WO2016036174A1 - 셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치 - Google Patents

셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치 Download PDF

Info

Publication number
WO2016036174A1
WO2016036174A1 PCT/KR2015/009325 KR2015009325W WO2016036174A1 WO 2016036174 A1 WO2016036174 A1 WO 2016036174A1 KR 2015009325 W KR2015009325 W KR 2015009325W WO 2016036174 A1 WO2016036174 A1 WO 2016036174A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
base station
reference signal
terminal
setting
Prior art date
Application number
PCT/KR2015/009325
Other languages
English (en)
French (fr)
Inventor
김요한
김은용
전요셉
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US15/508,907 priority Critical patent/US10764016B2/en
Priority to CN201580054299.1A priority patent/CN106797353B/zh
Priority to EP15838431.3A priority patent/EP3190820B1/en
Publication of WO2016036174A1 publication Critical patent/WO2016036174A1/ko
Priority to US16/947,252 priority patent/US11368274B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a method and apparatus for determining a channel quality estimation method in a broadband wireless communication system.
  • a mobile communication system has been developed for the purpose of providing voice and data communication while securing user mobility.
  • Such a mobile communication system has reached a stage capable of providing high-speed data communication service as well as voice communication due to the rapid development of technology.
  • LTE-A LTE-Advanced
  • the LTE-A system is being developed to continuously improve performance and is a technology for implementing high-speed packet-based communication having a transmission speed of 3 to 10 times higher than the currently provided data rate.
  • a terminal measures channel information from several base stations around it and uses the same to transmit a data through a cooperative or interference control scheme using a plurality of base stations (Coordinated Multi-Point (CoMP) transmission and reception) has been introduced through this, it is possible to reduce the interference between the base stations, to provide an optimal communication environment to the terminal through the cooperation of a plurality of base stations and to improve the data transmission speed.
  • CoMP Coordinatd Multi-Point
  • the range of a base station participating in CoMP transmission refers to cells existing in one enhanced node ratio (hereinafter referred to as eNB), but the present patent discloses LTE-A release.
  • eNB enhanced node ratio
  • the base station will be understood to include a base station existing in one eNB, a base station of a plurality of eNBs, and also a range of base stations defined in other communication systems as well as LTE.
  • the drawings are also expressed in general schemes without distinguishing between eNBs.
  • the LTE system will be understood as meaning including an existing LTE system and an LTE-A system.
  • CSI process for allowing a UE to feed back channel state information necessary for CoMP operation should be defined.
  • CSI process is defined in LTE-A, but since the number of configurable CSI processes is limited to 4, it is difficult to obtain various channel state information according to the operation of neighboring base stations. This is necessary.
  • the present invention for solving the above problems is a method in which a terminal transmits channel quality information (CQI) to a base station in a wireless communication system, the terminal transmits a sounding reference signal (sounding reference signal) And receiving, by the terminal, channel state information (CSI) configuration information set based on a result of comparing the received power of the sounding reference signals transmitted to the base station and the neighboring base station. It is done.
  • CQI channel quality information
  • CSI channel state information
  • a base station receives channel quality information (CQI) from a terminal, the method comprising: receiving a sounding reference signal transmitted by the terminal from a neighboring base station; Receiving the received power information of the sounding reference signal and comparing the received power information with the received power at the base station of the sounding reference signal to generate channel state information (CSI) configuration information And transmitting to the terminal.
  • CQI channel quality information
  • a terminal for transmitting channel quality information (CQI) from a wireless communication system to a base station comprising: a transceiver for transmitting and receiving a signal and a sounding reference signal, wherein the terminal transmits a sounding reference signal; And a controller configured to receive channel state information (CSI) configuration information set based on a result of comparing the received power of the sounding reference signal transmitted to the adjacent base station.
  • CQI channel quality information
  • CSI channel state information
  • a transceiver for transmitting and receiving a signal and a sounding reference signal (sounding reference signal) transmitted by the terminal, Receiving received power information of the sounding reference signal from an adjacent base station, and comparing the received power information with the received power at the base station of the sounding reference signal to obtain channel state information (CSI) configuration information. It characterized in that it comprises a control unit for generating and transmitting to the terminal.
  • CQI channel quality information
  • a transceiver for transmitting and receiving a signal and a sounding reference signal (sounding reference signal) transmitted by the terminal, Receiving received power information of the sounding reference signal from an adjacent base station, and comparing the received power information with the received power at the base station of the sounding reference signal to obtain channel state information (CSI) configuration information.
  • CSI channel state information
  • 1 is a diagram illustrating a procedure of measuring channel quality information and applying the measured channel quality information in a general communication system.
  • FIG. 2 is a diagram illustrating a communication situation with a base station of a terminal in a cellular communication system.
  • FIG. 3 is a diagram illustrating a communication situation for each CSI process of Table 2.
  • FIG. 4 is a diagram illustrating a process for a user equipment to measure and feed back a plurality of SINRs
  • 5 is a flow chart representing the overall operation of the present invention.
  • FIG. 6 is a diagram illustrating an SRS signal transmitted from a terminal to a base station.
  • FIG. 7 is a block diagram illustrating a base station apparatus when the base station manages CoMP transmission operations.
  • FIG. 8 is a block diagram illustrating a base station and a separate device when a CoMP management unit that manages CoMP transmission operations is independent of a separate device.
  • an OFDM based wireless communication system in particular the 3GPP LTE standard will be the main target, but the main subject of the present invention is another communication system having a similar technical background and channel form.
  • the main subject of the present invention is another communication system having a similar technical background and channel form.
  • 1 illustrates a procedure of measuring channel quality information and applying measured channel quality information in a general communication system.
  • the base station 110 transmits a downlink signal from the base station to the terminal 100 by acting as a transmitter, and the base station also includes a pilot signal for measuring channel quality information. Transmission 120.
  • the terminal measures 130 the channel quality using the received pilot signal, and reports 140 the quality information measured through the uplink to the base station.
  • the scheduler of the base station 150 performs radio resource allocation based on the channel quality information reported from the terminal.
  • the base station can perform radio resource allocation more effectively. For example, if a base station can secure quality information of an interference signal from another base station as well as a base station to which a terminal is serviced, the base station can use the information to 1) avoid transmission of a signal from a strong interference base station or 2) receive a service.
  • the amount of allocated resources may be adjusted using channel quality information of the base station and the interfering base station. Therefore, as the quality information that can be reported from the terminal increases, the performance of the wireless communication system can be improved.
  • a communication method in which a UE measures channel state information from several base stations around the base station and transmits data using a cooperative or interference control scheme using the same is determined in 3GPP LTE-A Release 11. ) Is called.
  • CoMP's method discussed in LTE-A is divided into three implementation methods.
  • simultaneous transmission is a method in which a base station, which is a transmitting end, shares data to be transmitted to a terminal in advance, so that one or more base stations cooperatively transmit the data to the terminal.
  • the main gain of this approach is the combining gain that comes from receiving data from more than one transmitting base station at the same time.
  • Coordinated Scheduling / Coordinated Beamforming does not share data to be transmitted to a plurality of base stations, but selectively selects a base station based on channel state information between the terminal and each base station. This is a method of minimizing the amount of interference received from a neighboring base station when the terminal receives data through interference control or beamforming by operating.
  • the main gain of this approach is the interference control gain, which adjusts the signal transmission of the various base stations to properly adjust the amount of interference.
  • DPS dynamic point selection
  • the main gain of this scheme is selection diversity, which allows the user to select a base station having the best reception performance among the base stations.
  • 3GPP LTE has defined the following channel state information feedback scheme.
  • the base station sets the channel state information-reference signal configuration (hereinafter, referred to as CSI-RS configuration) to measure the channel quality from a single base station or a plurality of base stations including the base station receiving the service to the terminal.
  • CSI-RS configuration Two radio resource for channel measurement is designated, namely, information-interference measurement configuration (hereinafter, referred to as CSI-IM configuration).
  • the terminal may detect signal components from the base station combination around the maximum of three terminals by using a non-zero power CSI-RS of the CSI-RS configuration.
  • the UE can detect an interference component from a combination of base stations around up to three terminals using a zero power CSI-RS of CSI-IM configuration.
  • the base station participating in the CoMP transmission operation transmits a signal so that the terminal can estimate the signal and interference based on the CoMP transmission operation intended by the base station at the location of the radio resource designated through the CSI-RS configuration and the CSI-IM configuration. .
  • the UE measures signal-to-interference-plus-noise ratio (SINR) through up to four CSI processes per component carrier combining the two above and six measurement results. Through this, it is possible to feed back the channel quality information (CQI) to the base station receiving the service by measuring the SINR value according to the interference of the neighboring base stations.
  • SINR signal-to-interference-plus-noise ratio
  • the base station may secure channel quality information necessary for CoMP transmission operation such as JT, CS / CB, and DPS according to how the CSI-RS configuration and the CSI-IM configuration are performed.
  • FIG. 2 is a diagram illustrating a communication situation with a base station of a terminal in a cellular communication system.
  • the terminal when there is a terminal 200, a base station A 210, a base station B 220, a base station C 230, and a base station D 240, the terminal receives the service 211 from the base station A.
  • the terminal may detect up to three signals and interference components including the base station A which is in service. For example, if you want to configure a CSI process for CS / CB, you can configure it as shown in Table 1 below.
  • Table 1 Signal component Interference component CSI-RS setting number Base station signal transmission on resources with CSI-RS CSI-IM setting number Base station signal transmission on resources with CSI-IM CSI-RS cfg. 0 Send only base station A CSI-IM cfg. 0 Only base station A not sent CSI-RS cfg. One Send only base station B CSI-IM cfg. One Only base station B not sent CSI-RS cfg. 2 Transmit only base stations A and B CSI-IM cfg. 2 Only base stations A and B not transmitted
  • CSI-RS configuration CSI-IM configuration for each.
  • the CSI process for the combination of the base stations A and B can be set as follows.
  • NI is the sum of the interference and noise of (C, D) from the base stations except base stations A and B. Therefore, when the terminal transmits the above combination to the base station, the base station determines the received SINR information of the terminal for the following four cases.
  • FIG. 3 is a diagram illustrating a communication situation for each CSI process of Table 2.
  • FIG. 3A shows CSI process 0
  • FIG. 3B shows CSI process 1
  • FIG. 3C shows CSI process 2
  • FIG. 3D shows CSI process 3.
  • 3A illustrates a signal component CSI-RS cfg transmitted from base station A of terminal 300 when base station A 301 is serving a terminal.
  • Interference component CSI-IM cfg which sums the signal of base station B 302 excluding 0 and base station A, and the interference and noise of base station C 303 and base station D 304. Represents a CSI process consisting of a combination of zeros.
  • 3B is a signal component CSI-RS cfg transmitted from base station A of terminal 310 when base station A 311 is serving a terminal.
  • Interference component CSI-IM cfg which is the sum of interference and noise of base station C 313 and base station D 314 excluding 0, base station A and base station B 312.
  • CSI process consisting of a combination of the two.
  • 3C is a signal component CSI-RS cfg transmitted from base station B of terminal 320 when base station B 322 is serving a terminal.
  • Interference component CSI-IM cfg which sums the signal of base station A 321 excluding 1 and base station B, and the interference and noise of base station C 323 and base station D 324.
  • CSI process consisting of a combination of one.
  • 3d is a signal component CSI-RS cfg transmitted from base station B of terminal 330 when base station B 332 is serving a terminal. 1 and the interference component CSI-IM cfg which sums the interference and noise of base stations C 333 and D 334 excluding base station A 331 and base station B.
  • CSI process consisting of a combination of the two.
  • the base station currently serviced by the UE is the base station A, but the CSI process configured to measure the SINR information assuming that the base station B serves.
  • the UE measures the SINR of the four cases in FIG. 3 through the configured CSI process and transmits the SINR to the base station in the form of CQI.
  • JT can set CSI process as shown in Table 4 based on CSI-RS setting and CSI-IM setting in Table 3. In this case, based on the CSI-RS configuration and CSI-IM configuration in Table 5, the CSI process configuration as shown in Table 6 is possible.
  • Table 4 CSI process Combination of CSI Processes SINR combination CSI Process 0 (A and B are JT) CSI-RS cfg. 0 / CSI-IM cfg. 0 CSI Process 1 (A and C JT) CSI-RS cfg. 1 / CSI-IM cfg. One CSI Process 2 (A and D JT) CSI-RS cfg. 2 / CSI-IM cfg. 2 CSI Process 3 (Unused)
  • Table 5 Signal component Interference component CSI-RS setting number Base station signal transmission on resources with CSI-RS CSI-IM setting number Base station signal transmission on resources with CSI-IM CSI-RS cfg. 0 Send only base station A CSI-IM cfg. 0 Transmit only base stations B, C, and D CSI-RS cfg. One Send only base station B CSI-IM cfg. One Transmit only base stations A, C, and D CSI-RS cfg. 2 Send only base station C CSI-IM cfg. 2 Transmit only base stations A, B, and D
  • Table 6 CSI process Combination of CSI Processes SINR conversion CSI Process 0 CSI-RS cfg. 0 / CSI-IM cfg. 0 CSI Process 1 CSI-RS cfg. 1 / CSI-IM cfg. One CSI Process 2 CSI-RS cfg. 2 / CSI-IM cfg. 2 CSI Process 3 (Unused)
  • N noise
  • the SINR information when two or more base stations cooperate together can be secured, and in the CSI process for DPS, the SINR from individual base stations is secured to obtain a transmission point.
  • the base station with the best channel condition can be selected.
  • the base station adjusts the transmission of the base station by selecting a case where the performance of the terminal is maximized based on the channel quality information based on the CSI process fed back from the terminal.
  • channel quality information based on a single or a plurality of CSI processes may be received from each terminal to determine scheduling and transmission base stations for optimizing network performance, and transmit data.
  • a plurality of CSI process configuration has the advantage that the base station can be directly received from the terminal from the influence of several base stations around, but the number of CSI-RS configuration and the number of CSI-IM configuration is 3, respectively, the number of configurable CSI process 4
  • the terminal is affected by at least seven base stations, including the base station being serviced.
  • the number of affected base stations, including sectors is affected by the hexagonal cell model. You might be more than that. Therefore, when there are a large number of base stations affected by the terminal, it is impossible to measure all of them by the CSI process set in the standard.
  • the combination of channel quality information, i.e., the SINR, that can be obtained through the CSI-RS and the CSI-IM is limited to a maximum of four CSI processes that can be set.
  • the existing purpose of securing various SINR values according to the operation cannot be satisfied.
  • the base station sets a candidate base station for measuring the SINR (400), and transmits the CSI-RS setting, the CSI-IM setting, and the CSI process combination to the terminal as a radio resource control (RRC) to the terminal (410), and the terminal transmits the information transmitted by the base station.
  • RRC radio resource control
  • the CQI according to the CSI process is measured 420 and the four CQIs are fed back to the base station 430. This process is repeated 440 by changing the candidate base station combination.
  • a separate terminal-base station in the present invention, a base station can be interpreted as a transmission point (TP) or a remote radio head (RRH), etc.) for setting up a plurality of CSI processes.
  • the channel quality information is used to determine the SINR required for downlink data transmission in consideration of the CoMP transmission scheme.
  • the terminal transmits the SRS 500 in the uplink, and each base station receiving the SRS measures the SRS received power and then shares 510 the SRS received power information between the base stations.
  • the base station arranges the SRS received signals in size order (520) and then sets (530) three CSI-RS settings and three CSI-IM settings for the top N base stations of the SRS received power.
  • the CSI-RS configuration and the CSI-IM configuration are combined to set four CSI processes, and the CSI-RS configuration, the CSI-IM configuration, and the combined CSI process information are transmitted to the UE in RRC (550).
  • the UE After measuring the SINR based on the configured CSI process, the UE derives and feeds back the CQI, and the base station calculates the SINR required for data transmission in consideration of the received CQI and the CoMP transmission scheme to be used (570) and the MCS of the data to be transmitted. In operation 580, the modulation and coding scheme is determined, and then the downlink data is transmitted to the terminal.
  • the content of the detailed invention will be described.
  • the uplink SRS is a signal allocated by the terminal to uplink resources in order to measure uplink channel quality from the terminal to the base station. Since the base station knows the transmit power of the terminal, it is possible to indirectly estimate the quality of the channel between the terminal and the base station by estimating the amount of attenuated signal when passing through the channel through the estimation of the SRS received power.
  • the time duplex division (TDD) scheme since the uplink through which the SRS is transmitted and the downlink through which the actual data is transmitted are the same frequency, the channels of the uplink and the downlink are known to have reciprocity.
  • the estimated uplink channel quality may be interpreted as the quality of the downlink channel.
  • FDD frequency duplex division
  • FIG. 6 is a diagram illustrating an SRS signal transmitted from a terminal to a base station.
  • the terminal 600 is serviced by the base station A 610, not only the base station A but also the base station B 620, the base station C 630, and the base station D 640 may also obtain the SRS received power.
  • each base station assumes that the physical cell ID (PCID) information and the SRS resource allocation information of the base station A to which the corresponding terminal belongs in advance share, and can measure the SRS reception power of the terminal based on this.
  • PCID physical cell ID
  • This shared SRS received power is sorted by a specific processor in order of receiving power from smallest to smallest.
  • the specific processor may be located in a base station or in a separate device. If the order of the received power is base station A> base station B> base station C> base station D, the base station can know the relative order of the interference strengths of each base station to the corresponding terminal when the terminal transmits the uplink based on the sequence. In the case of TDD or indirectly in case of FDD, each base station may be interpreted as a relative order of interference strength that each base station will have on the user equipment.
  • the present invention includes a method for configuring a CSI-RS configuration, a CSI-IM configuration, and a plurality of CSI processes based on the SRS received power intensity order. This includes 1) selecting the top N of the SRS received power strengths, 2) setting up to three CSI-RS settings using the top N base stations of the SRS received power strengths, and 3) using the top N base stations of the SRS received power strengths. It consists of setting up three CSI-IM settings. Since only N base stations with a large SRS reception power are considered to be CSI process setup targets compared to an operation without using SRS, neighboring base stations having a high possibility of affecting interference with a real terminal are more likely to be selected.
  • N the complexity for securing the CQI does not increase.
  • the CSI-RS, CSI-IM, and CSI process configuration information for N set base stations is continuously modified and not informed using RRC, and the SRS is used for uplink transmission.
  • the advantage is that since the base station receives periodically, there is no additional overhead for measurement. N defined above can be set as needed as a system parameter and shared between base stations.
  • the base station transmits the CSI-RS, CSI-IM and CSI process setting information set by the above method to the terminal.
  • the present invention describes a method of deriving a SINR value required for downlink data transmission according to a CoMP transmission scheme based on a CQI fed back by a terminal.
  • the base station selects the top three base stations in order of SRS received power size. In this case, it is assumed that the base station can receive feedback from the UE from the CQIs according to three CSI processes. If the SRS received power intensity sequence is base station A> base station B> base station C> base station D and the terminal is served by the base station A, the base station A, base station B, and base station C are selected, including the base station A which is served. At this time, set the CSI-RS and CSI-IM settings as shown in Table 5.
  • Table 8 CSI process Combination of CSI Processes SINR conversion CSI Process 0 CSI-RS cfg. 0 / CSI-IM cfg. 0 CSI Process 1 CSI-RS cfg. 1 / CSI-IM cfg. 0 CSI Process 2 CSI-RS cfg. 2 / CSI-IM cfg. 0
  • the ⁇ value is a necessary factor, all signals are simultaneously transmitted by the CSI-IM configuration, so that the measured SINR value is less than 1 unconditionally.
  • the CQI value derived from the measured SINR value becomes a small value as a whole, and thus the discrimination ability of the CQI value between CSI processes decreases. Therefore, all the base stations perform power derating as much as ⁇ when transmitting a reference signal from a resource element (RE) configured in the CSI-IM configuration.
  • the ⁇ value is a system parameter that is set as needed and shared between base stations.
  • the above ⁇ setting can be applied mainly in an interference-limited environment.
  • the interference component is superior to the noise (I''N), and the noise component cannot be reduced by ⁇ unlike the interference component, but in the environment where the interference component is superior to the noise, the noise has little effect on the performance.
  • the same setting is possible.
  • the UE measures SINR based on the CSI processes 0, 1, and 2 configured according to Tables 7, Table 8, and converts it to CQI and feeds it back to the base station.
  • the signal strengths of the base stations A, B, and C calculated using Table 8 above can be calculated as follows.
  • the base station secures the signal strengths of the base stations A, B, and C through X, Y, and Z, which are SINR values based on the fed back CQI, and receives corresponding values among the SRS power values received by the base stations A, B, and C respectively. Replace. This can be achieved by: That is, in case of primary cell (PCell) in case of carrier aggregation in which both downlink and uplink exist so as to secure the SRS received power value, downlink for CoMP transmission even though the CSI process is not used at all.
  • the SINR value can also be calculated by securing the uplink SRS value.
  • the base station and the terminal may set the SINR according to a desired CoMP transmission method as follows by using the CSI process settings for the three base stations of the SRS received signal secured by the PCell.
  • Equation 4 is an expression representing the relative signal strength of the base stations A, B and C can be used to calculate Equations 5, 6, 7 and 8.
  • Equation 5 is a case where the CoMP transmission scheme is not applied, and the base station A receives a service and the signals of the base stations B and C become interference components.
  • Equation 6 is the case of CS / CB, the signal is transmitted from the base station A, C is not operating.
  • Equation 7 is a case where the base station A and B alternately transmit a signal in the case of DPS.
  • Equation 8 is a case where the base stations A and C simultaneously transmit in the case of JT.
  • the difference between the SCell having no SRS reception power and the PCell having the SRS reception power described above is that the SCell can set the CoMP transmission scheme only for the top 3 base stations of the SRS based on the PCell.
  • the PCell replaces the downlink signal strength calculated based on the CQI fed back the SRS received signal for the top 3 base stations, and uses the remaining SRS received power for the remaining base station.
  • CoMP transmission schemes can be set for more base stations.
  • FIG. 7 is a block diagram illustrating a base station apparatus when a base station manages CoMP transmission operations.
  • FIG. 8 is a block diagram illustrating a base station and a CoMP management unit when a CoMP management unit that manages CoMP transmission operations is independent as a separate device. .
  • the terminal 700 transmits an SRS to the SRS receiver 710, and the CoMP management unit / SRS receiving power storage unit 730 performs all operations related to a CoMP transmission operation.
  • the base station information is transmitted to the CSI-RS / CSI-IM / CSI process decision unit 740.
  • CoMP transmission operation is determined through negotiation with neighboring base stations and information exchange.
  • the adjacent base station may be a conceptual base station existing in the same hardware, or may be an actual base station physically separated from each other.
  • the CSI-RS / CSI-IM / CSI process setting unit receives information of the base station to perform CoMP transmission from the CoMP management unit, sets the CSI-RS / CSI-IM / CSI process according to the operation of the present invention, and sets the setting information with the terminal.
  • the channel quality reference value generator 750 is transmitted.
  • the channel quality reference value generator generates SINR information for transmitting downlink data by applying CoMP.
  • the channel quality reference value generator receives the channel quality information by the CSI process from the terminal and transmits the channel quality reference value to the MCS determiner 760.
  • the MCS decision unit determines the MCS and transmits it to the modem.
  • the buffer manager 720 checks the presence or absence of data of the user, manages the amount of UEs and buffers in which data is currently being transmitted, and transmits buffer information to the CoMP management unit / SRS receiving power storage unit.
  • the buffer manager, the SRS receiver, the CoMP manager / SRS receive power storage, the CSI-RS / CSI-IM / CSI process setting unit, the channel quality reference value generator, and the MCS determiner may be located in the base station 780 and transmit signals through the transceiver unit.
  • the CoMP management unit / SRS receiving power storage unit 860 where the MCS determination unit 850 is located and manages the CoMP operation is independent as a separate device 880 other than the base station, and each base station transmits information related to the CoMP operation to the CoMP management unit.
  • the CoMP management unit may centrally manage and notify the CoMP scheme to be applied by the base station, candidate base station information corresponding thereto, and SRS reception power based on this information.
  • a separate device for managing the base station and CoMP scheme may be composed of a transceiver and a management unit.
  • the transceiver unit transmits and receives a signal to and from a terminal and an adjacent base station, and includes a buffer manager, a CSI-RS / CSI-IM / CSI process setting unit, and a channel in the base station management unit.
  • the quality reference value generator and the MCS determiner may be located, and the CoMP manager / SRS received power storage may be located in the manager of the separate device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치가 개시된다. 기지국은 단말이 전송한 SRS를 수신해 수신 전력을 측정한 후 SRS 수신 전력 상위의 기지국에 대해 SINR을 측정할 수 있는 CSI 프로세스를 단말에게 설정하고 단말은 설정된 CSI 프로세스에 대한 채널 품질 정보를 기지국으로 피드백하면 기지국은 수신된 CQI 및 CoMP 전송 방식을 고려해 데이터 전송에 적용할 SINR과 MCS를 결정해 이를 적용해 데이터를 전송한다.

Description

셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치
본 발명은 광대역 무선 통신 시스템에서 채널 품질 추정 방안 결정을 위한 방법 및 장치에 관한 것이다.
일반적으로 이동통신 시스템은 사용자의 이동성을 확보하면서 음성 및 데이터 통신을 제공하기 위한 목적으로 개발되었다. 이러한 이동통신 시스템은 기술의 비약적인 발전에 힘입어 음성 통신은 물론 고속의 데이터 통신 서비스를 제공할 수 있는 단계에 이르렀다.
근래에는 차세대 이동통신 시스템 중 하나로 3GPP에서 LTE-Advanced (이하 LTE-A) 시스템에 대한 규격 작업이 진행 중이다. LTE-A 시스템은 지속적인 성능 향상을 위해 개발되고 있으며 현재 제공되고 있는 데이터 전송률보다 3~10배 이상의 전송 속도를 가지는 고속 패킷 기반 통신을 구현하는 기술이다.
LTE-A 시스템에서는 단말이 주위의 여러 기지국으로부터 채널 정보를 측정하고 이를 이용하여 복수개의 기지국이 협력 또는 간섭 제어 방식으로 데이터를 전송하는 통신 방식인 협력 통신 (Coordinated Multi-Point (이하 CoMP) transmission and reception) 가 도입되었으며 이를 통해 기지국간 간섭을 줄이고 복수의 기지국의 협력을 통해 단말에게 최적의 통신 환경을 제공하고 데이터 전송 속도를 향상시킬 수 있다.
단, LTE-A Release 11 표준 시스템으로 한정하였을 때에는 CoMP 전송에 참여하는 기지국의 범위가 하나의 향상된 노드비 (evolved NodeB, 이하 eNB) 내에 존재하는 셀들을 의미하지만, 본 특허는 LTE-A 의 Release 11 표준에서의 정의뿐 아니라 복수의 eNB간의 CoMP 전송까지도 일반적으로 포함하여 적용될 수 있다. 따라서 이하 기지국은 하나의 eNB 내에 존재하는 기지국과 복수의 eNB 의 기지국, 또한 LTE 뿐 아니라 다른 통신 시스템에서 정의하는 기지국의 범위를 포함하는 의미로 이해하기로 한다. 이를 위해 도면 역시 eNB 내/외의 구분 없이 일반적인 도식으로 표현하였다.
이하 LTE 시스템이라 함은 기존의 LTE 시스템과 LTE-A 시스템을 포함하는 의미로 이해하기로 한다.
그런데 CoMP 동작을 지원하기 위해서는 단말이 CoMP 동작에 필요한 채널 상태 정보를 피드백할 수 있는 CSI 프로세스가 정의되어야 한다. LTE-A에는 CSI 프로세스가 정의되어 있으나 설정 가능한 CSI 프로세스의 수가 4개로 제한되어 있으므로 주변 기지국의 운용에 따른 다양한 채널 상태 정보의 확보가 어려우므로 제한된 CSI 프로세스를 효과적으로 운용해 채널 상태 정보를 획득하는 방법이 필요하다.
상기와 같은 문제점을 해결하기 위한 본 발명은 무선 통신 시스템에서 단말이 기지국으로 채널 품질 정보 (channel quality information, CQI) 를 전송하는 방법에 있어서, 상기 단말이 사운딩 기준 신호 (sounding reference signal) 을 전송하는 과정과, 상기 단말이 상기 기지국과 인접 기지국으로 전송한 상기 사운딩 기준 신호의 수신 전력 비교 결과를 기반으로 설정된 채널 상태 정보 (channel state information, CSI) 설정 정보를 수신하는 과정을 포함하는 것을 특징으로 한다.
또한, 무선 통신 시스템에서 기지국이 단말로부터 채널 품질 정보(channel quality information, CQI)를 수신하는 방법에 있어서, 상기 단말이 전송한 사운딩 기준 신호 (sounding reference signal) 를 수신하는 과정과, 인접 기지국으로부터 상기 사운딩 기준 신호의 수신 전력 정보를 수신하는 과정과, 상기 수신한 수신 전력 정보와 상기 사운딩 기준 신호의 상기 기지국에서의 수신 전력을 비교해 채널 상태 정보 (channel state information, CSI) 설정 정보를 생성하고 상기 단말로 전송하는 과정을 포함하는 것을 특징으로 한다.
또한, 무선 통신 시스템에서 기지국으로 채널 품질 정보 (channel quality information, CQI) 를 전송하는 단말기에 있어서, 신호를 송수신하는 송수신부 및 사운딩 기준 신호 (sounding reference signal) 을 전송하고, 상기 단말기가 상기 기지국과 인접 기지국으로 전송한 상기 사운딩 기준 신호의 수신 전력 비교 결과를 기반으로 설정된 채널 상태 정보 (channel state information, CSI) 설정 정보를 수신하는 것을 특징으로 하는 제어부를 포함하는 것을 특징으로 한다.
또한, 무선 통신 시스템에서 단말로부터 채널 품질 정보 (channel quality information, CQI) 를 수신하는 기지국에 있어서, 신호를 송수신하는 송수신부 및 상기 단말이 전송한 사운딩 기준 신호 (sounding reference signal) 를 수신하고, 인접 기지국으로부터 상기 사운딩 기준 신호의 수신 전력 정보를 수신하고, 상기 수신한 수신 전력 정보와 상기 사운딩 기준 신호의 상기 기지국에서의 수신 전력을 비교해 채널 상태 정보 (channel state information, CSI) 설정 정보를 생성하고 상기 단말로 전송하는 것을 특징으로 하는 제어부를 포함하는 것을 특징으로 한다.
본 발명의 실시예에 따른 광대역 무선 통신 셀룰러 시스템에서 채널 품질을 추정하는 방법에 따르면 제한된 CSI 프로세스를 이용해 효과적으로 채널 품질을 추정함으로써 데이터를 전송하는데 활용할 수 있다.
도 1은 일반적인 통신 시스템에서 채널 품질 정보를 측정하고 측정한 채널 품질 정보를 적용하는 절차를 도시한 도면이다.
도 2는 셀룰러 통신 시스템에서 단말의 기지국과의 통신 상황을 도시한 도면이다.
도 3은 표 2의 각 CSI 프로세스별 통신 상황을 도시한 도면이다.
도 4는 단말이 다수개의 SINR을 측정해 피드백하기 위한 과정을 도시한 도면이다
도 5는 본 발명의 전체 동작을 표현한 순서도이다.
도 6은 단말로부터 기지국으로 전송되는 SRS 신호를 도시한 도면이다.
도 7은 기지국이 CoMP 전송 동작을 관리하는 경우 기지국 장치를 도시한 블록도이다.
도 8은 CoMP 전송 동작을 총괄하는 CoMP 관리부가 별도 장치로 독립되어 있을 경우의 기지국과 별도 장치를 도시한 블록도이다.
이하, 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
또한, 본 발명의 실시예들을 구체적으로 설명함에 있어서, OFDM 기반의 무선통신 시스템, 특히 3GPP LTE 표준을 주된 대상으로 할 것이지만, 본 발명의 주요한 요지는 유사한 기술적 배경 및 채널형태를 가지는 여타의 통신 시스템에도 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 약간의 변형으로 적용 가능하며, 이는 본 발명의 기술분야에서 숙련된 기술적 지식을 가진 자의 판단으로 가능할 것이다.
도 1은 일반적인 통신 시스템에서 채널 품질 정보를 측정하고 측정한 채널 품질 정보를 적용하는 절차를 도시한 것이다.
도 1을 참조하면, 기지국(110)은 하나의 송신단의 역할을 하여 기지국에서 단말(100)로 하향링크 신호를 전송하는데, 이때 기지국은 채널 품질 정보를 측정할 수 있는 파일럿 (pilot) 신호도 함께 전송(120)하게 된다. 단말은 수신한 파일럿 신호를 이용하여 채널 품질을 측정(130)하고, 상향링크를 통해 측정된 품질 정보를 기지국에 보고(140)한다. 기지국의 스케줄러는 단말로부터 보고된 채널 품질 정보를 기반으로 무선 자원 할당을 수행(150)한다.
이때 기지국은 기지국과 단말 사이의 채널 품질 정보를 많이 획득할수록 효과적으로 무선 자원 할당을 수행할 수 있다. 예를 들어 기지국이 단말이 서비스 받고 있는 기지국 뿐 아니라 다른 기지국으로부터의 간섭 신호의 품질 정보 또한 확보가 가능하다면 이 정보들을 이용하여 1) 간섭이 강한 기지국으로부터의 신호를 회피하여 전송하거나 2) 서비스 받는 기지국과 간섭 기지국의 채널 품질 정보를 이용하여 할당 자원의 양을 조절할 수 있다. 따라서 단말로부터 보고받을 수 있는 품질 정보가 많아질수록 무선 통신 시스템의 성능을 향상시킬 수 있다.
이를 위해 단말이 주위의 여러 기지국으로부터의 채널 상태 정보를 측정하고 이를 이용하여 복수개의 기지국이 협력 또는 간섭 제어 방식으로 데이터를 전송하는 통신 방식이 3GPP LTE-A Release 11에서 결정되었으며 이를 협력 통신 (CoMP) 이라고 한다. LTE-A 에서 논의된 CoMP의 방식은 세 가지 구현 방안으로 나뉘어진다.
첫 번째로 동시 전송 (Joint Transmission, 이하 JT) 은 송신단인 기지국이 단말기로 전송될 데이터를 미리 공유하고 있어서 단말로 데이터 송신시에 하나 이상의 기지국이 협력적으로 전송하는 방식이다. 이 방식의 주요 이득은 하나 이상의 송신 기지국으로부터 동시에 데이터를 수신하는데 따르는 결합 (combining) 이득이다. 두 번째로 협력 스케쥴링/협력 빔포밍 (Coordinated Scheduling/Coordinated Beamforming, 이하 CS/CB) 은 복수의 기지국이 단말로 전송될 데이터를 공유하지 않지만 단말과 각 기지국간의 채널 상태 정보를 바탕으로 기지국을 선택적으로 운용하여 간섭 제어를 수행하거나 빔포밍을 통하여 단말이 데이터 수신시 인접 기지국으로부터 받는 간섭의 양을 최소화하는 방식이다. 이 방식의 주요 이득은 여러 기지국의 신호 전송을 조정하여 간섭의 양을 적절하게 조절하는 간섭 제어 이득이다. 세 번째로 동적 전송점 선택 (Dynamic Point Selection, 이하 DPS) 은 복수의 기지국이 단말로 전송될 데이터를 공유하되 전송시 여러 기지국 중 가장 채널 상태가 좋은 기지국이 데이터를 전송하며 이러한 전송 기지국의 선택을 매우 짧은 시간 주기로 수행하는 방식이다. 이 방식의 주요 이득은 여러 기지국 중 단말의 수신 성능이 가장 좋은 기지국을 선택할 수 있는 선택 다이버시티 (selection diversity) 이다.
위 세 가지 CoMP 동작을 지원하기 위해 단말이 기지국으로 각 CoMP 전송 동작을 위해 필요한 채널 상태 정보를 피드백 할 수 있는 동작이 정의되어야 한다. 이를 위해 3GPP LTE에서는 아래와 같은 채널 상태 정보 피드백 방식을 정의하였다.
기지국은 단말에게 서비스를 받고 있는 기지국을 포함한 단수 혹은 복수의 기지국으로부터의 채널 품질을 측정할 수 있도록 채널 상태 정보-기준 신호 설정 (Channel State Information-Reference Signal configuration, 이하 CSI-RS 설정), 채널 상태 정보-간섭 측정 설정 (CSI-Interference Measurement configuration, 이하 CSI-IM 설정) 이라는 두 가지의 채널 측정용 무선 자원을 지정한다. 첫 번째로 단말은 CSI-RS 설정의 넌-제로파워(non-zero power) CSI-RS를 이용하여 최대 3개의 단말 주변의 기지국 조합으로부터의 신호 성분을 검출할 수 있다. 두 번째로 단말은 CSI-IM 설정의 제로파워(zero power) CSI-RS를 이용하여 최대 3개의 단말 주변의 기지국 조합으로부터의 간섭 성분을 검출할 수 있다. 이를 위해 CoMP 전송 동작에 참여하는 기지국은 CSI-RS 설정과 CSI-IM 설정을 통해 지정된 무선 자원의 위치에서 기지국이 의도한 CoMP 전송 동작을 바탕으로 단말이 신호 및 간섭 추정이 가능하도록 신호를 전송한다.
단말은 위 두 가지, 총 6개의 측정 결과를 조합한 컴포넌트 캐리어 (Component Carrier) 당 최대 4개의 CSI 프로세스를 통해 신호 대 간섭 및 잡음비 (signal-to-interference-plus-noise ratio, 이하 SINR) 을 측정할 수 있고 이를 통해 주변의 기지국의 간섭 유무에 따른 SINR 값을 측정해 서비스를 받고 있는 기지국으로 채널 품질 정보 (Channel Quality Information, CQI) 를 피드백 할 수 있다.
이때 기지국은 CSI-RS 설정과 CSI-IM 설정을 어떻게 하느냐에 따라 JT, CS/CB 및 DPS 등 CoMP 전송 동작에 필요한 채널 품질 정보를 확보할 수 있다.
도 2는 셀룰러 통신 시스템에서 단말의 기지국과의 통신 상황을 도시한 도면이다.
도 2를 참조하여 설명하면, 단말(200)과 기지국 A(210), 기지국 B(220), 기지국 C(230) 및 기지국 D(240)이 있을 때 단말은 기지국 A에서 서비스(211)를 받고 있다고 가정하면 주변의 간섭 기지국은 기지국 B, C 및 D로 총 3개가 되고 간섭 신호는 기지국 B에서 221, 기지국 C에서 231, 기지국 D에서 241이 된다. 이 때 단말은 서비스를 받고 있는 기지국 A를 포함하여 최대 3개의 신호 및 간섭 성분을 검출할 수 있다. 예를 들어 CS/CB용 CSI 프로세스를 구성하고 싶을시 아래 표 1과 같이 구성할 수 있다.
표 1
신호 성분 간섭 성분
CSI-RS 설정 번호 CSI-RS가 설정된 자원에서의 기지국 신호 전송 CSI-IM 설정 번호 CSI-IM이 설정된 자원에서의 기지국 신호 전송
CSI-RS cfg. 0 기지국 A만 전송 CSI-IM cfg. 0 기지국 A만 미전송
CSI-RS cfg. 1 기지국 B만 전송 CSI-IM cfg. 1 기지국 B만 미전송
CSI-RS cfg. 2 기지국 A, B만 전송 CSI-IM cfg. 2 기지국 A, B만 미전송
위의 조합을 각각에 대해 CSI-RS 설정, CSI-IM 설정이라 칭한다.
위의 신호 및 간섭 성분의 조합을 통해 기지국 A와 B의 조합에 대한 CSI 프로세스를 아래와 같이 설정할 수 있다.
표 2
CSI 프로세스 CSI 프로세스의 조합 SINR 조합
CSI 프로세스 0 CSI-RS cfg. 0 / CSI-IM cfg. 0
Figure PCTKR2015009325-appb-I000001
CSI 프로세스 1 CSI-RS cfg. 0 / CSI-IM cfg. 2
Figure PCTKR2015009325-appb-I000002
CSI 프로세스 2 CSI-RS cfg. 1 / CSI-IM cfg. 1
Figure PCTKR2015009325-appb-I000003
CSI 프로세스 3 CSI-RS cfg. 1 / CSI-IM cfg. 2
Figure PCTKR2015009325-appb-I000004
위의 표 2에서 NI 는 기지국 A 와 B 를 제외한 기지국으로부터 (C, D) 의 간섭 (interference) 과 잡음 (noise) 의 합이다. 따라서 위의 조합을 단말이 기지국으로 전송하게 되면 기지국은 아래의 4가지 Case 에 대한 단말의 수신 SINR 정보를 파악하게 된다.
도 3은 표 2의 각 CSI 프로세스별 통신 상황을 도시한 도면이다. 표 2의 CSI 프로세스를 도 3을 참조해 설명하면 도 3a는 CSI 프로세스 0, 도 3b는 CSI 프로세스 1, 도 3c는 CSI 프로세스 2, 도 3d는 CSI 프로세스 3을 도시하고 있다. 도 3a는 기지국 A(301)이 단말에게 서비스하고 있을 때 단말(300)의 기지국 A에서 송신되는 신호 성분 CSI-RS cfg. 0과 기지국 A를 제외한 기지국 B(302)의 신호 및 기지국 C(303), 기지국 D(304)의 간섭 및 잡음을 합한 간섭 성분 CSI-IM cfg. 0의 조합으로 이루어진 CSI 프로세스를 나타낸다. 도 3b는 기지국 A(311)이 단말에게 서비스하고 있을 때 단말(310)의 기지국 A에서 송신되는 신호 성분 CSI-RS cfg. 0과 기지국 A와 기지국 B(312)를 제외한 기지국 C(313), 기지국 D(314)의 간섭 및 잡음을 합한 간섭 성분 CSI-IM cfg. 2의 조합으로 이루어진 CSI 프로세스를 나타낸다. 도 3c는 기지국 B(322)가 단말에게 서비스하고 있을 때 단말(320)의 기지국 B에서 송신되는 신호 성분 CSI-RS cfg. 1과 기지국 B를 제외한 기지국 A(321)의 신호 및 기지국 C(323), 기지국 D(324)의 간섭 및 잡음을 합한 간섭 성분 CSI-IM cfg. 1의 조합으로 이루어진 CSI 프로세스를 나타낸다. 도 3d는 기지국 B(332)가 단말에게 서비스하고 있을 때 단말(330)의 기지국 B에서 송신되는 신호 성분 CSI-RS cfg. 1과 기지국 A(331)와 기지국 B를 제외한 기지국 C(333), D(334)의 간섭 및 잡음을 합한 간섭 성분 CSI-IM cfg. 2의 조합으로 이루어진 CSI 프로세스를 나타낸다. CSI 프로세스 2, 3의 경우는 현재 실제로 단말이 서비스 받는 기지국은 기지국 A이지만 기지국 B가 서비스한다고 가정할 때의 SINR 정보를 측정하기 위해 설정된 CSI 프로세스이다. 단말은 설정된 CSI 프로세스를 통해 도 3에서의 4가지 경우의 SINR을 측정한 후 CQI 형태로 기지국으로 전송하게 된다.
CS/CB가 아닌 JT 나 DPS 에 사용하기 위한 CSI 프로세스를 설정하기 위해서는 JT의 경우 표 3의 CSI-RS 설정, CSI-IM 설정을 기반으로 해 표 4와 같이 CSI 프로세스를 설정할 수 있고, DPS의 경우 표 5의 CSI-RS 설정, CSI-IM 설정을 기반으로 해 표 6과 같은 CSI 프로세스 설정이 가능하다.
표 3
신호 성분 간섭 성분
CSI-RS 설정 번호 CSI-RS가 설정된 자원에서의 기지국 신호 전송 CSI-IM 설정 번호 CSI-IM이 설정된 자원에서의 기지국 신호 전송
CSI-RS cfg. 0 기지국 A, B만 전송 CSI-IM cfg. 0 기지국 C, D만 전송
CSI-RS cfg. 1 기지국 A, C만 전송 CSI-IM cfg. 1 기지국 B, D만 전송
CSI-RS cfg. 2 기지국 A, D만 전송 CSI-IM cfg. 2 기지국 B, C만 전송
표 4
CSI 프로세스 CSI 프로세스의 조합 SINR 조합
CSI 프로세스 0 (A와 B가 JT) CSI-RS cfg. 0 / CSI-IM cfg. 0
Figure PCTKR2015009325-appb-I000005
CSI 프로세스 1 (A와 C가 JT) CSI-RS cfg. 1 / CSI-IM cfg. 1
Figure PCTKR2015009325-appb-I000006
CSI 프로세스 2 (A와 D가 JT) CSI-RS cfg. 2 / CSI-IM cfg. 2
Figure PCTKR2015009325-appb-I000007
CSI 프로세스 3 (미사용)
표 5
신호 성분 간섭 성분
CSI-RS 설정 번호 CSI-RS가 설정된 자원에서의 기지국 신호 전송 CSI-IM 설정 번호 CSI-IM이 설정된 자원에서의 기지국 신호 전송
CSI-RS cfg. 0 기지국 A만 전송 CSI-IM cfg. 0 기지국 B, C, D만 전송
CSI-RS cfg. 1 기지국 B만 전송 CSI-IM cfg. 1 기지국 A, C, D만 전송
CSI-RS cfg. 2 기지국 C만 전송 CSI-IM cfg. 2 기지국 A, B, D만 전송
표 6
CSI 프로세스 CSI 프로세스의 조합 SINR 변환
CSI 프로세스 0 CSI-RS cfg. 0 / CSI-IM cfg. 0
Figure PCTKR2015009325-appb-I000008
CSI 프로세스 1 CSI-RS cfg. 1 / CSI-IM cfg. 1
Figure PCTKR2015009325-appb-I000009
CSI 프로세스 2 CSI-RS cfg. 2 / CSI-IM cfg. 2
Figure PCTKR2015009325-appb-I000010
CSI 프로세스 3 (미사용)
위의 SINR 식에서 N은 잡음 (noise) 를 의미한다.
표 3, 표 4의 CSI 프로세스 설정을 통해서 JT용 CSI 프로세스에서는 두 개 이상의 기지국이 협력해서 전송할 때의 SINR 정보를 확보할 수 있고, DPS 용 CSI 프로세스에서는 개별 기지국으로부터의 SINR 을 확보함으로써 전송 포인트를 선택할 시 가장 채널 상태가 좋은 기지국을 선택할 수 있다.
기지국은 단말로부터 피드백된 CSI 프로세스를 기반으로 한 채널 품질 정보를 바탕으로 단말의 성능이 가장 극대화되는 경우를 선택하여 기지국의 전송을 조절하게 된다. 이때 통신망에 복수개의 단말이 존재하는 경우 각 단말로부터 단수 또는 복수개의 CSI 프로세스를 기반으로 한 채널 품질 정보를 수신해 네트워크의 성능이 최적화되는 스케줄링 및 전송 기지국을 결정하여 데이터를 전송할 수 있다.
그러나 복수의 CSI 프로세스 설정은 주변의 여러 기지국으로부터의 영향을 기지국이 단말로부터 직접적으로 전달받을 수 있다는 장점이 있으나 CSI-RS 설정과 CSI-IM 설정의 수가 각각 3개, 설정 가능한 CSI 프로세스의 수가 4개로 제한되었다는 한계가 존재한다. 단말은 가상의 육각 모양의 셀 (cell) 모델에서도 서비스 받는 기지국을 포함하여 가장 가까운 최소 7개의 기지국으로부터 영향을 받으며, 실제 통신망의 기지국 분포에서는 섹터를 포함하여 영향을 받는 기지국의 수가 육각셀 모델에 비해오히려 더 많을 수 있다. 따라서 단말이 영향을 받는 기지국이 주변에 다수 개 존재할 때 이를 표준에 설정된 CSI 프로세스 설정으로 모두 측정할 수 없게 된다.
또한 특정 기지국들의 셋 (set) 을 통해, CSI-RS 와 CSI-IM을 설정하였더라도 이를 통해서 확보 가능한 채널 품질 정보, 즉 SINR 의 조합 역시 설정될 수 있는 CSI 프로세스의 수인 최대 4개로 한정되므로 주변 기지국들의 운용에 따른 다양한 SINR 값의 확보라는 기존의 취지를 만족시킬 수 없다.
앞서 살펴본 CS/CB 의 예에 따르면, CSI 프로세스의 설정을 4개의 기지국에서 두 개의 기지국을 골라서 각 기지국이 동시에 전송하거나, 하나씩만 전송하는 경우의 CSI 프로세스를 설정하게 되면 설정 가능한 총 경우의 수는 4 Combination 2 x 4 = 24 개가 된다. 즉 24 개의 가능한 SINR 중에 단말에게 가장 좋은 성능을 줄 수 있는 기지국의 전송조합을 찾아내게 된다. 이는 동시에 설정할 수 있는 SINR의 조합이 최대 4개이므로 총 6번 기지국조합을 바꾸어가면서 CSI 프로세스를 설정하고 순차적으로 단말로부터 피드백 받아야 한다는 결론이 나오게 된다.
도 4는 단말이 다수개의 SINR을 측정해 피드백하기 위한 과정을 도시한 도면이다. 기지국은 SINR을 측정할 후보 기지국을 설정(400)하여 단말에게 CSI-RS 설정, CSI-IM 설정, CSI 프로세스 조합을 RRC (Radio Resource Control) 로 단말에게 전달(410)하고 단말은 기지국이 전달한 정보에 따라 CSI 프로세스에 따른 CQI를 측정(420)하고 4개의 CQI를 기지국으로 피드백(430)한다. 이 과정을 후보 기지국 조합을 바꿔가며 반복(440)한다.
도 4의 동작에서 볼 수 있듯이 총 24개의 CQI 정보를 얻기 위해서는 기지국이 단말에게 RRC를 이용하여 설정 정보를 내려주는 동작과 단말이 CQI를 측정하여 다시 기지국으로 피드백하는 과정이 반복되어야 한다. 이는 빈번한 RRC 설정 정보를 단말로 전송함으로 인한 하향링크 오버헤드 (overhead) 의 문제가 있고, 단말이 여러 번 CQI를 전송함으로 인한 상향링크 오버헤드 및 단말이 계속적으로 변경되는 CQI를 전송함으로 인해 동일한 기지국 조합의 CQI 전송 주기가 매우 길어지게 되고 따라서 실제 기지국이 단말에게 가장 좋은 전송 환경을 찾아 데이터 전송을 위해 자원을 할당하여 단말에게 데이터를 전송하는 순간에는 채널 상태가 이미 피드백된 CQI가 의미하는 채널 상태와 매우 달라져 있을 가능성이 높다는 문제가 있다. 24개의 CSI 프로세스 설정 및 SINR을 측정하는 경우는 단말 주변에 4개의 기지국만 있다고 가정하였을 때이나 실제 망에서는 더 많은 기지국이 단말 주변에 존재하기 때문에 올바른 측정을 위한 경우의 수는 지수적으로 증가하게 된다. 따라서 위의 부작용의 정도가 더 커지게 된다.
위의 문제점은 결국 복수의 CSI 프로세스 설정 및 운용을 표준에 정의된 하향링크 CQI와 관련된 시그널링, 즉 RRC 와 채널 품질 정보 피드백 등만으로 운용하는 점에서 발생한다. 따라서 복수의 CSI 프로세스를 도입한 의도인 주변 기지국으로부터의 간섭 영향 측정이라는 장점을 잘 살리면서 실제 운용상으로도 효율적으로 운용 가능한 방식이 필요하다.
본 발명은 복수의 CSI 프로세스의 설정을 위해 별도의 단말-기지국 (본 발명에서 기지국은 전송점 (Transmission Point, TP) 혹은 리모트 라디오 헤드(remote radio head, RRH) 등으로 해석될 수 있다.) 간 채널 정보인 단말의 측정 보고 (measurement report) 에 포함된 기지국 신호 파워 (Reference Signal Recieved Power, RSRP) 또는 상향링크 SRS (Sounding Reference Signal) 정보를 이용하고, 이를 기반으로 만들어진 복수의 CSI 프로세스의 피드백된 채널 품질 정보를 이용해 CoMP 전송 방식을 고려하여 하향 링크 데이터 전송시 필요한 SINR을 결정하는 방법으로 이루어져 있다.
도 5는 본 발명의 전체 동작을 표현한 순서도이다. 단말은 상향링크로 SRS를 전송(500)하고 SRS를 수신한 각 기지국은 SRS 수신 전력을 측정한 후 각 기지국간 SRS 수신 전력 정보를 공유(510)한다. 기지국은 SRS 수신 신호를 크기 순으로 정렬(520)한 후 SRS 수신 전력 상위 N개의 기지국에 대해 CSI-RS 설정과 CSI-IM 설정을 3개씩 설정(530)한다. 이 CSI-RS 설정과 CSI-IM 설정을 조합해 4개의 CSI 프로세스를 설정하고 상기 CSI-RS 설정, CSI-IM 설정, 조합된 CSI 프로세스 정보를 RRC로 단말에게 전송(550)한다. 단말은 설정된 CSI 프로세스를 기반으로 SINR을 측정한 후 CQI를 유도하고 피드백(560)하며 기지국은 수신된 CQI 및 사용할 CoMP 전송 방식을 고려해 데이터 전송시 필요한 SINR을 계산(570)하고 전송할 데이터의 MCS (modulation and coding scheme) 을 결정(580)하고 이를 적용해 단말로 하향링크 데이터를 전송(590)한다. 아래에서 자세한 발명의 내용에 대해 설명한다.
아래에서는 별도의 단말-기지국간 채널 정보를 이용하여 복수의 CSI 프로세스를 설정하는 방법을 설명하기 위해 단말과 기지국간 채널 정보로 상향링크 SRS를 사용하는 예를 들어 설명한다. 상향링크 SRS는 단말로부터 기지국으로의 상향링크 채널 품질을 측정하기 위해 단말이 상향링크 자원에 할당하는 신호이다. 기지국은 단말의 송신 전력을 알고 있으므로 SRS 수신 전력의 추정을 통해 채널을 통과할 때 감쇄되는 신호의 양을 추정해 이에 따라 단말과 기지국 사이의 채널의 품질을 간접적으로 추정할 수 있다.
TDD (time duplex division) 방식이 적용되는 경우 SRS가 전송되는 상향링크와 실제 데이터가 전송되는 하향링크가 동일 주파수이고 상-하향 링크의 채널이 서로 상반성 (reciprocity) 이 있음이 알려져 있기 때문에 SRS로 추정된 상향링크 채널 품질은 그대로 하향링크 채널의 품질로 해석될 수 있다. FDD (frequency duplex division) 방식이 사용되는 경우는 상향링크와 하향링크의 주파수 대역이 다르므로 주파수에 따른 채널 특성이 차이가 날 수 있으므로 SRS로 추정된 상향링크의 채널 품질을 직접적으로 하향링크에 적용하기에는 무리가 있으나 간접적으로 채널 품질의 상대적 비교를 위해 쓰일 수 있다.
도 6은 단말로부터 기지국으로 전송되는 SRS 신호를 도시한 도면이다. 단말(600)은 기지국 A(610)에서 서비스 받고 있으나 기지국 A 뿐 아니라 기지국 B(620), 기지국 C(630), 기지국 D(640) 역시 SRS 수신 전력을 획득할 수 있다. 이때 각 기지국은 해당 단말이 속한 기지국 A 의 물리 셀 ID (physical cell identification, PCID) 정보와 SRS 자원 할당 정보를 미리 공유하고 있다고 가정하며 이를 바탕으로 단말의 SRS 수신 전력을 측정할 수 있다.
이렇게 공유된 SRS 수신 전력을 특정 프로세서가 수신 전력이 큰 순서에서 작은 순서로 정렬한다. 특정 프로세서는 기지국 내 혹은 별도의 장치에 위치할 수 있다. 수신 전력의 순서가 기지국 A > 기지국 B > 기지국 C > 기지국 D 라면 기지국은 상기 순서를 바탕으로 단말이 상향링크 전송시 각 기지국이 해당 단말에게 미치는 간섭 세기의 상대적인 순서를 알 수 있으며, 이 순서를 TDD의 경우 직접적으로 또는 FDD의 경우 간접적으로 하향링크 전송시 각 기지국이 해당 단말에게 미칠 간섭 세기의 상대적인 순서로 해석할 수 있다.
본 발명은 위의 SRS 수신 전력 세기 순서를 바탕으로 CSI-RS 설정과 CSI-IM 설정 및 복수의 CSI 프로세스를 설정하는 방법을 포함한다. 이는 1) SRS 수신 전력 세기 상위 N 개를 선택하고 2) SRS 수신 전력 세기 상위 N 개의 기지국을 이용하여 최대 3개의 CSI-RS 설정을 설정하고 3) SRS 수신 전력 세기 상위 N 개의 기지국을 이용하여 최대 3개의 CSI-IM 설정을 설정하는 과정으로 이루어져 있다. 이는 앞서 SRS를 사용하지 않는 동작에 비해서 SRS 수신 전력이 큰 N 개의 기지국만 CSI 프로세스 설정 대상으로 간주하기 때문에 실제 단말에게 간섭으로 영향을 줄 가능성이 높은 인접 기지국들이 선택될 확률이 높고, 사용자 주변에 다수의 기지국이 있더라도 그 중 N 개의 기지국을 선택하기 때문에 CQI 확보를 위한 복잡도가 증가하지 않는다. 또한 단말이 급격한 위치 변경을 하지 않는 한 N 개의 설정된 기지국을 대상으로 하는 CSI-RS, CSI-IM 및 CSI 프로세스 설정 정보를 계속적으로 수정하고 RRC를 이용해 통보하지 않아도 되며, SRS는 상향링크 전송을 위해 기지국이 주기적으로 수신하기 때문에 측정을 위한 추가 오버헤드가 없다는 장점이 있다. 위에서 정의된 N은 시스템 파라미터로 필요에 의해 설정하고 이를 기지국간 공유할 수 있다.
기지국은 위의 방법에 의해 설정된 CSI-RS, CSI-IM 및 CSI 프로세스 설정 정보를 단말에게 전송하게 된다.
다음으로 본 발명은 단말이 피드백한 CQI를 바탕으로 CoMP 전송 방식에 따라 하향링크 데이터 전송시 필요한 SINR 값을 유도하는 방법을 실시예를 통해 설명한다.
기지국은 SRS 수신 전력 크기 순으로 상위 3개의 기지국을 선택한다. 이때 기지국은 3개의 CSI 프로세스에 따른 CQI를 단말로부터 피드백 받을 수 있다고 가정한다. SRS 수신 전력 세기 순서가 기지국 A > 기지국 B > 기지국 C > 기지국 D 이고 단말이 기지국 A로부터 서비스 받고 있다면 서비스를 받는 기지국 A를 포함해 기지국 A, 기지국 B, 기지국 C를 선택한다. 이 때 CSI-RS 설정과 CSI-IM 설정을 표 5와 같이 설정한다.
표 7
CSI-RS/CSI-IM 설정번호 CSI-RS가 설정된 자원에서의 기지국 신호 전송
CSI-RS 설정 CSI-RS cfg. 0 기지국 A만 전송
CSI-RS cfg. 1 기지국 B만 전송
CSI-RS cfg. 2 기지국 C만 전송
CSI-IM 설정 CSI-IM cfg. 0 모든 기지국이 전송
이 때 표 7를 기반으로 CSI 프로세스를 표 8과 같이 설정한다.
표 8
CSI 프로세스 CSI 프로세스의 조합 SINR 변환
CSI 프로세스 0 CSI-RS cfg. 0/CSI-IM cfg. 0
Figure PCTKR2015009325-appb-I000011
CSI 프로세스 1 CSI-RS cfg. 1/CSI-IM cfg. 0
Figure PCTKR2015009325-appb-I000012
CSI 프로세스 2 CSI-RS cfg. 2/CSI-IM cfg. 0
Figure PCTKR2015009325-appb-I000013
표 8의 SINR 변환 식에서 α 값은 반드시 필요한 요소로 CSI-IM 설정에 의해 모든 신호가 동시에 전송되기 때문에 실제로 측정되는 SINR 값이 무조건 1 보다 작아지는 부작용이 나타나게 된다. 이로 인해 측정된 SINR 값에서 유도되는 CQI 값이 전체적으로 작은 값이 되어 CSI 프로세스간 CQI 값의 변별력이 떨어지게 된다. 따라서 모든 기지국이 CSI-IM 설정에서 설정된 자원요소 (Resource Element, RE) 에서 기준 신호 전송시 α 에 해당하는 만큼 전력 감쇄(deboosting)를 수행한다. α 값은 시스템 파라미터로 필요에 따라 설정하고 기지국간 공유한다.
특히 위의 α 값의 설정은 간섭 제한적인 (Interference-Limited) 환경 에서 주로 적용될 수 있다. 간섭 제한적인 환경은 간섭 성분이 잡음에 비해 우세한 환경 (I≫N) 으로 잡음 성분은 간섭 성분과 달리 α 값만큼 줄일 수 없으나 간섭 성분이 잡음보다 우세한 환경에서는 잡음이 성능에 미치는 영향이 미미하므로 위와 같은 설정이 가능하다.
단말은 표 7, 표 8에 따라 설정된 CSI 프로세스 0, 1 및 2 를 기반으로 SINR 을 측정하고 이를 CQI로 전환하여 기지국으로 피드백한다. 기지국은 단말로부터 CQI 피드백을 통해 기지국 A, B 및 C의 상대적인 SINR 값인 X, Y 및 Z 의 값을 확보할 수 있으며 상기 과정을 통해 SRS 수신 전력 기반 상위 3개 기지국으로부터의 SINR 을 기지국 A의 SINR을 알 경우 기지국 B의 경우 B' = A * Y/X, 기지국 C의 경우 C' = B * Z/X로 대체 할 수 있다.
위의 표 8을 이용해 계산한 기지국 A, B 및 C의 신호 세기는 아래 식과 같이 계산 가능하다.
수학식 1
Figure PCTKR2015009325-appb-M000001
수학식 2
Figure PCTKR2015009325-appb-M000002
수학식 3
Figure PCTKR2015009325-appb-M000003
기지국은 기지국 A, B 및 C 의 신호세기를 피드백된 CQI에 기반한 SINR 값인 X, Y 및 Z 를 통해 확보하고 단말로부터 수신한 기지국 A, B 및 C 가 각각 수신한 SRS 전력값 중 해당하는 값을 대체한다. 이를 통해 얻을 수 있는 이득은 다음과 같다. 즉 SRS 수신 전력값을 확보 할 수 있도록 하향링크-상향링크가 모두 존재하는 반송파 집성시의 프라이머리 셀 (Primary Cell, PCell) 과 같은 경우는 CSI Process 설정을 전혀 사용하지 않더라도 CoMP 전송을 위한 하향링크 SINR 값을 상향링크 SRS 값의 확보를 통해서도 계산할 수 있다. 이는 상향링크 SRS 값이 확보된 기지국들에 대해서는 CoMP 전송을 위한 모든 SINR 조합을 만들 수 있는 이점이 있는 반면, FDD 의 경우 상향링크 SRS 값이 하향링크와 동일하지 않기 때문에 오차가 발생하게 되고 이로 인한 성능 열화를 해결하기 위해서는 SRS 값에 의한 오차를 줄이기 위한 별도의 노력이 필요하다. 하지만 위의 CSI 프로세스 설정을 이용하면 SRS 전력 상위 3개의 기지국에 대해서는 정확한 하향링크 신호 품질을 알 수 있고 따라서 SRS 전력 상위 3개의 기지국에서 서비스 받는 것을 가정할 때의 정확한 CoMP 전송 시의 SINR 을 계산할 수 있는 동시에 단말이 타 기지국에서 서비스를 받는 것을 가정할 때에도 SRS 전력 상위 3개의 기지국으로부터의 간섭 신호의 크기를 정확히 측정할 수 있어서, 전체적인 SINR 추정 성능을 높이게 된다.
하지만 하향링크-상향링크가 모두 존재하지 않고 하향링크만 존재하는 상황, 즉 SRS 송수신이 불가능한 반송파 집성 (Carrier Aggregation, CA) 시의 세컨더리 셀 (Secondary Cell, SCell) 같은 경우는 SRS 정보를 사용할 수 없기 때문에 SRS 신호만으로 CoMP 전송을 위한 SINR 조합을 생성할 수 없고, 따라서 PCell의 경우와 같은 방법을 사용할 수 없다는 제약이 생긴다. 이 경우에는 기지국과 단말은 PCell 에서 확보된 SRS 수신 신호 상위 3개의 기지국에 대한 CSI 프로세스 설정을 이용하여 아래와 같이 원하는 CoMP 전송 방식에 따른 SINR 을 설정할 수 있다.
수학식 4
Figure PCTKR2015009325-appb-M000004
수학식 5
Figure PCTKR2015009325-appb-M000005
수학식 6
Figure PCTKR2015009325-appb-M000006
수학식 7
Figure PCTKR2015009325-appb-M000007
수학식 8
Figure PCTKR2015009325-appb-M000008
식 4는 기지국 A, B 및 C의 상대적인 신호 세기를 표현하는 식이며 이를 이용해 식 5, 6, 7 및 8을 계산할 수 있다. 식 5는 CoMP 전송 방식을 적용하지 않는 경우로 기지국 A에서 서비스를 받고 기지국 B 및 C의 신호는 간섭 성분이 되는 경우이다. 식 6은 CS/CB의 경우로 신호는 기지국 A로부터 전송되고 C는 동작하지 않는 경우이다. 식 7은 DPS의 경우로 기지국 A와 B가 번갈아 신호를 전송하는 경우이다. 식 8은 JT의 경우로 기지국 A와 C가 동시에 전송하는 경우이다.
SCell에서 SRS 수신 전력이 없는 경우와 먼저 서술한 SRS 수신 전력이 있는 PCell과의 차이점은 SCell의 경우는 PCell 기준의 SRS 기준 상위 3개의 기지국에 대해서만 CoMP 전송 방식을 설정할 수 있다는 점이다. 앞서 설명한 바와 같이 PCell 의 경우는 상위 3개의 기지국에 대해서 SRS 수신 신호를 피드백 받은 CQI를 기반으로 계산한 하향링크 신호 세기를 대체하고 나머지 SRS 가 수신된 기지국에 대해서는 SRS 수신 전력을 그대로 사용하여 3개 초과의 기지국에 대해서도 CoMP 전송 방식 설정이 가능하다.
본 발명의 동작은 도 7과 도 8 두 가지 장치에 의해 수행될 수 있다. 도 7은 기지국이 CoMP 전송 동작을 관리하는 경우 기지국 장치를 도시한 블록도이고 도 8은 CoMP 전송 동작을 총괄하는 CoMP 관리부가 별도 장치로 독립되어 있을 경우의 기지국과 CoMP 관리부를 도시한 블록도이다.
도 7을 참조해 설명하면, 단말(700)은 SRS 수신부(710)으로 SRS를 전송하고, CoMP 관리부/SRS 수신 전력 저장부(730)는 CoMP 전송 동작과 관련된 모든 연산을 수행하며 이때 인접 기지국(770)으로부터 수신된 SRS 수신 전력정보, SRS 수신부에서 수신된 SRS 수신 전력 정보 및 버퍼 관리부(720)로부터의 데이터 등을 종합하여 인접 기지국과 함께 수행할 CoMP 전송 방식을 결정하며 이를 실행하기 위한 CoMP 후보 기지국 정보 등을 CSI-RS/CSI-IM/CSI 프로세스 결정부(740)로 전달한다. 이때 CoMP 전송 동작은 인접 기지국과의 협의와 정보 교환을 통해 결정된다. 이때 인접 기지국은 동일한 하드웨어 내에 존재하는 개념상의 기지국일 수도 있고, 물리적으로 떨어져 있는 실제의 기지국일 수도 있다. CSI-RS/CSI-IM/CSI 프로세스 설정부는 CoMP 관리부로부터 CoMP 전송을 수행할 기지국의 정보를 수신하여 CSI-RS/CSI-IM/CSI 프로세스를 본 발명의 동작대로 설정하고 이 설정 정보를 단말과 채널 품질 기준값 생성부(750)에 송신한다. 채널 품질 기준값 생성부는 CoMP 를 적용하여 하향링크 Data 를 전송하기 위한 SINR 정보를 생성하는 곳으로 단말로부터 CSI 프로세스에 의한 채널 품질 정보를 수신받고 채널 품질 기준값을 MCS 결정부(760)으로 전송한다. MCS 결정부는 MCS를 결정해 모뎀으로 송신한다. 버퍼 관리부(720)은 사용자의 데이터 유무를 살피고, 현재 전송될 데이터가 있는 UE와 Buffer 의 양을 관리하고 CoMP 관리부/SRS 수신 전력 저장부에게 버퍼 정보를 송신한다. 버퍼 관리부, SRS 수신부, CoMP 관리부/SRS 수신 전력 저장부, CSI-RS/CSI-IM/CSI 프로세스 설정부, 채널 품질 기준값 생성부 및 MCS 결정부는 기지국(780) 내에 위치할 수 있으며 송수신부를 통해 신호를 단말 및 인접 기지국과 송수신할 수 있고 관리부 내에 버퍼 관리부, CoMP 관리부, CSI-RS/CSI-IM/CSI 프로세스 설정부, 채널 품질 기준값 생성부, MCS 설정부가 위치하는 형태로 구성될 수도 있다.
도 8을 참조해 설명하면, 기지국(870) 내에 버퍼 관리부(820), SRS 수신부(810), CSI-RS/CSI-IM/CSI 프로세스 설정부(830), 채널 품질 기준값 생성부(840) 및 MCS 결정부(850)이 위치하고 CoMP 동작을 총괄하는 CoMP 관리부/SRS 수신 전력 저장부(860)가 기지국 이외의 별도 장치(880)로 독립되어 있으며 개별 기지국이 CoMP 동작에 관련된 정보를 CoMP 관리부로 전송하고 CoMP 관리부는 중앙집중형으로 이 정보를 바탕으로 기지국이 적용할 CoMP 방식 및 이에 해당하는 후보 기지국 정보, SRS 수신 전력 등을 관리하고 통보할 수 있다. 기지국 및 CoMP 방식을 관리하는 별도 장치는 송수신부와 관리부로 이루어질 수 있으며 송수신부는 신호를 단말 및 인접 기지국과 송수신하고 기지국의 관리부 내에 버퍼 관리부, CSI-RS/CSI-IM/CSI 프로세스 설정부, 채널 품질 기준값 생성부, MCS 결정부가 위치할 수 있고 별도 장치의 관리부 내에 CoMP 관리부/SRS 수신 전력 저장부가 위치할 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
한편, 본 명세서와 도면에는 본 발명의 바람직한 실시 예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (20)

  1. 무선 통신 시스템에서 단말이 기지국으로 채널 품질 정보 (channel quality information, CQI) 를 전송하는 방법에 있어서,
    상기 단말이 사운딩 기준 신호 (sounding reference signal) 을 전송하는 과정과,
    상기 단말이 상기 기지국과 인접 기지국으로 전송한 상기 사운딩 기준 신호의 수신 전력 비교 결과를 기반으로 설정된 채널 상태 정보 (channel state information, CSI) 설정 정보를 수신하는 과정을 포함하는 것을 특징으로 하는 채널 품질 정보 전송 방법.
  2. 제 1항에 있어서,
    상기 CSI 설정 정보는 CSI 기준 신호 (reference signal) 설정, CSI 간섭 측정 (interference measurement) 설정, CSI 프로세스 설정을 포함하며,
    상기 CSI 기준 신호 설정은 상기 사운딩 기준 신호의 상기 수신 전력 비교 결과에 따라 상기 기지국과 상기 인접 기지국 중 상기 사운딩 기준 신호의 수신 전력이 가장 높은 N개의 기지국의 전송 신호 전력을 각각 측정하도록 N개 설정되고,
    상기 CSI 간섭 측정 설정은 상기 기지국과 상기 인접 기지국 모두의 전송 신호 전력을 측정하도록 1개 설정되는 것을 특징으로 하는 채널 품질 정보 전송 방법.
  3. 제 2항에 있어서,
    상기 CSI 프로세스 설정은 각 상기 CSI 기준 신호 설정과 상기 CSI 간섭 측정 설정의 조합으로 N개 설정되는 것을 특징으로 하는 채널 품질 정보 전송 방법.
  4. 제 3항에 있어서,
    상기 수신된 CSI 설정 정보를 기반으로 신호 대 간섭 및 잡음비 (signal-to-interference-plus-noise ratio) 를 측정하는 과정과,
    상기 신호 대 간섭 및 잡음비를 기반으로 상기 채널 품질 정보를 생성하는 과정과,
    상기 생성된 채널 품질 정보를 상기 기지국으로 전송하는 과정을 더 포함하는 것을 특징으로 하는 채널 품질 정보 전송 방법.
  5. 제 4항에 있어서,
    상기 전송한 채널 품질 정보를 기반으로 결정된 MCS (modulation and coding scheme) 를 적용한 데이터를 수신하는 과정을 더 포함하는 것을 특징으로 하는 채널 품질 정보 전송 방법.
  6. 무선 통신 시스템에서 기지국이 단말로부터 채널 품질 정보(channel quality information, CQI)를 수신하는 방법에 있어서,
    상기 단말이 전송한 사운딩 기준 신호 (sounding reference signal) 를 수신하는 과정과,
    인접 기지국으로부터 상기 사운딩 기준 신호의 수신 전력 정보를 수신하는 과정과,
    상기 수신한 수신 전력 정보와 상기 사운딩 기준 신호의 상기 기지국에서의 수신 전력을 비교해 채널 상태 정보 (channel state information, CSI) 설정 정보를 생성하고 상기 단말로 전송하는 과정을 포함하는 것을 특징으로 하는 채널 품질 정보 수신 방법.
  7. 제 6항에 있어서,
    상기 CSI 설정 정보는 CSI 기준 신호 (reference signal) 설정, CSI 간섭 측정 (interference measurement) 설정, CSI 프로세스 설정을 포함하며,
    상기 CSI 기준 신호 설정은 상기 사운딩 기준 신호의 상기 수신 전력 비교 결과에 따라 상기 기지국과 상기 인접 기지국 중 상기 사운딩 기준 신호의 수신 전력이 가장 높은 N개의 기지국의 전송 신호 전력을 각각 측정하도록 N개 설정하고,
    상기 CSI 간섭 측정 설정은 상기 기지국과 상기 인접 기지국 모두의 전송 신호 전력을 측정하도록 1개 설정하는 것을 특징으로 하는 채널 품질 정보 수신 방법.
  8. 제 7항에 있어서,
    상기 CSI 프로세스 설정은 각 상기 CSI 기준 신호 설정과 상기 CSI 간섭 측정 설정의 조합으로 N개 설정하는 것을 특징으로 하는 채널 품질 정보 수신 방법.
  9. 제 8항에 있어서,
    상기 단말으로부터 상기 채널 품질 정보를 수신하는 과정을 더 포함하며,
    상기 채널 품질 정보는 상기 CSI 설정 정보를 기반으로 단말이 측정한 신호 대 간섭 및 잡음비 (signal-to-interference-plus-noise ratio) 를 기반으로 단말이 생성한 것을 특징으로 하는 채널 품질 정보 수신 방법.
  10. 제 9항에 있어서,
    상기 수신한 채널 품질 정보를 기반으로 결정된 MCS (modulation and coding scheme) 를 적용한 데이터를 전송하는 과정을 더 포함하는 것을 특징으로 하는 채널 품질 정보 수신 방법.
  11. 무선 통신 시스템에서 기지국으로 채널 품질 정보 (channel quality information, CQI) 를 전송하는 단말기에 있어서,
    신호를 송수신하는 송수신부 및;
    사운딩 기준 신호 (sounding reference signal) 을 전송하고, 상기 단말기가 상기 기지국과 인접 기지국으로 전송한 상기 사운딩 기준 신호의 수신 전력 비교 결과를 기반으로 설정된 채널 상태 정보 (channel state information, CSI) 설정 정보를 수신하는 것을 특징으로 하는 제어부를 포함하는 단말기.
  12. 제 11항에 있어서,
    상기 CSI 설정 정보는 CSI 기준 신호 (reference signal) 설정, CSI 간섭 측정 (interference measurement) 설정, CSI 프로세스 설정을 포함하며,
    상기 CSI 기준 신호 설정은 상기 사운딩 기준 신호의 상기 수신 전력 비교 결과에 따라 상기 기지국과 상기 인접 기지국 중 상기 사운딩 기준 신호의 수신 전력이 가장 높은 N개의 기지국의 전송 신호 전력을 각각 측정하도록 N개 설정되고,
    상기 CSI 간섭 측정 설정은 상기 기지국과 상기 인접 기지국 모두의 전송 신호 전력을 측정하도록 1개 설정되는 것을 특징으로 하는 단말기
  13. 제 12항에 있어서,
    상기 CSI 프로세스 설정은 각 상기 CSI 기준 신호 설정과 상기 CSI 간섭 측정 설정의 조합으로 N개 설정되는 것을 특징으로 하는 단말기.
  14. 제 13항에 있어서, 상기 제어부는,
    상기 수신된 CSI 설정 정보를 기반으로 신호 대 간섭 및 잡음비 (signal-to-interference-plus-noise ratio) 를 측정하고, 상기 신호 대 간섭 및 잡음비를 기반으로 상기 채널 품질 정보를 생성하고, 상기 생성된 채널 품질 정보를 상기 기지국으로 더 전송하는 것을 특징으로 하는 단말기.
  15. 제 14항에 있어서, 상기 제어부는,
    상기 전송한 채널 품질 정보를 기반으로 결정된 MCS (modulation and coding scheme) 를 적용한 데이터를 더 수신하는 것을 특징으로 하는 단말기.
  16. 무선 통신 시스템에서 단말로부터 채널 품질 정보 (channel quality information, CQI) 를 수신하는 기지국에 있어서,
    신호를 송수신하는 송수신부; 및
    상기 단말이 전송한 사운딩 기준 신호 (sounding reference signal) 를 수신하고, 인접 기지국으로부터 상기 사운딩 기준 신호의 수신 전력 정보를 수신하고, 상기 수신한 수신 전력 정보와 상기 사운딩 기준 신호의 상기 기지국에서의 수신 전력을 비교해 채널 상태 정보 (channel state information, CSI) 설정 정보를 생성하고 상기 단말로 전송하는 것을 특징으로 하는 제어부를 포함하는 기지국.
  17. 제 16항에 있어서,
    상기 CSI 설정 정보는 CSI 기준 신호 (reference signal) 설정, CSI 간섭 측정 (interference measurement) 설정, CSI 프로세스 설정을 포함하며,
    상기 제어부는,
    상기 CSI 기준 신호 설정을 상기 사운딩 기준 신호의 상기 수신 전력 비교 결과에 따라 상기 기지국과 상기 인접 기지국 중 상기 사운딩 기준 신호의 수신 전력이 가장 높은 N개의 기지국의 전송 신호 전력을 각각 측정하도록 N개 설정하고,
    상기 CSI 간섭 측정 설정을 상기 기지국과 상기 인접 기지국 모두의 전송 신호 전력을 측정하도록 1개 설정하는 것을 특징으로 하는 기지국.
  18. 제 17항에 있어서, 상기 제어부는,
    상기 CSI 프로세스 설정을 각 상기 CSI 기준 신호 설정과 상기 CSI 간섭 측정 설정의 조합으로 N개 설정하는 것을 특징으로 하는 기지국.
  19. 제 18항에 있어서, 상기 제어부는,
    상기 단말으로부터 상기 채널 품질 정보를 더 수신하며,
    상기 채널 품질 정보는 상기 CSI 설정 정보를 기반으로 단말이 측정한 신호 대 간섭 및 잡음비 (signal-to-interference-plus-noise ratio) 를 기반으로 단말이 생성한 것을 특징으로 하는 기지국.
  20. 제 19항에 있어서, 상기 제어부는,
    상기 수신한 채널 품질 정보를 기반으로 결정된 MCS (modulation and coding scheme) 를 적용한 데이터를 더 전송하는 것을 특징으로 하는 기지국.
PCT/KR2015/009325 2014-09-03 2015-09-03 셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치 WO2016036174A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/508,907 US10764016B2 (en) 2014-09-03 2015-09-03 Method and apparatus for channel quality estimation in consideration of interference control and coordinated communication in cellular system
CN201580054299.1A CN106797353B (zh) 2014-09-03 2015-09-03 蜂窝系统中考虑干扰控制和协调通信的信道质量估计方法和装置
EP15838431.3A EP3190820B1 (en) 2014-09-03 2015-09-03 Method and apparatus for channel quality estimation in consideration of interference control and coordinated communication in cellular system
US16/947,252 US11368274B2 (en) 2014-09-03 2020-07-24 Method and apparatus for channel quality estimation in consideration of interference control and coordinated communication in cellular system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0116850 2014-09-03
KR1020140116850A KR102291457B1 (ko) 2014-09-03 2014-09-03 셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/508,907 A-371-Of-International US10764016B2 (en) 2014-09-03 2015-09-03 Method and apparatus for channel quality estimation in consideration of interference control and coordinated communication in cellular system
US16/947,252 Continuation US11368274B2 (en) 2014-09-03 2020-07-24 Method and apparatus for channel quality estimation in consideration of interference control and coordinated communication in cellular system

Publications (1)

Publication Number Publication Date
WO2016036174A1 true WO2016036174A1 (ko) 2016-03-10

Family

ID=55440125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009325 WO2016036174A1 (ko) 2014-09-03 2015-09-03 셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치

Country Status (5)

Country Link
US (2) US10764016B2 (ko)
EP (1) EP3190820B1 (ko)
KR (1) KR102291457B1 (ko)
CN (1) CN106797353B (ko)
WO (1) WO2016036174A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733549A (zh) * 2016-08-10 2018-02-23 华为技术有限公司 信道质量信息计算方法、装置及系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102355785B1 (ko) 2015-01-19 2022-01-26 삼성전자주식회사 무선 통신 시스템에서 협력 전송을 위한 제어 정보 송신 장치 및 방법
KR102347405B1 (ko) 2015-01-19 2022-01-06 삼성전자주식회사 무선 통신 시스템에서 협력 전송을 위한 스케줄링 장치 및 방법
CN107431589B (zh) * 2015-03-25 2021-06-01 瑞典爱立信有限公司 用于处理和分配上行链路导频的方法和设备
WO2017062028A1 (en) * 2015-10-09 2017-04-13 Intel IP Corporation Architecture for wireless network access
CN112398634B (zh) * 2016-09-23 2023-04-07 Oppo广东移动通信有限公司 传输srs的方法、网络设备和终端设备
CN111684741B (zh) * 2018-02-09 2022-07-22 中兴通讯股份有限公司 用于多层数据传输的方法和装置
US20190296873A1 (en) * 2018-03-26 2019-09-26 Qualcomm Incorporated Techniques for configuring channel state information (csi) process for a coordinated set of transmission reception points
US11502761B2 (en) * 2018-05-25 2022-11-15 Qualcomm Incorporated Enhanced RRM/CSI measurement for interference management
CN110719595B (zh) * 2019-09-17 2023-04-07 中国联合网络通信集团有限公司 一种设备选型方法和装置
CN112911651B (zh) * 2019-12-04 2022-11-08 大唐移动通信设备有限公司 一种物理传输速率调整方法和系统
KR102364391B1 (ko) * 2020-04-03 2022-02-17 재단법인대구경북과학기술원 초고밀도 네트워크를 위한 협력 기지국 설정방법
CN114448555A (zh) * 2020-11-02 2022-05-06 中兴通讯股份有限公司 下行空分复用信道质量的确定方法及装置
KR20220081771A (ko) * 2020-12-09 2022-06-16 삼성전자주식회사 무선 통신 시스템에서 동적 시분할 듀플렉스를 위한 링크 적응 방법 및 장치
US11696221B2 (en) * 2021-02-04 2023-07-04 Cisco Technology, Inc. Adaptive beacon report for client devices
CN113612557B (zh) * 2021-07-30 2023-08-04 天津(滨海)人工智能军民融合创新中心 无人机蜂群多微蜂窝频谱资源管理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083729A1 (en) * 2011-10-03 2013-04-04 Qualcomm Incorporated Srs optimization for coordinated multi-point transmission and reception
US20140036809A1 (en) * 2012-08-03 2014-02-06 Qualcomm Incorporated Method and apparatus for sounding reference signal triggering and power control for coordinated multi-point operations
US20140050182A1 (en) * 2011-07-13 2014-02-20 Panasonic Corporation Terminal apparatus, base station apparatus, transmission method and reception method
WO2014038755A1 (ko) * 2012-09-10 2014-03-13 주식회사 케이티 상향링크 채널 추정 방법 및 통신 시스템

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2439997B1 (en) * 2009-06-02 2019-08-28 Sun Patent Trust Wireless communication apparatus and wireless communication method
US9173192B2 (en) * 2011-03-17 2015-10-27 Qualcomm Incorporated Target cell selection for multimedia broadcast multicast service continuity
JP5927802B2 (ja) 2011-08-02 2016-06-01 シャープ株式会社 基地局、端末および通信方法
US9351205B2 (en) * 2012-05-11 2016-05-24 Qualcomm Incorporated Carrier aggregation capable mobile operation over single frequency
US9332474B2 (en) * 2012-05-17 2016-05-03 Telefonaktiebolaget L M Ericsson Signaling support for multi sector deployment in cellular communications
KR20130134873A (ko) 2012-05-31 2013-12-10 삼성전자주식회사 무선통신 시스템에서 송신 방법 및 장치
KR101443650B1 (ko) * 2012-06-15 2014-09-23 엘지전자 주식회사 채널 상태 정보를 전송하는 방법 및 사용자기기와 채널 상태 정보를 수신하는 방법 및 기지국
CN108401285B (zh) 2012-08-01 2021-06-15 太阳专利信托公司 无线通信基站装置、无线通信方法和集成电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140050182A1 (en) * 2011-07-13 2014-02-20 Panasonic Corporation Terminal apparatus, base station apparatus, transmission method and reception method
US20130083729A1 (en) * 2011-10-03 2013-04-04 Qualcomm Incorporated Srs optimization for coordinated multi-point transmission and reception
US20140036809A1 (en) * 2012-08-03 2014-02-06 Qualcomm Incorporated Method and apparatus for sounding reference signal triggering and power control for coordinated multi-point operations
WO2014038755A1 (ko) * 2012-09-10 2014-03-13 주식회사 케이티 상향링크 채널 추정 방법 및 통신 시스템

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG RAN; Coordinated multi-point operation for LTE physical layer aspects (Release 1 1", 3GPP TR 36.819 V1 1.2.0, 20 September 2013 (2013-09-20), XP050906314, Retrieved from the Internet <URL:http://www.3gpp.org/dynareport/36819.htm> *
See also references of EP3190820A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733549A (zh) * 2016-08-10 2018-02-23 华为技术有限公司 信道质量信息计算方法、装置及系统
EP3493438A4 (en) * 2016-08-10 2020-03-11 Huawei Technologies Co., Ltd. METHOD, DEVICE AND SYSTEM FOR CALCULATING CHANNEL QUALITY INFORMATION
CN107733549B (zh) * 2016-08-10 2020-09-25 华为技术有限公司 信道质量信息计算方法、装置及系统
US10893426B2 (en) 2016-08-10 2021-01-12 Huawei Technologies Co., Ltd. Channel quality information calculation method, apparatus, and system

Also Published As

Publication number Publication date
US20200358580A1 (en) 2020-11-12
KR20160028167A (ko) 2016-03-11
KR102291457B1 (ko) 2021-08-19
CN106797353A (zh) 2017-05-31
US11368274B2 (en) 2022-06-21
EP3190820A4 (en) 2018-06-13
EP3190820A1 (en) 2017-07-12
EP3190820B1 (en) 2022-11-02
US20170207897A1 (en) 2017-07-20
CN106797353B (zh) 2020-09-11
US10764016B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2016036174A1 (ko) 셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치
US11812459B2 (en) Wireless communication system using multiple transmission and reception points
US10250364B2 (en) Channel measurements supporting coordinated multi-point operation
WO2011040773A2 (ko) 무선 통신 시스템에서의 CoMP 피드백 정보를 전송하기 위한 방법 및 단말 장치
WO2012096449A2 (en) Method and apparatus for multi-cell cooperative transmission
WO2016163832A1 (ko) 다중 안테나를 이용하는 무선 통신 시스템에서 송신 전력 제어 방법 및 장치
WO2013043015A1 (en) Method and apparatus for transmitting and receiving feedback for cooperative communication system
WO2010079926A2 (ko) 다중 셀 환경에서 comp 수행 셀 결정방법 및 장치
WO2016199768A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2010123295A2 (ko) 셀룰라 무선 통신 시스템에서의 협력 통신 방법 및 이를 수행하는 단말기
WO2013172684A1 (en) Channel estimation method and apparatus for cooperative communication in a cellular mobile communication system
WO2011037413A2 (ko) 다중 송수신 노드를 가지는 인접 셀 간섭 관리 방법 및 장치
US9571244B2 (en) Wireless communication apparatus, wireless communication method, and wireless communication system
WO2013141659A1 (en) Method and apparatus for measuring interference in wireless communication system
WO2018070738A1 (en) Method and apparatus for reporting periodic channel state information in mobile communication system using massive array antennas
WO2014081258A1 (en) Method and apparatus for performing scheduling in wireless communication system
WO2018084578A1 (en) Method and apparatus for reporting channel state information in wireless communication system
EP3270638A1 (en) Radio communication system, radio base station apparatus, user terminal and communication control method
WO2016056832A1 (ko) 이동 통신 시스템에서의 피드백 정보 생성 및 보고 방법 및 장치
WO2013051884A1 (en) Method and apparatus for generating feedback in a communication system
US20160269940A1 (en) Central control station, radio base station and radio communication control method
WO2013154352A1 (en) Method and apparatus for transmitting and receiving a feedback signal in a mobile communication system
WO2013180460A1 (en) Method and apparatus for random interference measurement resource pattern determination
WO2017026863A1 (ko) 통신 시스템에서 기준 신호를 송수신하는 방법 및 장치
WO2010085048A2 (ko) 다중 셀 환경에서의 셀 간 동기화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15508907

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015838431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838431

Country of ref document: EP