can grow through ocular disease but fail to contact the ventral hypothalamus and eventually do not form optic nerve crossings. Vaxl also plays an important role in retinal ganglion cell axon growth and fasci culat ion but is not expressed in retinal ganglion cells (Bertuzzi et al., 1999). Therefore, the present inventors tried to find a function related to the induction of Vax retinal ganglion cell axon growth and molecules that mediate it. As a result, Vaxl is secreted from ventral hypothalamus (vHT) fragments isolated from mice. The secreted Vaxl binds to the extracellular sugar group of heparan sul fate proteoglycans (HSPGs) present in the axon of retinal ganglion cells (RGC) of cocultured retinal sections. By infiltrating the axonplasm and activating local protein synthesis to promote retinal ganglion cell axon growth, thereby regenerating neurons or regenerating nerve cells, including the retinal ganglion cells. The present invention has been completed by revealing that it can be usefully used as a pharmaceutical composition for promotion.
【발명의 상세한 설명】 [Detailed Description of the Invention]
[기술적 과제】  [Technical Challenges]
본 발명의 목적은 Vax 단백질을 유효성분으로 함유하는 신경세포 재생 또는 신경세포 성장촉진용 약학적 조성물을 제공하기 위한 것이다.  An object of the present invention is to provide a pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing Vax protein as an active ingredient.
【기술적 해결방법】 Technical Solution
본 발명의 목적을 달성하기 위하여, 본 발명은 Vax 단백질을 유효성분으로 함유하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물을 제공한다.  In order to achieve the object of the present invention, the present invention provides a pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing the Vax protein as an active ingredient.
또한, 본 발명은 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포를 유효성분으로 함유하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물을 제공한다. In addition, the present invention is a nerve cell regeneration or nerve cell growth containing a vector or a cell containing a polynucleotide encoding Vax protein as an active ingredient Provided is a pharmaceutical composition for promotion.
또한, 본 발명은  In addition, the present invention
1) 피검체로부터 수득한 세포에 피검물질을 처리하고 신경축삭 성장을 측정하는 단계;  1) treating the cells obtained from the subject with the test substance and measuring neuronal axon growth;
2) 상기 단계 1)의 세포에서 Vaxl 및 해파란 설페이트 프로테오글리칸의 결합수준을 측정하는 단계 ;  2) measuring the binding level of Vaxl and hapharan sulfate proteoglycans in the cells of step 1);
3) 상기 단계 2)의 Vaxl 및 헤파란 설페이트 프로테오글리칸 결합수준을 무처리 대조군과 비교하여 증가시키는 피검물질을 선별하는 단계를 포함하는 신경세포 재생 또는 신경세포 성장 촉진용 후보물질 스크리닝 방법을 제공한다.  3) It provides a method for screening a candidate substance for neuronal regeneration or neuronal growth promotion comprising the step of selecting a test substance to increase the Vaxl and heparan sulfate proteoglycan binding level of step 2) compared to the untreated control.
또한, 본 발명은 약학적으로 유효한 양의 Vax 단백질을 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 재생 방법을 제공한다. 또한, 본 발명은 약학적으로 유효한 양의 Vax 단백질을 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 성장 촉진 방법을 제공한다.  The present invention also provides a method for regenerating neurons comprising administering a pharmaceutically effective amount of Vax protein to a subject injured in a neuronal cell. In addition, the present invention provides a method for promoting neuronal growth comprising administering a pharmaceutically effective amount of Vax protein to a subject injured in a neuronal cell.
또한, 본 발명은 약학적으로 유효한 양의 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포를 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 재생 방법을 제공한다.  In addition, the present invention provides a method for regenerating neurons comprising administering a vector or cell comprising a polynucleotide encoding a pharmaceutically effective amount of Vax protein to a subject injured in a neuron.
또한, 본 발명은 약학적으로 유효한 양의 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포를 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 성장 촉진 방법을 제공한다.  The present invention also provides a method for promoting neuronal growth, comprising administering a vector or cell comprising a polynucleotide encoding a pharmaceutically effective amount of Vax protein to an individual injured with neurons.
또한, 본 발명은 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물로 사용하기 위한 Vax 단백질의 용도를 제공한다.  The present invention also provides the use of Vax protein for use as a pharmaceutical composition for promoting neuronal regeneration or neuronal growth.
또한, 본 발명은 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물로 사용하기 위한 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포의 용도를 제공한다.  The present invention also provides the use of a vector or cell comprising a polynucleotide encoding a Vax protein for use as a pharmaceutical composition for promoting neuronal regeneration or neuronal growth.
【유리한 효과】 본 발명은 Vax 단백질을 유효성분으로 함유하는 신경세포 재생용 약학적 조성물에 관한 것으로, 배자기 마우스에서 분리한 복측 시상하부 (ventral hypothalamus, vHT) 절편체에서 Vaxl이 분비되고, 상기 분비된 Vaxl이 공동배양한 망막 절편체의 망막신경절세포 (retinal ganglion cell, RGC) 축삭 (axon)에 존재하는 헤파란 설페이트 프로테오글리칸 (heparan sulfate proteoglycans, HSPGs)의 세포외 당 그룹에 결합하여 축삭형질 (axonplasm)로 침투한 후, 국소 단백질 (local protein) 합성을 활성화하여 망막신경절세포 축삭의 성장을 촉진시키므로, 상기 분비된 Vax 단백질은 신경세포 재생 또는 신경세포 성장 촉진용 조성물의 유효성분으로 유용하게 사용될 수 있다. . Advantageous Effects The present invention relates to a pharmaceutical composition for nerve cell regeneration containing Vax protein as an active ingredient, Vaxl is secreted from ventral hypothalamus (vHT) fragments isolated from embryonic mice, and the secreted Vaxl is Penetrates into the axonplasm by binding to extracellular sugar groups of heparan sulfate proteoglycans (HSPGs) present in retinal ganglion cells (RGC) axons of cocultured retinal sections. After that, by activating local protein synthesis to promote retinal ganglion cell axon growth, the secreted Vax protein can be usefully used as an active ingredient of a composition for promoting neuronal regeneration or neuronal growth. .
【도면의 간단한 설명】 . 【Brief Description of Drawings】.
도 la는 배자기 13.5(E 13.5)일 된 Vaxl 정상 마우스 (Vaxl+/+) 및 Vaxl 결핍 마우스 (Vaxl-/-)의 신경간세포 (neural progenitor cells, NPC), 발생 중인 분열 후 (post-mitotic neuronal) 신경세포에서 Vaxl 단백질의 발현을 나타낸 도이다.  La shows neural progenitor cells (NPCs) of Vaxl normal mice (Vaxl + / +) and Vaxl deficient mice (Vaxl − / −) with embryonic 13.5 (E 13.5) days, post-mitotic neuronal ) Is a diagram showing the expression of Vaxl protein in neurons.
도 lb는 E13.5 Vaxl+/+ 및 Vaxl-/- 마우스의 시신경교차 (optic chiasm, 0C) 형성 세포에서 Vaxl 단백질의 발현을 나타낸 도이다.  FIG. Lb shows the expression of Vaxl protein in optic chiasm (0C) forming cells of E13.5 Vaxl + / + and Vaxl − / − mice.
도 2a는 망막신경절세포 (retinal ganglion cell, RGC) 축삭 (axon)의 방향성을 측정하는 방법을 모식화한 도이다.  Figure 2a is a schematic diagram illustrating a method for measuring the orientation of retinal ganglion cells (RGC) axon (axon).
도 2b는 E13.5 Vaxl+/+ 또는 Vaxl-/- 마우스에서 분리한 복측 시상하부 (ventral hypothalamic, vHT)와 공동배양한 신경망막 (retina, NR) 절편체에서 성장하는 망막망신경절세포 축삭을 나타낸 도이다.  FIG. 2B shows retinal ganglion cell axons growing in neural retinal (NR) fragments co-cultured with ventral hypothalamic (vHT) isolated from E13.5 Vaxl + / + or Vaxl − / − mice It is also.
도 2c는 E13.5 Vaxl+/ +또는 Vaxl-/-마우스에서 분리한 복측 시상하부와 공동배양한 신경망막 절편체에서 복측 시상하부로 향하는 망막망신경절세포 축삭 끝 (tip)의 방향성을 나타낸 도이다:  FIG. 2C shows the orientation of retinal ganglion cell axon tips toward the ventral hypothalamus in neural retinal sections co-cultured with ventral hypothalamus isolated from E13.5 Vaxl + / + or Vaxl − / − mice :
WT: Vaxl+/+; 및  WT: Vaxl + / +; And
K0: Vaxl-/-.  K0: Vaxl-/-.
도 2d는 E13.5 Vaxl+/+또는 Vaxl-/-마우스에서 분리한 복측 시상하부와 공동배양한 신경망막 절편체에서 복측 시상하부로 향하는 망막신경절세포 축삭 축 (shaft)의 방향성을 나타낸 도이다: 2D shows the ventral hypothalamus isolated from E13.5 Vaxl + / + or Vaxl − / − mice Diagram showing the direction of the retinal ganglion cell axon shaft to the ventral hypothalamus in cocultured neuroretinal sections:
WT: Vaxl+/+; 및  WT: Vaxl + / +; And
K0: Vaxl-/-.  K0: Vaxl-/-.
도 2e는 E13.5 Vaxl+/+ 또는 Vaxl-/- 마우스에서 분리한 복측 시상하부 및 이를 지나는 망막신경절세포 축삭의 결함을 확인한 도이다:  FIG. 2E is a diagram illustrating defects in the ventral hypothalamus and retinal ganglion cell axons isolated from E13.5 Vaxl + / + or Vaxl − / − mice:
Vegfa: vescular endothelial growth factor , VEGF164;  Vegfa: vescular endothelial growth factor, VEGF164;
ISH: In situ hybridization;  ISH: In situ hybridization;
NrCAM: neuronal cell adhesion molecule; 및  NrCAM: neuronal cell adhesion molecule; And
IF: immunof luorescence staining(스케일 바 (scale bar): 100 μηι) .  IF: immunof luorescence staining (scale bar: 100 μηι).
도 3a는 Vaxl, 전사 비활성 Vaxl 돌연변이 (Vaxl(R152S)) 및 Vax2를 과발현시킨 C0S7 세포와 공동배양한 신경망막 절편체에서 성장하는 망막신경절세포 축삭을 나타낸 도이다.  3A is a diagram showing retinal ganglion cell axons growing in neural retinal sections co-cultured with Vaxl, transcription inactive Vaxl mutants (Vaxl (R152S)) and C0S7 cells overexpressing Vax2.
도 3b는 Vaxl, 전사 비활성 Vaxl 돌연변이 (Vaxl(R152S)) 및 Vax2 과발현시킨 C0S7 세포와 공동배양한 신경망막 절편체에서 C0S7 세포로 향하는 망막신경절세포 축삭의 방향성을 나타낸 도이다.  3B is a diagram showing the direction of retinal ganglion cell axons directed to C0S7 cells in neural retinal sections co-cultured with Vaxl, transcriptionally inactive Vaxl mutants (Vaxl (R152S)) and Vax2 overexpressed C0S7 cells.
도 3c는 Vaxl, 전사 비활성 Vaxl 돌연변이 (Vaxl(R152S)) 및 Vax2를 과발현시킨 C0S7 세포의 성장배지에 존재하는 Vax 단백질을 검출하여 나타낸 도아다. '  Figure 3c is a diagram showing the detection of Vax protein present in the growth medium of Vaxl, transcription inactive Vaxl mutation (Vaxl (R152S)) and C0S7 cells overexpressed Vax2. '
도 4a는 Vaxl, GFP-Vaxl 및 GFP-Vax2를 과발현시킨 HEK293T 세포 (좌)의 성장배지를 처리한 C0S7 세포 (우)에서 Vax 단백질의 위치를 나타낸 도이다: 4A shows the location of Vax protein in C0S7 cells (right) treated with growth medium of HEK293T cells (left) overexpressing Vaxl, GFP-Vaxl and GFP-Vax2:
►: GFP 면역염색된 손상되지 않은 C0S7 세포; 및 ►: GFP immunostained intact C0S7 cells; And
→: GFP 면역염색된 죽은 세포 잔해 (debris).  → : GFP immunostained dead cell debris.
도 4b는 Myc-Vaxl 과발현된 HEK293T 세포의 성장배지를 주입한 E13 마우스 뇌의 제 3뇌실 (the third ventricle)에 존재하는 Vaxl 단백질을 나타낸 도이다:  4B is a diagram showing Vaxl protein present in the third ventricle of E13 mouse brain injected with growth medium of Myc-Vaxl overexpressed HEK293T cells:
►: Myc-Vaxl이 존재하는 세포.  ► : Cells in which Myc-Vaxl exists.
도 4c는 E14.5 정상 (WT) 및 Vaxl 결핍 (Vaxl-/-) 복측 시상하부 절편체의 세포 용해물 (cel l lysate , CD및 성장배지 (growth mediaᅳ GM)에서 Vaxl단백질의 존재를 나타낸 도이다. ' 4C shows E14.5 normal (WT) and Vaxl deficient (Vaxl-/-) ventral hypothalamic sections In cell lysates (cel l lysate, CD and growth media (growth media eu GM) for a diagram showing the existence of Vaxl protein. "
도 4d는 복측 시상하부 절편체의 세포 용해물 (CL) , 및 E14.5 마우스의 뇌척수액 (cerebrospinal f luid, CSF)의 상층액 (S3) 및 죽은 세포잔해 (P2)에서 Vaxl 단백질의 존재를 나타낸 도이다.  4D shows the presence of Vaxl protein in cell lysates (CL) of ventral hypothalamic explants, and supernatants (S3) and dead cell debris (P2) of cerebrospinal fluid (cerebrospinal f luid, CSF) in E14.5 mice It is also.
도 4e는 망막신경절세포 축삭'성장 유도에 있어서 Vaxl 과발현 C0S7 세포에서 분비된 Vaxl의 기능을 확인하기 위하여, 비면역 (pre-immune) 래빗 (rabbi t ) 면역글로블린 (rblgG) , 래빗 항 -Vaxl 다클론 (polyclonal ) 항체 (-Vaxl)를 처리하여 C0S7 세포와 공동배양한 경망막 절편체 (NR)에서 C0S7를 향해 성장하는 망막신경절세포 축삭을 나타낸 도이다: Figure 4e is a retinal ganglion cell axon, the, wherein the non-immune (pre-immune) Rabbit (rabbi t) immunoglobulin (rblgG), Rabbit -Vaxl to verify the functionality of the secreted Vaxl Vaxl in C0S7 cells overexpressing in the growth induction Retinal ganglion cell axons that grow toward C0S7 in a retinal segment (NR) co-cultured with C0S7 cells treated with a polyclonal antibody (-Vaxl):
Myc—태그된 마우스 Vaxl이 존재하는 곳 (스케일 바: 500 (왼쪽) , 스케일 바: 100 (오른쪽) .  Myc—where the tagged mouse Vaxl is located (scale bar: 500 (left), scale bar: 100 (right).
도 5a는 비면역 (pre-immune) '래빗 (rabbi t ) 면역글로블린 (rblgG), 래빗 항 -Vaxl 다클론 (polyclonal ) 항체 ( α -Vaxl) 및 래빗 항— Vax2 다클론 항체 ( a -Vax2)를 처리하여 복측 시상하부 절편체 (vHT)와 공동배양한 신경망막 절편체 (NR)에서 복측 시상하부 절편체를 향해 성장하는 망막신경절세포 축삭을 나타낸 도이다: 5A shows pre-immune ' rabbi t immunoglobulin (rblgG), rabbit anti-Vaxl polyclonal antibody (α-Vaxl) and rabbit anti—Vax2 polyclonal antibody (a-Vax2) Is a diagram showing retinal ganglion cell axons growing toward ventral hypothalamic explants (NR) cocultured with ventral hypothalamic explants (vHT) treated with:
→: 확대 부위으로 확대부위 내 Vaxl(녹색)이 NF160 (적색)으로 표지된 망막신경절세포 축삭에 분포할 경우 두 색깔이 겹쳐진 황색으로 나타난다 (스케일 바 (scale bar) : 500 ΙΜ\ )■ → : As the enlarged area Vaxl (green) in the enlarged area appears as yellow colored superimposed two colors when distributed on NF160 (red) labeled retinal ganglion cell axons (scale bar: 500 ΙΜ \)
도 5b는 비면역 래빗 면역글로블린 (rblgG) , 래빗 항 -Vaxl 다클론항체 (a-Vaxl) 및 래빗 항 -Vax2 다클론 항체 (a-Vax2)를 처리하여 복측 시상하부 절편체 (vHT)와 공동배양한 신경망막 절편체 (NR)에서 복측 시상하부 절편체로 향하는 망막신경절세포 축삭의 방향성올 나타낸 도이다.  FIG. 5B shows co-administration with ventral hypothalamic explants (vHT) by treatment of non-immune rabbit immunoglobulin (rblgG), rabbit anti-Vaxl polyclonal antibody (a-Vaxl) and rabbit anti-Vax2 polyclonal antibody (a-Vax2) Directional diagram of retinal ganglion cell axons from the cultured neural retinal segment (NR) to the ventral hypothalamic segment.
도 5c는 비면역 래빗 면역글로블린 (rblgG) , 래빗 항 -Vaxl 다클론항체 ( a -Vaxl) 및 래빗 항 -Vax2 다클론 항체 ( a— Vax2)를 처리하여 복측 시상하부 절편체 (vHT)와 공동배양한 신경망막 절편체 (NR)에서 복측 시상하부 절편체로 향하는 망막신경절세포 축삭의 수 및 두께를 나타낸 도이다. 도 5d는 망막 절편체에 6X-His에 플루오레세인이소티오시안산염 (fluorescein isothiocyanate, FITC)이 표지된 펩타이드 (peptide) (100 ng/ml)또는 His이 태그된 Vaxl에 FITC이 표지된 재조합 단백질 (500 ng/ml)을 첨가하여 배양한 후, 이를 확인한 도이다: FIG. 5C shows co-operation with ventral hypothalamic explants (vHT) treated with non-immune rabbit immunoglobulin (rblgG), rabbit anti-Vaxl polyclonal antibody (a -Vaxl) and rabbit anti-Vax2 polyclonal antibody (a— Vax2) Figure showing the number and thickness of retinal ganglion cell axons from the cultured neural retinal segment (NR) to the ventral hypothalamic segment. FIG. 5D shows a recombinant protein labeled with peptide (100 ng / ml) or His-tagged Vaxl labeled with fluorescein isothiocyanate (FITC) at 6X-His on the retinal fragment. After incubation with (500 ng / ml), this is confirmed:
►: 확대 부위 .  ► : Enlarged area.
도 5e는 망막 절편체에 6X-His 펩타이드 (100 ng/ml) 또는 Vaxl-His-FITC 단백질 (500 ng/ml)을 첨가하여 배양한 후, 면역염색하여 나타낸 도이다:  FIG. 5E is a diagram showing immunostaining after incubation with 6X-His peptide (100 ng / ml) or Vaxl-His-FITC protein (500 ng / ml) in retinal sections:
→ Vaxl과 His 단백질 위치.  → Vaxl and His protein positions.
도 5ί는 망막 절편체의 사분면에서 6X-His 펩타이드 (25 ng/ml , 하얀색 막대) 또는 Vaxl-His 단백질 (100 ng/ml , 검은색 막대)를 처리하고 24 시간 후 변화한 축삭 길이를 측정하여 나타낸 도이다:  FIG. 5ί is treated with 6X-His peptide (25 ng / ml, white bar) or Vaxl-His protein (100 ng / ml, black bar) in the quadrant of the retinal section, measuring the changed axon length after 24 hours. Is shown:
DN: Dosal Nasal;  DN: Dosal Nasal;
DT: Dosal Tempor l;  DT: Dosal Tempor l;
VN: VentraT Nasal; 및  VN: VentraT Nasal; And
VT: Ventral Temporal .  VT: Ventral Temporal.
도 5g의 (A)는 망막 절편체에 His-태그된 Vax2(100 ng/ml)을 첨가하거나, 하지않은 상태로 24 시간 동안 배양한 후면역 염색하여 나타낸 도이고, (B)는 망막신경절세포 축삭 길이를 측.정하여 그래프로 나타낸 도이다:  Figure 5g (A) is a diagram showing the histo-tagged Vax2 (100 ng / ml) added to the retinal fragments, or without the back-side staining cultured for 24 hours, (B) is retinal ganglion cells A graphical representation of measuring axon length:
→: Vax2-His의 위치 (스케일 바: 500 (위쪽), 스케일 바: 100 (아래쪽).  → : Position of Vax2-His (scale bar: 500 (top), scale bar: 100 (bottom).
도 6a는 비면역 래빗 면역글로블린 (rblgG), 래빗 항 -Vaxl 다클론 항체 (α-Vaxl)를 주입한 E13.5 마우스의 제 3뇌실 (V3)에서 망막신경절세포 축삭의 성장을 나타낸 도이다:  FIG. 6A shows the growth of retinal ganglion cell axons in the third ventricle (V3) of E13.5 mice injected with non-immune rabbit immunoglobulin (rblgG), rabbit anti-Vaxl polyclonal antibody (α-Vaxl):
A: 전측 (anterior);  A: anterior;
P: 후측 (posterior);  P: posterior;
M: 내측 (medial);  M: medial;
L: 외측 (lateral); 및  L: lateral; And
*: 시신경교차 (optic chiasm) . 도 6b는 Vaxl 재조합 단백질, 또는 Vaxl 재조합 단백질 및 래빗 항 -Vaxl 다클론 항체 ( α-Vaxl)를 처리한 신경망막 절편체에서 성장하는 망막신경절세포 축삭을 나타낸 도이다: * : Optic chiasm. FIG. 6B shows retinal ganglion cell axons growing in neural retinal sections treated with Vaxl recombinant protein, or Vaxl recombinant protein and rabbit anti-Vaxl polyclonal antibody (α-Vaxl):
→: 확대 부위로, 확대부위 내 Vaxl(녹색)이 NF160 (적색)으로 표지된 망막신경절세포 축삭에 분포할 경우 두 색깔이 겹쳐진 황색으로 나타난다 (스케일 바 : 500 μηύ.  →: As an enlarged site, when Vaxl (green) in the enlarged area is distributed on retinal ganglion cell axons labeled with NF160 (red), the two colors appear yellow with overlap (scale bar: 500 μηύ.
도 6c는 Vaxl 재조합 단백질, 또는 Vaxl 재조합 단백질 및 래빗 항 -Vaxl 다클론 항체 ( α-Vaxl)를 처리한 신경망막 절편체에서 시간에 따른 망막신경절세포 축삭의 길이를 나타낸 도이다.  Figure 6c is a diagram showing the length of retinal ganglion cell axon over time in the retinal explants treated with Vaxl recombinant protein, or Vaxl recombinant protein and rabbit anti-Vaxl polyclonal antibody (α-Vaxl).
도 6d는 Vaxl 재조합 단백질, 또는 Vaxl 재조합 단백질 및 래빗 항— Vaxl 다클론 항체 ( a -Vaxl)를 처리한 신경망막 절편체에서 망막신경절세포 축삭의 수, 두께 및 길이를 나타낸 도이다.  6D is a diagram showing the number, thickness and length of retinal ganglion cell axons in neural retinal sections treated with Vaxl recombinant protein, or Vaxl recombinant protein and rabbit anti-Vaxl polyclonal antibody (a -Vaxl).
도 7a는 Vaxl+/+ 및 VaxllacZ/lacZ E14.5마우스의 망막에서 Vaxl mRNA의 발현을 나타낸 도이다.  7A is a diagram showing the expression of Vaxl mRNA in the retina of Vaxl + / + and VaxllacZ / lacZ E14.5 mice.
도 7b는 Vaxl+/lacZ 및 VaxllzcZ/lacZ E14.5 마우스의 시각경로 구조 (optic pathway structure)에서 Vaxl 단백질 및 베타 갈락토시다아제 (β-galactosidase, β-gal)의 발현을 나타낸 도이다:  7B is a diagram showing expression of Vaxl protein and beta galactosidase (β-galactosidase, β-gal) in the optic pathway structure of Vaxl + / lacZ and VaxllzcZ / lacZ E14.5 mice:
GCL: 신경절세포충 (ganglion cell layer); 및  GCL: ganglion cell layer; And
NBL: 신경아세포충 (neuroblast layer).  NBL: neuroblast layer.
도 7c는 Vaxl+/+ 및 VaxllacZ/lacZ E14.5 마우스의 망막에서 존재하는 7C shows in the retina of Vaxl + / + and VaxllacZ / lacZ E14.5 mice
Vaxl 단백질을 나타낸 도이다: Figure shows the Vaxl protein:
►: 망막신경절세포 축삭 표지자인 NF160 (neurofilament)가 면역염색된 부위 ; 및  ► : Sites immunostained with NF160 (neurofilament), a retinal ganglion cell axon marker; And
→: NF160 및 Vaxl이 면역염색된 부위.  →: Sites immunostained with NF160 and Vaxl.
도 7d는 Vaxl+/+ 및 VaxllacZ/lacZ E18.5 마우스의 망막 및 시신경에 존재하는 Vaxl 단백질을 나타낸 도이다:  7D shows Vaxl proteins present in the retina and optic nerve of Vaxl + / + and VaxllacZ / lacZ E18.5 mice:
RGC: 망막신경절세포;  RGC: retinal ganglion cell;
OS APC: 안병 별아교전구세포 (optic disc astrocyte precursor cell); RGC에 있는 ►: 세포내 유입 소포 (endocytic vesicle)에 존재하는 Vaxl 단백질; 및 OS APC: ocular disc astrocyte precursor cell; ► in RGC: Vaxl protein present in intracellular vesicles (endocytic vesicle); And
RGC에 있는 →: RGC 세포막 막 (plasma membrane)의 세포외 (extracellular) 표면에 결합된 Vaxl 단백질;  → in RGC: Vaxl protein bound to the extracellular surface of the RGC plasma membrane;
OS APC에 있는 ►: 수송 소포 (trafficking vesicle)에 존재하는 Vaxl 단백질; 및  ► in OS APC: Vaxl protein present in transport vesicles (trafficking vesicle); And
OS APC에 있는 →: 핵에 있는 크로마틴 (chromatin)과 연관된 Vaxl 단백질. 、  → in OS APC: Vaxl protein associated with chromatin in the nucleus. 、
도 7e의 (A)는 Vaxl+/+(WT) 및 Vaxl-/- E14.5 마우스로부터 준비된 뇌 섹션에서 [33P1-CTP-표지된 안티센스 (ant i sense) Vaxl 프루브 (probe)을 이용해 Mui et al., 2005에 기재된 방법으로 계내 RNA 흔성화 (in situ RNA hybridization)를 수행하여 Vaxl mRNA 발현을 [33P]-CTP—표지된 안티센스 (antisense) Vaxl 프로브 (probe)의 방사선 강도를 시각화하여 나타낸 도이고, (B)는 E14.5 Vaxl+/lacZ 및 VaxllacZ/lacZ 마우스에서 뇌 섹션올 획득하여 면역염색으로 시각화하여 나타낸 도이다:  7E (A) shows Mui et al using [33P1-CTP-labeled ant i sense Vaxl probes in brain sections prepared from Vaxl + / + (WT) and Vaxl − / − E14.5 mice. , In situ RNA hybridization by the method described in 2005 to visualize the radiation intensity of Va33 mRNA expression of the [33P] -CTP—labeled antisense Vaxl probe. (B) is a diagram showing the brain sections obtained from E14.5 Vaxl + / lacZ and VaxllacZ / lacZ mice and visualized by immunostaining:
HCC'- Hypothalamic cell cord; HCC '' -Hypothalamic cell cord;
ON: Optic nerve; 및  ON: Optic nerve; And
0C: Optic chiasm.  0C: Optic chiasm.
도 8은 Ptc-gal4>Vaxl-EGFP,Ds-Red 초파리 Pt c-ga 14>Vaxl-EGFP , Ds-Red , Sdc23 초파리, Ptc-gal4>Vaxl-EGFP,Ds-Red,Sdc 초파리, 및 Ptc-gal4>Vaxl_EGFP, Ds-Red, Dip 초과리의 날개 성층판 (imaginal disc)에서 녹색형광단백질이 표지된 Vaxl 단백질 및 동일 세포에서 발현된 적색형광단백질 (dsRed)의 분포를 나타낸 도이다.  8 shows Ptc-gal4> Vaxl-EGFP, Ds-Red Drosophila Pt c-ga 14> Vaxl-EGFP, Ds-Red, Sdc23 Drosophila, Ptc-gal4> Vaxl-EGFP, Ds-Red, Sdc Drosophila, and Ptc- Gal4> Vaxl_EGFP, Ds-Red, Dip This diagram shows the distribution of green fluorescent protein labeled Vaxl protein and red fluorescent protein (dsRed) expressed in the same cells in the imaginal disc.
도 9a는 출생 0일 (post-natal day 0, P0) 마우스의 시신경에서 Vaxl 및 신데칸 2(Sdc2)의 결합을 공동면역침강법 (co-i醒 unoprecipitation)으로 조사한 결과를 나타낸 도이다.  Figure 9a is a diagram showing the results of the coimmunoprecipitation (Co-i 醒 unoprecipitation) of the binding of Vaxl and Sindecan 2 (Sdc2) in the optic nerve of the post-natal day 0, P0 mice.
도 9b는 Vaxl, 및 GFP-Sdcl 또는 GFP_Sdc2 과발현된 HEK293T 세포에서 Vaxl, 및 신데칸 l(Sdcl) 또는 신데칸 2(Sdc2)의 결합을 공동면역침강법으로 조사한 결과를 나타낸 도이다. 9B shows coimmunoprecipitation of the binding of Vaxl, and Vaxl, and Sindecane l (Sdcl) or Sindecane 2 (Sdc2) in Vaxl and HEK293T cells overexpressing GFP-Sdcl or GFP_Sdc2 It is a figure which shows the result of investigation.
도 9c는 Vax2, 및 GFP-Sdcl 또는 GFP-Sdc2 과발현된 HEK293T 세포에서 Vaxl, 및 Sdcl 또는 Sdc2의 결합을 공등면역침강법으로 조사한 결과를 나타낸 도이다.  Figure 9c is a diagram showing the results of investigating the binding of Vaxl, and Sdcl or Sdc2 in Vax2, and GFP-Sdcl or GFP-Sdc2 overexpressed HEK293T cells by the immunoimmunoprecipitation method.
도 9d는 Vaxl, 및 GFP-Sdc2-N또는 GFP-Sdc2-C과발현된 HEK293T세포에서 Figure 9d shows Vaxl, and HEK293T cells overexpressed with GFP-Sdc2-N or GFP-Sdc2-C.
Vaxl, 및 Sdc2-N 또는 Sdc2-C의 결합을 공동면역침강법으로 조사한 결과를 나타낸 도이다. Fig. 3 shows the results of investigating the binding of Vaxl and Sdc2-N or Sdc2-C by co-immunoprecipitation method.
도 9e는 해파린 (heparin)을 처리한 E14.5 마우스 시신경에서 Vaxl과 결합하는 단백질을 공동면역침강법으로 조사한 결과를 나타낸 도이다.  Figure 9e is a diagram showing the results of the coimmunoprecipitation method of the protein binding to Vaxl in the E14.5 mouse optic nerve treated with heparin (heparin).
도 9f는 헤파란 설페이트 (HS) 또는 CS가 코팅된 사파로즈 4B(sepharose 9F shows heparan sulfate (HS) or CS coated saparose 4B (sepharose).
4B) 레진 (resin)과 Vaxl 단백질의 결합을 나타낸 도이다. 4B) is a diagram showing the binding of resin and Vaxl protein.
도 10a는 Vaxl 단백질, Vaxl 단백질 및 해파리나제 Kheparinase I), 및 10A shows Vaxl protein, Vaxl protein and jellyfish Kheparinase I), and
Vaxl 단백질 및 콘드로이티나제 ABC(chondroitinase ABC, ChnaseABC) 처리한 신경망막 절편체에서 성장하는 망막신경절세포 축삭을 나타낸 도이다: A diagram showing retinal ganglion cell axons growing in neural retinal sections treated with Vaxl protein and chondroitinase ABC (ChnaseABC):
→: 확대 부위로, 확대부위 내 VaxK녹색)이 NF160 (적색)으로 표지된 망막신경절세포 축삭에 분포할 경우 두 색깔이 겹쳐진 황색으로 나타난다 (스케일 바: 500 um).  →: As an enlarged region, VaxK green in the enlarged region appears as a yellow color with two colors overlapping when distributed on NF160 (red) labeled retinal ganglion cell axons (scale bar: 500 um).
도 10b는 Vaxl 단백질 및 0tx2 당 결합 모티프와 상동성을 가지는 Vaxl 아미노산 서열 101 내지 112를 암호화하는 바이오틴 (biotin) 표지된 Vaxl KR-펩타이드 (KR-bio), Vaxl단백질 및 두 개의 중요한 당 결합 잔기 101번 리신 및 102번 알기닌 (Lysl01-Argl02(KR))을 알라닌 (Ala-Ala(AA) )으로 치환한 10B shows biotin labeled Vaxl KR-peptide (KR-bio), Vaxl protein and two important sugar binding residues 101 which encode Vaxl amino acid sequences 101-112 having homology with Vaxl protein and 0tx2 sugar binding motif. Replacing lysine and arginine 102 (Lysl01-Argl02 (KR)) with alanine (Ala-Ala (AA))
AA-bio펩타이드, 또는 Lysl01-Argl02(KR)을 Ala-Ala(AA)로 치환한 Vaxl(KR/AA) 돌연변이 단백질을 처리한 신경망막 절편체에서 성장하는 망막신경절세포 축삭을 나타낸 도이다: A diagram showing retinal ganglion cell axons growing in neural retinal sections treated with Vaxl (KR / AA) mutant proteins substituted with AA-bio peptide or Lysl01-Argl02 (KR) with Ala-Ala (AA):
→: 확대 부위로, 확대부위 내 VaxK녹색)이 NF160 (적색)으로 표지된 망막신경절세포 축삭에 분포할 경우 두 색깔이 겹쳐진 황색으로 나타난다 (스케일 바: 500 η) .  →: As an enlarged area, when VaxK green in the enlarged area is distributed on retinal ganglion cell axons labeled with NF160 (red), the color appears to be yellow with two colors overlapping (scale bar: 500 η).
도 10c는 Vaxl 단백질, Vaxl 단백질 및 헤파리나제 I, 및 Vaxl단백질 및 콘드로이티나제 ABC, Vaxl단백질 및 Vaxl KR-펩타이드 (KR-bio), Vaxl단백질 및 AA-bio 펩타이드, 및 Vaxl(KR/AA) 돌연변이 단백질을 처리한 신경망막 절편체에서 망막신경절세포 축삭의 성장을 나타낸 도이다. 10c shows Vaxl protein, Vaxl protein and Heparinase I, and Vaxl protein and Growth of retinal ganglion cell axons in neural retinal sections treated with chondroitinase ABC, Vaxl protein and Vaxl KR-peptide (KR-bio), Vaxl protein and AA-bio peptide, and Vaxl (KR / AA) mutant protein Is a diagram showing.
도 11a는 해파린을 처리한 Vaxl 및 Vaxl(KR/M) 과발현 HEK293T 세포의 성장배지에 존재하는 Vaxl 단백질을 웨스턴 블럿팅 (western blott ing)으로 조사한 결과를 나타낸 도이다.  Figure 11a is a diagram showing the results of Western blotting (Vaxl) protein in the growth medium of heparin-treated Vaxl and Vaxl (KR / M) overexpressing HEK293T cells.
도 lib는 GFP-Sdc2, 및 Vaxl 또는 Vaxl(KR/AA) 과발현 HEK293T 세포에서 Sdc2와 결합하는 Vaxl 단백질을 공동면역침강법으로 조사한 결과를 나타낸 도이다.  FIG. Lib shows the results of investigation of the co-immunoprecipitation method of Vaxl protein binding to Sdc2 in GFP-Sdc2 and Vaxl or Vaxl (KR / AA) overexpressing HEK293T cells.
도 11c는 Myc— Vaxl 또는 Myc_Vaxl(KR/AA) 과발현 HEK293T 세포의 성장배지를 첨가한 C0S7 세포에 존재하는 Vaxl 단백질을 나타낸 도이다.  Figure 11c is a diagram showing the Vaxl protein present in C0S7 cells to which the growth medium of Myc— Vaxl or Myc_Vaxl (KR / AA) overexpressing HEK293T cells was added.
도 12a는 GFP-Sdc2 , 및 안테나페디아 (antennapedia, Antp)의 세포 -침투 영역의 중요한 잔기와 상동성을 가지는 147번 트립토판 (Trp) 및 148번 페닐알라닌 (Phe)(WR) 아미노산 잔기를 Ser-Arg(SR)로 치환한 Myc-Vaxl (WF/SR) 돌연변이 또는 Myc-Vaxl을 과발현한 HEK293T 세포에서 Sdc2와 결합하는 Vaxl 단백질을 공동면역침강법으로 조사한 결과를 나타낸 도이다.  12A shows Ser-Arg amino acid residues 147 tryptophan (Trp) and 148 phenylalanine (Phe) (WR) having homology with important residues of GFP-Sdc2, and the cell-penetrating region of antennapedia, Antp. Fig. 2 shows the results of coimmunoprecipitation of Vadc protein binding to Sdc2 in Myc-Vaxl (WF / SR) mutants substituted with (SR) or HEK293T cells overexpressing Myc-Vaxl.
도 12b는 Myc-Vaxl 또는 Myc-Vaxl (WF/SR) 과발현 HEK293T 세포의 성장배지를 첨가한 C0S7 세포에 존재하는 Vaxl 단백질을 웨스턴 블럿팅으로 조사한 결과를 나타낸 도이다.  12B is a diagram showing the results of Western blotting of Vaxl protein present in C0S7 cells added with growth medium of Myc-Vaxl or Myc-Vaxl (WF / SR) overexpressing HEK293T cells.
도 12c는 Myc-Vaxl또는 Myc-Vaxl(TOVSR) 과발현 C0S7세포와 공동배양한 신경망막 (NR) 절편체에서 C0S7 세포를 향해 성장하는 망막신경절세포 축삭을 나타낸 도이다.  12C shows retinal ganglion cell axons growing toward C0S7 cells in neural retinal (NR) fragments co-cultured with Myc-Vaxl or Myc-Vaxl (TOVSR) overexpressing C0S7 cells.
도 12d는 Myc-Vaxl또는 Myc-Vaxl(WF/SR) 과발현 C0S7세포와 공동배양한 신경망막 (NR) 절편체에서 C0S7 세포로 향하는 망막신경절세포 축삭의 방향성을 나타낸 도이다.  12D is a diagram showing the direction of retinal ganglion cell axons directed to C0S7 cells in neural retinal (NR) fragments co-cultured with Myc-Vaxl or Myc-Vaxl (WF / SR) overexpressing C0S7 cells.
도 13a는 GST및 GST— Vaxl과발현된 HEK293T세포에서 세포질 (cytoplasm) 분획에서 Vaxl 단백질 복합체를 구성하는 단백질을 나타낸 도이다.  Figure 13a is a diagram showing the proteins constituting the Vaxl protein complex in the cytoplasm (cytoplasm) fraction in HEK293T cells overexpressed GST and GST- Vaxl.
도 13b는 Vaxl 또는 Vaxl(WF/SR) 단백질이 포함된 배지에서 배양한 신경망막 절편체에서 새로 합성되는 단백질을 녹색형광을 이용해 표지하여 나타낸 도이다. Figure 13b is cultured in a medium containing Vaxl or Vaxl (WF / SR) protein The newly synthesized protein in the neural retinal fragment is labeled with green fluorescence.
도 13c는 Vaxl 또는 Vaxl(WFYSR) 단백질이 포함된 배지에서 배양한 신경망막 절편체에서 분리한 축삭에서 새로 합성되는 단백질을 녹색형광을 이용해 표지하여 나타낸 도이다.  Figure 13c is a diagram showing the label using green fluorescence of a newly synthesized protein from axons isolated from neural retinal sections cultured in a medium containing Vaxl or Vaxl (WFYSR) protein.
도 13d는 Vaxl 또는 Vaxl(WF/SR) 단백질이 포함된 배지에서 . 배양한 신경망막 절편체에서 분리한 축삭의 성장을 나타낸 도이다.  Figure 13d is in a medium containing Vaxl or Vaxl (WF / SR) protein. Figure showing growth of axons isolated from cultured neural retinal sections.
도 14a의 (A)는 His-펩타이드, Vaxl-His, Vaxl(WF/SR)-His, Robol-Fc분절 등을 주입한 VaxllacZ/lacZ 배자기 마우스의 제 3뇌실에서 망막신경절세포 축삭의 성장을 면역염색으로 나타낸 도이고, (B)는 형광 강도를 측정하여 그래프로 나타낸 도이다.  Figure 14a (A) shows the growth of retinal ganglion cell axons in the third ventricle of VaxllacZ / lacZ embryonic mice injected with His-peptide, Vaxl-His, Vaxl (WF / SR) -His, Robol-Fc segment, etc. It is a figure shown by immunostaining, (B) is a graph which shows the fluorescence intensity measured.
도 14b의 (A)는 Vaxl 및 Slit2를 농도별로 공동 처리한 신경망막 절편체에서 성장하는 망막신경절세포 축삭을 나타낸 도이고, Vaxl 및 Slit2를 농도별로 공동 차리한 신경망막 절편체에서 성장하는 망막신경절세포 축삭의 길이를 그래프로 나타낸 도이다.  Figure 14b (A) is a diagram showing the retinal ganglion cell axons growing in the neural retinal section co-treated with Vaxl and Slit2 by concentration, retinal ganglion grown in the neural retinal section co-regulated by Vaxl and Slit2 by concentration A graph showing the length of cell axons.
도 14c의 (A)는 E13.5 마우스 신경망막 절편체와 Vaxl-낙아웃 복측 시상하부 절편체를 함께 Robo 1-Fc이 존재하거나 없는 상태로 24 시간 동안 배양한 후, 이를 시각화하고, 면역 염색하여 나타낸 도이고, (B)는 망막신경절세포 축삭의 방향성을계수하여그래프로 나타낸 도이다:  14C (A) shows that after incubating the E13.5 mouse neural retinal segment and Vaxl-knockout ventral hypothalamus section together with or without Robo 1-Fc for 24 hours, visualization and immunostaining were performed. (B) is a graph showing the direction coefficient of retinal ganglion cell axon:
+: 정방향;  +: Forward direction;
0: 중립; 및  0: neutral; And
-: 역방향.  -: Reverse direction.
도 14d는 Vaxl 및 Slit2를 농도별로 공동 처리한 신경망막 절편체에서 성장하는 망막신경절세포 축삭을 면역염색하여 나타내고, 이의 형광 강도를 그래프로 나타낸 도이다 (스케일바: 20 μηύ.  FIG. 14D shows immunostaining of retinal ganglion cell axons grown in neural retinal sections co-treated with Vaxl and Slit2 by concentration, and shows the fluorescence intensity thereof graphically (scale bar: 20 μηύ.
도 14e는 Vaxl, 또는 Vaxl 및 S1 2 단백질을 처리한 신경망막 절편체에서 망막신경절세포 축삭 내로 침투하는 Vaxl 단백질을 나타낸 도이다. 도 14f는 Vaxl, Vaxl(R152S) 및 Vaxl(WF/SR)으로 처리한. 대뇌 절편 (cort ical explants)의 축삭 내로 침투한 Vaxl 단백질을 면역형광염색으로 조사한 결과를 나타낸 도이다. FIG. 14E is a diagram showing Vaxl protein infiltrating into retinal ganglion cell axon in Vaxl or neural retinal sections treated with Vaxl and S1 2 proteins. 14F treated with Vaxl, Vaxl (R152S) and Vaxl (WF / SR). Cerebral Figure 1 shows the results of immunofluorescence staining of Vaxl protein infiltrated into axons of cort ical explants.
도 14g는 분비된 Vaxl 단백질에 의한 망막신경절세포 축삭 성장 조절 모델의 모식도를 나타낸 도이다. ί발명의 실시를 위한 최선의 형태】  Figure 14g is a diagram showing a model of retinal ganglion cell axon growth regulation by secreted Vaxl protein. The best form for the implementation of the invention
이하, 본 발명을 상세히 설명한다. 본 발명은 Vax ventral anterior homeobox) 단.백질을 유효성분으로 함유하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물을 제공한다. Hereinafter, the present invention will be described in detail. The present invention provides a Vax ventral anterior homeobox . It provides a pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing white matter as an active ingredient.
상기 Vax 단백질은 서열번호 1로 기재되는 아미노산 서열을 갖는 Vaxl 단백질 또는 서열번호 2로 기재되는 아마노산 서열을 갖는 Vax2 단백질로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하나 이에 한정되지 않는다.  The Vax protein is any one selected from the group consisting of a Vaxl protein having an amino acid sequence as set forth in SEQ ID NO: 1 or a Vax2 protein having an amino acid sequence as set forth in SEQ ID NO: 2, but not limited thereto.
상기 신경세포는 Vaxl이 결핍된 시신경 (opt ic nerve) , 대뇌교차신경 (cort ical commi ssural nerve) , 해마교차신경 (hippocampal commissur l nerve) , 뇌하수체교차신경 (hypothalamic commissural nerve) , 삼차신경 (tr igeminal nerve)으로 이루어진 군으로부터 선택되는 어느 하나인 것이 바람직하나 이에 한정되치 않는다.  The nerve cells are vaxl-deficient optic (opt ic nerve), cort ical commi ssural nerve, hippocampal commissur l nerve, hypothalamic commissural nerve, trigeminal nerve (tr igeminal nerve) nerve) is preferably any one selected from the group consisting of, but is not limited thereto.
상기 Vaxl은 헤파란 설페이트 프로테오글리칸 (heparan sul fate proteoglycan, HSPG)과 결합하는 것이 바람직하나 이에 한정되지 않는다. 본 발명의 구체적인 실시예에서, 본 발명자들은 망막신경절세포 축삭의 성장에 있어서 Vaxl 단백질의 기능을 확인하기 위하여, VaxllacZ/+ 및 VaxllacZ/ lacZ낙인 (knock-in)및 Vaxl-/-낙아웃 (knock-out )마우스를 제작하고, 상기 획득한 마우스에서 신경망막 (neural ret ina, NR) 및 복측 시상하부 (ventral hypothalamic , vHT) 절편체 (explant )를 분리하여 배양하였다. 또한, Vaxl이 과발현된 Ptc-Gal4>UAS— Vaxl-EGFP,UAS-DsRed; + ,The Vaxl is preferably bound to heparan sul fate proteoglycan (HSPG), but is not limited thereto. In specific embodiments of the present invention, the present inventors have identified VaxllacZ / + and VaxllacZ / lacZ knock-in and Vaxl-/-knockout to confirm the function of Vaxl protein in the growth of retinal ganglion cell axons. -out) mice were prepared and neural ret ina (NR) and ventral hypothalamic (vHT) explants were isolated and cultured in the obtained mice. In addition, Ptc-Gal4> UAS— Vaxl-EGFP, UAS-DsRed overexpressing Vaxl; +,
Pt c-Ga 14>UAS-Vax 1-EGFP , UAS-DsRed; Sdc23 , Pt c-Ga 14> UAS-Vax 1-EGFP, UAS-DsRed; Sdc23,
Ptc-Gal 4>UAS-Vax 1-EGFP, UAS-DsRed; Sdc , Ptc-Gal 4> UAS-Vax 1-EGFP, UAS-DsRed; Sdc,
Pt c-Ga 14>UAS- Vax 1-EGFP , UAS-DsRed; D 1 p 초파리를 제작하였다. Pt c-Ga 14> UAS- Vax 1-EGFP, UAS-DsRed; D 1 p Drosophila were prepared.
또한 본 발명자들은 Vaxl이 시상경로 구조 (opt ic pathway structure)에 미치는 영향을 확인하기 위하예 Vaxl+/+( T) 및 Vaxl-/- 마우스의 시신경교차 구성 세포를 대상으로 면역염색법 ( i薩 unostaining)을 수행한 결과, Vaxl이 Sox2(SRY box 2)-양성 신경간세포 및 네스틴 (nest in, RC2)-양성 방사아교세포 (radial gl ia)에서 발견되었다. 또한, 시신경교차 구성 세포인 신경간세포 및 방사아교세포가 Vaxl-/- 마우스에서 정상적으로 발달하는 것을 확인하였다. 따라서 상기 Vaxl은 신경간세포 및 방사아교세포에 존재하는 시신경교차에서 발현되고, Vaxl-/-마우스에서 시신경교차의 비정상적인 발달은 시신경교차 형성 관련 복측 시상하부 세포의 잘못된 형성에 의한 것은 아님을 확인하였다 (도 la 및 도 lb 참조) .  In addition, the present inventors have performed immunostaining (i 薩 unostaining) on the cross-optic cells of Vaxl + / + (T) and Vaxl − /-mice to determine the effect of Vaxl on the opt ic pathway structure. As a result, Vaxl was found in Sox2 (SRY box 2) -positive neural stem cells and nestin (nest in, RC2) -positive glial cells. In addition, it was confirmed that neural stem cells and radioglial cells, which are optic nerve cross-constituting cells, normally develop in Vaxl − / − mice. Therefore, Vaxl is expressed in the optic nerve crossings present in neural stem cells and radioglial cells, and it was confirmed that abnormal development of optic nerve crossings in Vaxl-/-mice was not caused by incorrect formation of ventral hypothalamic cells related to optic nerve cross-sectional formation ( See la and lb).
또한, 본 발땅자들은 Vaxl이 시신경교차 발달에 미치는 영향을 확인하기 위하여, 배자기 13.5일 된 (E13.5) Vaxl+/+(WT) 및 Vaxl-/-(K0) 마우스의 신경망막 절편체 및 복측 시상하부 절편체를 공동배양하여 망막신경절세포 축삭 성장 관찰 및 방향성을 측정한 결과, Vaxl+/+(WT) 신경망막 절편체에서 Vaxl-/-(K0) 복측 시상하부 절편체로 향하는 망막신경절세포 축삭의 수가 감소하는 것을 확인함으로써, 복측 시상하부 절편체에서 유래한 Vaxl이 망막에서 망막신경절세포 축삭 성장을 직 ,간접적으로 유도함을 확인하였다. 따라서, Vaxl이 비세포-자율적인 (non— cel l autonomous) 방법으로 분비된 축삭 유도 분자를 통해 망막신경절세포 축삭 성장을 조절함을 확인하였다 (도 2a 내지 도 2e 참조) .  In addition, we assessed the effect of Vaxl on the development of optic nerve cross-linking in neural retinal explants in (E13.5) Vaxl + / + (WT) and Vaxl-/-(K0) mice. Observation and orientation of retinal ganglion cell axons by co-culture of ventral hypothalamic explants showed that retinal ganglion cell axons from Vaxl + / + (WT) neural retinal sections to Vaxl-/-(K0) ventral hypothalamic explants. By decreasing the number of, it was confirmed that Vaxl derived from the ventral hypothalamic section directly or indirectly induced retinal ganglion cell axon growth in the retina. Thus, it was confirmed that Vaxl regulates retinal ganglion cell axon growth via axon inducing molecules secreted by non-cel autonomous methods (see FIGS. 2A-2E).
또한, 본 발명자들은 Vaxl의 전사활성이 망막신경절세포 축삭 성장에 영향을 미치는지 확인하기 위하여, Vaxl , 전사 비활성 Vaxl 돌연변이 (Vaxl(R152S) ) 및 Vaxl과 동일한 호메오도메인 (homeodomai.n)올 공유하는 Vax2를 과발현시킨 C0S7세포를 이용하여 면역염색법 , 망막신경절세포 축삭 성장의 방향성 측정 및 배지 내 단백질에 대한 웨스턴 블럿팅 (western blott ing)을 수행한 결과, 신경망막 절편체에서 Vaxl 및 Vaxl(R152S) 과발현된 C0S7 세포를 향해 성장하는 망막신경절세포 축삭의 수가 대조군에 비해 현저하게 증가하고, 흥미롭게도 Vaxl 및 Vaxl(R152S) 단백질은 해당 단백질을 발현하지 않는 망막신경절세포 축삭에서도 관찰되는 것윷 확인하였다. 또한, 상기 Vaxl 및 Vaxl(R152S) 과발현된 C0S7세포의 세포 용해물 (cel l lysate , CD 및 성장배지 (growth media , GM)에서 Vaxl 및 Vaxl(R152S) 단백질이 모두 발견되는 것을 확인함으로써, 상기 Vaxl이 전사활성과 상관없이 세포 밖으로 분비되어 망막신경절세포 축삭 성장을 유도함을 확인하였다 (도 3a 내지 도 3c) . In addition, the inventors of the present invention share the same homeomai (homeodomai.n) as Vaxl, transcriptionally inactive Vaxl mutation (Vaxl (R152S)), and Vaxl, to determine whether Vaxl transcriptional activity affects retinal ganglion cell axon growth. Immunostaining, Retinal Ganglion Cells Using C0S7 Cells Overexpressing Vax2 As a result of directional measurement of axon growth and Western blotting of proteins in media, the number of retinal ganglion cell axons growing toward Vaxl and Vaxl (R152S) overexpressed C0S7 cells in control group Compared to the remarkable increase, interestingly, the Vaxl and Vaxl (R152S) proteins were also observed in retinal ganglion cell axons that did not express the protein. In addition, by confirming that both Vaxl and Vaxl (R152S) proteins are found in the cell lysates (cel l lysate, CD and growth media (GM)) of the Vaxl and Vaxl (R152S) overexpressed C0S7 cells, the Vaxl Irrespective of this transcriptional activity, it was secreted out of the cells to induce retinal ganglion cell axon growth (FIGS. 3A to 3C).
또한, 본 발명자들은 망막신경절세포 축삭 성장 유도에 있어서 Vaxl 분비를 확인하기 위하여, Vaxl 또는 Vax2 과발현 HEK293T 세포 성장배지를 첨가한 C0S7세포 및 Vaxl과발현 HEK293T세포 성장배지를 E13.5마우스 뇌실에 주입 한 뇌 절편 (sect ion)을 이용하여 면역염색법 및 웨스턴 블럿팅올 수행한 결과, Vaxl과발현 HEK293T세포 성장배지에 있는 Vaxl단백질이 체외배양 C0S7 세포 및 체내배양 복측 간뇌 (ventral diencephal ic , vDC)에서 발견됨을 확인하였다. 또한, 복측 시상하부 절편체의 세포 용해물 및 성장배지, 및 뇌 척수액 (cerebrospinal f luid, CSF)에서도 Vaxl 단백질이 발견되는 것을 확인함으로써, 상기 Vaxl 단백질이 체외배양뿐만 아니라 체내 세포로부터 분비되는 단백질이며, 따라서, Vaxl 단백질이 전사활성과 관계없이 복측 시상하부에서 분비되는 단백질임을 확인하였다 (도 4a 내지 도 4e 참조) .  In addition, the inventors of the present invention, in order to confirm Vaxl secretion in retinal ganglion cell axon growth induction, C0S7 cells and Vaxl overexpressing HEK293T cell growth medium with Vaxl or Vax2 overexpressing HEK293T cell growth medium injected into E13.5 mouse ventricle Immunostaining and Western blotting using sections (sect ions) confirmed that Vaxl proteins in Vaxl-overexpressing HEK293T cell growth media were found in in vitro C0S7 cells and in ventral diencephal ic (vDC). . In addition, by confirming that Vaxl protein is found in cell lysates and growth media of ventral hypothalamic explants, and cerebrospinal fluid (CSF), the Vaxl protein is a protein secreted from cells in the body as well as in vitro culture. Therefore, it was confirmed that the Vaxl protein is a protein secreted from the ventral hypothalamus regardless of transcriptional activity (see FIGS. 4A to 4E).
또한, 본 발명자들은 분비된 Vaxl단백질이 복측 시상하부 절편체를 향한 망막신경절세포 축삭 성장을 유도하는 분비 단백질인지 확인하기 위하여, 래빗 (rabbit ) 항 -Vaxl 다클론 (polyclonal ) 항체 및 항 Vax2 다클론 항체로 세포외 Vax 단백질을 격리시킨 상태에서 공동배양한 신경망막 절편체 및 복측 시상하부 절편체로의 망막신경절세포 축삭 성장 방향성 및 길이 측정을 수행한 결과, 항 -Vaxl 항체를 처리한 신경망막 절편체에서 복측 시상하부 절편체를 향해 성장하는 망막신경절세포 축삭의 수 및 두께가 감소하는 것을 확인함으로써, 상기 세포외 Vaxl이 축삭의 섬유속연축 ( fasciculat ion)에 중요한 역할을 함을 확인하였고, Vaxl-His-FITC단백질을 이용하여 확인한 결과, 망막신경절세포 축삭의 성장에 강한 자극 효과를 발휘하고, 망막신경절세포 축삭의 성장에 강한 자극 효과를 발휘하는 것을 확인하였으며, Vax2의 경우에도 Vaxl과 거의 동일하게 망막신경절세포 축삭의 성장을 유도하는 것을 확인하였다 (도 5a 내지 도 5g 참조) . In addition, to determine whether the secreted Vaxl protein is a secreted protein that induces retinal ganglion cell axon growth towards the ventral hypothalamic explants, the rabbit anti-Vaxl polyclonal antibody and anti Vax2 polyclonal Retinal ganglion cell axon growth direction and length measurements of co-cultivated neuroretinal and ventral hypothalamic fragments with extracellular Vax protein were isolated. Anti-Vaxl antibody-treated neural retinal fragments Decrease in the number and thickness of retinal ganglion cell axons growing toward the ventral hypothalamic section in By confirming, the extracellular Vaxl plays an important role in the axon's fasciculat ion. As a result of using Vaxl-His-FITC protein, it shows a strong stimulatory effect on the growth of retinal ganglion cell axons. In addition, it was confirmed that a strong stimulatory effect on the growth of retinal ganglion cell axons, and in the case of Vax2 was confirmed to induce the growth of retinal ganglion cell axons almost the same as Vaxl (see FIGS.
또한, 본 발명자들은 체내 ( in vivo)에서 망막신경절세포 축삭 성장에 있어서 세포외 Vaxl의 역할을 확인하기 위하여, 항 -Vaxl 다클론 항체를 제 3뇌실에 이식한 E13.5 마우스 뇌 절편을 이용하여 Di l 축삭염색제 검출 및 면역염색법을 수행한 결과, 항 -Vaxl 다클론 항체를 이식한 마우스에서 시신경교차로 향하는 망막신경절세포 축삭이 감소하고, 복측 간뇌의 외측 벽에서 축삭이 멈춰있으며, 망막신경절세포 축삭 내 Vaxl 단백질의 분포가 감소함을 확인하였다.  In addition, the present inventors have used E13.5 mouse brain slices in which anti-Vaxl polyclonal antibody was implanted into the third ventricle to confirm the role of extracellular Vaxl in retinal ganglion cell axon growth in vivo. Di axon chromosome detection and immunostaining resulted in a decrease in retinal ganglion cell axons directed to the optic nerve crossover in mice implanted with anti-Vaxl polyclonal antibodies, axons stopped at the outer wall of the ventral hepatic brain, and retinal ganglion cell axons. It was confirmed that the distribution of intra Vaxl protein is reduced.
또한, 본 발명자들은 Vaxl 재조합 단백질 또는 항 -Vaxl 다클론 항체를 신경망막 절편체 배양액에 처리 한 후 면역염색법, 망막신경절세포 축삭 성장, 축삭 두께 측정 등을 수행한 결과, Vaxl 재조합 단백질을 처리한 신경망막 절편체에서 망막신경절세포 축삭의 수, 두깨 및 길이가 증가하고, 반대로 신경망막 Vaxl 재조합 단백질 및 항 -Vaxl 다클론 항체를 처리한 신경망막 절편체에서 망막신경절세포 축삭의 수, 두께 및 길이가 감소하는 것을 확인함으로써, 상기 재조합 Vaxl 단백질이 망막신경절세포 축삭 성장 자극 효과를 직접 나타냄을 확인하였다 (도 6a 내지 도 6d 참조) .  In addition, the present inventors treated the Vaxl recombinant protein or the anti-Vaxl polyclonal antibody to the neural retinal explant culture, and then immunostained, retinal ganglion cell axon growth, axon thickness measurement, the nerve treated with Vaxl recombinant protein The number, thickness, and length of retinal ganglion cell axons in retinal sections increased, whereas the number, thickness, and length of retinal ganglion cell axons in neural retinal sections treated with retinal Vaxl recombinant protein and anti-Vaxl polyclonal antibody. By confirming the decrease, it was confirmed that the recombinant Vaxl protein directly showed the retinal ganglion cell axon growth stimulating effect (see FIGS. 6A to 6D).
또한, 본 발명자들은 Vaxl mRNA 및 단백질이 망막에서도 발현되는지 확인하기 위하여, Vaxl+/+, VaxllacZ/lacZ 및 Vaxl+/lacZ 마우스의 망막 및 뇌 섹션을 이용하여 계내 RNA흔성화 ( in si tu RNA hybr idizat ion)법을 수행한 결과, Vaxl+/+ 마우스 안구 및 시신경에서 망막을 제외한 시신경 원판 (0D) , 안병 (OS) 및 시신경교차앞구역 (P0A)에서 Vaxl mRNA가 발견됨을 확인하였다. 또한, 각각의 상동염색체에서 Vaxl과 베타-갈락토시다제 (beta-galactosidase ; lacZ)를 발현하는 Vaxl+ acZ 마우스 안구 절편을 항 -Vaxl 다중 항체와 베타-갈락토시다제 항체를 이용한 면역염색법을 통해 조사한 결과, Vaxl이 베타-갈락토시다제 (beta-galactosidase)를 동시 발현하는 Vaxl+ acZ 마우스의 안병 (OS) 별아교전구세포 (astrocyte precursor cel l , APC)에서 발현되는 것을 확인하였다. 이와 별도로 Vaxl 단백질은 베타-갈락토시다제를 발현하지 않는 망막 신경절세포에서도 검출됨을 확인하였다. 면역전자현미경 분석을 이용한 Vaxl 단백질의 세포 내 미세 분포 조사에서 Vaxl 단백질이 Vaxl+/ + 마우스의 망막신경절세포 플라즈마 막 (plasma membrane)의 세포외 표면에 결합하고 망막신경절세포 세포내 유입 소포 (endocyt ic vesicels) 내에 존재하는 것을 확인함으로써, 상기 Vaxl은 망막을 제외한 안병 별아교세포에서 발현되어 분비되고, 상기 분비된 Vaxl 단백질이 망막신경절세포 내로 이동함을 확인하였다 (도 7a 내지 도 7e 참조) . In addition, the present inventors have performed RNA in situ using the retina and brain sections of Vaxl + / +, VaxllacZ / lacZ and Vaxl + / lacZ mice to confirm that Vaxl mRNA and protein are expressed in the retina. As a result, Vaxl + / + mice were found to have Vaxl mRNA in the optic disc (0D), eye disease (OS), and optic nerve cross-section (P0A) except for the retina. In addition, Vaxl + acZ mouse eye fragments expressing Vaxl and beta-galactosidase (lacZ) in each homologous chromosome were treated with anti-Vaxl multiple antibodies. As a result of immunostaining using beta-galactosidase antibody, Vaxl + acZ mice with co-expressing beta-galactosidase (OS) astrocytoblasts (astrocyte precursor cel l, APC) was confirmed. Separately, Vaxl protein was also detected in retinal ganglion cells that do not express beta-galactosidase. Investigation of intracellular distribution of Vaxl protein using immunoelectron microscopic analysis revealed that Vaxl protein binds to the extracellular surface of the retinal ganglion cell plasma membrane in Vaxl + / + mice and endocyt ic vesicels Vaxl was expressed in and secreted from ophthalmic glial cells other than the retina, and the secreted Vaxl protein migrated into retinal ganglion cells (see FIGS. 7A to 7E).
또한, 본 발명자들은 Vaxl의 세포간 이동의 조절 기작 및 Vaxl의 세포간 이동 조절에 해파란 설페이트 프로테오글리칸 (heparan sul fate proteoglycan, HSPG)인 신데칸 (syndecan, Sdc)이. 관여하는지 확인하기 위하여, Vaxl이 과발현된 Ptc-Gal4>UAS-Vaxl-EGFP,UAS-DsRed ; + In addition, the inventors of the present invention are syndecan (Sdc), a heparan sul fate proteoglycan (HSPG), which regulates the intercellular migration of Vaxl and regulates the intercellular migration of Vaxl. Ptc-Gal4> UAS-Vaxl-EGFP, UAS-DsRed, in which Vaxl was overexpressed to determine if involved; +
Pt c-Ga 14>UAS-Vaxl-EGFP , UAS-DsRed; Sdc23 Pt c-Ga 14> UAS-Vaxl-EGFP, UAS-DsRed; Sdc23
Pt c-Ga 14>UAS-Vaxl-EGFP , UAS-DsRed; Sdc , Pt c-Ga 14> UAS-Vaxl-EGFP, UAS-DsRed; Sdc,
Pt c-Ga 14>UAS-Vaxl-EGFP , UAS-DsRed; D 1 p 초파리를 이용하여 면역염색법을 수행한 결과,신데칸 돌연변이 발현 초파리에서 Vaxl-EGFP단백질과 동시발현된 적색형광단백질의 발현이 없는 날개 성충판 ( imaginal disc) 앞쪽에서 Vaxl만 발현되는 세포의 수가 증가하는 반면, 신데칸 및 HSPG 글리피칸 (glypi can, Glp)의 초파리 상동 단백질인 Dip를 Vaxl-EGFP 적색형광단백질 등과 함께 동시 발현시킨 초파리의 날개 성층판 앞쪽 Vaxl만 발현하는 세포의 수가 감소하는 것을 확인함으로써, 상기 신데칸 및 Dip가 Vaxl 단백질과 결합하여 이웃세포로 분산되는 것을 방해하고, 따라서, 상기 Vaxl의 세포간 이동은 헤파란 설페이트 프로테오글리칸에 의해 매개됨을 확인하였다 (도 8 참조) . 또한, 본 발명자들은 Vaxl의 이동에 있어서 신데 ¾의 역할을 확인하기 위하여, 출생 0일 (post-natal day 0 P0) 마우스의 시신경 및 Vaxl , 신데칸 KSdcl) , 신데칸 2(Sdc2) , N-말단 세포외 도메인이 결핍된 신데칸 2(Sdc2-C) , C-말단 세포질 도메인이 결핍된 신데칸 2(Sdc2-N) 과발현된 HEK293T 세포를 이용하여 면역침강법 및 웨스턴 블럿팅을 수행한 결과, 망막 시신경 및 HEK293T 세포에서 Sdc2에 의해 Vaxl이 침강되고, Sdc2-N에 의해 Vaxl이 침강되는 것으 확인함으로써 , 상기 Vaxl은 신데칸 2, 특히, 신데칸 2의 세포외 도메인과 상호작용함을 확인하였다 (도 9a 내지 도 9d 참조) . Immunostaining using Pt c-Ga 14> UAS-Vaxl-EGFP, UAS-DsRed; D 1 p Drosophila showed that red fluorescent protein coexpressed with Vaxl-EGFP protein While the number of Vaxl-expressing cells increases in front of the missing imaginal disc, co-expressing Dip, a Drosophila homologous protein of syndecane and HSPG glypi can (Glp), with Vaxl-EGFP red fluorescent protein By confirming that the number of cells expressing only Vaxl in front of the fly lamellar plate of the Drosophila was reduced, it prevented the synthecan and Dip from binding to the Vaxl protein and dispersed into neighboring cells. Thus, the intracellular migration of Vaxl was hepatic. It was confirmed that lan sulfate was mediated by proteoglycans (see FIG. 8). In addition, the inventors of the present invention, in order to determine the role of play ¾ in the movement of Vaxl, post-natal day 0 P0 of the optic nerve and Vaxl, syndecan KSdcl), Cincan 2 (Sdc2), Cincan 2 (Sdc2-C) lacking the N-terminal extracellular domain, Cincan 2 (Sdc2-N) lacking the C-terminal cytoplasmic domain, and HEK293T cells overexpressed As a result of immunoprecipitation and Western blotting, it was confirmed that Vaxl was precipitated by Sdc2 in the retinal optic nerve and HEK293T cells, and that Vaxl was precipitated by Sdc2-N. It was confirmed that it interacts with the extracellular domain of decane 2 (see FIGS. 9A-9D).
또한, 본 발명자들은 신데칸 2의 해파란 설페이트 (HS)측면 사슬에 Vaxl이 결합하는지 확인하기 위하여, 고농도의 해파린을 첨가한 E14.5 마우스의 시신경을 이용하여 면역침강법을 수행한 결과, 해파린을 처리한 시신경에서 항— Vaxl 항체에 의해 Pax2를 제외한 Sdc2, Sdc3, Glpl이 침강되지 않으며, 헤파린 코팅된 사파로즈 4B(sepharose) 레진 (resine)을 이용하여 HS-사파로즈 4B 레진에 의해 Vaxl 단백질이 침강되는 것을 확인함으로써, 상기 Vaxl은 헤파린과 경쟁하며, 헤파란 설페이트 프로테오글리칸 단백질의 헤파란 설페이트 측면 사슬과 결합함을 확인하였다 (도 9e 및 도 9f 참조) .  In addition, the present inventors performed immunoprecipitation using the optic nerve of E14.5 mice to which high concentrations of heparin were added in order to confirm that Vaxl binds to the heparan sulfate (HS) side chain of syndecane 2. Heparin-treated optic nerves did not precipitate Sdc2, Sdc3, Glpl except Pax2 by anti-Vaxl antibodies, and HS-safarose 4B resin using heparin-coated sapharose 4B resin. By confirming that the Vaxl protein was precipitated, the Vaxl competed with heparin and confirmed binding to the heparan sulfate side chain of the heparan sulfate proteoglycan protein (see FIGS. 9E and 9F).
또한, 본 발명자들은 Vaxl의 망막신경절세포 축삭 성장 자극 효과가 In addition, the present inventors have found that Vaxl stimulates the retinal ganglion cell axon growth
Vaxl의 헤파린 당사슬에의 결합에 의해 매개하는지 확인하기 위하여, Vaxl을 및 해파리나제 Khepar inase I ) 또는 콘드로이티나제 ABCCchondro inase ABC, ChnaseABC)의 존재 하에 처리한 결과 Vaxl의 망막신경절세포 축삭 성장효과 및 축삭 내 Vaxl 축적이 해파리나제 I 처리에 의해 저해됨을 확인하였다 (도 10a 참조) . To determine whether Vaxl is mediated by binding to heparin oligosaccharides, Vaxl was treated in the presence of jellyfishase Khepar inase I) or chondroitinase ABCCchondro inase ABC, ChnaseABC). It was confirmed that Vaxl accumulation in axons was inhibited by jellyinase I treatment (see FIG. 10A).
또한, 본 발명자들은 Vaxl의 해파란 설페이트 프로테오글리칸에 결합이 0tx2 당 결합 모티프와 상동성을 가지는 Vaxl 아미노산 서열 101 내지 112에 의해 매개되는지를 확인하고자, 이 부위를 암호화하는 바이오틴 (biot in)표지된 Vaxl KR-펩타이드 (KR-bio) 또는 두 개와 중요한 당 결합 잔기 101번 리신 및 102번 알기닌 (Lysl01-Argl02(KR))을 알라닌 (Ala-Ala(AA))으로 치환한 M-bio 펩타이드, 또는 Lysl01-Argl02(KR)을 Ala-Ala(AA)로 치환한 Vaxl(KR/AA)-His 돌연변이 단백질을 처리한 신경망막 절편체를 이용하여 면역염색법 및 망막신경절세포 축삭 성장을 측정한 결과 KR-bio 펩타이드를 함께 처리한 신경망막 절편체에서 망막신경절세포 축삭의 성장이 감소하고, Vaxl(KR/AA) 돌연변이 단백질을 처리한 신경망막 절편체에서 망막신경절세포 축삭의 성장이 감소하는 것을 확인함으로써, 상기 Vaxl이 당 결합 모티프를 이용해 해파란 설페이트와 결합하여 망막신경절세포 축삭의 성장을 자극함을 확인하였다 (도 10c 참조) . . In addition, the present inventors have carried out a biotin-labeled Vaxl encoding this site to determine whether the binding to the heparan sulfate proteoglycan of Vaxl is mediated by Vaxl amino acid sequences 101-112 having homology with the 0tx2 sugar binding motif. KR-peptide (KR-bio) or M-bio peptide, or Lysl01, substituted with alanine (Ala-Ala (AA)) for the two and important sugar binding residues 101 lysine and 102 arginine (Lysl01-Argl02 (KR)) Immunostaining and retinal ganglion cell axon growth were measured using neural retinal fragments treated with Vaxl (KR / AA) -His mutant protein substituted with -Agl02 (KR) with Ala-Ala (AA). KR-bio Peptides Treated Together Vaxl is a sugar-binding motif by reducing the growth of retinal ganglion cell axons in neural retinal sections and reducing the growth of retinal ganglion cell axons in neural retinal sections treated with Vaxl (KR / AA) mutant proteins. It was confirmed that the stimulation of the growth of retinal ganglion cell axons in combination with haeparan sulfate using (see FIG. 10C). .
또한, 본 발명자들은 VaxKKR/AA)돌연변이 단백질의 분비와 신데칸 2와의 결합력을 측정하기 위하여, Vaxl 또는 Vaxl(KR/AA) 과발현 HEK293T 세포의 성장배지에 해파린을 첨가 후 성장배지에 추출된 Vaxl및 Vaxl(KR/AA)단백질의 양을 헤파린 무첨가 성장배지와 비교하였고, Sdc2와 Vaxl 또는 Vaxl(KR/M) 과발현 HEK293T 세포를 이용해 면역침강법 및 웨스턴 블럿팅을 수행한 결과, Vaxl및 Vaxl(KR/M) 단백질과 Sdc2와의 상호작용함을 확인하였다 (도 lib참조) . 또한, Vaxl 또는 Vaxl(KR/AA)를 과발현한 293T 세포 성장배지를 첨가한 C0S7 세포를 이용해 면역염색법을 수행한 결과 VaxKKR/AA) 과발현 HEK293T 세포 성장배지를 첨가한 C0S7 세포에서 Vaxl(KR/AA)가 세포 내로 이동하지 못하는 것을 확인함으로써, 상기 Vaxl의 당 결합 모티프 (mot i f )가 헤파란 설페이트 프로테오글리칸의 헤파란 설페이트에 결합하여 망막신경절세포 축삭 내로 이동하고 축삭의 성장을 유도함을 확인하였다 (도 11c 참조) .  In addition, the inventors of the present invention, VaxKKR / AA) mutant protein secretion and the binding force between the syndecan 2, Vaxl or Vaxl (KR / AA) Vaxl extracted in the growth medium after addition of heparin to the growth medium of overexpressing HEK293T cells And the amount of Vaxl (KR / AA) protein was compared with heparin-free growth medium, and immunoprecipitation and Western blotting were performed using Sdc2 and Vaxl or Vaxl (KR / M) overexpressing HEK293T cells. KR / M) protein and Sdc2 interaction (see Figure lib). In addition, immunostaining was performed using C0S7 cells containing 293T cell growth medium overexpressing Vaxl or Vaxl (KR / AA). Vaxl (KR / AA) was observed in C0S7 cells containing VaxKKR / AA) overexpressing HEK293T cell growth medium. ), The sugar binding motif of Vaxl binds to heparan sulfate of heparan sulfate proteoglycan, moves into retinal ganglion cell axon and induces axon growth (FIG. 11c).
또한, 본 발명자들은 Vaxl이 세포내 침투 후 세포질 반웅을 조절하여 망막신경절세포 축삭 성장올 자극하는지 또는 헤파란 설페이트 프로테오글리칸의 하위 신호를 활성화하여 망막신경절세포 축삭 성장을 자극하는지 확인하기 위하여, Sdc2, 및 Vaxl 또는 세포 표면 헤파란 설페이트 프로테오글리칸에 결합할 수 있지만 타겟 세포에 침투할 수 없는 Vaxl(WF/SR) 돌연변이를 과발현시킨 HEK293T 세포를 이용하여 면역침강법 및 웨스턴 블럿팅을 수행하고, Vaxl 또는 Vaxl(WF/SR) 과발현 HEK293T 세主 성장배지를 첨가한 C0S7 세포를 이용하여 면역염색법을 수행하고, Vaxl 또는 VaxKWF/SR) 과발현 C0S7 세포를 공동배양한 신경망막 절편체를 이용하여 면역염색ᅳ법 및 망막신경절세포 축삭의 방향성 측정을 수행한 결과, Vaxl(WF/SR)이 신데칸 2와 결합하지만, C0S7 세포 내에서 발견되지 않는 것을 통해 Vaxl(WF/SR) 돌연변이가 헤파란 설페이트 프로테오글리칸에 결합할 수 있지만 세포 내로 침투할 수 없음을 확인하였다. 또한,신경망막 절편체에서 Vaxl(WF/SR)과발현 C0S7 세포로 향해 성장하는 망막신경절세포 축삭의 수가 감소하는 것을 확인함으로써, 상기 Vaxl이 망막신경절세포 내로 침투하여 축삭의 성장을 유도함을 확인하였다 (도 12a 내지 도 12(1 참조) . In addition, to determine whether Vaxl stimulates retinal ganglion cell axon growth by regulating cytoplasmic reaction after intracellular infiltration, or activates a subsignal of heparan sulfate proteoglycan, Sdc2, and Immunoprecipitation and Western blotting were performed using HEK293T cells overexpressing Vaxl (WF / SR) mutations that could bind to Vaxl or cell surface heparan sulfate proteoglycans but could not penetrate target cells. WF / SR) Immunostaining using C0S7 cells with HEK293T overgrowth growth medium, and immunostaining and retinal retinal tissue using co-cultured retinal explants of Vaxl or VaxKWF / SR) overexpressing C0S7 cells Orientation measurements of ganglion cell axons showed that Vaxl (WF / SR) binds to synthecan 2 but not in C0S7 cells. Vaxl (WF / SR) through the undiscovered The mutations were able to bind heparan sulfate proteoglycans but were unable to penetrate into the cells. In addition, it was confirmed that the number of retinal ganglion cell axons that grow toward the Vaxl (WF / SR) and expressing C0S7 cells in the neural retinal fragments decreased, thereby confirming that Vaxl penetrated into the retinal ganglion cells to induce axon growth. 12A-12 (see 1).
또한, 본 발명자들은 세포질 내에서 Vaxl의 기능을 확인하기 위하여, 293T 세포에 과발현된 GST-Vaxl 단백질과 상호작용하는 단백질 복합체를 정제 및 은염색 (si lver staining) 후 MALDI-T0F로 단백질을 확인한 결과, Vaxl과 리보솜 '구성단백질 (r ibosomal component )인 리보솜 단백질 (ribosomal proteins, RPs) Lll , L23A, 126, S14 및 S16, 번역 조절자 ( translat ion regulator)인 elF(eukaryot ic translat ion init iat ion factor ) 3B및 3C, 및 HSPA1A( chaperon heat shock 70-KD protein 1A)인 것을 확인함으로써, 상기 Vaxl은 세포질 En2가 망막신경절세포 축삭 성장을 조절하는 것과 유사한 기전인 국소 단백질 합성에 관여함을 확인하였다 (도 13a 참조) . In addition, the present inventors purified the protein complex interacting with the GST-Vaxl protein overexpressed in 293T cells in order to confirm the function of Vaxl in the cytoplasm, and confirmed the protein by MALDI-T0F after staining (si lver staining) Xl Ribosomal proteins (RPs) Lll, L23A, 126, S14 and S16, Vaxl and ribosomal `` r ibosomal component '' , elF (eukaryot ic translat ion init iat ion factor, translating ion regulator) By identifying 3B and 3C, and HSPA1A (chaperon heat shock 70-KD protein 1A), Vaxl was found to be involved in local protein synthesis, a mechanism similar to cytoplasmic En2 that regulates retinal ganglion cell axon growth ( 13a).
또한, 본 발명자들은 Vaxl이 국소 단백질 합성에 관여하는지 확인하기 위하여, Vaxl 또는 Vaxl( VSR) 돌연변이 단백질이 포함된 배지에서 배양한 E13.5 마우스의 신경망막 절편체를 아용하여 면역염색법 및 망막신경절세포 축삭 성장의 측정을 수행한 결과, Vaxl 과발현된 신경망막 절편체에서 망막신경절세포 축삭의 단백질 합성율 및 성장이 증가하는 반면, Vaxl(WF/SR) 과발현된 신경망막 절편체의 망막신경절세포 축삭의 단백질 합성율 및 성장이 감소하는 것을 확인함으로써, 상기 Vaxl이 세포 내로 이동하여 국소 단백질 합성을 촉진하고, 망막신경절세포 축삭의성장을 자극함을 확인하였다 (도 13a및 도 13d 참조) .  In addition, the present inventors have used immunostaining and retinal ganglion cells using neural retinal fragments of E13.5 mice cultured in a medium containing Vaxl or Vaxl (VSR) mutant protein to determine whether Vaxl is involved in local protein synthesis. As a result of measurement of axon growth, the protein synthesis rate and growth of retinal ganglion cell axons in Vaxl overexpressed neural retinal sections increased, whereas the proteins of retinal ganglion cell axons of Vaxl (WF / SR) overexpressed neural retinal sections were increased. By confirming the decrease in synthesis rate and growth, it was confirmed that Vaxl migrated into cells to promote local protein synthesis and stimulate the growth of retinal ganglion cell axons (see FIGS. 13A and 13D).
또한, 본 발명자들은 Vaxl-/- 마우스에서 손상된 망막신경절세포 축삭이 세포외 Vaxl 단백질에 의해 성장이 회복되는지 확인하기 위하여, Vaxl 재조합 단백질, Vax WF/SR) 재조합 단백질을 포함한 콜라겐 겔을 VaxllacZ/ lacZ 마우스의 뇌 제 3뇌실에 이식하고 면역염색법을 수행한 결과, Vaxl 단백질을 이식한 경우와 달리 VaxKWF/SR) 단백질을 이식한 마우스의 망막신경절세포 축삭의 시상하부로의 접근 및 성장이 잘 이뤄지지 않는 것을 확인하였고, RoboIn addition, the inventors of the present invention, in order to determine whether the retinal ganglion cell axons damaged in the Vaxl-/-mice are recovered by extracellular Vaxl protein, VaxllacZ / lacZ collagen gel containing the recombinant protein, Vaxl WF / SR) After transplantation into the third brain ventricle of the mouse and immunostaining, the retinal ganglion cells of the mouse transplanted with VaxKWF / SR) protein were different from those of the Vaxl protein. We found that the axon's hypothalamus approached and grew poorly, and Robo
1-Fc 분절이 흔합된 콜라겐 겔을 이용하여 확인한 결과, 복측 시상하부에서 망막신경절세포 축삭의 성장은 Vaxl-His와 Robo 1-Fc가 흔합된 콜라겐 겔을 이식하였을 때, 더욱 강화된 효과를 나타내는 것을 확인함으로쎄 상기 Vaxl 단백질은 축삭 유도 분자의 발현에 비의존적으로 축삭형질 (axoplasm)에 침투하여 망막신경절세포 축삭의 성장을 자극함올 확인하였다 (도 14a 참조) . 또한, 본 발명자들은 Vaxl과 Sl it2 사이의 관계를 확인하기 위하여, 농도별 Vaxl및 Sl it2단백질을 처리한 신경망막 절편체를 이용하여 면역염색법 및 망막신경절세포 축삭 길이 측정을 수행한 결과, Vaxl 단독 처리군보다 Sl i t2를 함께 처리한 군에서 망막신경절세포 축삭의 성장이 억제되고, 축삭의 길이가 감소하며, Vaxl은 망막신경절세포 축삭 내로 침투가 Sl i t2에 의해 크게 영향을 받지 않는 것을 확인하였고, Vaxl과 Robo 1-Fc를 함께 처리하여 배양하였을 때, 망막신경절세포의 축삭의 성장이 확연히 증가하는 것을 확인하였으며, Vaxl과 Sl i t2를 함께 처리한 군에서 서로 경쟁하는 것을 한번 더 확인함으로써, 상기 Vaxl과 Sl i t2가 헤파란 설페이트 프로테오글리칸에 경쟁적으로 결합하지 않으면서 Sl i t2와 상호간 길항작용 (reciprocal antagonism)함을 확인하였다 (도 14b 내지 도 14e 참조) . 또한, 대뇌 절편체에 Vaxl , Vaxl(R152S) 및 Vaxl(WF/SR)을 처리하고 면역염색법을 수행한 결과, Vaxl 단백질은 망막신경절세포 축삭 뿐만 아니라 대뇌신경 축삭의 성장을 유도하는 것을 확인함으로써 Vaxl 유전자 결핍 생쥐 및 인간에서 나타나는 다양한 신경 축삭의 뇌 중선 통과 역시 망막신경절세포 축삭과 유사하게 Vaxl 단백질에 의해 조절될 가능성을 확인하였다 (도 14f 참조) . The growth of retinal ganglion cell axons in the ventral hypothalamus showed a stronger effect when transplanted with a collagen gel containing Vaxl-His and Robo 1-Fc. The Vaxl protein was confirmed to infiltrate the axoplasm and stimulate the growth of retinal ganglion cell axons independent of the expression of axon inducing molecules (see FIG. 14A). In addition, the present inventors performed immunostaining and retinal ganglion cell axon length measurement using neural retinal sections treated with Vaxl and Sl it2 proteins by concentration, in order to confirm the relationship between Vaxl and Sl it2, Vaxl alone. Retinal ganglion cell axon growth was inhibited, axon length was decreased, and Vaxl confirmed that infiltration into retinal ganglion cell axons was not significantly affected by Sl i t2 in the group treated with Sl i t2. When the culture was treated with Vaxl and Robo 1-Fc together, the growth of axons of retinal ganglion cells was remarkably increased, and once again, the group treated with Vaxl and Sl i t2 competed with each other. , The Vaxl and Sl i t2 confirms that reciprocal antagonism with Sl i t2 without competitive binding to heparan sulfate proteoglycans Was (see Fig. 14b through 14e). In addition, Vaxl, Vaxl (R152S) and Vaxl (WF / SR) were treated on the cerebral explants and immunostained. As a result, Vaxl protein was confirmed to induce the growth of cerebral nerve axons as well as retinal ganglion cell axons. The transmembrane midline passage of various neuronal axons in gene deficient mice and humans was also confirmed to be regulated by Vaxl protein similarly to retinal ganglion cell axons (see FIG. 14F).
아을러, 본 발명자들은 상기 결과들을 통해 포유류 뇌의 복측 시상하부의 방사아교세포 및 신경간세포에서 발현되어 세포 밖으로 분비되고, 상기 분비된 Vaxl이 신데칸을 포함한 해파란 설페이트 프로테오글리칸에 결합하여 망막신경절세포 축삭 내로 침투한 후, 축삭형질에서 국소 단백질 합성을 촉진하여 망막신경절세포 축삭의 성장을 자극함을 확인함으로써, 상기 Vaxl 단백질에 의한 망막신경절세포 축삭 성장 조절 모델을 완성하였다 (도 14g 참조). In addition, the present inventors are expressed in the radioglia and neural stem cells of the ventral hypothalamus of the mammalian brain through the above results and secreted out of the cells, and the secreted Vaxl binds to the blue sea sulfate sulfate proteoglycan including syndecan and retinal ganglion cells. After infiltrating into the axon, it was confirmed that the retinal ganglion cell axon growth was stimulated by promoting local protein synthesis in the axon morphology. Reference).
따라서, 본 발명의 복측 시상하부 및 대뇌 중격 (septum)에서 분비된 Vaxl은 망막신경절세포 및 대뇌교차신경 축삭에 존재하는 헤파란 설페아트 프로테오글리칸의 세포외 당 그룹에 결합하여 축삭형질 (axonplasm)로 침투한 후, 국소 단백질 합성을 활성화하여 망막신경절세포 축삭의 성장을 촉진시키므로, 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물의 유효성분으로 유용하게 사용될 수 있다. 또한, 본 발명은 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포를 유효성분으로 함유하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물올 제공한다.  Thus, Vaxl secreted from the ventral hypothalamus and cerebral septum of the present invention binds to the extracellular sugar group of heparan sulfate proteoglycan present in retinal ganglion cells and cerebral cross nerve axons and infiltrate into the axonplasm. After that, by activating local protein synthesis to promote retinal ganglion cell axon growth, it can be usefully used as an active ingredient of a pharmaceutical composition for promoting neuronal regeneration or neuronal growth. The present invention also provides a pharmaceutical composition for promoting neuronal regeneration or neuronal growth containing a vector or cell comprising a polynucleotide encoding Vax protein as an active ingredient.
상기 Vax 단백질은 서열번호 1로 기재되는 아미노산 서열을 갖는 Vaxl 단백질 또는 서열번호 2로 기재되는 아미노산 서열을 갖는 Vax2 단백질로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하나 이에 한정되지 않는다.  The Vax protein is any one selected from the group consisting of a Vaxl protein having an amino acid sequence as set out in SEQ ID NO: 1 or a Vax2 protein having an amino acid sequence as set out in SEQ ID NO: 2, but is not limited thereto.
상기 백터는 선형 DNA, 풀라스미드 DNA 또는 재조합 바이러스성 백터인 것이 바람직하나 이에 한정되지 않는다.  The vector is preferably, but not limited to, linear DNA, fulllasmid DNA or recombinant viral vector.
상기 재조합 바이러스는 레트로 바이러스 (retrovirus), 아데노 바이러스 (adenovirus), 아데노 부속 바이러스 (adeno-associated virus, AAV), 해르페스 심플렉스 바이러스 (herpes simplex virus), 렌티바이러스 (lentivirus)로 구성되는 군으로부터 선택되는 어느 하나인 것이 바람직하나 이에 한정되지 않는다.  The recombinant virus is from the group consisting of retrovirus, adenovirus, adeno-associated virus (AVA), herpes simplex virus, lentivirus. It is preferably any one selected, but is not limited thereto.
상기 세포는 조혈 줄기세포 (hematopoietic stem cells), 수지상 세포 (dendritic cells), 자가이식 종양세포 (autologous tumor cells) 및 정착 종양세포 ( established tumor cells)로 구성되는 군으로부터 선택되는 어느 하나인 것이 바람직하나, 이에 한정되지 않는다.  Preferably, the cell is any one selected from the group consisting of hematopoietic stem cells, dendritic cells, autologous tumor cells, and established tumor cells. It is not limited to this.
본 발명의 복측 시상하부 및 대뇌 중격에서 분비된 Vax 단백질은 망막신경절세포 및 대뇌교차신경 축삭에 존재하는 헤파란 설페이트 프로테오글리칸의 세포외 당 그룹에 결합하여 축삭형질로 침투한 후, 국소 단백질 합성을 활성화하여 망막신경절세포 축삭의 성장을 촉진시키므로, 상기Vax protein secreted from the ventral hypothalamus and cerebral septum of the present invention is heparan sulfate present in retinal ganglion cells and cerebral cross-neuronal axon After binding to the extracellular sugar group of the proteoglycan and penetrating into the axon morphology, it activates local protein synthesis to promote retinal ganglion cell axon growth.
Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물의 유효성분으로 유용하게 사용될 수 있다. 상기 본 발명의 조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 더 포함할 수 있다. ' Vectors or cells comprising polynucleotides encoding Vax proteins may be usefully used as active ingredients of pharmaceutical compositions for promoting neuronal regeneration or neuronal growth. The composition of the present invention may further comprise suitable carriers, excipients and diluents commonly used in the manufacture of pharmaceutical compositions. '
상기 본 발명의 조성물은 비경구 투여할 수 있으며, 비경구 투여시 피부 외용 또는 복강내주사, 직장내주사, 피하주사, 정맥주사, 근육내 주사 또는 흉부내 주사 주입방식 또한 고형체 이식을 선택하는 것이 바람직하며, 이에 한정되는 것은 아니다.  The composition of the present invention can be administered parenterally, when parenteral administration, external skin or intraperitoneal injection, rectal injection, subcutaneous injection, intravenous injection, intramuscular injection or intrathoracic injection injection method to select a solid body transplant It is preferable, but it is not limited to this.
상기 본 발명의 조성물은, 각각 통상의 방법에 따라 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 상기 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비를, 만니를, 자일리를, 에리스리를, 말티를, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 샐를로즈, 메틸 셀를로즈, 미정질 셀를로스, 폴리비닐 피를리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 회석제 또는 부형제를 사용하여 조제된다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제,현탁제,유제,동결건조 제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜 (propylene glycol ) , 폴리에틸렌 글리콜, 을리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔 (wi tepsol ) , 마크로골, 트원 ( tween) 61 , 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.  The composition of the present invention may be used in the form of external preparations, suppositories, and sterile injectable solutions, respectively, according to a conventional method. Carriers, excipients, and diluents that may be included in the composition include lactose, dextrose, sucrose, sorbbi, manny, xili, erysri, malty, starch, acacia rubber, alginate, gelatin, calcium phosphate. Calcium silicate, salose, methyl cellulose, microcrystalline cellulose, polyvinyl pyridone, water, methyl hydroxy benzoate, propyl hydroxy benzoate, talc, magnesium stearate and mineral oil. In the case of formulation, it is prepared using a diluent or excipient such as fillers, extenders, binders, wetting agents, disintegrating agents and surfactants which are commonly used. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, suppositories. As the non-aqueous solvent and the suspending agent, propylene glycol, polyethylene glycol, vegetable oils such as evolved oil, injectable esters such as ethyl oleate, and the like can be used. As a base of suppositories, wi tepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
본 발명의 조성물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나, 바람직한 효과를 위해서, 상기 조성물은 1일 0.0001 내지 1 g/kg으로, 바람직하게는 0.001 내지 200 mg/kg으로 투여하는 것이 바람직하나 이에 한정되지 않는다. 상기 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다. 또한, 본 발명은 Preferred dosages of the compositions of the present invention are determined by the condition and weight of the patient, Depending on the degree, drug form, route of administration, and duration, it may be appropriately selected by those skilled in the art. However, for the desired effect, the composition is preferably administered at 0.0001 to 1 g / kg, preferably 0.001 to 200 mg / kg per day, but is not limited thereto. The administration may be administered once a day, or may be divided several times. The dosage does not limit the scope of the invention in any aspect. In addition, the present invention
1) 피검체로부터 수득한 세포에 피검물질을 처리하고 신경축삭 성장을 측정하는 단계;  1) treating the cells obtained from the subject with the test substance and measuring neuronal axon growth;
2) 상기 단계 1)의 세포에서 Vaxl 및 해파란 설페이트 프로테오글리칸의 결합수준을 측정하는 단계 ;  2) measuring the binding level of Vaxl and hapharan sulfate proteoglycans in the cells of step 1);
3) 상기 단계 2)의 Vaxl 및 헤파란 설페이트 프로테오글리칸 결합수준올 무처리 대조.군과 비교하여 증가시키는 피검물질을 선별하는 단계를 포함하는 신경세포 재생 또는 신경세포 성장 촉진용 후보물질 스크리닝 방법을 제공한다.  3) Vaxl and heparan sulphate proteoglycan binding level of the step 2) non-treated control. Provides a method for screening a candidate substance for nerve cell regeneration or neuronal growth promotion comprising the step of selecting a test substance to increase compared to the group. do.
상기 결합수준은 면역형광법, 질량분석법, 단백질칩, 웨스턴 블럿팅 및 ELISA로 구성된 군으로부터 선택되는 어느 하나인 것이 바람직하나 이에 한정되지 않는다.  The binding level is preferably any one selected from the group consisting of immunofluorescence, mass spectrometry, protein chips, western blotting and ELISA, but is not limited thereto.
본 발명의 복측 시상하부' 및 대뇌 증격에서 분비된 Vaxl은 망막신경절세포 및 대뇌교차신경 축삭에 존재하는 해파란 설페이트 프로테오글리칸의 세포외 당 그룹에 결합하여 축삭형질로 침투한 후, 국소 단백질 합성을 활성화하여 망막신경절세포 축삭의 성장을 촉진시키므로, 신경세포 재생 또는 신경세포 성장 촉진용 후보물질 스크리닝으로 유용하게 사용될 수 있다. 또한, 본 발명은 약학적으로 유효한 양의 Vax 단백질을 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 재생 방법을 제공한다. 또한, 본 발명은 약학적으로 유효한 양의 Vax 단백질올 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 성장 촉진 방법을 제공한^^ Vaxl secreted from the ventral hypothalamus ' and cerebral enlargement of the present invention binds to the extracellular sugar group of the heparan sulfate proteoglycan present in retinal ganglion cells and cerebral cross nerve axons, infiltrate into the axon morphology, and activate local protein synthesis. Since it promotes the growth of retinal ganglion cell axons, it can be usefully used as a screening candidate for neuronal regeneration or neuronal growth promotion. The present invention also provides a method for regenerating neurons comprising administering a pharmaceutically effective amount of Vax protein to a subject injured in a neuronal cell. In addition, the present invention provides a method for promoting neuronal growth comprising administering a pharmaceutically effective amount of Vax proteinol neurons to a damaged individual.
또한, 본 발명은 약학적으로 유효한 양의 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 벡터 또는 세포를 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 재생 방법을 제공한다.  In addition, the present invention provides a method for regenerating neurons comprising administering a vector or cell comprising a polynucleotide encoding a pharmaceutically effective amount of Vax protein to a subject injured.
또한, 본 발명은 약학적으로 유효한 양의 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포를 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 성장 촉진 방법을 제공한다.  The present invention also provides a method for promoting neuronal growth, comprising administering a vector or cell comprising a polynucleotide encoding a pharmaceutically effective amount of Vax protein to an individual injured with neurons.
본 발명의 복측 시상하부 및 대뇌 중격에서 분비된 Vax 단백질은 망막신경절세포 및 대뇌교차신경 축삭에 존재하는 헤파란 설페이트 프로테오글리칸의 세포외 당 그룹에 결합하여 축삭형질로 침투한 후, 국소 단백질 합성을 활성화하여 망막신경절세포 축삭의 성장을 촉진시키므로, 상기 Vax 단백질, 또는 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포를 신경세포가 손상된 개체에 투여하여 신경세포 재생 또는 신경세포 성장 촉진 방법으로 유용하게 사용될 수 있다. 또한, 본 발명은 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물로 사용하기 위한 Vax 단백질의 용도를 제공한다.  Vax protein secreted from the ventral hypothalamus and cerebral septum of the present invention binds to the extracellular sugar group of heparan sulfate proteoglycan present in retinal ganglion cells and cerebral cross nerve axons, infiltrate into the axon morphology, and then activate local protein synthesis. By promoting the growth of retinal ganglion cell axons, a vector or cell containing the Vax protein, or a polynucleotide encoding the Vax protein, is administered to an individual injured with nerve cells, which is useful as a method for promoting nerve cell regeneration or nerve cell growth. Can be used. The present invention also provides the use of Vax protein for use as a pharmaceutical composition for promoting neuronal regeneration or neuronal growth.
또한, 본 발명은 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물로 사용하기 위한 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포의 용도를 제공한다.  The present invention also provides the use of a vector or cell comprising a polynucleotide encoding a Vax protein for use as a pharmaceutical composition for promoting neuronal regeneration or neuronal growth.
본 발명의 복측 시상하부 및 대뇌 중격에서 분비된 Vax 단백질은 망막신경절세포 및 대뇌교차신경 축삭에 존재하는 헤파란 설페이트 프로테오글리칸의 세포외 당 그룹에 결합하여 축삭형질로 침투한 후, 국소 단백질 합성을 활성화하여 망막신경절세포 축삭의 성장을 촉진시키므로, 상기 Vax 단백질, 또는 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물의 용도로 유용하게 사용될 수 있다. 이하, 본 발명을 실시예에 의하여 상세히 설명한다. Vax protein secreted from the ventral hypothalamus and cerebral septum of the present invention binds to the extracellular sugar group of heparan sulfate proteoglycan present in retinal ganglion cells and cerebral cross nerve axons, infiltrate into the axon morphology, and activate local protein synthesis. By promoting the growth of retinal ganglion cell axons, the vector or cell comprising the Vax protein, or polynucleotide encoding the Vax protein is a pharmaceutical composition for promoting neuronal regeneration or neuronal growth. It can be usefully used for the purpose. Hereinafter, the present invention will be described in detail by way of examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본  However, the following examples are only to illustrate the present invention,
실시예에 의하여 한정되는 것은 아니다. It is not limited by the embodiment.
<실시예 1> Vaxl 과발현 (over express ion) , 낙아웃 (knock-out) 및 낙인 (Knock-in) 동물모델 제작 Example 1 Fabrication of Vaxl Over Express Ion, Knock-out, and Knock-in Animal Models
<1-1> Vaxl낙아웃 (knock-out)마우스로부터 신경망막 (neural retina, NR) 및 복측시상하부 (ventral hypothalamic, νΗΓ) 절편체 분리 및 배양  <1-1> Isolation and culture of neural retina (NR) and ventral hypothalamic (νΗΓ) fragments from Vaxl knock-out mice
VaxllacZ/+ 및 Vaxl-/-낙아웃 (knock-out ) 및 VaxllacZ/ lacZ 낙인 (knock-in)마우스는 Bertuzzi et al . , 1999; Hal l one t et al . , 1999에 기재된 방법에 따라 제작하였다. 상기 획득한 마우스의 신경망막 (neural ret ina, NR) 및 복측 시상하부 (ventral hypothalamic , vHT) 절편체 (explant )는 Sato et al . , 1994에 기재된 방법으로 획득하였다. 상기 획득한 신경망막 또는 복측 시상하부 절편체을 콜라겐 (col lagen)혼합액 ( Invi trogen)에 첨가하고,신경망막 또는 복측 시상하부 절편체가 포함된 콜라겐 흔합액을 10 / g/m의 폴리 -L-리신 (poly-L-lysine) 및 10 «g/ηι 의 라미닌 ( laminin)으로 코팅된 플레이트에 첨가한 후, 37°C에서 1 시간 동안 배양하여 겔화 (gel l ing)하였다. 그 다음, B27 보충제 ( Invi trogen)을 포함한 신경기저 배지 (Neurobasal medium)로 배양하였다.  VaxllacZ / + and Vaxl-/-knock-out and VaxllacZ / lacZ knock-in mice are described in Bertuzzi et al. , 1999; Hal l one t et al. , According to the method described in 1999. Neural ret ina (NR) and ventral hypothalamic (vHT) explants of the obtained mice were obtained from Sato et al. , Obtained by the method described in 1994. The obtained neural retinal or ventral hypothalamic fragment was added to a collagen (col lagen) mixture, and the collagen mixture containing the neural retinal or ventral hypothalamic fragment was added to the poly-L-lysine at 10 / g / m. (poly-L-lysine) and laminin of 10 «g / ηι were added to the plate, and then gelled by incubating for 1 hour at 37 ° C. It was then incubated in Neurobasal medium containing B27 supplement (Invi trogen).
<1-2> Vaxl과발현 초파리 제작 <1-2> Vaxl Overexpression Drosophila Production
Bloomington stock center로부터 Ptc-Gal4, UAS-DsRed, UAS-Sdc , UAS-Dlp, 및 sdc23 초파리를 획득하였다. 또한, 마우스 Vaxl (서열번호 1)을 pUAS-EGFP 백터로 클로닝하여 pUAS— Vaxl— EGFP 백터를 획득하고, 상기 백터를 초파리에 주입하여 UAS-Vaxl-EGFP 초파리를 획득하였다. Ptc-Gal4>UAS-Vaxl-EGFP,UAS-DsRed; +의 3령기 애벌레 (Third instar larvae)는 Pt c-Ga 14>UAS-DsRed; TM6B 초파리 및 UAS-Vaxl-EGFP 초파리를 교차 교배하여 획득하였다. Ptc-Gal4>UAS-Vaxl-EGFP,UAS-DsRed;Sdc23의 3령기 애벌레는 Pt c-Ga 1 >UAS-DsRed; Sdc23 초파리 및 UAS-Vaxl-EGFP 초파리를 교차 교배하여 획득하였다. Ptc-Gal4>UAS-Vaxl-EGFP,UAS-DsRed;Sdc의 3령기 애벌레는 Ptc-Gal4>UAS-DsRed; Sdc 초파리 및 UAS-Vaxl-EGFP 초파리를 교차 교배하여 획득하였다. Ptc-Gal4>UAS-Vaxl-EGFP,UAS-DsRed;Dlp의 3령기 애벌레는 Pt c-Ga 14>UAS-DsRed; Dip 초파리 및 UAS-Vaxl-EGFP 초파리를 교차 교배하여 획득하였다. Ptc-Gal4, UAS-DsRed, UAS-Sdc, UAS-Dlp, and sdc23 Drosophila were obtained from the Bloomington stock center. In addition, the mouse Vaxl (SEQ ID NO: 1) was cloned into a pUAS-EGFP vector to obtain a pUAS- Vaxl-EGFP vector, and the vector was injected into a fruit fly to obtain a UAS-Vaxl-EGFP Drosophila. Ptc-Gal4> UAS-Vaxl-EGFP, UAS-DsRed; Third instar larvae of + were obtained by cross-crossing Pt c-Ga 14>UAS-DsRed; TM6B Drosophila and UAS-Vaxl-EGFP Drosophila. Tertiary larvae of Ptc-Gal4> UAS-Vaxl-EGFP, UAS-DsRed; Sdc23 were obtained by cross-crossing Pt c-Ga 1>UAS-DsRed; Sdc23 Drosophila and UAS-Vaxl-EGFP Drosophila. Ptc-Gal4> UAS-Vaxl-EGFP, UAS-DsRed; Tertiary larvae of Sdc include Ptc-Gal4>UAS-DsRed; Sdc Drosophila and UAS-Vaxl-EGFP Drosophila were obtained by cross crossing. Ptc-Gal4> UAS-Vaxl-EGFP, UAS-DsRed; Tertiary larvae of Dlp include Pt c-Ga 14>UAS-DsRed; Dip Drosophila and UAS-Vaxl-EGFP Drosophila were obtained by cross crossing.
<실시예 2> Vaxl의 비세포-자율적 (non-cel l-automonous) 망막신경절세포 (retinal gangl ion cel l , RGC) 축삭성장조절 Example 2 Non-cel l-automonous Retinal Ganglion Cell (RGC) Axon Growth Regulation of Vaxl
<2-l> Vaxl결핍 마우스 (Vaxl-/-)에서 정상적인 시신경교차 (optic chiasm, 0C) 형성 세포의 발달 확인  Development of normal optic nerve crossing (0C) forming cells in <2-l> Vaxl-deficient mice (Vaxl-/-)
Vaxl은 안병 (opt ic stalk, OS) 및 시신경 교차 (opt ic chiasm, 0C)와 같은 시각경로 구조 (opt ic pathway structure)에 위치한 세포에서 발현되고, 망막신경절세포 축삭의 섬유속연축 ( fasciculat ion) 및 시신경교차의 형성에 있어서 중요한 역할을 한다고 보고되고 있다 (Bertuzzi et al . , 1999; Hal l one t et al . , 1999) . 따라서 , Vaxl이 시각경로 구조에 미치는 영향을 확인하기 위하여, Vaxl 결핍 마우스 (Vaxl-/-)의 시신경교차 형성 세포를 이용하여 면역염색법 ( immunostaining)을 수행하였다.  Vaxl is expressed in cells located in opt ic pathway structures, such as opt ic stalk (OS) and optic nerve cross (opt ic chiasm, 0C), and fasciculat ion of retinal ganglion cell axons. And an important role in the formation of optic nerve crossing (Bertuzzi et al., 1999; Hal l one t et al., 1999). Therefore, in order to confirm the effect of Vaxl on the visual pathway structure, immunostaining was performed using optic cross-crossing cells of Vaxl deficient mice (Vaxl − / −).
구체적으로, 상기 실시예 <1— 1〉에 기재된 방법으로 획득한 Vaxl+/+ 및 Vaxl-/- 배자기 14.5(E14.5)된 마우스로부터 적출한 뇌를 절단하여 뇌 섹션 (sect ion) (수직 (coronal ) : 12 )을 획득하였다. 상기 뇌 섹션을 1 XPBS로 세척하고 4°C에서 2 내지 16 시간 동안 4¾(v/v) 파라포름알데하이드 (paraformaldhyde , PFA)/PBS로 고정하고, 4°C에서 16 시간 동안 20¾(w/v)수크로스 (sucrose)/PBS용액으로 배양한 후 OCT배지로 침투하여 동결시켰다. 상기 동결된 뇌 섹션은 1 시간 동안 0.2% Tr itonX-100 , 5% 정상 당나귀 혈청 (normal donkey serum) 및 2%소혈청알부민 (bovine serum albumen, BSA)이 포함된 차단 용액 (blocking solution)으로 배양한 후, 4°C에서 16 시간 동안, 래빗 (rabbit) 항 -Vaxl 항체 (Mui et al . , 2005) (초록), 신경간세포 (neural progenitor cells, NPC) 마커인 Sox2를 시각화하기 위한 고트 (goat) 항 -Sox2 항체 (Santa Cruz Biotechnology) (빨강) 및 발생 중인 분열 후 신경세포 (post-mitotic neuronal) 마커인 튜블린 -베타 I II (tubul in-betal 11 )을 시각화하기 위한 마우스 (mouse) 항 -Tujl 항체 (Covance) (파랑)로 반웅시킨 후, PBS로 세 번 세척하였다. 그 다음, 상은에서 2시간 동안 1:1000으로 희석한 Alexa488, Cy3또는 Cy5ᅳ접합 이차 항체 (Jackson ImmunoResearch Laboratories, West Glove, PA, USA)와 함께 반웅시키고, PBS로 세척한 후 Zeiss LSM710공초점 현미경을 이용해 시각화하였다 (도 la). 또한, 상기와 같이 뇌 세션을 고정, 침투 및 블럿킹 (blocking)하고, 항 -Vaxl 항체 (초록), 항-네스틴 (nest in, RC2) 항체 (빨강) (Millipore)를 이용하여 면역염색하고 시각화하였다 (도 lb). Specifically, brain sections extracted from Vaxl + / + and Vaxl − / − embryonic 14.5 (E14.5) mice obtained by the method described in Example <1-1> were cut into brain sections (vertical ion) (vertical). (coronal): 12). The brain sections were washed with 1 XPBS and fixed with 4¾ (v / v) paraformaldehyde (PFA) / PBS for 2-16 hours at 4 ° C. and 20¾ (w / v for 16 hours at 4 ° C.). After incubation with sucrose / PBS solution, the cells were infiltrated with OCT medium and frozen. The frozen brain section was 0.2% Tr itonX-100, 5% normal for 1 hour. Rabbit anti-Vaxl antibodies for 16 hours at 4 ° C after incubation with blocking solution containing normal donkey serum and 2% bovine serum albumen (BSA) (Mui et al., 2005) (Abstract), a goat anti-Sox2 antibody (Santa Cruz Biotechnology) (red) to visualize Sox2, a neural progenitor cell (NPC) marker, and the developing post-divisional nerve After reaction with mouse anti-Tujl Antibody (Covance) (blue) to visualize the post-mitotic neuronal marker, tubulin-beta I II (tubul in-betal 11), wash three times with PBS. It was. Next, the phases were reacted with Alexa488, Cy3 or Cy5 'conjugated secondary antibody (Jackson ImmunoResearch Laboratories, West Glove, PA, USA) diluted 1: 1000 for 2 hours at silver, washed with PBS and Zeiss LSM710 confocal microscope. Visualization using (Fig. La). In addition, the brain sessions were fixed, infiltrated and blocked as described above, and immunostained using anti-Vaxl antibody (green), anti-estin (nest in, RC2) antibody (red) (Millipore) Visualized (Figure lb).
그 결과, 도 la 및 도 lb에 나타낸 바와 같이, Vaxl이 망막신경절세포 축삭 유도 신호를 제공하는 Sox2(SRY box 2)ᅳ양성 신경간세 i 및 RC2가 탐색된 네스틴 -양성 방사아교세포 (radial glia)에서는 발견되지만 Tujl-양성 신경세포에서는 발견되지 않고 (도 la 및 도 lb, 1행), 시신경교차 형성 세포들이 Vaxl-/-마우스에서도 정상적으로 발달함을 확인함으로써 (도 la및 도 lb, 2행), 상기 Vaxl은 Sox2-양성 신경간세포 및 네스틴 -양성 방사아교세포에 존재하는 시신경교차에서 발현되고, Vax 1 결핍 마우스에서 시신경교차의 비정상적인 발달은 시신경교차 형성 복측 시상하부 세포의 잘못된 형성에 의한 것이 아님을 확인하였다 (도 la 및 도 lb).  As a result, as shown in FIGS. La and lb, Nestin-positive glia cells in which Vaxl provided Sox2 (SRY box 2) -positive neurons i and RC2, which provided retinal ganglion cell axon guidance signals. ), But not in Tujl-positive neurons (Fig. La and lb, row 1), but by confirming that optic nerve cross-forming cells develop normally in Vaxl-/-mice (Fig. La and lb, row 2). Vaxl is expressed in optic nerve crossings present in Sox2-positive neural stem cells and Nestin-positive radioglial cells, and abnormal development of optic nerve crossing in Vax 1 deficient mice is caused by incorrect formation of optic nerve cross-forming ventral hypothalamic cells. It was confirmed that it is not (Fig. La and lb).
<2-2> Vaxl에 의한 비세포ᅳ자율적 (non-ceU-autonomous) 망막신경절세포 축삭 성장조절 확인 <2-2> Confirmation of Axon Growth Regulation of Non-ceU-autonomous Retinal Ganglion Cells by Vaxl
Vaxl이 시신경교차 발달에 미치는 영향을 확인하기 위하여, Vaxl-/- 마우스에서 분리한 복측 시상하부 및 신경망막 절편체를 공동배양하여 망막신경절세포 축삭 성장의 방향성 관찰 및 측정을 수행하였다. 구체적으로, 상기 실시예 <1-1>에 기재된 방법으로 획득한 Vaxl 정상 마우스 (Vax+/+ , WT) 및 Vaxl 결핍 마우스 (Vax-/- , K0)의 E13.5 마우스로부터 분리한 복측 시상하부 (vHT) 및 신경망막 (NR) 절편체를 Vaxl+/+ vHT/Vaxl+/+ NR, Vaxl+/+ vHT/Vaxl-/- NR 및 Vaxl-/- vHT/Vaxl+/+ NR의 조합으로 48 시간 동안 공동배양한 후, 4°C에서 2 내지 16 시간 동안 4% PFA/PBS로 고정하고 상기 실시예 <2-1>과 같이 망막신경절세포 축삭 마커인 NF160을 시각화하기 위한 마우스 항 -NF160 항체 (DSHB) (빨강) 및 절편체의 핵을 시각화하기 위한 DAP1(4' , 6-diamidino-2-phenyl indole) (파랑)올 이용하여 면역염색하고 시각화하였다 (도 2b) , 그 후, 망막신경절세포 축삭 성장의 방향성을 측정하였다. 도 2a의 모식도와 같이 모든 의미있는 망막 축삭 성장 부위인 신경망막 절편체의 바깥쪽의 20 卿와 40 m 사이 부위를 노란 링 (r ing)으로 표시하였고, 망막 축삭 /다발의 끝에 평행한 선과 신경망막 절편체 (NR) 및 복측 시상하부 절편체 (vHT)의 중앙을 연결하는 선이 이루는 시계방향 각도를 측정하예 각도값이 0° 와 60° 사이 및 301° 와 360° 사이이면 양성 ( + ; 빨강) 방향, 61° 와 120° 사이 및 241° 와 300° 사이이면 중립 (0; 초록) 방향, 121° 와 240° 사이이면 음성 (ᅳ; 파랑) 방향으로 정의하여, 망막신경절세포 축삭 끝 (t ip)의 방향성 (도 2c) 및 노란 링 부위에서 망막신경절세포 축삭 축 (shaft )의 방향성 (도 2d)을 그래프화하였다 (도 2c 및 도 2d) . In order to confirm the effect of Vaxl on the development of cross-optic nerve, directional observation and measurement of retinal ganglion cell axon growth was performed by co-cultured ventral hypothalamus and neural retinal fragments isolated from Vaxl-/-mice. Specifically, the ventral hypothalamus isolated from E13.5 mice of Vaxl normal mice (Vax + / +, WT) and Vaxl deficient mice (Vax-/-, K0) obtained by the method described in Example <1-1>. (vHT) and neural retinal (NR) fragments were co-administered for 48 hours with a combination of Vaxl + / + vHT / Vaxl + / + NR, Vaxl + / + vHT / Vaxl-/-NR and Vaxl-/-vHT / Vaxl + / + NR After incubation, mouse anti-NF160 antibody (DSHB) for fixation with 4% PFA / PBS at 4 ° C. for 2 to 16 hours and for visualizing NF160, a retinal ganglion cell axon marker, as described in Example <2-1>. (Red) and immunostained and visualized with DAP1 (4 ′, 6-diamidino-2-phenyl indole) (blue) ol to visualize nuclei of sections (FIG. 2B), followed by retinal ganglion cell axon growth. Was measured. As shown in the schematic diagram of FIG. 2A, a region between 20 mm and 40 m of the outer surface of the neural retinal explant, which is a significant retinal axon growth site, is indicated by a yellow ring, and a line parallel to the end of the retinal axon / bundle and nerve Measure the clockwise angle formed by the line connecting the centers of the retinal segment (NR) and the ventral hypothalamic segment (vHT), positive if the angle value is between 0 ° and 60 ° and between 301 ° and 360 ° . Red) direction, defined as neutral (0; green) direction between 61 ° and 120 ° and between 241 ° and 300 ° , negative (ᅳ; blue) direction between 121 ° and 240 ° . t ip) (FIG. 2C) and the orientation of the retinal ganglion cell axon shaft (FIG. 2D) at the yellow ring site (FIG. 2C and FIG. 2D).
그 결과, 도 2b 내지 도 2d에 나타낸 바와 같이, Vaxl+/+ 및 Vaxl-/- 마우스의 망막에서 Vax+/+ 마우스의 복측 시상하부 절편체를 향한 망막신경절세포 축삭의 수는 증가하는 반면, Vaxl-/- 복측 시상하부 절편체를 향한 망막신경절세포 축삭의 수는 감소하는 것을 확인함으로써, 복측 시상하부 절편체에서 유래한 Vaxl이 망막에서 망막신경절세포 축삭 성장을 유도함을 확인하였다 (도 2b 내지 도 2d) .  As a result, as shown in FIGS. 2B-2D, the number of retinal ganglion cell axons from the retinas of Vaxl + / + and Vaxl − / − mice toward the ventral hypothalamic explants of Vax + / + mice increases, while Vaxl− It was confirmed that the number of retinal ganglion cell axons directed to the dorsal hypothalamic explants decreased, indicating that Vaxl derived from the ventral hypothalamic explants induced retinal ganglion cell axon growth in the retina (FIGS. 2B-2D). .
<2-3> Vaxl에 의한 비세포-자율적 망막신경절세포 축삭 성장 조절의 현장흔성화 (In situ hybridizat ion, ISH)및 면역형광염색법 (immunof luorescence staining, IF)을통한확인 Vaxl이 시신경교차 발달에 미치는 영향을 확인하기 위하여, Vaxl-/- 마우스에서 분리한 복측 시상하부의 망막신경절세포 축삭 유도능의 결함을 확인하기 위하여, 망막신경절세포 축삭 성장 인자인 혈관내피성장인자 (vescular endothel ial growth factor , VEGF164) 및 신경세포접착분자 (neuronal cel l adhesion molecule , NrCAM)의 존재 여부를 검증하였다. <2-3> Confirmation by In situ Hybridizat Ion (ISH) and Immunof Luorescence Staining (IF) by Vaxl Vascular endothelial growth factor, a retinal ganglion cell axon growth factor, was used to identify the effect of Vaxl on the development of optic nerve cross-linking. vescular endothelial growth factor (VEGF164) and neuronal adhesion molecule (NrCAM) were examined.
구체적으로, 상기 실시예 <1ᅳ1>에 기재된 방법으로 획득한 Vaxl 정상 마우스 (Vax+/+ , WT) 및 Vaxl 결핍 마우스 (Vax-/- , K0)의 E14.5 마우스로부터 분리한 배아 두부를 4°C에서 2내지 16시간 동안 4% PFA/PBS로 고정하고, 이를 다시 냉동절편으로 준비한 후, 이 절편에 존재하는 Vegfa mRNA의 발현은 현장흔성화를 통해 확인하였고, NrCAM 단백질의 발현은 면역형광염색법을 통해 확인하였다 (스케일 바 (scale bar ) : 100 μ^) .  Specifically, embryonic heads isolated from E14.5 mice of Vaxl normal mice (Vax + / +, WT) and Vaxl deficient mice (Vax-/-, K0) obtained by the method described in Example <1 ᅳ 1>. After fixation with 4% PFA / PBS at 4 ° C. for 2-16 hours and prepared again as frozen sections, the expression of Vegfa mRNA present in these sections was confirmed by in situ hybridization. Confirmed by fluorescence staining (scale bar: 100 μ ^).
그 결과, 도 2e에 나타낸 바와 같이, Vaxl-/- 마우스에서 시신경교차 형성 세포와 시신경교차부의 신호인 NrCAM 및 Vegfa가 발현되고 있으며, 그 발현 부위가 다소 넓어진 것을 확인하였다 (도 2e) .  As a result, as shown in FIG. 2E, NrCAM and Vegfa, which are signals of optic nerve crossing cells and optic nerve crossing parts, were expressed in Vaxl-/-mice, and the expression sites thereof were somewhat widened (FIG. 2E).
따라서, <실시예 2>의 결과들을 통해 상기 Vaxl이 비세포-자율적인 (non-cel i autonomous) 방법으로 망막신경절세포 축삭 성장을 조절함을 확인하였다. <실시예 3> 전사활성 비의존적으로 세포외 Vaxl분비 확인  Thus, the results of Example 2 confirmed that Vaxl regulates retinal ganglion cell axon growth by a non-cel i autonomous method. Example 3 Confirmation of Extracellular Vaxl Secretion Independently of Transcription Activity
<3-1> Vaxl 전사활성 비의존적 망막신경절세포 축삭성장자극확인 전사적으로 비활성화된 Vaxl(R152S) 돌연변이는 안검홍채맥락막선천적결손증 (coloboma) , . 구개열 (cleft palate) 및 뇌량결손 (agenesi s of corpus cal losum, ACC)을 보이는 환자에서 보고되고 있으며, 이는 Vaxl결손 마우스의 돌연변이와 유사한 표현형이다 (Slavot inek et al . , 2012) . 따라서, Vaxl의 전사활성이 망막신경절세포 축삭 성장에 영향을 미치는지 확인하기 위하여, Vaxl , 전사 비활성 Vaxl 돌연변이 (Vaxl(R152S) ) 및 Vaxl과 동일한 호메오도메인 (homeodomain)을 공유하는 Vax2를 과발현시킨 C0S7 세포를 이용하여 면역염색법, 망막신경절세포 축삭 성장의 방향성 측정 및 웨스턴 블럿팅 (western blotting)을 수행하였다. <3-1> Vaxl Transcriptional Activity Independent Retinal Ganglion Cell Axon Growth Stimulation Confirmation Vaxl (R152S) mutations that are transcriptionally inactivated are associated with ptosis, coloboma. It has been reported in patients with cleft palate and ages of corpus cal losum (ACC), a phenotype similar to mutations in Vaxl-deficient mice (Slavot inek et al., 2012). Thus, to determine whether Vaxl transcriptional activity affects retinal ganglion cell axon growth, C0S7 overexpressing Vaxl, a transcriptionally inactive Vaxl mutation (Vaxl (R152S)), and Vax2, which shares the same homeodomain as Vaxl The cells were subjected to immunostaining, directional measurement of retinal ganglion cell axon growth, and western blotting.
구체적으로, Myc-태그된 (tagged) 마우스 Vaxl, 152번 알기닌 (R)을 세린 (S)로 치환한 Myc-태그된 마우스 전사 비활성 Vaxl 돌연변이 (Vaxl(R152S) 및 Myc-태그된 마우스 Vax2를 암호화하는 컨스트력트 (construct)를 제작한 후, 상기 컨스트럭트를 C0S7 세포 (ATCC)에 인산칼슘 방법으로 형질전환 (transfection)시키고, 상기 실시예 <1-1>에 기재된 방법으로 획득한 신경망막 절편체와 48 시간 동안 공동 배양한 후, 상기 실시예 <2-1〉과 같이 항 -Myc 항체 (Santa Cruz Biontechnology) (초록), 항 -NF160 항체 (빨강) 및 DAPU파랑)을 이용하여 면역염색하고 시각화하였다. 상기 두 절편체의 중앙을 빨간 점선으로 연결하여 표시하였다 (스케일 바 (scale bar): 500 1(1열),스케일 바: 100 J I(2열 및 3열) (도 3a).  Specifically, Myc-tagged mouse Vaxl, Myc-tagged mouse transcriptional inactive Vaxl mutant (Vaxl (R152S) and Myc-tagged mouse Vax2 encoded by replacing serine (S) with 152 arginine (R) After constructing the construct, the construct was transformed into C0S7 cells (ATCC) by the calcium phosphate method, and the neural retina obtained by the method described in Example <1-1>. After incubation for 48 hours with the fragment, immunostaining using anti-Myc antibody (Santa Cruz Biontechnology) (green), anti-NF160 antibody (red) and DAPU blue, as in Example <2-1>. And visualized. The centers of the two sections were connected by a dotted red line (scale bar: 500 1 (1 row), scale bar: 100 J I (2 rows and 3 rows) (FIG. 3A).
또한, 상기 실시예 <2-2>와 같이 신경망막 절편체 및 C0S7세포의 중앙을 연결하는 빨간 점선을 기준으로 각도를 측정하여 망막신경절세포 축삭의 방향성을 그래프화하였다. 그래프의 값은 평균내었고, 에러바는 SD로 구하였다 (대조군 (n=21), Vaxl(n=17), Vaxl(R152S)(n=8) , Vax2(n=7)). ρ-값은 AN0VA로 구하였다 (0.01<ρ<0·005) (도 3b).  In addition, the direction of the retinal ganglion cell axon was graphed by measuring the angle based on the red dotted line connecting the center of the neural retinal fragment and the C0S7 cells as in Example <2-2>. Values in the graph were averaged and error bars were obtained as SD (control (n = 21), Vaxl (n = 17), Vaxl (R152S) (n = 8), Vax2 (n = 7)). ρ-value was calculated by AN0VA (0.01 <ρ <0 · 005) (FIG. 3B).
아울러, 상기 Vaxl, Vaxl(R152S) 또는 Vax2 과발현시킨 C0S7 세포의 성장배지에서 Vax 단백질의 유무를 확인하기 위하여, 웨스턴 블럿팅을 수행하였다. 상기 제작한 Myc-Vaxl, Myc-Vaxl(R152S) 또는 Myc-Vax2 형질전환 C0S7 세포의 성장배지 및 세포를 수득하였다. 수득한 세포는 10 mM Tris-HCA(pH7.4), 200 nM NaCl및 1¾ NP-40이 포함된 용해 버퍼 (lysis buffer)로 용해하였다. 또한, 수득한 성장배지는 500xg에서 10분 동안 2번 원심분리한 후, 2,000Xg에서 15분 동안 2번 추가 원심분리하여 상층액 (supernatant, S3) 부분 (fraction)을 획득하였다. 상기 획득한 상층액 부분에 동량의 3 M 트리클로로아세트산 (trichloroacetic acid, TCA) 용액을 흔합하여 거대분자를 침전시키고, 상기 TCA 침전물을 100% 아세톤 (acetone)으로 2 번 세척한 후, 건조하여 펠렛 (pellet)을 획득하였다. 상기 수득한 세포 용해물 및 펠렛은 2 XSDS 시료 완충용액을 첨가하여 반웅을 종결시킨 후, SDS— PAGE 겔 (gel )을 이용하여 분리하고 PVDF 막 (Polyvinyl idene f luor ide membrane) (Mi 1 ipore , USA)으로 전달시켰다. 일차 항체로 항 -Myc항체를 처리하여 반웅시킨 후, 상기 막에 붙은 일차 항체에 HRP-접합 이차 항체를 붙이고, 이를 ECL(Pierce chemical co, USA)을 이용하여 확인하였다 (도 3c) . In addition, Western blotting was performed to confirm the presence or absence of Vax protein in the growth medium of Vaxl, Vaxl (R152S) or Vax2 overexpressed C0S7 cells. The growth medium and cells of the prepared Myc-Vaxl, Myc-Vaxl (R152S) or Myc-Vax2 transformed C0S7 cells were obtained. The obtained cells were lysed with lysis buffer containing 10 mM Tris-HCA (pH 7.4), 200 nM NaCl and 1¾ NP-40. In addition, the obtained growth medium was centrifuged twice at 500 × g for 10 minutes, followed by further centrifugation at 2,000 × g for 15 minutes to obtain a supernatant (S3) fraction. The same amount of 3 M trichloroacetic acid (TCA) solution was mixed with the obtained supernatant to precipitate macromolecules, and the TCA precipitate was washed twice with 100% acetone (acetone) and dried to pellet. (pellet) was obtained. The obtained cell lysate and pellets The reaction was terminated by adding 2 XSDS sample buffer, separated using SDS-PAGE gel, and transferred to a PVDF membrane (Polyvinyl idene fluoride membrane) (Mi 1 ipore, USA). After reacting with anti-Myc antibody with the primary antibody, HRP-conjugated secondary antibody was attached to the primary antibody attached to the membrane, and this was confirmed by using ECL (Pierce chemical co, USA) (FIG. 3C).
그 결과, 도 3a및 도 3b에 나타낸 바와 같이 , 신경망막 절편체에사 공동 배양한 Vaxl과발현 C0S7세포를 향한 신경미세섬유 160 kDaCneurof i lament 160 kDa, NF 160)ᅳ양성 망막신경절세포 축삭의 수가 대조군에 비해 현저히 증가하는 반면,공동 배양한 야생형 C0S7세포 및 Vax2과발현 C0S7세포를 향해 성장하는 망막신경절세포 축삭의 수는 동일한 것올 확인하였다. 한편, 전사적으로 비활성화된 Vaxl(R152S) 돌연변이를 발현시킨 C0S7 세포를 공동배양한 경우, 야생형 (WT) Vaxl 과발현 C0S7 세포를 공동배양한 경우와 유사하게, 성장하는 망막신경절세포 축삭의 수가 증가하고, 또한, Vaxl및 Vaxl(R152S) 단백질 모두 공동배양한 망막 절편체로부터 나온 NF160-양성 망막신경절세포 축삭에서도 발견됨을 확인함으로써, 망막신경절세포 축삭 성장 자극 활성화는 Vaxl에 특이적아고, 상기 Vaxl은 전사 비의존적으로 망막신경절세포 축삭 성장을 유도함올 확인하였다 (도 3a 및 3b) .  As a result, as shown in Figs. 3a and 3b, the number of neurofibrillary fibers 160 kDaCneurof i lament 160 kDa, NF 160) co-cultured in the neuronal retinal explants co-cultured with Vaxl overexpressing C0S7 cells control In contrast, the number of retinal ganglion cell axons growing toward co-cultured wild type C0S7 cells and Vax2 overexpressing C0S7 cells was the same. On the other hand, when the C0S7 cells expressing the transcriptionally inactivated Vaxl (R152S) mutant were co-cultured, the number of growing retinal ganglion cell axons increased, similar to the co-culture of wild-type (WT) Vaxl overexpressing C0S7 cells, In addition, by confirming that both Vaxl and Vaxl (R152S) proteins are also found in NF160-positive retinal ganglion cell axons from cocultured retinal fragments, retinal ganglion cell axon growth stimulation activation is specific for Vaxl and the Vaxl is a transcriptional non- It was confirmed to induce retinal ganglion cell axon growth dependently (FIGS. 3A and 3B).
또한, 도 3c에 나타낸 바와 같이, Vaxl 및 Vaxl(R152S) 단백질은 형질전환된 C0S7 세포의 성장배지 (growth medium, GM)에서도 발견되는 반면, Vax2 단백질은 발견되지 않음을 확인함으로써, 상기 Vaxl이 전사활성과 상관없이 세포 밖으로 분비되어 망막신경절세포 축삭 성장을 유도함을 확인하였다 (도 3c) .  In addition, as shown in Figure 3c, Vaxl and Vaxl (R152S) proteins are found in the growth medium (GM) of transformed C0S7 cells, while the Vax2 protein was confirmed by confirming that the Vaxl transcription Irrespective of activity, it was secreted out of cells to induce retinal ganglion cell axon growth (FIG. 3C).
<3-2> 체내배양 ( in vivo) 및 체외배양 (in vitro) 세포에서 Vaxl의 분비 확인 r <3-2> Confirmation of Vaxl Secretion in In Vitro and In Vitro Cells r
망막신경절세포 축삭 성장 유도에 있어서 Vaxl 분비를 확인하기 위하여, 체외배양 ( in vitro) 및 체내배양 ( in vivo) 세포를 이용하여 면역염색법 및 웨스턴 블릿팅을 수행하였다. 구체적으로, EGFP, EGFP 태그된 -Vaxl, EGFP 태그된 -Vax2를 암호화하는 컨스트력트를 제작한 후, 상기 실시예 <3-1>과 같이 HEK293T 세포 (ATCC)로 형질전환하고, 48 시간 후 성장배지를 수득하여 원심분리하고 세포를 제거하여 분비된 단백질 및 세포외막 수포 (extracellular membrane vesicles)가 포함된 상층액 (S3)을 수득하였다. 상기 수득한 상층액을 비형질전환 C0S7 세포에 첨가하여 12 시간 동안 배양한 후, 상기 실시예 <2-1>과 같이 HEK293T세포 및 C0S7 세포를 마우스 항 -GFP 항체 (Santa Cruz Biotechnology) (초록) 및 DAPK파랑)을 이용해 면역염색하고 시각화하였다 (스케일바: 20 細) (도 4a). 또한, 상기 실시예 <3-1>과 같이 HEK293T 세포에 Myc 또는 Myc-Vaxl 컨스트릭트를 형질전환하고, 48 시간 후 성장배지의 상층액 (S3)을 수득하였다. 상기 수득한 성장배지의 상층액 (S3)을 센트리콘 필터 (Centricon filters)(cut-off limit 20 kDa; MiUipore)를 이용하여 제조사와 절차에 따라 농축한 후, 50 //g 단백질을 포함한 상기 농축한 상층액 2 ^를 자궁 내 (in utero) E13.5 마우스 뇌의 외측 뇌실 (lateral ventricle)에 주입하였다. 12 시간 후, 상기 실시예 <2-1>과 같이 뇌를 적출하고 뇌 섹션 (수평 (horizontal): 20 mi)을 획득한 후 마우스 항 -Myc 항체 및 DAP1올 이용하여 면역염색하고 시각화하였다 (도 4b). In order to confirm Vaxl secretion in retinal ganglion cell axon growth induction, immunostaining and western blotting were performed using in vitro and in vivo cells. Specifically, after constructing a constructor encoding EGFP, EGFP tagged -Vaxl, EGFP tagged -Vax2, transformed into HEK293T cells (ATCC) as in Example <3-1>, and after 48 hours Growth medium was obtained, centrifuged and cells removed to obtain supernatant (S3) containing secreted protein and extracellular membrane vesicles. After the obtained supernatant was added to non-transformed C0S7 cells and incubated for 12 hours, HEK293T cells and C0S7 cells were mouse anti-GFP antibody (Santa Cruz Biotechnology) (Abstract) as in Example <2-1>. And DAPK blue) and immunostained and visualized (scale bar: 20 Hz) (FIG. 4A). In addition, MyC or Myc-Vaxl construct was transformed into HEK293T cells as in Example <3-1>, and the supernatant (S3) of the growth medium was obtained after 48 hours. The supernatant (S3) of the obtained growth medium was concentrated using a Centricon filters (cut-off limit 20 kDa; MiUipore) according to the manufacturer and the procedure, and the concentration including 50 // g protein. One supernatant 2 ^ was injected into the lateral ventricle of the in utero E13.5 mouse brain. After 12 hours, the brain was removed and brain sections (horizontal: 20 mi) were obtained as in Example <2-1>, and then immunostained and visualized using mouse anti-Myc antibody and DAP1ol (Fig. 4b).
또한, 상기 실시예 <1— 1>에 기재된 방법으로 획득한 E13.5 마우스로부터 분리한 복측 시상하부 절편체를 24시간 동안 배양한 후, 상기 실시예 <3_1>과 같이 성장배지 (GM)의 펠렛 및 세포 용해물을 수득하고, 상기 수득한 세포 용해물 및 펠렛은 항 -Vaxl 항체 및 항-튜블린 -베타 III 항체를 이용하여 웨스턴 블럿팅을 수행하였다 (도 4c). 또한, E14.5 마우스로부터 준비된 외측 뇌실 (lateral ventricle)로부터 뇌척수액 (cerebrospinal fluid, CSF)을 수득하고,' 상기 실시예 <3-1>의 성장배지로부터 상충액을 수득하는 방법과 같이 상충액 (S3)을 죽은 세포잔해 (dead cell debris, P2)로부터 분리하였다. 상기 수득한 상층액 (S3), 죽은 세포잔해 (P2) 및 복측 시상하부 절편체 세포 용해물 (CL)을 상기 실시예 <3-1>과 같이 항 -Vaxl 및 항-류블린 -베타 III 항체를 이용하여 웨스턴 블럿팅을 수행하였다 (도 4d). 그 결과, 도 4a 및 4b에 나타낸 바와 같이, EGFP, EGFP-Vaxl , EGFP-Vax2 형질전환된 HEK293T 세포의 생존능이 서로 유사하고, Vaxl 형질전환된 HEK293T 세포의 성장배지에 있는 Vaxl 단백질이 체외배양 ( in vi tro) C0S7 세포 (도 4a, 2행)뿐만 아니라 체내배양 ( in vivo) 복측 간뇌 (ventral diencephal ic , vDC) (도 4b, 2행)에서도 발견되는 것을 확인함으로써, 상기 Vaxl 단백질이 형질전환된 HEK293T 세포로부터 분비되고 공동 배양된 망막신경절세포 축삭으로 이동함을 확인하였다 (도 4a 및 4b) . In addition, after incubating for 24 hours the ventral hypothalamic fragments isolated from E13.5 mice obtained by the method described in Example <1-1>, the growth medium (GM) Pellets and cell lysates were obtained, and the obtained cell lysates and pellets were subjected to western blotting using anti-Vaxl antibodies and anti-tubulin-beta III antibodies (FIG. 4C). In addition, a cerebrospinal fluid (cerebrospinal fluid, CSF) is obtained from the lateral ventricle prepared from E14.5 mice, and the supernatant solution is obtained in the same manner as the method of obtaining a supernatant from the growth medium of Example <3-1>. S3) was isolated from dead cell debris (P2). The obtained supernatant (S3), dead cell debris (P2), and ventral hypothalamic explant cell lysate (CL) were subjected to anti-Vaxl and anti-leucine-beta III antibodies as in Example <3-1>. Western blotting was performed using (FIG. 4D). As a result, as shown in Figures 4a and 4b, the viability of EGFP, EGFP-Vaxl, EGFP-Vax2 transformed HEK293T cells are similar to each other, Vaxl protein in the growth medium of Vaxl-transformed HEK293T cells is cultured in vitro ( in vi tro) The Vaxl protein was transformed by confirming that it was found not only in C0S7 cells (FIG. 4A, line 2) but also in in vivo ventral diencephal ic (vDC) (FIG. 4B, line 2). It was confirmed that they migrate to secreted and cocultured retinal ganglion cell axons from HEK293T cells (FIGS. 4A and 4B).
또한, 도 4c 및 4d에 나타낸 바와 같이, 복측 시상하부 절편체에서 발현된 세포내 Vaxl의 발현량이 C0S7 세포에서 과발현된 Vaxl (도 3c)의 발현량과 유사하고, 복측 시상하부 절편체의 성장배지 (도 4c, GM) 및 뇌 척수액 (CSF)에서 발견되는 것을 확인함으로써 (도 3D, CSF; S3), 상기 Vaxl이 체외배양뿐만 아니라 체내배양 세포로부터 분비되는 단백질임올 확인하였다.  In addition, as shown in FIGS. 4C and 4D, the expression level of intracellular Vaxl expressed in the ventral hypothalamic fragment was similar to the expression level of Vaxl (FIG. 3C) overexpressed in C0S7 cells, and the growth medium of the ventral hypothalamic fragment ( 4C, GM) and cerebrospinal fluid (CSF) were found (Fig. 3D, CSF; S3), it was confirmed that the Vaxl is a protein secreted from cultured cells as well as in vitro culture.
<3-3> 체외배양 (in vitro) 세포에서 Vaxl의 분비 확인 <3-3> Confirmation of Vaxl Secretion in In Vitro Cells
망막신경절세포 축삭 성장 유도에 있어서 Vaxl 분비를 확인하기 위하여, 체외배양 ( in vi tro) 세포를 이용하여 면역염색법을 수행하였다.  In order to confirm Vaxl secretion in retinal ganglion cell axon growth induction, immunostaining was performed using in vitro cells.
Myc-태그된 (tagged) 마우스 Vaxl을 C0S7 세포에 인산칼슘 방법으로 형질전환 (transfect ion)시키고, 상기 실시예 <1-1>에 기재된 방법으로 획득한 신경망막 절편쎄와 24시간 동안 공동 배양하였다. 그 후, rb-IgG( l / g/m«)또는 항 -Vaxl 항체 (-Vaxl , 1 / /m«를 첨가한 배지에서 다시 24시간 동안 공동 배양 후, 상기 실시예 <2ᅳ1>과 같이 항 -Myc 항체 (초록), 항 -NF160 항체 (빨강) 및 DAP1(파랑)을 이용하여 면역염색하고 시각화하였다. 왼쪽의 박스 표시된 부분은 오른쪽에 나타냈으며, 화살표는 망막신경절세포 축삭에 Myc-태그된 마우스 Vaxl이 존재하는 곳을 나타낸다 (스케일 바: 500 (왼쪽), 스케일 바: 100 (오른쪽) .  Myc-tagged mouse Vaxl was transformed into C0S7 cells by calcium phosphate method and co-cultured with neural retinal sections obtained by the method described in Example <1-1> for 24 hours. . Then, after co-culture for another 24 hours in a medium to which rb-IgG (l / g / m «) or anti -Vaxl antibody (-Vaxl, 1 / / m« added), the above <Example 2> Immunostained and visualized using anti-Myc antibody (green), anti-NF160 antibody (red) and DAP1 (blue) as shown in the box on the left is shown on the right and the arrow is labeled Myc- on the retinal ganglion cell axon. Indicates where tagged mouse Vaxl is present (scale bar: 500 (left), scale bar: 100 (right)).
그 결과, 도 4e에 나타낸 바와 같이 , 축삭 Vaxl면역염색 신호는 항ᅳ Vaxl 항체 ( α -Vaxl)의 존재하에서 현저하게 감소하였다 (도 4e) .  As a result, as shown in FIG. 4E, the axon Vaxl immunostaining signal was significantly reduced in the presence of anti-Vaxl antibody (α-Vaxl) (FIG. 4E).
따라서, 상기 <실시예 3〉의 결과를 통해 Vaxl은 전사활성에 상관없이 복측 시상하부에서 분비되는 단백질임을 확인하였다. Therefore, through the results of the above <Example 3> Vaxl regardless of the transcriptional activity The protein was secreted from the ventral hypothalamus.
<실시예 4> 분비된 Vaxl 단백질에 의한 망막신경절세포 축삭 성장 자극 확인 Example 4 Confirmation of Retinal Ganglion Cell Axon Growth Stimulation by Secreted Vaxl Protein
<4-1> 복측 시상하부 절편체에서 분비된 Vaxl에 의한 망막신경절세포 축삭성장유도확인  <4-1> Retinal ganglion cell axon growth induction induced by Vaxl secreted from ventral hypothalamic section
분비된 Vaxl 단백질이 복측 시상하부 절편체를 향한 망막신경절세포 축삭 성장을 유도할 수 있는지 확인하기 위하여, 래빗 항 -Vaxl 다클론 항체 및 항 -Vax2 다클론 항체를 이용하여 세포외 Vax 단백질을 격리시키고 면역염색법, RGC 축삭 성장의 방향성 및 RGC 축삭 길이 측정을 수행하였다.  To determine whether the secreted Vaxl protein can induce retinal ganglion cell axon growth towards the ventral hypothalamic fragment, extracellular Vax protein was isolated using a rabbit anti-Vaxl polyclonal antibody and an anti-Vax2 polyclonal antibody. Immunostaining, directionality of RGC axon growth and RGC axon length measurements were performed.
구체적으로, 상기 실시예 <1-1>에 기재된 방법으로 획득하여 공동배양한 복측 시상하부 절편체 및 신경망막 절편체에 비면역 (pre-immune) 래빗 IgG(rblgG) l
Figure imgf000037_0001
, 항 -Vaxl다클론 항체 ( a -Vaxl) 1 g/m 또는 항 -Vax2다클론 항체 ( a -Vax2) 를 처리하고 48시간 동안 배양한 후, 상기 실시예 <2-2〉와 같이 래빗 항 -Vaxl 항체 (초록) 및 항 -NF160 항체 (빨강)을 이용하여 면역염색하고 시각화하였다. 상기 두 절편체의 중앙을 빨간 점선으로 연결하여 표시하였고 화살표 부분을 확대하였다 (스케일 바: 500 ) (도 5a) . ' 또한, 상기 실시예 <2-2>와 같이 상기 빨간 점선을 기준으로 각도를 측정하여 망막신경절세포 축삭의 방향성을 、그래프화하였다. 그래프의 값은 평균내었고, 에러바는 SD로 구하였다 (rbIgG(n=17) , a -Vaxl(n=19) , a -Vax2(n=ll) ) . p-값은 AN0VA로 구하였다 (0.001<p<0.005) (도 5b) .
Specifically, preimmune rabbit IgG (rblgG) l obtained in the ventral hypothalamic explants and neural retinal explants obtained by the method described in Example <1-1>.
Figure imgf000037_0001
After treatment with anti-Vaxl polyclonal antibody (a -Vaxl) 1 g / m or anti -Vax2 polyclonal antibody (a -Vax2) and incubated for 48 hours, the rabbit anti-Valk as in Example <2-2> Immunostained and visualized using -Vaxl antibody (green) and anti-NF160 antibody (red). The centers of the two sections were connected by red dotted lines and the arrows were enlarged (scale bar: 500) (FIG. 5A). "Further, the direction of the retinal ganglion cell axons by measuring the angle with respect to the red dotted line as shown in Example <2-2>, were graphed. The values in the graph were averaged and the error bars were obtained as SD (rbIgG (n = 17), a -Vaxl (n = 19), a -Vax2 (n = ll)). The p-value was determined by AN0VA (0.001 <p <0.005) (FIG. 5B).
또한, NF160 면역형광 이미지의 픽셀 (pixe l )을 계산하여 망막으로부터 나오는 축삭 /다발의 상대적인 수 및 두께를 그래프화하였다. NF160 면역형광 이미지를 이진법 이미지 (binary image)로 바꾼 후에 이미지 -J 소프트웨어의 히스토그램 (Hi stogram) 기능을 이용하여 픽셀 수를 측정하였다. 축삭 /다발의 상대적인 수는 축삭 /다발을 포함한 절편체 전체 픽셀 수에서 신경망막 절편체 안쪽의 픽샐 수를 감하여 나타내었다. 두께의 경우는 각각 하나의 축삭 /다발에서 3으40 rn 사이의 픽셀 수를 측정하여 나타내었다. 그래프의 값은 평균내었고, rblgG 처리군을 100%로 설정하였으며, 에러바는 SD로 구하였다 (도 5c). In addition, pixels (pixe l) of the NF160 immunofluorescence image were calculated to graph the relative number and thickness of axons / bundles emerging from the retina. After converting the NF160 immunofluorescent image to a binary image, the number of pixels was measured using the histogram function of Image-J software. The relative number of axons / bundles is shown by subtracting the number of pixels inside the neural retinal segment from the total number of segments including the axons / bundles. The thickness is represented by measuring the number of pixels between 3 and 40 rn in one axon / bundle each. Graph The values were averaged, the rblgG treatment group was set to 100%, and the error bars were obtained with SD (FIG. 5C).
또한, 상기 실시예 <1-1>에 기재된 방법으로 획득한 망막 절편체를 24 시간 동안 배양한 후ᅳ 6X-His에 플루오레세인이소티오시안산염 (fluorescein isothiocyanate, FITC)이 표지된 펩타이드 (peptide) LOO ng/ml) 또는 His이 태그된 Vaxl에 FITC이 표지된 재조합 단백질 (500 ng/ml)을 첨가하여 24 시간 동안 배양하였다. 이 배양 기간 동안 각 15분 마다 배양 망막 절편체에서 성장하는 신경축삭과 이 신경 축삭에 존재하는 FITC 형광 신호를 검출하여 시각화하였다. 빨간색 화살은 확대 이미지를 나타냄 (도 5(1). 이 망막 절편체를 PBS로 세척한 후, 상기 실시예 <2— 1>에 기재된 방법으로 래빗 a-Vaxl(초록) 및 항 -His 항체 (빨강)로 면역염색하여 시각화하였다. 오른쪽 박스는 왼쪽의 확대된 이미지 부분을 나타내고, 화살표는 망막신경절세포 축삭에 Vaxl과 His 단백질이 위치함을 나타낸다 (도 5e)(스케일 바: 100 μηύ . 또한, 상기 .실시예 <1-1>에 기재된 방법으로 획득한 망막 절편체의 사분면에서 6X-His 펩타이드 (25 ng/ml , 하얀색 막대 ) 또는 Vaxl-His 단백질 (100 ng/ml , 검은색 막대)를 처리하고 24 시간 후 변화한 축삭 길이를 측정하여 그래프로 나타내었다. 그래프의 값은 평균내었고, 에러바는 SD로 구하였다. 막대에 쓰인 수는 분석한 축삭의 수이고, 분석 절편체의 수는 상단에 표시하였다. P-값은 t-test로 구하였다 (**, ρθ.001). 결과는 독립적인 두 번의 실험으로 얻었다 (도 5f).  In addition, after culturing the retinal fragments obtained by the method described in Example <1-1> for 24 hours, peptide (peptide) labeled with fluorescein isothiocyanate (FITC) on 6X-His. ) LOO ng / ml) or His-tagged Vaxl was incubated for 24 hours with the addition of FITC-labeled recombinant protein (500 ng / ml). During each of these culture periods, neuronal axons growing in culture retinal sections and FITC fluorescence signals present in these neuronal axons were detected and visualized. Red arrows show magnified images (FIG. 5 (1). After washing the retinal sections with PBS, the rabbit a-Vaxl (green) and anti-His antibodies (by the method described in Example <2-1> above) Immunostained in red), the right box shows the enlarged image portion on the left, and the arrow shows the location of Vaxl and His proteins in retinal ganglion cell axons (FIG. 5E) (scale bar: 100 μηύ. In the quadrant of the retinal fragment obtained by the method described in Example <1-1>, 6X-His peptide (25 ng / ml, white bar) or Vaxl-His protein (100 ng / ml, black bar) was used. Axons lengths changed 24 hours after treatment were plotted and graphed, the values in the graph averaged and the error bars obtained as SD, the number of bars used is the number of axons analyzed and the number of analyte fragments. Is shown at the top P-value was obtained by t-test (** , θ.001). The results obtained in two independent experiments (Fig. 5f).
또한, 상기 실시예 <1-1>에 기재된 방법으로 획득한 망막 절편체에 His-태그된 Vax2(100 ng/ml)을 첨가하거나, 하지않은 상태로 24 시간 동안 배양한 후, 상기 실시예 <2-1>에 기재된 방법으로 래빗 항 -Vax2 항체 (초록), 마우스 항 -NF160 항체 (빨강) 및 DAPI(파랑)로 면역염색하여 시각화하였다. 위쪽 박스는 아래쪽의 확대된 이미지 부분을 나타내고, 화살표는 망막신경절세포 축삭에 His-태그된 Vax2가 위치함올 나타내었고 (스케일 바: 500 μπι (위쪽), 스케일 바: : LOO ni (아래쪽) (도 5g-A), 이의 축삭 길이를 측정하여 그래프로 나타내었다. 그래프의 값은 평균내었고, 에러바는 SD로 구하였다. 막대에 쓰인 수는 분석한 축삭의 수이고, 분석한 절편체의 수는 6X-His(n=5) , Vax2(n=4)이다. p-값은 t-test로 구하였다 (**, pO.001) (도 5g-B) . In addition, His-tagged Vax2 (100 ng / ml) was added to the retinal fragments obtained by the method described in Example <1-1>, or after culturing for 24 hours without the above Example < Visualization was performed by immunostaining with rabbit anti-Vax2 antibody (green), mouse anti-NF160 antibody (red) and DAPI (blue) by the method described in 2-1>. The upper box represents the lower magnified image portion, and the arrow indicates the location of His-tagged Vax2 on the retinal ganglion cell axon (scale bar: 500 μπι (top), scale bar:: LOO ni (bottom) (Fig. 5g-A), and its axon length was measured and plotted, the values of the graphs being averaged and the error bars calculated as SD. The number of rods is the number of axons analyzed, and the number of fragments analyzed is 6X-His (n = 5) and Vax2 (n = 4). The p-value was obtained by t-test (**, pO.001) (FIG. 5G -B).
그 결과, 도 5a 및 도 5b에 나타낸 바와 같이, 래빗 IgG 및 항 -Vax2 다클론 항체를 처리한 경우와 달리 항 -Vaxl 다클론 항체를 처리한 경우, 망막신경절세포 축삭에서 Vaxl이 발견되지 않고 (도 5a), 복측 시상하부 절편체로 향하는 망막신경절세포 축삭이 감소하는 것올 확인함으로써 (도 5b), 항 -Vaxl 다클론 항체의 영향으로 Vaxl의 망막신경절세포 축삭으로의 이동 및 축삭의 성장이 억제됨을 확인하였다.  As a result, as shown in FIGS. 5A and 5B, unlike the treatment with the rabbit IgG and the anti-Vax2 polyclonal antibody, when treated with the anti-Vaxl polyclonal antibody, Vaxl was not found in the retinal ganglion cell axon ( Figure 5a), confirming the reduction of retinal ganglion cell axons directed to the ventral hypothalamic explants (Figure 5b), inhibiting the migration of Vaxl to retinal ganglion cell axons and growth of axons under the influence of anti-Vaxl polyclonal antibodies. Confirmed.
또한, 도 5c에 나타낸 바와 같이, 래빗 IgG 및 항 -Vax2 다클론 항체를 처리한 경우, 망막신경절세포 축삭 /다발의 수 및 두께가 유사한 반면, 항 -Vaxl 다클론 항체를 처리한 경우 축삭 /다발의 수 및 두께가 감소하는 것을 확인함으로써, 세포외 Vaxl은 축삭의 섬유속연축에 중요한 역할을 함을 확인하였다 (도 5c) .  In addition, as shown in Figure 5c, when the rabbit IgG and anti-Vax2 polyclonal antibody treatment, the number and thickness of retinal ganglion cell axons / bundles are similar, whereas when treated with anti-Vaxl polyclonal antibody axons / bundle By confirming the decrease in the number and thickness of the cells, it was confirmed that extracellular Vaxl plays an important role in the axon fibrillation (Fig. 5c).
또한, 도 5d 내지 도 5f에 나타낸 바와 같이, Hi s이 태그된 Vaxl에 FITC이 표지된 재조합 단백질올 첨가하였을 때, 망막신경절세포 축삭와 성장에 강한 자극 효과를 발휘하는 것을 확인하였고 (도 5d 내지 도 5e) , 이는 망막 절편체의 사분면에서도 동일하게 나타나는 것을 확인하였다 (도 5ί) .  In addition, as shown in Figures 5d to 5f, when the FITC-labeled recombinant protein was added to Hi x tagged Vaxl, it was confirmed that exhibits a strong stimulating effect on retinal ganglion cell axon and growth (Fig. 5d to Fig. 5). 5e), it was confirmed that the same appears in the quadrant of the retinal section (Fig. 5ί).
또한, 도 5g에 나타낸 바와 같이, Vax2의 경우에도 Vaxl과 거의 동일하게 망막신경절세포 축삭의 성장을 유도하는 것을 확인하였다 (도 5g) .  In addition, as shown in Figure 5g, in the case of Vax2 was confirmed to induce the growth of retinal ganglion cell axons almost the same as Vaxl (Fig. 5g).
<4-2> 체내배양 (in vivo)에서 세포외 Vaxl에 의한 망막신경절세포 축삭 성장자극 확인 <4-2> Retinal Ganglion Cell Axon Growth Stimulation by Extracellular Vaxl in Vitro Culture
체내배양 ( in vivo)에서 망막신경절세포 축삭 성장에 있어서 세포외 Vaxl의 역할을 확인하기 위하여, 콜라겐 겔 lagen gel )을 이식한 마우스를 이용하여 면역염색법, 망막신경절세포 축삭의 수, 두께 및 길이 측정을 수행하였다.  To determine the role of extracellular Vaxl in retinal ganglion cell axon growth in in vivo, immunostaining, thickness and length measurement of retinal ganglion cell axons in mice implanted with collagen gel lagen gel Was performed.
구체적으로, 도 6a (위) 모식도와 같이 망막신경절세포 축삭을 표지하기 위하여, E13.5 마우스의 왼쪽 안구에 친지성 형광염료 ( l ipophi l ic f luorescent dye) Dil(25 μΜ)을 주입한 후, 뇌의 둥측 (dorsal) 절반 및 입의 아래부분을 절단하고 배측 부분이 아래로 오도록 하여 배양 슬라이드 챔버 (culture slide cambers)에 옮겨 안구, 전뇌 (forebrain) 및 중뇌 (midbrain) 구조를 포함한 마우스 뇌 슬랩 (slab)을 획득하였다. 그 다음, 비면역 래빗 IgG(rblgG) 1 jg/n 또는 래빗 항 -Vaxl 다클론 항체 ( a -Vaxl) 1 /«/ι 을 포함한 콜라겐 용액을 상기 슬랩의 제 3뇌실에 이식하고 배양 배지로 채워 습도가 유지되는 37°C, 7% C02 배양기에서 12 시간 동안 배양하였다. 그 후, 상기 실시예 <2-1>과 같이 뇌 슬랩을 절단하여 뇌 섹션 (수평 절단: 12 ; I)을 획득하고 4% PFA/PBS로 고정한 후 OCT 배지로 동결시켰다. 상기 동결된 뇌 섹션은 복측 시상하부에서 Dil-표지된 축삭 성장을 확인하기 위하여 DU의 표면형광 (epifluorescence)를 Olympus FV1000 공초점 현미경으로 시각화하여 하였다 (도 6 아래, 1행). 또한, 상기 동결된 시신경교차가 포함된 뇌 섹션은 상기 실시예 <2-1>과 같이 항ᅳ Vaxl 항체 (초록) 및 항 -NF160 항체 (빨강)을 이용하여 면역염색하고 시각화하였다 (스케일 바: 200 m) (도 6 아래 2행). 또한, 상기 실시예 <1ᅳ 1>에 기재된 방법으로 획득한 망막 절편체를 24 시간 동안 배양한 후, 1 /g/ni의 래빗 항 -Vaxl 다클론 항체를 처리 또는 무처리한 상태에서 Vaxl-His재조합 단백질 0.1 «/ 를 처리하고 24시간 동안 추가 배양하였다. 그 후, 24 시간 후 상기 실시예 <2-1>과 같이 항— Vaxl 항체 (초록), 항 -NF160 항체 (빨강) 및 DAPI(파랑)을 이용하여 면역염색 및 시각화하고, 화살표 부위를 확대하여 나타내었다 (스케일 바: 500 /πι) (도 6b). 또한, 면역염색하기 24 시간 전, 실시간으로 망막신경절세포 축삭의 길이 변화를 비디오 촬영하고 그래프화하였다 (도 6c). 또한, 면역 염색 후, 24시간 동안 망막신경절세포 축삭 /다발의 수, 두께 및 길이 변화를 상기 실시예 <4-1〉와 같이 그래프화하였다 (도 6(1). 그래프의 값은 평균내었고, 에러바는 SD로 구하였다 (무처리 (n=ll), Vaxl(n=10), Vaxl+ a -Vaxl(n=12) . Specifically, in order to label retinal ganglion cell axons as shown in FIG. 6A (above), a lipophilic fluorescent dye (l ipophi lic f luorescent) was applied to the left eye of an E13.5 mouse. dye) After injecting Dil (25 μM), the dorsal half of the brain and the lower part of the mouth are cut and transferred to the culture slide cambers with the dorsal side down. And mouse brain slabs including midbrain structures. Next, a collagen solution containing non-immune rabbit IgG (rblgG) 1 jg / n or rabbit anti-Vaxl polyclonal antibody (a -Vaxl) 1 / «/ ι was implanted into the third ventricle of the slab and filled with culture medium. Incubated for 12 hours at 37 ° C, 7% C02 incubator with humidity. Thereafter, brain slabs were cut as in Example <2-1> to obtain brain sections (horizontal cut: 12; I), fixed with 4% PFA / PBS, and frozen in OCT medium. The frozen brain sections were visualized by Olympus FV1000 confocal microscopy of the surface fluorescence (epifluorescence) of the DU to confirm Dil-labeled axon growth in the ventral hypothalamus (Figure 1, row 1). In addition, the brain sections containing the frozen optic nerve cross were immunostained and visualized using anti-Vaxl antibody (green) and anti-NF160 antibody (red) as in Example <2-1> (scale bar: 200 m) (2 rows below FIG. 6). In addition, after incubating the retinal sections obtained by the method described in Example <1-1> for 24 hours, Vaxl- was treated with or without the rabbit anti-Vaxl polyclonal antibody of 1 / g / ni. His recombinant protein 0.1 «/ was treated and further incubated for 24 hours. Then, after 24 hours, immunostaining and visualization using anti—Vaxl antibody (green), anti-NF160 antibody (red), and DAPI (blue) as in Example <2-1>, and magnified the arrow area. (Scale bar: 500 / πι) (FIG. 6B). In addition, the change in the length of retinal ganglion cell axons in real time, 24 hours before immunostaining was video taken and graphed (Fig. 6c). In addition, the number, thickness, and length change of retinal ganglion cell axons / bundles for 24 hours after immunostaining were graphed as in Example <4-1> (Fig. 6 (1). Error bars were obtained in SD (no treatment (n = ll), Vaxl (n = 10), Vaxl + a -Vaxl (n = 12)).
그 결과, 도 6a에 나타낸 바와 같이, 비면역 IgG를 처리한 경우와 비교하여 항 -Vaxl 다클론 항체를 이식한 마우스의 경우, 시신경교차로 향하는 망막신경절세포 축삭이 감소하고 (도 6a, 1행, 어두운 부분의 DU-표지된 '망막신경절세포 축삭), 항ᅳ Vaxl 이식 배자기 마우스에서, 상당수의 망막신경절세포 축삭이 감소된 Vaxl 면역반웅 ( immunoreact ivi ty)를 보이고 Vaxl 결핍 마우스에서 나타나는 것과 유사하게 복측 간뇌의 외측 벽에서 멈춰있는 것을 확인하였다 (도 6a, 2행) . As a result, as shown in Fig. 6A, compared with the case of non-immune IgG treatment, mice transplanted with anti-Vaxl polyclonal antibody reduced retinal ganglion cell axons directed to the optic nerve crossing (Figs. 6A, 1, 1). DU-labeled in dark areas "Retinal ganglion cell axons), wherein eu Vaxl implant times in his mouse, to show a large number of retinal ganglion cells Vaxl immune banung (immunoreact ivi ty) the axonal reduction similar to that found in Vaxl mice stop in the outer wall of the ventral diencephalon It was confirmed that there is (Fig. 6a, line 2).
또한, 도 6b 내지 6d에 나타낸 바와 같이, 성장배지에 재조합 Vaxl 단백질을 첨가한 경우 망막신경절세포 축삭의 수, 두께 및 길이가 증가하는 반면, 재조합 Vaxl 단백질 및 항 -Vaxl 다클론 항체를 함께 첨가한 경우, 망막신경절세포 축삭의 수 및 두께가 대조군과 유사하고, 길이의 증가가 억제되는 것을 확인함으로써 , 재조합 Vaxl단백질과 공동배양된 항 -Vaxl항체는 축삭 위치 및 축삭 성장.자극효과에 있어서 서로 길항작용을 하며, 상기 재조합 Vaxl 단백질이 강한 망막신경절세포 축삭 성장 자극 효과를 나타냄을 확인하였다 (도 6b 내지 6d) . 따라서, 상기 <실시예 4>의 결과를 통해 세포 밖으로 분비된 세포외 Vaxl이 직접 망막신경절세포 축삭의 성장을 자극함을 확인하였다.  In addition, as shown in Figure 6b to 6d, the addition of recombinant Vaxl protein to the growth medium increases the number, thickness and length of retinal ganglion cell axons, while adding the recombinant Vaxl protein and anti-Vaxl polyclonal antibody together In this case, anti-Vaxl antibodies co-cultured with recombinant Vaxl protein antagonized each other in axon position and axon growth. It was confirmed that the recombinant Vaxl protein exhibits a strong retinal ganglion cell axon growth stimulation effect (Figs. 6B to 6D). Therefore, the results of Example 4 confirmed that extracellular Vaxl secreted out of the cells directly stimulate the growth of retinal ganglion cell axons.
<실시예 5> 체내배양 (in vivo) Vaxl 단백질의 세포간 이동 확인 Example 5 Confirmation of Intercellular Transfer of Vaxl Protein In Vivo
Vaxl mRNA는 E14.5 마우스의 시신경 원판 (0D) , 안병 (OS) , . 시각교차앞구역 (preopt ic area, P0A) 및 복측 시상하부 (vHT)를 포함한 망막신경절세포 축삭 관련 구조에서 발현된다고 보고되고 있다 (Bertuzzi et al . , 1999; Hal lonet et al . , 1999) . 따라서, Vaxl mRNA 및 단백질이 망막에서도 발현되는지 확인하기 위하여, 계내 R A 흔성화 ( in si tu RNA hybr idizat ion) , 면역염색법 및 qRT-PCR을 수행하였다.  Vaxl mRNA was detected in optic nerve discs (0D), eye disease (OS), and E14.5 mice. It has been reported to be expressed in retinal ganglion cell axon-related structures, including the preoptic area (POA) and the ventral hypothalamus (vHT) (Bertuzzi et al., 1999; Hal lonet et al., 1999). Therefore, in order to confirm that Vaxl mRNA and protein are also expressed in the retina, in situ RNA hybridization, immunostaining and qRT-PCR were performed.
구체적으로, 상기 실시예 <1-1>에 기재된 방법으로 획득한 Vaxl+/+(WT) 및 VaxllacZ/lacZ E14.5 마우스로부터 준비된 망막올 [33P]-CTP-표지된 안티센스 (ant isense) Vaxl 프루브 (probe)올 이용해 Mui et al . , 2005에 기재된 방법으로 계내 RNA 흔성화를 수행하여 Vaxl mRNA 발현을 시각화하였다 (스케일바: 200 /m) (도 7a) .  Specifically, retinal [33P] -CTP-labeled antisense Vaxl probes prepared from Vaxl + / + (WT) and VaxllacZ / lacZ E14.5 mice obtained by the method described in Example <1-1>. (probe) using Mui et al. In vitro RNA localization was performed by the method described in 2005, to visualize Vaxl mRNA expression (scale bar: 200 / m) (FIG. 7A).
또한, 상기 실시예 <1-1>에 기재된 방법으로 획득한 E14.5 VaxllacZ/+및 VaxllacZ/lacZ마우스에서 상기 실시예 <2-1>과 같이 뇌 섹션을 획득하고, 래빗 항 -Vaxl 항체 (초록), 마우스 항-베타-갈락토시다아제 (β-galactosidase) 항체 (DSHB) (빨강)및 DAPI(파랑)을 이용하여 면역염색하고 시각화하였다. i및 iii는 신경망막 (NR)을 시각화하였고, ii 및 iv는 안병 (OS)을 시각화하였다 (스케일바: 200 1(1열 및 2열), 스케일바: 20 1(3열 및 4열)) (도 7b). Further, E14.5 VaxllacZ / + obtained by the method described in Example <1-1> and Brain sections were obtained from VaxllacZ / lacZ mice as in Example <2-1>, rabbit anti-Vaxl antibodies (green), mouse anti-beta-galactosidase antibody (DSHB) (red) ) And DAPI (blue) and immunostained and visualized. i and iii visualized neural retina (NR), ii and iv visualized eye disease (OS) (scale bar: 200 1 (columns 1 and 2)), scale bar: 20 1 (columns 3 and 4) ) (FIG. 7B).
또한, 상기 실시예 <1-1>에 기재된 방법으로 획득한 Vaxl+/+ 및 VaxllacZ/lacZ E14.5 마우스로부터 상기 실시예 <2-1>과 같이 뇌 섹션을 획득하고, 래빗 항 -Vaxl 항체 (초록), 마우스 항 -NF160 항체 (빨강) 및 DAPK파랑)을 이용하여 면역염색하고 시각화하였다. i 및 iii는 신경망막 (NR)을 시각화하였고, ii 및 iv는 안병 (OS)을 시각화하였다 (스케일바: 200 1(1열), 스케일바: 20 (2열 및 3열)) (도 7c).  Furthermore, brain sections were obtained from Vaxl + / + and VaxllacZ / lacZ E14.5 mice obtained by the method described in Example <1-1> as in Example <2-1>, and the rabbit anti-Vaxl antibody ( Abstract), immunostained and visualized using mouse anti-NF160 antibody (red) and DAPK blue). i and iii visualized neural retina (NR), ii and iv visualized eye disease (OS) (scalebar: 200 1 (column 1), scalebar: 20 (columns 2 and 3)) (FIG. 7C) ).
또한, 상기 실시예 <1-1>에 기재된 방법으로 획득한 Vaxl+/+(WT) 또는 VaxllacZ/lacZ E18.5 마우스로부터 상기 실시예 <2-1>과 같이 뇌 섹션을 획득하고, 망막 (위) 및 시신경 (optic nerve, 0N)(아래)을 래빗 항 -Vaxl항체 및 금 (250 nm)-표지된 항 래빗 IgG를 이용하여 면역염색한 후, 전자현미경 (electron microscopy; EM)으로 시각화하 ¾다 (스케일바: 0.5 (1열), 스케일바: 0.2 1(2열 및 3열)) (도 7d).  Further, brain sections were obtained from Vaxl + / + (WT) or VaxllacZ / lacZ E18.5 mice obtained by the method described in Example <1-1>, as in Example <2-1>, and the retina (stomach) ) And optic nerve (0N) (bottom) were immunostained with rabbit anti-Vaxl antibody and gold (250 nm) -labeled anti rabbit IgG and visualized by electron microscopy (EM). (Scale bar: 0.5 (column 1), scale bar: 0.2 1 (columns 2 and 3)) (FIG. 7D).
또한, 상기 실시예 <1-1>에 기재된 방법으로 획득한 Vaxl+/+(WT) 및 Vaxl-/- E14.5 마우스로부터 준비된 뇌 섹션에서 [33P]-CTP-표지된 안티센스 (antisense) Vaxl 프루브 (probe)을 이용해 Mui et al. , 2005에 기재된 방법으로 계내 RNA흔성화를 수행하여 Vaxl mR A발현을 시각화하였고, 항 -Vaxl 항체로 면역염색을 하여 시각화하였으며 (스케일바: 50 卿) (도 7e-A)고, 상기 실시예 <1-1>에 기재된 방법으로 획득한 E14.5 Vaxl+/lacZ 및 VaxllacZ/lacZ 마우스에서 상기 실시예 <2ᅳ1>과 같이 뇌 섹션을 획득하고, 래빗 항 -Vaxl 항체 (초록) ' 및 마우스 항ᅳ베타-갈락토시다아제 (β-galactosidase) 항체 (DSHB) (빨강)를 이용하여 면역염색하고 시각화하였다. 왼쪽 박스는 오른쪽에 확대된 이미지 위치를 나타낸다 (스케일바: 50; wm) (도 7e-B). 그 결과, 도 7a에 나타낸 바와 같이, E14.5 Vaxl+/+ 마우스의 시신경 원판 (0D) , 안병 (OS) , 시신경교차앞구역 (P0A) 및 복측 시상하부에서는 Vaxl mRNA가 발현되지만 망막에서는 발견되지 않음을 확인함으로써, 상기 Vaxl은 망막을 제외한 시신경 원판 안병 및 시신경교차앞구역을 포함한 망막신경절세포 축삭 관련 구조에서 발현됨을 확인하였다 (도 7a) . [33P] -CTP-labeled antisense Vaxl probes in brain sections prepared from Vaxl + / + (WT) and Vaxl − / − E14.5 mice obtained by the method described in Example <1-1> above. (probe) using Mui et al. , RNA in situ was performed by the method described in 2005 to visualize Vaxl mR A expression, and immunostained with anti-Vaxl antibody to visualize it (scale bar: 50 Hz) (FIG. 7E-A). A brain section was obtained from E14.5 Vaxl + / lacZ and VaxllacZ / lacZ mice obtained by the method described in <1-1> as in Example <2x1>, and the rabbit anti-Vaxl antibody (green) ' and the mouse were obtained. Immunostained and visualized using anti-beta-galactosidase antibody (DSHB) (red). The left box shows the magnified image position on the right (scale bar: 50; wm) (FIG. 7E-B). As a result, as shown in FIG. 7A, Vaxl mRNA was expressed in the optic nerve disc (0D), the eye disease (OS), the optic cross section (P0A), and the ventral hypothalamus, but not in the retina. By confirming that the Vaxl was expressed in the retinal ganglion cell axon-related structure including the optic disc disc and the optic nerve cross-section except the retina (FIG. 7A).
또한, 도 7b에 나타낸 바와 같이, VaxllacZ/+ 마우스의 망막 세포에서 Vaxl단백질이 발현되고, 안병 (OS) 별아교전구세포 (astrocyte precursor cel ls , APCs)에서는 Vaxl과 베타 -갈락토시다아제가 동시에 발현되지만 Vaxl 단백질은 주로 핵 (nuclei )에 존재하며 (도 7b, 1행), VaxllacZ/lacZ 이형접합 넉인 (knock-in) 마우스의 망막산경절세포 및 안병 별아교전구세포 (OS APCs)에서는 Vaxl이 완벽하게 발현되지 않는 것을 확인함으로써 (도 7b, 아랫줄), 상기 Vaxl이 VaxllacZ/+ 마우스의 망막신경절세포에 특이적임을 확인하였다 (도 7b) .  In addition, as shown in FIG. 7B, Vaxl protein is expressed in retinal cells of VaxllacZ / + mice, and Vaxl and beta-galactosidase are simultaneously expressed in ophthalmic (OS) astrocyte precursor cel ls (APCs). However, Vaxl protein is mainly present in the nuclei (Fig. 7b, line 1), and Vaxl is perfect in retinal ganglion cells and ocular astrocytoblasts (OS APCs) of VaxllacZ / lacZ heterozygous knock-in mice. By confirming that it is not expressed (Fig. 7b, the bottom row), it was confirmed that the Vaxl is specific for retinal ganglion cells of VaxllacZ / + mice (Fig. 7b).
. 또한, 도 7c에 나타낸 바와 같이, Vaxl+/+ 마우스의 안병 별아교전구세 i의 핵에서 Vaxl및 NF160단백질이 동시에 발현되는 반면 (도 7c , 1행) , VaxllacZ/lacZ 마우스의 안병 및 신경망막에서는 NF160 단백질은 발현되지만 Vaxl 단백질은 발현되지 않음을 확인함으로써 (도 7c , 2행), 상기 Vaxl이 Vax+/+마우스 시신경의 망막신경절세포 축삭에 존재하지만, 탈섬유화된 VaxllacZ/lacZ 마우스 망막신경절세포 축삭에서는 나타나지 않음을 확인하였다 (도 7c) .  . In addition, as shown in FIG. 7C, Vaxl and NF160 proteins were simultaneously expressed in the nucleus of Vaxl + / + mice with astrocytosis i (FIG. 7C, line 1), whereas NF160 was present in the ocular and neural retinas of VaxllacZ / lacZ mice. By confirming that the protein is expressed but not the Vaxl protein (FIG. 7C, line 2), the Vaxl is present in the retinal ganglion cell axon of Vax + / + mouse optic nerve, but in defibrated VaxllacZ / lacZ mouse retinal ganglion cell axon. It was confirmed that it did not appear (FIG. 7C).
또한, 도 7d에 나타낸 바와 같이, Vaxl 단백질이 망막신경절세포 폴라즈마막 (plasma membrane)의 세포외 표면에 결합하고, 망막신경절세포 세포내 유입 소포 (endocyt ic vesicles) 내에 존재하는 반면 (도 7d, 1행) , 안병 별아교전구세포 (OP APC)에서는 수송 소포 (traff icking vesicles) 및 핵 내 크로마틴 (chromat in)과 함께 존재하는 (도 7d, 2행) 것을 확인하였다 (도 7d) . 또한, 도 7e에 나타낸 바와 같이 , Vaxl의 mRNA가 시상하부의 시상하부 세포 코드, 시신경, 시신경교차에서 발현하고, VaxllacZ/lacZ .마우스에서는 뇌에서 발현되지않음올 확인하였다 (도 7e) . 따라서, 상기 결과들을 통해 Vaxl은 망막을 제외한 망막신경절세포 축삭 관련 구조에서 발현되고, 안병 또는 복측 시상하부에서 분비된 Vaxl 단백질이 망막신경절세포 축삭막에 안착하여 망막신경절세포 내로 이동함을 확인하였다. <실시예 6> 해파란 설페이트 프로테오글리칸 (heparan sulfate proteoglycan, HSPG)에 의한 Vaxl 세포간 이동 조절 확인 In addition, as shown in FIG. 7D, the Vaxl protein binds to the extracellular surface of the retinal ganglion cell plasma membrane and is present in endocytic vesicles (FIG. 7D, Line 1), eye blast glial progenitor cells (OP APC) were found to exist with transport vesicles and chromatin in the nucleus (Fig. 7D, line 2) (Fig. 7D). In addition, as shown in FIG. 7E, mRNA of Vaxl is expressed in the hypothalamus cell code, optic nerve, and optic nerve cross-section, and VaxllacZ / lacZ . In mice, it was confirmed that it is not expressed in the brain (FIG. 7E). Therefore, the results confirmed that Vaxl is expressed in the retinal ganglion cell axon-related structures other than the retina, and Vaxl protein secreted from the ophthalmic or ventral hypothalamus seats on the retinal ganglion cell axon and moves into retinal ganglion cells. Example 6 Confirmation of Vaxl Intercellular Migration Control by Heparan Sulfate Proteoglycan (HSPG)
세포간 이동은 En2(engrai Ied-2) 및 0tx2(orthodent icle homeodomain 2)와 같은 호메오도메인 전사인자 (homeodomain transcr ipt ion factors)에서 보고되고 있으나 (Brunet et al . , 2007; Brunei et al . , 2005; Sugiyama et al . , 2008) , 호메오도메인 전사인자의 수송에 관한 조절 기작은 잘 알려져 있지 않다. 또한, 초파리에서 Vaxl의 세포간 이동을 변형할 수 있는 유전자 암호화 단백질로서 막횡단 (transmembrane) 헤파란 설페이트 프로테오글리칸 (HSPG) 단백질인 신데칸 (syndecan, Sdc)을 발견하였다 (Spr ing et al . , 1994) . 따라서 , 호메오도메인 전사인자인 Vaxl의 세포간 이동의 조절 기작 및 Vaxl의 세포간 이동 조절에 신데칸이 '관여하는지 확인하기 위하여, Ptc-Gal4-유도 Vaxl-EGFP 및 Ds-Red를 발현시킨 초파리, Ptc-Gal4-유도 Vaxl-EGFP, Ds-Red 및 Sdc 또는 Sdc 돌연변이 (sdc23)를 발현시킨 초파리, 및 Ptc-Gal4-유도 Vaxl-EGFP, Ds-Red 및 해파란 설페이트 프로테오글리칸 글리피칸 (glypican, Glp)의 초파리 상동 단백질인 Dlp(dal ly l ike protein)를 발현시킨 초파리를 이용하여 면역염색법을 수행하였다. Intercellular migration has been reported in homeodomain transcr ipt ion factors such as En2 (engrai Ied-2) and 0tx2 (orthodent icle homeodomain 2) (Brunet et al., 2007; Brunei et al., 2007). 2005; Sugiyama et al., 2008), the regulatory mechanisms for the transport of homeodomain transcription factors are not well known. We also found syndecan (Sdc), a transmembrane heparan sulfate proteoglycan (HSPG) protein, as a gene encoding protein capable of modifying intracellular transport of Vaxl in Drosophila (Spr ing et al., 1994). . Thus, the arc flies that the movement control of the inter-cell regulatory mechanisms and Vaxl of moving between cells of the Vaxl Meo domain transcription factor in order to ensure that the new decane 'involved, expressing Ptc-induced Gal4- Vaxl-EGFP and Ds-Red , Drosophila expressing Ptc-Gal4-induced Vaxl-EGFP, Ds-Red and Sdc or Sdc mutants (sdc23), and Ptc-Gal4-induced Vaxl-EGFP, Ds-Red and heparan sulfate proteoglycan glypican (glypican, Glp Immunostaining was performed using a Drosophila expressing Dlp (dal ly l ike protein), a Drosophila homology protein.
구체적으로, 상기 실시예 <1-2>에 기재된 방법으로 획득한 Pt c-ga 14>Vaxl-EGFP , Ds-Red 초파리, Ptc-gal4>Vaxl-EGFP, Ds-Red ,Sdc23 초파리, Pt c-ga 14>Va l-EGFP , Ds-Red , Sdc 초파리, 및 Ptc-gal4>Vaxl-EGFP, Ds-Red, Dip 초파리의 날개 성층판 ( imaginal disc)을 4% PFA/PBS로 30 분 등안 고정하고, 세포외 Vaxl을 시각화하기 위하여 1 : 10으로 회석한 항 -Vaxl 항체로 4°C에서 10 분 동안 반웅시킨 후 PBS로 세 번 세척하였다. 그 다음,상은에서 1시간 동안 1 : 1000으로 희석한 Cy5-접합 이차 항체와 함께 반웅시킨 후, 세포외 Vaxl , EGFP 및 Vaxl-EGFP단백질의 Ptc— Gal4-유도 초록 형광 신호 및 Ds-Red단백질꾀 빨강 형광 신호를 공초점 현미경 (Olympus FV1000)으로 시각화하였다. 그 결과, 도 8에 나타낸 바와 같이, Sdc 돌연변이 발현 초파리의 날개 성충판 앞쪽에서 Vaxl-EGFP만 발현된 세포의 수가 증가하는 반면, sdc (도 8, 3행) 및 Dip (도 8, 4행) 발현 초파리의 날개 성충판 앞쪽에서는 Vaxl-EGFP 발현된 세포의 수가 감소하는 것을 확인함으로쎄 초파라 날개 성층판 세포막에서 과발현된 신데칸 (Sdc)이 공동 발현된 Vaxl 단백질과 결합하여 이웃세포로 분산되는 것을 방해함을 확인하였다. 따라서, 이들 결과를 통해 Vaxl 단백질은 포유류 시스템과 유사하게 초파리 날개 성층판에 있는 이웃세포로 이동하고, 상기 Vaxl의 세포간 이동은 해파란 설페이트 프로테오글리칸 (HSPGs)에 의해 매개됨을 확인하였다 (도 8) . Specifically, Pt c-ga 14> Vaxl-EGFP, Ds-Red Drosophila, Ptc-gal4> Vaxl-EGFP, Ds-Red, Sdc23 Drosophila, Pt c- obtained by the method described in Example <1-2> ga 14> Va-EGFP, Ds-Red, Sdc Drosophila, and Ptc-gal4> Vaxl-EGFP, Ds-Red, Dip Drosophila wing imaginal discs with 4% PFA / PBS In order to visualize extracellular Vaxl, the reaction was reacted with anti-Vaxl antibody diluted 1: 10 at 4 ° C for 10 minutes and washed three times with PBS. The phases were then reacted with Cy5-conjugated secondary antibodies diluted 1: 1000 for 1 hour at, followed by Ptc—Gal4-induced green fluorescence signal and Ds-Red protein of extracellular Vaxl, EGFP and Vaxl-EGFP proteins. Red Fluorescence signals were visualized by confocal microscopy (Olympus FV1000). As a result, as shown in Fig. 8, the number of cells expressing only Vaxl-EGFP was increased in front of the wing plate of the Sdc mutant-expressing Drosophila, while sdc (Figs. 8 and 3) and Dip (Figs. 8 and 4) Expression of Drosophila in front of the wings of the Drosophila is confirmed that the number of Vaxl-EGFP-expressed cells decreases, so that the overexpressed syndecan (Sdc) in the superpara wing membrane membrane is co-expressed with the Vaxl protein, which is dispersed in neighboring cells. It was confirmed to interfere. Thus, these results confirm that the Vaxl protein migrates to neighboring cells in the Drosophila wing lamellar plate, similar to the mammalian system, and the intracellular migration of Vaxl is mediated by heparan sulfate proteoglycans (HSPGs) (FIG. 8). .
<실시예 7> Vaxl과 해파란 설페이트 의존적 해파란 설페이트 프로테오글리칸의 결합 확인 Example 7 Confirmation of Vaxl and Hafaran Sulfate Dependent Hafaran Sulfate Proteoglycans
<7-1> Vaxl과 해파란설페이트프로테오글리칸의 결합 확인  <7-1> Confirmation of Vaxl and Haparan Sulfate Proteoglycans
Vaxl의 이동에 있어서 신데칸의 역할을 확인하기 위하여, 면역침강법 ( immunoprecipi tat ion) 및 웨스턴 블럿 ¾을 수행하였다.  In order to confirm the role of syndecane in the movement of Vaxl, immunoprecipi tat ion and Western blot ¾ were performed.
구체적으로, 출생 0일 (post— natal day 0, P0) 마우스로부터 준비된 시신경을 10 mM Tr i s-HCl (pH 7.4) , 200 mM NaCl , 1% Tr i ton X- 100, 및 1% NP— 40이 포함된 용해 버퍼로 용해하였다. 세포 용해물은 12,000Xg로 10 분 동안 4°C에서 원심분리하여 상층액올 수득하였다. 상기 수득한 상층액은 항 -Vaxl 및 항ᅳ Sdc2 항체 (Santa Cruz Biotechnology)를 처리하여 4°C에서 16 시간 동안 반웅시키고 단백질 A-아가로즈 비드 (Protein A-agarose bead)를 첨가하여 4 °C에서 16 시간 동안 추가적으로 반웅시켜 면역침강하였다. 그 다음ᅵ 용해 버퍼로 5 번 세척하고 2 X SDS 시료 완충용액을 첨가하여 반웅을 종결시킨 후, 상기 실시예 <3-1>과 같이 일차 항체로 항 -Sdc2 및 항 -Vaxl 항체를 이용하여 웨스턴 블¾팅을 수행하였다 (도 9a) . 음성대조군으로 래빗 IgG(rblgG)로 침강시키고 상기와 같이 웨스턴 블럿을 수행하였다.  Specifically, optic nerves prepared from post-natal day 0, P0 mice were treated with 10 mM Tr i s-HCl (pH 7.4), 200 mM NaCl, 1% Tr i ton X-100, and 1% NP— Dissolve with lysis buffer containing 40. Cell lysates were centrifuged at 12,000 × g for 10 minutes at 4 ° C. to obtain supernatant. The obtained supernatant was treated with anti-Vaxl and anti-Sdc2 antibodies (Santa Cruz Biotechnology) and reacted at 4 ° C. for 16 hours, followed by addition of Protein A-agarose bead (4 ° C.). The reaction was further precipitated for 16 hours at. After washing 5 times with lysis buffer and adding 2 X SDS sample buffer, the reaction was terminated, followed by Western antibody using anti-Sdc2 and anti-Vaxl antibodies as the primary antibody as in Example <3-1>. Blotting was performed (FIG. 9A). The negative control group was precipitated with rabbit IgG (rblgG) and Western blot was performed as above.
또한, Vaxl , Vax2, GFP-태그된 Sdcl 및 Sdc2를 암호화하는 컨스트럭트를 제작한 후, 상기 실시예 <3-1>과 같이 HEK293T세포로 Vaxl , 및 GFP—Sdcl 또는 GFP-Sdc2를 형질전환하고 (도 9b), Vax2, 및 GFP-Sdcl 또는 GFP-Sdc2를 형질전환하였다 (도 9c) . 2일 후, 상기와 같이 세포를 용해하여 상층액을 획득하고, 항 -GFP 항체로 면역침강한 후, 상기 실시예 <3ᅳ 1>과 같이 일차 항체로 항 -Vaxl 항체 (도 9b) 또는 항 -Vax2 항체 (도 9c)를 이용하여 웨스턴 블럿팅을 수행하였다 (도 9b 및 도 9c) . Also, constructs encrypting Vaxl, Vax2, GFP-tagged Sdcl and Sdc2 After construction, Vaxl, and GFP—Sdcl or GFP-Sdc2 were transformed with HEK293T cells as shown in Example <3-1> (FIG. 9B), and Vax2, and GFP-Sdcl or GFP-Sdc2 were transformed. (FIG. 9C). After 2 days, the cells were lysed as described above to obtain supernatant, immunoprecipitated with anti-GFP antibody, and then the anti-Vaxl antibody (Fig. 9b) or anti Western blotting was performed with -Vax2 antibody (FIG. 9C) (FIGS. 9B and 9C).
그 결과, 도 9a 내지 9c에 나타낸 바와 같이, E14.5 마우스 시신경에서 Vaxl항체에 의해 Sdc2가 침강되고, Sdc2항체에 의해 Vaxl이 침강되며 (도 9a), HE 293T 세포에서 GFP 항체에 의해 Vaxl이 침강되는 반면 (도 9b), Vax2는 침강되지 않는 것을 (도 9c) 확인함으로써, 상기 Vaxl이 HEK293T 세포에서 과발현된 신데칸 l(Sdcl) 및 신데칸 2(Sdc2)뿐만 아니라 E14.5 마우스 시신경에 있는 신데칸 2와 상호작용함을 확인하였다 (도 9a 내지 도 9c) .  As a result, as shown in Figures 9a to 9c, Sdc2 is precipitated by the Vaxl antibody in the E14.5 mouse optic nerve, Vaxl is precipitated by the Sdc2 antibody (Fig. 9a), Vaxl by GFP antibody in HE 293T cells While sedimenting (FIG. 9B), Vax2 did not settle (FIG. 9C), the Vaxl was found in the E14.5 mouse optic nerve as well as in the synthecan l (Sdcl) and synthecan 2 (Sdc2) overexpressed in HEK293T cells. It was confirmed that it interacts with syndecane 2 (FIGS. 9A-9C).
<7-2> Vaxl의 신데칸 2 결합부위 확인 <7-2> Synthecan 2 binding site of Vaxl
Vaxl과 상호작용하는 신데칸 2(Sdc2)의 부위를 확인하기 위하여, N-말단 세포외 도메인이 결핍된 Sdc2-C 및 C-말단 세포질 도메인이 결핍된 Sdc2-N을 이용하여 면역침강법 및 웨스턴 블럿팅을 수행하였다.  Immunoprecipitation and Western methods using Sdc2-C lacking the N-terminal extracellular domain and Sdc2-N lacking the C-terminal cytoplasmic domain to identify sites of syndecan 2 (Sdc2) that interact with Vaxl Blotting was performed.
:구체적으로, GFP-태그된 Sdc2-N 또는 Sdc2-C를 암호화하는 컨스트럭트를 제작한 후, 상기 실시예 <3-1>과 같이 HEK293T 세포로 Vaxl , 및 상기 GFP-Sdc2-N 또는 Sdc2-C 컨스트럭트를 형질전환하였다. 그 다음 상기 실시예 Specifically, after constructing a construct encoding GFP-tagged Sdc2-N or Sdc2-C, Vaxl, and GFP-Sdc2-N or Sdc2 were used as HEK293T cells as in Example <3-1>. -C constructs were transformed. Then the above embodiment
<7-1>과 같이 세포를 용해하여 세포 용해물의 상층액을 수득한 후, 항 -GFP 항체로 면역침강한 후, 상기 실시예 <3-1>과 같이 일차 항체로 항 -Vaxl 항체를 이용하여 웨스턴 블럿팅을 수행하였다 (도 9d) . After lysing the cells to obtain a supernatant of the cell lysate as shown in <7-1>, immunoprecipitating with an anti-GFP antibody was performed, and then the anti-Vaxl antibody was used as the primary antibody as in Example <3-1>. Western blotting was performed using FIG. 9D.
그 결과, 도 9d에 나타낸 바와 같이, GFP-Sdc2-N를 과발현사킨 경우, GFP 항체에 의해 Vaxl이 침강되지만, GFP-Sdc2-C를 과발현시킨 경우, GFP 항체에 의해 Vaxl이 침전되지 않는 것을 확인함으로써, 상기 Vaxl이 신데칸의 세포외 도메인과 결합함을 확인하였다 (도 9d) . <7-3>해파란설페이트 측면에 결합하는 Vaxl 확인 As a result, as shown in FIG. 9D, when GFP-Sdc2-N was overexpressed, Vaxl was precipitated by the GFP antibody, but when GFP-Sdc2-C was overexpressed, Vaxl was not precipitated by the GFP antibody. By doing so, it was confirmed that Vaxl binds to the extracellular domain of syndecane (FIG. 9D). <7-3> Confirmation of Vaxl binding to the side of blue sulfate
신데칸의 세포외 도메인은 주로 헤파란 설페이트 당에 의해 변형되고 (Bishop et al . , 2007), 따라서, Vaxl이 신데칸의 단백질 백본 (backbone)뿐만 아니라 당 그룹과도 상호작용할 수 있다. 따라서, 신데칸 2의 헤파란 설페이트 (HS) 측면 사슬에 Vaxl이 결합하는지 확인하기 위하여, 면역침강법을 수행하였다ᅳ 구체적으로, E14.5 마우스 시신경에 헤파린 (hepar in) (Acros Organics) 1 mg/m.e를 처리 또는 무처리하고, 상기 실시예 <7-1>과 같이 항 -Vaxl 항체로 침강시키고 각 항체를 이용하여 웨스턴 블렷을 수행하였다. 음성대조군으로 래빗 IgG(rblgG)로 침강시키고 상기와 같이 웨스턴 블럿을 수행하였다. 일차항체로 항 -sdc2 , 항 -Sdc3(santa cruz Biotechnology) , 항 -GlpKSanta Cruz Biotechnology) , 항- 3 2( 111^ 1: 1"0 ^), 항 -Vaxl 항체를 사용하였다 (도 9e) . 또한, 1 g의 Vaxl-Hi s 단백질을 최종 농도 0.2 mg/m£로 HS 또는 CS(Chondroi t in sul fate)가 코팅된 사파로즈 4B(sepharose 4B) 레진 (resin)과 함께 4°C에서 1시간 동안 배양하였다. 레진에 결합한 Vaxl단백질은 SDS시료 완충용액을 처리한 후 상기 실시예 <3ᅳ1>과 같이 10% SDS-PAGE로 전기영동한 후, 일차항체로 항— Vaxl 항체를 이용하여 웨스턴 블럿팅하였다. Vaxl 밴드의 상대적 강도는 이미지 -J 소프트웨어 ( image-J software)를 이용하여 분석하였다 (도 9f ) . The extracellular domain of syndecane is primarily modified by heparan sulfate sugars (Bishop et al., 2007), and thus Vaxl can interact with sugar groups as well as the protein backbone of syndecane. Therefore, immunoprecipitation was performed to confirm that Vaxl binds to the heparan sulfate (HS) side chain of syndecane 2. Specifically, 1 mg of hepar in (Acros Organics) on the E14.5 mouse optic nerve. / me was treated or untreated, and precipitated with anti-Vaxl antibody as in Example <7-1>, and Western clear was performed using each antibody. The negative control group was precipitated with rabbit IgG (rblgG) and Western blot was performed as above. As the primary antibodies, anti-sdc2, anti-Sdc3 (santa cruz Biotechnology), anti-GlpKSanta Cruz Biotechnology, anti-3 2 (111 ^ 1 "1 ^ 0 ^), and anti-Vaxl antibodies were used (FIG. 9E). In addition, 1 g of Vaxl-Hi s protein was added at 4 ° C with sapharose 4B resin coated with HS or Chondroi t in sul fate at a final concentration of 0.2 mg / m £. for a time and incubated Vaxl protein bound to the resin SDS sample wherein in after processing the buffered solution example after <3 eu 1> electric by 10% SDS-PAGE as shown in the gel, primary antibody - used Vaxl antibody Western blotting was performed The relative intensities of the Vaxl bands were analyzed using image-J software (FIG. 9F).
그 결과, 도 9e에 나타낸 바와 같이, 헤파린의 첨가하지 않은 경우, Vaxl 항체에 의해 Sdc2 , Sdc3및 Glpl이 침강되는 반면, 해파린을 첨가한 경우, 상기 Sdc2 , Sdc3 , Glpl이 침강되지 않는 것을 확인함으로써, 자유 해파린과 Vaxl이 해파란 설페이트 프로테오글라칸의 헤파란 설페이트와 경쟁하고 또한, Vaxl이 안병 별아교전구세포에서 Vaxl과 복합체를 형성하는 Pax2를 제외한 망막신경절세포 축삭에서 발현되는 해파란 설페이트 프로테오글리칸과 상호작용함을 확인하였다 (도 9e) .  As a result, as shown in Figure 9e, when heparin is not added, Sdc2, Sdc3 and Glpl is precipitated by the Vaxl antibody, whereas when heparin is added, the Sdc2, Sdc3, Glpl does not precipitate Thus, free heparin and Vaxl compete with heparan sulphate of proteoglancan, and heparan sulphate expressed in retinal ganglion cell axons, except for Pax2, where Vaxl complexes with Vaxl in ocular astrocytoblasts. It was confirmed that it interacts with proteoglycans (FIG. 9E).
또한, 도 9f에 나타낸 바와 같이, 재조합 Vaxl단백질이 해파란 설페이트 코팅된 레진에 결합하는 것올 확인함으로써, 상기 Vaxl이 망막신경절세포에서 발현되는 헤파란 설페이트 프로테오글리칸 단백질의 헤파란 설페이트 측면 사슬과 결합함을 확인하였다 (도 9f ) . 따라서 <실시예 7>의 결과들을 통해 Vaxl이 해파란 설페이트 프로테오글리칸의 세포외 도메인, 특히, 헤파란 설페이트 프로테오글리칸의 헤파란 설페이트 측면 사슬에 특이적으로 결합함을 확인하였다. In addition, as shown in Figure 9f, by confirming that the recombinant Vaxl protein binds to the blue sulfate-coated resin, the Vaxl is in the retinal ganglion cells It was confirmed that the heparan sulfate side chains of the expressed heparan sulfate proteoglycan protein (FIG. 9F). Therefore, the results of <Example 7> confirmed that Vaxl specifically binds to the extracellular domain of heparan sulfate proteoglycans, in particular, the heparan sulfate side chain of heparan sulfate proteoglycan.
<실시예 8> Vaxl 및 헤파란설페이트 프로테오글리칸의 상호작용에 의한 신경망막절세포축삭성장자극확인 Example 8 Confirmation of Neural Retinal Cell Axon Growth Stimulation by Interaction of Vaxl and Heparan Sulfate Proteoglycans
<8-1> 해파란 설페이트 프로테오글리칸에 결합한 Vaxl에 의한 망막신경절세포축삭성장자극확인  <8-1> Confirmation of retinal ganglion cell axon growth stimulation by Vaxl bound to heparan sulfate proteoglycan
헤파란 설페이트 프로테오글리칸에 결합한 Vaxl이 망막신경절세포 축삭 성장 자극 활성에 미치는 영향을 확인하고, Vaxl의 망막신경절세포 축삭 성장 자극 효과가 하기 [표 1]과 같이 0tx2에 있는 모티프와 상동성을 가지는 Vaxl의 당 -결합 모티프 (sugar binding mot i f )에 의해 매개하는지 확인하기 위하여, .Vaxl 및 해파리나제 I(hepar inase 1 ), 콘드로이티나제 ABC(chondroit inase ABC, ChnaseABC) , 바이오틴 (biot in) 표지된 Vaxl KR-펩타이드 또는 M-Mo 펩타이드, 및 Vaxl(KR/AA) His 돌연변이 단백질을 처리한 신경망막 절편체를 이용하여 면역염색법을 수행하였다.  The effect of Vaxl bound to heparan sulfate proteoglycan on the retinal ganglion cell axon growth stimulation activity, and the effect of Vaxl on the retinal ganglion cell axon growth stimulation was homologous to the motif in 0tx2 as shown in Table 1 below. To determine if it is mediated by sugar binding mot if, .Vaxl and jellyparnase I (chonparit inase ABC, ChnaseABC), biotin in labeled Immunostaining was performed using neural retinal sections treated with Vaxl KR-peptide or M-Mo peptide, and Vaxl (KR / AA) His mutant protein.
구체적으로, 상기 실시예 <1-1>에 기재된 방법으로 획득한 신경망막 절편체에 해파린 및 헤파란 설페이트 당 사슬을 절단하는 헤파리나제 Khepar inase D (Sigma) 2.5U/m£ 또는 콘드로이틴 (chondroi t ine) 당 사슬을 제거하는 콘드로이티나제 ABC(chondroi t inase ABC, ChnaseABC) (Sigma) 2.5 U/iM를 3 시간 동안 처리한 후, Vaxl-His 재조합 단백질 0.1 / g/m.e를 첨가하고 24 시간 동안 반웅시켰다. 그 다음, 망막신경절세포 축삭에서 Vaxl의 존재를 확인하기 위하여, 상기 실시예 <2-1〉과 같이 항 -Vaxl 항체 (초록) 및 항 -NF160 항체 (빨강)를 이용하여 면역염색하고 시각화하였다. 화살표는 확대한 부위이다 (스케일바: 500 ) (도 10a) .  Specifically, heparinase Khepar inase D (Sigma) 2.5 U / m £ or chondroitin (not shown) that cuts the heparin and heparan sulfate sugar chains into the neural retinal fragments obtained by the method described in Example <1-1>. chondroi t inase ABC (Chondroi t inase ABC, ChnaseABC) (Sigma) 2.5 U / iM treated for 3 hours to remove sugar chains, and then added Vaxl-His recombinant protein 0.1 / g / me Reaction for 24 hours. Then, to confirm the presence of Vaxl in retinal ganglion cell axons, immunostaining and visualization using anti-Vaxl antibody (green) and anti-NF160 antibody (red) as in Example <2-1>. Arrows are enlarged areas (scale bar: 500) (FIG. 10A).
또한, 상기 실시예 <1-1>에 기재된 방법으로 획득한 24 시간 전배양한 신경망막 절편체의 축삭 길이를 상기 실시예 <4ᅳ1>과 같이 측정한 후, 신경망막 절편체에 재조합 Vaxl-His 0.1 g/n 및 하기 [표 1]과 같이 0tx2 당 결합 모티프와 상동성을 가지는 Vaxl아미노산 서열 101내지 112를 암호화하는 바이오틴 (biotin) 표지된 Vaxl KR-펩타이드 (KR-bio; 100 ng/nd) , Vaxl-His(0.1 μg/mSί) 및 두 개의 증요한 당 결합 잔기 101번 리신 및 102번 알기닌 (Lysl01-Argl02(KR))을 알라닌 (Ala-Ala(AA)으로 치환한 M-bio 펩타이드 (100 ng/ l) , 또는 Lysl01-Argl02(KR)을 Ala-Ala(AA)로 치환한 Vaxl(KR/AA)-His돌연변이 단백질 ((hi /i KAnyGen)을 처리하고 24시간 동안 반웅시켰다. 그 다음, 축삭의 길이를 상기 실시예 <4-1>과 같이 재측정하고, 4% PFA/PBS로 고정한 후, 상기 실시예 <2-1>과 같이 항 -Vaxl 항체 (초록) 및 항 -NF160 항체 (빨강)로 면역염색하고 시각화하였다 (도 10b). 화살표로 확대한 부위를 표시하였다 (스케일바: 500 ηύ . In addition, precultured for 24 hours obtained by the method described in Example <1-1> After measuring the axon length of the neural retinal fragment as in Example <4 ᅳ 1>, homologous to the binding motif of 0x2 sugar recombinant 0x2 and recombinant Vaxl-His 0.1 g / n in the neural retinal fragment as shown in Table 1 below. Biotin labeled Vaxl KR-peptides (KR-bio; 100 ng / nd) encoding Vaxlamino acids SEQ ID NOs: 101 to 112, Vaxl-His (0.1 μg / mSί) and two important sugar binding residues 101 M-bio peptide (100 ng / l) substituted with alanine (Ala-Ala (AA)) for lysine and 102-arginine (Lysl01-Argl02 (KR)), or Ala-Ala (AA) for Lysl01-Argl02 (KR) Vaxl (KR / AA) -His mutant protein ((hi / i KAnyGen) substituted with) was reacted for 24 hours. The length of the axon was then re-measured as in Example <4-1>. After fixing with 4% PFA / PBS, immunostained and visualized with anti-Vaxl antibody (green) and anti-NF160 antibody (red) as shown in Example <2-1> (Fig. 10B). part The expressed (Scale bar: 500 ηύ.
【표 1】
Figure imgf000049_0001
또한, 상기 헤파리나제 I, 콘드로이티나제 ABC, KR-bio펩타이드, M-bio 펩타이드 및 Vaxl(KR/M)돌연변이 단백질을 처리한 신경망막 절편체를 24시간 배양하는 동안 망막신경절세포 축삭 길이의 변화를 상기 실시예 <4-1>과 같이 측정하여 그래프화하였다. 값은 평균을 구하였고, 에러바는 SD로 분석하였다 (Vaxl(n=7), Vaxl+Hepar inasel(n=6) , Vaxl+ChnaseABC(n=6) , Vaxl+RK-bio(n=6), Vaxl+AA-bio(n=6) , Vaxl(KR/AA)(n=5)) . P-값은 student t-test로 구하였다 (*, ρ<0.0ΐ; **, ρ<0.001) (도 10c).
Table 1
Figure imgf000049_0001
In addition, the retinal ganglion cell axon length during the 24-hour incubation of the heparinase I, chondroitinase ABC, KR-bio peptide, M-bio peptide and Vaxl (KR / M) mutant protein. The change of was measured and graphed as in Example <4-1>. Values were averaged and error bars were analyzed by SD (Vaxl (n = 7), Vaxl + Hepar inasel (n = 6), Vaxl + ChnaseABC (n = 6), Vaxl + RK-bio (n = 6). ), Vaxl + AA-bio (n = 6), Vaxl (KR / AA) (n = 5)). P-values were obtained by student t-test (*, ρ <0.0ΐ; **, ρ <0.001) (FIG. 10C).
그 결과, 도 10a및 10c나타낸 바와 같이, 콘드로이티나제 ABC를 처리한 신경망막 절편체보다 . 헤파리나제 I을 처리한 신경망막 절편체에서 망막신경절세포 축삭 성장이 억제되고, 축삭의 면역염색 신호가 감소하는 것을 확인함으로써, 헤파리나제 I에 의한 헤파란 설페이트 프로테오글리칸의 해파란 설페이트 당 사슬이 절단되어 Vaxl이 해파란 설페이트에 결합하지 못하고, 따라서, 망막신경절세포 축삭의 성장 자극이 억제됨을 확인하였다 (도 10a 및 10c) . As a result, as shown in FIGS. 10A and 10C, the neuroretinal explants treated with chondroitinase ABC were significantly reduced. Heparan sulphate proteoglycan by Heparinase I was confirmed by inhibiting retinal ganglion cell axon growth in heparinase I-treated neural retinal fragments and decreasing axon immunostaining signals. Vascular sugar chains were cleaved to prevent Vaxl from binding to the sulphated sulfate, thus inhibiting growth stimulation of retinal ganglion cell axons (FIGS. 10A and 10C).
또한, 도 10b 및 10c에 나타낸 바와 같이, R-bio 펩타이드 또는 Vaxl(KR/AA) 돌연변이 단백질올 처리한 경우, 망막신경절세포 축삭의 성장이 억제되는 반면 AA-bio 펩타이드를 처리한 경우, Vaxl만 처리한 경우와 유사하게 축삭이 성장하는 것을 확인하였다 (도 10b 및 10c) .  In addition, as shown in Figure 10b and 10c, when treated with R-bio peptide or Vaxl (KR / AA) mutant protein, growth of retinal ganglion cell axons is inhibited, while AA-bio peptide treatment, Vaxl only It was confirmed that axons grow similarly to the case of treatment (FIGS. 10B and 10C).
<8-2> Vaxl 당 결합 모티프 및 헤파란 설페이트 프로테오글리칸과의 결합에 의한망막신경절세포축삭성장자극확인 <8-2> Confirmation of retinal ganglion cell axon growth stimulation by binding of Vaxl sugar binding motif and heparan sulfate proteoglycan
Vaxl(KR/AA) 돌연변이 단백질이 망막신경절세포 축삭 성장에 미차는 영향을 확인하기 위하여, 면역침강법, 웨스턴 블럿팅 및 면역염색법을 수행하였다.  To determine the effect of Vaxl (KR / AA) mutant protein on retinal ganglion cell axon growth, immunoprecipitation, Western blotting and immunostaining were performed.
구체적으로, V5-태그된 Vaxl 또는 Vaxl(KR/AA)를 암호화하는 컨스트럭트를 제작한 후, 상기 실시예 <3-1>과 같이 HEK293T 세포로 형질전환하고, 3시간 동안 해파린 10 mg/m를 처리하여 배양한 후,상기 실시예 <3-1>과 같이 세포를 수득하여 용해하고, 성장배지는 원심분리하여 상층액 (S3) 부분을 수득하였다. 상기 수득한 상층액은 동량의 3 M 트리클로로아세트산 (TCA ; 최종 농도 20%) 용액을 혼합하여 거대분자를 침전시키고, 차가운 아세톤 (acetone)으로 3 번 세척한 후, 건조하여 펠렛을 획득하였다. 상기 수득한 세포 용해물 및 펠렛은 상기 실시예 <2-1>과 같이 일차 항체로 항— V5 항체 (GenWay Biotech)를 이용하여 웨스턴 블럿팅을 수행하고 (도 lla , 위) , Vaxl 밴드의 상대적 강도를 이미지 -J 소프트웨어를 이용해 그래프화하였다 (도 lla , 아래) .  Specifically, after constructing a construct encoding V5-tagged Vaxl or Vaxl (KR / AA), transformed into HEK293T cells as in Example <3-1>, heparin 10 mg for 3 hours After culturing / m treated, cells were obtained and lysed as in Example <3-1>, and the growth medium was centrifuged to obtain a supernatant (S3). The obtained supernatant was mixed with the same amount of 3 M trichloroacetic acid (TCA; 20% final concentration) solution to precipitate macromolecules, washed three times with cold acetone, and dried to obtain pellets. The obtained cell lysate and pellets were subjected to Western blotting using anti—V5 antibody (GenWay Biotech) as the primary antibody as in Example <2-1> (FIG. Lla, above), and relative to the Vaxl band. Intensities were graphed using Image-J software (FIG. Lla, bottom).
또한, 상기 실시예 <3-1>과 같이 HEK293T 세포에 GFP-Sdc2 , 및 Myc-Vaxl 또는 Myc-Vaxl (KR/AA) 컨스트럭트를 형질전환하였다. 그 다음 상기 실시예 <7-1>과 같이 세포를 용해하여 세포 용해물의 상층액을 수득한 후, 항 -Vaxl 항체로 면역침강한 후, 상기 실시예 <3-1>과 같이 일차 항체로 항 -GFP 항체를 이용하여 웨스턴 블릿팅을 수행하였다 (도 lib) . In addition, GFP-Sdc2, and Myc-Vaxl or Myc-Vaxl (KR / AA) constructs were transformed into HEK293T cells as in Example <3-1>. Then, the cells were lysed as in Example <7-1> to obtain a supernatant of the cell lysate, followed by immunoprecipitation with an anti-Vaxl antibody, followed by the primary antibody as in Example <3-1>. Anti-GFP antibodies Western blotting was performed using (FIG. Lib).
또한, 상기 실시예 <3-1>과 같이 HEK293T 세포에 Myc-Vaxl 또는 Myc-Vaxl(KR/AA) 컨스트럭트를 형질전환하고, 세포 성장배지의 상층액 (S3)을 C0S7 세포에 첨가하여 3 시간 동안 배양하였다. 그 다음 상기 C0S7 세포를 항 -Myc 항체 (초록, 세포 표면), 항 -Vaxl 항체 (빨강) 및 DAPI (파랑)를 이용하여 면역염색하고 시각화하였다 (스케일바: 20 ) (도 11c) . In addition, the Myc-Vaxl or Myc-Vaxl (KR / AA) construct was transformed into HEK293T cells as in Example <3-1>, and the supernatant (S3) of the cell growth medium was added to C0S7 cells. Incubated for 3 hours. The C0S7 cells were then immunostained and visualized using anti-Myc antibody (green, cell surface), anti-Vaxl antibody (red) and DAPI (blue) (scale bar: 20) (FIG. 11C).
그 결과, 도 11a내지 11c에 나타낸 바와 같이, 해파린을 처리한 HEK293T 세포에서 침강되는 Vaxl과 Vaxl(KR/M)의 양은 유사하지만, 해파린 무처리 HE 293T 세포에 침강되는 Vaxl(KR/AA)가 Vaxl보다 많은 것을 확인하였다 (도 11a) . 또한, Vaxl(KR/AA)와 Sdc2가 결합하지 못하고 (도 lib) , Vaxl(KR/AA)가 세포 내로 이동하지 못하며 (도 lie) , 신경망막 절편체에서 성장하는 망막신경절세포 축삭의 수가 적음을 확인함으로써 (10c) , 상기 Vaxl(KR/AA) 돌연변이 단백질이 Vaxl보다 헤파란 설페이트 프로테오글리칸에 덜 효과적으로 결합하여 망막신경절세포 축삭.성장 유도를 저해함을 확인하였다 (도 11a 내지 11c 및 10c) . 따라서, <실시예 8>의 결과를 통해 해파란 설페이트 프로테오글리칸에 Vaxl의 결합이 망막신경절세포 축삭 성장 유도에 필수적임을 확인하였다.  As a result, as shown in Figs. 11a to 11c, the amount of Vaxl and Vaxl (KR / M) precipitated in heparin-treated HEK293T cells is similar, but Vaxl (KR / AA) precipitated in heparin-untreated HE 293T cells. ) Is greater than Vaxl (FIG. 11A). In addition, Vaxl (KR / AA) and Sdc2 did not bind (FIG. Lib), Vaxl (KR / AA) did not move into cells (FIG. Lie), and the number of retinal ganglion cell axons growing in neural retinal sections was small. By confirming (10c), it was confirmed that the Vaxl (KR / AA) mutant protein binds less effectively to heparan sulfate proteoglycans than Vaxl and inhibits retinal ganglion cell axon growth induction (FIGS. 11A-11C and 10C). Therefore, the results of <Example 8> confirmed that the binding of Vaxl to the heparan sulfate proteoglycan is essential for inducing retinal ganglion cell axon growth.
<실시예 9> 세포내 Vaxl 침투 및 국소 단백질 합성 유도에 의한 망막신경절세포 축삭의 성장확인 Example 9 Growth Confirmation of Retinal Ganglion Cell Axons by Intracellular Vaxl Infiltration and Local Protein Synthesis Induction
<9-1>세포내 Vaxl 침투에 의한 망막신경절세포 축삭의 성장 확인  <9-1> Confirmation of Retinal Ganglion Cell Axon Growth by Intracellular Vaxl Infiltration
상기 <실시예 7> 및 <실시예 8>을 통해 세포외 Vaxl이 헤파란 설페이트 프로테오글리칸에 결합할 뿐만 아니라, 망막신경절세포 축삭의 세포질 내로 이동함을 확인하였다. 따라서, Vaxl이 세포내 침투 후 세포질 반웅을 조절하여 망막신경절세포 축삭 성장을 자극하는지 또는 헤파란 설페이트 프로테오글리칸의 하위 신호를 활성화하여 망막신경절세포 축삭 성장을 자극하는지 확인하기 위하여, 세포 표면 해파란 설페이트 프로테오글리칸에 결합할 수 있지만 타겟 세포에 침투할 수 없는 Vaxl(WF/SR) 돌연변이를 제작하고, 이를 이용하여 면역침강법 및 면역염색법을 수행하였다. Example 7 and Example 8 confirmed that extracellular Vaxl not only binds to heparan sulfate proteoglycans but also migrates into the cytoplasm of retinal ganglion cell axons. Thus, in order to determine whether Vaxl stimulates retinal ganglion cell axon growth by regulating cytoplasmic reaction after intracellular penetration or by activating a subsignal of heparan sulfate proteoglycan, it stimulates cell surface haemoran sulfate proteoglycan. Vaxl (WF / SR) mutations that can bind to but cannot penetrate target cells And immunoprecipitation and immunostaining were performed using the same.
구체적으로, GFP-Sdc2, 및 안테나페디아 (antennapedia, Antp)의 세포 -침투 영역의 중요한 잔기와 상동성을 가지는 147번 트립토판 (Trp) 및 148번 페닐알라닌 (PheXWR) 아미노산 잔기를 Ser-Arg(SR)로 치환한 Vaxl(WF/SR) 돌연변이 또는 Vaxl를 상기 실시예 <3-1>과 같이 HEK293T 세포로 형질전환한 후, 세포 용해물을 수득하였다. 상기 실시예 <7-1>과 같이 세포 용해물의 상층액을 항 -GFP로 면역침강한 후, 상기 실시예 <3-1>과 같이 일차 항체로 항 -Vaxl 항체를 이용하여 웨스턴 블럿팅을 수행하였다 (도 12a) .  Specifically, the amino acid residues of tryptophan (Trp) and 148 phenylalanine (PheXWR) amino acids having homology with the important residues of the GFP-Sdc2 and the cell-penetrating region of the antennapedia (antp) were identified as Ser-Arg (SR). Vaxl (WF / SR) mutant or Vaxl was substituted with HEK293T cells as in Example <3-1>, and then cell lysate was obtained. After immunoprecipitation of the supernatant of the cell lysate with anti-GFP as in Example <7-1>, Western blotting was performed using the anti-Vaxl antibody as the primary antibody as in Example <3-1>. Was performed (FIG. 12A).
또한, 상기 실시예 <3-1>과 같이 상기 Vaxl및 vaxl(WFVSR)을 과발현시킨 HEK293T 세포 성장배지의 상층액 (S3)올 C0S7 세포에 첨가하고 3 시간 동안 배양하였다. 그 다음, 상기 실시예 <3-1>과 같이 상기 C0S7 세포를 항 -Myc 항체 (초록), 항 -Vaxl 항체 (빨강) 및 DAPI (파랑)를 이용하여 면역염색하고 시각화하였다 (스케일바: 20 (도 12b) .  In addition, the supernatant (S3) ol of HEK293T cell growth medium overexpressing Vaxl and vaxl (WFVSR) was added to C0S7 cells as in Example <3-1> and incubated for 3 hours. The C0S7 cells were then immunostained and visualized using anti-Myc antibody (green), anti-Vaxl antibody (red) and DAPI (blue) as in Example <3-1> (scale bar: 20 (FIG. 12B).
또한, Myc-Vaxl(WT) 또는 Vaxl(WF/SR) 돌연변이를 상기 실시예 <3— 1>과 같이 C0S7 세포로 형질전환하였다. 그 다음, 상기 실시예 <1-1>에 기재된 방법으로 획득한 신경망막 절편체와 상기 형질전환 C0S7 세포를 48 시간 동안 공동배양한 후, 상기 실시예 <2ᅳ1>과 같이 항 -Vaxl 항체 (초록) 및 항 -NF160 항체 (빨강)로 면역염색하여 시각화하고 (스케일바: 500 위), 200 (아래 ) ) ( 12c) , 방향성을 측정하였다 (도 12d) .  In addition, Myc-Vaxl (WT) or Vaxl (WF / SR) mutations were transformed into C0S7 cells as in Example <3-1>. Next, after co-culturing the neural retinal fragment obtained by the method described in Example <1-1> and the transformed C0S7 cells for 48 hours, the anti-Vaxl antibody as in Example <2-1>. (Abstract) and visualized by immunostaining with anti-NF160 antibody (red) (scale bar: 500 above), 200 (bottom)) (12c), the orientation was measured (FIG. 12D).
그 결과, 도 12a 및 도 12b에 나타낸 바와 같이, Vaxl 및 Vaxl(WF/SR) 모두 항 -GFP항체에 의해 침강되지만 (도 12a) , Vaxl(WF/SR)의 경우 세포 내에서 발견되지 않는 것 (도 12b)을 확인함으로써, 상기 VaxKWF/SR) 돌연변이는 헤파란 설페이트 프로테오글리칸에 결합할 수는 있지만 타겟 세포로 침투할 수 없음을 확인하였다 (도 12 a 및 도 12b) .  As a result, as shown in FIGS. 12A and 12B, both Vaxl and Vaxl (WF / SR) were precipitated by anti-GFP antibody (FIG. 12A), but not found in cells in the case of Vaxl (WF / SR). By confirming (FIG. 12B), the VaxKWF / SR) mutant was able to bind heparan sulfate proteoglycans but not penetrate into target cells (FIGS. 12A and 12B).
또한, 도 12c 및 도 12d에 나타낸 바와 같이 , Vaxl(WR/SR) 과발현 C0S7 세포를 공동배양한 신경망막 절편체에서 C0S7 세포로 향한 망막신경절세포 축삭의 성장 유도가 저해되는 것을 확인함으로써, 상기 Vaxl에 의해 유도된 망막신경절세포 축삭 성장을 위하여 외부에서 유래한 Vaxl의 세포내 침투가 요구됨을 확인하였다. In addition, as shown in Fig. 12c and 12d, by confirming that the growth induction of retinal ganglion cell axons directed to C0S7 cells in the retinal explants co-cultured with Vaxl (WR / SR) overexpressing C0S7 cells is inhibited, the Vaxl Intracellular Infiltration of Vaxl for Intraretinal Ganglion Cell Axon Growth Confirmed required.
<9-2>세포질 내 Vaxl단백질 복합체 확인 <9-2> Confirmation of Vaxl Protein Complex in Cytoplasm
세포질 내에서 Vaxl의 기능을 확인하기 위하여, GST-Vaxl 단백질 복합체를 정제 및 은염색 (silver staining) 후 MALDI-TOF로 단백질을 확인하였다.  In order to confirm the function of Vaxl in the cytoplasm, the GST-Vaxl protein complex was purified and silver stained, and the protein was identified by MALDI-TOF.
구체적으로, GST 및 GST-Vaxl를 암호화하는 컨스트럭트를 제작한 후ᅳ 상기 실시예 <3-1>과 같이 HEK293T세포로 형질전환하였다. 그 다음,상기 GST 및 GST-Vaxl 과발현된 HEK293T 세포를 용해하여 세포 용해물을 수득하였다. 상기 수득한 용해물을 4°C에서 12,000Xg로 10 분 동안 원심분리하여 세포질 상층액 (S3)을 획득한 후, 4°C에서 1 시간 동안 글루타티온 세파로즈 (glutathione Sepharose) 4B 레진 (resine)과 함께 배양하였다. 그 다음,용해 버퍼로 5번 세척하고, 2XSDS시료 완충용액으로 용출하였다. 상가 용출된 단백질을 전기영동하고 silver. staining kit(Thermo)를 이용해 제조사의 절차에 따라 염색하였다. 또한, 세포를 0.1% SDS및 1% Triton X-100가 포함된 PBS 용액으로 용해하고, 상기와 같이 용해된 세포로부터 상충액을 수득하여 레진과 함께 배양하였다. 그 다음, 고염 버퍼 (high salt buffer)( 10 mM Tris-HCl ( H 7.4), 1 M NaCl , 1% Triton X-100 및 1% NP-40) 및 PBS로 2 번 세척하고, 10 mM 글루타티온이 포함된 PBS 용액으로 GST-접합된 단백질을 용출하였다. 상기 샘플을 10% SDS-PAGE로 정기영동하고, Pierce Silver Stain Kit for Mass Spectrometry® (Pierce)로 제조사의 절차에 따라 염색하였다. 염색된 밴드는 한국기초과학지원연구원에 의뢰하여 MALDI-TOF mass spectrometry로 분석하였다. Specifically, after constructing a construct encoding GST and GST-Vaxl was transformed into HEK293T cells as in Example <3-1>. Then, the cell lysate was obtained by lysing the GST and GST-Vaxl overexpressed HEK293T cells. The obtained lysate was centrifuged at 12,000 × g at 4 ° C. for 10 minutes to obtain cytoplasmic supernatant (S3), followed by glutathione Sepharose 4B resin at 4 ° C. for 1 hour. Incubated together. It was then washed 5 times with lysis buffer and eluted with 2XSDS sample buffer. The eluted protein was electrophoresed and silver. Staining was performed using the staining kit (Thermo) according to the manufacturer's procedure. In addition, the cells were lysed with PBS solution containing 0.1% SDS and 1% Triton X-100, and a supernatant was obtained from the lysed cells as above and incubated with the resin. Then, washed twice with high salt buffer (10 mM Tris-HCl (H 7.4), 1 M NaCl, 1% Triton X-100 and 1% NP-40) and PBS, and 10 mM glutathione GST-conjugated protein was eluted with the included PBS solution. The samples were subjected to electrophoresis on 10% SDS-PAGE and stained with the Pierce Silver Stain Kit for Mass Spectrometry® (Pierce) following the manufacturer's procedure. The dyed bands were analyzed by MALDI-TOF mass spectrometry by the Korea Basic Science Institute.
그 결과, 도 13a에 나타낸 바와 같이, Vaxl 친화성 정제에 의해 분리된 주된 단백질이 리보솜 구성단백질 (ribosomal component)인 리보솜 단백질 (ribosomal proteins, RPs) Lll, L23A, L26, S14 및 S16, 번역 조절자 (translat ion regulator)인 elF(eukaryot ic translation initiation factor) 3B 및 3C, 및 HSPA1A( chaperon heat shock 70-KD protein 1A)인 것올 확인함으로써, 상기 Vaxl은 세포질 En2가 망막신겨절세포 축삭 성장을 조절하는 것과 유사한 기전인 국소 단백질 합성에 관여함을 확인하였다 (Brunet et al . , 2005; Υοοη et al . , 2012) (도 13a) . <9-3> 망막신경절세포 축삭으로 침투한 Vaxl에 의한 국소 단백질 합성 촉진 확인 As a result, as shown in Figure 13a, the main protein isolated by Vaxl affinity purification is ribosomal proteins (RPs) Lll, L23A, L26, S14 and S16, the translational regulator is a ribosomal component eukaryotic translation initiation factor (elF) 3B and 3C, which are translat ion regulators, and chaperon heat shock 70-KD protein 1A, HSPA1A. By confirming, Vaxl confirmed that cytoplasmic En2 is involved in local protein synthesis, a mechanism similar to the regulation of retinal ganglion cell axon growth (Brunet et al., 2005; Υοο η et al., 2012) (FIG. 13A . <9-3> Confirmation of Promoting Local Protein Synthesis by Vaxl Infiltrated by Retinal Ganglion Cell Axons
Vaxl이 국소 단백질 합성에 관여하는지 확인하기 위하여, Vaxl(WF/SR) 돌연변이를 이용하여 면역염색법을 수행하였다.  To determine whether Vaxl is involved in local protein synthesis, immunostaining was performed using Vaxl (WF / SR) mutations.
구체적으로, 상기 실시예 <1-1>에 기재된 방법으로 획득한 E13.5 마우스 신경망막 절편체을 24시간 배양한 후, Vaxl또는 Vaxl(WF/SR)이 포함된 배지에 옮겨 24 시간 동안 추가 배양하였다. 그 다음, 절편체 배양배지를 메티오닌 (methionine) 자유 배지로 교체하고 30 분 후, 생물직교 비필수아미노산 (bioorthogonal noncanonical amino acid) Specifically, the E13.5 mouse neural retinal sections obtained by the method described in Example <1-1> were cultured for 24 hours, and then transferred to a medium containing Vaxl or Vaxl (WF / SR) for further culture for 24 hours. It was. Then, 30 minutes after replacing the explant culture medium with methionine free medium, bioorthogonal noncanonical amino acid
AHA ( L-az i dohomoa 1 an i ne , Invi trogen) 50 μ Μ를 첨가하였다. 6 시간 후, 상기 신경망막 절편체를 \% FBS를 포함한 D-PBS로 2 번 세척하고, 1% FBS를 포함한 D-PBS에 있는 30 μ Μ DIBO-Al exa Fluor ( Invi trogen)을 첨가하여 암실에서, 상온으로 1시간 동안 배양하였다. 그 다음, \ FBS를 포함한 D-PBS로 4 번 세척하고, 4¾ PFA/D-PBS로 15분 동안 상은에서 배양한 후, AHA-Alexa488포함한 단백질의 형광을 시각화하여 망막신경절세포 축삭 (도 13b, 2행) 및 절편체 세포체 (cel l body) (도 13b , 3행)에서 단백질 합성을올 확인하였다 (스케일바: 500 m( l행), 스케일바: 100 //m(3행) ) (도 13b) . 50 μM of AHA (L-az i dohomoa 1 an i ne, Invi trogen) was added. After 6 hours, the neural retinal sections were washed twice with D-PBS containing \% FBS and darkened by the addition of 30 μΜ DIBO-Al exa Fluor (Invi trogen) in D-PBS containing 1% FBS. Incubated at room temperature for 1 hour. Then, washed 4 times with D-PBS containing FBS, incubated for 15 minutes at 4¾ PFA / D-PBS in silver, and then visualized the fluorescence of the AHA-Alexa488-containing ganglion cell axon (Fig. 13b, Line 2) and the protein synthesis in the cell body (Fig. 13b, line 3) were confirmed (scale bar: 500 m (line 1), scale bar: 100 // m (line 3)) ( 13b).
또한, Vaxl에 의해 유도되는 망막신경절세포 축삭 성장에 있어서 핵에 미치는 영향을 확인하기 위하예 현미경 상에 망막신경 절편체를 놓고 해부용 칼을 이용하여 세포체를 중심으로 돌려가며 축삭을 자른 후, 최종적으로 세포체만을 제거하여 세포체로부터 축삭을 분리하고 상기와 같이 AHA 50 μ Μ를 첨가하여 6 시간 동압 배양한 후, AHA-Alexa488 포함한 단백질의 형광을 시각화하여 단백질 합성율을 확인하고 (스케일바: 500 (도 13c) , 상기 실시예 <4-1>과 같이 6 시간 동안 성장한 망막신경절세포 축삭의 길이를 그래프화하였다 0*, pO.001) (도 13d) . In addition, to confirm the effect on the nucleus in Vaxl-induced retinal ganglion cell axon growth, retinal nerve fragments were placed on a microscope, and the axons were cut around the cell body using an anatomical knife. After removing only the cell bodies, the axons were separated from the cell bodies, and 50 μM of AHA was added as above, followed by 6 hours of incubation, and the fluorescence of the proteins including AHA-Alexa488 was visualized to confirm the protein synthesis rate (scale bar: 500 (Fig. 13c), the length of the retinal ganglion cell axon grown for 6 hours as in Example <4-1> 0 *, pO.001) (FIG. 13D).
그 결과, 도 13b에 나타낸 바와 같이, WT 재조합 Vaxl이 발현된 경우, 망막신경절세포 축삭에서 Alexa Fluor 488ᅳ표지된 단백질의 형광 밀도가 현저하게 증가하는 반면 (도 13b, 2열) , 침투 결함 Vaxl(WF/SR) 돌연변이는 망막신경절세포 축삭에서 새톱게 합성된 단백질의 밀도 증가를 억제함을 확안함으로써 (도 13b, 3열)ᅳ 상기 외인성 (exogenous) Vaxl이 축삭에 침투하여 단백질 합성을 자극함을 확인하였다 (도 13b) .  As a result, as shown in FIG. 13B, when WT recombinant Vaxl was expressed, the fluorescence density of Alexa Fluor 488′-labeled protein was remarkably increased in retinal ganglion cell axons (FIG. 13B, column 2). (WF / SR) mutations confirm that inhibition of densely synthesized protein density increases in retinal ganglion cell axons (FIG. 13B, column 3), which exogenous Vaxl penetrates axons and stimulates protein synthesis. It was confirmed (Fig. 13B).
또한, 도 13c 및 13d에 나타낸 바와 같이, 세포체로부터 분리된 망막 축삭 역시 재조합 Vaxl이 발현된 경우 합성된 단백질의 밀도가 증가하는 반면 ( 13c , 2열), VaxKWF/SR) 돌연변이가 발현된 경우 합성된 단백질의 밀도가 대조군과 유사한 것을 확인하였다 (도 13c , 3열) . 또한, 세포체로부터 분리된 망막 축삭은 Vaxl의 자극으로 축삭 성장이 증가하지만, VaxKWF/SR) 돌연변이 발현된 망막:축삭은 성장이 억제됨을 확인하였다 (도 13d) . 따라서 , 상기 <실시예 9>의 결과를 통해 Vaxl이 세포 내로 이동하여 국소 단백질 합성을 촉진하고, 망막신경절세포 축삭의 성장을 자극함을 확인하였다.  In addition, as shown in FIGS. 13C and 13D, retinal axons isolated from cell bodies also increase the density of the synthesized protein when recombinant Vaxl is expressed (13c, 2nd row), and when the VaxKWF / SR) mutation is expressed. The density of the protein was confirmed to be similar to the control (Fig. 13C, column 3). In addition, the retinal axons isolated from the cell body increased axon growth by stimulation of Vaxl, but it was confirmed that VaxKWF / SR) mutant-expressed retinal: axons inhibited growth (FIG. 13D). Therefore, the results of Example 9 confirmed that Vaxl migrates into cells, promotes local protein synthesis, and stimulates retinal ganglion cell axon growth.
<실시예 10> 외인성 (exogenous) Vaxl 단백질에 의한 중선 (midl ine)으로 향하는 망막신경절세포 축삭조절 확인 <Example 10> Confirmation of retinal ganglion cell axon regulation directed to midl ine by exogenous Vaxl protein
<10-1> 세포외 Vaxl 단백질에 의한 손상된 망막신경절세포 축삭의 성장 회복 확인  <10-1> Confirmation of growth recovery of damaged retinal ganglion cell axons by extracellular Vaxl protein
Vaxl-/-마우스에서 손상된 망막신경절세포 축삭이 세포외 Vaxl단백질에 의해 성장이 회복되는 확인하기 위하여, Vaxl 재조합 단백질 및 Vaxl(WF/SR) 재조합 단백질을 이용해 면역염색을 수행하였다.  In order to confirm that retinal ganglion cell axons damaged in Vaxl − / − mice were recovered by extracellular Vaxl protein, immunostaining was performed using Vaxl recombinant protein and Vaxl (WF / SR) recombinant protein.
구체적으로, 상기 실시예 <4-2>와 같이 VaxllacZ/ lacZ 배자기 마우스 뇌 슬랩의 제 3뇌실에 0.1 f g 6 xHi s 펩타이드, Vaxlᅳ His 또는 Vaxl(WF/SR)-Hi.s 단백질이 흔합된 콜라겐 겔을 24 시간 동안 이식한 후, Di l의 표면형광을 시각화하고 항 -Vaxl 항체 (초록) 및 항 -NF160 항체 (빨강)을 이용하여 면역염색하고 시각화하였고 (도 14a_A) , 상기 실시예 <4-2>와 같이 VaxllacZ/ lacZ 배자기 마우스 뇌 술랩의 제 3뇌실에 1 I Robo 1-Fc 분절 (12.35 pmol , R&D Systems)와 4.78 I 6X-Hi s 펩타이드 (5.69 nmol ) 또는 200 I Vaxl-His(5.69 nmol ) 단백질이 흔합된 콜라겐 겔을 12 시간 동안 이식한 후, 위쪽 형광 이미지는 광검출기로 시각화하였고, 아래쪽 이미지는 같은 부분을 항 -Vaxl 항체 (초록) 및 항 -NF160 항체 (빨강)을 이용하여 면역염색하여 시각화하였으며, 또한, 면역 염색 이미지의 형광 강도를 측정하여 이미지 -J 소프트웨어를 이용해 그래프화하였다. 값은 rb-IgG를 처리한 샘플을 상대적으로 발현 강도를 나타내었고, 그래프 위의 숫자는 분석한 뇌 슬랩의 수이며, 에러바는 SD로 구하였고, P-값은 AN0VA로 구하였다 O*p<0.001) (도 14a-B) . Specifically, 0.1 fg 6 x Hi s peptide, Vaxl ᅳ His or Vaxl (WF / SR) -Hi.s protein is mixed in the third ventricle of VaxllacZ / lacZ embryonic mouse brain slab as in Example <4-2>. After transplanting the collagen gel for 24 hours, the surface fluorescence of Di l was visualized and immunostained and visualized using anti-Vaxl antibody (green) and anti-NF160 antibody (red) (FIG. 14A_A). As in <4-2> 1 I Robo 1-Fc segment (12.35 pmol, R & D Systems) and 4.78 I 6X-Hi s peptide (5.69 nmol) or 200 I Vaxl-His (5.69 nmol) protein in the third ventricle of VaxllacZ / lacZ embryonic mouse brain sulfab After transplanting the mixed collagen gel for 12 hours, the upper fluorescence image was visualized with a photodetector, and the lower image was immunostained using anti-Vaxl antibody (green) and anti-NF160 antibody (red). Visualization and fluorescence intensity of immunostained images were also measured and graphed using Image-J software. The values indicate the expression intensity of the samples treated with rb-IgG, the number on the graph is the number of brain slabs analyzed, the error bar was obtained by SD, and the P-value was obtained by AN0VA. <0.001) (FIGS. 14A-B).
그 결과, 도 14a에 나타낸 바와 같이, Vaxl 결핍 마우스 배자기 및 Vaxl(WF/SR) 돌연변이 단백질을 이식한 경우, 망막신경절세포 축삭의 복측 시상하부로의 접근 및 축삭 성장이 잘 이루어지지 않는 반면, Vaxl 단백질을 포함한 콜라겐 겔을 이식한 Vaxl 결핍 마우^ 배자기의 복측 시상하부에서 많은 수의 망막신경절세포 축삭이 발견되고, 축삭이 재성장하는 것을 확인하였다 (+Vaxl-Hi s) . 한편, Vaxl 및 VaxKWF/SR) 단백질의 이식은 복측 외측 간뇌 (ventral latral diencephalon)에서 Sl i t l의 발현 및 내측 간뇌 (medial diencephalon)에서 EphB3의 결여에 영향을 미치지 않는 것을 확인함으로써, 상기 Vaxl 단백질은 축삭형질 (axoplasm)로 침투하여 축삭 유도 분자의 발현에 비의존적으로 망막신경절세포 축삭의 성장을 자극함을 확인하였다. 또한, 복측 시상하부에서 망막신경절세포 축삭의 성장은 Vaxl-His와 Robo 1-Fc가 흔합된 콜라겐 겔을 이식하였을 때, 더욱 강화된 효과를 나타내는 것을 확인하였다 (도 14a) . <10-2> 세포외 Vaxl 단백질 및 Sl it2 간의 길항작용에 의한 망막신경절세포축삭의 성장조절 확인  As a result, as shown in FIG. 14A, when the Vaxl deficient mouse embryo and the Vaxl (WF / SR) mutant protein were transplanted, the retinal ganglion cell axon approached the ventral hypothalamus and axon growth was poor. A large number of retinal ganglion cell axons were found in the ventral hypothalamus of the Vaxl deficient Mau ^ embryo implanted with collagen gel containing Vaxl protein (+ Vaxl-Hi s). Meanwhile, by confirming that the transplantation of Vaxl and VaxKWF / SR) proteins did not affect the expression of Sl itl in the ventral latral diencephalon and the lack of EphB3 in the medial diencephalon, the Vaxl protein was axon Penetrating into axoplasm was confirmed to stimulate retinal ganglion cell axon growth independent of expression of axon inducing molecules. In addition, the growth of retinal ganglion cell axons in the ventral hypothalamus showed a more enhanced effect when transplanted with collagen gel containing Vaxl-His and Robo 1-Fc (FIG. 14A). <10-2> Confirmation of growth regulation of retinal ganglion cell axon by antagonism between extracellular Vaxl protein and Sl it2
시신경교차에서 망막신경절세포 축삭 투사 (project ion)는 종종 적층 ( f loor plate , FP)으로 향하는 척수 교차 축삭 (spinal commi ssural axonal ) 투사와 비교된다. 척수 교차 축삭이 내측 척수 (medial spinal cord)에서 발현되는 Slitl에 의해 중선으로 미성숙하게 들어가는 것이 억제되고 복측 방향으로 성장하며, 같은 방법으로 시신경교차앞구역 (P0A)에 있는 Slitl 및 복측 -외측 간뇌는 망막신경절세포 축삭이 시신경교차에 도달하기 전에 뇌로 들어가는 것을 막는다. 한편, 척수 교차 축삭은 적층에서 분비되는 네트린 (netrin) 및 Shh와 같은 유도 신호를 감지한다. 네트린 및 Shh 유인 신호 (attractive signal)는 헤파란 설페이트 프로테오글리칸에 의해 국소적으로 축적될 수 있는 SHt2의 반발 신호 (repulsive signal)와 경쟁할 수 있다고 보고되고 있다 (Matsumoto et al. , 2007; Wright et al. , 2012). 그러나, 네트린 및 Shh 모두 망막신경절세포 축삭을 복측 시상하부로 유도하기 위해 필요한 것은 아니다 (Deiner and Sretavan, 1999; Sanchez-Camacho and Bovolenta, 2008; data not shown) . 따라서, 본 발명자들은 Vaxl과 Slit2 사이의 관계를 확인하기 위하여, Vaxl 및 slit2 단백질을 처리하여 면역염색법 및 망막신경절세포 축삭 길이 측정을 수행하였다. In optic nerve crossing, retinal ganglion cell axon projections are often associated with spinal cord axons directed to the f loor plate (FP). Compared to the projection. Slitl, which is expressed in the medial spinal cord, prevents immature entry into the midline, grows in the ventral direction, and in the same way, the Slitl and ventral-lateral hepatic brain in the anterooptic zone (P0A) Prevent retinal ganglion cell axons from entering the brain before reaching the optic nerve crossing. Spinal cord axons, on the other hand, sense induced signals such as netrin and Shh secreted from the lamination. It has been reported that netrin and Shh attractive signals can compete with the repulsive signal of SHt2, which can be locally accumulated by heparan sulfate proteoglycans (Matsumoto et al., 2007; Wright et al. al., 2012). However, neither netrine nor Shh is required to induce retinal ganglion cell axons into the ventral hypothalamus (Deiner and Sretavan, 1999; Sanchez-Camacho and Bovolenta, 2008; data not shown). Therefore, the present inventors performed immunostaining and retinal ganglion cell axon length measurement by treating Vaxl and slit2 proteins to confirm the relationship between Vaxl and Slit2.
구체적으로, 상기 실시예 <1-1>에 기재된 방법으로 획득한 E13.5 마우스 신경망막 절편체를 24 시간 동안 배양한 후, Vaxl 0 ng/ (왼쪽), 10 ng/ra£ (가운데) 및 100 ng/ (오른쪽) 농도 하에 Slit2-His(R&D Systems) 10 ng/ ^를 24 시간 동안 처리하였다 (도 14b-A, 윗줄). 또한, 상기와 반대로 Slit2-His 0 ng/m£ (왼쪽), 10 ng/i (가운데) 및 100 ng/ (오른쪽) 농도 하에 Vaxl-His 10 ng/m£를 24시간 동안 처리하였다 (도 14b_A, 아랫줄). 그 후, 이를 시각화하고 (도 14b— A), 24 시간 동안 변화한 망막신경절세포 축삭의 길이를 상기 실시예 <4-1>과 같이 그래프화하였다. 에러바는 SD로 구하였고, 그래프 위의 숫자는 분석한 축삭의 수를 나타낸다 (무처리군 (n=22), VaxKlO ng/ml )(n=10), Vaxl (100 ng/ml )(n=9), Slit2(10 ng/ml ) (n=5) , Slit2(100 ng/ml)(n=5), VaxKlO ng/ml )+Sl it2( 10 ng/ml )(n=7) , VaxKlO ng/ml )+Sl it2( 100 ng/ml )(n=6), VaxKlO ng/ml )+Sl it2( 10 ng/ml )(n=13) , and Vaxl (100 ng/ml )+SHt2( 10 ng/ml )(n=7)) (도 14b-B).  Specifically, after incubating the E13.5 mouse neural retinal sections obtained by the method described in Example <1-1> for 24 hours, Vaxl 0 ng / (left), 10 ng / ra £ (center) and Slit2-His (R & D Systems) 10 ng / ^ was treated at 100 ng / (right) concentration for 24 hours (FIG. 14B-A, top row). In addition, Vaxl-His 10 ng / m £ was treated for 24 hours under the concentrations of Slit2-His 0 ng / m £ (left), 10 ng / i (center) and 100 ng / (right) in contrast to the above (FIG. 14B_A , Bottom line). Then, it was visualized (FIG. 14B-A) and the length of retinal ganglion cell axon changed for 24 hours was graphed as in Example <4-1>. Error bars were obtained with SD, and the numbers on the graph indicate the number of axons analyzed (untreated group (n = 22), VaxKlOng / ml) (n = 10), Vaxl (100 ng / ml) (n = 9), Slit2 (10 ng / ml) (n = 5), Slit2 (100 ng / ml) (n = 5), VaxKlO ng / ml) + Sl it2 (10 ng / ml) (n = 7), VaxKlO ng / ml) + Sl it2 (100 ng / ml) (n = 6), VaxKlO ng / ml) + Sl it2 (10 ng / ml) (n = 13), and Vaxl (100 ng / ml) + SHt2 (10 ng / ml) (n = 7)) (FIG. 14B-B).
또한, 상기 실시예 <1-1>에 기재된 방법으로 획득한 E13.5 마우스 신경망막 절편체와 Vaxl-낙아웃 복측 시상하부 절편체를 함께 100 ng/ml RoboIn addition, an E13.5 mouse obtained by the method described in Example <1-1>. 100 ng / ml Robo with Neural Retinal Explants and Vaxl-knockout Ventral Hypothalamic Explants
1-Fc이 존재하거나 (도 14c-A), 없는 상태로 (도 14c-B) 24시간 동안 배양하였다. 그 후, 이를 시각화하거나 (왼쪽), 면역염색하여 시각화하였다 (오른쪽) (스케일바: 500 ) (도 14c-A). 또한, 망막신경절세포 축삭의 방향성을 축삭 마커인 NF160 면역염색 이미지 픽셀을 이용하여 계수하여 그래프화하였다ᅳ +는 정방향, 0는 증립, -는 역방향을 나타내며, 에러바는 SD로 구하였고, 그래프 y축의 숫자는 분석한 절편체의 수를 나타내며,Incubate for 24 hours with or without 1-Fc (FIG. 14C-A) or without (FIG. 14C-B). Then it was visualized (left) or immunostained for visualization (right) (scale bar: 500) (FIG. 14C-A). In addition, the direction of retinal ganglion cell axons was counted and graphed using NF160 immunostaining image pixel, an axon marker, where + is forward, 0 was positive,-was reverse, and error bars were SD. The number on the axis indicates the number of intercepts analyzed.
P-값은 AN0VA로 구하였다 (ρθ.01) (도 14c-B). P-value was calculated as AN0VA (ρθ.01) (FIG. 14C-B).
또한, 상기 '실시예 <1-1>에 기재된 방법으로 획득한 E13.5 마우스 신경망막 절편체를 24 시간 동안 배양한 후, Vaxl 0 ng/m£ (왼쪽), 10 ng/in.e (가운데) 및 100 ng/m£ (오른쪽) 농도 하에 SI it2-His(R&D Systems) 10 ng/ 를 24 시간 동안 처리하였다 (도 14d, 아랫줄). 또한, 상기와 반대로In addition, the 'Example <1-1> to an E13.5 mouse neural retina fragment body obtained by the method described in for 24 hours after the culture, Vaxl 0 ng / m £ (left), 10 ng / in.e ( Middle) and 10 ng / of SI it2-His (R & D Systems) for 24 hours under 100 ng / m £ (right) concentration (FIG. 14D, bottom row). Also, contrary to the above
Slit2-His 0 ng/ (왼쪽), 10 ng/ni£ (가운데) 및 100 ng/m ^오른쪽) 농도 하에Slit2-His under concentrations of 0 ng / (left), 10 ng / ni £ (center) and 100 ng / m ^ right)
Vaxl-His 10 ng/m£를 24시간 동안 처리하였다 (도 14d, 아랫줄). 그 후, 이를 시각화하고 (도 14b-A), 형광 강도를 이미지 -J 소프트웨어를 이용해 그래프화하였다. 에러바는 SD로 구하였고, 그래프 위의 숫자는 분석한 영역의 수를 나타낸다 (스케일바: 20 ) (도 14d). " Vaxl-His 10 ng / m £ was treated for 24 hours (FIG. 14D, bottom row). This was then visualized (FIG. 14B-A) and fluorescence intensities were graphed using Image-J software. Error bars were obtained in SD, and the numbers on the graph represent the number of analyzed regions (scale bar: 20) (FIG. 14D). "
또한, 상기 실시예 <1-1>에 기재된 방법으로 획득한 신경망막 절편체에 In addition, to the neural retinal fragment obtained by the method described in Example <1-1>.
Vaxl-HisdOng/n^), 및 Vaxl-His(10 ng/ni£)및 Slit2-His(10 ng/mO를 처리하고 상기와 같이 시각화하고, 항 -Vaxl항체 (초록) 및 항 -His항체 (빨강)을 이용하여 상기 실시예 <2-1>과 같이 면역염색하여 시각화하였다 (스케일바: 500 ^m(dark field), 스케일바: 10 μπι (점선 박스)) (도 Me). Vaxl-HisdOng / n ^), and Vaxl-His (10 ng / ni £) and Slit2-His (10 ng / mO were treated and visualized as above, anti-Vaxl antibody (green) and anti-His antibody ( Red) to visualize by immunostaining as in Example <2-1> (scale bar: 500 ^ m (dark field), scale bar: 10 μπι (dashed box)) (FIG. Me).
또한, 상기 실시예 <1-1>과 같이 대뇌 절편체 (cortical explants)를 획득하고, 상기 획득한 대뇌 절편체에 Vaxl, Vaxl(R152S) 및 Vaxl(WF/SR)을 처리한후,상기 실시예 <3-1>과 같이 항 -Vaxl항체 (초록),항 -NF160항체 (빨강) 및 DAPK파랑)을 이용하여 면역염색하고 시각화하였다 (도 14f).  In addition, after obtaining the cortical explants (cortical explants) as in Example <1-1>, after processing the Vaxl, Vaxl (R152S) and Vaxl (WF / SR) to the obtained cerebral explants, the implementation As shown in <3-1>, immunostaining and visualization were performed using anti-Vaxl antibody (green), anti-NF160 antibody (red) and DAPK blue) (FIG. 14F).
그 결과, 도 14b에 나타낸 바와 같이, Vaxl을 단독처리한 군보다 Slit2를 함께 처리한 군에서 망막신경절세포 축삭의 성장이 약제되고 (VaxKlOng/π )및 Slit2 무처리 이미지와 VaxKlO ng/ i) 및 Slit2(10 ng/ i) 이미지 비교), S1 2를 단독처리한 군보다 Vaxl을 함께 처리한 군에서 망막신경절세포 축삭의 성장이 촉진 (Slit2(10 ng/mi) 및 Vaxl 무처리 이미지와 Slit2(10 ng/ml) 및 Vaxl (10 ng/m 이미지 비교)되는 것올 확인하였다 (도 14b-A). 또한, Vaxl을 단독 처리한 군에 비해 Slit2를 함께 처리한 군에서 대체적으로 축삭의 길이가 감소하는 것을 확인함으로써 (도 14b-B), Vaxl과 Slit2가 서로 경쟁하며, Vaxl이 S1 2-유도 망막신경절세포 축삭 후퇴 반웅 (retract ion response)과 길항작용함을 확인하였다 (도 14b). As a result, as shown in FIG. 14B, the growth of retinal ganglion cell axons was inhibited in the group treated with Slit2 rather than the group treated with Vaxl alone (VaxKlOng / π) and Comparison of Slit2 untreated images with VaxKlO ng / i) and Slit2 (10 ng / i) images, Sl2 2 treated with Vaxl rather than Sl 2 treated group to promote retinal ganglion cell axon growth (Slit2 (10 ng) / mi) and Vaxl untreated images were confirmed to be Slit2 (10 ng / ml) and Vaxl (10 ng / m image comparison) (Fig. 14b-A) Also, compared with the group treated with Vaxl alone Slit2 together By confirming that the length of the axons is generally reduced in the treated group (FIG. 14B-B), Vaxl and Slit2 compete with each other, and Vaxl antagonizes S1 2-induced retinal ganglion cell axon retraction response It was confirmed that (Fig. 14b).
또한, 도 14c내지 도 14d에 나타낸 바와 같이 , Vaxl과 Robo 1-Fc를 함께 처리하여 배양하였을 때, 망막신경절세포의 축삭의 성장이 확연히 증가하는 것을 확인하였고 (도 14c), Vaxl과 Slit2를 함께 처리한 :군에서 서로 경쟁하는 것을 한번 더 확인하였다 (도 14d).  In addition, as shown in Fig. 14c to 14d, when treated with a culture of Vaxl and Robo 1-Fc, it was confirmed that the growth of axon growth of retinal ganglion cells significantly (Fig. 14c), together with Vaxl and Slit2 Treated: The group was once again confirmed to compete with each other (FIG. 14D).
또한, 도 14e에 나타낸 바와 같이, Vaxl은 망막신경절세포 축삭 내로 침투해 있지만, slit2는 축삭 표면에 붙잡혀 있는 것을 확인함으로써, Vaxl과 slit2의 상호간 길항작용 (reciprocal antagonism)은 헤파란 설페이트 프로테오글리칸에 의해 매개되지 않음을 확안하였다 (도 14e).  In addition, as shown in FIG. 14E, Vaxl penetrates into the retinal ganglion cell axon, but by confirming that slit2 is caught on the axon surface, the reciprocal antagonism of Vaxl and Slit2 is mediated by heparan sulfate proteoglycans. Not sure (FIG. 14E).
또한, 도 14f에 나타낸 바와 같이, Vaxl 및 Vaxl(R152S)를 처리한 경우, 대뇌 절편체에서 축삭의 성장이 유도되는 것을 확인함으로써, Vaxl 단백질은 망막신경절세포 축삭 뿐만 아니라 대뇌신경 축삭의 성장도 유도하며, 따라서, 다양한 신경 축삭의 뇌중선 통과 역시 망막신경절세포 축삭과 유사하게 Vaxl 단백질에 의해 조절될 가능성을 확인하였다 (도 140.  In addition, as shown in Figure 14f, when treated with Vaxl and Vaxl (R152S), by confirming that axon growth is induced in cerebral sections, Vaxl protein induces not only retinal ganglion cell axon but also cerebral nerve axon growth. Thus, it was confirmed that the midline passage of various nerve axons is also regulated by Vaxl protein similarly to retinal ganglion cell axons (FIG. 140.
<10-3>분비된 Vaxl단백질에 의한망막신경절세포축삭성장조절 모델 상기 <실시예 2> 내지 <실시예 9>의 결과를 통해 포유류 뇌의 복측 시상하부에서 분비된 축삭 성장 인자로서 Vaxl의 기능을 확인하였다. <10-3> Retinal ganglion cell axon growth control model by secreted Vaxl protein The function of Vaxl as the axon growth factor secreted in the ventral hypothalamus of the mammalian brain through the results of <Example 2> to <Example 9> It was confirmed.
도 14f에 나타낸 바와 같이, Vaxl이 복측 시상하부와 방사아교세포 (radial glia) 및 신경간세포 (NPC)에서 발현되어 세포 밖으로 분비되고, 농도 구배를 형성하여 증선 (midline)에서 고농도로 존재하고 측면으로 확산된다. 복측 시상하부로 접근하는 망막신경절세포 축삭의 신데칸 (syndecan)을 포함한 헤파란 설페이트 프로테오글리칸 (HSPGs)에 Vaxl이 결합하면, 망막신경절세포 성장 부위에서 Vaxl의 농도가 국소적으로 증가하게 된다. 그 후, Vaxl이 망막신경절세포 축삭 내로 침투하여 단백질 합성을 자극하고, 따라서; 중선을 향해 축삭 성장을 촉진한다. 추가적으로, 유도 VEGF164ᅳ뉴로필린 (neurophi l in) 및 억제 에프린 B2-EphBl(ephr inB2-EphBl)과 같은, 복측 시상하부 증선에 풍부한 망막신경절세포 축삭 유인 신호들은 시신경교차 형성을 위해 중선에서 망막신경절세포 축삭의 방향성올 결정한다. 상기를 통해 Vaxl 단백질에. 의한 망막신경절세포 축삭 성장 조절 모델을 완성하였다. As shown in FIG. 14F, Vaxl is expressed in the ventral hypothalamus, radioglia and neural stem cells (NPCs), secreted out of the cells, forms a concentration gradient, and is present at high concentrations in the midline. Spread to the side. Vaxl binding to heparan sulphate proteoglycans (HSPGs), including the syndecan of retinal ganglion cell axons approaching the ventral hypothalamus, results in a locally increased concentration of Vaxl at the retinal ganglion cell growth site. Vaxl then penetrates into retinal ganglion cell axons to stimulate protein synthesis and thus; Promotes axon growth towards the midline. In addition, retinal ganglion cell axon-induced signals enriched in the ventral hypothalamus, such as induced VEGF164 ᅳ neuphyllin and inhibitory ephrinB2-EphBl, are retinal ganglion in the midline for optic nerve crossing formation. Determine the aroma of the cell axon. To Vaxl protein through the above. Retinal ganglion cell axon growth regulation model was completed.

Claims

【청구의 범위】 【Scope of Claim】
【청구항 1】 【Claim 1】
VaxCventral anter ior homeobox) 단백질을 유효성분으로 함유하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물. A pharmaceutical composition for promoting nerve cell regeneration or nerve cell growth containing VaxCventral anter ior homeobox) protein as an active ingredient.
【청구항 2】 【Claim 2】
제 1항에 있어서, 상기 Vax 단백질은 서열번호 1로 기재되는 아미노산 서열을 갖는 Vaxl 단백질 또는 서열번호 2로 기재되는 아미노산 서열을 갖는 Vax2 단백질로 이루어진 군으로부터 선택되는 어느 하나인 것을 특정으로 하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물. The nerve cell of claim 1, wherein the Vax protein is any one selected from the group consisting of a Vaxl protein having an amino acid sequence shown in SEQ ID NO: 1 or a Vax2 protein having an amino acid sequence shown in SEQ ID NO: 2. Pharmaceutical composition for promoting regeneration or nerve cell growth.
[청구항 3] [Claim 3]
제 1항에 있어서, 상기 신경세포는 상기 신경세포는 Vaxl 단백질이 결핍된 入]신경 (opt ic nerve) , 대뇌교차신경 (cort ical commissural nerve) , 해마교차신경 (hippocampal commi ssural nerve) , 뇌하수체교차신경 (hypothalamic commissural nerve) , 삼차신경 (tr igeminal nerve)으로 이투어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물. The method of claim 1, wherein the nerve cells are an optic nerve, cort ical commissural nerve, hippocampal commissural nerve, or pituitary chiasm that lack Vaxl protein. A pharmaceutical composition for promoting nerve cell regeneration or nerve cell growth, characterized in that it is selected from the group consisting of hypothalamic commissural nerve and trigeminal nerve.
【청구항 4】 . . 【Claim 4 】. .
제 2항에 있어서, 상기 Vaxl 단백질은 해파란 설페이트 프로테오글리칸 (heparan sul fate proteoglycan, HSPG)과 결합하는 것을 특징으로 하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물. The pharmaceutical composition for promoting nerve cell regeneration or nerve cell growth according to claim 2, wherein the Vaxl protein binds to heparan sulfate proteoglycan (HSPG).
【청구항 5】 【Claim 5】
제 2항에 있어서, 상기 Vaxl .단백질은 신데칸 2(Syndecan-2, Sdc2)의 세포외 도메인과 결합하는 것을 특징으로 하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물. The method of claim 2, wherein the Vaxl protein binds to the extracellular domain of Syndecan-2 (Sdc2). Pharmaceutical composition for growth promotion.
【청구항 6】 【Claim 6】
Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포를 유효성분으로 함유하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물. A pharmaceutical composition for promoting nerve cell regeneration or nerve cell growth containing as an active ingredient a vector or cell containing a polynucleotide encoding the Vax protein.
【청구항 7】 【Claim 7】
제 6항에 있어서, 상기 Vax 단백질은 서열번호 1로 기재되는 아미노산 서열을 갖는 Vaxl 단백질 또는 서열번호 2로 기재되는 아미노산 서열을 갖는 Vax2 단백질로 이루어진 군으로부터 선택되는 어느 .하나인 것을 특징으로 하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물. The nerve of claim 6, wherein the Vax protein is any one selected from the group consisting of Vaxl protein having the amino acid sequence shown in SEQ ID NO: 1 or Vax2 protein having the amino acid sequence shown in SEQ ID NO: 2. Pharmaceutical composition for promoting cell regeneration or nerve cell growth.
【청구항 8】 【Claim 8】
제 6항에 있어서ᅳ 상기 벡터는 선형 DNA , 플라스미드 DNA 또는 재조합 바이러스성 백터인 것을 특징으로 하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물. The pharmaceutical composition for promoting nerve cell regeneration or nerve cell growth according to claim 6, wherein the vector is linear DNA, plasmid DNA, or a recombinant viral vector.
[청구항 9] [Claim 9]
제 6항에 있어서, 상기 재조합 바이러스는 레트로 바이러스, 아데노 바이러스, 아데노 부속 바이러스, 헤르페스 심플렉스 바이러스, 렌티바이러스로 구성되는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물. The method of claim 6, wherein the recombinant virus is any one selected from the group consisting of retrovirus, adenovirus, adeno-associated virus, herpes simplex virus, and lentivirus. Pharmaceutical composition.
【청구항 10】 【Claim 10】
제 6항에 있어서, 상기 세포는 조혈 줄기세포, 수지상 세포, 자가이식 종양세포 및 정착 종양세포로 구성되는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물. The pharmaceutical composition for promoting nerve cell regeneration or nerve cell growth according to claim 6, wherein the cells are any one selected from the group consisting of hematopoietic stem cells, dendritic cells, autologous tumor cells, and established tumor cells. .
【청구항 11】 【Claim 11】
1) 피검체로부터 수득한 세포에 피검물질을 처리하고 신경축삭 성장을 측정하는 단계 ; 1) treating cells obtained from a subject with a test substance and measuring nerve axon growth;
2) 상기 단계 1)의 세포에서 Vaxl 및 헤파란 설페이트 프로테오글리칸의 결합수준을 측정하는 단계 ; 2) measuring the binding level of Vaxl and heparan sulfate proteoglycan in the cells of step 1);
3) 상기 단계 2)의 Vaxl '및 헤파란 설쩨이트 프로테오글리칸 결합수준을 무처리 대조군과 비교하여 증가시키는 피검물질올 선별하는 단계를 포함하는 신경세포 재생 또는 신경세포 성장 촉진용 후보물질 스크리닝 방법. 3) A method for screening candidate substances for promoting nerve cell regeneration or nerve cell growth, comprising the step of selecting a test substance that increases the binding level of Vaxl' and heparan sulcitate proteoglycan in step 2) compared to the untreated control group.
【청구항 12】. 【Claim 12】.
제 10항에 있어서, 상기 결합수준은 면역형광법, 질량분석법, 단백질칩, 웨스턴 블럿팅, 듯 블럿팅 (dot-blot ing) 및 ELISA로 ᅳ구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 신경세포 재생 또는 신경세포 성장 촉진용 후보물질 스크리닝 방법 . The method of claim 10, wherein the binding level is any one selected from the group consisting of immunofluorescence, mass spectrometry, protein chip, Western blotting, dot-blotting, and ELISA. Method for screening candidate substances for promoting regeneration or neuronal growth.
【청구항 13】 【Claim 13】
약학적으로 유효한 양의 Vax 단백질을 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 재생 방법. A method of nerve cell regeneration comprising administering a pharmaceutically effective amount of Vax protein to an individual with damaged nerve cells.
[청구항 14】 [Claim 14]
약학적으로 유효한 양의 Vax 단백질을 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 성장촉진 방법 . A method for promoting nerve cell growth comprising the step of administering a pharmaceutically effective amount of Vax protein to an individual with damaged nerve cells.
【청구항 15】 【Claim 15】
약학적으로 유효한 양의 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포를 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 재생 방법. A method of nerve cell regeneration comprising the step of administering a pharmaceutically effective amount of a vector or cell containing a polynucleotide encoding the Vax protein to an individual with damaged nerve cells.
【청구항 16】 【Claim 16】
약학적으로 유효한 양의 Vax 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 백터 또는 세포를 신경세포가 손상된 개체에 투여하는 단계를 포함하는 신경세포 성장촉진 방법 . : A method for promoting nerve cell growth comprising the step of administering a pharmaceutically effective amount of a vector or cell containing a polynucleotide encoding the Vax protein to an individual with damaged nerve cells. :
【청구항 17】 【Claim 17】
신경세포 재생 또는 신경세포 성장 촉진용 약학적 조성물로 사용하기 위한 Vax 단백.질의 용도. Vax protein for use as a pharmaceutical composition for promoting nerve cell regeneration or nerve cell growth . Purpose of query.
【청구항 18】 . 【Claim 18】 .
신 세포 재생 또는 신경세포 성장 촉진용 약학적 조성물로 사용하기 위한 Vax 단백질을 암호화하는 폴리뉴클레^티드를 포함하는 백터 또는 세포의 용도. Use of a vector or cell containing a polynucleotide encoding Vax protein for use as a pharmaceutical composition for promoting new cell regeneration or nerve cell growth.
PCT/KR2014/011208 2013-11-20 2014-11-20 Nerve-cell-regenerating or nerve-cell growth-promoting pharmaceutical composition containing vax protein as active ingredient WO2015076589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14864546.8A EP3072520B1 (en) 2013-11-20 2014-11-20 Screening method for candidate materials for the regeneration of nerves or accelerating growth of axons
US15/159,739 US9968651B2 (en) 2013-11-20 2016-05-19 Nerve regenerating or nerve growth-promoting pharmaceutical composition containing Vax protein as active ingredient

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0141193 2013-11-20
KR20130141193 2013-11-20
KR10-2014-0158645 2014-11-14
KR1020140158645A KR101742650B1 (en) 2013-11-20 2014-11-14 Pharmaceutical composition comprising Vax protein for regenerating nerve cell or promoting nerve cell growth

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/159,739 Continuation US9968651B2 (en) 2013-11-20 2016-05-19 Nerve regenerating or nerve growth-promoting pharmaceutical composition containing Vax protein as active ingredient

Publications (1)

Publication Number Publication Date
WO2015076589A1 true WO2015076589A1 (en) 2015-05-28

Family

ID=53179790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011208 WO2015076589A1 (en) 2013-11-20 2014-11-20 Nerve-cell-regenerating or nerve-cell growth-promoting pharmaceutical composition containing vax protein as active ingredient

Country Status (1)

Country Link
WO (1) WO2015076589A1 (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BARBIERI, A.M. ET AL.: "Vax2 inactivation in mouse determines alteration of the eye dorsal-ventral axis, misrouting of the optic fibres and eye coloboma", DEVELOPMENT, vol. 129, 1 January 2002 (2002-01-01), pages 805 - 813, XP055287880 *
BERTUZZI, S. ET AL.: "The homeodomain protein Vaxl is required for axon guidance and major tract formation in the developing forebrain", GENES & DEVELOPMENT, vol. 13, 14 October 1999 (1999-10-14), pages 3092 - 3105, XP055287875, DOI: 10.1101/GAD.13.23.3092 *
DATABASE PROTEIN [online] 15 February 2015 (2015-02-15), "VENTRAL ANTERIOR HOMEOBOX 2[MUS MUSCULUS)", XP055288406, accession no. NCBI Database accession no. NP_036042 *
DATABASE PROTEIN [online] 2 January 2016 (2016-01-02), "VENTRAL ANTERIOR HOMEOBOX 1 [MUS MUSCULUS)", XP055288390, accession no. NCBI Database accession no. NP_033527 *
FUERST, P.G. ET AL.: "Defects in eye development in transgenic mice overexpressing the heparan sulfate proteoglycan agrin", DEVELOPMENTAL BIOLOGY, vol. 303, no. 1, 15 February 2007 (2007-02-15), pages 165 - 180, XP005921439, DOI: 10.1016/J.YDBIO.2006.11.033 *
HALLONET, M. ET AL.: "Vaxl, a novel homeobox-containing gene , directs development of the basal forebrain and visual system", GENES & DEVELOPMENT, vol. 13, no. 23, 1 December 1999 (1999-12-01), pages 3106 - 3114, XP055287877, DOI: 10.1101/GAD.13.23.3106 *

Similar Documents

Publication Publication Date Title
JP6722730B2 (en) NRG-2 nucleic acid molecules, polypeptides, and diagnostic and therapeutic methods
Aït-Ali et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis
Marión et al. A human sequence homologue of Staufen is an RNA-binding protein that is associated with polysomes and localizes to the rough endoplasmic reticulum
Weinberger et al. The molecular composition of neuronal microfilaments is spatially and temporally regulated
Schweitzer et al. Tenascin‐C is involved in motor axon outgrowth in the trunk of developing zebrafish
Zisman et al. Proteolysis and membrane capture of F-spondin generates combinatorial guidance cues from a single molecule
US20090324549A1 (en) Proteins and/or peptides for the prevention and/or treatment of neurodegenerative diseases
Liu et al. Moleskin is essential for the formation of the myotendinous junction in Drosophila
Pan et al. Immuno-characterization of the switch of peptide elongation factors eEF1A-1/EF-1α and eEF1A-2/S1 in the central nervous system during mouse development
Hoshino et al. Cornichon-like protein facilitates secretion of HB-EGF and regulates proper development of cranial nerves
WO2015076589A1 (en) Nerve-cell-regenerating or nerve-cell growth-promoting pharmaceutical composition containing vax protein as active ingredient
US9968651B2 (en) Nerve regenerating or nerve growth-promoting pharmaceutical composition containing Vax protein as active ingredient
JP2019508018A (en) SorCS peptides and their uses
US11999776B2 (en) IGFR-like 2 receptor and uses thereof
CN112142850A (en) Human nerve growth factor-lactoferrin recombinant protein and application
Sakagami et al. RaxL regulates chick ganglion cell development
WO2007060899A1 (en) Application of actin-binding protein to disease associated with cell motility
US20100111913A1 (en) Method of enhancing migration of neural precursor cells
KR20180138482A (en) Producing method of dominant intermediate Charcot-Marie-Tooth disease type C animal model and uses thereof
JP4592352B2 (en) Nerve axon formation / elongation using nerve growth cone localized molecule Shotin1 or its splicing variant and its application to nerve regeneration
Abushalbaq Molecular mechanisms of semaphorin 3A-Neuropilin1/Plexin-A4 signaling in layer 5 pyramidal neurons of the mouse cortex during development
JP2023530454A (en) Alpha-synuclein targeting antibodies, progranulin and prosaposin and their conjugates, and cell lines secreting GDNF
CN111484550A (en) Dkk-3 protein functional fragment and application thereof
KR20070084750A (en) Composition for the treatment of neurological diseases containing Pa6 protein as an active ingredient
イスラム,モハメドシャヒーデュル Identification of a novel axon guidance protein, Draxin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014864546

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864546

Country of ref document: EP