WO2015076252A1 - Tissue adhesive porous film, method for producing same, and tissue adhesive porous film tape - Google Patents

Tissue adhesive porous film, method for producing same, and tissue adhesive porous film tape Download PDF

Info

Publication number
WO2015076252A1
WO2015076252A1 PCT/JP2014/080477 JP2014080477W WO2015076252A1 WO 2015076252 A1 WO2015076252 A1 WO 2015076252A1 JP 2014080477 W JP2014080477 W JP 2014080477W WO 2015076252 A1 WO2015076252 A1 WO 2015076252A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
tissue
gelatin
porous membrane
carbon number
Prior art date
Application number
PCT/JP2014/080477
Other languages
French (fr)
Japanese (ja)
Inventor
田口 哲志
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to JP2015549152A priority Critical patent/JP6120392B2/en
Publication of WO2015076252A1 publication Critical patent/WO2015076252A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0015Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0036Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • A61L24/104Gelatin

Definitions

  • a tissue adhesive film prepared from a medical material (Patent Document 1) prepared by cross-linking gelatin, which is a non-blood preparation, with succinimidated poly-L-glutamic acid (Patent Document 1) and gelatin or Collagen (Patent Document 2) ),
  • a tissue adhesive composition (Patent Document 3) in which a polymerizable and / or crosslinkable material in the form of particles and a particulate material are mixed, and gelatin having an alkyl group introduced in the side chain have been reported.
  • a tissue adhesive composition (Patent Document 3) in which a polymerizable and / or crosslinkable material in the form of particles and a particulate material are mixed, and gelatin having an alkyl group introduced in the side chain have been reported.
  • all of these have a problem that the adhesive force to the wet tissue is not sufficient.
  • Non-Patent Document 2 Non-Patent Document 2
  • An object of the present invention is to provide a tissue adhesive film having a high adhesive strength to a wet tissue and an appropriate strength, and a method for producing the same.
  • the inventors of the present invention have prepared a porous tissue-adhesive porous membrane containing a hydrophobicized gelatin in which a hydrophobic group is introduced into the amino group of gelatin, thereby sufficiently absorbing moisture from the wet tissue, On the other hand, it was discovered that a tissue adhesive film having high adhesive strength and appropriate strength and a method for producing the same can be provided, and the present invention has been completed.
  • the present invention has the following configuration.
  • the tissue-adhesive porous membrane according to (1) wherein the porous structure is composed of pores between a plurality of hydrophobic gelatins provided in the crosslinked structure of the hydrophobic gelatin.
  • the porous structure includes voids between a plurality of hydrophobic gelatins provided in the crosslinked structure of the hydrophobic gelatin, and porogen holes provided in the crosslinked structure using a porogen as a template.
  • the tissue-adhesive porous membrane according to (1) The tissue-adhesive porous membrane according to (3), wherein the porogen pores are provided using a porogen having a particle size of 50 to 100 ⁇ m as a template.
  • tissue adhesive porous material according to (1), wherein the gelatin is one or a combination of two or more of gelatin derived from human, pig, cow, tilapia, cod or genetically modified gelatin
  • the membrane (10) The tissue adhesive porous membrane according to any one of (1) to (9), wherein the tissue adhesive porous membrane contains a drug.
  • the agent is a cell differentiation inducer, anticancer agent, immunosuppressant, cell growth factor, cytokine, thrombin inhibitor, antithrombotic agent, thrombolytic agent, fibrinolytic agent, vasospasm inhibitor, calcium channel Blocking agents, vasodilators, antihypertensive agents, antibacterial agents, antibiotics, surface glycoprotein receptor inhibitors, antiplatelet agents, cytostatics, microtubule inhibitors, antisecretory agents, actin inhibitors, remodeling inhibitors Drugs, antisense nucleotides, antimetabolites, antiproliferative substances, anticancer chemotherapeutic drugs, anti-inflammatory steroids or non-steroidal anti-inflammatory drugs, immunosuppressants, growth hormone antagonists, dopamine agonists, radiotherapy drugs, Peptides, proteins, enzymes, extracellular matrix components, inhibitors, free radical scavengers, chelators, antioxidants, antipolymers , Antiviral agents, photodynamic therapy agents, and one or a combination of
  • a method for producing a tissue-adhesive porous membrane comprising the steps of:
  • a step of dissolving hydrophobized gelatin in a water-soluble organic solvent to prepare a hydrophobized gelatin-containing solution, and dispersing a porogen in the hydrophobized gelatin-containing solution to prepare a porogen-dispersed hydrophobized gelatin-containing solution A step of adding a cross-linking agent or a condensing agent to the porogen-dispersed hydrophobized gelatin-containing solution to cross-link the hydrophobized gelatin to form a hydrophobized gelatin cross-linked body containing a water-soluble organic solvent and a porogen; Water-containing hydrophobized gelatin in which porogen pores are formed by placing a hydrophobized gelatin cross-linker containing a water-soluble organic solvent and a porogen into water, replacing the water-soluble organic solvent with water, and dissolving and removing the porogen A step of forming a crosslinked body, and a step of lyophilizing the water-containing hydrophobized gelatin crosslinked body in which the porogen
  • tissue-adhesive porous membrane according to (13) wherein the porogen is particles made of any material of NaCl, KCl, MgCl, ice, and polyethylene glycol.
  • the method for producing a tissue-adhesive porous membrane of the present invention comprises a step of dissolving a hydrophobic gelatin in a water-soluble organic solvent to prepare a hydrophobic gelatin-containing solution, and dispersing a porogen in the hydrophobic gelatin-containing solution.
  • a step of forming a gelatin cross-linked product, and the hydrophobized gelatin cross-linked product containing the water-soluble organic solvent and porogen is placed in water, the water-soluble organic solvent is replaced with water, and the porogen is dissolved and removed.
  • tissue-adhesive porous membrane tape of the present invention has a structure in which the tissue-adhesive porous membrane described above is formed in a strip shape, the cut portion of the intestine can be easily wound, and the tissue adhesive can be obtained by leaving it as it is. Can be made.
  • tissue adhesive porous membrane which is the 1st Embodiment of this invention It is the schematic which shows adhesion
  • tissue adhesive porous membrane which is the 2nd Embodiment of this invention. It is the schematic of the adhesion test of a tissue adhesive porous membrane and porcine large intestine epidermis.
  • 2 is an electron micrograph of a cross section of the tissue adhesive porous membrane of Example 1.
  • FIG. 4 is an electron micrograph of the surface of the tissue adhesive porous membrane of Example 2.
  • FIG. 4 is an electron micrograph of the surface of the tissue adhesive porous membrane of Example 3.
  • FIG. 4 is an electron micrograph of the surface of the tissue-adhesive porous membrane of Example 4.
  • 6 is an electron micrograph of the surface of a tissue adhesive porous membrane of Example 5.
  • FIG. 4 is an electron micrograph of the surface of the tissue adhesive porous membrane of Example 6.
  • FIG. 4 is an electron micrograph of a cross section of a porous film of Comparative Example 1.
  • 4 is an electron micrograph of the surface of a porous film of Comparative Example 2.
  • 4 is an electron micrograph of the surface of a porous film in Comparative Example 3.
  • 4 is an electron micrograph of the surface of a porous film in Comparative Example 4.
  • 6 is an electron micrograph of the surface of a porous membrane of Comparative Example 5.
  • 6 is an electron micrograph of the surface of a porous membrane in Comparative Example 6.
  • 2 is an electron micrograph of a cross section of a tissue adhesive porous membrane of Examples 13 to 17.
  • 6 is a graph showing the results of water absorption rate tests of the tissue adhesive porous membranes of Examples 13 to 17 and the porous membranes of Comparative Examples 7 to 11.
  • 6 is a graph showing the results of L929 cell culture tests of the tissue adhesive porous membranes of Examples 1 to 6 and the porous membranes of Comparative Examples 1 to 6.
  • 2 is a photomicrograph showing the extension of L929 cells on the tissue adhesive porous membranes of Examples 1 to 6 and the porous membranes of Comparative Examples 1 to 6. It is a graph which shows the result of angiogenesis evaluation using the tissue adhesive porous membrane of Examples 2 and 5 and the porous membrane of Comparative Examples 2 and 5.
  • FIG. 1 is a schematic view showing a tissue-adhesive porous membrane according to the first embodiment of the present invention.
  • the tissue adhesive porous membrane 1 is a membrane having a porous structure in which a hydrophobic gelatin 10 is cross-linked and is composed of a plurality of holes 10c1.
  • the tissue adhesive porous membrane 1 is formed by integrating only the hydrophobic gelatin 10 into a film shape.
  • the shape of the tissue adhesive porous membrane 1 is, for example, a substantially rectangular shape in plan view. One side and the other side of the film are each flat.
  • the hydrophobized gelatin 10 has a main chain 13 made of gelatin, an amino group 12 and a hydrophobic functional group 11 on its side chain. By using the gelatin skeleton, it can be easily decomposed by an enzyme in the wound healing process, and the biocompatibility of the porous membrane can be increased.
  • the hydrophobized gelatin 10 is gelatin in which a part of the amino group 12 of Lys contained as an amino acid is substituted with a hydrophobic functional group 11.
  • gelatin to be the main chain 13 examples include human, porcine, bovine, tilapia, cod-derived gelatin and genetically modified gelatin. One or a combination of two or more of these gelatins may be used.
  • the hydrophobized gelatin 10 is preferably cross-linked by thermal cross-linking 14.
  • the hydrophobized gelatin 10 is thermally cross-linked, peptide bonds that link the linear polymers are formed in the hydrophobized gelatin 10.
  • it can be insolubilized in water, the strength of the membrane is increased, and a tissue-adhesive porous membrane having high adhesive strength and appropriate strength even in a wet environment can be obtained.
  • the hydrophobic functional group 11 introduced into the hydrophobic gelatin 10 anchors to the hydrophobic domain of the extracellular matrix and the lipid bilayer of the cell contained in the tissue.
  • the tissue adhesive porous membrane 1 is firmly fixed to the tissue.
  • the tissue adhesive porous membrane 1 has a porous structure, it can absorb moisture in the living tissue. Thereby, the water
  • the hydrophobicity of the hydrophobic gelatin 10 is low, so that the anchoring effect of the hydrophobic functional group 11 cannot be sufficiently obtained, and the tissue adhesive porous The membrane 1 cannot be firmly fixed to the tissue.
  • FIG. 2 is a schematic view showing adhesion of the tissue adhesive porous membrane when the tissue adhesive porous membrane according to the first embodiment of the present invention is applied to a living tissue.
  • the hydrophobic functional group 11 having a certain molecular weight and size pierces the tissue 21 due to hydrophobic interaction (this is called anchoring).
  • anchoring the tissue adhesive porous membrane 1 is firmly fixed to the tissue 21.
  • FIG. 3 is a process diagram for explaining an example of a method for producing a tissue-adhesive porous membrane according to the first embodiment of the present invention.
  • the method for producing a tissue adhesive porous membrane according to the first embodiment of the present invention includes a hydrophobized gelatin-containing solution preparation step S1, a water-soluble organic solvent-containing hydrophobized gelatin crosslinked body forming step S2, and a water-containing hydrophobizing step. It has gelatin crosslinked body formation process S3 and structure
  • the hydrophobized gelatin is preferably prepared by the following hydrophobized gelatin synthesis step S21.
  • hydrophobized gelatin synthesis step S21 an organic molecule having a hydrophobic functional group is added to a solution in which gelatin is dissolved in the presence of triethylamine, and a part of the amino group of the side chain of the gelatin is substituted with the hydrophobic functional group. This is the step of synthesizing hydrophobic gelatin.
  • a gelatin having a molecular weight of hydrophobized gelatin of more than 50,000 and not more than 100,000 is selected.
  • an organic molecule having a hydrophobic functional group having reactivity with an amino group is mixed with gelatin dissolved in an organic solvent in the presence of triethylamine to prepare a mixed solution in a container.
  • a mixed solution for example, dimethyl sulfoxide (DMSO) is used as the organic solvent.
  • DMSO dimethyl sulfoxide
  • Examples of the organic molecule having a hydrophobic functional group having reactivity with an amino group include hexanoyl chloride represented by the following chemical formula (1).
  • Hydrophobized gelatin-containing solution preparation step S1 The hydrophobized gelatin is dissolved in a water-soluble organic solvent to prepare a hydrophobized gelatin-containing solution 51 in a container 50 as shown in FIG.
  • a water-soluble organic solvent examples include dimethyl sulfoxide (DMSO).
  • tissue-adhesive porous film forming step S4 The water-containing hydrophobized gelatin crosslinked body 58 is lyophilized. As a result, as shown in FIG. 3 (d), water molecules are removed, and a porous structure is formed which includes pores 10c1 between the plurality of hydrophobic gelatins 10 provided in the crosslinked structure of the hydrophobic gelatin 10. A tissue adhesive porous membrane 1 is formed.
  • FIG. 4 is a schematic view showing a tissue adhesive porous membrane according to a second embodiment of the present invention.
  • the tissue adhesive porous membrane 2 according to the second embodiment of the present invention is the tissue adhesive property according to the first embodiment of the present invention except that the porogen hole 10c2 is provided in addition to the void hole 10c1.
  • the configuration is the same as that of the porous membrane 1.
  • a porogen is a particle that serves as a template for a pore, and examples of the porogen material include NaCl, KCl, MgCl, ice, and polyethylene glycol.
  • a porogen hole is a hole provided in a crosslinked structure using porogen as a template. Since the porogen materials exemplified above are water-soluble, for example, when these porogen materials are used, in the production method described later, the water-soluble organic solvent of the hydrophobized gelatin crosslinked product containing the water-soluble organic solvent and the porogen is used. When replacing with water, the porogen dissolves in water, so that the porogen is easily removed from the hydrophobized gelatin crosslinked product. Thereby, the porogen hole 10c2 is formed in the tissue adhesive porous membrane 2.
  • the porogen hole 10c2 is a hole provided using porogen as a template, the porogen hole 10c2 is defined to have substantially the same shape and size as the porogen used. Further, by making the shape and size of each porogen the same, the shape and size of the porogen hole can be made the same.
  • FIG. 4 illustrates a spherical porogen hole.
  • the size of the porogen can be appropriately set according to the shape and size of the tissue-adhesive porous membrane to be produced, the type of gelatin serving as the main chain of the hydrophobized gelatin, the type of hydrophobic functional group, and the like. For example, a porogen having a particle size of 50 to 100 ⁇ m can be used.
  • FIG. 5 is a schematic view showing adhesion of the tissue adhesive porous membrane when the tissue adhesive porous membrane according to the second embodiment of the present invention is applied to a living tissue.
  • the tissue adhesive porous membrane 2 has the same configuration as that of the tissue adhesive porous membrane 1 according to the first embodiment of the present invention except that the porogen hole 10c2 is provided.
  • the tissue-adhesive porous membrane 2 absorbs moisture in the living tissue more effectively than the tissue-adhesive porous membrane 1 by providing the porogen hole 10c2, and the tissue-adhesive porous membrane 2 The moisture at the bonding site between the membrane 2 and the tissue 21 can be removed more effectively, and the tissue-adhesive porous membrane 2 can be physically and firmly bonded to the tissue 21.
  • Porogen-dispersed hydrophobized gelatin-containing solution preparation step S12 Porogen 62 is dispersed in the hydrophobized gelatin-containing solution 51 to prepare a porogen-dispersed hydrophobized gelatin-containing solution 60 in the container 50 as shown in FIG.
  • the porogen dispersed hydrophobized gelatin-containing solution 60 is cross-linked by adding a cross-linking agent or a condensing agent. Thereby, as shown in FIG.6 (c), the hydrophobized gelatin crosslinked body 63 containing a water-soluble organic solvent and a porogen is formed.
  • the hydrophobized gelatin cross-linked body 63 containing a water-soluble organic solvent and a porogen is formed by networking the hydrophobized gelatin 10 in the form of a network, and contains the water-soluble organic solvent 55 and the porogen 62.
  • the hydrophobized gelatin 10 is a hydrophobized gelatin molecular chain, and has a main chain made of gelatin and an amino group and a hydrophobic functional group in its side chain.
  • a hydrophobized gelatin cross-linked body 63 containing a water-soluble organic solvent and a porogen is immersed in a large excess of water. For example, put it in water. Thereby, as shown in FIG.6 (d), the water-soluble organic solvent 55 can be substituted by the water 20, and the unreacted crosslinking agent, the bridge
  • the porogen hole 10c2 is physically provided by dissolving and removing the porogen 62. Thereby, the water-containing hydrophobized gelatin crosslinked body 68 in which the porogen hole 10c2 is formed is formed.
  • tissue-adhesive porous film forming step S15 The water-containing hydrophobized gelatin crosslinked product 68 is lyophilized. Thereby, water is removed from the pores of the crosslinked structure, and the tissue adhesiveness having a porous structure composed of the void holes 10c1 and the porogen holes 10c2 between the plurality of hydrophobic gelatins 10 provided in the crosslinked structure of the hydrophobic gelatin 10 The porous membrane 2 can be obtained.
  • the tissue adhesive porous membranes 1 and 2 that are embodiments of the present invention may further contain a drug.
  • the porous membrane when used for tissue adhesion, not only firmly adheres to the tissue, but also can be treated with a drug.
  • Examples of the drug include cell differentiation inducer, anticancer agent, immunosuppressive agent, cell growth factor, cytokine, thrombin inhibitor, antithrombotic agent, thrombolytic agent, fibrinolytic agent, vasospasm inhibitor, calcium channel blocker , Vasodilator, antihypertensive, antibacterial, antibiotic, surface glycoprotein receptor inhibitor, antiplatelet agent, cytostatic, microtubule inhibitor, antisecretory, actin inhibitor, remodeling inhibitor, Antisense nucleotide, antimetabolite, antiproliferative substance, anticancer chemotherapeutic agent, anti-inflammatory steroid or non-steroidal anti-inflammatory agent, immunosuppressant, growth hormone antagonist, dopamine agonist, radiotherapy agent, peptide, Protein, enzyme, extracellular matrix component, inhibitor, free radical scavenger, chelating agent, antioxidant, antipolymer , Antiviral agents, mention may be made of photodynamic therapy, and one or more combinations selected from the gene therapy. By using these drugs, it is
  • tissue-adhesive porous membrane tape is formed by forming the tissue-adhesive porous membranes 1 and 2 into a strip shape. Thereby, according to the magnitude
  • Tissue-adhesive porous membranes 1 and 2 are membranes in which hydrophobic gelatin 10 is crosslinked and has a porous structure, and hydrophobic gelatin 10 is a part of amino group 12 of Lys. Is the gelatin 13 substituted with the hydrophobic functional group 11, so that the hydrophobic functional group 11 introduced into the gelatin simultaneously with the absorption of moisture contained in the tissue is driven (anchored) into the physical structure Strong bond can be formed, and the adhesive strength can be increased even in a wet environment. Moreover, since the tissue adhesive porous membrane 2 has a physical porous structure provided using porogen as a template, the adhesive strength can be increased by more effectively absorbing moisture contained in the tissue.
  • tissue-adhesive porous membranes 1 and 2 are characterized in that the porous structure becomes a scaffold for tissue regeneration after application to a living tissue. Moreover, since gelatin 13 is easily decomposed by an enzyme (collagenase) in the wound healing process, the biocompatibility of the tissue adhesive porous membranes 1 and 2 can be increased.
  • collagenase an enzyme
  • the tissue-adhesive porous membrane 1 has a structure in which the porous structure is composed of gap holes 10c1 between a plurality of hydrophobic gelatins 10 provided in a crosslinked structure of the hydrophobic gelatin 10.
  • the holes 10c1 can absorb water contained in the tissue, have high adhesive strength even in a moist environment and have an appropriate strength, and can easily enter the tissue and can be used as a scaffold excellent in tissue regeneration.
  • the porous structure is composed of a void hole 10c1 and a porogen hole 10c2 provided with a porogen as a template in the cross-linked structure.
  • the porogen hole 10c2 the water contained in the tissue can be absorbed more effectively, and can be used as a film having a high adhesive strength and an appropriate strength even in a wet environment, making the invasion of the tissue easier, It can be used as an excellent scaffold for tissue regeneration.
  • tissue-adhesive porous membranes 1 and 2 have a configuration in which the hydrophobic gelatin 10 is crosslinked by a crosslinking agent or a condensing agent, it can be insolubilized in water and the strength of the membrane can be increased.
  • a tissue-adhesive porous membrane having high adhesive strength and moderate strength even in a moist environment can be obtained.
  • the crosslinking agent or condensing agent is triscinimimidyl citrate, disuccinimidyl tartrate, disuccinimidyl malate, disuccinimidyls. Since it is composed of one or more of succinate, glutaraldehyde, formaldehyde, polyethylene glycol diglycidyl ether, genipin, and water-soluble carbodiimide, it can be insolubilized in water, increasing the strength of the film, and in a humid environment However, a tissue adhesive porous membrane having high adhesive strength and appropriate strength can be obtained.
  • tissue-adhesive porous membranes 1 and 2 have a structure in which the hydrophobic gelatin 10 is crosslinked by thermal crosslinking 14, so that it can be insolubilized in water, the strength of the membrane is increased, and the wetness is increased.
  • a tissue-adhesive porous membrane having high adhesive strength and moderate strength even in an environment can be obtained.
  • the hydrophobic functional group 11 is an ethyl group (carbon number 2), propyl group (carbon number 3), butyl group (carbon number) which is a saturated fatty acid.
  • the gelatin 13 is one or a combination of two or more of gelatin derived from human, pig, cow, tilapia and cod or genetically modified gelatin. Because of the structure, the strength of the film can be increased.
  • tissue-adhesive porous membranes 1 and 2 include a drug, the therapeutic effect on the tissue can be enhanced.
  • the drug is a cell differentiation inducer, anticancer agent, immunosuppressant, cell growth factor, cytokine, thrombin inhibitor, antithrombotic agent, thrombus Solubilizer, fibrinolytic agent, vasospasm inhibitor, calcium channel blocker, vasodilator, antihypertensive agent, antibacterial agent, antibiotic, surface glycoprotein receptor inhibitor, antiplatelet agent, cytostatic agent, micro Vascular inhibitor, antisecretory drug, actin inhibitor, remodeling inhibitor, antisense nucleotide, antimetabolite, antiproliferative substance, anticancer chemotherapeutic agent, anti-inflammatory steroid or non-steroidal anti-inflammatory drug, immunosuppression Drugs, growth hormone antagonists, dopamine agonists, radiation therapy drugs, peptides, proteins, enzymes, extracellular matrix components, inhibitors, free radical scavenges Since the composition is one or a combination of two or more selected from
  • the method for producing a tissue-adhesive porous membrane 1 includes a step of preparing hydrophobized gelatin-containing solution 51 by dissolving hydrophobized gelatin in a water-soluble organic solvent, and hydrophobized gelatin-containing solution 51.
  • the method for producing a tissue adhesive porous membrane 2 includes a step of preparing a hydrophobized gelatin-containing solution 51 by dissolving hydrophobized gelatin in a water-soluble organic solvent, and a hydrophobized gelatin-containing solution 51.
  • a step of forming a hydrophobized gelatin cross-linked body 63 containing water and a porogen, and the hydrophobized gelatin cross-linked body 63 containing a water-soluble organic solvent and a porogen is placed in water, and the water-soluble organic solvent is replaced with water.
  • the porogen is a particle made of any material of NaCl, KCl, MgCl, ice, and polyethylene glycol.
  • a porogen hole provided as a mold can be easily formed.
  • the method for producing tissue-adhesive porous membranes 1 and 2 according to an embodiment of the present invention has a structure in which the water-soluble organic solvent is dimethyl sulfoxide, so that a stable crosslinked structure can be formed and water can be easily replaced. .
  • tissue adhesive tape according to the embodiment of the present invention has a band-shaped configuration of the tissue adhesive porous membranes 1 and 2 described above, the cut portion of the intestine can be easily wound and left as it is. Thus, tissue adhesion can be achieved.
  • Example 1 (Production of tissue adhesive porous membrane) ⁇ Synthesis of hydrophobized AlGltn and confirmation of introduction rate>
  • AlGltn alkali-treated gelatin
  • the alkali-treated gelatin is gelatin obtained by converting asparagine and glutamine present in gelatin into aspartic acid and glutamic acid by deamidation.
  • Non-patent Document 1 hydrophobized AlGltn (Hx: C 6 ) was introduced by hydrophobizing alkali-treated gelatin (AlGltn) using Hexanoyl chloride. HxAlGltn) was prepared.
  • the 27HxAlGltn was mixed with AlGltn to prepare a relatively 25HxAlGltn (hereinafter referred to as 25 ′ (27) HxAlGltn).
  • 25 ′ (27) HxAlGltn was dissolved in a 10% lactic acid-DMSO mixed solvent at a content ratio of 25 w / v%, it had fluidity suitable for film formation. Therefore, a porous membrane was prepared using 25 w / v% 25 ′ (27) HxAlGltn / 10% lactic acid-DMSO.
  • TSC trisuccinimidyl citrate
  • 25 w / v% 25 ′ is used so that the molar ratio of the amino group of HxAlGltn to the succinimidyl group contained in TSC is 1: 1.
  • HxAlGltn / 10% lactic acid-DMSO 8 mL and TSC / 10% lactic acid-DMSO 2 mL were sufficiently mixed and stirred with a hand stirrer to obtain a 20 w / w% HxAlGltn solution.
  • Example 2 A tissue-adhesive porous membrane was prepared in the same manner as in Example 1 except that the weight ratio of the HxAlGltn solution and NaCl (particle size 250 to 500 ⁇ m: average particle size 375 ⁇ m) was 1: 1.
  • Example 3 A tissue-adhesive porous membrane was prepared in the same manner as in Example 1 except that the weight ratio of the HxAlGltn solution and NaCl (particle size 250 to 500 ⁇ m: average particle size 375 ⁇ m) was 1: 2.
  • Example 4 A tissue-adhesive porous membrane was prepared in the same manner as in Example 1 except that the weight ratio of the HxAlGltn solution and NaCl (particle size 250 to 500 ⁇ m: average particle size 375 ⁇ m) was 1: 3.
  • Example 5 A tissue-adhesive porous membrane was prepared in the same manner as in Example 1 except that the weight ratio of the HxAlGltn solution and NaCl (particle size 250 to 500 ⁇ m: average particle size 375 ⁇ m) was 1: 4.
  • FIG. 8 to 13 are electron micrographs of the tissue adhesive porous membranes of Examples 1 to 6.
  • FIG. 8 to 13 From these electron micrographs, it can be seen that a porous structure is formed and that more pores are present as the amount of NaCl mixed at the time of production increases.
  • the obtained gel-like DMSO / NaCl-containing AlGltn cross-linked product is released in ultrapure water cooled to 4 ° C. and immersed for 3 days while exchanging the ultrapure water in a large excess amount.
  • NaCl, lactic acid, DMSO, and N-hydroxysuccinimide, which is a cross-linking byproduct, were removed.
  • the obtained water-containing AlGltn crosslinked product was frozen at ⁇ 80 ° C. and dried under reduced pressure to obtain a porous membrane made of non-hydrophobized alkali-treated gelatin.
  • ⁇ Porosity and moisture content measurement> The porosity and moisture content were determined by punching a porous membrane swollen by immersing in water for a predetermined time to ⁇ 1 cm, W 2 : weight of moisture in the pores (the porous membrane after swelling), W 1 : in the pores Weight when not containing water (porous film before swelling), W 0 : Measured as weight when dried (porous film dried under vacuum after swelling), and calculated using the following equations (1) and (2) did.
  • FIG. 7 is a schematic diagram of an adhesion test between a tissue-adhesive porous membrane and porcine large intestine epidermis. As shown in FIG. 7, first, the tissue-adhesive porous membranes of Examples 1 to 6 punched to a diameter of 7 mm or the porous membranes of Comparative Examples 1 to 6 were placed on a plate set at 37 ° C. It was fixed with cello tape (registered trademark) punched to 4 mm.
  • cello tape registered trademark
  • the surface of the porcine large intestine epidermis fixed to the probe is brought into contact with the tissue adhesive porous membrane (or porous membrane) fixed on the plate, pressurized at 40 g / mm 2 for 3 minutes, and then at 10 mm / min.
  • a tensile test was performed. The experiment was performed three times, and the average value was taken as the measured value. The results are shown in FIG.
  • tissue adhesive porous membrane by immunostaining of CD34, ⁇ -SMA After the tissue adhesive porous membranes of Examples 2 and 5 and the porous membranes of Comparative Examples 2 and 5 were implanted subcutaneously in rats for 7 days, the tissue sections containing each porous membrane were subjected to CD34 and ⁇ -SMA. Immunostaining was performed using ( ⁇ smooth muscle actin), and evaluation was performed using Image J. In the evaluation, the total area of the portion immunostained in brown was defined as “Vessel-Area” and the field of view was defined as “Area”. The results are shown in FIG.
  • water-containing hydrophobized gelatin cross-linked product 60 ... porogen-dispersed hydrophobized gelatin-containing solution, 62 ... porogen, 63 ... water-soluble organic solvent And a hydrophobized gelatin cross-linked product containing porogen, 68... Water-containing hydrophobized gelatin cross-linked product in which porogen pores are formed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

This tissue adhesive porous film (1) is a film having a porous structure in which hydrophobized gelatin (10) is crosslinked, wherein the hydrophobized gelatin (10) is gelatin (13) in which a part of an amino group (12) of Lys is substituted with a hydrophobic functional group (11). By using this tissue adhesive porous film (1), a tissue adhesive film which has high adhesion strength to wet tissue and adequate strength, and a method for producing the same can be provided.

Description

組織接着性多孔質膜、その製造方法及び組織接着性多孔質膜テープTissue-adhesive porous membrane, method for producing the same, and tissue-adhesive porous membrane tape
 本発明は、組織接着性多孔質膜、その製造方法及び組織接着性多孔質膜テープに関する。 The present invention relates to a tissue adhesive porous membrane, a method for producing the same, and a tissue adhesive porous membrane tape.
 組織接着膜は、消化器外科、心臓血管外科等の手術の際、腸、血管、皮膚等の生体組織(以下、「組織」ともいう。)に接着が可能な高分子膜である。これを腸、血管等の吻合部に適用することにより、内容物の漏出等を防止でき、手術の安全性を高めることができる。 The tissue adhesive film is a polymer film capable of adhering to a living tissue (hereinafter also referred to as “tissue”) such as intestine, blood vessel, and skin during operations such as digestive surgery and cardiovascular surgery. By applying this to an anastomosis such as an intestine or a blood vessel, leakage of contents can be prevented, and the safety of surgery can be improved.
 組織を接着する生体材料には、大きく分けて、シアノアクリレート系組織接着剤、バイオポリマーとアルデヒド系架橋剤からなる組織接着剤及びフィブリン系の組織接着剤および組織接着膜の3種類がある。
 これらの組織接着剤および組織接着膜はいずれも、接着強度と生体親和性のいずれかの特性が十分ではなかった。
There are roughly three types of biomaterials for adhering tissues: cyanoacrylate-based tissue adhesives, tissue adhesives composed of biopolymers and aldehyde-based crosslinking agents, fibrin-based tissue adhesives, and tissue adhesive films.
None of these tissue adhesives and tissue adhesive films have sufficient properties of either adhesive strength or biocompatibility.
 フィブリン系の組織接着剤および組織接着膜においては、ヒト血液を原料とした血液製剤であるため、医薬品の分類となり、承認認可の面で多大な労力を必要とする。また、医薬品分類となった場合には、認可後も、使用履歴を20年間継続して残さねばならず、多大な労力を必要とするという課題があった。 Since fibrin-based tissue adhesives and tissue adhesive films are blood products that use human blood as a raw material, they are classified as pharmaceuticals and require a great deal of effort in terms of approval. Moreover, when it became a pharmaceutical classification | category, after authorization, the usage history must be continued for 20 years, and there existed a subject that a great effort was required.
 一方、非血液製剤であるゼラチン(gelatin)をスクシンイミド化ポリ-L-グルタミン酸により架橋して調製する医用材料(特許文献1)及びゼラチン又はコラーゲン(Collagen)から作成される組織接着フィルム(特許文献2)や、粒子形態の重合性および/または架橋性の材料と、粒子状材料とが混合された組織接着構成物(特許文献3)並びに側鎖にアルキル基を導入したゼラチンが報告されている。しかし、これらはいずれも、湿潤組織に対する接着力が十分でないという課題がある。 On the other hand, a tissue adhesive film prepared from a medical material (Patent Document 1) prepared by cross-linking gelatin, which is a non-blood preparation, with succinimidated poly-L-glutamic acid (Patent Document 1) and gelatin or Collagen (Patent Document 2) ), A tissue adhesive composition (Patent Document 3) in which a polymerizable and / or crosslinkable material in the form of particles and a particulate material are mixed, and gelatin having an alkyl group introduced in the side chain have been reported. However, all of these have a problem that the adhesive force to the wet tissue is not sufficient.
 このような状況下、湿潤組織に対して接着強度が高く適度な強度を持つ組織接着膜が求められている。これまで、疎水化ゼラチンを用いた医療用フィルムが湿潤組織に対し接着性を示すことが明らかとなっているが、湿潤組織から十分に水分を吸収できず、医療用フィルム自身が膨潤してしまい、短時間で剥離してしまう場合があることが懸念されていた(非特許文献2)。 Under such circumstances, there is a demand for a tissue adhesive film having high adhesive strength and appropriate strength with respect to wet tissue. Until now, it has been clarified that medical films using hydrophobized gelatin show adhesiveness to wet tissues, but water cannot be sufficiently absorbed from the wet tissues, and the medical film itself swells. There has been a concern that peeling may occur in a short time (Non-Patent Document 2).
特開平9―103479号公報JP-A-9-103479 特開2008-284256号公報JP 2008-284256 A 特表2006-523113号公報Special table 2006-523113 gazette
 本発明は、湿潤組織に対する接着強度が高く適度な強度を持つ組織接着膜及びその製造方法を提供することを課題とする。 An object of the present invention is to provide a tissue adhesive film having a high adhesive strength to a wet tissue and an appropriate strength, and a method for producing the same.
 本発明者は、ゼラチンのアミノ基に疎水基を導入した疎水化ゼラチンを含み、多孔質である組織接着性多孔質膜を調製することで、湿潤組織から十分に水分を吸収し、湿潤組織に対して接着強度が高く、かつ、適度な強度を持つ組織接着膜及びその製造方法を提供することができることを発見し、本発明を完成した。
 本発明は、以下の構成を有する。
The inventors of the present invention have prepared a porous tissue-adhesive porous membrane containing a hydrophobicized gelatin in which a hydrophobic group is introduced into the amino group of gelatin, thereby sufficiently absorbing moisture from the wet tissue, On the other hand, it was discovered that a tissue adhesive film having high adhesive strength and appropriate strength and a method for producing the same can be provided, and the present invention has been completed.
The present invention has the following configuration.
(1)疎水化ゼラチンが架橋され、多孔質構造を有する膜であって、前記疎水化ゼラチンが、Lysのアミノ基の一部が疎水性官能基で置換されているゼラチンであることを特徴とする組織接着性多孔質膜。 (1) A membrane in which hydrophobic gelatin is crosslinked and has a porous structure, wherein the hydrophobic gelatin is gelatin in which a part of the amino group of Lys is substituted with a hydrophobic functional group Tissue-adhesive porous membrane.
(2)前記多孔質構造が、前記疎水化ゼラチンの架橋構造に設けられた複数の疎水化ゼラチン間の空隙孔からなることを特徴とする(1)に記載の組織接着性多孔質膜。
(3)前記多孔質構造が、前記疎水化ゼラチンの架橋構造に設けられた複数の疎水化ゼラチン間の空隙孔と、前記架橋構造にポロゲンを鋳型として設けられたポロゲン孔とからなることを特徴とする(1)に記載の組織接着性多孔質膜。
(4)前記ポロゲン孔が、粒径が50~100μmであるポロゲンを鋳型として設けられたものであることを特徴とする(3)に記載の組織接着性多孔質膜。
(2) The tissue-adhesive porous membrane according to (1), wherein the porous structure is composed of pores between a plurality of hydrophobic gelatins provided in the crosslinked structure of the hydrophobic gelatin.
(3) The porous structure includes voids between a plurality of hydrophobic gelatins provided in the crosslinked structure of the hydrophobic gelatin, and porogen holes provided in the crosslinked structure using a porogen as a template. The tissue-adhesive porous membrane according to (1).
(4) The tissue-adhesive porous membrane according to (3), wherein the porogen pores are provided using a porogen having a particle size of 50 to 100 μm as a template.
(5)前記疎水化ゼラチンが、架橋剤又は縮合剤により架橋されていることを特徴とする(1)~(3)のいずれかに記載の組織接着性多孔質膜。
(6)前記架橋剤又は縮合剤が、トリスクシンイミジルシトレート、ジスクシンイミジルタータレート、ジスクシンイミジルマレート、ジスクシンイミジルスクシネート、グルタルアルデヒド、ホルムアルデヒド、ポリエチレングリコールジグリシジルエーテル、ゲニピン、水溶性カルボジイミドの1種または2種以上の組み合わせであることを特徴とする(5)に記載の組織接着性多孔質膜。
(7)前記疎水化ゼラチンが、熱架橋により架橋されていることを特徴とする(1)~(3)のいずれかに記載の組織接着性多孔質膜。
(5) The tissue adhesive porous membrane according to any one of (1) to (3), wherein the hydrophobic gelatin is crosslinked with a crosslinking agent or a condensing agent.
(6) The cross-linking agent or condensing agent is trisuccinimidyl citrate, disuccinimidyl tartrate, disuccinimidyl malate, disuccinimidyl succinate, glutaraldehyde, formaldehyde, polyethylene glycol diglycidyl ether, genipin The tissue-adhesive porous membrane according to (5), which is one or a combination of two or more water-soluble carbodiimides.
(7) The tissue adhesive porous membrane according to any one of (1) to (3), wherein the hydrophobized gelatin is crosslinked by thermal crosslinking.
(8)前記疎水性官能基が、飽和脂肪酸であるエチル基(炭素数2)、プロピル基(炭素数3)、ブチル基(炭素数4)、ペンチル基(炭素数5)、ヘキサノイル基(炭素数6)、ヘプタノイル基(炭素数7)、オクタノイル基(炭素数8)、ノナノイル基(炭素数9)、デカノイル基(炭素数10)、ウンデカノイル基(炭素数11)、ドデカノイル基(炭素数12)、トリデカノイル基(炭素数13)、テトラデカノイル基(炭素数14)、ペンタデカノイル基(炭素数15)、ヘキサデカノイル基(炭素数16)、ヘプタデカノイル基(炭素数17)、ステアロイル基(炭素数18)、分岐型飽和脂肪酸であるイソプロピル基(炭素数3)、イソブチル基(炭素数4)、イソペンチル基(炭素数5)、イソヘキサノイル基(炭素数6)、イソヘプタノイル基(炭素数7)、イソオクタノイル基(炭素数8)、イソノナノイル基(炭素数9)、イソデカノイル基(炭素数10)、イソウンデカノイル基(炭素数11)、イソドデカノイル基(炭素数12)、イソトリデカノイル基(炭素数13)、イソテトラデカノイル基(炭素数14)、イソペンタデカノイル基(炭素数15)、イソヘキサデカノイル基(炭素数16)、イソパルミチル基(炭素数16)、イソヘプタデカノイル基(炭素数17)、イソステアロイル基(炭素数18)、不飽和脂肪酸であるオレイル基(炭素数18、不飽和炭素1個)、リノレニル基(炭素数18、不飽和炭素2個)、α-リノレニル基(炭素数18、不飽和炭素3個)、細胞膜成分であるコレステリル基の1種または2種以上の組み合わせであることを特徴とする(1)に記載の組織接着性多孔質膜。 (8) The hydrophobic functional group is a saturated fatty acid ethyl group (carbon number 2), propyl group (carbon number 3), butyl group (carbon number 4), pentyl group (carbon number 5), hexanoyl group (carbon 6), heptanoyl group (carbon number 7), octanoyl group (carbon number 8), nonanoyl group (carbon number 9), decanoyl group (carbon number 10), undecanoyl group (carbon number 11), dodecanoyl group (carbon number 12) ), Tridecanoyl group (carbon number 13), tetradecanoyl group (carbon number 14), pentadecanoyl group (carbon number 15), hexadecanoyl group (carbon number 16), heptadecanoyl group (carbon number 17), stearoyl group (18 carbon atoms), branched saturated fatty acid isopropyl group (3 carbon atoms), isobutyl group (4 carbon atoms), isopentyl group (5 carbon atoms), isohexanoyl group (6 carbon atoms) Isoheptanoyl group (7 carbon atoms), isooctanoyl group (8 carbon atoms), isononanoyl group (9 carbon atoms), isodecanoyl group (10 carbon atoms), isoundecanoyl group (11 carbon atoms), isododecanoyl group (12 carbon atoms) , Isotridecanoyl group (carbon number 13), isotetradecanoyl group (carbon number 14), isopentadecanoyl group (carbon number 15), isohexadecanoyl group (carbon number 16), isopalmityl group (carbon number) 16), isoheptadecanoyl group (carbon number 17), isostearoyl group (carbon number 18), unsaturated fatty acid oleyl group (carbon number 18, unsaturated carbon 1), linolenyl group (carbon number 18, non-carbon) Saturated carbon 2), α-linolenyl group (18 carbon atoms, 3 unsaturated carbons), cholesteryl group which is a cell membrane component, or a combination of two or more The tissue-adhesive porous membrane according to (1), which is characterized in that it exists.
(9)前記ゼラチンが、ヒト、ブタ、ウシ、ティラピア、タラ由来のゼラチン又は遺伝子組換えゼラチンの1種または2種以上の組み合わせであることを特徴とする(1)に記載の組織接着性多孔質膜。
(10)前記組織接着性多孔質膜が薬剤を含むことを特徴とする(1)~(9)のいずれかに記載の組織接着性多孔質膜。
(11)前記薬剤が、細胞分化誘導剤、抗ガン剤、免疫抑制剤、細胞成長因子、サイトカイン、トロンビン阻害薬、抗血栓薬、血栓溶解剤、線維素溶解薬、血管痙攣阻害薬、カルシウムチャネル遮断薬、血管拡張薬、高血圧治療薬、抗菌薬、抗生物質、表面糖タンパク質受容体阻害薬、抗血小板薬、細胞分裂抑制薬、微小管阻害薬、抗分泌薬、アクチン阻害薬、リモデリング阻害薬、アンチセンス・ヌクレオチド、代謝拮抗剤、抗増殖性物質、抗癌化学治療薬、抗炎症性ステロイドまたは非ステロイド抗炎症薬、免疫抑制剤、成長ホルモン・アンタゴニスト、ドーパミン・アゴニスト、放射線治療薬、ペプチド、タンパク質、酵素、細胞外マトリックス成分、阻害薬、フリーラジカル・スカベンジャー、キレート剤、抗酸化剤、抗ポリメラーゼ、抗ウィルス薬、光力学治療薬、および遺伝子治療薬から選ばれる1種または2種以上の組み合わせであることを特徴とする(10)に記載の組織接着性多孔質膜。
(9) The tissue adhesive porous material according to (1), wherein the gelatin is one or a combination of two or more of gelatin derived from human, pig, cow, tilapia, cod or genetically modified gelatin The membrane.
(10) The tissue adhesive porous membrane according to any one of (1) to (9), wherein the tissue adhesive porous membrane contains a drug.
(11) The agent is a cell differentiation inducer, anticancer agent, immunosuppressant, cell growth factor, cytokine, thrombin inhibitor, antithrombotic agent, thrombolytic agent, fibrinolytic agent, vasospasm inhibitor, calcium channel Blocking agents, vasodilators, antihypertensive agents, antibacterial agents, antibiotics, surface glycoprotein receptor inhibitors, antiplatelet agents, cytostatics, microtubule inhibitors, antisecretory agents, actin inhibitors, remodeling inhibitors Drugs, antisense nucleotides, antimetabolites, antiproliferative substances, anticancer chemotherapeutic drugs, anti-inflammatory steroids or non-steroidal anti-inflammatory drugs, immunosuppressants, growth hormone antagonists, dopamine agonists, radiotherapy drugs, Peptides, proteins, enzymes, extracellular matrix components, inhibitors, free radical scavengers, chelators, antioxidants, antipolymers , Antiviral agents, photodynamic therapy agents, and one or a combination of two or more thereof, characterized in (10) tissue adhesive porous membrane according to selected from gene therapy.
(12)疎水化ゼラチンを水溶性有機溶媒に溶解させて、疎水化ゼラチン含有溶液を調製する工程と、前記疎水化ゼラチン含有溶液に架橋剤又は縮合剤を入れて疎水化ゼラチンを架橋して水溶性有機溶媒含有疎水化ゼラチン架橋体を形成する工程と、前記水溶性有機溶媒含有疎水化ゼラチン架橋体を水中に入れて、水溶性有機溶媒を水に置換して、水含有疎水化ゼラチン架橋体を形成する工程と、前記水含有疎水化ゼラチン架橋体を凍結乾燥して組織接着性多孔質膜を形成する工程と、を有することを特徴とする組織接着性多孔質膜の製造方法。 (12) A step of dissolving hydrophobized gelatin in a water-soluble organic solvent to prepare a hydrophobized gelatin-containing solution, and adding a cross-linking agent or a condensing agent to the hydrophobized gelatin-containing solution to cross-link the hydrophobized gelatin to make water Forming a water-soluble organic solvent-containing hydrophobized gelatin cross-linked body, placing the water-soluble organic solvent-containing hydrophobized gelatin cross-linked body in water, substituting the water-soluble organic solvent with water, and water-containing hydrophobized gelatin cross-linked body And a step of lyophilizing the water-containing hydrophobized gelatin cross-linked body to form a tissue-adhesive porous membrane. A method for producing a tissue-adhesive porous membrane comprising the steps of:
(13)疎水化ゼラチンを水溶性有機溶媒に溶解させて、疎水化ゼラチン含有溶液を調製する工程と、前記疎水化ゼラチン含有溶液にポロゲンを分散させて、ポロゲン分散疎水化ゼラチン含有溶液を調製する工程と、前記ポロゲン分散疎水化ゼラチン含有溶液に架橋剤又は縮合剤を入れて疎水化ゼラチンを架橋して水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体を形成する工程と、前記水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体を水中に入れて、水溶性有機溶媒を水に置換し、かつポロゲンを溶解、除去して、ポロゲン孔が形成された水含有疎水化ゼラチン架橋体を形成する工程と、前記ポロゲン孔が形成された水含有疎水化ゼラチン架橋体を凍結乾燥して組織接着性多孔質膜を形成する工程と、を有することを特徴とする組織接着性多孔質膜の製造方法。 (13) A step of dissolving hydrophobized gelatin in a water-soluble organic solvent to prepare a hydrophobized gelatin-containing solution, and dispersing a porogen in the hydrophobized gelatin-containing solution to prepare a porogen-dispersed hydrophobized gelatin-containing solution A step of adding a cross-linking agent or a condensing agent to the porogen-dispersed hydrophobized gelatin-containing solution to cross-link the hydrophobized gelatin to form a hydrophobized gelatin cross-linked body containing a water-soluble organic solvent and a porogen; Water-containing hydrophobized gelatin in which porogen pores are formed by placing a hydrophobized gelatin cross-linker containing a water-soluble organic solvent and a porogen into water, replacing the water-soluble organic solvent with water, and dissolving and removing the porogen A step of forming a crosslinked body, and a step of lyophilizing the water-containing hydrophobized gelatin crosslinked body in which the porogen pores are formed to form a tissue-adhesive porous membrane. Method for producing a tissue adhesive porous membrane characterized by and.
(14)前記ポロゲンがNaCl、KCl、MgCl、氷、ポリエチレングリコールのいずれかの材料からなる粒子であることを特徴とする(13)に記載の組織接着性多孔質膜の製造方法。
(15)前記水溶性有機溶媒がジメチルスルホキシドであることを特徴とする(12)又は(13)に記載の組織接着性多孔質膜の製造方法。
(16)(1)~(11)のいずれかに記載の組織接着性多孔質膜を帯状としたことを特徴とする組織接着性多孔質膜テープ。
(14) The method for producing a tissue-adhesive porous membrane according to (13), wherein the porogen is particles made of any material of NaCl, KCl, MgCl, ice, and polyethylene glycol.
(15) The method for producing a tissue-adhesive porous membrane according to (12) or (13), wherein the water-soluble organic solvent is dimethyl sulfoxide.
(16) A tissue-adhesive porous membrane tape, characterized in that the tissue-adhesive porous membrane according to any one of (1) to (11) is formed into a strip shape.
 本発明の組織接着性多孔質膜は、疎水化ゼラチンが架橋され、多孔質構造を有する膜であって、前記疎水化ゼラチンが、Lysのアミノ基の一部が疎水性官能基で置換されているゼラチンである構成なので、組織に含まれる水分の吸収と同時にゼラチンに導入した疎水性官能基を組織および細胞膜に打ち込んで(アンカーリングして)物理的に強固な結合を形成させることができ、湿潤環境下でも接着強度を高くすることができる。また、ポロゲンを鋳型として設けられた物理的多孔構造を持っているため組織に含まれる水分をより効果的に吸収することにより接着強度を高くすることができる。更に、生体組織への適用後は、多孔質構造が組織再生への足場となるという特徴がある。また、前記ゼラチンは創傷治癒過程において酵素(コラゲナーゼ)により容易に分解されるため、多孔質膜の生体親和性を高くすることができる。 The tissue-adhesive porous membrane of the present invention is a membrane in which hydrophobic gelatin is crosslinked and has a porous structure, wherein the hydrophobic gelatin has a portion of the amino group of Lys substituted with a hydrophobic functional group. Since the structure is gelatin, the hydrophobic functional group introduced into the gelatin simultaneously with the absorption of moisture contained in the tissue can be driven into the tissue and cell membrane (anchoring) to form a physically strong bond, The adhesive strength can be increased even in a humid environment. Moreover, since it has a physical porous structure provided using porogen as a template, it can increase the adhesive strength by more effectively absorbing the moisture contained in the tissue. Furthermore, after application to a living tissue, the porous structure is a scaffold for tissue regeneration. In addition, since the gelatin is easily degraded by an enzyme (collagenase) in the wound healing process, the biocompatibility of the porous membrane can be increased.
 本発明の組織接着性多孔質膜の製造方法は、疎水化ゼラチンを水溶性有機溶媒に溶解させて、疎水化ゼラチン含有溶液を調製する工程と、前記疎水化ゼラチン含有溶液に架橋剤又は縮合剤を入れて疎水化ゼラチンを架橋して水溶性有機溶媒含有疎水化ゼラチン架橋体を形成する工程と、前記水溶性有機溶媒含有疎水化ゼラチン架橋体を水中に入れて、水溶性有機溶媒を水に置換して、水含有疎水化ゼラチン架橋体を形成する工程と、前記水含有疎水化ゼラチン架橋体を凍結乾燥して組織接着性多孔質膜を形成する工程と、を有する構成なので、湿潤環境下でも接着強度が高く適度な強度を持つ組織接着性多孔質膜を容易に製造できる。 The method for producing a tissue-adhesive porous membrane of the present invention comprises a step of preparing a hydrophobized gelatin-containing solution by dissolving hydrophobized gelatin in a water-soluble organic solvent, and a crosslinking agent or a condensing agent in the hydrophobized gelatin-containing solution. And forming a water-soluble organic solvent-containing hydrophobized gelatin cross-linked body by cross-linking the hydrophobized gelatin, and placing the water-soluble organic solvent-containing hydrophobized gelatin cross-linked body in water, And a step of forming a water-containing hydrophobized gelatin cross-linked body and a step of lyophilizing the water-containing hydrophobized gelatin cross-linked body to form a tissue-adhesive porous membrane. However, it is possible to easily produce a tissue-adhesive porous membrane having high adhesive strength and appropriate strength.
 本発明の組織接着性多孔質膜の製造方法は、疎水化ゼラチンを水溶性有機溶媒に溶解させて、疎水化ゼラチン含有溶液を調製する工程と、前記疎水化ゼラチン含有溶液にポロゲンを分散させて、ポロゲン分散疎水化ゼラチン含有溶液を調製する工程と、前記ポロゲン分散疎水化ゼラチン含有溶液に架橋剤又は縮合剤を入れて疎水化ゼラチンを架橋して水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体を形成する工程と、前記水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体を水中に入れて、水溶性有機溶媒を水に置換し、かつポロゲンを溶解、除去して、ポロゲン孔が形成された水含有疎水化ゼラチン架橋体を形成する工程と、前記ポロゲン孔が形成された水含有疎水化ゼラチン架橋体を凍結乾燥して組織接着性多孔質膜を形成する工程と、を有する構成なので、ポロゲンを鋳型として設けられた物理的多孔構造を持っているため組織に含まれる水分を吸収することにより接着強度を高くすることができ、湿潤環境下でも接着強度が高く適度な強度を持つ組織接着性多孔質膜を容易に製造できる。 The method for producing a tissue-adhesive porous membrane of the present invention comprises a step of dissolving a hydrophobic gelatin in a water-soluble organic solvent to prepare a hydrophobic gelatin-containing solution, and dispersing a porogen in the hydrophobic gelatin-containing solution. A step of preparing a porogen-dispersed hydrophobized gelatin-containing solution, and a hydrophobizing agent containing a water-soluble organic solvent and a porogen by cross-linking the hydrophobized gelatin by adding a cross-linking agent or a condensing agent to the porogen-dispersed hydrophobized gelatin-containing solution. A step of forming a gelatin cross-linked product, and the hydrophobized gelatin cross-linked product containing the water-soluble organic solvent and porogen is placed in water, the water-soluble organic solvent is replaced with water, and the porogen is dissolved and removed. A step of forming a water-containing hydrophobized gelatin cross-linked body having porogen pores formed thereon, and a tissue adhesive property by freeze-drying the water-containing hydrophobized gelatin cross-linked body having porogen pores formed therein Since the structure has a step of forming a porous membrane, it has a physical porous structure provided with porogen as a template, so it can increase the adhesive strength by absorbing moisture contained in the tissue, and is wet A tissue-adhesive porous membrane having high adhesive strength and moderate strength can be easily produced even under an environment.
 本発明の組織接着性多孔質膜テープは、先に記載の組織接着性多孔質膜を帯状とした構成なので、腸の切断部などを容易に巻くことができ、そのまま放置することにより、組織接着させることができる。 Since the tissue-adhesive porous membrane tape of the present invention has a structure in which the tissue-adhesive porous membrane described above is formed in a strip shape, the cut portion of the intestine can be easily wound, and the tissue adhesive can be obtained by leaving it as it is. Can be made.
本発明の第1の実施形態である組織接着性多孔質膜を示す概略図である。It is the schematic which shows the structure | tissue adhesive porous membrane which is the 1st Embodiment of this invention. 本発明の第1の実施形態である組織接着性多孔質膜を生体組織に適用した際の組織接着性多孔質膜の接着を示す概略図である。It is the schematic which shows adhesion | attachment of the tissue adhesive porous membrane at the time of applying the tissue adhesive porous membrane which is the 1st Embodiment of this invention to a biological tissue. 本発明の第1の実施形態である組織接着性多孔質膜の製造方法の一例を説明する工程図である。It is process drawing explaining an example of the manufacturing method of the structure | tissue adhesive porous membrane which is the 1st Embodiment of this invention. 本発明の第2の実施形態である組織接着性多孔質膜を示す概略図である。It is the schematic which shows the structure | tissue adhesive porous membrane which is the 2nd Embodiment of this invention. 本発明の第2の実施形態である組織接着性多孔質膜を生体組織に適用した際の組織接着性多孔質膜の接着を示す概略図である。It is the schematic which shows adhesion | attachment of the tissue adhesive porous membrane at the time of applying the tissue adhesive porous membrane which is the 2nd Embodiment of this invention to a biological tissue. 本発明の第2の実施形態である組織接着性多孔質膜の製造方法の一例を説明する工程図である。It is process drawing explaining an example of the manufacturing method of the structure | tissue adhesive porous membrane which is the 2nd Embodiment of this invention. 組織接着性多孔質膜とブタ大腸表皮との接着試験の概略図である。It is the schematic of the adhesion test of a tissue adhesive porous membrane and porcine large intestine epidermis. 実施例1の組織接着性多孔質膜の断面の電子顕微鏡写真である。2 is an electron micrograph of a cross section of the tissue adhesive porous membrane of Example 1. FIG. 実施例2の組織接着性多孔質膜の表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of the tissue adhesive porous membrane of Example 2. FIG. 実施例3の組織接着性多孔質膜の表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of the tissue adhesive porous membrane of Example 3. FIG. 実施例4の組織接着性多孔質膜の表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of the tissue-adhesive porous membrane of Example 4. 実施例5の組織接着性多孔質膜の表面の電子顕微鏡写真である。6 is an electron micrograph of the surface of a tissue adhesive porous membrane of Example 5. FIG. 実施例6の組織接着性多孔質膜の表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of the tissue adhesive porous membrane of Example 6. FIG. 比較例1の多孔質膜の断面の電子顕微鏡写真である。4 is an electron micrograph of a cross section of a porous film of Comparative Example 1. 比較例2の多孔質膜の表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of a porous film of Comparative Example 2. 比較例3の多孔質膜の表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of a porous film in Comparative Example 3. 比較例4の多孔質膜の表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of a porous film in Comparative Example 4. 比較例5の多孔質膜の表面の電子顕微鏡写真である。6 is an electron micrograph of the surface of a porous membrane of Comparative Example 5. 比較例6の多孔質膜の表面の電子顕微鏡写真である。6 is an electron micrograph of the surface of a porous membrane in Comparative Example 6. 実施例13~17の組織接着性多孔質膜の断面の電子顕微鏡写真である。2 is an electron micrograph of a cross section of a tissue adhesive porous membrane of Examples 13 to 17. 実施例13~17の組織接着性多孔質膜の表面の電子顕微鏡写真である。2 is an electron micrograph of the surface of a tissue-adhesive porous membrane of Examples 13 to 17. 疎水化ゼラチンにおける疎水性官能基の鎖長に関して、実施例7~12の組織接着性多孔質膜及び比較例11の多孔質膜とブタ大腸表皮との接着試験の結果を示すグラフである。6 is a graph showing the results of adhesion tests between the tissue adhesive porous membranes of Examples 7 to 12 and the porous membrane of Comparative Example 11 and the porcine large intestine epidermis with respect to the chain length of the hydrophobic functional group in the hydrophobized gelatin. ポロゲンであるNaClの粒径に関して、実施例13~17の組織接着性多孔質膜及び比較例7~11の多孔質膜とブタ大腸表皮との接着試験の結果を示すグラフである。FIG. 7 is a graph showing the results of an adhesion test between the tissue adhesive porous membranes of Examples 13 to 17 and the porous membranes of Comparative Examples 7 to 11 and the porcine large intestine epidermis with respect to the particle size of NaCl, which is a porogen. 実施例13~17の組織接着性多孔質膜及び比較例7~11の多孔質膜の吸水速度試験の結果を示すグラフである。6 is a graph showing the results of water absorption rate tests of the tissue adhesive porous membranes of Examples 13 to 17 and the porous membranes of Comparative Examples 7 to 11. 実施例1~6の組織接着性多孔質膜及び比較例1~6の多孔質膜のL929細胞培養試験の結果を示すグラフである。6 is a graph showing the results of L929 cell culture tests of the tissue adhesive porous membranes of Examples 1 to 6 and the porous membranes of Comparative Examples 1 to 6. 実施例1~6の組織接着性多孔質膜及び比較例1~6の多孔質膜上でのL929細胞の伸展の様子を示す顕微鏡写真である。2 is a photomicrograph showing the extension of L929 cells on the tissue adhesive porous membranes of Examples 1 to 6 and the porous membranes of Comparative Examples 1 to 6. 実施例2、5の組織接着性多孔質膜及び比較例2、5の多孔質膜を用いた血管新生評価の結果を示すグラフである。It is a graph which shows the result of angiogenesis evaluation using the tissue adhesive porous membrane of Examples 2 and 5 and the porous membrane of Comparative Examples 2 and 5.
(本発明の実施形態)
 以下、添付図面を参照しながら、本発明の実施形態である組織接着性多孔質膜、その製造方法及び組織接着性多孔質膜テープについて説明する。
(Embodiment of the present invention)
Hereinafter, a tissue-adhesive porous membrane, a production method thereof, and a tissue-adhesive porous membrane tape that are embodiments of the present invention will be described with reference to the accompanying drawings.
(本発明の第1の実施形態)
<組織接着性多孔質膜>
 まず、本発明の第1の実施形態である組織接着性多孔質膜について説明する。
 図1は、本発明の第1の実施形態である組織接着性多孔質膜を示す概略図である。
 図1に示すように、組織接着性多孔質膜1は、疎水化ゼラチン10が架橋され、複数の孔10c1からなる多孔質構造を有する膜である。組織接着性多孔質膜1は、疎水化ゼラチン10のみが膜状に集積されてなる。
 組織接着性多孔質膜1の形状は、例えば、平面視略矩形状である。膜の一面と他面はそれぞれ平坦な面とされている。組織接着性多孔質膜1の大きさは特に限られるものではないが、例えば、一辺の長さが8mm、厚さが100μmの膜とすることができる。
 しかし、組織接着性多孔質膜1の形状はこれに限られるものではなく、平面視略円形状であってもよく、平面視略楕円形状であってもよい。
(First embodiment of the present invention)
<Tissue-adhesive porous membrane>
First, the tissue adhesive porous membrane which is the 1st Embodiment of this invention is demonstrated.
FIG. 1 is a schematic view showing a tissue-adhesive porous membrane according to the first embodiment of the present invention.
As shown in FIG. 1, the tissue adhesive porous membrane 1 is a membrane having a porous structure in which a hydrophobic gelatin 10 is cross-linked and is composed of a plurality of holes 10c1. The tissue adhesive porous membrane 1 is formed by integrating only the hydrophobic gelatin 10 into a film shape.
The shape of the tissue adhesive porous membrane 1 is, for example, a substantially rectangular shape in plan view. One side and the other side of the film are each flat. The size of the tissue adhesive porous membrane 1 is not particularly limited. For example, the tissue adhesive porous membrane 1 may be a membrane having a side length of 8 mm and a thickness of 100 μm.
However, the shape of the tissue adhesive porous membrane 1 is not limited to this, and may be a substantially circular shape in plan view or a substantially elliptical shape in plan view.
 疎水化ゼラチン10は、ゼラチンからなる主鎖13と、その側鎖にアミノ基12と疎水性官能基11とを備えている。ゼラチン骨格を用いることにより、創傷治癒過程において酵素により容易に分解させることができ、多孔質膜の生体親和性を高くできる。
 疎水化ゼラチン10は、アミノ酸として含まれるLysのアミノ基12の一部が疎水性官能基11で置換されているゼラチンである。
The hydrophobized gelatin 10 has a main chain 13 made of gelatin, an amino group 12 and a hydrophobic functional group 11 on its side chain. By using the gelatin skeleton, it can be easily decomposed by an enzyme in the wound healing process, and the biocompatibility of the porous membrane can be increased.
The hydrophobized gelatin 10 is gelatin in which a part of the amino group 12 of Lys contained as an amino acid is substituted with a hydrophobic functional group 11.
 Lysは、タンパク質を構成するα-アミノ酸の一つであり、必須アミノ酸である。Lysは、側鎖にε-アミノ基を持つアミノ酸である。
 Lysのアミノ基の一部は、公知の方法により、疎水性官能基11で容易に置換できる。本実施形態では、一般に公知の方法を利用して、疎水化ゼラチン10のLysのアミノ基12の一部は疎水性官能基11で置換されている。
Lys is one of the α-amino acids constituting the protein and is an essential amino acid. Lys is an amino acid having an ε-amino group in the side chain.
A part of the amino group of Lys can be easily substituted with the hydrophobic functional group 11 by a known method. In this embodiment, a part of the Lys amino group 12 of the hydrophobized gelatin 10 is substituted with the hydrophobic functional group 11 using a generally known method.
 主鎖13となるゼラチンとしては、例えば、ヒト、ブタ、ウシ、ティラピア、タラ由来のゼラチン及び遺伝子組換えゼラチンを挙げることができる。これらのゼラチンの1種または2種以上の組み合わせを用いてもよい。 Examples of gelatin to be the main chain 13 include human, porcine, bovine, tilapia, cod-derived gelatin and genetically modified gelatin. One or a combination of two or more of these gelatins may be used.
 疎水化ゼラチン10の分子量は、50000超100000以下であることが好ましく、60000超100000以下がより好ましく、70000超100000以下が更に好ましい。疎水化ゼラチン10の分子量をこの範囲とすることによって、多孔質膜の強度を実用に耐え得る程度に保持することができるとともに、ゼラチンからなる主鎖の移動の自由度を高め、後述する疎水性官能基11の組織へのアンカーリングの自由度も高めることができ、組織に対する多孔質膜の接着強度を向上させることができる。
 疎水化ゼラチン10の分子量が50000以下の場合には、多孔質膜としての強度が低く、形状を維持することが難しい。
The molecular weight of the hydrophobized gelatin 10 is preferably more than 50,000 and less than 100,000, more preferably more than 60,000 and less than 100,000, and still more preferably more than 70,000 and less than 100,000. By making the molecular weight of the hydrophobized gelatin 10 within this range, the strength of the porous membrane can be maintained to a level that can be practically used, and the degree of freedom of movement of the main chain made of gelatin is increased, and the hydrophobicity described later The degree of freedom of anchoring of the functional group 11 to the tissue can be increased, and the adhesion strength of the porous membrane to the tissue can be improved.
When the molecular weight of the hydrophobized gelatin 10 is 50000 or less, the strength as a porous film is low and it is difficult to maintain the shape.
 組織接着性多孔質膜1は、複数の孔10c1からなる多孔質構造を有している。孔10c1の形状は特に限定されず、様々な形状の孔を含む。また、孔径は、組織に含まれる水分を効率よく吸収するために、30μm以上500μm以下が好ましく、50μm以上100μm以下がより好ましい。多孔質構造は、疎水化ゼラチン10の架橋構造に設けられた複数の疎水化ゼラチン10間の空隙孔10c1からなる。 The tissue adhesive porous membrane 1 has a porous structure composed of a plurality of holes 10c1. The shape of the hole 10c1 is not particularly limited, and includes holes having various shapes. The pore diameter is preferably 30 μm or more and 500 μm or less, and more preferably 50 μm or more and 100 μm or less in order to efficiently absorb moisture contained in the tissue. The porous structure is composed of gap holes 10 c 1 between the plurality of hydrophobic gelatins 10 provided in the crosslinked structure of the hydrophobic gelatin 10.
 本実施形態では、疎水化ゼラチン10が、架橋剤又は縮合剤により架橋されていることが好ましい。
 架橋剤又は縮合剤としては、トリスクシンイミジルシトレート、ジスクシンイミジルタータレート、ジスクシンイミジルマレート、ジスクシンイミジルスクシネート、グルタルアルデヒド、ホルムアルデヒド、ポリエチレングリコールジグリシジルエーテル、ゲニピン、水溶性カルボジイミドの1種または2種以上の組み合わせを挙げることができる。
In this embodiment, it is preferable that the hydrophobized gelatin 10 is crosslinked by a crosslinking agent or a condensing agent.
Cross-linking agents or condensing agents include trisuccinimidyl citrate, disuccinimidyl tartrate, disuccinimidyl malate, disuccinimidyl succinate, glutaraldehyde, formaldehyde, polyethylene glycol diglycidyl ether, genipin, water-soluble One type or a combination of two or more types of carbodiimides can be mentioned.
 疎水性官能基11としては、飽和脂肪酸であるエチル基(炭素数2)、プロピル基(炭素数3)、ブチル基(炭素数4)、ペンチル基(炭素数5)、ヘキサノイル基(炭素数6)、ヘプタノイル基(炭素数7)、オクタノイル基(炭素数8)、ノナノイル基(炭素数9)、デカノイル基(炭素数10)、ウンデカノイル基(炭素数11)、ドデカノイル基(炭素数12)、トリデカノイル基(炭素数13)、テトラデカノイル基(炭素数14)、ペンタデカノイル基(炭素数15)、ヘキサデカノイル基(炭素数16)、ヘプタデカノイル基(炭素数17)、ステアロイル基(炭素数18)、分岐型飽和脂肪酸であるイソプロピル基(炭素数3)、イソブチル基(炭素数4)、イソペンチル基(炭素数5)、イソヘキサノイル基(炭素数6)、イソヘプタノイル基(炭素数7)、イソオクタノイル基(炭素数8)、イソノナノイル基(炭素数9)、イソデカノイル基(炭素数10)、イソウンデカノイル基(炭素数11)、イソドデカノイル基(炭素数12)、イソトリデカノイル基(炭素数13)、イソテトラデカノイル基(炭素数14)、イソペンタデカノイル基(炭素数15)、イソヘキサデカノイル基(炭素数16)、イソパルミチル基(炭素数16)、イソヘプタデカノイル基(炭素数17)、イソステアロイル基(炭素数18)、不飽和脂肪酸であるオレイル基(炭素数18、不飽和炭素1個)、リノレニル基(炭素数18、不飽和炭素2個)、α-リノレニル基(炭素数18、不飽和炭素3個)、細胞膜成分であるコレステリル基の1種または2種以上の組み合わせを挙げることができる。 As the hydrophobic functional group 11, an ethyl group (2 carbon atoms), a propyl group (3 carbon atoms), a butyl group (4 carbon atoms), a pentyl group (5 carbon atoms), a hexanoyl group (6 carbon atoms), which are saturated fatty acids. ), Heptanoyl group (carbon number 7), octanoyl group (carbon number 8), nonanoyl group (carbon number 9), decanoyl group (carbon number 10), undecanoyl group (carbon number 11), dodecanoyl group (carbon number 12), Tridecanoyl group (carbon number 13), tetradecanoyl group (carbon number 14), pentadecanoyl group (carbon number 15), hexadecanoyl group (carbon number 16), heptadecanoyl group (carbon number 17), stearoyl group (carbon) 18), isopropyl group (carbon number 3), isobutyl group (carbon number 4), isopentyl group (carbon number 5), isohexanoyl group (carbon number 6) which are branched saturated fatty acids , Isoheptanoyl group (carbon number 7), isooctanoyl group (carbon number 8), isononanoyl group (carbon number 9), isodecanoyl group (carbon number 10), isoundecanoyl group (carbon number 11), isododecanoyl group (carbon number 12) ), Isotridecanoyl group (carbon number 13), isotetradecanoyl group (carbon number 14), isopentadecanoyl group (carbon number 15), isohexadecanoyl group (carbon number 16), isopalmityl group (carbon) 16), isoheptadecanoyl group (17 carbon atoms), isostearoyl group (18 carbon atoms), oleyl group (18 carbon atoms, 1 unsaturated carbon) which is an unsaturated fatty acid, linolenyl group (18 carbon atoms, 2 or more unsaturated carbon atoms), α-linolenyl group (18 carbon atoms, 3 unsaturated carbon atoms), one or a combination of two or more cholesteryl groups that are cell membrane components Can be mentioned.
 本実施形態では、疎水化ゼラチン10は、熱架橋14により架橋されていることが好ましい。疎水化ゼラチン10を熱架橋すると、疎水化ゼラチン10内に、直鎖状の高分子間を連結するペプチド結合が形成される。これにより、水に対して不溶化でき、膜の強度が高められ、湿潤環境下でも接着強度が高く適度な強度を持つ組織接着性多孔質膜とすることができる。 In the present embodiment, the hydrophobized gelatin 10 is preferably cross-linked by thermal cross-linking 14. When the hydrophobized gelatin 10 is thermally cross-linked, peptide bonds that link the linear polymers are formed in the hydrophobized gelatin 10. Thereby, it can be insolubilized in water, the strength of the membrane is increased, and a tissue-adhesive porous membrane having high adhesive strength and appropriate strength even in a wet environment can be obtained.
 組織接着性多孔質膜1を生体組織に貼付すると、疎水化ゼラチン10に導入した疎水性官能基11が、組織中に含まれる細胞外マトリックスの疎水性ドメインおよび細胞の脂質二分子膜にアンカーリングすることにより、組織接着性多孔質膜1が組織に強固に固定される。
 また、組織接着性多孔質膜1は多孔質構造を有しているので、生体組織中の水分を吸収することができる。これにより、組織接着性多孔質膜1と生体組織との接着面において水分が除去されることにより、組織接着性多孔質膜1の組織への接着がより強固なものとなる。
 疎水性官能基11の鎖長が短い場合(炭素数1以下)、疎水化ゼラチン10の疎水性度が低いため、疎水性官能基11のアンカーリング効果が十分に得られず、組織接着性多孔質膜1を組織に強固に固定することはできない。
When the tissue-adhesive porous membrane 1 is affixed to a living tissue, the hydrophobic functional group 11 introduced into the hydrophobic gelatin 10 anchors to the hydrophobic domain of the extracellular matrix and the lipid bilayer of the cell contained in the tissue. By doing so, the tissue adhesive porous membrane 1 is firmly fixed to the tissue.
Moreover, since the tissue adhesive porous membrane 1 has a porous structure, it can absorb moisture in the living tissue. Thereby, the water | moisture content is removed in the adhesive surface of the tissue adhesive porous membrane 1 and a biological tissue, and the adhesion | attachment to the structure | tissue of the tissue adhesive porous membrane 1 becomes stronger.
When the chain length of the hydrophobic functional group 11 is short (1 or less carbon atoms), the hydrophobicity of the hydrophobic gelatin 10 is low, so that the anchoring effect of the hydrophobic functional group 11 cannot be sufficiently obtained, and the tissue adhesive porous The membrane 1 cannot be firmly fixed to the tissue.
<本実施形態の組織接着性多孔質膜を用いた組織への接着性について>
 次に、本発明の第1の実施形態の組織接着性多孔質膜を用いた組織への接着性について説明する。
 図2は、本発明の第1の実施形態である組織接着性多孔質膜を生体組織に適用した際の組織接着性多孔質膜の接着を示す概略図である。
 図2に示すように、疎水的な相互作用により、一定の分子量及び大きさを有する疎水性官能基11が組織21に突き刺さっている(これをアンカーリングという)。これにより、組織接着性多孔質膜1は、強固に組織21に固定される。
 また、多孔質構造を有する組織接着性多孔質膜1の孔10c内に生体組織中の水分を吸収することで、組織接着性多孔質膜1と組織21との接着部位の水分が除去される。これにより、組織接着性多孔質膜1は、物理的に強固に組織21に接着することができる。
 なお、アンカーリングしていない疎水性官能基11も存在する。
<Adhesion to tissue using tissue-adhesive porous membrane of this embodiment>
Next, the adhesiveness to the tissue using the tissue adhesive porous membrane of the first embodiment of the present invention will be described.
FIG. 2 is a schematic view showing adhesion of the tissue adhesive porous membrane when the tissue adhesive porous membrane according to the first embodiment of the present invention is applied to a living tissue.
As shown in FIG. 2, the hydrophobic functional group 11 having a certain molecular weight and size pierces the tissue 21 due to hydrophobic interaction (this is called anchoring). Thereby, the tissue adhesive porous membrane 1 is firmly fixed to the tissue 21.
Moreover, the water | moisture content of a biological tissue is absorbed in the hole 10c of the tissue adhesive porous membrane 1 which has a porous structure, and the water | moisture content of the adhesion | attachment site | part of the tissue adhesive porous membrane 1 and the structure | tissue 21 is removed. . Thereby, the tissue adhesive porous membrane 1 can be physically and firmly adhered to the tissue 21.
There are also hydrophobic functional groups 11 that are not anchored.
 組織接着性多孔質膜1の両面を利用して2つの組織を接着する場合には、接着操作は、組織21の一面に、組織接着性多孔質膜1の一面を貼り付けてから、組織接着性多孔質膜1の他面に別の組織を貼り付けて、室温で放置するだけである。
 放置時間は、組織接着性多孔質膜1が組織21内の水分を吸収するのに十分な時間であり、組織接着性多孔質膜1中の疎水化ゼラチン10の主鎖13となるゼラチンの種類、疎水性官能基11の種類等によって適宜設定する。例えば、3分程度とすることができる。
When two tissues are bonded using both surfaces of the tissue adhesive porous membrane 1, the bonding operation is performed by attaching one surface of the tissue adhesive porous membrane 1 to one surface of the tissue 21 and then bonding the tissue. It is only necessary to attach another structure to the other surface of the porous porous membrane 1 and leave it at room temperature.
The standing time is a time sufficient for the tissue-adhesive porous membrane 1 to absorb moisture in the tissue 21, and the kind of gelatin that becomes the main chain 13 of the hydrophobic gelatin 10 in the tissue-adhesive porous membrane 1 Depending on the type of the hydrophobic functional group 11, etc. For example, it can be about 3 minutes.
<本発明の第1の実施形態である組織接着性多孔質膜の製造方法>
 次に、本発明の第1の実施形態である組織接着性多孔質膜の製造方法について説明する。
 図3は、本発明の第1の実施形態である組織接着性多孔質膜の製造方法の一例を説明する工程図である。
 本発明の第1の実施形態である組織接着性多孔質膜の製造方法は、疎水化ゼラチン含有溶液調製工程S1と、水溶性有機溶媒含有疎水化ゼラチン架橋体形成工程S2と、水含有疎水化ゼラチン架橋体形成工程S3と、組織接着性多孔質膜形成工程S4とを有する。なお、疎水化ゼラチンは次の疎水化ゼラチン合成工程S21により作成することが好ましい。
<The manufacturing method of the structure | tissue adhesive porous membrane which is the 1st Embodiment of this invention>
Next, the manufacturing method of the tissue adhesive porous membrane which is the 1st Embodiment of this invention is demonstrated.
FIG. 3 is a process diagram for explaining an example of a method for producing a tissue-adhesive porous membrane according to the first embodiment of the present invention.
The method for producing a tissue adhesive porous membrane according to the first embodiment of the present invention includes a hydrophobized gelatin-containing solution preparation step S1, a water-soluble organic solvent-containing hydrophobized gelatin crosslinked body forming step S2, and a water-containing hydrophobizing step. It has gelatin crosslinked body formation process S3 and structure | tissue adhesive porous film formation process S4. The hydrophobized gelatin is preferably prepared by the following hydrophobized gelatin synthesis step S21.
(疎水化ゼラチン合成工程S21)
 疎水化ゼラチン合成工程S21は、ゼラチンを溶解させた溶液にトリエチルアミン存在下で疎水性官能基を有する有機分子を添加し、前記ゼラチンの側鎖のアミノ基の一部を前記疎水性官能基で置換して、疎水化ゼラチンを合成する工程である。
 なお、前記ゼラチンとしては、疎水化ゼラチンの分子量が50000超100000以下となるものを選択する。
(Hydrophobic gelatin synthesis step S21)
In the hydrophobized gelatin synthesis step S21, an organic molecule having a hydrophobic functional group is added to a solution in which gelatin is dissolved in the presence of triethylamine, and a part of the amino group of the side chain of the gelatin is substituted with the hydrophobic functional group. This is the step of synthesizing hydrophobic gelatin.
As the gelatin, a gelatin having a molecular weight of hydrophobized gelatin of more than 50,000 and not more than 100,000 is selected.
 まず、有機溶媒に溶解したゼラチンにトリエチルアミン存在下で、アミノ基に反応性を有する疎水性官能基を有する有機分子を混合して、混合溶液を容器に調製する。
 有機溶媒としては、例えば、ジメチルスルホキシド(DMSO)を用いる。
 アミノ基に反応性を有する疎水性官能基を有する有機分子としては、例えば、下記化学式(1)に示すヘキサノイルクロライドを挙げることができる。
First, an organic molecule having a hydrophobic functional group having reactivity with an amino group is mixed with gelatin dissolved in an organic solvent in the presence of triethylamine to prepare a mixed solution in a container.
For example, dimethyl sulfoxide (DMSO) is used as the organic solvent.
Examples of the organic molecule having a hydrophobic functional group having reactivity with an amino group include hexanoyl chloride represented by the following chemical formula (1).
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 次に、前記混合溶液を、不活性ガス雰囲気下、加熱し、攪拌する。例えば、窒素雰囲気下、加熱温度は80℃とし、攪拌時間は一昼夜とする。
 次に、この混合溶液を、氷冷したエタノール溶媒中に滴下する。次に、この溶液をガラスフィルター等で濾過する。
 更に、濾過物を有機溶媒で洗浄する。これにより、濾過物中の不純物を除去することができ、疎水化ゼラチンの純度を向上させることができる。この洗浄用の有機溶媒としては、例えば、エタノールを用いる。
 以上の工程により、ゼラチンの側鎖のアミノ基の一部を疎水性官能基で置換した疎水化ゼラチンを合成できる。
Next, the mixed solution is heated and stirred in an inert gas atmosphere. For example, under a nitrogen atmosphere, the heating temperature is 80 ° C., and the stirring time is day and night.
Next, this mixed solution is dropped into an ice-cooled ethanol solvent. Next, this solution is filtered with a glass filter or the like.
Further, the filtrate is washed with an organic solvent. Thereby, impurities in the filtrate can be removed, and the purity of the hydrophobized gelatin can be improved. As the organic solvent for washing, for example, ethanol is used.
Through the above steps, hydrophobic gelatin in which a part of the amino group of the side chain of gelatin is substituted with a hydrophobic functional group can be synthesized.
(疎水化ゼラチン含有溶液調製工程S1)
 前記疎水化ゼラチンを水溶性有機溶媒に溶解させて、図3(a)に示すように、容器50中で、疎水化ゼラチン含有溶液51を調製する。水溶性有機溶媒としては、ジメチルスルホキシド(DMSO)を挙げることができる。
(Hydrophobized gelatin-containing solution preparation step S1)
The hydrophobized gelatin is dissolved in a water-soluble organic solvent to prepare a hydrophobized gelatin-containing solution 51 in a container 50 as shown in FIG. Examples of the water-soluble organic solvent include dimethyl sulfoxide (DMSO).
(水溶性有機溶媒含有疎水化ゼラチン架橋体形成工程S2)
 疎水化ゼラチン含有溶液51に架橋剤又は縮合剤を入れて架橋する。これにより、図3(b)に示すように、疎水化ゼラチン10を架橋して水溶性有機溶媒含有疎水化ゼラチン架橋体53を形成する。水溶性有機溶媒含有疎水化ゼラチン架橋体53は、疎水化ゼラチン10が網の目状にネットワーク化されてなり、水溶性有機溶媒55を含有している。疎水化ゼラチン10は疎水化ゼラチン分子鎖であり、ゼラチンからなる主鎖と、その側鎖にアミノ基と疎水性官能基とを備えている。
(Water-soluble organic solvent-containing hydrophobized gelatin crosslinked product forming step S2)
The hydrophobized gelatin-containing solution 51 is cross-linked by adding a cross-linking agent or a condensing agent. Thereby, as shown in FIG. 3B, the hydrophobized gelatin 10 is cross-linked to form a water-soluble organic solvent-containing hydrophobized gelatin cross-linked body 53. The water-soluble organic solvent-containing hydrophobized gelatin cross-linked body 53 is obtained by forming the hydrophobized gelatin 10 into a network and contains a water-soluble organic solvent 55. The hydrophobized gelatin 10 is a hydrophobized gelatin molecular chain, and has a main chain made of gelatin and an amino group and a hydrophobic functional group in its side chain.
(水含有疎水化ゼラチン架橋体形成工程S3)
 水溶性有機溶媒含有疎水化ゼラチン架橋体53を大過剰の水へ浸漬する。例えば、水中に入れる。これにより、図3(c)に示すように、水溶性有機溶媒含有疎水化ゼラチン架橋体53の水溶性有機溶媒55を水20に置換して、水含有疎水化ゼラチン架橋体58を形成する。このとき、水溶性有機溶媒55の他、未反応の架橋剤や、架橋副生成物が除去される。
(Water-containing hydrophobized gelatin crosslinked product forming step S3)
The water-soluble organic solvent-containing hydrophobized gelatin cross-linked body 53 is immersed in a large excess of water. For example, put it in water. As a result, as shown in FIG. 3C, the water-soluble organic solvent 55 of the water-soluble organic solvent-containing hydrophobized gelatin cross-linked body 53 is replaced with water 20 to form a water-containing hydrophobized gelatin cross-linked body 58. At this time, in addition to the water-soluble organic solvent 55, an unreacted crosslinking agent and a crosslinked byproduct are removed.
(組織接着性多孔質膜形成工程S4)
 水含有疎水化ゼラチン架橋体58を凍結乾燥する。これにより、図3(d)に示すように、水分子が除去され、疎水化ゼラチン10の架橋構造に設けられた複数の疎水化ゼラチン10間の空隙孔10c1からなる多孔質構造が形成され、組織接着性多孔質膜1が形成される。
(Tissue-adhesive porous film forming step S4)
The water-containing hydrophobized gelatin crosslinked body 58 is lyophilized. As a result, as shown in FIG. 3 (d), water molecules are removed, and a porous structure is formed which includes pores 10c1 between the plurality of hydrophobic gelatins 10 provided in the crosslinked structure of the hydrophobic gelatin 10. A tissue adhesive porous membrane 1 is formed.
(本発明の第2の実施形態)
<本発明の第2の実施形態である組織接着性多孔質膜>
 まず、本発明の第2の実施形態である組織接着性多孔質膜について説明する。
 図4は、本発明の第2の実施形態である組織接着性多孔質膜を示す概略図である。
 本発明の第2の実施形態である組織接着性多孔質膜2は、空隙孔10c1に加えて、ポロゲン孔10c2が設けられている他は、本発明の第1の実施形態である組織接着性多孔質膜1と同様の構成である。
(Second embodiment of the present invention)
<Tissue-adhesive porous membrane according to the second embodiment of the present invention>
First, the tissue adhesive porous membrane which is the 2nd Embodiment of this invention is demonstrated.
FIG. 4 is a schematic view showing a tissue adhesive porous membrane according to a second embodiment of the present invention.
The tissue adhesive porous membrane 2 according to the second embodiment of the present invention is the tissue adhesive property according to the first embodiment of the present invention except that the porogen hole 10c2 is provided in addition to the void hole 10c1. The configuration is the same as that of the porous membrane 1.
 ポロゲン(progen)とは、孔の鋳型となる粒子のことであり、ポロゲンの材料としては、NaCl、KCl、MgCl、氷、ポリエチレングリコールを挙げることができる。
 ポロゲン孔とは、ポロゲンを鋳型として架橋構造に設けられた孔である。
 上記で例示したポロゲン材料は水溶性なので、例えば、これらのポロゲン材料を用いる場合には、後述する製造方法において、水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体の水溶性有機溶媒を水に置換する際に、ポロゲンが水中に溶解することで、疎水化ゼラチン架橋体からポロゲンが容易に除去される。これにより、組織接着性多孔質膜2にポロゲン孔10c2が形成される。
A porogen is a particle that serves as a template for a pore, and examples of the porogen material include NaCl, KCl, MgCl, ice, and polyethylene glycol.
A porogen hole is a hole provided in a crosslinked structure using porogen as a template.
Since the porogen materials exemplified above are water-soluble, for example, when these porogen materials are used, in the production method described later, the water-soluble organic solvent of the hydrophobized gelatin crosslinked product containing the water-soluble organic solvent and the porogen is used. When replacing with water, the porogen dissolves in water, so that the porogen is easily removed from the hydrophobized gelatin crosslinked product. Thereby, the porogen hole 10c2 is formed in the tissue adhesive porous membrane 2.
 ポロゲン孔10c2は、ポロゲンを鋳型として設けられた孔であるので、用いたポロゲンの形状とほぼ同一の形状、大きさに規定されている。また、各ポロゲンの形状、大きさを同一とすることにより、ポロゲン孔の形状及び大きさを同一にできる。図4では、球状のポロゲン孔を例示している。しかし、ポロゲン孔の形状はこれに限られるものではない。
 ポロゲンの大きさは、作製する組織接着性多孔質膜の形状や大きさ、疎水化ゼラチンの主鎖となるゼラチンの種類、疎水性官能基の種類等に応じて適宜設定することができる。例えば、粒径が50~100μmであるポロゲンを用いることができる。
Since the porogen hole 10c2 is a hole provided using porogen as a template, the porogen hole 10c2 is defined to have substantially the same shape and size as the porogen used. Further, by making the shape and size of each porogen the same, the shape and size of the porogen hole can be made the same. FIG. 4 illustrates a spherical porogen hole. However, the shape of the porogen hole is not limited to this.
The size of the porogen can be appropriately set according to the shape and size of the tissue-adhesive porous membrane to be produced, the type of gelatin serving as the main chain of the hydrophobized gelatin, the type of hydrophobic functional group, and the like. For example, a porogen having a particle size of 50 to 100 μm can be used.
<本実施形態の組織接着性多孔質膜を用いた組織への接着性について>
 次に、本発明の第2の実施形態の組織接着性多孔質膜を用いた組織への接着性について説明する。
 図5は、本発明の第2の実施形態である組織接着性多孔質膜を生体組織に適用した際の組織接着性多孔質膜の接着を示す概略図である。
 組織接着性多孔質膜2は、ポロゲン孔10c2が設けられている他は、本発明の第1の実施形態である組織接着性多孔質膜1と同様の構成である。
 組織接着性多孔質膜2は、ポロゲン孔10c2が設けられていることにより、組織接着性多孔質膜1に比べて、生体組織中の水分をより効果的に吸収して、組織接着性多孔質膜2と組織21との接着部位の水分をより効果的に除去することができ、組織接着性多孔質膜2は物理的により強固に組織21に接着することができる。
<Adhesion to tissue using tissue-adhesive porous membrane of this embodiment>
Next, the adhesiveness to the tissue using the tissue adhesive porous membrane of the second embodiment of the present invention will be described.
FIG. 5 is a schematic view showing adhesion of the tissue adhesive porous membrane when the tissue adhesive porous membrane according to the second embodiment of the present invention is applied to a living tissue.
The tissue adhesive porous membrane 2 has the same configuration as that of the tissue adhesive porous membrane 1 according to the first embodiment of the present invention except that the porogen hole 10c2 is provided.
The tissue-adhesive porous membrane 2 absorbs moisture in the living tissue more effectively than the tissue-adhesive porous membrane 1 by providing the porogen hole 10c2, and the tissue-adhesive porous membrane 2 The moisture at the bonding site between the membrane 2 and the tissue 21 can be removed more effectively, and the tissue-adhesive porous membrane 2 can be physically and firmly bonded to the tissue 21.
<本発明の第2の実施形態である組織接着性多孔質膜の製造方法>
 次に、本発明の第2の実施形態である組織接着性多孔質膜の製造方法について説明する。
 図6は、本発明の第2の実施形態である組織接着性多孔質膜の製造方法の一例を説明する工程図である。
 本発明の第2の実施形態である組織接着性多孔質膜の製造方法は、疎水化ゼラチン含有溶液調製工程S11と、ポロゲン分散疎水化ゼラチン含有溶液調製工程S12と、水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体形成工程S13と、ポロゲン孔が形成された水含有疎水化ゼラチン架橋体形成工程S14と、組織接着性多孔質膜形成工程S15とを有する。
<The manufacturing method of the tissue adhesive porous membrane which is the 2nd Embodiment of this invention>
Next, the manufacturing method of the tissue adhesive porous membrane which is the 2nd Embodiment of this invention is demonstrated.
FIG. 6 is a process diagram for explaining an example of a method for producing a tissue-adhesive porous membrane according to the second embodiment of the present invention.
The method for producing a tissue adhesive porous membrane according to the second embodiment of the present invention includes a hydrophobic gelatin-containing solution preparation step S11, a porogen-dispersed hydrophobic gelatin-containing solution preparation step S12, a water-soluble organic solvent, and a porogen. Hydrophobized gelatin crosslinked body forming step S13, water-containing hydrophobized gelatin crosslinked body forming step S14 in which porogen pores are formed, and tissue-adhesive porous membrane forming step S15.
(疎水化ゼラチン含有溶液調製工程S11)
 疎水化ゼラチンを水溶性有機溶媒に溶解させて、図6(a)に示すように、容器50中に、疎水化ゼラチン含有溶液51を調製する。水溶性有機溶媒としては、ジメチルスルホキシド(DMSO)を挙げることができる。
(Hydrophobized gelatin-containing solution preparation step S11)
Hydrophobized gelatin is dissolved in a water-soluble organic solvent to prepare a hydrophobized gelatin-containing solution 51 in a container 50 as shown in FIG. Examples of the water-soluble organic solvent include dimethyl sulfoxide (DMSO).
(ポロゲン分散疎水化ゼラチン含有溶液調製工程S12)
 疎水化ゼラチン含有溶液51にポロゲン62を分散させて、図6(b)に示すように、容器50中に、ポロゲン分散疎水化ゼラチン含有溶液60を調製する。
(Porogen-dispersed hydrophobized gelatin-containing solution preparation step S12)
Porogen 62 is dispersed in the hydrophobized gelatin-containing solution 51 to prepare a porogen-dispersed hydrophobized gelatin-containing solution 60 in the container 50 as shown in FIG.
(水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体形成工程S13)
 ポロゲン分散疎水化ゼラチン含有溶液60に架橋剤又は縮合剤を入れて架橋する。これにより、図6(c)に示すように、水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体63を形成する。水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体63は、疎水化ゼラチン10が網の目状にネットワーク化されてなり、水溶性有機溶媒55及びポロゲン62を含有している。疎水化ゼラチン10は疎水化ゼラチン分子鎖であり、ゼラチンからなる主鎖と、その側鎖にアミノ基と疎水性官能基とを備えている。
(Hydrophobized gelatin cross-linking body forming step S13 containing a water-soluble organic solvent and a porogen)
The porogen dispersed hydrophobized gelatin-containing solution 60 is cross-linked by adding a cross-linking agent or a condensing agent. Thereby, as shown in FIG.6 (c), the hydrophobized gelatin crosslinked body 63 containing a water-soluble organic solvent and a porogen is formed. The hydrophobized gelatin cross-linked body 63 containing a water-soluble organic solvent and a porogen is formed by networking the hydrophobized gelatin 10 in the form of a network, and contains the water-soluble organic solvent 55 and the porogen 62. The hydrophobized gelatin 10 is a hydrophobized gelatin molecular chain, and has a main chain made of gelatin and an amino group and a hydrophobic functional group in its side chain.
(ポロゲン孔が形成された水含有疎水化ゼラチン架橋体形成工程S14)
 水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体63を大過剰の水に浸漬する。例えば、水中に入れる。これにより、図6(d)に示すように、水溶性有機溶媒55を水20に置換することができ、未反応の架橋剤、架橋副生成物およびポロゲン62を溶解・除去することができる。ポロゲン62の溶解・除去により、物理的に、ポロゲン孔10c2が設けられる。これにより、ポロゲン孔10c2が形成された水含有疎水化ゼラチン架橋体68が形成される。ポロゲン孔10c2が形成された水含有疎水化ゼラチン架橋体68は、疎水化ゼラチン10の疎水化ゼラチン分子鎖の間に水20を含有するとともに、ポロゲン孔10c2内に水20を含有している。
(Water-containing hydrophobized gelatin crosslinked product forming step S14 in which porogen pores are formed)
A hydrophobized gelatin cross-linked body 63 containing a water-soluble organic solvent and a porogen is immersed in a large excess of water. For example, put it in water. Thereby, as shown in FIG.6 (d), the water-soluble organic solvent 55 can be substituted by the water 20, and the unreacted crosslinking agent, the bridge | crosslinking by-product, and the porogen 62 can be melt | dissolved and removed. The porogen hole 10c2 is physically provided by dissolving and removing the porogen 62. Thereby, the water-containing hydrophobized gelatin crosslinked body 68 in which the porogen hole 10c2 is formed is formed. The water-containing hydrophobized gelatin cross-linked body 68 in which the porogen hole 10c2 is formed contains water 20 between the hydrophobized gelatin molecular chains of the hydrophobized gelatin 10, and also contains water 20 in the porogen hole 10c2.
(組織接着性多孔質膜形成工程S15)
 水含有疎水化ゼラチン架橋体68を凍結乾燥する。これにより、架橋構造の孔から水が除去され、疎水化ゼラチン10の架橋構造に設けられた複数の疎水化ゼラチン10間の空隙孔10c1とポロゲン孔10c2とからなる多孔質構造を有する組織接着性多孔質膜2を得ることができる。
(Tissue-adhesive porous film forming step S15)
The water-containing hydrophobized gelatin crosslinked product 68 is lyophilized. Thereby, water is removed from the pores of the crosslinked structure, and the tissue adhesiveness having a porous structure composed of the void holes 10c1 and the porogen holes 10c2 between the plurality of hydrophobic gelatins 10 provided in the crosslinked structure of the hydrophobic gelatin 10 The porous membrane 2 can be obtained.
 なお、本発明の実施形態である組織接着性多孔質膜1、2には、更に、薬剤を含ませても良い。これにより、組織接着に用いたときに、多孔質膜が組織に強固に接着するだけでなく、薬剤による治療を行うことができる。 The tissue adhesive porous membranes 1 and 2 that are embodiments of the present invention may further contain a drug. Thereby, when used for tissue adhesion, the porous membrane not only firmly adheres to the tissue, but also can be treated with a drug.
 前記薬剤としては、細胞分化誘導剤、抗ガン剤、免疫抑制剤、細胞成長因子、サイトカイン、トロンビン阻害薬、抗血栓薬、血栓溶解剤、線維素溶解薬、血管痙攣阻害薬、カルシウムチャネル遮断薬、血管拡張薬、高血圧治療薬、抗菌薬、抗生物質、表面糖タンパク質受容体阻害薬、抗血小板薬、細胞分裂抑制薬、微小管阻害薬、抗分泌薬、アクチン阻害薬、リモデリング阻害薬、アンチセンス・ヌクレオチド、代謝拮抗剤、抗増殖性物質、抗癌化学治療薬、抗炎症性ステロイドまたは非ステロイド抗炎症薬、免疫抑制剤、成長ホルモン・アンタゴニスト、ドーパミン・アゴニスト、放射線治療薬、ペプチド、タンパク質、酵素、細胞外マトリックス成分、阻害薬、フリーラジカル・スカベンジャー、キレート剤、抗酸化剤、抗ポリメラーゼ、抗ウィルス薬、光力学治療薬、および遺伝子治療薬から選ばれる1種または2種以上の組み合わせを挙げることができる。これらの薬剤を用いることにより、組織に対して適切に治療することができる。 Examples of the drug include cell differentiation inducer, anticancer agent, immunosuppressive agent, cell growth factor, cytokine, thrombin inhibitor, antithrombotic agent, thrombolytic agent, fibrinolytic agent, vasospasm inhibitor, calcium channel blocker , Vasodilator, antihypertensive, antibacterial, antibiotic, surface glycoprotein receptor inhibitor, antiplatelet agent, cytostatic, microtubule inhibitor, antisecretory, actin inhibitor, remodeling inhibitor, Antisense nucleotide, antimetabolite, antiproliferative substance, anticancer chemotherapeutic agent, anti-inflammatory steroid or non-steroidal anti-inflammatory agent, immunosuppressant, growth hormone antagonist, dopamine agonist, radiotherapy agent, peptide, Protein, enzyme, extracellular matrix component, inhibitor, free radical scavenger, chelating agent, antioxidant, antipolymer , Antiviral agents, mention may be made of photodynamic therapy, and one or more combinations selected from the gene therapy. By using these drugs, it is possible to appropriately treat the tissue.
<組織接着性多孔質膜テープ>
 次に、本発明の実施形態である組織接着性多孔質膜テープについて説明する。
 組織接着性多孔質膜テープは、組織接着性多孔質膜1、2が帯状とされてなる。これにより、組織の切断部分の大きさ、形状に合わせて、テープ片を作成することができ、容易に組織接着することができる。例えば、腸であれば、切断面に合わせて巻いて接合することができる。
<Tissue-adhesive porous membrane tape>
Next, the tissue adhesive porous membrane tape according to an embodiment of the present invention will be described.
The tissue-adhesive porous membrane tape is formed by forming the tissue-adhesive porous membranes 1 and 2 into a strip shape. Thereby, according to the magnitude | size and shape of the cutting | disconnection part of a structure | tissue, a tape piece can be created and tissue adhesion | attachment can be carried out easily. For example, in the case of an intestine, it can be wound and joined to the cut surface.
 本発明の実施形態である組織接着性多孔質膜1、2は、疎水化ゼラチン10が架橋され、多孔質構造を有する膜であって、疎水化ゼラチン10が、Lysのアミノ基12の一部が疎水性官能基11で置換されているゼラチン13である構成なので、組織に含まれる水分の吸収と同時にゼラチンに導入した疎水性官能基11を組織および細胞膜に打ち込んで(アンカーリングして)物理的に強固な結合を形成させることができ、湿潤環境下でも接着強度を高くすることができる。また、組織接着性多孔質膜2は、ポロゲンを鋳型として設けられた物理的多孔構造を持っているため組織に含まれる水分をより効果的に吸収することにより接着強度を高くすることができる。更に、組織接着性多孔質膜1、2は、生体組織への適用後は、多孔質構造が組織再生への足場となるという特徴がある。また、ゼラチン13は創傷治癒過程において酵素(コラゲナーゼ)により容易に分解されるため、組織接着性多孔質膜1、2の生体親和性を高くすることができる。 Tissue-adhesive porous membranes 1 and 2 according to an embodiment of the present invention are membranes in which hydrophobic gelatin 10 is crosslinked and has a porous structure, and hydrophobic gelatin 10 is a part of amino group 12 of Lys. Is the gelatin 13 substituted with the hydrophobic functional group 11, so that the hydrophobic functional group 11 introduced into the gelatin simultaneously with the absorption of moisture contained in the tissue is driven (anchored) into the physical structure Strong bond can be formed, and the adhesive strength can be increased even in a wet environment. Moreover, since the tissue adhesive porous membrane 2 has a physical porous structure provided using porogen as a template, the adhesive strength can be increased by more effectively absorbing moisture contained in the tissue. Furthermore, the tissue-adhesive porous membranes 1 and 2 are characterized in that the porous structure becomes a scaffold for tissue regeneration after application to a living tissue. Moreover, since gelatin 13 is easily decomposed by an enzyme (collagenase) in the wound healing process, the biocompatibility of the tissue adhesive porous membranes 1 and 2 can be increased.
 本発明の実施形態である組織接着性多孔質膜1は、前記多孔質構造が、疎水化ゼラチン10の架橋構造に設けられた複数の疎水化ゼラチン10間の空隙孔10c1からなる構成なので、空隙孔10c1により、組織に含まれる水を吸収して、湿潤環境下でも接着強度が高く適度な強度を持つことができるとともに、組織の侵入を容易にして、組織再生に優れた足場として利用できる。 The tissue-adhesive porous membrane 1 according to an embodiment of the present invention has a structure in which the porous structure is composed of gap holes 10c1 between a plurality of hydrophobic gelatins 10 provided in a crosslinked structure of the hydrophobic gelatin 10. The holes 10c1 can absorb water contained in the tissue, have high adhesive strength even in a moist environment and have an appropriate strength, and can easily enter the tissue and can be used as a scaffold excellent in tissue regeneration.
 本発明の実施形態である組織接着性多孔質膜2は、前記多孔質構造が、空隙孔10c1と、前記架橋構造にポロゲンを鋳型として設けられたポロゲン孔10c2とからなる構成なので、空隙孔10c1だけでなくポロゲン孔10c2により、組織に含まれる水をより効果的に吸収して、湿潤環境下でも接着強度が高く適度な強度を持つ膜として利用できるとともに、組織の侵入をより容易にして、組織再生に優れた足場として利用できる。 In the tissue adhesive porous membrane 2 according to an embodiment of the present invention, the porous structure is composed of a void hole 10c1 and a porogen hole 10c2 provided with a porogen as a template in the cross-linked structure. As well as the porogen hole 10c2, the water contained in the tissue can be absorbed more effectively, and can be used as a film having a high adhesive strength and an appropriate strength even in a wet environment, making the invasion of the tissue easier, It can be used as an excellent scaffold for tissue regeneration.
 本発明の実施形態である組織接着性多孔質膜2は、ポロゲン孔10c2が、粒径が50~100μmであるポロゲンを鋳型として設けられた構成なので、水分の吸収率を適切に制御でき、組織の侵入率も適切に制御することができ、湿潤環境下でも接着強度が高く適度な強度を持つ膜として利用できるとともに、接着強度が高く適度な強度を持つ膜及び組織再生に優れた足場として利用できる。 The tissue-adhesive porous membrane 2 according to the embodiment of the present invention has a configuration in which the porogen hole 10c2 is provided using a porogen having a particle size of 50 to 100 μm as a template, so that the moisture absorption rate can be appropriately controlled, and the tissue Can be controlled appropriately, and can be used as a film with high adhesive strength and moderate strength even in a wet environment, and as a scaffold with high adhesive strength and moderate strength and excellent tissue regeneration. it can.
 本発明の実施形態である組織接着性多孔質膜1、2は、疎水化ゼラチン10が、架橋剤又は縮合剤により架橋されている構成なので、水に対して不溶化でき、膜の強度が高められ、湿潤環境下でも接着強度が高く適度な強度を持つ組織接着性多孔質膜とすることができる。 Since the tissue-adhesive porous membranes 1 and 2 according to the embodiment of the present invention have a configuration in which the hydrophobic gelatin 10 is crosslinked by a crosslinking agent or a condensing agent, it can be insolubilized in water and the strength of the membrane can be increased. A tissue-adhesive porous membrane having high adhesive strength and moderate strength even in a moist environment can be obtained.
 本発明の実施形態である組織接着性多孔質膜1、2は、前記架橋剤又は縮合剤が、トリスクシンイミジルシトレート、ジスクシンイミジルタータレート、ジスクシンイミジルマレート、ジスクシンイミジルスクシネート、グルタルアルデヒド、ホルムアルデヒド、ポリエチレングリコールジグリシジルエーテル、ゲニピン、水溶性カルボジイミドの1種または2種以上の組み合わせである構成なので、水に対して不溶化でき、膜の強度が高められ、湿潤環境下でも接着強度が高く適度な強度を持つ組織接着性多孔質膜とすることができる。 In the tissue adhesive porous membranes 1 and 2 according to the embodiment of the present invention, the crosslinking agent or condensing agent is triscinimimidyl citrate, disuccinimidyl tartrate, disuccinimidyl malate, disuccinimidyls. Since it is composed of one or more of succinate, glutaraldehyde, formaldehyde, polyethylene glycol diglycidyl ether, genipin, and water-soluble carbodiimide, it can be insolubilized in water, increasing the strength of the film, and in a humid environment However, a tissue adhesive porous membrane having high adhesive strength and appropriate strength can be obtained.
 本発明の実施形態である組織接着性多孔質膜1、2は、疎水化ゼラチン10が、熱架橋14により架橋されている構成なので、水に対して不溶化でき、膜の強度が高められ、湿潤環境下でも接着強度が高く適度な強度を持つ組織接着性多孔質膜とすることができる。 The tissue-adhesive porous membranes 1 and 2 according to an embodiment of the present invention have a structure in which the hydrophobic gelatin 10 is crosslinked by thermal crosslinking 14, so that it can be insolubilized in water, the strength of the membrane is increased, and the wetness is increased. A tissue-adhesive porous membrane having high adhesive strength and moderate strength even in an environment can be obtained.
 本発明の実施形態である組織接着性多孔質膜1、2は、疎水性官能基11が、飽和脂肪酸であるエチル基(炭素数2)、プロピル基(炭素数3)、ブチル基(炭素数4)、ペンチル基(炭素数5)、ヘキサノイル基(炭素数6)、ヘプタノイル基(炭素数7)、オクタノイル基(炭素数8)、ノナノイル基(炭素数9)、デカノイル基(炭素数10)、ウンデカノイル基(炭素数11)、ドデカノイル基(炭素数12)、トリデカノイル基(炭素数13)、テトラデカノイル基(炭素数14)、ペンタデカノイル基(炭素数15)、ヘキサデカノイル基(炭素数16)、ヘプタデカノイル基(炭素数17)、ステアロイル基(炭素数18)、分岐型飽和脂肪酸であるイソプロピル基(炭素数3)、イソブチル基(炭素数4)、イソペンチル基(炭素数5)、イソヘキサノイル基(炭素数6)、イソヘプタノイル基(炭素数7)、イソオクタノイル基(炭素数8)、イソノナノイル基(炭素数9)、イソデカノイル基(炭素数10)、イソウンデカノイル基(炭素数11)、イソドデカノイル基(炭素数12)、イソトリデカノイル基(炭素数13)、イソテトラデカノイル基(炭素数14)、イソペンタデカノイル基(炭素数15)、イソヘキサデカノイル基(炭素数16)、イソパルミチル基(炭素数16)、イソヘプタデカノイル基(炭素数17)、イソステアロイル基(炭素数18)、不飽和脂肪酸であるオレイル基(炭素数18、不飽和炭素1個)、リノレニル基(炭素数18、不飽和炭素2個)、α-リノレニル基(炭素数18、不飽和炭素3個)、細胞膜成分であるコレステリル基の1種または2種以上の組み合わせである構成なので、疎水性官能基11を組織に打ち込んで(アンカーリングして)物理的に強固な結合を形成して、接着強度を高くすることができる。 In the tissue adhesive porous membranes 1 and 2 according to an embodiment of the present invention, the hydrophobic functional group 11 is an ethyl group (carbon number 2), propyl group (carbon number 3), butyl group (carbon number) which is a saturated fatty acid. 4), pentyl group (5 carbon atoms), hexanoyl group (6 carbon atoms), heptanoyl group (7 carbon atoms), octanoyl group (8 carbon atoms), nonanoyl group (9 carbon atoms), decanoyl group (10 carbon atoms) , Undecanoyl group (carbon number 11), dodecanoyl group (carbon number 12), tridecanoyl group (carbon number 13), tetradecanoyl group (carbon number 14), pentadecanoyl group (carbon number 15), hexadecanoyl group ( Carbon number 16), heptadecanoyl group (carbon number 17), stearoyl group (carbon number 18), branched saturated fatty acid isopropyl group (carbon number 3), isobutyl group (carbon number 4), isopentyl (Carbon number 5), isohexanoyl group (carbon number 6), isoheptanoyl group (carbon number 7), isooctanoyl group (carbon number 8), isononanoyl group (carbon number 9), isodecanoyl group (carbon number 10), isoun Decanoyl group (carbon number 11), isododecanoyl group (carbon number 12), isotridecanoyl group (carbon number 13), isotetradecanoyl group (carbon number 14), isopentadecanoyl group (carbon number 15), Isohexadecanoyl group (16 carbon atoms), isopalmityl group (16 carbon atoms), isoheptadecanoyl group (17 carbon atoms), isostearoyl group (18 carbon atoms), unsaturated fatty acid oleyl group (18 carbon atoms) , Unsaturated carbon 1), linolenyl group (18 carbon atoms, 2 unsaturated carbons), α-linolenyl group (18 carbon atoms, 3 unsaturated carbons), cell membrane component co Since the structure is a combination of one type or two or more types of lesteryl groups, the hydrophobic functional group 11 can be driven into the tissue (anchored) to form a physically strong bond to increase the adhesive strength. it can.
 本発明の実施形態である組織接着性多孔質膜1、2は、ゼラチン13が、ヒト、ブタ、ウシ、ティラピア、タラ由来のゼラチン又は遺伝子組換えゼラチンの1種または2種以上の組み合わせである構成なので、膜の強度を高めることができる。 In the tissue adhesive porous membranes 1 and 2 according to an embodiment of the present invention, the gelatin 13 is one or a combination of two or more of gelatin derived from human, pig, cow, tilapia and cod or genetically modified gelatin. Because of the structure, the strength of the film can be increased.
 本発明の実施形態である組織接着性多孔質膜1、2は、薬剤を含む構成なので、組織の治療効果を高めることができる。 Since the tissue-adhesive porous membranes 1 and 2 according to the embodiment of the present invention include a drug, the therapeutic effect on the tissue can be enhanced.
 本発明の実施形態である組織接着性多孔質膜1、2は、前記薬剤が、細胞分化誘導剤、抗ガン剤、免疫抑制剤、細胞成長因子、サイトカイン、トロンビン阻害薬、抗血栓薬、血栓溶解剤、線維素溶解薬、血管痙攣阻害薬、カルシウムチャネル遮断薬、血管拡張薬、高血圧治療薬、抗菌薬、抗生物質、表面糖タンパク質受容体阻害薬、抗血小板薬、細胞分裂抑制薬、微小管阻害薬、抗分泌薬、アクチン阻害薬、リモデリング阻害薬、アンチセンス・ヌクレオチド、代謝拮抗剤、抗増殖性物質、抗癌化学治療薬、抗炎症性ステロイドまたは非ステロイド抗炎症薬、免疫抑制剤、成長ホルモン・アンタゴニスト、ドーパミン・アゴニスト、放射線治療薬、ペプチド、タンパク質、酵素、細胞外マトリックス成分、阻害薬、フリーラジカル・スカベンジャー、キレート剤、抗酸化剤、抗ポリメラーゼ、抗ウィルス薬、光力学治療薬、および遺伝子治療薬から選ばれる1種または2種以上の組み合わせである構成なので、組織の上記薬剤による特定の治療効果を適切に高めることができる。 In the tissue adhesive porous membranes 1 and 2 according to the embodiment of the present invention, the drug is a cell differentiation inducer, anticancer agent, immunosuppressant, cell growth factor, cytokine, thrombin inhibitor, antithrombotic agent, thrombus Solubilizer, fibrinolytic agent, vasospasm inhibitor, calcium channel blocker, vasodilator, antihypertensive agent, antibacterial agent, antibiotic, surface glycoprotein receptor inhibitor, antiplatelet agent, cytostatic agent, micro Vascular inhibitor, antisecretory drug, actin inhibitor, remodeling inhibitor, antisense nucleotide, antimetabolite, antiproliferative substance, anticancer chemotherapeutic agent, anti-inflammatory steroid or non-steroidal anti-inflammatory drug, immunosuppression Drugs, growth hormone antagonists, dopamine agonists, radiation therapy drugs, peptides, proteins, enzymes, extracellular matrix components, inhibitors, free radical scavenges Since the composition is one or a combination of two or more selected from a jar, a chelating agent, an antioxidant, an anti-polymerase, an antiviral agent, a photodynamic therapeutic agent, and a gene therapy agent, the specific therapeutic effect of the tissue on the above-mentioned agent Can be raised appropriately.
 本発明の実施形態である組織接着性多孔質膜1の製造方法は、疎水化ゼラチンを水溶性有機溶媒に溶解させて、疎水化ゼラチン含有溶液51を調製する工程と、疎水化ゼラチン含有溶液51に架橋剤又は縮合剤を入れて疎水化ゼラチンを架橋して水溶性有機溶媒含有疎水化ゼラチン架橋体53を形成する工程と、水溶性有機溶媒含有疎水化ゼラチン架橋体53を水中に入れて、水溶性有機溶媒を水に置換して、水含有疎水化ゼラチン架橋体58を形成する工程と、水含有疎水化ゼラチン架橋体58を凍結乾燥して組織接着性多孔質膜1を形成する工程と、を有する構成なので、疎水化ゼラチン10の架橋構造に設けられた複数の疎水化ゼラチン間に複数の空隙孔10c1を形成して、多孔質構造を容易に形成でき、湿潤環境下でも接着強度を高く適度な強度を持つ組織接着性多孔質膜を容易に製造できる。 The method for producing a tissue-adhesive porous membrane 1 according to an embodiment of the present invention includes a step of preparing hydrophobized gelatin-containing solution 51 by dissolving hydrophobized gelatin in a water-soluble organic solvent, and hydrophobized gelatin-containing solution 51. Adding a crosslinking agent or a condensing agent to form a water-soluble organic solvent-containing hydrophobized gelatin cross-linked body 53 by cross-linking the hydrophobized gelatin; and putting the water-soluble organic solvent-containing hydrophobized gelatin cross-linked body 53 in water; Replacing the water-soluble organic solvent with water to form a water-containing hydrophobized gelatin cross-linked body 58; and lyophilizing the water-containing hydrophobized gelatin cross-linked body 58 to form the tissue adhesive porous membrane 1; Therefore, a porous structure can be easily formed by forming a plurality of pores 10c1 between a plurality of hydrophobized gelatins provided in the cross-linked structure of the hydrophobized gelatin 10, and an adhesive strength can be obtained even in a wet environment. Tissue adhesive porous film having a high appropriate strength can be manufactured easily.
 本発明の実施形態である組織接着性多孔質膜2の製造方法は、疎水化ゼラチンを水溶性有機溶媒に溶解させて、疎水化ゼラチン含有溶液51を調製する工程と、疎水化ゼラチン含有溶液51にポロゲン62を分散させて、ポロゲン分散疎水化ゼラチン含有溶液60を調製する工程と、ポロゲン分散疎水化ゼラチン含有溶液60に架橋剤又は縮合剤を入れて疎水化ゼラチンを架橋して水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体63を形成する工程と、水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体63を水中に入れて、水溶性有機溶媒を水に置換し、かつポロゲンを溶解、除去して、ポロゲン孔が形成された水含有疎水化ゼラチン架橋体68を形成する工程と、ポロゲン孔が形成された水含有疎水化ゼラチン架橋体68を凍結乾燥して組織接着性多孔質膜2を形成する工程と、を有する構成なので、空隙孔10c1だけでなく、ポロゲン孔10c2からなる多孔質構造により組織中に含まれる水分をより効果的に吸収して、湿潤環境下でも接着強度を高く適度な強度を持つ組織接着性多孔質膜を容易に製造できる。 The method for producing a tissue adhesive porous membrane 2 according to an embodiment of the present invention includes a step of preparing a hydrophobized gelatin-containing solution 51 by dissolving hydrophobized gelatin in a water-soluble organic solvent, and a hydrophobized gelatin-containing solution 51. A step of preparing a porogen-dispersed hydrophobized gelatin-containing solution 60 by dispersing porogen 62 in the solution; and a cross-linking agent or a condensing agent in the porogen-dispersed hydrophobized gelatin-containing solution 60 to cross-link the hydrophobized gelatin to form a water-soluble organic solvent A step of forming a hydrophobized gelatin cross-linked body 63 containing water and a porogen, and the hydrophobized gelatin cross-linked body 63 containing a water-soluble organic solvent and a porogen is placed in water, and the water-soluble organic solvent is replaced with water. And a step of dissolving and removing the porogen to form a water-containing hydrophobized gelatin cross-linked body 68 in which porogen pores are formed, and a water-containing hydrophobizing gelatin in which porogen pores are formed. And the step of forming the tissue-adhesive porous membrane 2 by freeze-drying the crosslinked body 68, so that not only the pores 10c1 but also the porogen pores 10c2 can contain more water contained in the tissue. A tissue-adhesive porous membrane that absorbs effectively and has high adhesive strength and moderate strength even in a moist environment can be easily produced.
 本発明の実施形態である組織接着性多孔質膜2の製造方法は、前記ポロゲンがNaCl、KCl、MgCl、氷、ポリエチレングリコールのいずれかの材料からなる粒子である構成なので、架橋構造にポロゲンを鋳型として設けられたポロゲン孔を容易に形成できる。 In the method for producing a tissue adhesive porous membrane 2 according to an embodiment of the present invention, the porogen is a particle made of any material of NaCl, KCl, MgCl, ice, and polyethylene glycol. A porogen hole provided as a mold can be easily formed.
 本発明の実施形態である組織接着性多孔質膜1、2の製造方法は、前記水溶性有機溶媒がジメチルスルホキシドである構成なので、安定した架橋構造体を形成できるとともに、容易に水に置換できる。 The method for producing tissue-adhesive porous membranes 1 and 2 according to an embodiment of the present invention has a structure in which the water-soluble organic solvent is dimethyl sulfoxide, so that a stable crosslinked structure can be formed and water can be easily replaced. .
 本発明の実施形態である組織接着性テープは、先に記載の組織接着性多孔質膜1、2を帯状とした構成なので、腸の切断部などを容易に巻くことができ、そのまま放置することにより、組織接着させることができる。 Since the tissue adhesive tape according to the embodiment of the present invention has a band-shaped configuration of the tissue adhesive porous membranes 1 and 2 described above, the cut portion of the intestine can be easily wound and left as it is. Thus, tissue adhesion can be achieved.
 本発明の実施形態である組織接着性多孔質膜、その製造方法及び組織接着性多孔質膜テープは、上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内で、種々変更して実施することができる。本実施形態の具体例を以下の実施例で示す。しかし、本発明はこれらの実施例に限定されるものではない。 The tissue-adhesive porous membrane, the method for producing the tissue-adhesive porous membrane tape and the tissue-adhesive porous membrane tape that are embodiments of the present invention are not limited to the above-described embodiments, It can be changed and implemented. Specific examples of this embodiment are shown in the following examples. However, the present invention is not limited to these examples.
(実施例1)
(組織接着性多孔質膜の作製)
<疎水化AlGltnの合成と導入率の確認>
 まず、アルカリ処理ゼラチン(以下、AlGltnとも表記する。)を用意した。アルカリ処理ゼラチンとは、ゼラチンに存在するアスパラギン、グルタミンを脱アミド化によりアスパラギン酸、グルタミン酸に変換したゼラチンである。
Example 1
(Production of tissue adhesive porous membrane)
<Synthesis of hydrophobized AlGltn and confirmation of introduction rate>
First, alkali-treated gelatin (hereinafter also referred to as AlGltn) was prepared. The alkali-treated gelatin is gelatin obtained by converting asparagine and glutamine present in gelatin into aspartic acid and glutamic acid by deamidation.
 次に、Matsudaらの方法(非特許文献1)に従って、Hexanoyl chlorideを用いて、アルカリ処理ゼラチン(AlGltn)の疎水化処理をして、ヘキサノイル基(Hx:C)を導入した疎水化AlGltn(HxAlGltn)を調製した。 Next, according to the method of Matsuda et al. (Non-patent Document 1), hydrophobized AlGltn (Hx: C 6 ) was introduced by hydrophobizing alkali-treated gelatin (AlGltn) using Hexanoyl chloride. HxAlGltn) was prepared.
 TNBS法(DMSO溶媒)を用いた吸光度測定を行った。これにより、HxAlGltnにおけるヘキサノイル基の導入率が27%となったことを確認した。以下、これを27HxAlGltnと表記する。 Absorbance measurement using TNBS method (DMSO solvent) was performed. This confirmed that the introduction ratio of hexanoyl groups in HxAlGltn was 27%. Hereinafter, this is expressed as 27HxAlGltn.
<製膜>
 HxAlGltn含有溶液の流動性を高めるために、前記27HxAlGltnをAlGltnと混合して、相対的に25HxAlGltnとしたものを調製した(以下、これを25’(27)HxAlGltnと表記する。)。25’(27)HxAlGltnは、25w/v%の含有割合で10%乳酸-DMSO混合溶媒に溶解させると、製膜に適した流動性があった。
 そこで、25w/v%の25’(27)HxAlGltn/10%乳酸-DMSOを用いて、多孔質膜を作製した。
<Film formation>
In order to enhance the fluidity of the HxAlGltn-containing solution, the 27HxAlGltn was mixed with AlGltn to prepare a relatively 25HxAlGltn (hereinafter referred to as 25 ′ (27) HxAlGltn). When 25 ′ (27) HxAlGltn was dissolved in a 10% lactic acid-DMSO mixed solvent at a content ratio of 25 w / v%, it had fluidity suitable for film formation.
Therefore, a porous membrane was prepared using 25 w / v% 25 ′ (27) HxAlGltn / 10% lactic acid-DMSO.
 架橋剤としては、トリスクシンイミジルシトレート(TSC)を用い、HxAlGltnのアミノ基と、TSC中に含まれるスクシンイミジル基とのモル比が1:1となるように、25w/v%の25’(27)HxAlGltn/10%乳酸-DMSO 8mLとTSC/10%乳酸-DMSO 2mLとをハンドスターラーで十分混合撹拌して、20w/w%のHxAlGltn溶液を得た。
 次に、ポロゲンとしてNaCl(粒径250~500μm:平均粒径375μm)を用いて、HxAlGltn溶液とNaClとの重量比が1:0となるように混合した。
 次に、ユニパックに得られた混合物を詰めて、ガラス板に1mmのシリコーンシートと共にクリップで留めて挟み、一晩静置して、HxAlGltnのアミノ基をTSCにより架橋した。
As a cross-linking agent, trisuccinimidyl citrate (TSC) is used, and 25 w / v% 25 ′ is used so that the molar ratio of the amino group of HxAlGltn to the succinimidyl group contained in TSC is 1: 1. (27) HxAlGltn / 10% lactic acid-DMSO 8 mL and TSC / 10% lactic acid-DMSO 2 mL were sufficiently mixed and stirred with a hand stirrer to obtain a 20 w / w% HxAlGltn solution.
Next, NaCl (particle size 250 to 500 μm: average particle size 375 μm) was used as the porogen, and the HxAlGltn solution and NaCl were mixed so that the weight ratio was 1: 0.
Next, the mixture obtained in Unipack was packed, clipped with a 1 mm silicone sheet on a glass plate, and allowed to stand overnight to crosslink the amino group of HxAlGltn with TSC.
 架橋後、得られたゲル状のDMSO・NaCl含有HxAlGltn架橋体を4℃に冷却した超純水中に放ち、超純水を大過剰量で交換しながら3日間浸漬して、DMSOを水に置換するとともに、NaCl、乳酸、DMSO、架橋副生成物であるN-ヒドロキシスクシンイミドを除去した。
 得られた水含有HxAlGltn架橋体を-80℃で凍結させた後に減圧乾燥を行い、組織接着性多孔質膜を得た。
After cross-linking, the obtained gel-like DMSO / NaCl-containing HxAlGltn cross-linked product was released into ultrapure water cooled to 4 ° C. and immersed for 3 days while exchanging the ultrapure water in a large excess amount. At the same time, NaCl, lactic acid, DMSO, and N-hydroxysuccinimide, which is a cross-linking byproduct, were removed.
The obtained water-containing HxAlGltn crosslinked product was frozen at −80 ° C. and then dried under reduced pressure to obtain a tissue-adhesive porous membrane.
(実施例2)
 HxAlGltn溶液とNaCl(粒径250~500μm:平均粒径375μm)との重量比が1:1となるようにした他は実施例1と同様にして、組織接着性多孔質膜を作製した。
(Example 2)
A tissue-adhesive porous membrane was prepared in the same manner as in Example 1 except that the weight ratio of the HxAlGltn solution and NaCl (particle size 250 to 500 μm: average particle size 375 μm) was 1: 1.
(実施例3)
 HxAlGltn溶液とNaCl(粒径250~500μm:平均粒径375μm)との重量比が1:2となるようにした他は実施例1と同様にして、組織接着性多孔質膜を作製した。
Example 3
A tissue-adhesive porous membrane was prepared in the same manner as in Example 1 except that the weight ratio of the HxAlGltn solution and NaCl (particle size 250 to 500 μm: average particle size 375 μm) was 1: 2.
(実施例4)
 HxAlGltn溶液とNaCl(粒径250~500μm:平均粒径375μm)との重量比が1:3となるようにした他は実施例1と同様にして、組織接着性多孔質膜を作製した。
Example 4
A tissue-adhesive porous membrane was prepared in the same manner as in Example 1 except that the weight ratio of the HxAlGltn solution and NaCl (particle size 250 to 500 μm: average particle size 375 μm) was 1: 3.
(実施例5)
 HxAlGltn溶液とNaCl(粒径250~500μm:平均粒径375μm)との重量比が1:4となるようにした他は実施例1と同様にして、組織接着性多孔質膜を作製した。
(Example 5)
A tissue-adhesive porous membrane was prepared in the same manner as in Example 1 except that the weight ratio of the HxAlGltn solution and NaCl (particle size 250 to 500 μm: average particle size 375 μm) was 1: 4.
(実施例6)
 HxAlGltn溶液とNaCl(粒径250~500μm:平均粒径375μm)との重量比が1:5となるようにした他は実施例1と同様にして、組織接着性多孔質膜を作製した。
(Example 6)
A tissue-adhesive porous membrane was prepared in the same manner as in Example 1 except that the weight ratio of the HxAlGltn solution and NaCl (particle size 250 to 500 μm: average particle size 375 μm) was 1: 5.
 図8~13は、実施例1~6の組織接着性多孔質膜の電子顕微鏡写真である。
 これらの電子顕微鏡写真より、多孔質構造が形成されており、作製時におけるNaClの混合量が増えるにつれ、孔が多く存在しているのが分かる。
8 to 13 are electron micrographs of the tissue adhesive porous membranes of Examples 1 to 6. FIG.
From these electron micrographs, it can be seen that a porous structure is formed and that more pores are present as the amount of NaCl mixed at the time of production increases.
(比較例1)
 疎水化していないAlGltnを用いて、25w/v%のAlGltn/10%乳酸-DMSO 8mLとTSC/10%乳酸-DMSO 2mLとをハンドスターラーで十分混合撹拌して、20w/w%のAlGltn溶液を得た。
 次に、ポロゲンとしてNaCl(粒径250~500μm:平均粒径375μm)を用いて、AlGltn溶液とNaClとの重量比が1:0となるように混合した。
 次に、ユニパックに得られた混合物を詰めて、ガラス板に1mmのシリコーンシートと共にクリップで留めて挟み、一晩静置して、AlGltnのアミノ基をTSCにより架橋した。
(Comparative Example 1)
Using non-hydrophobized AlGltn, 8 mL of 25 w / v% AlGltn / 10% lactic acid-DMSO and 2 mL of TSC / 10% lactic acid-DMSO were thoroughly mixed and stirred with a hand stirrer to prepare a 20 w / w% AlGltn solution. Obtained.
Next, NaCl (particle size: 250 to 500 μm: average particle size: 375 μm) was used as a porogen and mixed so that the weight ratio of the AlGltn solution to NaCl was 1: 0.
Next, the mixture obtained in Unipack was packed, clipped with a 1 mm silicone sheet on a glass plate, and allowed to stand overnight to crosslink the amino group of AlGltn with TSC.
 架橋後、得られたゲル状のDMSO・NaCl含有AlGltn架橋体を4℃に冷却した超純水中に放ち、超純水を大過剰量で交換しながら3日間浸漬して、DMSOを水に置換するとともに、NaCl、乳酸、DMSO、架橋副生成物であるN-ヒドロキシスクシンイミドを除去した。
 得られた水含有AlGltn架橋体を-80℃で凍結させた後に減圧乾燥を行い、非疎水化アルカリ処理ゼラチン製の多孔質膜を得た。
After cross-linking, the obtained gel-like DMSO / NaCl-containing AlGltn cross-linked product is released in ultrapure water cooled to 4 ° C. and immersed for 3 days while exchanging the ultrapure water in a large excess amount. At the same time, NaCl, lactic acid, DMSO, and N-hydroxysuccinimide, which is a cross-linking byproduct, were removed.
The obtained water-containing AlGltn crosslinked product was frozen at −80 ° C. and dried under reduced pressure to obtain a porous membrane made of non-hydrophobized alkali-treated gelatin.
(比較例2~6)
 AlGltn溶液とNaCl(粒径250~500μm:平均粒径375μm)との重量比が1:1(比較例2)、1:2(比較例3)、1:3(比較例4)、1:4(比較例5)、1:5(比較例6)となるようにした他は比較例1と同様にして、非疎水化アルカリ処理ゼラチン製の多孔質膜を作製した。
(Comparative Examples 2 to 6)
The weight ratio of the AlGltn solution to NaCl (particle size 250 to 500 μm: average particle size 375 μm) is 1: 1 (Comparative Example 2), 1: 2 (Comparative Example 3), 1: 3 (Comparative Example 4), 1: A porous membrane made of non-hydrophobized alkali-treated gelatin was prepared in the same manner as in Comparative Example 1 except that the ratio was 4 (Comparative Example 5) and 1: 5 (Comparative Example 6).
 図14~19は、比較例1~6の多孔質膜の電子顕微鏡写真である。
 これらの電子顕微鏡写真より、多孔質構造が形成されており、作製時におけるNaClの混合量が増えるにつれ、孔が多く存在しているのが分かる。
14 to 19 are electron micrographs of the porous membranes of Comparative Examples 1 to 6.
From these electron micrographs, it can be seen that a porous structure is formed and that more pores are present as the amount of NaCl mixed at the time of production increases.
 以下のようにして、組織接着性多孔質膜(実施例1~6)及び非疎水化アルカリ処理ゼラチン製の多孔質膜(比較例1~6)の特性(多孔率および含水率、膜強度、接着強度)測定を行った。 The properties (porosity and water content, membrane strength, membrane-adhesive porous membrane (Examples 1 to 6) and non-hydrophobized alkali-treated gelatin porous membrane (Comparative Examples 1 to 6) were as follows. Adhesion strength) was measured.
<多孔率および含水率測定>
 多孔率および含水率は、水に所定時間浸漬することで膨潤させた多孔質膜をφ1cmに打ち抜き、W:孔内含水時(膨潤後の多孔質膜)の重量、W:孔内非含水時(膨潤前の多孔質膜)の重量、W:乾燥時(膨潤後に真空乾燥させた多孔質膜)の重量として測量し、下記の式(1)および(2)を用いて算出した。
<Porosity and moisture content measurement>
The porosity and moisture content were determined by punching a porous membrane swollen by immersing in water for a predetermined time to φ1 cm, W 2 : weight of moisture in the pores (the porous membrane after swelling), W 1 : in the pores Weight when not containing water (porous film before swelling), W 0 : Measured as weight when dried (porous film dried under vacuum after swelling), and calculated using the following equations (1) and (2) did.
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
<膜強度測定>
 まず、組織接着性多孔質膜を5mm×10mmに成型し、両端の2.5mm×5mmをシアノアクリレート系接着剤にて、5mm×10mmのプラスチック片に接着した。
 次に、プラスチック片をTexture Analyzerの治具に挟み、10mm/minの条件にて破断強度を比較した。3回測定の平均値を測定値とした。
<Membrane strength measurement>
First, a tissue-adhesive porous membrane was molded into 5 mm × 10 mm, and 2.5 mm × 5 mm at both ends were bonded to a 5 mm × 10 mm plastic piece with a cyanoacrylate adhesive.
Next, the plastic piece was sandwiched between texture analyzer jigs and the breaking strength was compared under the condition of 10 mm / min. The average value of three measurements was taken as the measurement value.
<組織接着性多孔質膜とブタ大腸表皮との接着強度測定>
 図7は、組織接着性多孔質膜とブタ大腸表皮との接着試験の概略図である。
 図7に示すように、まず、37℃に設定したプレートの上に、直径7mmに打ち抜いた実施例1~6の組織接着性多孔質膜または比較例1~6の多孔質膜を載せ、直径4mmに打ち抜いたセロテープ(登録商標)で固定した。
 次に、湿潤生体組織であるブタ大腸表皮を直径4mmに打ち抜き、治具(プローブ)にシアノアクリレート系接着剤で固定した。
 次に、プローブに固定したブタ大腸表皮表面とプレート上に固定した組織接着性多孔質膜とを接触させ、40g/mmで3分間加圧した後、10mm/secで引っ張り試験を行った。実験は、3回行い平均値を測定値とした。
<Measurement of adhesive strength between tissue-adhesive porous membrane and porcine large intestine epidermis>
FIG. 7 is a schematic diagram of an adhesion test between a tissue-adhesive porous membrane and porcine large intestine epidermis.
As shown in FIG. 7, first, the tissue-adhesive porous membranes of Examples 1 to 6 punched to a diameter of 7 mm or the porous membranes of Comparative Examples 1 to 6 were placed on a plate set at 37 ° C. It was fixed with cello tape (registered trademark) punched to 4 mm.
Next, the porcine large intestine epidermis, which is a wet biological tissue, was punched into a diameter of 4 mm, and fixed to a jig (probe) with a cyanoacrylate adhesive.
Next, the surface of the porcine large intestine epidermis fixed to the probe and the tissue adhesive porous membrane fixed on the plate were brought into contact with each other, pressurized at 40 g / mm 2 for 3 minutes, and then subjected to a tensile test at 10 mm / sec. The experiment was performed three times, and the average value was taken as the measured value.
 表1に、ヘキサノイル化アルカリ処理ゼラチン製の組織接着性多孔質膜(以下、「(P)25’(27)HxAlGltn」ともいう。」)の作製条件及び特性評価結果を示す。 Table 1 shows the preparation conditions and property evaluation results of a tissue adhesive porous membrane made of hexanoylated alkali-treated gelatin (hereinafter also referred to as “(P) 25 ′ (27) HxAlGltn”).
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表2に、非疎水化アルカリ処理ゼラチン(AlGltn)製の多孔質膜(以下、「(P)AlGltn」ともいう。」)の作製条件及び特性評価結果を示す。 Table 2 shows the preparation conditions and property evaluation results of a non-hydrophobized alkali-treated gelatin (AlGltn) porous film (hereinafter also referred to as “(P) AlGltn”).
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
(組織接着性多孔質膜の特性測定結果について)
<多孔率および含水率測定結果について>
 表1、2より、NaCl混合比の増加に伴い多孔率が増加し、約64%まで上昇し、NaCl混合量により、多孔率が制御されることが確認できた。また、含水率は、NaCl混合比または多孔率の増加に伴い、微増する傾向が確認された。
(Characteristic measurement results of tissue adhesive porous membrane)
<Porosity and moisture content measurement results>
From Tables 1 and 2, it was confirmed that the porosity increased with increasing NaCl mixing ratio and increased to about 64%, and the porosity was controlled by the NaCl mixing amount. In addition, it was confirmed that the water content tends to increase slightly as the NaCl mixing ratio or porosity increases.
<膜強度測定結果について>
 表1、2より、同一のNaCl混合比においては、ヘキサノイル化アルカリ処理ゼラチンを用いた組織接着性多孔質膜が、非疎水化アルカリ処理ゼラチンを用いた多孔質膜よりも膜強度が低い傾向が見られた。また、非疎水化アルカリ処理ゼラチン製の多孔質膜では、NaCl混合量が多くなるほど膜強度が低くなった。なお、組織接着膜としては、0.1MPa以上の膜強度を有していれば、実用上問題なく使用することができると考えられる。
<About film strength measurement results>
From Tables 1 and 2, the tissue adhesive porous membrane using hexanoylated alkali-treated gelatin tends to have lower membrane strength than the porous membrane using non-hydrophobized alkali-treated gelatin at the same NaCl mixing ratio. It was seen. Further, in the porous membrane made of non-hydrophobized alkali-treated gelatin, the membrane strength decreased as the NaCl mixing amount increased. In addition, if it has film | membrane intensity | strength of 0.1 Mpa or more as a structure | tissue adhesive film, it is thought that it can be used without a problem practically.
<接着強度測定結果について>
 表1、2から理解されるように、ヘキサノイル化アルカリ処理ゼラチンを用いて作製した組織接着性多孔質膜は、非疎水化アルカリ処理ゼラチンを用いて作製した多孔質膜と比較して約10倍の高い接着強度を示した。
 また、表1のようにヘキサノイル化アルカリ処理ゼラチンを用いて調製した組織接着性多孔質膜は、多孔率が約60%でブタ大腸に対する接着強度が最大となった。
<About adhesive strength measurement results>
As can be seen from Tables 1 and 2, the tissue-adhesive porous membrane prepared using hexanoylated alkali-treated gelatin was about 10 times that of the porous membrane prepared using non-hydrophobized alkali-treated gelatin. High adhesive strength.
Moreover, as shown in Table 1, the tissue adhesive porous membrane prepared using hexanoylated alkali-treated gelatin had a maximum adhesion strength to the porcine large intestine with a porosity of about 60%.
(種々の疎水性官能基を導入した組織接着性多孔質膜の作製)
(実施例7)
<疎水化AlGltnの合成と導入率の確認>
 Decanoyl chlorideを用いて、実施例1と同様にしてAlGltnの疎水化処理をして、デカノイル基(Dec:C10)を導入した疎水化AlGltn(DecAlGltn)を調製した。
 TNBS法(DMSO溶媒)を用いた吸光度測定により、DecAlGltnにおけるデカノイル基の導入率が25%となったことを確認した。以下、これを25DecAlGltnと表記する。
(Production of tissue-adhesive porous membranes with various hydrophobic functional groups)
(Example 7)
<Synthesis of hydrophobized AlGltn and confirmation of introduction rate>
Hydrophobized AlGltn (DecAlGltn) into which a decanoyl group (Dec: C 10 ) was introduced was prepared by subjecting AlGltn to a hydrophobic treatment using Decanoyl chloride in the same manner as in Example 1.
Absorbance measurement using the TNBS method (DMSO solvent) confirmed that the decanoyl group introduction rate in DecAlGltn was 25%. Hereinafter, this is expressed as 25DecAlGltn.
<製膜>
 25w/v%の25DecAlGltn/10%乳酸-DMSOを用いて、多孔質膜を作製した。
 架橋剤としては、トリスクシンイミジルシトレート(TSC)を用い、DecAlGltnのアミノ基と、TSC中に含まれるスクシンイミジル基とのモル比が1:1となるように、25w/v%の25DecAlGltn/10%乳酸-DMSO 8mLとTSC/10%乳酸-DMSO 2mLとをハンドスターラーで十分混合撹拌して、20w/w%のDecAlGltn溶液を得た。
 次に、ポロゲンとしてNaCl(粒径250~500μm:平均粒径375μm)を用いて、DecAlGltn溶液とNaClとの重量比が1:4となるように混合した。
 次に、ユニパックに得られた混合物を詰めて、ガラス板に1mmのシリコーンシートと共にクリップで留めて挟み、一晩静置して、DecAlGltnのアミノ基をTSCにより架橋した。
<Film formation>
A porous membrane was prepared using 25 w / v% 25DecAlGltn / 10% lactic acid-DMSO.
As a cross-linking agent, triscinnimidyl citrate (TSC) is used, and 25 w / v% 25 DecAlGltn / so that the molar ratio of the amino group of DecAlGltn to the succinimidyl group contained in TSC is 1: 1. 8 mL of 10% lactic acid-DMSO and 2 mL of TSC / 10% lactic acid-DMSO were sufficiently mixed and stirred with a hand stirrer to obtain a 20 w / w% DecAlGltn solution.
Next, NaCl (particle size: 250 to 500 μm: average particle size: 375 μm) was used as a porogen and mixed so that the weight ratio of the DecAlGltn solution to NaCl was 1: 4.
Next, the mixture obtained in Unipack was packed, clipped with a 1 mm silicone sheet on a glass plate, and allowed to stand overnight to crosslink the amino group of DecAlGltn with TSC.
 架橋後、得られたゲル状のDMSO・NaCl含有DecAlGltn架橋体を4℃に冷却した超純水中に放ち、超純水を大過剰量で交換しながら3日間浸漬して、DMSOを水に置換するとともに、NaCl、乳酸、DMSO、架橋副生成物であるN-ヒドロキシスクシンイミドを除去した。
 得られた水含有DecAlGltn架橋体を-80℃で凍結させた後に減圧乾燥を行い、組織接着性多孔質膜を得た。
After cross-linking, the obtained gel-like DMSO / NaCl-containing DecAlGltn cross-linked product was released into ultrapure water cooled to 4 ° C. and immersed for 3 days while exchanging the ultrapure water in a large excess amount. At the same time, NaCl, lactic acid, DMSO, and N-hydroxysuccinimide, which is a cross-linking byproduct, were removed.
The obtained water-containing DecAlGltn crosslinked product was frozen at −80 ° C. and then dried under reduced pressure to obtain a tissue-adhesive porous membrane.
(実施例8)
 Stearoyl chlorideを用いて、実施例7と同様にしてAlGltnの疎水化処理をして、ステアロイル基(Ste:C18)を導入した疎水化AlGltn(SteAlGltn)を調製した。
 SteAlGltnにおけるステアロイル基の導入率は22%であった。以下、これを22SteAlGltnと表記する。
 25w/v%の22SteAlGltn/10%乳酸-DMSOを用いて、実施例7と同様にして組織接着性多孔質膜を作製した。
(Example 8)
Using Stearoyl chloride, the AlGltn was hydrophobized in the same manner as in Example 7 to prepare a hydrophobized AlGltn (SteAlGltn) into which a stearoyl group (Ste: C 18 ) was introduced.
The introduction rate of stearoyl groups in SteAlGltn was 22%. Hereinafter, this is expressed as 22 SteAlGltn.
A tissue-adhesive porous membrane was prepared in the same manner as in Example 7 using 25 w / v% 22 SteAlGltn / 10% lactic acid-DMSO.
(実施例9)
 Oleyl chlorideを用いて、実施例7と同様にしてAlGltnの疎水化処理をして、オレイル基(Ole:C18、不飽和炭素1個)を導入した疎水化AlGltn(OleAlGltn)を調製した。
 OleAlGltnにおけるオレイル基の導入率は34%であった。以下、これを34OleAlGltnと表記する。
 製膜にあたっては、OleAlGltn含有溶液の流動性を高めるために、34OleAlGltnをAlGltnと混合して、相対的に25OleAlGltnとしたものを調製した。以下、これを25’(34)OleAlGltnと表記する。
 25w/v%の25’(34)OleAlGltn/10%乳酸-DMSOを用いて、実施例7と同様にして組織接着性多孔質膜を作製した。
Example 9
Hydrogelation of AlGltn was carried out in the same manner as in Example 7 using Oleyl chloride to prepare hydrophobic AlGltn (OleAlGltn) into which an oleyl group (Ole: C 18 , one unsaturated carbon) was introduced.
The introduction rate of oleyl group in OleAlGltn was 34%. Hereinafter, this is expressed as 34OleAlGltn.
In film formation, in order to enhance the fluidity of the OleAlGltn-containing solution, 34OleAlGltn was mixed with AlGltn to prepare a relatively 25OleAlGltn. Hereinafter, this is expressed as 25 ′ (34) OleAlGltn.
A tissue-adhesive porous membrane was prepared in the same manner as Example 7 using 25 w / v% 25 ′ (34) OleAlGltn / 10% lactic acid-DMSO.
(実施例10)
 Cholesteryl chloroformateを用いて、実施例7と同様にしてAlGltnの疎水化処理をして、コレステリル基(Chol:細胞膜成分)を導入した疎水化AlGltn(CholAlGltn)を調製した。
 CholAlGltnにおけるコレステリル基の導入率は27%であった。以下、これを27CholAlGltnと表記する。
 製膜にあたっては、CholAlGltn含有溶液の流動性を高めるために、27CholAlGltnをAlGltnと混合して、相対的に25CholAlGltnとしたものを調製した。以下、これを25’(27)CholAlGltnと表記する。
 25w/v%の25’(27)CholAlGltn/10%乳酸-DMSOを用いて、実施例7と同様にして組織接着性多孔質膜を作製した。
(Example 10)
Hydrochlorination of AlGltn was performed using Cholesteryl chloroform as in Example 7 to prepare hydrophobic AlGltn (CholAlGltn) into which a cholesteryl group (Chol: cell membrane component) was introduced.
The introduction rate of cholesteryl group in CholAlGltn was 27%. Hereinafter, this is expressed as 27CholAlGltn.
In film formation, in order to improve the fluidity of the CholAlGltn-containing solution, 27CholAlGltn was mixed with AlGltn to prepare a relatively 25CholAlGltn. Hereinafter, this is expressed as 25 ′ (27) CholAlGltn.
A tissue-adhesive porous membrane was prepared in the same manner as Example 7 using 25 w / v% 25 ′ (27) CholAlGltn / 10% lactic acid-DMSO.
(実施例11)
 Propyl chlorideを用いて、実施例7と同様にしてAlGltnの疎水化処理をして、プロピル基(Pro:C)を導入した疎水化AlGltn(ProAlGltn)を調製した。
 ProAlGltnにおけるプロピル基の導入率は30%であった。以下、これを30ProAlGltnと表記する。
 製膜にあたっては、ProAlGltn含有溶液の流動性を高めるために、30ProAlGltnをAlGltnと混合して、相対的に25ProAlGltnとしたものを調製した。以下、これを25’(30)ProAlGltnという。
 25w/v%の25’(30)ProAlGltn/10%乳酸-DMSOを用いて、実施例7と同様にして組織接着性多孔質膜を作製した。
(Example 11)
Hydrophobized AlGltn (ProAlGltn) into which a propyl group (Pro: C 3 ) was introduced was prepared by hydrophobizing AlGltn in the same manner as in Example 7 using Propyl Chloride.
The introduction rate of propyl group in ProAlGltn was 30%. Hereinafter, this is expressed as 30ProAlGltn.
In film formation, in order to improve the fluidity of the ProAlGltn-containing solution, 30 ProAlGltn was mixed with AlGltn to prepare a relatively 25ProAlGltn. Hereinafter, this is referred to as 25 ′ (30) ProAlGltn.
A tissue-adhesive porous membrane was prepared in the same manner as in Example 7, using 25 w / v% 25 ′ (30) ProAlGltn / 10% lactic acid-DMSO.
(実施例12)
 Hexanoyl chlorideを用いて、実施例7と同様にしてAlGltnの疎水化処理をして、ヘキサノイル基(Hx:C)を導入した疎水化AlGltn(HxAlGltn)を調製した。
 HxAlGltnにおけるヘキサノイル基の導入率は28%であった。以下、これを28HxAlGltnと表記する。
 製膜にあたっては、HxAlGltn含有溶液の流動性を高めるために、28HxAlGltnをAlGltnと混合して、相対的に25HxAlGltnとしたものを調製した。以下、これを25’(28)HxAlGltnと表記する。
 25w/v%の25’(28)HxAlGltn/10%乳酸-DMSOを用いて、実施例7と同様にして組織接着性多孔質膜を作製した。
Example 12
Hydroxylized AlGltn (HxAlGltn) into which a hexanoyl group (Hx: C 6 ) was introduced was prepared by subjecting AlGltn to a hydrophobic treatment using Hexanoyl chloride in the same manner as in Example 7.
The introduction ratio of hexanoyl groups in HxAlGltn was 28%. Hereinafter, this is expressed as 28HxAlGltn.
In film formation, in order to improve the fluidity of the HxAlGltn-containing solution, 28HxAlGltn was mixed with AlGltn to prepare a relatively 25HxAlGltn. Hereinafter, this is expressed as 25 ′ (28) HxAlGltn.
A tissue-adhesive porous membrane was prepared in the same manner as in Example 7, using 25 w / v% of 25 ′ (28) HxAlGltn / 10% lactic acid-DMSO.
(種々の粒径を有するポロゲンを用いた組織接着性多孔質膜の作製)
(実施例13)
<疎水化AlGltnの合成と導入率の確認>
 Hexanoyl chlorideを用いて、実施例1と同様にしてAlGltnの疎水化処理をして、ヘキサノイル基(Hx:C)を導入した疎水化AlGltn(HxAlGltn)を調製した。
 HxAlGltnにおけるヘキサノイル基の導入率は34%であった。以下、これを34HxAlGltnと表記する。
(Production of tissue adhesive porous membranes using porogens with various particle sizes)
(Example 13)
<Synthesis of hydrophobized AlGltn and confirmation of introduction rate>
Hydroxylized AlGltn (HxAlGltn) into which a hexanoyl group (Hx: C 6 ) was introduced was prepared by subjecting AlGltn to a hydrophobic treatment using Hexanoyl chloride in the same manner as in Example 1.
The introduction ratio of hexanoyl groups in HxAlGltn was 34%. Hereinafter, this is expressed as 34HxAlGltn.
<製膜>
 HxAlGltn含有溶液の流動性を高めるために、34HxAlGltnをAlGltnと混合して、相対的に25HxAlGltnとしたものを調製した。以下、これを25’(34)HxAlGltnと表記する。
 架橋剤としては、トリスクシンイミジルシトレート(TSC)を用い、HxAlGltnのアミノ基と、TSC中に含まれるスクシンイミジル基とのモル比が1:1となるように、25w/v%の25’(34)HxAlGltn/10%乳酸-DMSO 4.5mLとTSC/10%乳酸-DMSO 0.5mLとをハンドスターラーで十分混合撹拌して、20w/w%のHxAlGltn溶液を得た。
 次に、ポロゲンとしてNaCl(粒径32~53μm:平均粒径43μm)を用いて、HxAlGltn溶液とNaClとの重量比が1:4となるように混合した。
 次に、ユニパックに混合物を詰めて、ガラス板に1mmのシリコーンシートと共にクリップで留めて挟み、一晩静置して、HxAlGltnのアミノ基をTSCにより架橋した。
<Film formation>
In order to increase the fluidity of the HxAlGltn-containing solution, 34HxAlGltn was mixed with AlGltn to prepare a relatively 25HxAlGltn. Hereinafter, this is expressed as 25 ′ (34) HxAlGltn.
As a cross-linking agent, trisuccinimidyl citrate (TSC) is used, and 25 w / v% 25 ′ is used so that the molar ratio of the amino group of HxAlGltn to the succinimidyl group contained in TSC is 1: 1. (34) HxAlGltn / 10% lactic acid-DMSO (4.5 mL) and TSC / 10% lactic acid-DMSO (0.5 mL) were sufficiently mixed and stirred with a hand stirrer to obtain a 20 w / w% HxAlGltn solution.
Next, NaCl (particle size: 32-53 μm: average particle size: 43 μm) was used as the porogen, and the HxAlGltn solution and NaCl were mixed so that the weight ratio was 1: 4.
Next, the mixture was packed in a unipack, clipped with a 1 mm silicone sheet on a glass plate, and allowed to stand overnight to crosslink the amino group of HxAlGltn with TSC.
 架橋後、得られたゲル状のDMSO・NaCl含有HxAlGltn架橋体を4℃に冷却した超純水中に放ち、超純水を大過剰量で交換しながら3日間浸漬して、DMSOを水に置換するとともに、NaCl、乳酸、DMSO、架橋副生成物であるN-ヒドロキシスクシンイミドを除去した。
 得られた水含有HxAlGltn架橋体を-80℃で凍結させた後に減圧乾燥を行い、組織接着性多孔質膜を得た。
After cross-linking, the obtained gel-like DMSO / NaCl-containing HxAlGltn cross-linked product was released into ultrapure water cooled to 4 ° C. and immersed for 3 days while exchanging the ultrapure water in a large excess amount. At the same time, NaCl, lactic acid, DMSO, and N-hydroxysuccinimide, which is a cross-linking byproduct, were removed.
The obtained water-containing HxAlGltn crosslinked product was frozen at −80 ° C. and then dried under reduced pressure to obtain a tissue-adhesive porous membrane.
(実施例14)
 ポロゲンとしてNaCl(粒径53~100μm:平均粒径77μm)を用いた他は実施例13と同様にして、組織接着性多孔質膜を作製した。
(Example 14)
A tissue-adhesive porous membrane was prepared in the same manner as in Example 13 except that NaCl (particle size 53 to 100 μm: average particle size 77 μm) was used as the porogen.
(実施例15)
 ポロゲンとしてNaCl(粒径100~212μm:平均粒径156μm)を用いた他は実施例13と同様にして、組織接着性多孔質膜を作製した。
(Example 15)
A tissue-adhesive porous membrane was prepared in the same manner as in Example 13 except that NaCl (particle size: 100 to 212 μm: average particle size: 156 μm) was used as the porogen.
(実施例16)
 ポロゲンとしてNaCl(粒径212~250μm:平均粒径231μm)を用いた他は実施例13と同様にして、組織接着性多孔質膜を作製した。
(Example 16)
A tissue-adhesive porous membrane was prepared in the same manner as in Example 13 except that NaCl (particle size 212 to 250 μm: average particle size 231 μm) was used as the porogen.
(実施例17)
 ポロゲンとしてNaCl(粒径250~500μm:平均粒径375μm)を用いた他は実施例13と同様にして、組織接着性多孔質膜を作製した。
(Example 17)
A tissue-adhesive porous membrane was prepared in the same manner as in Example 13 except that NaCl (particle size 250 to 500 μm: average particle size 375 μm) was used as the porogen.
 図20は、実施例13~17の組織接着性多孔質膜の断面の電子顕微鏡写真である。図21は、実施例13~17の組織接着性多孔質膜の表面の電子顕微鏡写真である。
 これらの電子顕微鏡写真より、多孔質構造が形成されており、作製時におけるNaClの粒径に応じたポロゲン孔を有する組織接着性多孔質膜であることが分かる。
FIG. 20 is an electron micrograph of a cross section of the tissue-adhesive porous membrane of Examples 13 to 17. FIG. 21 is an electron micrograph of the surface of the tissue-adhesive porous membrane of Examples 13 to 17.
From these electron micrographs, it can be seen that a porous structure is formed and that the tissue-adhesive porous film has porogen pores corresponding to the particle diameter of NaCl at the time of production.
(比較例7)
 疎水化していないAlGltnを用いて、25w/v%のAlGltn/10%乳酸-DMSO 4.5mLとTSC/10%乳酸-DMSO 0.5mLとをハンドスターラーで十分混合撹拌して、20w/w%のAlGltn溶液を得た。
 次に、ポロゲンとしてNaCl(粒径32~53μm:平均粒径43μm)を用いて、AlGltn溶液とNaClとの重量比が1:4となるように混合した。
 次に、ユニパックに得られた混合物を詰めて、ガラス板に1mmのシリコーンシートと共にクリップで留めて挟み、一晩静置して、AlGltnのアミノ基をTSCにより架橋した。
(Comparative Example 7)
Using non-hydrophobized AlGltn, 4.5 w / v% AlGltn / 10% lactic acid-DMSO (4.5 mL) and TSC / 10% lactic acid-DMSO (0.5 mL) were thoroughly mixed and stirred with a hand stirrer to give 20 w / w% Of AlGltn was obtained.
Next, NaCl (particle size: 32 to 53 μm: average particle size: 43 μm) was used as a porogen and mixed so that the weight ratio of the AlGltn solution to NaCl was 1: 4.
Next, the mixture obtained in Unipack was packed, clipped with a 1 mm silicone sheet on a glass plate, and allowed to stand overnight to crosslink the amino group of AlGltn with TSC.
 架橋後、得られたゲル状のDMSO・NaCl含有AlGltn架橋体を4℃に冷却した超純水中に放ち、超純水を大過剰量で交換しながら3日間浸漬して、DMSOを水に置換するとともに、NaCl、乳酸、DMSO、架橋副生成物であるN-ヒドロキシスクシンイミドを除去した。
 得られた水含有疎水化AlGltn架橋体を-80℃で凍結させた後に減圧乾燥を行い、非疎水化アルカリ処理ゼラチン製の多孔質膜を得た。
After cross-linking, the obtained gel-like DMSO / NaCl-containing AlGltn cross-linked product is released in ultrapure water cooled to 4 ° C. and immersed for 3 days while exchanging the ultrapure water in a large excess amount. At the same time, NaCl, lactic acid, DMSO, and N-hydroxysuccinimide, which is a cross-linking byproduct, were removed.
The obtained water-containing hydrophobized AlGltn crosslinked product was frozen at −80 ° C. and then dried under reduced pressure to obtain a porous membrane made of non-hydrophobized alkali-treated gelatin.
(比較例8)
 ポロゲンとしてNaCl(粒径53~100μm:平均粒径77μm)を用いた他は比較例7と同様にして、非疎水化アルカリ処理ゼラチン製の多孔質膜を作製した。
(Comparative Example 8)
A porous membrane made of non-hydrophobized alkali-treated gelatin was prepared in the same manner as in Comparative Example 7, except that NaCl (particle size 53 to 100 μm: average particle size 77 μm) was used as the porogen.
(比較例9)
 ポロゲンとしてNaCl(粒径100~212μm:平均粒径156μm)を用いた他は比較例7と同様にして、非疎水化アルカリ処理ゼラチン製の多孔質膜を作製した。
(Comparative Example 9)
A porous membrane made of non-hydrophobized alkali-treated gelatin was prepared in the same manner as in Comparative Example 7 except that NaCl (particle size: 100 to 212 μm: average particle size: 156 μm) was used as the porogen.
(比較例10)
 ポロゲンとしてNaCl(粒径212~250μm:平均粒径231μm)を用いた他は比較例7と同様にして、非疎水化アルカリ処理ゼラチン製の多孔質膜を作製した。
(Comparative Example 10)
A porous membrane made of non-hydrophobized alkali-treated gelatin was prepared in the same manner as in Comparative Example 7 except that NaCl (particle size 212 to 250 μm: average particle size 231 μm) was used as the porogen.
(比較例11)
 ポロゲンとしてNaCl(粒径250~500μm:平均粒径375μm)を用いた他は比較例7と同様にして、非疎水化アルカリ処理ゼラチン製の多孔質膜を作製した。
(Comparative Example 11)
A porous membrane made of non-hydrophobized alkali-treated gelatin was prepared in the same manner as in Comparative Example 7 except that NaCl (particle size 250 to 500 μm: average particle size 375 μm) was used as the porogen.
<種々の疎水性官能基を導入した組織接着性多孔質膜とブタ大腸表皮との接着強度測定>
 まず、37℃に設定したプレートの上に、直径7mmに打ち抜いた実施例7~実施例12の組織接着性多孔質膜または比較例11の多孔質膜を載せ、直径4mmに打ち抜いたセロテープ(登録商標)で固定した。
 次に、ブタ大腸表皮を直径4mmに打ち抜き、治具(プローブ)にシアノアクリレート系接着剤で固定した。
 次に、プローブに固定したブタ大腸表皮表面とプレート上に固定した組織接着性多孔質膜(または多孔質膜)とを接触させ、500gで3分間加圧した後、10mm/minで引っ張り試験を行った。実験は、3回行い平均値を測定値とした。
 結果を図22に示す。
<Measurement of adhesive strength between tissue-adhesive porous membrane with various hydrophobic functional groups and porcine colonic epidermis>
First, the tissue adhesive porous membrane of Example 7 to Example 12 punched to a diameter of 7 mm or the porous membrane of Comparative Example 11 was placed on a plate set at 37 ° C., and the cello tape punched to a diameter of 4 mm (registered) Trademark).
Next, the porcine large intestine epidermis was punched out to a diameter of 4 mm and fixed to a jig (probe) with a cyanoacrylate adhesive.
Next, the surface of the porcine large intestine epidermis fixed to the probe is brought into contact with the tissue adhesive porous membrane (or porous membrane) fixed on the plate, pressurized at 500 g for 3 minutes, and then subjected to a tensile test at 10 mm / min. went. The experiment was performed three times, and the average value was taken as the measured value.
The results are shown in FIG.
 図22より、疎水性官能基を導入した疎水化アルカリ処理ゼラチン製の組織接着性多孔質膜(実施例7~実施例12)は、いずれの疎水性官能基の場合でも、非疎水化アルカリ処理ゼラチン製の多孔質膜(比較例11)と比較して、ブタ大腸表皮への接着性が少なくとも約6倍高かった。 FIG. 22 shows that the tissue adhesive porous membranes (Examples 7 to 12) made of hydrophobized alkali-treated gelatin into which hydrophobic functional groups have been introduced are treated with non-hydrophobized alkali treated in any of the hydrophobic functional groups. Compared to the porous membrane made of gelatin (Comparative Example 11), the adhesion to the pig large intestine epidermis was at least about 6 times higher.
<種々のポロゲン孔を有する組織接着性多孔質膜とブタ大腸表皮との接着強度測定>
 まず、37℃に設定したプレートの上に、直径7mmに打ち抜いた実施例13~17の組織接着性多孔質膜または比較例7~11の多孔質膜を載せ、直径4mmに打ち抜いたセロテープ(登録商標)で固定した。
 次に、ブタ大腸表皮を直径4mmに打ち抜き、治具(プローブ)にシアノアクリレート系接着剤で固定した。
 次に、プローブに固定したブタ大腸表皮表面とプレート上に固定した組織接着性多孔質膜(または多孔質膜)とを接触させ、40g/mmで3分間加圧した後、10mm/minで引っ張り試験を行った。実験は、3回行い平均値を測定値とした。
 結果を図23に示す。
<Measurement of adhesive strength between tissue-adhesive porous membrane having various porogen pores and porcine large intestine epidermis>
First, the tissue adhesive porous membranes of Examples 13 to 17 punched to a diameter of 7 mm or the porous membranes of Comparative Examples 7 to 11 were placed on a plate set at 37 ° C., and the cellophane tape punched to a diameter of 4 mm (registered) Trademark).
Next, the porcine large intestine epidermis was punched out to a diameter of 4 mm and fixed to a jig (probe) with a cyanoacrylate adhesive.
Next, the surface of the porcine large intestine epidermis fixed to the probe is brought into contact with the tissue adhesive porous membrane (or porous membrane) fixed on the plate, pressurized at 40 g / mm 2 for 3 minutes, and then at 10 mm / min. A tensile test was performed. The experiment was performed three times, and the average value was taken as the measured value.
The results are shown in FIG.
 図23に示すように、比較例7~11の非疎水化アルカリ処理ゼラチン製の多孔質膜では、ポロゲンであるNaClの平均粒径が増加するにつれて、ブタ大腸表皮表面に対する接着強度が低下したのに対して、実施例13~17の組織接着性多孔質膜では、NaClの粒径が50~100μm(平均粒径77μm)の場合に、ブタ大腸表皮表面に対する接着強度が極大値を示した。
 従って、ゼラチンのアミノ基への疎水性官能基の導入に加えて、多孔質構造における孔径を制御することによって、ブタ大腸表皮表面に対してより高い接着強度を有する組織接着性多孔質膜とすることができることが明らかとなった。
As shown in FIG. 23, in the porous membranes made of non-hydrophobized alkali-treated gelatin of Comparative Examples 7 to 11, the adhesive strength to the porcine large intestine epidermis surface decreased as the average particle size of the porogen NaCl increased. On the other hand, in the tissue adhesive porous membranes of Examples 13 to 17, when the NaCl particle size was 50 to 100 μm (average particle size 77 μm), the adhesion strength to the surface of the porcine large intestine epidermis showed a maximum value.
Therefore, in addition to the introduction of hydrophobic functional groups into the amino groups of gelatin, by controlling the pore size in the porous structure, a tissue-adhesive porous membrane having higher adhesion strength to the surface of porcine large intestine epidermis is obtained. It became clear that it was possible.
(種々のポロゲン孔を有する組織接着性多孔質膜の吸水速度試験)
 滴下法による吸水性試験方法(JIS L 1907:2010)を基に、以下のように系を縮小して、実施例13~17の組織接着性多孔質膜及び比較例7~11の多孔質膜の吸水速度試験を行った。
 具体的には、2μLの超純水を各々のサンプル上に滴下し、100msごとにサンプル側面を接触角測定機で撮影して、膜の表面から水滴の凸面が観察されなくなるまでの時間を計測した。実験は、3回行い平均値を測定値とした。
 結果を図24に示す。
(Water absorption rate test of tissue adhesive porous membrane with various porogen pores)
Based on the water absorption test method (JIS L 1907: 2010) by the dropping method, the system was reduced as follows, and the tissue adhesive porous membranes of Examples 13 to 17 and the porous membranes of Comparative Examples 7 to 11 were used. The water absorption rate test was conducted.
Specifically, 2 μL of ultrapure water is dropped on each sample, and the side of the sample is photographed with a contact angle measuring device every 100 ms, and the time until the convex surface of the water droplet is no longer observed from the surface of the film is measured. did. The experiment was performed three times, and the average value was taken as the measured value.
The results are shown in FIG.
 図24より、実施例13~17の組織接着性多孔質膜では、比較例7~11の非疎水化アルカリ処理ゼラチン製の多孔質膜と比較して、いずれも吸水速度が速かった。これは、実施例13~17の組織接着性多孔質膜ではヘキサノイル基が存在することにより、ゼラチン分子の極性が変化したことによるものであると推測される。
 また、比較例7~11の多孔質膜では、ポロゲンであるNaClの平均粒径が増加するにつれて、吸水速度は単純降下を示したのに対して、実施例13~17の組織接着性多孔質膜では、NaClの粒径が50~100μm(平均粒径77μm)の場合に、吸水速度が極大値を示した。
 一般に、孔径が小さくなる程毛細管現象が起きやすく、吸水速度が高くなることが考えられるが、本発明の組織接着性多孔質膜では、多孔質構造における孔径と多孔質膜における疎水性官能基(例えば、ヘキサノイル基)の分布との相乗的効果が生じることによって、特定の粒径を有するポロゲンを鋳型としてポロゲン孔を設けた場合に、組織接着性多孔質膜の吸水速度の顕著な増加が見られたものと考えられる。
24, the tissue-adhesive porous membranes of Examples 13 to 17 all had a higher water absorption rate than the non-hydrophobized alkali-treated gelatin porous membranes of Comparative Examples 7 to 11. This is presumed to be due to the change in the polarity of gelatin molecules due to the presence of hexanoyl groups in the tissue adhesive porous membranes of Examples 13 to 17.
In the porous films of Comparative Examples 7 to 11, the water absorption rate showed a simple drop as the average particle diameter of the porogen NaCl increased, whereas the tissue adhesive porous films of Examples 13 to 17 In the membrane, when the particle diameter of NaCl was 50 to 100 μm (average particle diameter 77 μm), the water absorption rate showed a maximum value.
In general, as the pore size decreases, the capillary phenomenon tends to occur and the water absorption rate increases. However, in the tissue adhesive porous membrane of the present invention, the pore size in the porous structure and the hydrophobic functional group in the porous membrane ( For example, a synergistic effect with the distribution of hexanoyl groups) causes a significant increase in the water absorption rate of the tissue-adhesive porous membrane when porogen holes are provided using a porogen having a specific particle size as a template. It is thought that it was done.
(L929細胞を用いた組織接着性多孔質膜の細胞増殖性試験)
 実施例1~6の組織接着性多孔質膜及び比較例1~6の多孔質膜上で、L929細胞を無血清条件下で24時間培養した。
 その後、各々の多孔質膜上にWST-8を10μLずつ添加して、吸光度(450nm)を測定して、細胞数を計数した。
 結果を図25及び図26に示す。
(Cell proliferation test of tissue-adhesive porous membrane using L929 cells)
On the tissue adhesive porous membranes of Examples 1-6 and Comparative Examples 1-6, L929 cells were cultured for 24 hours under serum-free conditions.
Thereafter, 10 μL of WST-8 was added on each porous membrane, the absorbance (450 nm) was measured, and the number of cells was counted.
The results are shown in FIGS. 25 and 26.
 図25より、実施例1~6の組織接着性多孔質膜上で培養したL929細胞は、比較例1~6の多孔質膜上で培養した場合と比較して、いずれの多孔率でも細胞数が約4倍であることが分かる。
 これは、本発明の組織接着性多孔質膜がヘキサノイル基(疎水性官能基)を有することによりL929細胞との親和性が高くなったことに加えて、多孔質構造を有することにより液性因子等の通過性が向上したためであると考えられる。
As shown in FIG. 25, the L929 cells cultured on the tissue-adhesive porous membranes of Examples 1 to 6 had a cell number at any porosity as compared with the case of culturing on the porous membranes of Comparative Examples 1 to 6. Is about 4 times.
This is because the tissue adhesive porous membrane of the present invention has a high affinity with L929 cells due to the hexanoyl group (hydrophobic functional group), and also has a porous structure. This is considered to be due to the improved passability.
 また、図26より、実施例1~6の組織接着性多孔質膜上で培養したL929細胞では伸展が見られ、一方で、比較例1~6の多孔質膜上で培養したL929細胞では伸展が見れらないことが分かる。
 この結果から、疎水化アルカリ処理ゼラチン製の組織接着性多孔質膜とL929細胞表面との間で相互作用が生じている可能性が示唆された。
In addition, from FIG. 26, the extension was observed in the L929 cells cultured on the tissue adhesive porous membranes of Examples 1 to 6, while the extension was observed in the L929 cells cultured on the porous membranes of Comparative Examples 1 to 6. It can be seen that cannot be seen.
From this result, it was suggested that the interaction between the tissue adhesive porous membrane made of hydrophobized alkali-treated gelatin and the surface of the L929 cell may have occurred.
(CD34、α-SMAの免疫染色による組織接着性多孔質膜の血管新生評価)
 実施例2、5の組織接着性多孔質膜及び比較例2、5の多孔質膜を、ラット皮下に7日間埋入した後、各々の多孔質膜を含む組織切片を、CD34およびα-SMA(α平滑筋アクチン)により免疫染色し、Image Jを用いて評価を行った。評価に際しては、褐色に免疫染色された部分の総面積を「Vessel-Area」とし、視野を「Area」と定義した。
 結果を図27に示す。
(Angiogenesis evaluation of tissue adhesive porous membrane by immunostaining of CD34, α-SMA)
After the tissue adhesive porous membranes of Examples 2 and 5 and the porous membranes of Comparative Examples 2 and 5 were implanted subcutaneously in rats for 7 days, the tissue sections containing each porous membrane were subjected to CD34 and α-SMA. Immunostaining was performed using (α smooth muscle actin), and evaluation was performed using Image J. In the evaluation, the total area of the portion immunostained in brown was defined as “Vessel-Area” and the field of view was defined as “Area”.
The results are shown in FIG.
 図27より、非疎水化アルカリ処理ゼラチン(AlGltn)製の多孔質膜((P)AlGltn)と比較して、ヘキサノイル化アルカリ処理ゼラチン(25’(27)HxAlGltn)製の組織接着性多孔質膜((P)HxAlGltn)をラット皮下に埋入することにより、血管新生を優位に促進していることが分かる。さらに、多孔率のより高い(P)HxAlGltnでは、血管新生の促進効果がさらに向上していることが明らかである。 FIG. 27 shows that the tissue-adhesive porous film made of hexanoylated alkali-treated gelatin (25 ′ (27) HxAlGltn) compared with the non-hydrophobized alkali-treated gelatin (AlGltn) porous film ((P) AlGltn). It can be seen that by embedding ((P) HxAlGltn) subcutaneously in rats, angiogenesis is promoted significantly. Furthermore, it is clear that (P) HxAlGltn having a higher porosity further improves the effect of promoting angiogenesis.
 本発明の組織接着性多孔質膜、その製造方法及び組織接着性多孔質膜テープは、湿潤環境下でも接着力(接着強度)が高く適度な強度を持つ組織接着性多孔質膜、その製造方法及び組織接着性多孔質膜テープに関するものであり、組織接着剤、組織封止剤(Sealant)、止血剤等の製造産業において利用可能性がある。 Tissue-adhesive porous membrane of the present invention, method for producing the same, and tissue-adhesive porous membrane tape are tissue-adhesive porous membranes having high adhesive strength (adhesive strength) and appropriate strength even in a wet environment, and methods for producing the same In addition, the present invention relates to a tissue adhesive porous membrane tape, and may be used in the manufacturing industry of tissue adhesives, tissue sealants, hemostatic agents, and the like.
1、2…組織接着性多孔質膜、10…疎水化ゼラチン(疎水化ゼラチン分子鎖)、10c1…空隙孔(孔)、10c2…ポロゲン孔(孔)、11…疎水性官能基、12…アミノ基(-NH)、13…(ゼラチンからなる)主鎖、14…熱架橋(ペプチド結合)、20…水、21…生体組織(組織)、50…容器、51…疎水化ゼラチン含有溶液、53…水溶性有機溶媒含有疎水化ゼラチン架橋体、55…水溶性有機溶媒、58…水含有疎水化ゼラチン架橋体、60…ポロゲン分散疎水化ゼラチン含有溶液、62…ポロゲン、63…水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体、68…ポロゲン孔が形成された水含有疎水化ゼラチン架橋体。 DESCRIPTION OF SYMBOLS 1, 2 ... Tissue-adhesive porous membrane, 10 ... Hydrophobized gelatin (hydrophobized gelatin molecular chain), 10c1 ... Pore pore (pore), 10c2 ... Porogen pore (pore), 11 ... Hydrophobic functional group, 12 ... Amino Group (-NH 2 ), 13 ... (consisting of gelatin), 14 ... thermal cross-linking (peptide bond), 20 ... water, 21 ... biological tissue (tissue), 50 ... container, 51 ... hydrophobized gelatin-containing solution, 53 ... water-soluble organic solvent-containing hydrophobized gelatin cross-linked product, 55 ... water-soluble organic solvent, 58 ... water-containing hydrophobized gelatin cross-linked product, 60 ... porogen-dispersed hydrophobized gelatin-containing solution, 62 ... porogen, 63 ... water-soluble organic solvent And a hydrophobized gelatin cross-linked product containing porogen, 68... Water-containing hydrophobized gelatin cross-linked product in which porogen pores are formed.

Claims (16)

  1.  疎水化ゼラチンが架橋され、多孔質構造を有する膜であって、
     前記疎水化ゼラチンが、Lysのアミノ基の一部が疎水性官能基で置換されているゼラチンであることを特徴とする組織接着性多孔質膜。
    A membrane in which hydrophobic gelatin is crosslinked and has a porous structure,
    The tissue-adhesive porous membrane, wherein the hydrophobized gelatin is gelatin in which a part of the amino group of Lys is substituted with a hydrophobic functional group.
  2.  前記多孔質構造が、前記疎水化ゼラチンの架橋構造に設けられた複数の疎水化ゼラチン間の空隙孔からなることを特徴とする請求項1に記載の組織接着性多孔質膜。 2. The tissue-adhesive porous membrane according to claim 1, wherein the porous structure comprises voids between a plurality of hydrophobic gelatins provided in the crosslinked structure of the hydrophobic gelatin.
  3.  前記多孔質構造が、前記疎水化ゼラチンの架橋構造に設けられた複数の疎水化ゼラチン間の空隙孔と、前記架橋構造にポロゲンを鋳型として設けられたポロゲン孔とからなることを特徴とする請求項1に記載の組織接着性多孔質膜。 The porous structure is composed of pores between a plurality of hydrophobic gelatins provided in the crosslinked structure of the hydrophobic gelatin, and porogen holes provided in the crosslinked structure using a porogen as a template. Item 2. The tissue-adhesive porous membrane according to Item 1.
  4.  前記ポロゲン孔が、粒径が50~100μmであるポロゲンを鋳型として設けられたものであることを特徴とする請求項3に記載の組織接着性多孔質膜。 4. The tissue-adhesive porous membrane according to claim 3, wherein the porogen pores are provided using a porogen having a particle size of 50 to 100 μm as a template.
  5.  前記疎水化ゼラチンが、架橋剤又は縮合剤により架橋されていることを特徴とする請求項1~3のいずれか1項に記載の組織接着性多孔質膜。 The tissue-adhesive porous membrane according to any one of claims 1 to 3, wherein the hydrophobized gelatin is crosslinked with a crosslinking agent or a condensing agent.
  6.  前記架橋剤又は縮合剤が、トリスクシンイミジルシトレート、ジスクシンイミジルタータレート、ジスクシンイミジルマレート、ジスクシンイミジルスクシネート、グルタルアルデヒド、ホルムアルデヒド、ポリエチレングリコールジグリシジルエーテル、ゲニピン、水溶性カルボジイミドの1種または2種以上の組み合わせであることを特徴とする請求項5に記載の組織接着性多孔質膜。 The cross-linking agent or condensing agent is trisuccinimidyl citrate, disuccinimidyl tartrate, disuccinimidyl malate, disuccinimidyl succinate, glutaraldehyde, formaldehyde, polyethylene glycol diglycidyl ether, genipin, water-soluble The tissue-adhesive porous membrane according to claim 5, which is one type or a combination of two or more types of carbodiimides.
  7.  前記疎水化ゼラチンが、熱架橋により架橋されていることを特徴とする請求項1~3のいずれか1項に記載の組織接着性多孔質膜。 The tissue-adhesive porous membrane according to any one of claims 1 to 3, wherein the hydrophobized gelatin is crosslinked by thermal crosslinking.
  8.  前記疎水性官能基が、飽和脂肪酸であるエチル基(炭素数2)、プロピル基(炭素数3)、ブチル基(炭素数4)、ペンチル基(炭素数5)、ヘキサノイル基(炭素数6)、ヘプタノイル基(炭素数7)、オクタノイル基(炭素数8)、ノナノイル基(炭素数9)、デカノイル基(炭素数10)、ウンデカノイル基(炭素数11)、ドデカノイル基(炭素数12)、トリデカノイル基(炭素数13)、テトラデカノイル基(炭素数14)、ペンタデカノイル基(炭素数15)、ヘキサデカノイル基(炭素数16)、ヘプタデカノイル基(炭素数17)、ステアロイル基(炭素数18)、分岐型飽和脂肪酸であるイソプロピル基(炭素数3)、イソブチル基(炭素数4)、イソペンチル基(炭素数5)、イソヘキサノイル基(炭素数6)、イソヘプタノイル基(炭素数7)、イソオクタノイル基(炭素数8)、イソノナノイル基(炭素数9)、イソデカノイル基(炭素数10)、イソウンデカノイル基(炭素数11)、イソドデカノイル基(炭素数12)、イソトリデカノイル基(炭素数13)、イソテトラデカノイル基(炭素数14)、イソペンタデカノイル基(炭素数15)、イソヘキサデカノイル基(炭素数16)、イソパルミチル基(炭素数16)、イソヘプタデカノイル基(炭素数17)、イソステアロイル基(炭素数18)、不飽和脂肪酸であるオレイル基(炭素数18、不飽和炭素1個)、リノレニル基(炭素数18、不飽和炭素2個)、α-リノレニル基(炭素数18、不飽和炭素3個)、細胞膜成分であるコレステリル基の1種または2種以上の組み合わせであることを特徴とする請求項1に記載の組織接着性多孔質膜。 The hydrophobic functional group is a saturated fatty acid ethyl group (2 carbon atoms), propyl group (3 carbon atoms), butyl group (4 carbon atoms), pentyl group (5 carbon atoms), hexanoyl group (6 carbon atoms). , Heptanoyl group (carbon number 7), octanoyl group (carbon number 8), nonanoyl group (carbon number 9), decanoyl group (carbon number 10), undecanoyl group (carbon number 11), dodecanoyl group (carbon number 12), tridecanoyl Group (carbon number 13), tetradecanoyl group (carbon number 14), pentadecanoyl group (carbon number 15), hexadecanoyl group (carbon number 16), heptadecanoyl group (carbon number 17), stearoyl group (carbon number) 18) isopropyl group (carbon number 3), isobutyl group (carbon number 4), isopentyl group (carbon number 5), isohexanoyl group (carbon number 6), i.e., branched saturated fatty acid Heptanoyl group (carbon number 7), isooctanoyl group (carbon number 8), isononanoyl group (carbon number 9), isodecanoyl group (carbon number 10), isoundecanoyl group (carbon number 11), isododecanoyl group (carbon number 12) , Isotridecanoyl group (carbon number 13), isotetradecanoyl group (carbon number 14), isopentadecanoyl group (carbon number 15), isohexadecanoyl group (carbon number 16), isopalmityl group (carbon number) 16), isoheptadecanoyl group (carbon number 17), isostearoyl group (carbon number 18), unsaturated fatty acid oleyl group (carbon number 18, unsaturated carbon 1), linolenyl group (carbon number 18, non-carbon) Saturated carbon 2), α-linolenyl group (18 carbon atoms, 3 unsaturated carbons), cholesteryl group which is a cell membrane component, or a combination of two or more. The tissue-adhesive porous membrane according to claim 1, wherein:
  9.  前記ゼラチンが、ヒト、ブタ、ウシ、ティラピア、タラ由来のゼラチン又は遺伝子組換えゼラチンの1種または2種以上の組み合わせであることを特徴とする請求項1に記載の組織接着性多孔質膜。 The tissue-adhesive porous membrane according to claim 1, wherein the gelatin is one or a combination of two or more of gelatin derived from human, pig, cow, tilapia, cod or genetically modified gelatin.
  10.  薬剤を含むことを特徴とする請求項1~9のいずれか1項に記載の組織接着性多孔質膜。 The tissue-adhesive porous membrane according to any one of claims 1 to 9, further comprising a drug.
  11.  前記薬剤が、細胞分化誘導剤、抗ガン剤、免疫抑制剤、細胞成長因子、サイトカイン、トロンビン阻害薬、抗血栓薬、血栓溶解剤、線維素溶解薬、血管痙攣阻害薬、カルシウムチャネル遮断薬、血管拡張薬、高血圧治療薬、抗菌薬、抗生物質、表面糖タンパク質受容体阻害薬、抗血小板薬、細胞分裂抑制薬、微小管阻害薬、抗分泌薬、アクチン阻害薬、リモデリング阻害薬、アンチセンス・ヌクレオチド、代謝拮抗剤、抗増殖性物質、抗癌化学治療薬、抗炎症性ステロイドまたは非ステロイド抗炎症薬、免疫抑制剤、成長ホルモン・アンタゴニスト、ドーパミン・アゴニスト、放射線治療薬、ペプチド、タンパク質、酵素、細胞外マトリックス成分、阻害薬、フリーラジカル・スカベンジャー、キレート剤、抗酸化剤、抗ポリメラーゼ、抗ウィルス薬、光力学治療薬、および遺伝子治療薬から選ばれる1種または2種以上の組み合わせであることを特徴とする請求項10に記載の組織接着性多孔質膜。 The agent is a cell differentiation inducer, anticancer agent, immunosuppressant, cell growth factor, cytokine, thrombin inhibitor, antithrombotic agent, thrombolytic agent, fibrinolytic agent, vasospasm inhibitor, calcium channel blocker, Vasodilator, Antihypertensive, Antibacterial, Antibiotic, Surface glycoprotein receptor inhibitor, Antiplatelet agent, Cytostatic, Microtubule inhibitor, Antisecretory, Actin inhibitor, Remodeling inhibitor, Anti Sense nucleotides, antimetabolites, antiproliferative substances, anticancer chemotherapeutic drugs, anti-inflammatory steroids or nonsteroidal anti-inflammatory drugs, immunosuppressants, growth hormone antagonists, dopamine agonists, radiotherapeutic drugs, peptides, proteins , Enzyme, extracellular matrix component, inhibitor, free radical scavenger, chelating agent, antioxidant, anti-polymerase, anti-polymer -Virus agents, photodynamic therapy agents, and tissue adhesive porous membrane according to claim 10, characterized in that the one or more combinations selected from the gene therapy.
  12.  疎水化ゼラチンを水溶性有機溶媒に溶解させて、疎水化ゼラチン含有溶液を調製する工程と、前記疎水化ゼラチン含有溶液に架橋剤又は縮合剤を入れて疎水化ゼラチンを架橋して水溶性有機溶媒含有疎水化ゼラチン架橋体を形成する工程と、前記水溶性有機溶媒含有疎水化ゼラチン架橋体を水中に入れて、水溶性有機溶媒を水に置換して、水含有疎水化ゼラチン架橋体を形成する工程と、前記水含有疎水化ゼラチン架橋体を凍結乾燥して組織接着性多孔質膜を形成する工程と、を有することを特徴とする組織接着性多孔質膜の製造方法。 A step of preparing a hydrophobic gelatin-containing solution by dissolving hydrophobic gelatin in a water-soluble organic solvent, and adding a crosslinking agent or a condensing agent to the hydrophobic gelatin-containing solution to cross-link the hydrophobic gelatin to form a water-soluble organic solvent Forming a water-containing hydrophobized gelatin cross-linked body, and forming the water-containing hydrophobized gelatin cross-linked body by placing the water-soluble organic solvent-containing hydrophobized gelatin cross-linked body in water and substituting the water-soluble organic solvent with water. And a step of lyophilizing the water-containing hydrophobized gelatin cross-linked body to form a tissue-adhesive porous membrane.
  13.  疎水化ゼラチンを水溶性有機溶媒に溶解させて、疎水化ゼラチン含有溶液を調製する工程と、前記疎水化ゼラチン含有溶液にポロゲンを分散させて、ポロゲン分散疎水化ゼラチン含有溶液を調製する工程と、前記ポロゲン分散疎水化ゼラチン含有溶液に架橋剤又は縮合剤を入れて疎水化ゼラチンを架橋して水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体を形成する工程と、前記水溶性有機溶媒とポロゲンとを含有する疎水化ゼラチン架橋体を水中に入れて、水溶性有機溶媒を水に置換し、かつポロゲンを溶解、除去して、ポロゲン孔が形成された水含有疎水化ゼラチン架橋体を形成する工程と、前記ポロゲン孔が形成された水含有疎水化ゼラチン架橋体を凍結乾燥して組織接着性多孔質膜を形成する工程と、を有することを特徴とする組織接着性多孔質膜の製造方法。 Dissolving a hydrophobized gelatin in a water-soluble organic solvent to prepare a hydrophobized gelatin-containing solution, dispersing a porogen in the hydrophobized gelatin-containing solution, and preparing a porogen-dispersed hydrophobized gelatin-containing solution; Adding a cross-linking agent or a condensing agent to the porogen-dispersed hydrophobized gelatin-containing solution to cross-link the hydrophobized gelatin to form a hydrophobized gelatin cross-linked body containing a water-soluble organic solvent and a porogen; and the water-soluble organic solvent Water-containing hydrophobized gelatin cross-linked product in which porogen pores are formed by placing a hydrophobized gelatin cross-linked product containing selenium and porogen in water, replacing the water-soluble organic solvent with water, and dissolving and removing the porogen. And a step of lyophilizing the water-containing hydrophobized gelatin crosslinked body in which the porogen pores are formed to form a tissue adhesive porous membrane. Method for producing a tissue adhesive porous film whose symptoms.
  14.  前記ポロゲンがNaCl、KCl、MgCl、氷、ポリエチレングリコールのいずれかの材料からなる粒子であることを特徴とする請求項13に記載の組織接着性多孔質膜の製造方法。 14. The method for producing a tissue-adhesive porous membrane according to claim 13, wherein the porogen is particles made of any material of NaCl, KCl, MgCl, ice, and polyethylene glycol.
  15.  前記水溶性有機溶媒がジメチルスルホキシドであることを特徴とする請求項12又は13に記載の組織接着性多孔質膜の製造方法。 14. The method for producing a tissue-adhesive porous membrane according to claim 12 or 13, wherein the water-soluble organic solvent is dimethyl sulfoxide.
  16.  請求項1~11のいずれか1項に記載の組織接着性多孔質膜を帯状としたことを特徴とする組織接着性多孔質膜テープ。 A tissue-adhesive porous membrane tape comprising the tissue-adhesive porous membrane according to any one of claims 1 to 11 in a strip shape.
PCT/JP2014/080477 2013-11-22 2014-11-18 Tissue adhesive porous film, method for producing same, and tissue adhesive porous film tape WO2015076252A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015549152A JP6120392B2 (en) 2013-11-22 2014-11-18 Tissue-adhesive porous membrane, method for producing the same, and tissue-adhesive porous membrane tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-241764 2013-11-22
JP2013241764 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015076252A1 true WO2015076252A1 (en) 2015-05-28

Family

ID=53179514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080477 WO2015076252A1 (en) 2013-11-22 2014-11-18 Tissue adhesive porous film, method for producing same, and tissue adhesive porous film tape

Country Status (2)

Country Link
JP (1) JP6120392B2 (en)
WO (1) WO2015076252A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117569A1 (en) * 2015-01-20 2016-07-28 国立研究開発法人物質・材料研究機構 Surgical sealant
JP2019076070A (en) * 2017-10-27 2019-05-23 株式会社豊田中央研究所 Porous scaffold for cells and uses thereof
WO2020071429A1 (en) * 2018-10-04 2020-04-09 国立研究開発法人物質・材料研究機構 Angiogenesis promoter and therapeutic method
CN111298192A (en) * 2020-03-06 2020-06-19 华中科技大学同济医学院附属协和医院 Protective repair hydrogel for damaged parts of skin and mucous membrane and preparation method thereof
CN112512602A (en) * 2018-09-05 2021-03-16 国立研究开发法人物质·材料研究机构 Adhesion-preventing material
US11679177B2 (en) 2017-08-08 2023-06-20 Baxter International Inc. Polymeric compositions, delivery devices, and methods
WO2024053602A1 (en) * 2022-09-06 2024-03-14 国立研究開発法人物質・材料研究機構 Porous sheet, tissue adhesive film, use thereof as hemostatic agent or anti-adhesion material, and methods for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503881A (en) * 2003-08-29 2007-03-01 メイヨ フオンデーシヨン フオー メデイカル エジユケーシヨン アンド リサーチ Hydrogel porogens for the production of biodegradable scaffolds
WO2012046759A1 (en) * 2010-10-05 2012-04-12 独立行政法人物質・材料研究機構 Tissue adhesive film and method for producing same
JP2014100420A (en) * 2012-11-22 2014-06-05 National Institute For Materials Science Tissue adhesive film and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005211A (en) * 2012-06-21 2014-01-16 Kagoshima Univ Method for producing gelatin gel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503881A (en) * 2003-08-29 2007-03-01 メイヨ フオンデーシヨン フオー メデイカル エジユケーシヨン アンド リサーチ Hydrogel porogens for the production of biodegradable scaffolds
WO2012046759A1 (en) * 2010-10-05 2012-04-12 独立行政法人物質・材料研究機構 Tissue adhesive film and method for producing same
JP2014100420A (en) * 2012-11-22 2014-06-05 National Institute For Materials Science Tissue adhesive film and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATSUDA ET AL.: "Enhanced tissue penetration- induced high bonding strength of a novel tissue adhesive composed of cholesteryl group-modified gelatin and disuccinimidyl tartarate", COLLOIDS AND SURFACES B: BIOINTERFACES, vol. 91, 1 March 2012 (2012-03-01), pages 48 - 56, XP028347786, DOI: doi:10.1016/j.colsurfb.2011.10.030 *
MATSUDA ET AL.: "In vitro evaluation of tissue adhesives composed of hydrophobically modified gelatins and disuccinimidyl tartrate", SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, vol. 13, 2012 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117569A1 (en) * 2015-01-20 2016-07-28 国立研究開発法人物質・材料研究機構 Surgical sealant
EP3248622A4 (en) * 2015-01-20 2018-11-14 National Institute for Materials Science Surgical sealant
US10420855B2 (en) 2015-01-20 2019-09-24 National Institute For Materials Science Surgical sealant
US11679177B2 (en) 2017-08-08 2023-06-20 Baxter International Inc. Polymeric compositions, delivery devices, and methods
JP2019076070A (en) * 2017-10-27 2019-05-23 株式会社豊田中央研究所 Porous scaffold for cells and uses thereof
CN112512602A (en) * 2018-09-05 2021-03-16 国立研究开发法人物质·材料研究机构 Adhesion-preventing material
WO2020071429A1 (en) * 2018-10-04 2020-04-09 国立研究開発法人物質・材料研究機構 Angiogenesis promoter and therapeutic method
JPWO2020071429A1 (en) * 2018-10-04 2021-09-02 国立研究開発法人物質・材料研究機構 Angiogenesis promoter and treatment method
JP7132465B2 (en) 2018-10-04 2022-09-07 国立研究開発法人物質・材料研究機構 Angiogenesis promoting agent and treatment method
CN111298192A (en) * 2020-03-06 2020-06-19 华中科技大学同济医学院附属协和医院 Protective repair hydrogel for damaged parts of skin and mucous membrane and preparation method thereof
CN111298192B (en) * 2020-03-06 2021-11-16 华中科技大学同济医学院附属协和医院 Protective repair hydrogel for damaged parts of skin and mucous membrane and preparation method thereof
WO2024053602A1 (en) * 2022-09-06 2024-03-14 国立研究開発法人物質・材料研究機構 Porous sheet, tissue adhesive film, use thereof as hemostatic agent or anti-adhesion material, and methods for producing same

Also Published As

Publication number Publication date
JP6120392B2 (en) 2017-04-26
JPWO2015076252A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6120392B2 (en) Tissue-adhesive porous membrane, method for producing the same, and tissue-adhesive porous membrane tape
Ghobril et al. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial
KR102514142B1 (en) Tissue-adhesive porous haemostatic product
JP6042815B2 (en) Anti-adhesion barrier membranes using alginate and hyaluronic acid for biomedical applications
Nishiguchi et al. Multifunctional hydrophobized microparticles for accelerated wound healing after endoscopic submucosal dissection
TWI436793B (en) Rapidly acting dry sealant and methods for use and manufacture
JP2017153975A (en) Hemostatic composition
JP5594633B2 (en) Two-component tissue adhesive and method for producing the same
JP7143222B2 (en) Mesh-based in-situ crosslinkable composition
Artzi et al. Characterization of star adhesive sealants based on PEG/dextran hydrogels
JP5747264B2 (en) Tissue adhesive film and method for producing the same
NL2016524B1 (en) Tissue-adhesive material
EP2707042B1 (en) Tissue sealants from plasma derived proteins
Zhu et al. A Dual‐Bioinspired Tissue Adhesive Based on Peptide Dendrimer with Fast and Strong Wet Adhesion
US20220111112A1 (en) Flexible Gelatin Sealant Dressing with Reactive Components
GB2561947A (en) Tissue-adhesive materials
JP2019051189A (en) Gelatin derivative wound covering material
JP6048811B2 (en) Tissue adhesive film and method for producing the same
EP3862016B1 (en) Angiogenesis promoter for use in treating a peripheral artery disease
WO2024000861A1 (en) Peg two-component self-adhesive absorbable biological mesh, method for preparing same, and use thereof
CN113227129A (en) Powder, wound-covering material, adhesion-preventing material, hemostatic material, and method for producing powder
KR101865160B1 (en) Sheet preparation for tissue adhesion
CN114848668B (en) Composition with functions of promoting wound healing and rapidly stopping bleeding
CN117159802B (en) Responsive hydrogel and preparation method and application thereof
WO2024053602A1 (en) Porous sheet, tissue adhesive film, use thereof as hemostatic agent or anti-adhesion material, and methods for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864414

Country of ref document: EP

Kind code of ref document: A1