WO2015076579A1 - 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 Download PDF

Info

Publication number
WO2015076579A1
WO2015076579A1 PCT/KR2014/011186 KR2014011186W WO2015076579A1 WO 2015076579 A1 WO2015076579 A1 WO 2015076579A1 KR 2014011186 W KR2014011186 W KR 2014011186W WO 2015076579 A1 WO2015076579 A1 WO 2015076579A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
data
sequence
terminal
fqam
Prior art date
Application number
PCT/KR2014/011186
Other languages
English (en)
French (fr)
Inventor
정수룡
박정호
김재원
사공민
유현규
홍성남
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US15/038,436 priority Critical patent/US9912457B2/en
Publication of WO2015076579A1 publication Critical patent/WO2015076579A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to a method and apparatus for measuring interference information for data transmission in a wireless communication system.
  • Wireless communication systems use Orthogonal Frequency Division Multiplexing (OFDM), Multiple Input Multiple Output (MIMO) to meet the growing demand for wireless data traffic.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MIMO Multiple Input Multiple Output
  • cell boundary users may have a low signal-to-noise ratio (SNR) condition at a cell boundary far from the cell center, or a low carrier-to-interference and noise ratio (CINR) condition where a large interference from a base station of an adjacent cell occurs.
  • SNR signal-to-noise ratio
  • CINR carrier-to-interference and noise ratio
  • Inter-Cell Interference-Coordination (ICIC) to improve transmission efficiency for cell edge users, to improve the limitation of overall system performance by cell-edge users. Points and receiver cancellation are being developed.
  • an object of the present invention is to provide a method and apparatus for measuring interference information for transmitting data in a wireless communication system and transmitting and receiving data using the same.
  • a base station in a method for transmitting data in a wireless communication system, is a hybrid FSK and QAM modulation (FQAM) method in which a quadrature amplitude modulation (QAM) method and a frequency shift keying (FSK) method are combined.
  • FQAM FSK and QAM modulation
  • Allocating resources for transmitting modulated data transmitting, by the base station, a modulated sequence to the terminal in the same manner as the FQAM method used for data modulation through an interference measurement channel, Transmitting a reference signal for measuring channel quality information to a terminal, and receiving, by the base station, channel quality information reflecting interference characteristics of the interference measurement channel from the terminal, and scheduling the terminal based on the received channel quality information And transmitting, by the base station, the data modulated by the FQAM scheme to the terminal.
  • the terminal in a method for receiving data in a wireless communication system, the terminal combines a Quadrature Amplitude Modulation (QAM) scheme and a Frequency Shift Keying (FSK) scheme through an interference measurement channel from a base station.
  • QAM Quadrature Amplitude Modulation
  • FSK Frequency Shift Keying
  • a hybrid FSK and QAM modulation (FQAM) method in which a quadrature amplitude modulation (QAM) method and a frequency shift keying (FSK) method are combined
  • FQAM quadrature amplitude modulation
  • FSK frequency shift keying
  • a hybrid amplitude modulation (QAM) scheme and a frequency shift keying (FSK) scheme are combined through an interference measurement channel from a base station (FQAM).
  • FQAM base station
  • a control unit for transmitting the estimated channel quality information to the base station and receiving data modulated by the same FQAM scheme as the sequence from the base station, and measuring channel quality information from the base station under control of the control unit.
  • a transceiver for transmitting to the base station and receiving data modulated in the same FQAM scheme as the sequence from the base station.
  • the interference measurement channel when measuring interference for FQAM data transmission, is configured for each FSK modulation order, and the terminal measures the interference signal characteristic information by using an interference measurement channel having the same modulation order as the FQAM data channel.
  • the base station may select the correct MCS level in consideration of the channel characteristics based on the information fed back from the terminal.
  • FIG. 2 illustrates a structure in which the sequence is specifically applied to an FQAM interference measurement channel.
  • 3 and 4 illustrate a channel structure for transmitting a sequence for an FQAM interference measurement channel according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an interference measurement procedure according to an FQAM interference measurement channel structure according to an embodiment of the present invention.
  • FIG 6 illustrates an interference measurement procedure according to an FQAM interference measurement channel structure according to another embodiment of the present invention.
  • FIG. 7 illustrates a base station apparatus according to an embodiment of the present invention.
  • FIG. 8 illustrates a terminal device according to an embodiment of the present invention.
  • An embodiment of the present invention looks at interference measurement for data transmission using a modulation scheme (hereinafter referred to as FQAM), which is a combination of frequency shift keying (FSK) and QAM modulation.
  • FQAM modulation scheme
  • FSK frequency shift keying
  • QAM QAM modulation
  • the transmission of FQAM data is a communication technique for arbitrarily transmitting interference signals of neighboring base stations in a non-Gaussian form by utilizing the characteristic that the transmission gain of the signal increases when the interference signal is non-Gaussian. Accordingly, there is an advantage in that robust signal transmission can be performed even at a relatively low signal to interference plus noise ratio (SINR).
  • SINR signal to interference plus noise ratio
  • a typical method of data decoding received through such a non-Gaussian type interference channel is CGG (Complex Generalized Gaussian) decoding.
  • the CGG decoding method assumes that the non-Gaussian interference and noise follow the CGG distribution.
  • the probability density function of the CGG distribution is represented by Equation 1 below.
  • Equation 1 Is the probability density function of noise, z is the variable representing noise, ⁇ is the shape parameter, and the degree of non-Gaussian, ⁇ is the scale parameter, variance, ⁇ is Means gamma function, It is composed as follows.
  • the probability density function of the CGG distribution in the number 1 is based on a Gaussian distribution when ⁇ is 2 and a super Gaussian distribution having a heavy-tail when ⁇ is less than 2. If ⁇ is greater than 2, it follows a Sub Gaussian distribution having a light tail.
  • a link performance and a decoding performance difference occur particularly according to the value of ⁇ , that is, the non-Gaussian interference characteristic. Accordingly, in order to perform link adaptation, a process of separately measuring non-Gaussian interference amount information as well as channel quality information (CQI) is required separately.
  • CQI channel quality information
  • Equation 2 the method for measuring the ⁇ value is shown in Equation 2 below.
  • ⁇ defined in the number 2 is a metric that quantifies the degree of non-Gaussianization of interference and noise among the signals of the received channel.
  • Z [k] means the signal strength of total interference and noise received through the k-th symbol.
  • An application range of each MCS level may vary according to the interference signal characteristic information value. For example, if the ⁇ value is 2, which is a Gaussian interference channel, the MCS level is allocated in the same manner as the existing and data channels, but when the ⁇ value is smaller than 2 such as 1 or 0.5, it is a non-Gaussian interference channel. By applying the non-Gaussian decoding technique, an MCS level having a higher transmission efficiency may be applied.
  • the FQAM data channel can be usefully used.
  • the ⁇ value cannot be measured accurately, an error may occur in accurate MCS level estimation, which may result in system performance degradation.
  • an embodiment of the present invention provides a method and apparatus for maximizing FQAM data transmission efficiency by separately defining a channel capable of measuring interference signal characteristic information when receiving an FQAM signal and providing a method for satisfying a requirement therefor. I would like to suggest.
  • a channel for measuring interference signal characteristic information upon reception of FQAM data is defined as an FQAM interference measurement channel.
  • the requirements of the FQAM interference measurement channel are as follows.
  • the modulation characteristics of the FQAM interference measurement channel should be the same as the channel on which the actual FQAM data transmission is to be performed. For example, if adjacent cells transmit an FQAM signal having an order of 2FSK in an FQAM data channel, the FQAM interference measurement channel should also transmit FQAM signals having a 2FSK order.
  • channel allocation characteristics of interfering cells transmitting signals through the FQAM data channel should be similarly reflected in the FQAM interference measurement channel. For example, if a specific base station transmits a blank signal without transmitting a signal in the FQAM data channel, the base station should not transmit any signal in the FQAM interference measurement channel. If not, the interfering signal characteristics between the FQAM data channel and the FQAM interferometry channel are changed so that the meaning of the FQAM interfering signal measurement disappears and the transmission efficiency is also reduced.
  • the FQAM interference measurement channel is the sum of the signals of all the base stations, but the terminal must be able to distinguish and remove the signal of its own serving base station.
  • the FQAM interference measurement component is a metric that can be measured by adding the amount of interference for each subcarrier and the value of noise. Therefore, if the signals of all base stations are combined, the signal of one's own serving base station is removed, and then the interference is based on the power value. The signal must be measured.
  • FQAM interference measurement requires a separate channel for interference measurement.
  • a sequence for a corresponding FQAM interference measurement channel is delivered to a signal position in the frequency domain. Since this may represent the same signal form as data transmitted in the FQAM data channel, the same result as measuring the interference signal characteristic information value for the FQAM data channel may be obtained when the interference signal from the neighboring base station is measured.
  • the terminal can distinguish the sequence of the base station.
  • the base station specific information may be a base station ID or a cell ID.
  • sequence represented by the signal position on the frequency can be defined in each different sequence format (that is, 2FSK format / 4FSK format / 8 FSK format) corresponding to each FQAM modulation order, as shown in the following embodiment for each FSK modulation order Defined as different sequences corresponding to. Therefore, it can be used to estimate not only the base station specific information but also the FSK modulation order information for the subchannel of the FQAM data channel of the corresponding frequency band.
  • FIG 1 illustrates sequence allocation in accordance with an embodiment of the present invention.
  • FIG. 1 illustrates an example of converting a sequence of length 12 of 011011111110 representing a BS ID into a signal form corresponding to a 2FSK data area / 4FSK data area / 8FSK data area, respectively.
  • the FQAM interference is performed on different types of frequencies using the FSK modulation order corresponding to each FQAM data channel. Measurement channels can be configured.
  • Table 1 is an example showing the sequence for the entire cellular system. As shown in Table 1, a different base station ID for each base station may be defined for each FSK modulation order and used for FQAM interference measurement.
  • FIG. 2 illustrates a structure in which the sequence is specifically applied to an FQAM interference measurement channel.
  • Serving base stations and neighboring base stations belonging to the same region apply the same or corresponding constant FSK modulation order to the FQAM data channel.
  • a serving base station uses an FQAM data channel in the form of 2FSK region (2F4QAM), 4FSK region (4F4QAM), and 8FSK region (8F4QAM)
  • a channel having the same FSK modulation order in the same region should be transmitted from a neighboring base station. do. This is because for the resource region where a specific FSK modulation order is used, an interference channel having a corresponding characteristic is assumed. Therefore, as shown in Fig. 2, BS1 and BS2 allocate data channels of the same FSK modulation order in the same area.
  • the FQAM interference measurement channel which is separate from the FQAM data channel, has the same FSK modulation order as that of the FQAM data channel of the corresponding base station.
  • the FQAM interference measurement channel for the FQAM data region of the 2FSK region (2F4QAM) consists of a sequence with 2FSK, which is the same FSK modulation order.
  • the FQAM interference measurement channel for the FQAM data region corresponding to the 4FSK region (4F4QAM) and the 8FSK region (8F4QAM) is also composed of a sequence having the same FSK modulation order of 4FSK / 8FSK.
  • the corresponding FQAM interference measurement channel of BS2 may also include the interference tendency of the FQAM data channel of BS2 by not transmitting a sequence. Can be.
  • 3 and 4 illustrate a channel structure for transmitting a sequence for an FQAM interference measurement channel according to an embodiment of the present invention.
  • FIG 3 illustrates a method of continuously transmitting the FQAM interference measurement channel in the same frame as the FQAM data channel.
  • the sequence of the FQAM interference measurement channel can be used for channel estimation.
  • the FQAM interference measurement channel is distinguished from the FQAM data channel.
  • the FQAM interference measurement channel may be transmitted in an arbitrary frame before the FQAM data channel is transmitted.
  • the FQAM interference measurement channel may include information on resource allocation of the FQAM data channel to be transmitted later. Therefore, through this, it is possible to more accurately measure the interference characteristics for FQAM, the terminal can more accurately estimate the MCS level and the like.
  • FIG. 5 illustrates an interference measurement procedure according to an FQAM interference measurement channel structure according to an embodiment of the present invention, and illustrates a case in which the FQAM interference measurement channel is continuously transmitted in the same frame as the FQAM data channel.
  • the base station BS shares the FSK modulation order sequence having the FQAM form with the terminal (501). Thereafter, the base station determines whether to allocate the FQAM resource region (503), and transmits a reference signal for channel characteristic (CQI) estimation to the MS (505).
  • the reference signal transmission may be transmitted through a legacy reference channel.
  • the UE since the FQAM interference measurement channel is adjacent to the FQAM data channel, the UE may measure interference at the time when the FQAM data channel is transmitted. Therefore, each terminal continuously measures the FQAM interference characteristic value at the time when the FQAM data channel is transmitted, has the measured interference characteristic value, and can be used later to determine the CQI value for determining the MCS level.
  • the terminal determines a CQI value for determining an appropriate MCS level by using the FQAM interference characteristic value measured previously (507) and feeds it back to the base station (509).
  • the UE may feed back the average value of the CQI measured periodically.
  • the base station performs scheduling for the terminal based on the CQI values of the FQAM channel received from each terminal (511).
  • the base station After performing the scheduling, the base station transmits a map (MAP) for the FQAM data channel (513), and then transmits the FQAM data channel (515), and the terminal receives it (519).
  • MAP map
  • the sequence to which the FSK modulation, which matches the FQAM data channel allocation and the FSK modulation order, is transmitted through the FQAM interference measurement channel (517). Accordingly, each terminal may measure the interference characteristic value through the FQAM interference measurement channel and update the previously measured value (521).
  • FIG. 6 illustrates an interference measurement procedure according to an FQAM interference measurement channel structure according to another embodiment of the present invention, and illustrates a case in which the FQAM interference measurement channel is transmitted in a frame different from the FQAM data channel.
  • each base station shares an FSK modulation order sequence having an FQAM form with a terminal (601). Thereafter, the base station determines whether to allocate the FQAM resource region (603).
  • the base station first determines whether to allocate an FQAM resource region and whether to transmit FQAM data from the base station, and accordingly, determines whether to transmit an FQAM interference measurement channel. Accordingly, if there is no terminal to perform FQAM data transmission from the base station, the FQAM interference measurement channel is not transmitted. If the base station determines that FQAM data transmission is necessary for the specific terminal, the FQAM interference measurement channel is transmitted (605).
  • the UE measures the FQAM interference characteristic value from the corresponding channel (607).
  • the base station transmits a reference signal for channel characteristic (CQI) estimation to the terminal MS (609).
  • CQI channel characteristic
  • the reference signal transmission may be transmitted through a legacy reference channel.
  • the terminal estimates the channel value of the desired BS based on the measured FQAM interference characteristic value and the reference signal, and then determines the CQI value for determining the MCS level based on this (611).
  • Feedback (613).
  • the UE may feed back the average value of the CQI measured periodically.
  • the base station When the determined CQI value is transmitted from the terminal to the base station, the base station performs scheduling based on this to determine the terminal to transmit data (615), and transmits the FQAM data area allocation information of the terminal to the MAP (617) The FQAM data is transmitted through the data channel (619) and the terminal receives it (621).
  • FIG. 7 illustrates a base station apparatus according to an embodiment of the present invention.
  • the base station includes a transceiver 710 and a controller 720.
  • the controller 620 determines whether to allocate FQAM resources and whether or not to transmit data according to an embodiment of the present invention, performs an operation of scheduling a terminal, and controls to transmit a data channel and an interference channel to the terminal according to the determination, and transmit and receive.
  • the unit 710 performs various operations for transmitting and receiving a signal with a terminal according to an embodiment of the present invention under the control of the controller 720.
  • FIG. 8 illustrates a terminal device according to an embodiment of the present invention.
  • the terminal includes a transceiver 810 and a controller 820.
  • the controller 820 measures an interference characteristic and estimates the CQI according to the measured interference characteristic and performs a control for transmitting the CQI to the base station, and the transceiver 810 performs the control of the present invention.
  • Receiving a data channel and an interference measurement channel according to an embodiment from the base station and under the control of the controller 820 transmits the CQI reflecting the interference characteristics to the base station.

Abstract

본 발명은 무선통신 시스템에서 데이터를 전송하는 방법에 있어서, 기지국이 QAM(Quadrature Amplitude Modulation) 방식과 FSK(Frequency Shift Keying) 방식이 결합된 FQAM(Hybrid FSK and QAM Modulation) 방식으로 변조된 데이터를 전송하기 위한 자원을 할당하는 과정과, 상기 기지국이 간섭 측정 채널을 통해 상기 데이터 변조에 사용된 FQAM 방식과 동일한 방식으로 변조된 시퀀스를 상기 단말로 전송하는 과정과, 상기 기지국이 상기 단말로 채널 품질 정보 측정을 위한 기준 신호를 전송하는 과정과, 상기 기지국이 상기 단말로부터 상기 간섭 측정 채널의 간섭 특성이 반영된 채널 품질 정보를 수신하고, 상기 수신된 채널 품질 정보를 토대로 단말에 대한 스케줄링을 수행하는 과정과, 상기 기지국이 상기 FQAM 방식으로 변조된 데이터를 상기 단말로 전송하는 과정을 포함한다.

Description

무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
본 발명은 무선통신 시스템에서 데이터 전송을 위한 간섭 정보를 측정하는 방법 및 장치에 관한 것이다.
무선통신 시스템은 지속적으로 증가하는 무선 데이터 트래픽에 대한 수요를 충족시키기 위해 직교 주파수 분할 다중(OFDM: Orthogonal Frequency Division Multiplexing, 이하 ‘OFDM’이라 함) 방식, 다중입력 다중출력(MIMO: Multiple Input Multiple Output) 송수신 등의 통신기술을 바탕으로 주파수 효율성(Spectral Efficiency)을 개선하고 채널용량을 증대시키는 방향으로 기술 개발이 진행되고 있다.
또한 셀 중심에서 먼 셀 경계의 낮은 SNR (Signal-to-Noise Ratio)의 상황이나, 인접 셀의 기지국으로부터 큰 간섭을 받는 낮은 CINR (Carrier-to-Interference and Noise Ratio)의 상황 등에 있는 셀 경계 사용자(cell-edge user)들에 의해 전체 시스템 성능이 제한되는 것을 개선하기 위하여, 셀 경계 사용자들에 대한 전송효율을 증대시키기 위해 셀간 간섭 조정(ICIC: Inter-Cell Interference-Coordination), CoMP(Coordinated Multi-Points), 수신단 간섭제거(interference cancellation)와 같은 기술들이 개발되고 있다.
상술한 기술들은 주로 송신단에서의 간섭제어나 수신단에서의 간섭제거 기술 관점에서 연구가 진행되었으나, 보다 근본적으로는 셀 경계 사용자들의 채널용량을 증대시킬 수 있는 개선된 기술에 대한 필요성이 증가하고 있다.
또한 종래에는 낮은 복잡도로 복호를 수행하기 위하여 간섭신호에 대하여 가우시안 분포를 가정해왔으며, 간섭신호의 특성을 최대한 가우시안 분포에 가깝게 만들기 위해 QAM(Quadrature Amplitude Modulation) 계열의 변조 방식을 주로 사용해왔다. 하지만 가우시안 채널보다 심볼별로 간섭 성분이 다른 비가우시안 채널의 채널 용량이 크므로 적절히 복호를 수행한다면 가우시안 채널보다 비가우시안 채널에서 보다 높은 복호 성능을 얻을 수 있다. 따라서 간섭 신호를 비가우시안 특성을 가지도록 만드는 변조 방식의 개발이 필요하다.
따라서 본 발명이 해결하고자 하는 과제는 무선통신 시스템에서 데이터를 전송하기 위한 간섭 정보를 측정하고 이를 이용하여 데이터를 송수신하는 방법 및 장치를 제공하는 것이다.
본 발명의 실시예에 따르면, 무선 통신 시스템에서 데이터를 송신하는 방법에 있어서, 기지국이 QAM(Quadrature Amplitude Modulation) 방식과 FSK(Frequency Shift Keying) 방식이 결합된 FQAM(Hybrid FSK and QAM Modulation) 방식으로 변조된 데이터를 전송하기 위한 자원을 할당하는 과정과, 상기 기지국이 간섭 측정 채널을 통해 상기 데이터 변조에 사용된 FQAM 방식과 동일한 방식으로 변조된 시퀀스를 상기 단말로 전송하는 과정과, 상기 기지국이 상기 단말로 채널 품질 정보 측정을 위한 기준 신호를 전송하는 과정과, 상기 기지국이 상기 단말로부터 상기 간섭 측정 채널의 간섭 특성이 반영된 채널 품질 정보를 수신하고, 상기 수신된 채널 품질 정보를 토대로 단말에 대한 스케줄링을 수행하는 과정과, 상기 기지국이 상기 FQAM 방식으로 변조된 데이터를 상기 단말로 전송하는 과정을 포함한다.
본 발명의 다른 실시예에 따르면, 무선 통신 시스템에서 데이터를 수신하는 방법에 있어서, 단말이 기지국으로부터 간섭 측정 채널을 통해 QAM(Quadrature Amplitude Modulation) 방식과 FSK(Frequency Shift Keying) 방식이 결합된 FQAM(Hybrid FSK and QAM Modulation) 방식으로 변조된 시퀀스를 수신하고 상기 시퀀스를 토대로 간섭 특성을 측정하는 과정과, 상기 단말이 상기 기지국으로부터 채널 품질 정보 측정을 위한 기준 신호를 수신하는 과정과, 상기 단말이 상기 측정된 간섭 특성을 토대로 채널 품질 정보를 추정하고, 상기 추정된 채널 품질 정보를 상기 기지국으로 전송하는 과정과, 상기 단말이 상기 시퀀스와 동일한 FQAM 방식으로 변조된 데이터를 상기 기지국으로부터 수신하는 과정을 포함한다.
본 발명의 또 다른 실시예에 따르면, 무선 통신 시스템에서 데이터를 송신하는 장치에 있어서, QAM(Quadrature Amplitude Modulation) 방식과 FSK(Frequency Shift Keying) 방식이 결합된 FQAM(Hybrid FSK and QAM Modulation) 방식으로 변조된 데이터를 전송하기 위한 자원을 할당하고, 간섭 측정 채널을 통해 상기 데이터 변조에 사용된 FQAM 방식과 동일한 방식으로 변조된 시퀀스를 상기 단말로 전송하고, 상기 단말로 채널 품질 정보 측정을 위한 기준 신호를 전송하고, 상기 단말로부터 상기 간섭 측정 채널의 간섭 특성이 반영된 채널 품질 정보를 수신하고, 상기 수신된 채널 품질 정보를 토대로 단말에 대한 스케줄링을 수행하며, 상기 FQAM 방식으로 변조된 데이터를 상기 단말로 전송하도록 제어하는 제어부와, 상기 제어부의 제어에 따라 상기 시퀀스와 상기 기준 신호를 전송하고, 상기 단말로부터 상기 채널 품질 정보를 수신하고, 상기 FQAM 방식으로 변조된 데이터를 상기 단말로 전송하는 송수신부를 포함한다.
본 발명의 또 다른 실시예에 따르면, 무선 통신 시스템에서 데이터를 수신하는 장치에 있어서, 기지국으로부터 간섭 측정 채널을 통해 QAM(Quadrature Amplitude Modulation) 방식과 FSK(Frequency Shift Keying) 방식이 결합된 FQAM(Hybrid FSK and QAM Modulation) 방식으로 변조된 시퀀스를 수신하고 상기 시퀀스를 토대로 간섭 특성을 측정하고, 상기 기지국으로부터 채널 품질 정보 측정을 위한 기준 신호를 수신하고, 상기 측정된 간섭 특성을 토대로 채널 품질 정보를 추정하고, 상기 추정된 채널 품질 정보를 상기 기지국으로 전송하고, 상기 시퀀스와 동일한 FQAM 방식으로 변조된 데이터를 상기 기지국으로부터 수신하도록 제어하는 제어부와, 상기 제어부의 제어에 따라 상기 기지국으로부터 채널 품질 정보 측정을 위한 기준 신호를 수신하고, 상기 추정된 채널 품질 정보를 상기 기지국으로 전송하고, 상기 시퀀스와 동일한 FQAM 방식으로 변조된 데이터를 상기 기지국으로부터 수신하는 송수신부를 포함한다.
본 발명의 실시예에 따르면, FQAM 데이터 전송을 위한 간섭 측정시 FSK 변조 차수별로 간섭 측정 채널을 구성하고 FQAM 데이터 채널과 동일한 변조 차수를 가지는 간섭 측정 채널을 이용하여 단말이 간섭 신호 특성 정보를 측정하여 기지국으로 피드백함으로써 보다 정확한 간섭 특성을 측정할 수 있다. 또한 기지국은 단말로부터 피드백된 정보를 토대로 채널 특성을 고려한 정확한 MCS 레벨을 선택할 수 있다.
도 1은 본 발명의 실시예에 따른 시퀀스 할당을 도시한 도면
도 2는 상기 시퀀스를 FQAM 간섭 측정 채널에 구체적으로 적용한 구조를 도시한 도면
도 3 및 도 4는 본 발명의 실시예에 따른 FQAM 간섭 측정 채널을 위한 시퀀스를 전송하는 채널 구조를 도시한 도면
도 5는 본 발명의 일 실시예에 따른 FQAM 간섭 측정 채널 구조에 따른 간섭 측정 절차를 도시한 도면
도 6은 본 발명의 다른 실시예에 따른 FQAM 간섭 측정 채널 구조에 따른 간섭 측정 절차를 도시한 도면
도 7은 본 발명의 실시예에 따른 기지국 장치를 도시한 도면
도 8은 본 발명의 실시예에 따른 단말 장치를 도시한 도면
이하 본 발명의 실시 예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 실시예에서는 FSK (Frequency Shift Keying)와 QAM 변조방식을 혼합한 변조방식(이하 FQAM이라 함)을 적용한 데이터의 전송을 위한 간섭 측정에 대해 살펴본다.
FQAM 데이터의 전송은 간섭 신호가 비가우시안인 경우 신호의 전송 이득이 높아지는 특성을 활용하여 임의로 인접 기지국들의 간섭 신호를 비가우시안 형태로 구성하도록 전송하는 통신 기법이다. 이에 따라 상대적으로 낮은 신호 대 간섭 및 잡음비(Signal to Interference plus Noise Ratio, 이하 SINR)에서도 강한(robust) 신호 전송을 수행할 수 있는 장점이 있다.
이러한 비가우시안 형태의 간섭 채널을 통해 수신한 데이터 복호 방법 중에 대표적인 방법으로는 CGG(Complex Generalized Gaussian) 복호 방식이 있다. CGG 복호 방식에서는 비가우시안 간섭 및 잡음이 CGG 분포를 따른다고 가정하고 있다. 해당 CGG 분포의 확률 밀도 함수는 하기의 수학식 1 과 같다.
[수학식 1]
Figure PCTKR2014011186-appb-I000001
상기 수학식 1에서
Figure PCTKR2014011186-appb-I000002
는 잡음의 확률 밀도 함수, z는 잡음을 나타내는 변수, α는 모양 파라미터(shape parameter)로서 비가우시안의 정도를 표현하며, β는 스케일 파라미터(scale parameter)로서 분산(variance)을 표현하며, Γ는 감마 함수를 의미하며,
Figure PCTKR2014011186-appb-I000003
와 같이 구성된다.
상기 수 1에서 CGG 분포의 확률 밀도 함수는, α가 2이면 가우시안(Gaussian) 분포에 따르고, α가 2보다 작으면 헤비 테일(heavy-tail)을 가지는 수퍼 가우시안(Super Gaussian, 비가우시안) 분포에 따르고, α가 2보다 크면 라이트 테일(Light-tail)을 가지는 서브 가우시안(Sub Gaussian) 분포에 따르게 된다.
상기와 같은 비가우시안 형태의 간섭 채널을 통한 데이터 수신 시에는, 특히 상기 α 의 값, 즉 비가우시안 간섭 특성 정도에 따라서 링크 성능 및 복호 성능 차이가 발생한다. 따라서, 링크 적응(Link Adaptation)을 수행하기 위해서는 기존의 채널 품질 정보(Channel Quality Information, 이하 CQI) 뿐만 아니라, 비가우시안 간섭량 정보를 별도로 측정하는 과정이 별도로 필요하게 된다.
이에 구체적으로 α값을 측정하는 방법은 하기의 수학식 2와 같다.
[수학식 2]
Figure PCTKR2014011186-appb-I000004
상기 수 1에서 밝힌 바와 같이 수 2에서 정의된 α 는 수신되는 채널의 신호 중에서 간섭 및 잡음의 비가우시안화 정도를 수치화한 메트릭이다. 이 때, |Z[k]|는 k 번째 심볼을 통해 수신된 전체 간섭 및 잡음의 신호 세기를 의미한다.
상기 간섭 신호 특성 정보 값에 의하여 각 MCS 레벨의 적용 범위가 달라질 수 있다. 예를 들어, α 값이 2로 가우시안 간섭 채널인 경우에는 기존과 데이터 채널과 동일하게 MCS 레벨을 할당하게 되지만, α 값이 1 또는 0.5 등의 2보다 작은 값이 되면 이는 비가우시안 간섭 채널이고, 비가우시안 복호 기법을 적용하면 더 높은 전송효율을 갖는 MCS 레벨을 적용할 수도 있다.
따라서 이러한 특성이 적용될 수 있도록 기지국들간 간섭을 비가우시안 간섭 채널에 가깝도록, 즉 α 값이 작게 되도록 간섭 신호들을 설정 및 유지할 필요가 있으며, 이를 위해서 FQAM 데이터 채널이 유용하게 활용될 수 있다. 그러나 α 값을 정확히 측정할 수 없다면 정확한 MCS 레벨 추정에 오류가 발생하게 되고, 이를 통해 시스템 성능 저하가 발생할 수도 있다.
따라서 본 발명의 실시예에서는 FQAM 신호를 수신할 때 간섭 신호 특성 정보를 측정할 수 있는 채널을 별도로 규정하고 이를 위한 요구 조건을 만족하기 위한 방법을 제시함으로써 FQAM 데이터 전송 효율을 극대화 시키는 방법 및 장치를 제안하고자 한다.
본 발명의 실시예에서는 FQAM 데이터 수신시의 간섭 신호 특성 정보를 측정하는 채널을 FQAM 간섭 측정 채널이라고 정의한다.
FQAM 간섭 측정 채널의 요구조건은 다음과 같다.
첫째, FQAM 간섭 측정 채널의 변조 특성이 실제 FQAM 데이터 전송이 수행될 채널과 동일하여야 한다. 예를 들어, 인접 셀들이 FQAM 데이터 채널에서 2FSK의 차수(order)를 갖는 FQAM 신호를 전송한다고 하면, FQAM 간섭 측정 채널에서도 동일하게 2FSK order를 갖는 FQAM 신호들을 전송해야 한다.
둘째, FQAM 데이터 채널을 통해 신호를 전송하는 간섭 셀 들의 채널 할당 특성이 FQAM 간섭 측정 채널에서도 동일하게 반영되어야 한다. 예를 들어, 특정 기지국에서 FQAM 데이터 채널에서 신호를 전송하지 않고 비워둔 상태(blank)로 전송하면 해당 기지국은 FQAM 간섭 측정 채널에서도 어떠한 신호도 전송하지 않아야 한다. 만약 그렇지 않은 경우에는 FQAM 데이터 채널과 FQAM 간섭 측정 채널간의 간섭 신호 특성이 달라져서 FQAM 간섭 신호 측정의 의미가 사라지고 전송 효율도 저하된다.
셋째, FQAM 간섭 측정 채널은 모든 기지국의 신호가 합쳐져 있지만 단말이 자신의 서빙 기지국의 신호를 구분하여 제거할 수 있어야 한다. FQAM 간섭 측정 성분은 부반송파별 간섭량과 잡음의 값을 더한 값으로 측정할 수 있는 메트릭(Metric) 이므로, 모든 기지국의 신호가 합쳐져 있다면 그 중에서 자신의 서빙 기지국의 신호는 제거한 뒤에 전력 값을 기준으로 간섭 신호를 측정해야 한다.
이하에서는 이러한 요구조건을 토대로 본 발명의 실시예에서 제안하는 FQAM 간섭 측정 채널의 구조 및 간섭 측정 절차를 설명한다.
FQAM 간섭 측정을 위해서는 간섭 측정을 위한 별도의 채널이 필요하다. 또한 간섭 측정 채널 상에서 전체 수신 신호 세기 중에서 데이터 수신을 원하는(desired) 기지국의 신호를 제외하고 간섭 기지국의 신호만을 남길 수 있도록 하기 위하여, desired 기지국과 단말간에 알려진 시퀀스(known sequence)를 공유할 필요가 있다.
본 발명의 실시예에서는 해당 FQAM 간섭 측정 채널을 위한 시퀀스를 주파수 영역 상에서의 신호 위치로 전달한다. 이는 FQAM 데이터 채널에서 전송되는 데이터와 동일한 신호 형태를 나타낼 수 있으므로, 인접 기지국으로부터의 간섭 신호를 측정할 때 FQAM 데이터 채널에 대한 간섭 신호 특성 정보 값을 측정하는 것과 동일한 결과를 얻을 수 있다.
또한 상기 주파수 상의 신호 위치로 나타낸 시퀀스는 FSK 형태로 기지국 고유 정보를 포함하는 시퀀스이므로 단말이 해당 기지국의 시퀀스를 구별할 수 있다. 상기 기지국 고유 정보는 기지국 아이디 또는 셀 아이디일 수 있다.
또한 상기 주파수 상의 신호 위치로 나타낸 시퀀스는 각 FQAM 변조 차수에 대응하여 각각 서로 다른 시퀀스 형식(즉, 2FSK 형식/4FSK 형식/8 FSK 형식)으로 정의할 수 있도록 하기의 실시예와 같이 각 FSK 변조 차수에 대응하는 서로 다른 시퀀스로써 정의한다. 따라서 기지국 고유 정보뿐만 아니라 해당 주파수 대역의 FQAM 데이터 채널의 부채널에 대한 FSK 변조 차수 정보를 추정하는 데 활용될 수 있다.
도 1은 본 발명의 실시예에 따른 시퀀스 할당을 도시한 것이다.
도 1에서는 기지국 아이디(BS ID)를 나타내는 011011111110 이라는 길이 12인 시퀀스를 각각 2FSK 데이터 영역/4FSK 데이터 영역/8FSK 데이터 영역에 해당하는 신호 형태로 변환한 예를 도시하였다. 이와 같이 본 발명의 실시예에서는 각 FQAM 데이터 채널에 따라서 이에 해당하는 간섭 신호를 측정할 수 있도록 하기 위하여, 각 FQAM 데이터 채널에 해당하는 FSK 변조 차수를 사용하는 서로 다른 형태의 주파수 상의 시퀀스로 FQAM 간섭 측정 채널을 구성할 수 있다.
표 1은 상기 시퀀스를 전체 셀룰러 시스템에 대해 나타낸 예이다. 표 1에서 볼 수 있듯이, 각 기지국 별로 서로 다른 기지국 ID를 각각의 FSK 변조 차수별로 정의하여 FQAM 간섭 측정을 위해 활용할 수 있다.
표 1
BS1 BS2 BS3 BSN
2FSK 영역 Seq.(2F,BS1) Seq.(2F,BS2) Seq.(2F,BS3) Seq.(2F, BSN)
4FSK 영역 Seq.(4F,BS1) Seq.(4F,BS2) Seq.(4F,BS3) Seq.(4F, BSN)
8FSK 영역 Seq.(8F,BS1) Seq.(8F,BS2) Seq.(8F,BS3) Seq.(8F, BSN)
도 2는 상기 시퀀스를 FQAM 간섭 측정 채널에 구체적으로 적용한 구조를 도시한 것이다.
동일한 영역에 속한 서빙 기지국과 인접 기지국은 FQAM 데이터 채널에 대해 동일하거나 또는 이에 대응되는 일정한 FSK 변조차수를 적용한다. 예를 들어 서빙 기지국에서 FQAM 데이터 채널이 2FSK 영역(2F4QAM), 4FSK 영역(4F4QAM), 8FSK 영역(8F4QAM) 형태로 사용되는 경우, 인접 기지국에서도 동일한 영역에 동일한 FSK 변조차수가 사용된 채널이 전송되어야 한다. 이는 특정 FSK 변조차수가 사용되는 자원 영역에 대해서는 이에 대응되는 일정한 특성을 갖는 간섭 채널을 가정하기 때문이다. 따라서 도 2에 도시한 바와 같이 BS1과 BS2가 동일한 영역에 동일한 FSK 변조 차수의 데이터 채널을 할당하고 있다.
FQAM 데이터 채널과 별도로 존재하는 FQAM 간섭 측정 채널은 해당 기지국의 FQAM 데이터 채널과 동일한 FSK 변조 차수를 갖는다. 예를 들어, 2FSK 영역(2F4QAM)의 FQAM 데이터 영역에 대한 FQAM 간섭 측정 채널은 이와 동일한 FSK 변조 차수인 2FSK를 갖는 시퀀스로 구성된다. 마찬가지로 4FSK 영역(4F4QAM), 8FSK 영역(8F4QAM)에 해당하는 FQAM 데이터 영역에 대한 FQAM 간섭 측정 채널 또한 각각 이와 동일한 FSK 변조 차수인 4FSK/8FSK를 갖는 시퀀스로 구성된다.
또한, 도 2에서 BS2의 2F4QAM의 FQAM 데이터 채널 영역을 통해서 BS2가 전송할 FQAM 데이터가 없다면, 이에 대응되는 BS2의 FQAM 간섭 측정 채널 또한 시퀀스를 전송하지 않음으로써 BS2의 FQAM 데이터 채널의 간섭 경향을 포함할 수 있다.
도 3과 도 4는 본 발명의 실시예에 따른 FQAM 간섭 측정 채널을 위한 시퀀스를 전송하는 채널 구조를 도시한 것이다.
도 3은 FQAM 간섭 측정 채널을 FQAM 데이터 채널과 동일한 프레임에서 연속적으로 전송하는 방법을 도시하고 있다. 이 경우 FQAM 간섭 측정 채널은 데이터 채널과 인접하여 존재하므로, FQAM 간섭 측정 채널의 시퀀스를 채널 추정을 위해 활용할 수 있다.
도 4는 FQAM 간섭 측정 채널을 FQAM 데이터 채널과 구별하여 구성한 예를 도시한 것으로, 이 경우FQAM 간섭 측정 채널은 FQAM 데이터 채널이 전송되기 이전에 임의의 프레임에 전송할 수 있다. 이때, FQAM 간섭 측정 채널은 이후에 전송될 FQAM 데이터 채널의 자원 할당 여부에 대한 정보를 포함할 수 있다. 따라서 이를 통하여 보다 정확한 FQAM용 간섭 특성을 측정할 수 있으며, 단말이 보다 정확하게 MCS 레벨 등을 추정할 수 있다.
도 5는 본 발명의 일 실시예에 따른 FQAM 간섭 측정 채널 구조에 따른 간섭 측정 절차를 도시한 것으로, FQAM 간섭 측정 채널이 FQAM 데이터 채널과 동일한 프레임에서 연속적으로 전송되는 경우를 도시한 것이다.
도 5를 참조하면, 기지국(BS)은 FQAM 형태를 갖는 FSK 변조 차수별 시퀀스를 단말과 공유한다(501). 이후 기지국은 FQAM 자원 영역의 할당 여부를 결정하고(503), 채널 특성(CQI) 추정을 위한 기준 신호를 단말(MS)로 전송한다(505). 상기 기준 신호 전송은 레거시 기준 채널(legacy reference channel)을 통해서 전송할 수 있다.
도 5에서는 FQAM 간섭 측정 채널이 FQAM 데이터 채널과 인접해 있으므로, FQAM 데이터 채널이 전송되는 시점에 단말이 간섭을 측정할 수 있다. 따라서, 각 단말들은 FQAM 데이터 채널이 전송되는 시점에는 항상 FQAM 간섭 특성 값을 지속적으로 측정하며, 측정한 간섭 특성 값을 갖고 있다가 이후에 MCS 레벨을 결정하기 위한 CQI 값 결정 시 활용할 수 있다.
따라서 기지국으로부터 기준 신호가 전송되면, 단말은 이전에 측정했던 FQAM 간섭 특성 값을 활용하여 이에 적절한 MCS 레벨을 결정하기 위한 CQI 값을 결정하고(507) 이를 기지국에 피드백 한다(509). CQI를 피드백 할 때, 단말은 주기적으로 측정한 CQI의 평균값을 피드백 할 수 있다.
이후 기지국은 각 단말들로부터 수신한 FQAM 채널의 CQI 값들을 기반하여 단말에 대한 스케줄링을 수행한다(511).
스케줄링을 수행한 기지국은 FQAM 데이터 채널에 대한 맵(MAP)을 전송하고(513), 이어서 FQAM 데이터 채널을 전송하고(515) 단말은 이를 수신한다(519). 이때, 상기 설명한 바와 같이 FQAM 데이터 채널의 할당 및 FSK 변조 차수와 일치하는 FSK 변조가 적용된 시퀀스를 FQAM 간섭 측정 채널을 통해서 전송한다(517). 따라서 각 단말들은 FQAM 간섭 측정 채널을 통해 간섭 특성 값을 측정하고 이전에 측정한 값을 갱신할 수 있다(521).
도 6은 본 발명의 다른 실시예에 따른 FQAM 간섭 측정 채널 구조에 따른 간섭 측정 절차를 도시한 것으로, FQAM 간섭 측정 채널이 FQAM 데이터 채널과 다른 프레임에서 전송되는 경우를 도시한 것이다.
도 6을 참조하면, 각 기지국은 FQAM 형태를 갖는 FSK 변조 차수별 시퀀스를 단말과 공유한다(601). 이후 기지국은 FQAM 자원 영역의 할당 여부를 결정한다(603).
도 6에서는 기지국이 FQAM 자원 영역 할당 여부 및 해당 기지국에서의 FQAM 데이터 전송 여부를 먼저결정하고 이에 따라서 FQAM 간섭 측정 채널 전송 여부를 결정한다. 따라서 해당 기지국에서 FQAM 데이터 전송을 수행할 단말이 없는 경우에는 FQAM 간섭 측정 채널도 전송하지 않으며, 해당 기지국에서 특정 단말에게 FQAM 데이터 전송이 필요하다고 판단한 경우에는 FQAM 간섭 측정 채널을 전송한다(605).
FQAM 간섭 측정 채널이 전송되면 단말에서는 해당 채널로부터 FQAM 간섭 특성 값을 측정한다(607). 기지국은 채널 특성(CQI) 추정을 위한 기준 신호를 단말(MS)로 전송한다(609). 상기 기준 신호 전송은 레거시 기준 채널(legacy reference channel)을 통해서 전송할 수 있다. 기지국으로부터 기준 신호가 전송되면, 단말은 상기 측정한 FQAM 간섭 특성 값과 기준 신호를 바탕으로 desired BS의 채널 값을 추정한 후 이를 바탕으로 MCS level 결정을 위한 CQI 값을 결정(611) 이를 기지국에 피드백 한다(613). CQI를 피드백 할 때, 단말은 주기적으로 측정한 CQI의 평균값을 피드백 할 수 있다.
상기 결정된 CQI 값을 단말에서 기지국으로 전송하면, 기지국은 이를 바탕으로 스케줄링을 수행하여 데이터를 전송할 단말을 결정하고(615), 해당 단말의 FQAM 데이터 영역 할당 정보를 MAP으로 전송한 후(617) 해당 데이터 채널을 통하여 FQAM 데이터를 전송하며(619) 단말은 이를 수신한다(621).
도 7은 본 발명의 실시예에 따른 기지국 장치를 도시한 것이다.
도 7을 참조하면, 기지국은 송수신부(710)와 제어부(720)를 포함한다. 제어부(620)는 본 발명의 실시예에 따라 FQAM 자원 할당 여부 및 데이터 전송 여부를 결정하고 단말을 스케줄링하는 동작 및 상기 결정에 따라 단말로 데이터 채널과 간섭 채널을 전송하기 위한 제어를 수행하고, 송수신부(710)는 제어부(720)의 제어에 따라 본 발명의 실시예에 따른 신호를 단말과 송수신하기 위한 제반 동작을 수행한다.
도 8은 본 발명의 실시예에 따른 단말 장치를 도시한 것이다.
도 8을 참조하면, 단말은 송수신부(810)와 제어부(820)를 포함한다. 제어부(820)는 본 발명의 실시예에 따라 간섭 특성을 측정하고 측정된 간섭 특성에 따라 CQI를 추정하는 동작 및 기지국으로 CQI를 전송하기 위한 제어를 수행하고, 송수신부(810)는 본 발명의 실시예에 따른 데이터 채널 및 간섭 측정 채널을 기지국으로부터 수신하고 제어부(820)의 제어에 따라 간섭 특성이 반영된 CQI를 기지국으로 전송하는 동작을 수행한다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
한편, 본 명세서와 도면에는 본 발명의 바람직한 실시 예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (24)

  1. 무선 통신 시스템에서 데이터를 송신하는 방법에 있어서,기지국이 QAM(Quadrature Amplitude Modulation) 방식과 FSK(Frequency Shift Keying) 방식이 결합된 FQAM(Hybrid FSK and QAM Modulation) 방식으로 변조된 데이터를 전송하기 위한 자원을 할당하는 과정과, 상기 기지국이 간섭 측정 채널을 통해 상기 데이터 변조에 사용된 FQAM 방식과 동일한 방식으로 변조된 시퀀스를 상기 단말로 전송하는 과정과,상기 기지국이 상기 단말로 채널 품질 정보 측정을 위한 기준 신호를 전송하는 과정과,상기 기지국이 상기 단말로부터 상기 간섭 측정 채널의 간섭 특성이 반영된 채널 품질 정보를 수신하고, 상기 수신된 채널 품질 정보를 토대로 단말에 대한 스케줄링을 수행하는 과정과,상기 기지국이 상기 FQAM 방식으로 변조된 데이터를 상기 단말로 전송하는 과정을 포함하는 데이터 송신 방법.
  2. 제1항에 있어서,상기 시퀀스는 상기 데이터와 인접하여 동일한 프레임에서 전송되는 데이터 송신 방법.
  3. 제1항에 있어서,상기 시퀀스는 상기 데이터가 전송되기 이전에 상기 데이터와 다른 프레임에서 전송되는 데이터 송신 방법.
  4. 제1항에 있어서,상기 시퀀스는 기지국 고유 정보를 포함하며, 상기 기지국과 상기 단말간에 공유되는 데이터 송신 방법.
  5. 제1항에 있어서,상기 시퀀스는 주파수 영역상의 신호로 표현되며, 각 기지국에 대해 상기 FQAM 방식의 변조 차수별로 각각 다른 형식으로 정의되는 데이터 송신 방법.
  6. 제1항에 있어서,상기 기지국에서 상기 단말로 전송할 데이터가 있는 경우에만 상기 간섭 측정 채널을 통해 상기 시퀀스를 전송하는 데이터 송신 방법.
  7. 무선 통신 시스템에서 데이터를 수신하는 방법에 있어서,단말이 기지국으로부터 간섭 측정 채널을 통해 QAM(Quadrature Amplitude Modulation) 방식과 FSK(Frequency Shift Keying) 방식이 결합된 FQAM(Hybrid FSK and QAM Modulation) 방식으로 변조된 시퀀스를 수신하고 상기 시퀀스를 토대로 간섭 특성을 측정하는 과정과,상기 단말이 상기 기지국으로부터 채널 품질 정보 측정을 위한 기준 신호를 수신하는 과정과,상기 단말이 상기 측정된 간섭 특성을 토대로 채널 품질 정보를 추정하고, 상기 추정된 채널 품질 정보를 상기 기지국으로 전송하는 과정과,상기 단말이 상기 시퀀스와 동일한 FQAM 방식으로 변조된 데이터를 상기 기지국으로부터 수신하는 과정을 포함하는 데이터 수신 방법.
  8. 제7항에 있어서,상기 시퀀스는 상기 데이터와 인접하여 동일한 프레임에서 수신하는 데이터 수신 방법.
  9. 제7항에 있어서,상기 시퀀스는 상기 데이터가 전송되기 이전에 상기 데이터와 다른 프레임에서 수신하는 데이터 수신 방법.
  10. 제7항에 있어서,상기 시퀀스는 기지국 고유 정보를 포함하며, 상기 기지국과 상기 단말간에 공유되는 데이터 수신 방법.
  11. 제7항에 있어서,상기 시퀀스는 주파수 영역상의 신호로 표현되며, 각 기지국에 대해 상기 FQAM 방식의 변조 차수별로 각각 다른 형식으로 정의되는 데이터 수신 방법.
  12. 제7항에 있어서,상기 기지국에서 상기 단말로 전송될 데이터가 있는 경우에만 상기 간섭 측정 채널을 통해 상기 시퀀스를 전송하는 데이터 수신 방법.
  13. 무선 통신 시스템에서 데이터를 송신하는 장치에 있어서,QAM(Quadrature Amplitude Modulation) 방식과 FSK(Frequency Shift Keying) 방식이 결합된 FQAM(Hybrid FSK and QAM Modulation) 방식으로 변조된 데이터를 전송하기 위한 자원을 할당하고, 간섭 측정 채널을 통해 상기 데이터 변조에 사용된 FQAM 방식과 동일한 방식으로 변조된 시퀀스를 상기 단말로 전송하고, 상기 단말로 채널 품질 정보 측정을 위한 기준 신호를 전송하고, 상기 단말로부터 상기 간섭 측정 채널의 간섭 특성이 반영된 채널 품질 정보를 수신하고, 상기 수신된 채널 품질 정보를 토대로 단말에 대한 스케줄링을 수행하며, 상기 FQAM 방식으로 변조된 데이터를 상기 단말로 전송하도록 제어하는 제어부와,상기 제어부의 제어에 따라 상기 시퀀스와 상기 기준 신호를 전송하고, 상기 단말로부터 상기 채널 품질 정보를 수신하고, 상기 FQAM 방식으로 변조된 데이터를 상기 단말로 전송하는 송수신부를 포함하는 데이터 송신 장치.
  14. 제13항에 있어서,상기 시퀀스는 상기 데이터와 인접하여 동일한 프레임에서 전송되는 데이터 송신 장치.
  15. 제13항에 있어서,상기 시퀀스는 상기 데이터가 전송되기 이전에 상기 데이터와 다른 프레임에서 전송되는 데이터 송신 장치.
  16. 제13항에 있어서,상기 시퀀스는 기지국 고유 정보를 포함하며, 상기 기지국과 상기 단말간에 공유되는 데이터 송신 장치.
  17. 제13항에 있어서,상기 시퀀스는 주파수 영역상의 신호로 표현되며, 각 기지국에 대해 상기 FQAM 방식의 변조 차수별로 각각 다른 형식으로 정의되는 데이터 송신 장치.
  18. 제13항에 있어서,상기 기지국에서 상기 단말로 전송할 데이터가 있는 경우에만 상기 간섭 측정 채널을 통해 상기 시퀀스를 전송하는 데이터 송신 장치.
  19. 무선 통신 시스템에서 데이터를 수신하는 장치에 있어서,기지국으로부터 간섭 측정 채널을 통해 QAM(Quadrature Amplitude Modulation) 방식과 FSK(Frequency Shift Keying) 방식이 결합된 FQAM(Hybrid FSK and QAM Modulation) 방식으로 변조된 시퀀스를 수신하고 상기 시퀀스를 토대로 간섭 특성을 측정하고, 상기 기지국으로부터 채널 품질 정보 측정을 위한 기준 신호를 수신하고, 상기 측정된 간섭 특성을 토대로 채널 품질 정보를 추정하고, 상기 추정된 채널 품질 정보를 상기 기지국으로 전송하고, 상기 시퀀스와 동일한 FQAM 방식으로 변조된 데이터를 상기 기지국으로부터 수신하도록 제어하는 제어부와,상기 제어부의 제어에 따라 상기 기지국으로부터 채널 품질 정보 측정을 위한 기준 신호를 수신하고, 상기 추정된 채널 품질 정보를 상기 기지국으로 전송하고, 상기 시퀀스와 동일한 FQAM 방식으로 변조된 데이터를 상기 기지국으로부터 수신하는 송수신부를 포함하는 데이터 수신 장치.
  20. 제19항에 있어서,상기 시퀀스는 상기 데이터와 인접하여 동일한 프레임에서 수신하는 데이터 수신 장치.
  21. 제19항에 있어서,상기 시퀀스는 상기 데이터가 전송되기 이전에 상기 데이터와 다른 프레임에서 수신하는 데이터 수신 장치.
  22. 제19항에 있어서,상기 시퀀스는 기지국 고유 정보를 포함하며, 상기 기지국과 단말간에 공유되는 데이터 수신 장치.
  23. 제19항에 있어서,상기 시퀀스는 주파수 영역상의 신호로 표현되며, 각 기지국에 대해 상기 FQAM 방식의 변조 차수별로 각각 다른 형식으로 정의되는 데이터 수신 장치.
  24. 제19항에 있어서,상기 기지국에서 단말로 전송될 데이터가 있는 경우에만 상기 간섭 측정 채널을 통해 상기 시퀀스를 수신하는 데이터 수신 장치.
PCT/KR2014/011186 2013-11-20 2014-11-20 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 WO2015076579A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/038,436 US9912457B2 (en) 2013-11-20 2014-11-20 Method and device for transmitting and receiving data in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0141370 2013-11-20
KR1020130141370A KR102137438B1 (ko) 2013-11-20 2013-11-20 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2015076579A1 true WO2015076579A1 (ko) 2015-05-28

Family

ID=53179782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011186 WO2015076579A1 (ko) 2013-11-20 2014-11-20 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치

Country Status (3)

Country Link
US (1) US9912457B2 (ko)
KR (1) KR102137438B1 (ko)
WO (1) WO2015076579A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546316A (en) * 2016-01-15 2017-07-19 Samsung Electronics Co Ltd Improvements in and relating to interference management

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194490B1 (ko) 2014-09-16 2020-12-23 삼성전자주식회사 무선 통신 시스템에서 스케줄링 방법 및 장치
KR102347213B1 (ko) * 2015-07-29 2022-01-04 주식회사 엘지유플러스 기지국의 송신 전력 제어 방법 및 장치
WO2020226436A1 (ko) * 2019-05-07 2020-11-12 삼성전자 주식회사 무선 통신 시스템에서 기지국 간 간섭을 제어하기 위한 장치 및 방법
US11463288B2 (en) * 2021-06-14 2022-10-04 Ultralogic 6G, Llc Amplitude-variation encoding for high-density 5G/6G modulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030048834A1 (en) * 1998-08-10 2003-03-13 Kamilo Feher Spectrally efficient FQPSK, FGMSK, and FQAM for enhanced performance CDMA, TDMA, GSM, OFDM, and other systems
KR20050039453A (ko) * 2003-10-25 2005-04-29 삼성전자주식회사 주파수 도약 직교주파수분할다중화 시스템에서의 간섭회피 데이터 전송 방법
KR20070032695A (ko) * 2004-06-16 2007-03-22 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 수신 신호 품질 추정을 위한 양성 간섭 억제
KR20090037271A (ko) * 2007-10-10 2009-04-15 삼성전자주식회사 다중 입출력 무선통신 시스템에서 스트림 별 채널 품질정보 생성 장치 및 방법
KR20120060016A (ko) * 2010-12-01 2012-06-11 서울대학교산학협력단 주파수 도약 확산 시스템의 간섭 신호 회피 장치 및 그 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986746B2 (en) * 2006-12-30 2011-07-26 Nortel Networks Limited Content differentiated hierarchical modulation used in radio frequency communications
US8180003B2 (en) 2007-10-10 2012-05-15 Samsung Electronics Co., Ltd. Apparatus and method for generating per stream channel quality information in multiple-input multiple-output (MIMO) wireless communication system
KR101656293B1 (ko) * 2010-02-23 2016-09-23 삼성전자주식회사 무선통신시스템에서 비대칭 밴드 조합을 지원하기 위한 장치 및 방법
EP2742737B1 (en) * 2011-08-12 2017-03-01 Telefonaktiebolaget LM Ericsson (publ) User equipment, network node, second network node and methods therein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030048834A1 (en) * 1998-08-10 2003-03-13 Kamilo Feher Spectrally efficient FQPSK, FGMSK, and FQAM for enhanced performance CDMA, TDMA, GSM, OFDM, and other systems
KR20050039453A (ko) * 2003-10-25 2005-04-29 삼성전자주식회사 주파수 도약 직교주파수분할다중화 시스템에서의 간섭회피 데이터 전송 방법
KR20070032695A (ko) * 2004-06-16 2007-03-22 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 수신 신호 품질 추정을 위한 양성 간섭 억제
KR20090037271A (ko) * 2007-10-10 2009-04-15 삼성전자주식회사 다중 입출력 무선통신 시스템에서 스트림 별 채널 품질정보 생성 장치 및 방법
KR20120060016A (ko) * 2010-12-01 2012-06-11 서울대학교산학협력단 주파수 도약 확산 시스템의 간섭 신호 회피 장치 및 그 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546316A (en) * 2016-01-15 2017-07-19 Samsung Electronics Co Ltd Improvements in and relating to interference management
US9853747B2 (en) 2016-01-15 2017-12-26 Samsung Electronics Co., Ltd. Apparatus and method for controlling interference
GB2546316B (en) * 2016-01-15 2018-10-24 Samsung Electronics Co Ltd Improvements in and relating to interference management

Also Published As

Publication number Publication date
KR102137438B1 (ko) 2020-07-24
US9912457B2 (en) 2018-03-06
KR20150057694A (ko) 2015-05-28
US20160294523A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
CN102017763B (zh) 在无线通信网络中用于干扰估计的空导频
CN108141428B (zh) 无线基站、用户终端以及无线通信方法
WO2010005221A2 (en) Apparatus and method for inter-cell interference cancellation in mimo wireless communication system
CN104718773B (zh) 用于设备到设备通信的链路自适应
WO2016036174A1 (ko) 셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치
US20110287791A1 (en) Wireless Communication System and Communication Control Method
WO2012096449A2 (en) Method and apparatus for multi-cell cooperative transmission
KR101207570B1 (ko) 셀 간 간섭 완화 방법
US9432159B2 (en) Method, apparatus and computer program for providing sounding reference signals for coordinated multipoint transmissions
EP3097721B1 (en) Methods and apparatuses for coordinating resource scheduling between wireless networks
EP2426972A1 (en) Method and device for controlling the downlink transmission in the coordinated multi-point transmission system
WO2013172684A1 (en) Channel estimation method and apparatus for cooperative communication in a cellular mobile communication system
WO2015076579A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
CN104219724A (zh) 一种小区间协作进行干扰测量的方法和节点
CN103141149A (zh) 用于对等(p2p)通信和广域网(wan)通信的干扰协调
CN102239717A (zh) 在无线通信网络中优化带宽分配的方法
KR101176803B1 (ko) 무선 통신 네트워크에서 리소스 할당을 실행하기 위한 방법, 기지국 및 무선 통신 네트워크
WO2009067842A1 (fr) Système de transmission sens descendant et procédé d'emprunt de ressources spectrales et de ressources de canal à partir de cellules adjacentes
JP6953549B2 (ja) 無線通信システムにおいてセル間干渉を制御する方法及びそのための装置
WO2018117666A1 (en) Improvements in and relating to network operation
CN102932797A (zh) Srs与pucch的协调传输方法及系统
WO2010085048A2 (ko) 다중 셀 환경에서의 셀 간 동기화 방법 및 장치
CN106851660B (zh) 一种信号干扰测量方法、基站及用户设备
CN104244415B (zh) 一种配置增强物理下行控制信道的方法
KR20080084313A (ko) 릴레이 방식을 사용하는 광대역 무선통신시스템에서 공간다중화 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15038436

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14863126

Country of ref document: EP

Kind code of ref document: A1